WorldWideScience

Sample records for show ovulatory defects

  1. Immature rats show ovulatory defects similar to those in adult rats lacking prostaglandin and progesterone actions

    Directory of Open Access Journals (Sweden)

    Sanchez-Criado Jose E

    2004-09-01

    Full Text Available Abstract Gonadotropin-primed immature rats (GPIR constitute a widely used model for the study of ovulation. Although the equivalence between the ovulatory process in immature and adult rats is generally assumed, the morphological and functional characteristics of ovulation in immature rats have been scarcely considered. We describe herein the morphological aspects of the ovulatory process in GPIR and their response to classical ovulation inhibitors, such as the inhibitor of prostaglandin (PG synthesis indomethacin (INDO and a progesterone (P receptor (PR antagonist (RU486. Immature Wistar rats were primed with equine chorionic gonadotropin (eCG at 21, 23 or 25 days of age, injected with human chorionic gonadotropin (hCG 48 h later, and sacrificed 16 h after hCG treatment, to assess follicle rupture and ovulation. Surprisingly, GPIR showed age-related ovulatory defects close similar to those in adult rats lacking P and PG actions. Rats primed with eCG at 21 or 23 days of age showed abnormally ruptured corpora lutea in which the cumulus-oocyte complex (COC was trapped or had been released to the ovarian interstitum, invading the ovarian stroma and blood and lymphatic vessels. Supplementation of immature rats with exogenous P and/or PG of the E series did not significantly inhibit abnormal follicle rupture. Otherwise, ovulatory defects were practically absent in rats primed with eCG at 25 days of age. GPIR treated with INDO showed the same ovulatory alterations than vehicle-treated ones, although affecting to a higher proportion of follicles. Blocking P actions with RU486 increased the number of COC trapped inside corpora lutea and decreased ovulation. The presence of ovulatory defects in GPIR, suggests that the capacity of the immature ovary to undergo the coordinate changes leading to effective ovulation is not fully established in Wistar rats primed with eCG before 25 days of age.

  2. Protein intake and ovulatory infertility.

    Science.gov (United States)

    Chavarro, Jorge E; Rich-Edwards, Janet W; Rosner, Bernard A; Willett, Walter C

    2008-02-01

    The objective of the study was to evaluate whether intake of protein from animal and vegetable origin is associated with ovulatory infertility. A total of 18,555 married women without a history of infertility were followed up as they attempted a pregnancy or became pregnant during an 8 year period. Dietary assessments were related to the incidence of ovulatory infertility. During follow-up, 438 women reported ovulatory infertility. The multivariate-adjusted relative risk (RR) (95% confidence interval [CI]; P for trend) of ovulatory infertility comparing the highest to the lowest quintile of animal protein intake was 1.39 (1.01 to 1.90; 0.03). The corresponding RR (95% CI; P for trend) for vegetable protein intake was 0.78 (0.54 to 1.12; 0.07). Furthermore, consuming 5% of total energy intake as vegetable protein rather than as animal protein was associated with a more than 50% lower risk of ovulatory infertility (P =.007). Replacing animal sources of protein with vegetable sources of protein may reduce ovulatory infertility risk.

  3. Cortical mechanics and myosin-II abnormalities associated with post-ovulatory aging: implications for functional defects in aged eggs

    Science.gov (United States)

    Mackenzie, Amelia C.L.; Kyle, Diane D.; McGinnis, Lauren A.; Lee, Hyo J.; Aldana, Nathalia; Robinson, Douglas N.; Evans, Janice P.

    2016-01-01

    young eggs, by ∼40% in the cortical region where the metaphase II spindle is sequestered and by ∼50% in the domain to which sperm bind and fuse (P eggs with a zinc ionophore (P = 0.003), as is parthenogenesis induced by inhibition of mitogen-activated kinase (MAPK) 3/1 [also known as extracellular signal-regulated kinase (ERK)1/2] or MLCK. Inhibition of MLCK with ML-7 also results in effects that mimic those of post-ovulatory aging: fertilized ML-7-treated eggs show both impaired fertilization and increased extents of polyspermy, and ML-7-treated young eggs have several membrane abnormalities that are shared by post-ovulatory aged eggs. LIMITATIONS, REASONS FOR CAUTION These studies were done with mouse oocytes, and it remains to be fully determined how these findings from mouse oocytes would compare with other species. For studies using methods not amenable to analysis of large sample sizes and data are limited to what images one can capture (e.g. SEM), data should be interpreted conservatively. WIDER IMPLICATIONS OF THE FINDINGS These data provide insights into causes of reproductive failures at later post-copulatory times. LARGE SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTEREST(S) This project was supported by R01 HD037696 and R01 HD045671 from the NIH to J.P.E. Cortical tension studies were supported by R01 GM66817 to D.N.R. The authors declare there are no financial conflicts of interest. PMID:26921397

  4. Women's health implications of ovulatory dysfunction

    NARCIS (Netherlands)

    Daan, NMP

    2016-01-01

    The association between ovulatory dysfunction and the occurrence of future CVD events remains largely unsettled.The association between PCOS and cardiometabolic abnormalities (e.g. obesity, dyslipidemia, insulin resistance) has indeed been clearly established, and was reaffirmed in the current

  5. Seasonal ovulatory activity exists in tropical Creole female goats and Black Belly ewes subjected to a temperate photoperiod.

    Science.gov (United States)

    Chemineau, Philippe; Daveau, Agnès; Cognié, Yves; Aumont, Gilles; Chesneau, Didier

    2004-08-27

    Seasonality of ovulatory activity is observed in European sheep and goat breeds, whereas tropical breeds show almost continuous ovulatory activity. It is not known if these tropical breeds are sensitive or not to temperate photoperiod. This study was therefore designed to determine whether tropical Creole goats and Black-Belly ewes are sensitive to temperate photoperiod. Two groups of adult females in each species, either progeny or directly born from imported embryos, were used and maintained in light-proof rooms under simulated temperate (8 to 16 h of light per day) or tropical (11 - 13 h) photoperiods. Ovulatory activity was determined by blood progesterone assays for more than two years. The experiment lasted 33 months in goats and 25 months in ewes. Marked seasonality of ovulatory activity appeared in the temperate group of Creole female goats. The percentage of female goats experiencing at least one ovulation per month dramatically decreased from May to September for the three years (0%, 27% and 0%, respectively). Tropical female goats demonstrated much less seasonality, as the percentage of goats experiencing at least one ovulation per month never went below 56%. These differences were significant. Both groups of temperate and tropical Black-Belly ewes experienced a marked seasonality in their ovulatory activity, with only a slightly significant difference between groups. The percentage of ewes experiencing at least one ovulation per month dropped dramatically in April and rose again in August (tropical ewes) or September (temperate ewes). The percentage of ewes experiencing at least one ovulation per month never went below 8% and 17% (for tropical and temperate ewes respectively) during the spring and summer months. An important seasonality in ovulatory activity of tropical Creole goats was observed when females were exposed to a simulated temperate photoperiod. An unexpected finding was that Black-Belly ewes and, to a lesser extent, Creole goats exposed to

  6. Ovulatory Follicular Dynamics After Estrus Synchronization using Prostaglandin F2a in Dairy Cows

    Directory of Open Access Journals (Sweden)

    Prabowo Purwono Putro

    2014-11-01

    Full Text Available The study aimed to follow development of ovulatory follicular dynamics as well as plasma progesterone profile after estrus synchronization using PGF2 and GnRH.   A total of 15 non-pregnant dairy cows, 4-5 years of age, healthy and reproductively sound were used in the present study.     Treatment 1, given intramuscular injection of PGF2 25 mg (PGF2, treatment 2 PGF2 25 mg and GnRH 250 g 2 days later (PGF2-GnRH, and treatment 3 with GnRH 250 g (7 days prior to injection of PGF2, PGF2 25 mg and GnRH 250 g (2 days after injection of PGF2  (GnRH-PGF2a-GnRH (the Ovsynch method.   Transrectal ultrasonographic examination using real time, B-mode, with 7.5 MHz tranducer was performed everyday for 12 days to follow ovulatory follicular and luteal dynamics.   Blood plasma was taken every day for progesterone determination using EIA technique.   Data of follicular, luteal development and progesterone levels were tested using analysis of variance and correlation analysis.   The animals showed estrus within 70.70 + 01.90 hours following PGF2 injection.   Prostaglandin F2 induced corpus luteum regression, decreased  in progesterone plasma levels, followed by ovulatory follicular development and eventually underwent ovulation.   Administration of first GnRH increased corpus luteum size, enhanced its regression and decreased plasma progesterone levels, while  the second administration induce  better ovulatory follicular development.   Rate of the corpus luteum regression, progesterone decrease and ovulatory follicular development following PGF2 injection for respective treatments 1, 2 and 3 were 2.53 + 0.24a, 2.73 + 0.36a and 3.53 + 0.28b mm/day; 1.39 + 0.14a,  1.35 + 0.18a dan 1.57 + 0.12b ng/ml/day; and 1.33 + 0.15a,  1.63 + 0.19b and 1.67 + 0.23b mm/day, respectively (P < 0.05.   It can be concluded that PGF2 induced corpus luteum regression, decreased in  progesterone plasma

  7. Changes in women's attractiveness perception of masculine men's dances across the ovulatory cycle: preliminary data.

    Science.gov (United States)

    Cappelle, Tessa; Fink, Bernhard

    2013-10-10

    Women's preferences for putative cues of genetic quality in men's voices, faces, bodies, and behavioral displays are stronger during the fertile phase of the ovulatory cycle. Here we show that ovulatory cycle-related changes in women's attractiveness perceptions of male features are also found with dance movements, especially those perceived as highly masculine. Dance movements of 79 British men were recorded with an optical motion-capture system whilst dancing to a basic rhythm. Virtual humanoid characters (avatars) were created and converted into 15-second video clips and rated by 37 women on masculinity. Another 23 women judged the attractiveness of the 10 dancers who scored highest and those 10 who scored lowest on masculinity once in days of high fertility and once in days of low fertility of their ovulatory cycle. High-masculine dancers were judged higher on attractiveness around ovulation than on other cycle days, whilst no such perceptual difference was found for low-masculine dancers. We suggest that women may gain fitness benefits from evolved preferences for masculinity cues they obtain from male dance movements.

  8. Changes in Women's Attractiveness Perception of Masculine Men's Dances across the Ovulatory Cycle: Preliminary Data

    Directory of Open Access Journals (Sweden)

    Tessa Cappelle

    2013-07-01

    Full Text Available Women's preferences for putative cues of genetic quality in men's voices, faces, bodies, and behavioral displays are stronger during the fertile phase of the ovulatory cycle. Here we show that ovulatory cycle-related changes in women's attractiveness perceptions of male features are also found with dance movements, especially those perceived as highly masculine. Dance movements of 79 British men were recorded with an optical motion-capture system whilst dancing to a basic rhythm. Virtual humanoid characters (avatars were created and converted into 15-second video clips and rated by 37 women on masculinity. Another 23 women judged the attractiveness of the 10 dancers who scored highest and those 10 who scored lowest on masculinity once in days of high fertility and once in days of low fertility of their ovulatory cycle. High-masculine dancers were judged higher on attractiveness around ovulation than on other cycle days, whilst no such perceptual difference was found for low-masculine dancers. We suggest that women may gain fitness benefits from evolved preferences for masculinity cues they obtain from male dance movements.

  9. Correlation of Erythrocyte Trans Fatty Acids with Ovulatory Disorder Infertility in Polycystic Ovarian Syndrome

    Directory of Open Access Journals (Sweden)

    Aisa Ghaffarzad

    2014-07-01

    Full Text Available Trans fatty acids are considered to be the important modifiable factor of the ovulatory infertility disorder. The purpose of this study was to test the hypothesis that higher trans fatty acids of erythrocytes (RBC are associated with the risk of ovulatory infertility disorder in polycystic ovarian syndrome (PCOS. Thirty five infertile women with polycystic ovarian syndrome, defined by AES criteria and 29 age-matched healthy women as a control group were recruited for the study. After physical measurements and nutritional assessment, blood samples were collected. Fasting serum glucose and insulin were measured, and then insulin resistance was calculated by homeostasis model assessment (HOMA-IR. Erythrocyte fatty acids were measured by gas chromatography. The patients group had higher waist circumference (WC, insulin levels, HOMA-IR than controls (p< 0.05. Also, case group had lower percentage of normal BMI (BMI<25, physical activity and education levels than healthy women (p< 0.05. Among RBC trans fatty acids only trans linoleate (18:2t were significantly higher in case group than control women (p= 0.019. PCOS group tended to consume more food rich in TFAs than the control group. Logistic regression analysis also showed that only 18:2t is positively associated with risk of ovulatory disorder infertility in PCOS (OR= 1.225, 95% CI. 1.024-1.465; P= 0.026, which was not affected after adjustment for BMI, physical activity and education levels. The results suggested that RBC trans fatty acids might be a predictor of increased risk for ovulatory infertility disorder in women with PCOS.

  10. Color Doppler imaging and measurements of intraovarian and intrauterine vascularization on basal ultrasound examination in spontaneous ovulatory and anovulatory cycles

    Directory of Open Access Journals (Sweden)

    Kutlešić Ranko

    2008-01-01

    Full Text Available Background/Aim. Any organs functioning directly depends on vascularization. It applies also to the uterus and ovary which go through changes of vascularization during a menstruation cycle. The aim of this investigation was to determine differences in intrauterine and ovarian stromal arterioral blood flow on basal ultrasound examination (day 2-4 between spontaneous ovulatory and anovulatory cycles. Methods. This prospective clinical investigation included 205 patients divided into two groups: with ovulatory and with anovulatory cycles. Results. Resistance to ovarian arterioral stromal blood flow was significantly lower in the patients with ovulatory cycles (pulsatile index - PI 0.97 ± 0.4 vs 1.93 ± 1.37; p = 0.001737; and (resistance index - RI 0.55 ± 0.12 vs 0.68 ± 0.14; p = 0.040033. There were no statistically significant differences in arcuate arterioral blood flow in the pateints with ovulatory and anovulatory cycles (PI 1.21 ± 0.34 vs 61 ± 0,61 p = 0.136161 and RI 0.64 ± 0.11 vs 0.74 ± 0.07; p = 0.136649. The patients with ovulatory cycles had lower uterine radial arterioral blood flow than the patients with anovulatory cycles (PI 1.001 ± 0.22 vs 1.61 ± 0.23 p = 0.007501 and RI 0.55 ± 0.08 vs 0.71 ± 0.12; p = 0,0460113. The patients with ovulatory cycles had lower subendometrial arterioral blood flow resistance (PI 0.69 ± 0.19 vs 1.385±0.09; p = 0.00622 and RI 0.44 ± 0.09 vs 0.65 ± 0.02; p = 0.027458. Conclusion. Color Doppler ultrasuond imaging and measurements of intrauterine and ovarian stromal arterioral blood flow on basal ultrasound examination (day 2-4, showed lower resistance to blood flow in ovulatory than in anovulatory cycles.

  11. Growth rate of ovulatory follicles during the first ovulatory oestrus (after seasonal anoestrus) and subsequent oestrous period in Irish Draught mares.

    Science.gov (United States)

    Newcombe, John R; Cuervo-Arango, Juan

    2013-03-12

    It is believed that during the spring transition, the developing follicle tends to grow more slowly, persist longer and grow to a larger diameter prior to ovulation than at subsequent oestrus periods. A general suspicion, that the first ovulation of the year is less fertile than subsequent ovulations could be explained by a slower growth rate of the ovulatory follicle during transition with the consequent production of a subfertile oocyte. By detailed serial examination of the same group of Irish Draught mares over three winter/spring periods, no significant difference was found in either growth rate or pre-ovulatory diameter when compared with subsequent ovulations. Mean growth rates over the ten days prior to ovulation were 2.20 mm/day (range 1.18 to 3.64) and 2.19 mm/day (range 1.25 to 3.41) for first and subsequent ovulations respectively. Mean maximum pre-ovulatory diameters were 44.7 mm (range 35 to 59) and 43.5 mm (range 31 to 57.5) for first and subsequent ovulations respectively. The impression gained by practitioners that the first follicle develops more slowly during the transition to the first ovulation of the season may be due to less frequent examinations and consequently a failure to observe and record that follicles may grow and then regress during this period. The largest follicle observed a few days previously is not necessarily the same large follicle found at a later examination.

  12. Characteristics of infertile patients with ovulatory dysfunction and their relation to body mass index

    International Nuclear Information System (INIS)

    Sadia, S.; Waqar, F.; Akhtar, T.; Sultana, S.

    2009-01-01

    Ovulatory dysfunction is a group of disorders with variable clinical presentations occasionally having serious long-term adverse effects. It accounts for 30% of female fertility problems. Evidence suggests an association between an individual's weight and disorders of ovulation. The objective of our study was to describe the clinical and hormonal profile of subfertile women with ovulatory dysfunction in relation to their body mass index (BMI). Methods: This prospective, descriptive study was carried out in Mother and Child Health Centre, PIMS, Islamabad and Railway hospital, Rawalpindi from April 2001 to March 2007. One hundred and thirty eight infertile patients with ovulatory dysfunction were included. The clinical data including BMI of each patient was recorded in addition to reports of investigations comprised of cervical smear, pelvic ultrasound and hormonal profile. Results: Primary infertility was found in 61% while secondary in 39% of the patients. The mean age was 29 years and mean duration of infertility was 6 years. Menstrual pattern was normal in 56.5%. BMI was normal in 30.4% while most patients were overweight and obese. Prolonged cycles, history of systemic endocrine disorders, abnormal vaginal discharge, hirsutism, polycystic ovarian morphology and hormonal abnormalities were more frequent in patients with increased BMI. During the study period, 21.7% of the women conceived. Conclusion: Infertile patients with ovulatory dysfunction present more frequently with primary infertility. They usually have higher than required BMI. Oligomenorrhoea amenorrhoea, hirsutism and hormonal abnormalities are more frequent in overweight than infertile patients with ovulatory dysfunction having a normal BMI. (author)

  13. Obesity affects spontaneous pregnancy chances in subfertile, ovulatory women

    NARCIS (Netherlands)

    J.W. van der Steeg (Jan Willem); P. Steures (Pieternel); M.J.C. Eijkemans (René); J.D.F. Habbema (Dik); P.G. Hompes (Peter); J.M. Burggraaff (Jan); G.J.E. Oosterhuis (Jur); P.M.M. Bossuyt (Patrick); F. Veen (Fulco); B.W.J. Mol (Ben)

    2008-01-01

    textabstractBACKGROUND: Obesity is increasing rapidly among women all over the world. Obesity is a known risk factor for subfertility due to anovulation, but it is unknown whether obesity also affects spontaneous pregnancy chances in subfertile, ovulatory women. METHODS: We evaluated whether obesity

  14. Obesity affects spontaneous pregnancy chances in subfertile, ovulatory women

    NARCIS (Netherlands)

    van der Steeg, Jan Willem; Steures, Pieternel; Eijkemans, Marinus J. C.; Habbema, J. Dik F.; Hompes, Peter G. A.; Burggraaff, Jan M.; Oosterhuis, G. Jur E.; Bossuyt, Patrick M. M.; van der Veen, Fulco; Mol, Ben W. J.

    2008-01-01

    BACKGROUND: Obesity is increasing rapidly among women all over the world. Obesity is a known risk factor for subfertility due to anovulation, but it is unknown whether obesity also affects spontaneous pregnancy chances in subfertile, ovulatory women. METHODS: We evaluated whether obesity affected

  15. The influence of sporadic anovulation on hormone levels in ovulatory cycles

    Science.gov (United States)

    Hambridge, H.L.; Mumford, S.L.; Mattison, D.R.; Ye, A.; Pollack, A.Z.; Bloom, M.S.; Mendola, P.; Lynch, K.L.; Wactawski-Wende, J.; Schisterman, E.F.

    2013-01-01

    STUDY QUESTION Do ovulatory hormone profiles among healthy premenopausal women differ between women with and without sporadic anovulation? SUMMARY ANSWER Women with one anovulatory cycle tended to have lower estradiol, progesterone and LH peak levels during their ovulatory cycle. WHAT IS KNOWN ALREADY Anovulation occurs sporadically in healthy premenopausal women, but the influence of hormones in a preceding cycle and the impact on a subsequent cycle's hormone levels is unknown. STUDY DESIGN, SIZE, DURATION The BioCycle Study was a prospective cohort including 250 healthy regularly menstruating women, 18–44 years of age, from Western New York with no history of menstrual or ovulation disorders. The women were followed with up to eight study visits per cycle for two cycles, most of which were consecutive. PARTICIPANTS/MATERIALS, SETTING AND METHODS All study visits were timed to menstrual cycle phase using fertility monitors and located at the University at Buffalo women's health research center from 2005 to 2007. The main outcomes measured were estradiol, progesterone, LH and follicle-stimulating hormone levels in serum at up to 16 visits over two cycles. Anovulation was defined as peak serum progesterone concentrations ≤5 ng/ml and no serum LH peak detected during the mid- or late-luteal phase visit. MAIN RESULTS AND THE ROLE OF CHANCE Reproductive hormone concentrations were lower during anovulatory cycles, but significant reductions were also observed in estradiol (−25%, P = 0.003) and progesterone (−22%, P = 0.001) during the ovulatory cycles of women with one anovulatory cycle compared with women with two ovulatory cycles. LH peak concentrations were decreased in the ovulatory cycle of women with an anovulatory cycle (significant amplitude effect, P = 0.004; geometric mean levels 38% lower, P cycles, and no ultrasound assessment of ovulation was available. Data were missing for a total of 168 of a possible 4072 cycle visits (4.1%), though all women had

  16. The fluctuating female vote: politics, religion, and the ovulatory cycle.

    Science.gov (United States)

    Durante, Kristina M; Rae, Ashley; Griskevicius, Vladas

    2013-06-01

    Each month, many women experience an ovulatory cycle that regulates fertility. Although research has found that this cycle influences women's mating preferences, we proposed that it might also change women's political and religious views. Building on theory suggesting that political and religious orientation are linked to reproductive goals, we tested how fertility influenced women's politics, religiosity, and voting in the 2012 U.S. presidential election. In two studies with large and diverse samples, ovulation had drastically different effects on single women and women in committed relationships. Ovulation led single women to become more liberal, less religious, and more likely to vote for Barack Obama. In contrast, ovulation led women in committed relationships to become more conservative, more religious, and more likely to vote for Mitt Romney. In addition, ovulation-induced changes in political orientation mediated women's voting behavior. Overall, the ovulatory cycle not only influences women's politics but also appears to do so differently for single women than for women in relationships.

  17. Exposure of Lactating Dairy Cows to Acute Pre-Ovulatory Heat Stress Affects Granulosa Cell-Specific Gene Expression Profiles in Dominant Follicles

    Science.gov (United States)

    Vanselow, Jens; Vernunft, Andreas; Koczan, Dirk; Spitschak, Marion; Kuhla, Björn

    2016-01-01

    High environmental temperatures induce detrimental effects on various reproductive processes in cattle. According to the predicted global warming the number of days with unfavorable ambient temperatures will further increase. The objective of this study was to investigate effects of acute heat stress during the late pre-ovulatory phase on morphological, physiological and molecular parameters of dominant follicles in cycling cows during lactation. Eight German Holstein cows in established lactation were exposed to heat stress (28°C) or thermoneutral conditions (15°C) with pair-feeding for four days. After hormonal heat induction growth of the respective dominant follicles was monitored by ultrasonography for two days, then an ovulatory GnRH dose was given and follicular steroid hormones and granulosa cell-specific gene expression profiles were determined 23 hrs thereafter. The data showed that the pre-ovulatory growth of dominant follicles and the estradiol, but not the progesterone concentrations tended to be slightly affected. mRNA microarray and hierarchical cluster analysis revealed distinct expression profiles in granulosa cells derived from heat stressed compared to pair-fed animals. Among the 255 affected genes heatstress-, stress- or apoptosis associated genes were not present. But instead, we found up-regulation of genes essentially involved in G-protein coupled signaling pathways, extracellular matrix composition, and several members of the solute carrier family as well as up-regulation of FST encoding follistatin. In summary, the data of the present study show that acute pre-ovulatory heat stress can specifically alter gene expression profiles in granulosa cells, however without inducing stress related genes and pathways and suggestively can impair follicular growth due to affecting the activin-inhibin-follistatin system. PMID:27532452

  18. Ovulatory disorders are an independent risk factor for pregnancy complications in women receiving assisted reproduction treatments.

    Science.gov (United States)

    Barua, Sumita; Hng, Tien-Ming; Smith, Howard; Bradford, Jennifer; McLean, Mark

    2017-06-01

    Conception using assisted reproduction treatments (ART) has been associated with an increased risk of pregnancy complications. It is uncertain if this is caused by ART directly, or is an association of the underlying factors causing infertility. We assessed the relationship between assisted conception (AC) and maternal or fetal complications in a large retrospective cohort study. In a nested cohort of women receiving infertility treatment, we determined if such risk rests predominantly with certain causes of infertility. Retrospective database analysis of 50 381 women delivering a singleton pregnancy in four public hospital obstetric units in western Sydney, and a nested cohort of 508 women receiving ART at a single fertility centre, in whom the cause of infertility was known. A total of 1727 pregnancies followed AC; 48 654 were spontaneous conceptions. Adjusted for age, body mass index and smoking, AC was associated with increased risk of preterm delivery (OR 1.73, 95% CI 1.50-2.02), hypertension (OR 1.55, 95% CI 1.34-1.82) and diabetes (OR 1.51, 95% CI 1.30-1.75). In the nested cohort, ovulatory dysfunction was present in 145 women and 336 had infertility despite normal ovulatory function. Ovulatory dysfunction was associated with increased risk of diabetes (OR 2.94, 95% CI 1.72-5.02) and hypertension (OR 2.40, 95% CI 1.15-5.00) compared to women with normal ovulatory function. Assisted conception is associated with increased risk of pregnancy complications. This risk appears greatest for women whose underlying infertility involves ovulatory dysfunction. Such disorders probably predispose towards diabetes and hypertension, which is then exacerbated by pregnancy. © 2016 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  19. SEASONAL VARIATION IN OVULATORY ACTIVITY OF NUBIAN, ALPINE AND NUBIAN X CREOLE DOES UNDER TROPICAL PHOTOPERIOD (22° N

    Directory of Open Access Journals (Sweden)

    Jorge Urrutia Morales

    2011-09-01

    Full Text Available In the present study, seasonal variation in ovulatory activity of Nubian, Alpine and Criollox Nubian goats in the semiarid region of central-northern Mexico (22° 14’ N was examined. The study was conducted under natural photoperiod and climate conditions during a whole year. Eight female goats per breed were grouped separately and exposed to visual, olfactory and audible signals of bucks. Blood samples were obtained twice per week and serum progesterone concentrations were determined. All goats presented a clear pattern of seasonal ovulatory activity based on serum progesterone profiles. Length of the ovulatory activity period did not differ between genotypes (P >0.10, and had an average duration of 4.3 months. Nevertheless Criollo x Nubian goats presented greater individual variation in dates of onset and end as well as length of this period (P <0.05. Results indicate that female goats of genotypes which differ in latitude of origin, express a similar restricted pattern of seasonal ovulatory activity when subjected to small annual changes in phtoperiod, adequate nutrition and incomplete socio-sexual stimulus.

  20. The effect of repeated administrations of llama ovulation-inducing factor (OIF/NGF) during the peri-ovulatory period on corpus luteum development and function in llamas.

    Science.gov (United States)

    Fernández, A; Ulloa-Leal, C; Silva, M; Norambuena, C; Adams, G P; Guerra, M; Ratto, M H

    2014-10-01

    The objective of the study was to test the hypothesis that repeated administrations of OIF/NGF during the peri-ovulatory period (pre-ovulatory, ovulatory, early post-ovulatory), will enhance the luteotrophic effect in llamas. Female llamas were examined daily by transrectal ultrasonography in B- and Doppler-mode using a scanner equipped with a 7.5-MHz linear-array transducer to monitor ovarian follicle and luteal dynamics. When a growing follicle ≥7mm was detected, llamas were assigned randomly to one of the three groups and given 1mg of purified OIF/NGF im (intramuscular) (a) pre-ovulation (single dose; n=12), (b) pre-ovulation and at the time of ovulation (2 doses, n=10), or (c) pre-ovulation, at the time of ovulation, and 24h after ovulation (3 doses, n=10). The pre-ovulatory follicle diameter at the time of treatment, ovulation rate and the first day of CL detection did not differ (P=0.3) among groups. However, maximum CL diameter was greatest (P=0.003) in llamas in the 2-dose group, and smallest in the 3-dose group. Accordingly, the 2 dose-group had the largest day-to-day profile for CL diameter (Pllama seminal plasma is luteotrophic and the effect on CL size and function is affected by the number and timing of treatments during the peri-ovulatory period. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Coordinated Regulation Among Progesterone, Prostaglandins, and EGF-Like Factors in Human Ovulatory Follicles.

    Science.gov (United States)

    Choi, Yohan; Wilson, Kalin; Hannon, Patrick R; Rosewell, Katherine L; Brännström, Mats; Akin, James W; Curry, Thomas E; Jo, Misung

    2017-06-01

    In animal models, the luteinizing hormone surge increases progesterone (P4) and progesterone receptor (PGR), prostaglandins (PTGs), and epidermal growth factor (EGF)-like factors that play essential roles in ovulation. However, little is known about the expression, regulation, and function of these key ovulatory mediators in humans. To determine when and how these key ovulatory mediators are induced after the luteinizing hormone surge in human ovaries. Timed periovulatory follicles were obtained from cycling women. Granulosa/lutein cells were collected from in vitro fertilization patients. The in vivo and in vitro expression of PGR, PTG synthases and transporters, and EGF-like factors were examined at the level of messenger RNA and protein. PGR binding to specific genes was assessed. P4 and PTGs in conditioned media were measured. PGR, PTGS2, and AREG expressions dramatically increased in ovulatory follicles at 12 to 18 hours after human chorionic gonadotropin (hCG). In human granulosa/lutein cell cultures, hCG increased P4 and PTG production and the expression of PGR, specific PTG synthases and transporters, and EGF-like factors, mimicking in vivo expression patterns. Inhibitors for P4/PGR and EGF-signaling pathways reduced hCG-induced increases in PTG production and the expression of EGF-like factors. PGR bound to the PTGS2, PTGES, and SLCO2A1 genes. This report demonstrated the time-dependent induction of PGR, AREG, and PTGS2 in human periovulatory follicles. In vitro studies indicated that collaborative actions of P4/PGR and EGF signaling are required for hCG-induced increases in PTG production and potentiation of EGF signaling in human periovulatory granulosa cells. Copyright © 2017 Endocrine Society

  2. Factors affecting the size of ovulatory follicles and conception rate in high-yielding dairy cows.

    Science.gov (United States)

    Mokhtari, A; Kafi, M; Zamiri, M J; Akbari, R

    2016-03-01

    Two studies were designed to determine (1) the effects of Heatsynch and Ovsynch protocols versus spontaneous ovulation and (2) the effects of calving problems, clinical uterine infections, and clinical mastitis on the size of the ovulatory follicle, conception rate, and embryonic/fetal (E/F) death in high-yielding dairy cows. In study 1, cows without the history of calving problems, clinical uterine infections, and clinical mastitis were randomly allocated to either an Ovsynch (n = 45) or Heatsynch (n = 39) ovulation synchronization protocol or spontaneous ovulation (n = 43) groups. Blood samples were collected on the day of artificial insemination (AI) to measure progesterone (P4), estradiol-17β, and insulin-like growth factor 1 (IGF-1) and 7 days later to measure P4. Study 2 consisted of cows (n = 351) with or without the history of calving problems, clinical uterine infections, and clinical mastitis which were artificially inseminated after a 55-day voluntary waiting period. Transrectal ultrasonography was performed at the time of AI to measure the ovulatory follicle size and on Days 30 and 68 after AI to diagnose pregnancy in both studies. In study 1, the mean (±standard error of the mean) diameter of the ovulatory follicle was greater (P = 0.0005) and E/F mortality was lower (P = 0.007) for the spontaneous ovulation group compared with Ovsynch and Heatsynch groups. Serum concentration of P4 on Day 7 after AI was correlated with the size of the ovulatory follicle (P = 0.007). Conception rate at Days 30 and 68 was not significantly different between the three experimental groups in study 1. Cows with serum IGF-1 concentrations greater than 55 ng/mL at AI had significantly higher Day 68 conception rate (50% vs. 24%) and lower E/F death (16.6% vs. 40%) compared to cows with serum IGF-1 concentrations lower than 56 ng/mL at AI. The conception rate on Days 30 and 68 for follicles of 10 to 14 mm in diameter (34% and 21.8%) was significantly lower than follicles of

  3. Non-reproductive Effects of Anovulation: Bone Metabolism in the Luteal Phase of Premenopausal Women Differs between Ovulatory and Anovulatory Cycles.

    Science.gov (United States)

    Niethammer, B; Körner, C; Schmidmayr, M; Luppa, P B; Seifert-Klauss, V R

    2015-12-01

    Introduction: Several authors have linked subclinical ovulatory disturbances in normal length menstrual cycles to premenopausal fracture risk and bone changes. This study systematically examined the influence of ovulation and anovulation on the bone metabolism of premenopausal women. Participants and Methods: In 176 cycles in healthy premenopausal women, FSH, 17β-estradiol (E2) and progesterone (P4) as well as bone alkalic phosphatase (BAP), pyridinoline (PYD) and C-terminal crosslinks (CTX) were measured during the follicular and during the luteal phase. The probability and timing of ovulation was self-assessed by a monitoring device. In addition, bone density of the lumbar spine was measured by quantitative computed tomography (QCT) at baseline and at the end of the study. Analysis was restricted to blood samples taken more than three days before the following menstruation. Results: 118 cycles out of the 176 collected cycles were complete with blood samples taken within the correct time interval. Of these, 56.8 % were ovulatory by two criteria (ovulation symbol shown on the monitor display and LP progesterone > 6 ng/ml), 33.1 % were possibly ovulatory by one criterion (ovulation symbol shown on the monitor display or LP progesterone > 6 ng/ml), and 10.2 % were anovulatory by both criteria). Ovulation in the previous cycle and in the same cycle did not significantly influence the mean absolute concentrations of the bone markers. However, bone formation (BAP) was higher in the luteal phase of ovulatory cycles than in anovulatory cycles (n. s.) and the relative changes within one cycle were significantly different for bone resorption (CTX) during ovulatory vs. anovulatory cycles (p cycles following each other directly, both ovulation in the previous cycle and ovulation in the present cycle influenced CTX, but not the differences of other bone markers. Conclusion: Ovulatory cycles reduce bone resorption in their luteal phase and that of the

  4. Using a Cyclical Diagram to Visualize the Events of the Ovulatory Menstrual Cycle

    Science.gov (United States)

    Ho, Ivan Shun; Parmar, Navneet K.

    2014-01-01

    Over the past 10 years, college textbooks in human anatomy and physiology have typically presented the events of the ovulatory menstrual cycle in a linear format, with time in days shown on the x-axis, and hormone levels, follicular development, and uterine lining on the y-axis. In addition, the various events are often shown over a 28-day cycle,…

  5. Effects of leptin administration on development, vascularization and function of Corpus luteum in alpacas submitted to pre-ovulatory fasting.

    Science.gov (United States)

    Norambuena, María Cecilia; Hernández, Francisca; Maureira, Jonathan; Rubilar, Carolina; Alfaro, Jorge; Silva, Gonzalo; Silva, Mauricio; Ulloa-Leal, César

    2017-07-01

    The objective of this study was to determine the effect of leptin administration on the development, vascularization and function of Corpus luteum (CL) in alpacas submitted to pre-ovulatory fasting. Fourteen alpacas were kept in fasting conditions for 72h and received five doses of o-leptin (2μg/kg e.v.; Leptin group) or saline (Control group) every 12h. Ovulation was induced with a GnRH dose (Day 0). The ovaries were examined every other day by trans-rectal ultrasonography (7.5MHz; mode B and power Doppler) from Day 0 to 13 to determine the pre-ovulatory follicle diameter and ovulation, and then to monitor CL diameter and vascularization until the regression phase. Serial blood samples were taken after GnRH treatment to determine plasma LH concentration; and every other day from Days 1 to 13 to determine plasma progesterone and leptin concentrations. The pre-ovulatory follicle and CL diameter, LH, progesterone and leptin plasma concentrations were not affected by treatment (P>0.05). The vascularization area of the CL was, nevertheless, affected by the treatment (P<0.01) with significant differences between groups at Days 3, 7 and 9 (P<0.05). The Leptin group had a larger maximum vascularization area (0.67±0.1 compared with 0.35±0.1cm 2 ; P<0.05). In addition, there was a positive correlation between CL vascularization, CL diameter and plasma progesterone. The exogenous administration of leptin during pre-ovulatory fasting increased the vascularization of the CL in alpacas in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Size of ovulatory follicles in cattle expressing multiple ovulations naturally and its influence on corpus luteum development and fertility.

    Science.gov (United States)

    Echternkamp, S E; Cushman, R A; Allan, M F

    2009-11-01

    Long-term genetic selection of cattle for fraternal twins has increased the frequency of twin and triplet ovulations. In contrast, the ratio of fetal numbers to ovulation sites in pregnant females with twin (0.83) or triplet (0.73) ovulations is conception in cyclic cattle expressing multiple ovulations naturally, including the effect of ovulation rate on follicle or corpus luteum (CL) size, and their relationship to conception. Diameter of the individual ovulatory follicles was measured by transrectal ultrasonography at AI and ranged from 8 to 30 mm, with a trend for diameter of the individual follicles, and associated CL, to decrease with increasing ovulation rate. Independent of ovulation rate, ovulatory follicles were smaller (P or =2.5 yr). Pregnancy and fetal status were diagnosed by transrectal ultrasonography between 42 and 72 d after AI. Fertility was reduced (P or =22 vs. 14 to 17.9 mm). Plasma progesterone concentrations increased with ovulation rate and were correlated positively with total CL or ovulatory follicle volume per female, indicating that CL size and function were influenced by the size of the follicle of origin. Progesterone was greater (P uterine crowding, especially when 2 or more fetuses were contained within 1 uterine horn.

  7. Radioimmunoassay method for measurement of plasma androstenedione. Its validation in ovulatory women and in patients with polycystic ovarian syndrome

    International Nuclear Information System (INIS)

    Vilanova Socorro Veras, Maria do; Silva e Rosa, Alzira Amelia; Moura, Marcos Dias de; Ferriano, Rui Alberto; Sa, Marcos Felipe Silva de

    1995-01-01

    The present paper has as objective the standardization of a radioimmunoassay method for measurement of androstenedione. Ethyl ether was used for plasma extraction. The sensitivity of the method was 6,8 pg/tube; the reproducibility (inter assay error) was 15,6%; the precision (intrassay error) was 5,2%. As biological control, 20 ovulatory women showed median plasma values of 1250 pg/ml and 24 women with polycystic ovary syndrome presented median plasma values of 2.037 pg/ml. (author). 6 refs., 2 figs., 1 tab

  8. An Mcm10 Mutant Defective in ssDNA Binding Shows Defects in DNA Replication Initiation.

    Science.gov (United States)

    Perez-Arnaiz, Patricia; Kaplan, Daniel L

    2016-11-20

    Mcm10 is an essential protein that functions to initiate DNA replication after the formation of the replication fork helicase. In this manuscript, we identified a budding yeast Mcm10 mutant (Mcm10-m2,3,4) that is defective in DNA binding in vitro. Moreover, this Mcm10-m2,3,4 mutant does not stimulate the phosphorylation of Mcm2 by Dbf4-dependent kinase (DDK) in vitro. When we expressed wild-type levels of mcm10-m2,3,4 in budding yeast cells, we observed a severe growth defect and a substantially decreased DNA replication. We also observed a substantially reduced replication protein A- chromatin immunoprecipitation signal at origins of replication, reduced levels of DDK-phosphorylated Mcm2, and diminished Go, Ichi, Ni, and San (GINS) association with Mcm2-7 in vivo. mcm5-bob1 bypasses the growth defect conferred by DDK-phosphodead Mcm2 in budding yeast. However, the growth defect observed by expressing mcm10-m2,3,4 is not bypassed by the mcm5-bob1 mutation. Furthermore, origin melting and GINS association with Mcm2-7 are substantially decreased for cells expressing mcm10-m2,3,4 in the mcm5-bob1 background. Thus, the origin melting and GINS-Mcm2-7 interaction defects we observed for mcm10-m2,3,4 are not explained by decreased Mcm2 phosphorylation by DDK, since the defects persist in an mcm5-bob1 background. These data suggest that DNA binding by Mcm10 is essential for the initiation of DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Plasma lipid peroxidation, blood GSH concentration and erythrocyte antioxidant enzymes in menstruating females with ovulatory and anovulatory cycles compared with males

    Directory of Open Access Journals (Sweden)

    G Lutosławska

    2003-12-01

    Full Text Available This study was undertaken to evaluate plasma TBARS and blood GSH concentration and erythrocyte antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase in active, regularly menstruating female physical education students with ovulatory and anovulatory menstrual cycles and in their male counterparts. A total of 27 subjects (12 males and 15 females volunteered to participate in the study. All females were regularly menstruating with cycle length between 26-31 days. Plasma progesterone and 17-β-estradiol concentrations were assayed during the 7th-9th and 22nd-25th day of the menstrual cycle. Women with plasma progesterone concentration exceeding 19 nmol•l-1 during the 22nd-25th day were referred to as ovulatory (Group OV; n=7. Women without a peak plasma progesterone concentration were referred to as anovulatory (Group AN; n=8. Blood from male subjects was withdrawn twice - two weeks apart, at their convenience. It was found that the menstrual cycle phases did not affect plasma TBARS and blood glutathione concentration and erythrocyte GPX, CAT and SOD activity. However, erythrocyte GPX activity either in ovulatory or anovulatory women was by about 30% higher than in male subjects. Erythrocyte SOD activity in ovulatory women both in follicular and luteal phase of the menstrual cycle (1557 U/g Hb and 1394.6 U/g Hb, respectively was markedly lower than in men (1951.8 and 1937.7 U/g Hb for blood sampling I and II, respectively. In contrast, erythrocyte SOD activity in anovulatory women (1855.5 U/g Hb and 1745.7 U/g Hb in the follicular and luteal phases, respectively was similar to that found in men. The above data indicated that erythrocyte GPX and SOD activities are sensitive to plasma ovarian hormone concentration. In addition, they suggested that due to higher erythrocyte GPX activity females even with anovulatory menstrual cycles are protected better than males against hydrogen peroxide action. However, lower superoxide

  10. Intake of vinegar beverage is associated with restoration of ovulatory function in women with polycystic ovary syndrome.

    Science.gov (United States)

    Wu, Di; Kimura, Fuminori; Takashima, Akiko; Shimizu, Yoshihiko; Takebayashi, Akie; Kita, Nobuyuki; Zhang, Guangmei; Murakami, Takashi

    2013-05-01

    Polycystic ovary syndrome (PCOS) is one of major causes of irregular menstruation. It is defined as a condition involving the combination of hyperandrogenism and chronic oligomenorrhea or anovulation, and is thought to have a variety of etiologies. Insulin resistance (impaired insulin sensitivity) has been suggested to be one of the etiologies of PCOS. PCOS patients often need to take medication to treat anovulation and infertility. Therefore, it would be beneficial to patients if simple non-pharmacological treatments can be developed. Recently the efficacy of vinegar to improve insulin resistance has been reported. To study the effect of vinegar on metabolic and hormonal indices and ovulatory function in PCOS, seven patients seeking a non-pharmacological treatment for PCOS took a beverage containing 15 g of apple vinegar daily for 90 to 110 days. Ovulation, the menstrual interval, fasting serum glucose level, fasting serum insulin level, luteinizing hormone (LH), follicle stimulating hormone (FSH), and testosterone were compared before and after intake of the vinegar beverage. Intake of the vinegar beverage resulted in a decrease of the homeostasis model assessment insulin resistance index (HOMA-R) in six patients, as well as a decrease of the LH/FSH ratio in five of seven patients. Ovulatory menstruation was observed within 40 day in four of seven patients. These findings suggest the possibility of vinegar to restore ovulatory function through improving insulin sensitivity in PCOS patients, thus, avoiding pharmacological treatment. Intake of vinegar might reduce medical cost and treatment time for insulin resistance, anovulation, and infertility in patients with PCOS.

  11. Human chorionic gonadotropin-administered natural cycle versus spontaneous ovulatory cycle in patients undergoing two pronuclear zygote frozen-thawed embryo transfer.

    Science.gov (United States)

    Lee, You-Jung; Kim, Chung-Hoon; Kim, Do-Young; Ahn, Jun-Woo; Kim, Sung-Hoon; Chae, Hee-Dong; Kang, Byung-Moon

    2018-03-01

    To compare human chorionic gonadotropin (HCG)-administered natural cycle with spontaneous ovulatory cycle in patients undergoing frozen-thawed embryo transfer (FTET) in natural cycles. In this retrospective cohort study, we analyzed the clinical outcome of a total of 166 consecutive FTET cycles that were performed in either natural cycle controlled by HCG for ovulation triggering (HCG group, n=110) or natural cycle with spontaneous ovulation (control group, n=56) in 166 infertile patients between January 2009 and November 2013. There were no differences in patients' characteristics between the 2 groups. The numbers of oocytes retrieved, mature oocytes, fertilized oocytes, grade I or II embryos and frozen embryos in the previous in vitro fertilization (IVF) cycle in which embryos were frozen were comparable between the HCG and control groups. Significant differences were not also observed between the 2 groups in clinical pregnancy rate (CPR), embryo implantation rate, miscarriage rate, live birth rate and multiple CPR. However, the number of hospital visits for follicular monitoring was significantly fewer in the HCG group than in the control group ( P cycle reduces the number of hospital visits for follicular monitoring without any detrimental effect on FTET outcome when compared with spontaneous ovulatory cycles in infertile patients undergoing FTET in natural ovulatory cycles.

  12. Sources of variation and genetic profile of spontaneous, out-of-season ovulatory activity in the Chios sheep

    Directory of Open Access Journals (Sweden)

    Kouttos Athanasios

    2003-01-01

    Full Text Available Abstract Organising the breeding plan of a seasonally breeding species, such as sheep, presents a challenge to farmers and the industry as a whole, since both economical and biological considerations need to be carefully balanced. Understanding the breeding activity of individual animals becomes a prerequisite for a successful breeding program. This study set out to investigate the sources of variation and the genetic profile of the spontaneous, out-of-season ovulatory activity of ewes of the Chios dairy sheep breed in Greece. The definition of the trait was based on blood progesterone levels, measured before exposing the ewes to rams, which marks the onset of the usual breeding season. Data were 707 records, taken over two consecutive years, of 435 ewes kept at the Agricultural Research Station of Chalkidiki in northern Greece. When all available pedigree was included, the total number of animals involved was 1068. On average, 29% of all ewes exhibited spontaneous, out-of-season ovulatory activity, with no substantial variation between the years. Significant sources of systematic variation were the ewe age and live weight, and the month of previous lambing. Older, heavier ewes, that had lambed early the previous autumn, exhibited more frequent activity. Heritability estimates were 0.216 (± 0.084 with a linear and 0.291 with a threshold model. The latter better accounts for the categorical nature of the trait. The linear model repeatability was 0.230 (± 0.095. The results obtained in this study support the notion that spontaneous out-of-season ovulatory activity can be considered in the development of a breeding plan for the Chios sheep breed.

  13. Effect of ovulatory follicle size and estradiol supplementation during the preovulatory period on pregnancy rates in postpartum beef cows

    Science.gov (United States)

    In postpartum beef cows, GnRH-induced ovulation of small dominant follicles decreased pregnancy rates and increased late embryonic/fetal mortality; however, ovulatory follicle size had no apparent effect on the establishment or maintenance of pregnancy when ovulation occurred spontaneously. Further...

  14. Birth after human chorionic gonadotropin-primed oocyte in vitro maturation and fertilization with testicular sperm in a normo-ovulatory patient

    Directory of Open Access Journals (Sweden)

    Claudia González-Ortega

    2016-01-01

    Full Text Available In this report, we present a case of in vitro maturation (IVM with surgical retrieved testicular sperm in a normo-ovulatory female. Human chorionic gonadotropin-primed IVM, testicular biopsy for sperm retrieval and intracytoplasmic sperm injection with fresh sperm were performed. Fourteen cumulus-oocyte complexes were obtained in germinal vesicle or metaphase I stage, eight oocytes reached metaphase II, seven presumptive zygotes were obtained, and three cleavage stages embryos in day 2 were transferred producing a singleton pregnancy. A single healthy newborn was obtained. Our results suggest that IVM may be an alternative for in vitro fertilization in normo-ovulatory women even if surgical retrieval of sperm is needed. Further research is required to depict contributing factors to the success of IVM in indications different from polycystic ovaries syndrome and the role of male gamete.

  15. (3) Melatonin Protects Oocytes and Granulosa Cells from Reactive Oxygen Species during the Ovulatory Process

    OpenAIRE

    田村, 博史; Hiroshi, TAMURA; 山口大学大学院医学系研究科産科婦人科学; Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine

    2009-01-01

    Reactive oxygen species (ROS) are produced within the follicle especially during the ovulatory process. ROS play a physiological role in the process of ovulation, e.g. follicle rapture. However, excessive amount of ROS causes oxidative stress and damages oocytes and luteinized granulosa cells. On the other hand, antioxidant defense systems including superoxide dismutase (SOD) or glutathione (GSH) are present in follicles. The balance between ROS and antioxidants within the follicle seems to b...

  16. Mutations in Caenorhabditis elegans him-19 show meiotic defects that worsen with age.

    Science.gov (United States)

    Tang, Lois; Machacek, Thomas; Mamnun, Yasmine M; Penkner, Alexandra; Gloggnitzer, Jiradet; Wegrostek, Christina; Konrat, Robert; Jantsch, Michael F; Loidl, Josef; Jantsch, Verena

    2010-03-15

    From a screen for meiotic Caenorhabditis elegans mutants based on high incidence of males, we identified a novel gene, him-19, with multiple functions in prophase of meiosis I. Mutant him-19(jf6) animals show a reduction in pairing of homologous chromosomes and subsequent bivalent formation. Consistently, synaptonemal complex formation is spatially restricted and possibly involves nonhomologous chromosomes. Also, foci of the recombination protein RAD-51 occur delayed or cease altogether. Ultimately, mutation of him-19 leads to chromosome missegregation and reduced offspring viability. The observed defects suggest that HIM-19 is important for both homology recognition and formation of meiotic DNA double-strand breaks. It therefore seems to be engaged in an early meiotic event, resembling in this respect the regulator kinase CHK-2. Most astonishingly, him-19(jf6) hermaphrodites display worsening of phenotypes with increasing age, whereas defects are more severe in female than in male meiosis. This finding is consistent with depletion of a him-19-dependent factor during the production of oocytes. Further characterization of him-19 could contribute to our understanding of age-dependent meiotic defects in humans.

  17. Body condition and stage of seasonal anestrus interact to determine the ovulatory response after male biostimulation in anovulatory Criollo × Nubian goats.

    Science.gov (United States)

    Vera-Avila, Hector R; Urrutia-Morales, Jorge; Espinosa-Martinez, Mario A; Gamez-Vazquez, Hector G; Jimenez-Severiano, Hector; Villagomez-Amezcua, Eugenio

    2017-06-01

    The effect of goat nutritional condition on the response to biostimulation with sexually active males during different stages of anestrus was determined. Fifty-eight Criollo × Nubian females on high and low body mass index (BMI) diets were used. Each BMI group was divided into two for biostimulation with sexually active males during May (mid-anestrus) or July (transition period). Ovulatory responses to biostimulation were characterized from serum progesterone, as well as the delay for response (first and second ovulations followed by a normal length luteal phase, O-WNLP). The percentage of goats showing one O-WNLP was greater in the high BMI group than in the low BMI group and greater during the transition period than in the mid-anestrus. However, the interaction between factors revealed that the difference between BMI groups was only significant in the transition period and the difference between stages was only significant in goats with high BMI. Occurrence of a second O-WNLP tended to be greater in the high BMI group than in the low BMI group. Response delay was shorter in the transition period than in mid-anestrus. In conclusion, female nutritional status interacting with the stage of anestrus determined the ovulatory response to male biostimulation in crossbred Criollo goats. © 2016 Japanese Society of Animal Science.

  18. MicroRNA expression profiles from eggs of different qualities associated with post-ovulatory ageing in rainbow trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Background: Egg quality is an important aspect in rainbow trout farming. Post-ovulatory aging is one of the most important factors affecting egg quality. MicroRNAs (miRNAs) are the major regulators in various biological processes and their expression profiles could serve as reliable biomarkers for v...

  19. Do NiTi instruments show defects before separation? Defects caused by torsional fatigue in hand and rotary nickel-titanium (NiTi) instruments which lead to failure during clinical use.

    Science.gov (United States)

    Chakka, N V Murali Krishna; Ratnakar, P; Das, Sanjib; Bagchi, Anandamy; Sudhir, Sudhir; Anumula, Lavanya

    2012-11-01

    Visual and microscopic evaluation of defects caused by torsional fatigue in hand and rotary nickel titanium (NiTi) instruments. Ninety-six NiTi greater taper instruments which were routinely used for root canal treatment only in anterior teeth were selected for the study. The files taken include ProTaper for hand use, ProTaper Rotary files and Endowave rotary files. After every use, the files were observed visually and microscopically (Stereomicroscope at 10×) to evaluate the defects caused by torsional fatigue. Scoring was given according to a new classification formulated which gives an indication of the severity of the defect or damage. Data was statistically analyzed using KruskallWallis and Mann-Whitney U test. Number of files showing defects were more under stereomicroscope than visual examination. But, the difference in the evaluation methods was not statistically significant. The different types of defects observed were bent instrument, straightening/stretching of twist contour and partial reverse twisting. Endowave files showed maximum number of defects followed by ProTaper for hand use and least in ProTaper Rotary. Visible defects due to torsional fatigue do occur in NiTi instruments after clinical use. Both visual and microscopic examinations were efficient in detecting defects caused due to torsional fatigue. This study emphasizes that all files should be observed for any visible defects before and after every instrumentation cycle to minimize the risk of instrument separation and failure of endodontic therapy.

  20. Cows Milk-Dependent Exercise- Induced Anaphylaxis under the Condition of a Premenstrual or Ovulatory Phase Following Skin Sensitization

    Directory of Open Access Journals (Sweden)

    Toshinori Bito

    2008-01-01

    Discussion: The symptoms against cows milk began when she took baths with bath salts containing cows milk as its main ingredient for one year at the age 15 years. Sensitization to cows milk through eczematous skin is indicated from this history. Hormonal change during a premenstrual or ovulatory phase is also an important factor for the development of FDEIA in this case.

  1. Women's preferences for men's beards show no relation to their ovarian cycle phase and sex hormone levels.

    Science.gov (United States)

    Dixson, Barnaby J W; Lee, Anthony J; Blake, Khandis R; Jasienska, Grazyna; Marcinkowska, Urszula M

    2018-01-01

    According to the ovulatory shift hypothesis, women's mate preferences for male morphology indicative of competitive ability, social dominance, and/or underlying health are strongest at the peri-ovulatory phase of the menstrual cycle. However, recent meta-analyses are divided on the robustness of such effects and the validity of the often-used indirect estimates of fertility and ovulation has been called into question in methodological studies. In the current study, we test whether women's preferences for men's beardedness, a cue of male sexual maturity, androgenic development and social dominance, are stronger at the peri-ovulatory phase of the menstrual cycle compared to during the early follicular or the luteal phase. We also tested whether levels of estradiol, progesterone, and the estradiol to progesterone ratio at each phase were associated with facial hair preferences. Fifty-two heterosexual women completed a two-alternative forced choice preference test for clean-shaven and bearded male faces during the follicular, peri-ovulatory (validated by the surge in luteinizing hormone or the drop in estradiol levels) and luteal phases. Participants also provided for one entire menstrual cycle daily saliva samples for subsequent assaying of estradiol and progesterone. Results showed an overall preference for bearded over clean-shaven faces at each phase of the menstrual cycle. However, preferences for facial hair were not significantly different over the phases of menstrual cycle and were not significantly associated with levels of reproductive hormones. We conclude that women's preferences for men's beardedness may not be related to changes in their likelihood of conception. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A phase plane graph based model of the ovulatory cycle lacking the "positive feedback" phenomenon

    Directory of Open Access Journals (Sweden)

    Kurbel Sven

    2012-08-01

    Full Text Available Abstract When hormones during the ovulatory cycle are shown in phase plane graphs, reported FSH and estrogen values form a specific pattern that resembles the leaning “&" symbol, while LH and progesterone (Pg values form a "boomerang" shape. Graphs in this paper were made using data reported by Stricker et al. [Clin Chem Lab Med 2006;44:883–887]. These patterns were used to construct a simplistic model of the ovulatory cycle without the conventional "positive feedback" phenomenon. The model is based on few well-established relations: hypothalamic GnRH secretion is increased under estrogen exposure during two weeks that start before the ovulatory surge and lasts till lutheolysis. the pituitary GnRH receptors are so prone to downregulation through ligand binding that this must be important for their function. in several estrogen target tissue progesterone receptor (PgR expression depends on previous estrogen binding to functional estrogen receptors (ER, while Pg binding to the expressed PgRs reduces both ER and PgR expression. Some key features of the presented model are here listed: High GnRH secretion induced by the recovered estrogen exposure starts in the late follicular phase and lasts till lutheolysis. The LH and FSH surges start due to combination of accumulated pituitary GnRH receptors and increased GnRH secretion. The surges quickly end due to partial downregulation of the pituitary GnRH receptors (64% reduction of the follicular phase pituitary GnRH receptors is needed to explain the reported LH drop after the surge. A strong increase in the lutheal Pg blood level, despite modest decline in LH levels, is explained as delayed expression of pituitary PgRs. Postponed pituitary PgRs expression enforces a negative feedback loop between Pg levels and LH secretions not before the mid lutheal phase. Lutheolysis is explained as a consequence of Pg binding to hypothalamic and pituitary PgRs that reduces local ER expression. When hypothalamic

  3. Developmental programming: deficits in reproductive hormone dynamics and ovulatory outcomes in prenatal, testosterone-treated sheep.

    Science.gov (United States)

    Veiga-Lopez, A; Ye, W; Phillips, D J; Herkimer, C; Knight, P G; Padmanabhan, V

    2008-04-01

    Prenatal testosterone excess leads to neuroendocrine, ovarian, and metabolic disruptions, culminating in reproductive phenotypes mimicking that of women with polycystic ovary syndrome (PCOS). The objective of this study was to determine the consequences of prenatal testosterone treatment on periovulatory hormonal dynamics and ovulatory outcomes. To generate prenatal testosterone-treated females, pregnant sheep were injected intramuscularly (days 30-90 of gestation, term=147 days) with 100 mg of testosterone-propionate in cottonseed oil semi-weekly. Female offspring born to untreated control females and prenatal testosterone-treated females were then studied during their first two breeding seasons. Sheep were given two injections of prostaglandin F2alpha 11 days apart, and blood samples were collected at 2-h intervals for 120 h, 10-min intervals for 8 h during the luteal phase (first breeding season only), and daily for an additional 15 days to characterize changes in reproductive hormonal dynamics. During the first breeding season, prenatal testosterone-treated females manifested disruptions in the timing and magnitude of primary gonadotropin surges, luteal defects, and reduced responsiveness to progesterone negative feedback. Disruptions in the periovulatory sequence of events during the second breeding season included: 1) delayed but increased preovulatory estradiol rise, 2) delayed and severely reduced primary gonadotropin surge in prenatal testosterone-treated females having an LH surge, 3) tendency for an amplified secondary FSH surge and a shift in the relative balance of FSH regulatory proteins, and 4) luteal responses that ranged from normal to anovulatory. These outcomes are likely to be of relevance to developmental origin of infertility disorders and suggest that differences in fetal exposure or fetal susceptibility to testosterone may account for the variability in reproductive phenotypes.

  4. Lean muscle mass in classic or ovulatory PCOS: association with central obesity and insulin resistance.

    Science.gov (United States)

    Mario, F M; do Amarante, F; Toscani, M K; Spritzer, P M

    2012-10-01

    This age-matched case-control study assessed total and segmental lean muscle mass in classic or ovulatory polycystic ovary syndrome (PCOS) patients and investigated whether lean mass is associated with hormone and metabolic features. Participants underwent anthropometric and clinical evaluation. Habitual physical activity was assessed with a digital pedometer, and body composition by dual-energy X-ray absorptiometry. Laboratory measurements included total cholesterol, cholesterol fractions, triglycerides, glucose, total serum testosterone, serum insulin, estradiol, luteinizing hormone, and SHBG. Energy intake was calculated using a food frequency questionnaire. Classic PCOS patients had higher body mass index (BMI), waist circumference, testosterone and lipid accumulation product values than ovulatory PCOS and controls. Energy consumption, homeostasis model assessment index, SHBG, free androgen index and triglycerides, total and trunk lean mass were higher only in classic PCOS women vs. controls. Arm, leg, trunk, total or limb lean masses were not correlated with hormone levels in any of the groups. However, in PCOS women lipid accumulation product was positively correlated with total (r=0.56, p=0.001), trunk (r=0.59, p=0.001), arm (r=0.54, p=0.001), leg (r=0.44, p=0.03) and limb (r=0.48, p=0.001) lean masses. BMI was positively correlated with all lean mass segments and independently associated with total lean mass. Lipid accumulation product and BMI were independently associated with trunk lean mass variation. The increase in lean mass in classic PCOS appears to be associated with insulin resistance and central obesity rather than with energy intake, physical activity or androgens. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  5. Protective effects of ethanol extracts of Artemisia asiatica Nakai ex Pamp. on ageing-induced deterioration in mouse oocyte quality.

    Science.gov (United States)

    Jeon, Hyuk-Joon; You, Seung Yeop; Kim, Dong Hyun; Jeon, Hong Bae; Oh, Jeong Su

    2017-08-01

    Following ovulation, oocytes undergo a time-dependent deterioration in quality referred to as post-ovulatory ageing. Although various factors influence the post-ovulatory ageing of oocytes, oxidative stress is a key factor involved in deterioration of oocyte quality. Artemisia asiatica Nakai ex Pamp. has been widely used in East Asia as a food ingredient and traditional medicine for the treatment of inflammation, cancer, and microbial infections. Recent studies have shown that A. asiatica exhibits antioxidative effects. In this study, we investigated whether A. asiatica has the potential to attenuate deterioration in oocyte quality during post-ovulatory ageing. Freshly ovulated mouse oocytes were cultured with 0, 50, 100 or 200 μg/ml ethanol extracts of A. asiatica Nakai ex Pamp. After culture for up to 24 h, various ageing-induced oocyte abnormalities, including morphological changes, reactive oxygen species (ROS) accumulation, apoptosis, chromosome and spindle defects, and mitochondrial aggregation were determined. Treatment of oocytes with A. asiatica extracts reduced ageing-induced morphological changes. Moreover, A. asiatica extracts decreased ROS generation and the onset of apoptosis by preventing elevation of the Bax/Bcl-2 expression ratio during post-ovulatory ageing. Furthermore, A. asiatica extracts attenuated the ageing-induced abnormalities including spindle defects, chromosome misalignment and mitochondrial aggregation. Our results demonstrate that A. asiatica can relieve deterioration in oocyte quality and delay the onset of apoptosis during post-ovulatory ageing.

  6. An homologous radioimmunoassay for chicken follicle-stimulating hormone: observations on the ovulatory cycle

    International Nuclear Information System (INIS)

    Scanes, C.G.; Godden, P.M.M.; Sharp, P.J.

    1977-01-01

    A highly purified FSH preparation has been used to develop a specific homologous radio-immunoassay for chicken FSH which is sufficiently sensitive and precise to measure the hormone in small samples (10-100 μl) of plasma. The assay was used to measure plasma FSH in the chicken and turkey. The FSH concentration was higher in sexually mature chickens than in juvenile birds and further elevated after castration or ovariectomy. In turkeys, it was lower in birds held on a short daily photoperiod than in birds held on a long daily photoperiod. FSH rose in sexually quiescent female turkeys after injection of synthetic L-H releasing hormone and was increased in laying hens after injection of progesterone. No major changes were observed in FSH concentration during the chicken ovulatory cycle, although there was a small increase between 15 and 14 h before ovulation. (author)

  7. Gene expression profiling of upregulated mRNAs in granulosa cells of bovine ovulatory follicles following stimulation with hCG

    Directory of Open Access Journals (Sweden)

    Jacques G. Lussier

    2017-11-01

    Full Text Available Abstract Background Ovulation and luteinization of follicles are complex biological processes initiated by the preovulatory luteinizing hormone surge. The objective of this study was to identify genes that are differentially expressed in bovine granulosa cells (GC of ovulatory follicles. Methods Granulosa cells were collected during the first follicular wave of the bovine estrous cycle from dominant follicles (DF and from ovulatory follicles (OF obtained 24 h following injection of human chorionic gonadotropin (hCG. A granulosa cell subtracted cDNA library (OF-DF was generated using suppression subtractive hybridization and screened. Results Detection of genes known to be upregulated in bovine GC during ovulation, such as ADAMTS1, CAV1, EGR1, MMP1, PLAT, PLA2G4A, PTGES, PTGS2, RGS2, TIMP1, TNFAIP6 and VNN2 validated the physiological model and analytical techniques used. For a subset of genes that were identified for the first time, gene expression profiles were further compared by semiquantitative RT-PCR in follicles obtained at different developmental stages. Results confirmed an induction or upregulation of the respective mRNAs in GC of OF 24 h after hCG-injection compared with those of DF for the following genes: ADAMTS9, ARAF, CAPN2, CRISPLD2, FKBP5, GFPT2, KIT, KITLG, L3MBLT3, MRO, NUDT10, NUDT11, P4HA3, POSTN, PSAP, RBP1, SAT1, SDC4, TIMP2, TNC and USP53. In bovine GC, CRISPLD2 and POSTN mRNA were found as full-length transcript whereas L3MBLT3 mRNA was alternatively spliced resulting in a truncated protein missing the carboxy-terminal end amino acids, 774KNSHNEL780. Conversely, L3MBLT3 is expressed as a full-length mRNA in a bovine endometrial cell line. The 774KNSHNEL780 sequence is well conserved in all mammalian species and follows a SAM domain known to confer protein/protein interactions, which suggest a key function for these amino acids in the epigenetic control of gene expression. Conclusions We conclude that we have identified

  8. Radioimmunoassay method for measurement of plasma androstenedione. Its validation in ovulatory women and in patients with polycystic ovarian syndrome; Metodo de radioimunoensaio para medida da androstenediona plasmatica. Validacao em mulheres ovulatorias e com sindrome dos ovarios policisticos

    Energy Technology Data Exchange (ETDEWEB)

    Vilanova Socorro Veras, Maria do; Silva e Rosa, Alzira Amelia; Moura, Marcos Dias de; Ferriano, Rui Alberto; Sa, Marcos Felipe Silva de [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Medicina

    1995-01-01

    The present paper has as objective the standardization of a radioimmunoassay method for measurement of androstenedione. Ethyl ether was used for plasma extraction. The sensitivity of the method was 6,8 pg/tube; the reproducibility (inter assay error) was 15,6%; the precision (intrassay error) was 5,2%. As biological control, 20 ovulatory women showed median plasma values of 1250 pg/ml and 24 women with polycystic ovary syndrome presented median plasma values of 2.037 pg/ml. (author). 6 refs., 2 figs., 1 tab.

  9. The Woman in Red: Examining the Effect of Ovulatory Cycle on Women's Perceptions of and Behaviors Toward Other Women.

    Science.gov (United States)

    Netchaeva, Ekaterina; Kouchaki, Maryam

    2018-04-01

    Previous research has shown that during her monthly peak fertile window, a woman competes with other women for a suitable mate. Drawing upon research on ovulation and socially constructed meanings of the color red, we examine how a woman's fertility status and red clothing worn by a target woman change perceptions of the target, as well as behaviors toward the target. Following previous research on the ovulatory status and color red effects, we rely on both hormonal and self-reported fertility data. Across six studies, our research fails to provide support for the prediction that an ovulating woman is less likely to trust another woman wearing red compared with a nonovulating woman.

  10. New radioimmunoassay for follicle-stimulating hormone in macaques: ovulatory menstrual cycles. [/sup 125/I tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Hodgen, G.D.; Wilks, J.W.; Vaitukaitis, J.L.; Chen, H.C.; Papkoff, H.; Ross, G.

    1976-07-01

    A sensitive and specific radioimmunoassay system for macaque follicle-stimulating hormone (mFSH) was developed utilizing an antiserum (H-31) prepared in a rabbit against purified ovine FSH as the immunogen. Sera from castrated female, adult male, and juvenile rhesus monkeys, as well as urinary extracts from castrated rhesus and bonnet monkeys, were used to demonstrate parallelism with a standard of partially purified monkey pituitary gonadotropins (LER-M-907-D). An extract of baboon pituitary tissue also showed parallelism with the reference standard. A highly purified pituitary extract (WP-X-105-28), containing approximately 75 percent macaque luteinizing hormone (mLH) and 1 percent mFSH, was used to demonstrate the specificity of this mFSH assay system. Sera and urinary extracts obtained from hypophysectomized monkeys did not show cross-reactivity in the assay. Macaque chorionic gonadotropin (mCG) did not produce an inhibition curve in the assay, as determined from serum samples and urinary extracts collected from pregnant monkeys at the time of peak mCG secretion. Serum concentrations of mFSH were suppressed in ovariectomized monkeys by the administration of ethinyl estradiol for 3 days, but returned to near pretreatment values by 96 h after the last estradiol administration. The determination of serum mFSH concentrations in daily blood samples obtained from 20 rhesus monkeys throughout ovulatory menstrual cycles revealed a pattern similar to that previously reported for the rhesus monkey and the woman. The peak value of serum mFSH during the menstrual cycle coincided with the midcycle surge of mLH in each case. The gonadotropin peaks were preceded by increasing serum concentrations of estradiol and followed by rises in the serum concentrations of progesterone.

  11. Photographic guide of selected external defect indicators and associated internal defects in sugar maple

    Science.gov (United States)

    Everette D. Rast; John A. Beaton; David L. Sonderman

    1991-01-01

    To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide assists the individual in identifying the surface defect indicator and shows the progressive stages of the defect throughout its development for sugar maple. Eleven types of external...

  12. Photographic guide of selected external defect indicators and associated internal defects in yellow-poplar

    Science.gov (United States)

    Everette D. Rast; John A. Beaton; David L. Sonderman

    1991-01-01

    To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide assists the individual in identifying the surface defect indicator and shows the progressive stages of the defect throughout its development for yellow-poplar. Twelve types of external...

  13. Photographic guide of selected external defect indicators and associated internal defects in yellow birch

    Science.gov (United States)

    Everette D. Rast; John A. Beaton; David L. Sonderman

    1991-01-01

    To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide assists the individual in identifying the surface defect indicator and shows the progressive stages of the defect throughout its development for yellow birch. Eleven types of external...

  14. Synthetic Defects for Vibrothermography

    Science.gov (United States)

    Renshaw, Jeremy; Holland, Stephen D.; Thompson, R. Bruce; Eisenmann, David J.

    2010-02-01

    Synthetic defects are an important tool used for characterizing the performance of nondestructive evaluation techniques. Viscous material-filled synthetic defects were developed for use in vibrothermography (also known as sonic IR) as a tool to improve inspection accuracy and reliability. This paper describes how the heat-generation response of these VMF synthetic defects is similar to the response of real defects. It also shows how VMF defects can be applied to improve inspection accuracy for complex industrial parts and presents a study of their application in an aircraft engine stator vane.

  15. Frozen-thawed embryo transfer in a natural or mildly hormonally stimulated cycle in women with regular ovulatory cycles: a RCT.

    Science.gov (United States)

    Peeraer, Karen; Couck, Isabelle; Debrock, Sophie; De Neubourg, Diane; De Loecker, Peter; Tomassetti, Carla; Laenen, Annouschka; Welkenhuysen, Myriam; Meeuwis, Luc; Pelckmans, Sofie; Meuleman, Christel; D'Hooghe, Thomas

    2015-11-01

    Can ovarian stimulation with low dose hMG improve the implantation rate (IR) per frozen-thawed embryo transferred (FET) when compared with natural cycle in an FET programme in women with a regular ovulatory cycle? Both IR and live birth rate (LBR) per FET were similar in the group with mild ovarian stimulation and the natural cycle group. Different cycle regimens for endometrial preparation are used prior to FET: spontaneous ovulatory cycles, cycles with artificial endometrial preparation using estrogen and progesterone hormones, and cycles stimulated with gonadotrophins or clomiphene citrate. At present, it is not clear which regimen results in the highest IR or LBR. More specifically, there are no RCTs in ovulatory women comparing reproductive outcome after FET during a natural cycle and during a hormonally stimulated cycle. A total of 410 women scheduled for FET during 579 cycles (December 2003-September 2013) were enrolled in an open-label RCT to natural cycle (NC FET group, n = 291) or to a cycle hormonally stimulated with s.c. gonadotrophins (hMG FET group, 37.5-75 IU per day, n = 288). A total of 672 embryos were transferred during 434 cycles (332 embryos and 213 cycles in the NC FET group; 340 embryos and 221 cycles in the hMG FET group). Assuming a = 0.05 and 80% power, it was calculated that 219 frozen-thawed embryos were required for transfer in each group to demonstrate a difference of 10% in IR. Women were eligible according to the following inclusion criteria: regular ovulatory cycle, female age ≥21 years and ≤45 years, informed consent. FET cycles with preimplantation genetic screening were excluded. The primary outcome was IR per embryo transferred. Secondary outcomes included IR with fetal heart beat (FHB), LBR per embryo transferred and endometrial thickness on the day of hCG administration. Statistical analysis was by intention to treat and controlled for the presence of multiple measures, as eligible women could be randomized in more than

  16. Effect of bovine somatotropin (500 mg) administered at ten-day intervals on ovulatory responses, expression of estrus, and fertility in dairy cows.

    Science.gov (United States)

    Rivera, F; Narciso, C; Oliveira, R; Cerri, R L A; Correa-Calderón, A; Chebel, R C; Santos, J E P

    2010-04-01

    The objectives of this study were to evaluate the effect of administering 500 mg of recombinant bovine somatotropin (bST) every 10 d on ovulatory responses, estrous behavior, and fertility of lactating Holstein cows. Lactating dairy cows were assigned to 1 of 2 treatments: a control with no administration of bST (73 primiparous and 120 multiparous cows) or 6 consecutive administrations of 500 mg of bST (83 primiparous and 123 multiparous cows) given subcutaneously at 10-d intervals starting 61+/-3 d postpartum (study d 0), concurrent with the initiation of the timed artificial insemination (AI). Blood samples were collected thrice weekly from 61+/-3 to 124+/-3 d in milk (DIM), and plasma samples were analyzed for concentrations of estradiol, glucose, insulin, insulin-like growth factor 1, and progesterone. The estrous cycle of cows was presynchronized with 2 injections of PGF(2alpha) at 37+/-3 and 51+/-3 DIM, and the Ovsynch timed AI protocol was initiated at 61+/-3 DIM. Ovaries were scanned to determine ovulatory responses during the Ovsynch protocol. Pregnancy was diagnosed at 33 and 66 d after AI. Body condition was scored on study d 0, 10, 42, and 76. Sixty-four cows were fitted with a pressure mounting sensor with radiotelemetric transmitters to monitor estrous behavior. Treatment of lactating dairy cows with 500 mg of bST at 10-d intervals increased yields of milk and milk components in the first 2 mo after treatment. Body condition of bST-treated cows remained unaltered, whereas control cows gained BCS. Treatment with bST increased concentrations of insulin-like growth factor 1 chronically, but concentrations of insulin and glucose increased only transiently in the first 7 d after the first injection of bST. Concentrations of progesterone during and after the Ovsynch protocol remained unaltered after treatment with bST; likewise, ovulatory responses during the Ovsynch protocol were mostly unaltered by treatment. Concentration of estradiol tended to be

  17. Defect spectroscopy of single ZnO microwires

    Science.gov (United States)

    Villafuerte, M.; Ferreyra, J. M.; Zapata, C.; Barzola-Quiquia, J.; Iikawa, F.; Esquinazi, P.; Heluani, S. P.; de Lima, M. M.; Cantarero, A.

    2014-04-01

    The point defects of single ZnO microwires grown by carbothermal reduction were studied by microphotoluminescence, photoresistance excitation spectra, and resistance as a function of the temperature. We found the deep level defect density profile along the microwire showing that the concentration of defects decreases from the base to the tip of the microwires and this effect correlates with a band gap narrowing. The results show a characteristic deep defect levels inside the gap at 0.88 eV from the top of the VB. The resistance as a function of the temperature shows defect levels next to the bottom of the CB at 110 meV and a mean defect concentration of 4 × 1018 cm-3. This combination of techniques allows us to study the band gap values and defects states inside the gap in single ZnO microwires and opens the possibility to be used as a defect spectroscopy method.

  18. Oxygen vacancy defects in Ta{sub 2}O{sub 5} showing long-range atomic re-arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yuzheng; Robertson, John [Engineering Department, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2014-03-17

    The structure, formation energy, and energy levels of the various oxygen vacancies in Ta{sub 2}O{sub 5} have been calculated using the λ phase model. The intra-layer vacancies give rise to unusual, long-range bonding rearrangements, which are different for each defect charge state. The 2-fold coordinated intra-layer vacancy is the lowest cost vacancy and forms a deep level 1.5 eV below the conduction band edge. The 3-fold intra-layer vacancy and the 2-fold inter-layer vacancy are higher cost defects, and form shallower levels. The unusual bonding rearrangements lead to low oxygen migration barriers, which are useful for resistive random access memory applications.

  19. Multiparameter Investigation of a 46,XX/46,XY Tetragametic Chimeric Phenotypical Male Patient with Bilateral Scrotal Ovotestes and Ovulatory Activity.

    Science.gov (United States)

    van Bever, Yolande; Wolffenbuttel, Katja P; Brüggenwirth, Hennie T; Blom, Eric; de Klein, Annelies; Eussen, Bert H J; van der Windt, Florijn; Hannema, Sabine E; Dessens, Arianne B; Dorssers, Lambert C J; Biermann, Katharina; Hersmus, Remko; de Rijke, Yolanda B; Looijenga, Leendert H J

    2018-01-01

    We report on an adult male initially presenting with gynecomastia and a painless scrotal mass without additional genital anomalies. Hyperpigmentation of the skin following the Blaschko's lines was identified. He underwent gonadectomy because of suspected cancer. Histological analyses revealed an ovotestis with ovulatory activity confirmed by immunohistochemistry with multiple markers. Karyotyping of cultured peripheral blood lymphocytes and a buccal smear revealed a 46,XX/46,XY chimeric constitution with different percentages. Multiple molecular analyses as well as blood typing implied a tetragametic origin. After the unilateral gonadectomy, the patient developed recurrent painful cystic swellings of the remaining gonad. Because of the wish to preserve hormonal activity as well as future fertility, the patient underwent surgical resection of a cystic gonadal area. The removed tissue showed ovulation-related features in addition to both testicular and ovarian tissue, diagnosed as an ovotestis. Testosterone therapy was initiated to suppress the persistently elevated gonadotropins and thereby suppress ovarian activity. During treatment, the recurrent pain complaints and cystic swellings ceased, although gonadotropin levels were not fully suppressed. Based on these observations, the importance of a detailed genetic and pathological diagnosis and the clinical dilemmas including the pros and cons of personalized treatment with gonadal preservative surgery are discussed. © 2017 S. Karger AG, Basel.

  20. Omega-3 polyunsaturated fatty acid docosahexaenoic acid and its role in exhaustive-exercise-induced changes in female rat ovulatory cycle.

    Science.gov (United States)

    Mostafa, Abeer F; Samir, Shereen M; Nagib, R M

    2018-04-01

    Exhaustive exercises can cause delayed menarche or menstrual cycle irregularities in females. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are incorporated into a wide range of benefits in many physiological systems. Our work aimed to assess the role of ω-3 PUFA docosahexaenoic acid (DHA) on the deleterious effects of exhaustive exercise on the female reproductive system in rats. Virgin female rats were randomly divided into 4 groups (12 rats in each): control group, omega-3 group treated with DHA, exhaustive exercise group, and exhaustive exercised rats treated with DHA. Omega-3 was given orally to the rats once daily for 4 estrous cycles. Exhaustive exercises revealed lower levels in progesterone and gonadotropins together with histopathological decrease in number of growing follicles and corpora lutea. Moreover, the exercised rats showed low levels of ovarian antioxidants with high level of caspase-3 and plasma cortisol level that lead to disruption of hypothalamic-pituitary-gonadal axis. ω-3 PUFA DHA has beneficial effects on the number of newly growing follicles in both sedentary and exercised rats with decreasing the level of caspase-3 and increasing the antioxidant activity in ovaries. Exhaustive exercises can cause ovulatory problems in female rats that can be improved by ω-3 supplementation.

  1. Entanglement entropy in integrable field theories with line defects II. Non-topological defect

    Science.gov (United States)

    Jiang, Yunfeng

    2017-08-01

    This is the second part of two papers where we study the effect of integrable line defects on bipartite entanglement entropy in integrable field theories. In this paper, we consider non-topological line defects in Ising field theory. We derive an infinite series expression for the entanglement entropy and show that both the UV and IR limits of the bulk entanglement entropy are modified by the line defect. In the UV limit, we give an infinite series expression for the coefficient in front of the logarithmic divergence and the exact defect g-function. By tuning the defect to be purely transmissive and reflective, we recover correctly the entanglement entropy of the bulk and with integrable boundary respectively.

  2. Defect detection based on extreme edge of defective region histogram

    Directory of Open Access Journals (Sweden)

    Zouhir Wakaf

    2018-01-01

    Full Text Available Automatic thresholding has been used by many applications in image processing and pattern recognition systems. Specific attention was given during inspection for quality control purposes in various industries like steel processing and textile manufacturing. Automatic thresholding problem has been addressed well by the commonly used Otsu method, which provides suitable results for thresholding images based on a histogram of bimodal distribution. However, the Otsu method fails when the histogram is unimodal or close to unimodal. Defects have different shapes and sizes, ranging from very small to large. The gray-level distributions of the image histogram can vary between unimodal and multimodal. Furthermore, Otsu-revised methods, like the valley-emphasis method and the background histogram mode extents, which overcome the drawbacks of the Otsu method, require preprocessing steps and fail to use the general threshold for multimodal defects. This study proposes a new automatic thresholding algorithm based on the acquisition of the defective region histogram and the selection of its extreme edge as the threshold value to segment all defective objects in the foreground from the image background. To evaluate the proposed defect-detection method, common standard images for experimentation were used. Experimental results of the proposed method show that the proposed method outperforms the current methods in terms of defect detection.

  3. A proposed defect tracking model for classifying the inserted defect reports to enhance software quality control.

    Science.gov (United States)

    Sultan, Torky; Khedr, Ayman E; Sayed, Mostafa

    2013-01-01

    NONE DECLARED Defect tracking systems play an important role in the software development organizations as they can store historical information about defects. There are many research in defect tracking models and systems to enhance their capabilities to be more specifically tracking, and were adopted with new technology. Furthermore, there are different studies in classifying bugs in a step by step method to have clear perception and applicable method in detecting such bugs. This paper shows a new proposed defect tracking model for the purpose of classifying the inserted defects reports in a step by step method for more enhancement of the software quality.

  4. Changes in sleep time and sleep quality across the ovulatory cycle as a function of fertility and partner attractiveness.

    Directory of Open Access Journals (Sweden)

    Brooke N Gentle

    Full Text Available Research suggests that near ovulation women tend to consume fewer calories and engage in more physical activity; they are judged to be more attractive, express greater preferences for masculine and symmetrical men, and experience increases in sexual desire for men other than their primary partners. Some of these cycle phase shifts are moderated by partner attractiveness and interpreted as strategic responses to women's current reproductive context. The present study investigated changes in sleep across the ovulatory cycle, based on the hypothesis that changes in sleep may reflect ancestral strategic shifts of time and energy toward reproductive activities. Participants completed a 32-day daily diary in which they recorded their sleep time and quality for each day, yielding over 1,000 observations of sleep time and quality. Results indicated that, when the probability of conception was high, women partnered with less attractive men slept more, while women with more attractive partners slept less.

  5. Polydispersity-driven topological defects as order-restoring excitations.

    Science.gov (United States)

    Yao, Zhenwei; Olvera de la Cruz, Monica

    2014-04-08

    The engineering of defects in crystalline matter has been extensively exploited to modify the mechanical and electrical properties of many materials. Recent experiments on manipulating extended defects in graphene, for example, show that defects direct the flow of electric charges. The fascinating possibilities offered by defects in two dimensions, known as topological defects, to control material properties provide great motivation to perform fundamental investigations to uncover their role in various systems. Previous studies mostly focus on topological defects in 2D crystals on curved surfaces. On flat geometries, topological defects can be introduced via density inhomogeneities. We investigate here topological defects due to size polydispersity on flat surfaces. Size polydispersity is usually an inevitable feature of a large variety of systems. In this work, simulations show well-organized induced topological defects around an impurity particle of a wrong size. These patterns are not found in systems of identical particles. Our work demonstrates that in polydispersed systems topological defects play the role of restoring order. The simulations show a perfect hexagonal lattice beyond a small defective region around the impurity particle. Elasticity theory has demonstrated an analogy between the elementary topological defects named disclinations to electric charges by associating a charge to a disclination, whose sign depends on the number of its nearest neighbors. Size polydispersity is shown numerically here to be an essential ingredient to understand short-range attractions between like-charge disclinations. Our study suggests that size polydispersity has a promising potential to engineer defects in various systems including nanoparticles and colloidal crystals.

  6. Defects and defect processes in nonmetallic solids

    CERN Document Server

    Hayes, W

    2004-01-01

    This extensive survey covers defects in nonmetals, emphasizing point defects and point-defect processes. It encompasses electronic, vibrational, and optical properties of defective solids, plus dislocations and grain boundaries. 1985 edition.

  7. Electrical fingerprint of pipeline defects

    International Nuclear Information System (INIS)

    Mica, Isabella; Polignano, Maria Luisa; Marco, Cinzia De

    2004-01-01

    Pipeline defects are dislocations that connect the source region of the transistor with the drain region. They were widely reported to occur in CMOS, BiCMOS devices and recently in SOI technologies. They can reduce device yield either by affecting the devices functionality or by increasing the current consumption under stand-by conditions. In this work the electrical fingerprint of these dislocations is studied, its purpose is to enable us to identify these defects as the ones responsible for device failure. It is shown that the pipeline defects are responsible for a leakage current from source to drain in the transistors. This leakage has a resistive characteristic and it is lightly modulated by the body bias. It is not sensitive to temperature; vice versa the off-current of a good transistor exhibits the well-known exponential dependence on 1/T. The emission spectrum of these defects was studied and compared with the spectrum of a good transistor. The paper aims to show that the spectrum of a defective transistor is quite peculiar; it shows well defined peaks, whereas the spectrum of a good transistor under saturation conditions is characterized by a broad spectral light emission distribution. Finally the deep-level transient spectroscopy (DLTS) is tried on defective diodes

  8. Varying stiffness and load distributions in defective ball bearings: Analytical formulation and application to defect size estimation

    Science.gov (United States)

    Petersen, Dick; Howard, Carl; Prime, Zebb

    2015-02-01

    This paper presents an analytical formulation of the load distribution and varying effective stiffness of a ball bearing assembly with a raceway defect of varying size, subjected to static loading in the radial, axial and rotational degrees of freedom. The analytical formulation is used to study the effect of the size of the defect on the load distribution and varying stiffness of the bearing assembly. The study considers a square-shaped outer raceway defect centered in the load zone and the bearing is loaded in the radial and axial directions while the moment loads are zero. Analysis of the load distributions shows that as the defect size increases, defect-free raceway sections are subjected to increased static loading when one or more balls completely or partly destress when positioned in the defect zone. The stiffness variations that occur when balls pass through the defect zone are significantly larger and change more rapidly at the defect entrance and exit than the stiffness variations that occur for the defect-free bearing case. These larger, more rapid stiffness variations generate parametric excitations which produce the low frequency defect entrance and exit events typically observed in the vibration response of a bearing with a square-shaped raceway defect. Analysis of the stiffness variations further shows that as the defect size increases, the mean radial stiffness decreases in the loaded radial and axial directions and increases in the unloaded radial direction. The effects of such stiffness changes on the low frequency entrance and exit events in the vibration response are simulated with a multi-body nonlinear dynamic model. Previous work used the time difference between the low frequency entrance event and the high frequency exit event to estimate the size of the defect. However, these previous defect size estimation techniques cannot distinguish between defects that differ in size by an integer number of the ball angular spacing, and a third feature

  9. First-Principles Investigations of Defects in Minerals

    Science.gov (United States)

    Verma, Ashok K.

    2011-07-01

    ions vary largely among different types of defects. In particular, the O-defects introduce localized electronic states. For Mg2SiO4 polymorphs native and protonic point defects were investigated upto 30 GPa. The Mg2+-Frenkel defects in forsterite and MgO pseudo-Schottky defects in wadsleyite and ringwoodite are energetically most favorable. Mg migration is easiest in forsterite and ringwoodite whereas Si migration is easiest in wadsleyite. Protons show substantially effect on structural transition pressures and PV equations-of-states. In our work on MgO, we showed that the point defect formation is easier in grain boundary interfacial regions than in bulk and pressure increasingly stabilizes interfacial vacancies relative to bulk thereby causing as enhancement in the vacancy concentrations. Symmetric tilt grain boundaries show structural phase transitions to asymmetric tilt grain boundaries under pressure.

  10. Defect grating modes as superimposed grating states

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.; de Ridder, R.M; de Ridder, R.M.; Altena, G; Altena, G.; Geuzebroek, D.H.; Geuzenboek, D.; Dekker, R.; Dekker, R

    2003-01-01

    For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the

  11. Defect detection using transient thermography

    International Nuclear Information System (INIS)

    Mohd Zaki Umar; Ibrahim Ahmad; Ab Razak Hamzah; Wan Saffiey Wan Abdullah

    2008-08-01

    An experimental research had been carried out to study the potential of transient thermography in detecting sub-surface defect of non-metal material. In this research, eight pieces of bakelite material were used as samples. Each samples had a sub-surface defect in the circular shape with different diameters and depths. Experiment was conducted using one-sided Pulsed Thermal technique. Heating of samples were done using 30 kWatt adjustable quartz lamp while infra red (IR) images of samples were recorded using THV 550 IR camera. These IR images were then analysed with ThermofitTMPro software to obtain the Maximum Absolute Differential Temperature Signal value, ΔΤ m ax and the time of its appearance, τ m ax (ΔΤ). Result showed that all defects were able to be detected even for the smallest and deepest defect (diameter = 5 mm and depth = 4 mm). However the highest value of Differential Temperature Signal (ΔΤ m ax), were obtained at defect with the largest diameter, 20 mm and at the shallowest depth, 1 mm. As a conclusion, the sensitivity of the pulsed thermography technique to detect sub-surface defects of bakelite material is proportionately related with the size of defect diameter if the defects are at the same depth. On the contrary, the sensitivity of the pulsed thermography technique inversely related with the depth of defect if the defects have similar diameter size. (Author)

  12. Norwegian Pitched Roof Defects

    Directory of Open Access Journals (Sweden)

    Lars Gullbrekken

    2016-06-01

    Full Text Available The building constructions investigated in this work are pitched wooden roofs with exterior vertical drainpipes and wooden load-bearing system. The aim of this research is to further investigate the building defects of pitched wooden roofs and obtain an overview of typical roof defects. The work involves an analysis of the building defect archive from the research institute SINTEF Building and Infrastructure. The findings from the SINTEF archive show that moisture is a dominant exposure factor, especially in roof constructions. In pitched wooden roofs, more than half of the defects are caused by deficiencies in design, materials, or workmanship, where these deficiencies allow moisture from precipitation or indoor moisture into the structure. Hence, it is important to increase the focus on robust and durable solutions to avoid defects both from exterior and interior moisture sources in pitched wooden roofs. Proper design of interior ventilation and vapour retarders seem to be the main ways to control entry from interior moisture sources into attic and roof spaces.

  13. Ultrasonic defect characterization using parametric-manifold mapping

    Science.gov (United States)

    Velichko, A.; Bai, L.; Drinkwater, B. W.

    2017-06-01

    The aim of ultrasonic non-destructive evaluation includes the detection and characterization of defects, and an understanding of the nature of defects is essential for the assessment of structural integrity in safety critical systems. In general, the defect characterization challenge involves an estimation of defect parameters from measured data. In this paper, we explore the extent to which defects can be characterized by their ultrasonic scattering behaviour. Given a number of ultrasonic measurements, we show that characterization information can be extracted by projecting the measurement onto a parametric manifold in principal component space. We show that this manifold represents the entirety of the characterization information available from far-field harmonic ultrasound. We seek to understand the nature of this information and hence provide definitive statements on the defect characterization performance that is, in principle, extractable from typical measurement scenarios. In experiments, the characterization problem of surface-breaking cracks and the more general problem of elliptical voids are studied, and a good agreement is achieved between the actual parameter values and the characterization results. The nature of the parametric manifold enables us to explain and quantify why some defects are relatively easy to characterize, whereas others are inherently challenging.

  14. Topological defects in open string field theory

    Science.gov (United States)

    Kojita, Toshiko; Maccaferri, Carlo; Masuda, Toru; Schnabl, Martin

    2018-04-01

    We show how conformal field theory topological defects can relate solutions of open string field theory for different boundary conditions. To this end we generalize the results of Graham and Watts to include the action of defects on boundary condition changing fields. Special care is devoted to the general case when nontrivial multiplicities arise upon defect action. Surprisingly the fusion algebra of defects is realized on open string fields only up to a (star algebra) isomorphism.

  15. Embedded defects

    International Nuclear Information System (INIS)

    Barriola, M.; Vachaspati, T.; Bucher, M.

    1994-01-01

    We give a prescription for embedding classical solutions and, in particular, topological defects in field theories which are invariant under symmetry groups that are not necessarily simple. After providing examples of embedded defects in field theories based on simple groups, we consider the electroweak model and show that it contains the Z string and a one-parameter family of strings called the W(α) string. It is argued that although the members of this family are gauge equivalent when considered in isolation, each member becomes physically distinct when multistring configurations are considered. We then turn to the issue of stability of embedded defects and demonstrate the instability of a large class of such solutions in the absence of bound states or condensates. The Z string is shown to be unstable for all values of the Higgs boson mass when θ W =π/4. W strings are also shown to be unstable for a large range of parameters. Embedded monopoles suffer from the Brandt-Neri-Coleman instability. Finally, we connect the electroweak string solutions to the sphaleron

  16. Intra-uterine insemination: pregnancy rate in relation to number, size of pre-ovulatory follicles and day of insemination.

    Science.gov (United States)

    Karuppaswamy, J; Smedley, Mamin; Carter, Lindsay

    2009-03-01

    The objective of the study was to analyse the pregnancy rate in intra-uterine insemination (IUI) in relation to pre-ovulatory follicular number, size and day of insemination. A retrospective analysis of 216 completed IUI cycles was used in an attempt to identify significant variables predictive of treatment success. Couples with unexplained infertility and male factor infertility underwent IUI with or without ovarian stimulation. The mean number of IUI cycles per patient was 4.1, the overall pregnancy rate was 27.3% per patient, and the pregnancy rate per cycle was 6.9%. The pregnancy rate was 4.4% when one follicle was produced, whereas with more than two follicles, the rate increased to 21.2%. Hormonal stimulation using clomiphene citrate and/or human menopausal gonadotrophin/follicle stimulating hormone yielded a significant higher pregnancy rate compared to IUI in natural cycles (10.3% versus 3.3%). Although not statistically significant, the pregnancy rate decreased with advancing age of woman. The results suggest that IUI is a useful method of assisted conception in unexplained infertility and higher pregnancy rates can be achieved with good patient selection and ovarian stimulation.

  17. Electron irradiation-induced defects in {beta}-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Ryuichiro [Osaka Prefectural Univ., Sakai (Japan). Reseach Inst. for Advanced Science and Technology

    1996-04-01

    To add information of point defects in cubic crystal SiC, polycrystal {beta}-SiC on the market was used as sample and irradiated by neutron and electron. In situ observation of neutron and electron irradiation-induced defects in {beta}-SiC were carried out by ultra high-voltage electronic microscope (UHVEM) and ordinary electronic microscope. The obtained results show that the electron irradiation-induced secondary defects are micro defects less than 20 nm at about 1273K, the density of defects is from 2x10{sup 17} to 1x10{sup 18}/cc, the secondary defects may be hole type at high temperature and the preexistant defects control nuclear formation of irradiation-induced defects, effective sink. (S.Y.)

  18. A new fundamental hydrogen defect in alkali halides

    International Nuclear Information System (INIS)

    Morato, S.P.; Luety, F.

    1978-01-01

    Atom hydrogen in neutral (H 0 ) and negative (H - ) form on substitutional and interstitial lattice sites gives rise to well characterized model defects in alkali-halides (U,U 1 ,U 2 ,U 3 centers), which have been extensively investigated in the past. When studying the photo-decomposition of OH - defects, a new configuration of atomic charged hidrogen was discovered, which can be produced in large quantities in the crystal and is apparently not connected to any other impurity. This new hidrogen defect does not show any pronounced electronic absorption, but displays a single sharp local mode band (at 1114cm -1 in KCl) with a perfect isotope shift. The defect can be produced by various UV or X-ray techniques in crystais doped with OH - , Sh - or H - defects. A detailed study of its formation kinetics at low temperature shows that it is primarily formed by the reaction of a mobile CI 2 - crowdion (H-center) with hidrogen defects [pt

  19. Vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association with Mayer-Rokitansky-Küster-Hauser syndrome in co-occurrence

    DEFF Research Database (Denmark)

    Bjørsum-Meyer, Thomas; Herlin, Morten; Qvist, Niels

    2016-01-01

    Background: The vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome are rare conditions. We aimed to present two cases with the vertebral defect, anal atresia, cardiac...... defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser co-occurrence from our local surgical center and through a systematic literature search detect published cases. Furthermore, we aimed to collect existing knowledge...... in the embryopathogenesis and genetics in order to discuss a possible link between the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome. Case presentation: Our first case was a white girl...

  20. Birth Defects

    Science.gov (United States)

    A birth defect is a problem that happens while a baby is developing in the mother's body. Most birth defects happen during the first 3 months of ... in the United States is born with a birth defect. A birth defect may affect how the ...

  1. Interproximal periodontal defect model in dogs: a pilot study.

    Science.gov (United States)

    Jung, U-W; Chang, Y-Y; Um, Y-J; Kim, C-S; Cho, K-S; Choi, S-H

    2011-01-01

    This study aimed to evaluate the validity of a surgically created interproximal periodontal defect in dogs. Surgery was performed in the interproximal area between the maxillary second and third premolars in two beagle dogs. Following an incision and reflection of the gingival flap, a 3-mm wide and 5-mm high defect was prepared surgically at the interproximal area. A thorough root planing was performed and the flap was coronally positioned and sutured. The contra-lateral area was served as the control with no surgical intervention. After 8 weeks of healing, the animals were killed and the defect was analysed histometrically and radiographically. The interproximal periodontal defect resembled a naturally occurring defect and mimicked a clinical situation. After healing, the defect showed limited bone (0.89±0.02mm) and cementum regeneration (1.50± 0.48mm). Within the limitations of this pilot study, the interproximal periodontal defect showed limited bone and cementum regeneration. Thus, it can be considered as a standardized, reproducible defect model for testing new biomaterials. © 2010 John Wiley & Sons A/S.

  2. Automatic classification of defects in weld pipe

    International Nuclear Information System (INIS)

    Anuar Mikdad Muad; Mohd Ashhar Hj Khalid; Abdul Aziz Mohamad; Abu Bakar Mhd Ghazali; Abdul Razak Hamzah

    2000-01-01

    With the advancement of computer imaging technology, the image on hard radiographic film can be digitized and stored in a computer and the manual process of defect recognition and classification may be replace by the computer. In this paper a computerized method for automatic detection and classification of common defects in film radiography of weld pipe is described. The detection and classification processes consist of automatic selection of interest area on the image and then classify common defects using image processing and special algorithms. Analysis of the attributes of each defect such as area, size, shape and orientation are carried out by the feature analysis process. These attributes reveal the type of each defect. These methods of defect classification result in high success rate. Our experience showed that sharp film images produced better results

  3. Automatic classification of defects in weld pipe

    International Nuclear Information System (INIS)

    Anuar Mikdad Muad; Mohd Ashhar Khalid; Abdul Aziz Mohamad; Abu Bakar Mhd Ghazali; Abdul Razak Hamzah

    2001-01-01

    With the advancement of computer imaging technology, the image on hard radiographic film can be digitized and stored in a computer and the manual process of defect recognition and classification may be replaced by the computer. In this paper, a computerized method for automatic detection and classification of common defects in film radiography of weld pipe is described. The detection and classification processes consist of automatic selection of interest area on the image and then classify common defects using image processing and special algorithms. Analysis of the attributes of each defect such area, size, shape and orientation are carried out by the feature analysis process. These attributes reveal the type of each defect. These methods of defect classification result in high success rate. Our experience showed that sharp film images produced better results. (Author)

  4. Ab initio study of point defects in magnesium oxide

    International Nuclear Information System (INIS)

    Gilbert, C. A.; Kenny, S. D.; Smith, R.; Sanville, E.

    2007-01-01

    Energetics of a variety of point defects in MgO have been considered from an ab initio perspective using density functional theory. The considered defects are isolated Schottky and Frenkel defects and interstitial pairs, along with a number of Schottky defects and di-interstitials. Comparisons were made between the density functional theory results and results obtained from empirical potential simulations and these generally showed good agreement. Both methodologies predicted the first nearest neighbor Schottky defects to be the most energetically favorable of the considered Schottky defects and that the first, second, and fifth nearest neighbor di-interstitials were of similar energy and were favored over the other di-interstitial configurations. Relaxed structures of the defects were analyzed, which showed that empirical potential simulations were accurately predicting the displacements of atoms surrounding di-interstitials, but were overestimating O atom displacement for Schottky defects. Transition barriers were computed for the defects using the nudged elastic band method. Vacancies and Schottky defects were found to have relatively high energy barriers, the majority of which were over 2 eV, in agreement with conclusions reached using empirical potentials. The lowest barriers for di-interstitial transitions were found to be for migration into a first nearest neighbor configuration. Charges were calculated using a Bader analysis and this found negligible charge transfer during the defect transitions and only small changes in the charges on atoms surrounding defects, indicating why fixed charge models work as well as they do

  5. Replacing single frozen-thawed euploid embryos in a natural cycle in ovulatory women may increase live birth rates compared to medicated cycles in anovulatory women.

    Science.gov (United States)

    Melnick, Alexis P; Setton, Robert; Stone, Logan D; Pereira, Nigel; Xu, Kangpu; Rosenwaks, Zev; Spandorfer, Steven D

    2017-10-01

    The goal of this study was to compare pregnancy outcomes between natural frozen embryo transfer (FET) cycles in ovulatory women and programmed FET cycles in anovulatory women after undergoing in vitro fertilization with preimplantation genetic screening (IVF-PGS). This was a retrospective cohort study performed at an academic medical center. Patients undergoing single FET IVF-PGS cycles between October 2011 and December 2014 were included. Patients were stratified by type of endometrial replacement: programmed cycles with estrogen/progesterone replacement and natural cycles. IVF-PGS with 24-chromosome screening was performed on all included patients. Those patients with euploid embryos had single embryo transfer in a subsequent FET. The primary study outcome was live birth/ongoing pregnancy rate. Secondary outcomes included implantation, biochemical pregnancy, and miscarriage rates. One hundred thirteen cycles met inclusion criteria: 65 natural cycles and 48 programmed cycles. The programmed FET group was younger (35.9 ± 4.5 vs. 37.5 ± 3.7, P = 0.03) and had a higher AMH (3.95 ± 4.2 vs. 2.37 ± 2.4, P = 0.045). The groups were similar for BMI, gravidity, parity, history of uterine surgery, and incidence of Asherman's syndrome. There was also no difference in embryo grade at biopsy or transfer, and proportion of day 5 and day 6 transfers. Implantation rates were higher in the natural FET group (0.66 ± 0.48 vs. 0.44 ± 0.50, P = 0.02). There was no difference in the rates of biochemical pregnancy or miscarriage. After controlling for age, live birth/ongoing pregnancy rate was higher in natural FETs with an adjusted odds ratio of 2.68 (95% CI 1.22-5.87). Natural FET in ovulatory women after IVF-PGS is associated with increased implantation and live birth rates compared to programmed FET in anovulatory women. Further investigation is needed to determine whether these findings hold true in other patient cohorts.

  6. Altering graphene line defect properties using chemistry

    Science.gov (United States)

    Vasudevan, Smitha; White, Carter; Gunlycke, Daniel

    2012-02-01

    First-principles calculations are presented of a fundamental topological line defect in graphene that was observed and reported in Nature Nanotech. 5, 326 (2010). These calculations show that atoms and smaller molecules can bind covalently to the surface in the vicinity of the graphene line defect. It is also shown that the chemistry at the line defect has a strong effect on its electronic and magnetic properties, e.g. the ferromagnetically aligned moments along the line defect can be quenched by some adsorbates. The strong effect of the adsorbates on the line defect properties can be understood by examining how these adsorbates affect the boundary-localized states in the vicinity of the Fermi level. We also expect that the line defect chemistry will significantly affect the scattering properties of incident low-energy particles approaching it from graphene.

  7. Eddy current inspection of weld defects in tubing

    Science.gov (United States)

    Katragadda, G.; Lord, W.

    1992-01-01

    An approach using differential probes for the inspection of weld defects in tubing is studied. Finite element analysis is used to model the weld regions and defects. Impedance plane signals are predicted for different weld defect types and compared wherever possible with signals from actual welds in tubing. Results show that detection and sizing of defects in tubing is possible using differential eddy current techniques. The phase angle of the impedance plane trajectory gives a good indication of the sizing of the crack. Data on the type of defect can be obtained from the shape of the impedance plane trajectory and the phase. Depending on the skin depth, detection of outer wall, inner wall, and subsurface defects is possible.

  8. Defect structure of electrodeposited chromium layers

    International Nuclear Information System (INIS)

    Marek, T.; Suevegh, K.; Vertes, A.; El-Sharif, M.; McDougall, J.; Chisolm, C.U.

    2000-01-01

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  9. Defect structure of electrodeposited chromium layers

    Energy Technology Data Exchange (ETDEWEB)

    Marek, T. E-mail: marek@para.chem.elte.hu; Suevegh, K.; Vertes, A.; El-Sharif, M.; McDougall, J.; Chisolm, C.U

    2000-06-01

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  10. Mass defect effects in atomic clocks

    Science.gov (United States)

    Yudin, Valeriy; Taichenachev, Alexey

    2018-03-01

    We consider some implications of the mass defect on the frequency of atomic transitions. We have found that some well-known frequency shifts (the gravitational shift and motion-induced shifts such as quadratic Doppler and micromotion shifts) can be interpreted as consequences of the mass defect in quantum atomic physics, i.e. without the need for the concept of time dilation used in special and general relativity theories. Moreover, we show that the inclusion of the mass defect leads to previously unknown shifts for clocks based on trapped ions.

  11. Fibrous metaphyseal defect (fibrous cortical defect, non-ossifying fibroma)

    International Nuclear Information System (INIS)

    Freyschmidt, J.; Saure, D.; Dammenhain, S.

    1981-01-01

    Fibrous cortical defect and nonossifying fibromas can be classified together as fibrous metaphyseal defects (FMD) since they have the same pahtological substrate, with a tendency to the same localisation around the knee, and occuring at the same age. They have a tendency to spontaneous healing, are clinically silent and are usually discovered accidentally during radiological examination. A radiological survey fo 5.674 metaphyseal regions in the upper and lower extremities of 2.065 unselected patients aged one to 20 years revealed an incidence of 1.8%; exlcusive examination of the distal femur showed an incidence of 2.7%. 96% of all lesions were in the lower extremities and only 4% in the upper. The marked discrepancy in the incidence rate between American and German publications is discussed. (orig.) [de

  12. Oxygen defects in Fe-substituted Tl-system superconductors

    Institute of Scientific and Technical Information of China (English)

    李阳; 曹国辉; 王耘波; 马庆珠; 熊小涛; 陈宁; 马如璋; 郭应焕; 许祝安; 王劲松; 张小俊; 焦正宽; 彭获田; 周思海

    1996-01-01

    For Fe-doped T1-1223 phase,the excess oxygen defects induced by Fe dopants are studied by means of Hall coefficient,thermogravimetric measurements,Mossbauer spectroscopy,and the model calculation of the effective bond valence.The extra oxygen defects have effects on carrier density and microstructure of the superconductors.In the light doping level of Fe (x=0-0.05),the superconducting transition and carrier density have significant corresponding relation--the zero resistance temperature Tco and carrier densities decrease linearly with Fe dopants increasing.The thermogravimetric measurements show that the Fe3+ ions’ substituting for Cu2+ ions can bring the extra oxygen into the lattice to form extra oxygen defects.The calculation of the effective bond valence shows that the decrease of carrier density originates the strongly localized binding of the extra oxygen defects.The distortion of Cu-O layer induced by the extra oxygen defects decreases the superconductive transition temperature.The microstructure

  13. Defect detection module

    International Nuclear Information System (INIS)

    Ernwein, R.; Westermann, G.

    1986-01-01

    The ''defect detector'' module is aimed at exceptional event or state recording. Foreseen for voltage presence monitoring on high supply voltage module of drift chambers, its characteristics can also show up the vanishing of supply voltage and take in account transitory fast signals [fr

  14. Effects of mass defect in atomic clocks

    Science.gov (United States)

    Taichenachev, A. V.; Yudin, V. I.

    2018-01-01

    We consider some implications of the mass defect on the frequency of atomic transitions. We have found that some well-known frequency shifts (such as gravitational and quadratic Doppler shifts) can be interpreted as consequences of the mass defect, i.e., without the need for the concept of time dilation used in special and general relativity theories. Moreover, we show that the inclusion of the mass defect leads to previously unknown shifts for clocks based on trapped ions..

  15. Full transmission modes and steady states in defect gratings,

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.; de Ridder, R.M; Altena, G; Geuzebroek, D.H.; Dekker, R

    2003-01-01

    For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the

  16. Study of EUV induced defects on few-layer graphene

    NARCIS (Netherlands)

    Gao, An; Rizo, P.J.; Zoethout, E.; Scaccabarozzi, L.; Lee, Christopher James; Banine, V.; Bijkerk, Frederik

    2012-01-01

    Defects in graphene greatly affect its properties1-3. Radiation induced-defects may reduce the long-term survivability of graphene-based nano-devices. Here, we expose few-layer graphene to extreme ultraviolet (EUV, 13.5nm) radiation and show there is a power-dependent increase in defect density. We

  17. A study on the healing process of bone defect-examination of healing stages of bone defect in the irradiated mandibular rim by microradiography and autoradiography

    International Nuclear Information System (INIS)

    Shimoyama, Tetsuo

    1980-01-01

    The mandibular rim of 150 female Donryu strain rats was exposed to 2000 rads (B group) or to 3000 rads (C group), and a bone defect of 1 x 1 x 2 mm in size was formed in the madibular rim. Cure process of this bone defect was observed periodically by microradiography and autoradiography using 45 Ca as a tracer, compared with that in the control group (A group, non-irradiated). Irradiated rats having bone defects recovered smoothly. Microradiographic findings of the A group showed that new bone was formed on the surface of the perosteum of the mandible on the 7th days after the irradiation. Bone defects in all rats were repaired completely by the 49th days after the irradiation. Microradiographic findings of the B and C groups showed that new bone was formed on the tongue side surface of the periosteum of the mandible in the early stage after the irradiation. However, after that, osteogenesis became slower, and the edge of bone defects or a part of the mandible became smaller. Bone defects were not repaired and became larger. These findings were more marked in the C group than in the B group. Autoradiographic findings showed marked uptake of 45 Ca into new bone in the A group. Rats of which bone defects were repaired showed the uptake of 45 Ca in accordance with the shape of the mandibular rim. The edge of bone defect of the B and C groups where new bone was not formed was destroyed since the 14th day after the irradiation. There were some cases in which the uptake of 45 Ca into the surface of the periosteum of the mandible near bone defect was observed even when bone defect was enlarged. (Tsunoda, M.)

  18. Defect identification for the AsGa family

    International Nuclear Information System (INIS)

    Overhof, H.; Spaeth, J.-M.

    2003-01-01

    The As Ga family consists of at least four distinctly different point defects including the technologically important EL2 defect. While the different members are easily distinguished from their MCDA spectra, the differences of the hf and shf interactions as derived from ODEPR and ODENDOR are rather small. We present ab initio calculations using the LMTO-ASA Green's function method for a variety of defect models that might be relevant for the identification of As Ga -related defects. We confirm the identification of the isolated As Ga and show that the {As Ga -X 2 } defect must be identified with the nearest-neighbor antistructure pair rather than with the {As Ga -V As } pair. For the {As Ga -X 1 } defect a distant antistructure pair is a likely candidate. For the EL2, the most important member of the As Ga family, we have not found a conclusive defect model. The recent ODENDOR data are similar to those of the distant orthorhombic {As Ga -V Ga } pair, which, however is a triple acceptor and not a donor

  19. Defect tolerance in resistor-logic demultiplexers for nanoelectronics.

    Science.gov (United States)

    Kuekes, Philip J; Robinett, Warren; Williams, R Stanley

    2006-05-28

    Since defect rates are expected to be high in nanocircuitry, we analyse the performance of resistor-based demultiplexers in the presence of defects. The defects observed to occur in fabricated nanoscale crossbars are stuck-open, stuck-closed, stuck-short, broken-wire, and adjacent-wire-short defects. We analyse the distribution of voltages on the nanowire output lines of a resistor-logic demultiplexer, based on an arbitrary constant-weight code, when defects occur. These analyses show that resistor-logic demultiplexers can tolerate small numbers of stuck-closed, stuck-open, and broken-wire defects on individual nanowires, at the cost of some degradation in the circuit's worst-case voltage margin. For stuck-short and adjacent-wire-short defects, and for nanowires with too many defects of the other types, the demultiplexer can still achieve error-free performance, but with a smaller set of output lines. This design thus has two layers of defect tolerance: the coding layer improves the yield of usable output lines, and an avoidance layer guarantees that error-free performance is achieved.

  20. Breakdown, fractoemission, diffusion: role of defects in dielectrics

    International Nuclear Information System (INIS)

    Vigouroux, J.P.; Serruys, Y.

    1987-01-01

    During the surface analysis of dielectric materials, the impinging ionising particles induce point defects localised in the band gap and build an electrical charge. The electric field created by the charged defects modifies the physico-chemical properties of surface and bulk. We show that the fundamental study of defects allows a better understanding of technological phenomena such as dielectric breakdown, fracture and diffusion [fr

  1. Thin-film limit formalism applied to surface defect absorption.

    Science.gov (United States)

    Holovský, Jakub; Ballif, Christophe

    2014-12-15

    The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.

  2. A novel inspection system for cosmetic defects

    Science.gov (United States)

    Hazra, S.; Roy, R.; Williams, D.; Aylmore, R.; Hollingdale, D.

    2013-12-01

    The appearance of automotive skin panels creates desirability for a product and differentiates it from the competition. Because of the importance of skin panels, considerable care is taken in minimizing defects such as the 'hollow' defect that occur around door-handle depressions. However, the inspection process is manual, subjective and time-consuming. This paper describes the development of an objective and inspection scheme for the 'hollow' defect. In this inspection process, the geometry of a panel is captured using a structured lighting system. The geometry data is subsequently analyzed by a purpose-built wavelet-based algorithm to identify the location of any defects that may be present and to estimate the perceived severity of the defects without user intervention. This paper describes and critically evaluates the behavior of this physically-based algorithm on an ideal and real geometry and compares its result to an actual audit. The results show that the algorithm is capable of objectively locating and classifying 'hollow' defects in actual panels.

  3. Immobile defects in ferroelastic walls: Wall nucleation at defect sites

    Science.gov (United States)

    He, X.; Salje, E. K. H.; Ding, X.; Sun, J.

    2018-02-01

    Randomly distributed, static defects are enriched in ferroelastic domain walls. The relative concentration of defects in walls, Nd, follows a power law distribution as a function of the total defect concentration C: N d ˜ C α with α = 0.4 . The enrichment Nd/C ranges from ˜50 times when C = 10 ppm to ˜3 times when C = 1000 ppm. The resulting enrichment is due to nucleation at defect sites as observed in large scale MD simulations. The dynamics of domain nucleation and switching is dependent on the defect concentration. Their energy distribution follows the power law with exponents during yield between ɛ ˜ 1.82 and 2.0 when the defect concentration increases. The power law exponent is ɛ ≈ 2.7 in the plastic regime, independent of the defect concentration.

  4. Experimental study of defect power reactor fuel. Final report

    International Nuclear Information System (INIS)

    Forsyth, R.S.; Jonsson, T.

    1982-01-01

    Two BWR fuel rods, one intact and one defect, with the same manufacturing and irradiation data have been examined in a comparative study. The defect rod has been irradiated in a defect condition during approximately one reactor cycle and has consequently some secondary defects. The defect rod has two penetrating defects at a distance of about 1.5 meters from each other. Comparison with the intact rod shows a large Cs loss from the defect rod, especially between the cladding defects, where the loss is measured to about 30 %. The leachibility in deionized water is higher for Cs, U and Cm for fuel from the defect rod. The leaching results are more complex for Sr-90, Pu and Am. The fuel in the defect rod has undergone a change of structure with gain growth and formation of oriented fuel structure. The cladding of the defect rod is hydrided locally in some parts of the lower part of the rod and furthermore over a more extended region near the end of the rod. (Authors)

  5. Defective Reduction in Frozen Pie Manufacturing Process

    Science.gov (United States)

    Nooted, Oranuch; Tangjitsitcharoen, Somkiat

    2017-06-01

    The frozen pie production has a lot of defects resulting in high production cost. Failure mode and effect analysis (FMEA) technique has been applied to improve the frozen pie process. Pareto chart is also used to determine the major defects of frozen pie. There are 3 main processes that cause the defects which are the 1st freezing to glazing process, the forming process, and the folding process. The Risk Priority Number (RPN) obtained from FMEA is analyzed to reduce the defects. If RPN of each cause exceeds 45, the process will be considered to be improved and selected for the corrective and preventive actions. The results showed that RPN values decreased after the correction. Therefore, the implementation of FMEA technique can help to improve the performance of frozen pie process and reduce the defects approximately 51.9%.

  6. Residual Defect Density in Random Disks Deposits.

    Science.gov (United States)

    Topic, Nikola; Pöschel, Thorsten; Gallas, Jason A C

    2015-08-03

    We investigate the residual distribution of structural defects in very tall packings of disks deposited randomly in large channels. By performing simulations involving the sedimentation of up to 50 × 10(9) particles we find all deposits to consistently show a non-zero residual density of defects obeying a characteristic power-law as a function of the channel width. This remarkable finding corrects the widespread belief that the density of defects should vanish algebraically with growing height. A non-zero residual density of defects implies a type of long-range spatial order in the packing, as opposed to only local ordering. In addition, we find deposits of particles to involve considerably less randomness than generally presumed.

  7. Sub-surface defect detection using transient thermography

    International Nuclear Information System (INIS)

    Mohd Zaki Umar; Huda Abdullah; Abdul Razak Hamzah; Wan Saffiey Wan Abdullah; Ibrahim Ahmad; Vavilov, Vladimir

    2009-04-01

    An experimental research had been carried out to study the potential of transient thermography in detecting sub-surface defect of non-metal material. In this research, eight pieces of bakelite material were used as samples. Each samples had a sub-surface defect in the circular shape with different diameters and depths. Experiment was conducted using one-sided Pulsed Thermal technique. Heating of samples were done using 30 k Watt adjustable quartz lamp while infra red (IR) images of samples were recorded using THV 550 IR camera. These IR images were then analysed with thermo fit TM Pro software to obtain the Maximum Absolute Differential Temperature Signal value, ΔT max and the time of its appearance, τ max (ΔT). Result showed that all defects were able to be detected even for the smallest and deepest defect (diameter = 5 mm and depth = 4 mm). However the highest value of Differential Temperature Signal (ΔT max ), were obtained at defect with the largest diameter, 20 mm and at the shallowest depth, 1 mm. As a conclusion, the sensitivity of the pulsed thermography technique to detect sub-surface defects of bakelite material is proportionately related with the size of defect diameter if the defect area at the same depth. On the contrary, the sensitivity of the pulsed thermography technique inversely related with the depth of defect if the defects have similar diameter size. (author)

  8. Molecular-dynamics simulation of defect formation energy in boron nitride nanotubes

    International Nuclear Information System (INIS)

    Moon, W.H.; Hwang, H.J.

    2004-01-01

    We investigate the defect formation energy of boron nitride nanotubes (BNNTs) using molecular dynamics simulation. Although the defect with tetragon-octagon pairs (TOP) is favored in the flat BNNTs cap, BN clusters, and the growth of BNNTs, the formation energy of the TOP defect is significantly higher than that of the pentagon-heptagon pairs (PHP) defect in BNNTs. The PHP defect reduces the effect of the structural distortion caused by the TOP defect, in spite of homoelemental bonds. The instability of the TOP defect generates the structural transformation into BNNTs with no defect at about 1500 K. This mechanism shows that the TOP defect is less favored in case of BNNTs

  9. Studies of defects and defect agglomerates by positron annihilation spectroscopy

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, B.N.

    1997-01-01

    A brief introduction to positron annihilation spectroscopy (PAS), and in particular lo its use for defect studies in metals is given. Positrons injected into a metal may become trapped in defects such as vacancies, vacancy clusters, voids, bubbles and dislocations and subsequently annihilate from...... the trapped state iri the defect. The annihilation characteristics (e.g., the lifetime of the positron) can be measured and provide information about the nature of the defect (e.g., size, density, morphology). The technique is sensitive to both defect size (in the range from monovacancies up to cavities...

  10. Retinoblastoma pathway defects show differential ability to activate the constitutive DNA damage response in human tumorigenesis

    DEFF Research Database (Denmark)

    Tort, F.; Bartkova, J.; Sehested, M.

    2006-01-01

    culture models with differential defects of retinoblastoma pathway components, as overexpression of cyclin D1 or lack of p16(Ink4a), either alone or combined, did not elicit detectable DDR. In contrast, inactivation of pRb, the key component of the pathway, activated the DDR in cultured human or mouse...... with their hierarchical positions along the retinoblastoma pathway. Our data provide new insights into oncogene-evoked DDR in human tumorigenesis, with potential implications for individualized management of tumors with elevated cyclin D1 versus cyclin E, due to their distinct clinical variables and biological behavior....

  11. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice.

    Science.gov (United States)

    Fero, M L; Rivkin, M; Tasch, M; Porter, P; Carow, C E; Firpo, E; Polyak, K; Tsai, L H; Broudy, V; Perlmutter, R M; Kaushansky, K; Roberts, J M

    1996-05-31

    Targeted disruption of the murine p27(Kip1) gene caused a gene dose-dependent increase in animal size without other gross morphologic abnormalities. All tissues were enlarged and contained more cells, although endocrine abnormalities were not evident. Thymic hyperplasia was associated with increased T lymphocyte proliferation, and T cells showed enhanced IL-2 responsiveness in vitro. Thus, p27 deficiency may cause a cell-autonomous defect resulting in enhanced proliferation in response to mitogens. In the spleen, the absence of p27 selectively enhanced proliferation of hematopoietic progenitor cells. p27 deletion, like deletion of the Rb gene, uniquely caused neoplastic growth of the pituitary pars intermedia, suggesting that p27 and Rb function in the same regulatory pathway. The absence of p27 also caused an ovulatory defect and female sterility. Maturation of secondary ovarian follicles into corpora lutea, which express high levels of p27, was markedly impaired.

  12. [Progress of Masquelet technique to repair bone defect].

    Science.gov (United States)

    Yin, Qudong; Sun, Zhenzhong; Gu, Sanjun

    2013-10-01

    To summarize the progress of Masquelet technique to repair bone defect. The recent literature concerning the application of Masquelet technique to repair bone defect was extensively reviewed and summarized. Masquelet technique involves a two-step procedure. First, bone cement is used to fill the bone defect after a thorough debridement, and an induced membrane structure surrounding the spacer formed; then the bone cement is removed after 6-8 weeks, and rich cancellous bone is implanted into the induced membrane. Massive cortical bone defect is repaired by new bone forming and consolidation. Experiments show that the induced membrane has vascular system and is also rich in vascular endothelial growth factor, transforming growth factor beta1, bone morphogenetic protein 2, and bone progenitor cells, so it has osteoinductive property; satisfactory results have been achieved in clinical application of almost all parts of defects, various types of bone defect and massive defect up to 25 cm long. Compared with other repair methods, Masquelet technique has the advantages of reliable effect, easy to operate, few complications, low requirements for recipient site, and wide application. Masquelet technique is an effective method to repair bone defect and is suitable for various types of bone defect, especially for bone defects caused by infection and tumor resection.

  13. Defects and boundary RG flows in ℂ/ℤ{sub d}

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Melanie; Cabrera, Yaniel [George and Cynthia Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843-4242 (United States); Robbins, Daniel [Department of Physics, University at Albany,1400 Washington Ave., Albany, NY 12222 (United States)

    2017-02-01

    We show that topological defects in the language of Landau-Ginzburg models carry information about the RG flow between the non-compact orbifolds ℂ/ℤ{sub d}. We show that such defects correctly implement the bulk-induced RG flow on the boundary.

  14. Defect modelling

    International Nuclear Information System (INIS)

    Norgett, M.J.

    1980-01-01

    Calculations, drawing principally on developments at AERE Harwell, of the relaxation about lattice defects are reviewed with emphasis on the techniques required for such calculations. The principles of defect modelling are outlined and various programs developed for defect simulations are discussed. Particular calculations for metals, ionic crystals and oxides, are considered. (UK)

  15. 49 CFR 215.115 - Defective roller bearing.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective roller bearing. 215.115 Section 215.115... § 215.115 Defective roller bearing. (a) A railroad may not place or continue in service a car, if the car has— (1) A roller bearing that shows signs of having been overheated as evidenced by— (i...

  16. Poor embryo development in post-ovulatory in vivo-aged mouse oocytes is associated with mitochondrial dysfunction, but mitochondrial transfer from somatic cells is not sufficient for rejuvenation.

    Science.gov (United States)

    Igarashi, Hideki; Takahashi, Toshifumi; Abe, Hiroyuki; Nakano, Hiroshi; Nakajima, Osamu; Nagase, Satoru

    2016-10-01

    Does in vivo aging of mouse oocytes affect mitochondrial function? Mitochondrial function was impaired in post-ovulatory in vivo-aged mouse oocytes and microinjection of somatic cell mitochondria did not rescue poor fertilization and embryonic development rates. The mechanisms underlying the decline in oocyte quality associated with oocyte aging remain unknown, although studies have suggested that the decline is regulated by mitochondrial dysfunction. However, only a limited number of studies have provided direct evidence implicating mitochondrial dysfunction in oocyte quality during the aging of oocytes. We used post-ovulatory, in vivo-aged mouse oocytes as a model for studying low-quality oocytes in oocyte aging. Superovulated oocytes released from the oviduct at 14 h and 20-24 h post-hCG injection were designated as 'fresh' and 'aged' oocytes, respectively. Membrane potentials and oxygen consumption in single oocytes were evaluated as measures of mitochondrial function in fresh and aged oocytes. Mitochondrial transcriptional factor A (TFAM) expression levels were examined by western blotting, and colocalization of mitochondria and TFAM was analyzed by measuring immunofluorescence in fresh and aged oocytes. IVF and blastocyst formation rates were calculated after oocyte microinjection with mitochondria derived from liver cells. The average mitochondrial membrane potential in fresh oocytes was significantly higher than that in aged oocytes (P transfer of cytosolic factors or cellular organelles, such as the endoplasmic reticulum or mitochondria, from specific cell types. This study was supported by Grants-in-Aid for General Science Research to Toshifumi Takahashi (No. 25462550) and Hideki Igarashi (No. 26462474). The funding source played no role in study design in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. The authors have no conflict of interest to disclose.

  17. A study of defects in diamond

    International Nuclear Information System (INIS)

    Hunt, D.C.

    1999-01-01

    Defects, intrinsic and extrinsic, in natural and synthetic diamond, have been studied using Electron Paramagnetic Resonance (EPR) and optical absorption techniques. EPR measurements have been used in conjunction with infrared absorption to identify the defect-induced one-phonon infrared spectra produced by ionised single substitutional nitrogen, N s + . This N s + spectrum is characterised by a sharp peak at the Raman energy, 1332 cm -1 , accompanied by several broader resonances at 950(5), 1050(5), and 1095(5) cm -1 . Detailed concentration measurements show that a concentration of 5.5(5) ppm gives rise to an absorption of 1 cm -1 at 1332 cm -1 . The optical absorption band ND1, identified as the negative vacancy (V - ), is frequently used by diamond spectroscopists to measure the concentration of V - . Isoya has identified V - in the EPR spectra of irradiated diamond. The accuracy of EPR in determining concentrations, has been used to correlate the integrated absorption of the ND1 zero-phonon line to the concentration of V - centres. The parameter derived from this correlation is ∼16 times smaller than the previously accepted value obtained by indirect methods. A systematic study has been made - using EPR and optical absorption techniques - of synthetic type IIa diamonds, which have been irradiated with 2 MeV electrons in a specially developed dewar, allowing irradiation down to a measured sample temperature of 100K. Measurement of defect creation rates of the neutral vacancy and EPR defects, show a radical difference in the production rate of the EPR defect R2 between irradiation with the sample held at 100K and 350K. At 100K its production rate is 1.1(1) cm -1 , ∼10 times greater that at 350K. Observation of the di- -split interstitial (Ri) after irradiation at 100K proves the self-interstitial in diamond must be mobile at 100K, under the conditions of irradiation. Further study of the properties of the R2 defect (the most dominant EPR after electron

  18. Defect branes as Alice strings

    International Nuclear Information System (INIS)

    Okada, Takashi; Sakatani, Yuho

    2015-01-01

    There exist various defect-brane backgrounds in supergravity theories which arise as the low energy limit of string theories. These backgrounds typically have non-trivial monodromies, and if we move a charged probe around the center of a defect, its charge will be changed by the action of the monodromy. During the process, the charge conservation law seems to be violated. In this paper, to resolve this puzzle, we examine a dynamics of the charge changing process and show that the missing charge of the probe is transferred to the background. We then explicitly construct the resultant background after the charge transfer process by utilizing dualities. This background has the same monodromy as the original defect brane, but has an additional charge which does not have any localized source. In the literature, such a charge without localized source is known to appear in the presence of Alice strings. We argue that defect branes can in fact be regarded as a realization of Alice strings in string theory and examine the charge transfer process from that perspective.

  19. Defect branes as Alice strings

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Takashi [Theoretical Biology Laboratory, RIKEN,Wako 351-0198 (Japan); Sakatani, Yuho [Department of Physics and Astronomy,Seoul National University, Seoul 151-747 (Korea, Republic of)

    2015-03-25

    There exist various defect-brane backgrounds in supergravity theories which arise as the low energy limit of string theories. These backgrounds typically have non-trivial monodromies, and if we move a charged probe around the center of a defect, its charge will be changed by the action of the monodromy. During the process, the charge conservation law seems to be violated. In this paper, to resolve this puzzle, we examine a dynamics of the charge changing process and show that the missing charge of the probe is transferred to the background. We then explicitly construct the resultant background after the charge transfer process by utilizing dualities. This background has the same monodromy as the original defect brane, but has an additional charge which does not have any localized source. In the literature, such a charge without localized source is known to appear in the presence of Alice strings. We argue that defect branes can in fact be regarded as a realization of Alice strings in string theory and examine the charge transfer process from that perspective.

  20. DFM for maskmaking: design-aware flexible mask-defect analysis

    Science.gov (United States)

    Driessen, Frank A. J. M.; Westra, J.; Scheffer, M.; Kawakami, K.; Tsujimoto, E.; Yamaji, M.; Kawashima, T.; Hayashi, N.

    2007-10-01

    We present a novel software system that combines design intent as known by EDA designers with defect inspection results from the maskshop to analyze the severity of defects on photomasks. The software -named Takumi Design- Driven Defect Analyzer (TK-D3A)- analyzes defects by combining actions in the image domain with actions in the design domain and outputs amongst others flexible mask-repair decisions in production formats used by the maskshop. Furthermore, TK-D3A outputs clips of layout (GDS/OASIS) that can be viewed with its graphical user interface for easy review of the defects and associated repair decisions. As inputs the system uses reticle defect-inspection data (text and images) and the respective multi-layer design layouts with the definitions of criticalities. The system does not require confidential design data from IDM, Fabless Design House, or Foundry to be sent to the maskshop and it also has minimal impact on the maskshop's mode of operation. The output of TK-D3A is designed to realize value to the maskshop and its customers in the forms of: 1) improved yield, 2) reduction of delivery times of masks to customers, and 3) enhanced utilization of the maskshop's installed tool base. The system was qualified together with a major IDM on a large set of production reticles in the 90 and beyond-65 nm technology nodes of which results will be presented that show the benefits for maskmaking. The accuracy in detecting defects is extremely high. We show the system's capability to analyze defects well below the pixel resolution of all inspection tools used, as well as the capability to extract multiple types of transmission defects. All of these defects are analyzed design-criticality-aware by TK-D3A, resulting in a large fraction of defects that do not need to be repaired because they are located in non-critical or less-critical parts of the layout, or, more importantly, turn out to be repairable or negligible despite of originally being classified as

  1. A study of complex defects failing by fatigue, ductile tearing and cleavage

    International Nuclear Information System (INIS)

    Bezensek, B.; Ren, Z.; Hancock, J.W.

    2001-01-01

    Defect assessment procedures ensure the structural integrity of plant, which may contain complex defects. The present work addresses complex defects with re-entrant sectors, which develop from the interaction of two co-planar surface breaking defects in fatigue. Experimental studies show rapid fatigue growth and amplified crack driving forces in the re-entrant sector. This leads to the rapid evolution of the complex crack into a bounding semielliptical defect. Experiments involving ductile tearing of cracks with a re-entrant sector show that tearing initiates in the re-entrant sector and that the defect evolves into a bounding semielliptical defect. Cleavage failures of defects with re-entrant sectors indicate the re-characterisation procedure is only conservative after invoking constraint arguments. The study confirms the conservatism inherent in the re-characterisation rules of assessment procedures, such as BS 7910 [1] and ASME Section XI [2] for complex defects extending by fatigue or ductile tearing. A potentially non-conservative situation exists for defects with re-entrant sectors failing by cleavage at small fractions of the limit load.(author)

  2. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation.

    Science.gov (United States)

    Boutilier, Michael S H; Sun, Chengzhen; O'Hern, Sean C; Au, Harold; Hadjiconstantinou, Nicolas G; Karnik, Rohit

    2014-01-28

    Gas transport through intrinsic defects and tears is a critical yet poorly understood phenomenon in graphene membranes for gas separation. We report that independent stacking of graphene layers on a porous support exponentially decreases flow through defects. On the basis of experimental results, we develop a gas transport model that elucidates the separate contributions of tears and intrinsic defects on gas leakage through these membranes. The model shows that the pore size of the porous support and its permeance critically affect the separation behavior, and reveals the parameter space where gas separation can be achieved regardless of the presence of nonselective defects, even for single-layer membranes. The results provide a framework for understanding gas transport in graphene membranes and guide the design of practical, selectively permeable graphene membranes for gas separation.

  3. Dental enamel defects in children with coeliac disease

    NARCIS (Netherlands)

    Werink, Claar D.; van Diermen, Denise E.; Aartman, Irene H. A.; Heymans, Hugo S. A.

    2007-01-01

    OBJECTIVE: The aim of this study was to investigate whether Dutch children with proven coeliac disease show specific dental enamel defects, and to asses whether children with the same gastrointestinal complaints, but proved no-coeliac disease, lack these specific dental enamel defects. MATERIALS AND

  4. Pipeline defect prediction using long range ultrasonic testing and intelligent processing

    International Nuclear Information System (INIS)

    Dino Isa; Rajprasad Rajkumar

    2009-01-01

    This paper deals with efforts to improve nondestructive testing (NDT) techniques by using artificial intelligence in detecting and predicting pipeline defects such as cracks and wall thinning. The main emphasis here will be on the prediction of corrosion type defects rather than just detection after the fact. Long range ultrasonic testing will be employed, where a ring of piezoelectric transducers are used to generate torsional guided waves. Various defects such as cracks as well as corrosion under insulation (CUI) will be simulated on a test pipe. The machine learning algorithm known as the Support Vector Machine (SVM) will be used to predict and classify transducer signals using regression and large margin classification. Regression results show that the SVM is able to accurately predict future defects based on trends of previous defect. The classification performance was also exceptional showing a facility to detect defects at different depths as well as for distinguishing closely spaced defects. (author)

  5. Administration of L-thyroxine does not improve the response of the hypothalamo-pituitary-ovarian axis to clomiphene citrate in functional hypothalamic amenorrhea.

    Science.gov (United States)

    De Leo, V; la Marca, A; Lanzetta, D; Morgante, G

    2000-05-01

    To investigate the hypothalamo-pituitary-ovarian axis in women with functional hypothalamic amenorrhea to determine whether the combination of L-thyroxine and clomiphene citrate produces a qualitative and quantitative increase in induced ovulatory cycles. Gynecological Endocrinology Research Center, University of Siena (Italy). 16 young women with functional hypothalamic amenorrhea and 15 women with normal cycles in early follicular phase. Administration of 50 microgram GnRH and 200 microgram TRH. The women with functional hypothalamic amenorrhea were divided into groups A (n=8) and B (n=8). Both groups were given 100 mg/day clomiphene for 5 days/month for 3 months. Women in group A were also given 75 mcg/day thyroid hormone (L-thyroxine) for 3 months. Comparison of basal and stimulated levels of gonadotropins, TSH and Prl, in groups A and B. Qualitative and quantitative comparison of ovulatory cycles induced in the groups. Administration of clomiphene and clomiphene plus L-thyroxine was evaluated in the second and third months of treatment and was followed by a total of 11 ovulatory cycles, six in group A and five in group B. No significant difference was found between groups. Mean progesterone concentrations measured 16 days after the last clomiphene tablet were 5.5+/-1.2 ng/ml in group A and 5.1+/-1.3 ngl/ml in group B. Administration of L-thyroxine with clomiphene does not improve the response of the hypothalamo-pituitary-ovarian axis to clomiphene citrate or the number of ovulatory cycles and does not reduce luteal phase defects.

  6. Electronic transport of bilayer graphene with asymmetry line defects

    International Nuclear Information System (INIS)

    Zhao Xiao-Ming; Chen Chan; Liang Ying; Kou Su-Peng; Wu Ya-Jie

    2016-01-01

    In this paper, we study the quantum properties of a bilayer graphene with (asymmetry) line defects. The localized states are found around the line defects. Thus, the line defects on one certain layer of the bilayer graphene can lead to an electric transport channel. By adding a bias potential along the direction of the line defects, we calculate the electric conductivity of bilayer graphene with line defects using the Landauer–Büttiker theory, and show that the channel affects the electric conductivity remarkably by comparing the results with those in a perfect bilayer graphene. This one-dimensional line electric channel has the potential to be applied in nanotechnology engineering. (paper)

  7. Benign gastric filling defect

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K K; Lee, Y H; Cho, O K; Park, C Y [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    The gastric lesion is a common source of complaints to Orientals, however, evaluation of gastric symptoms and laboratory examination offer little specific aid in the diagnosis of gastric diseases. Thus roentgenography of gastrointestinal tract is one of the most reliable method for detail diagnosis. On double contract study of stomach, gastric filling defect is mostly caused by malignant gastric cancer, however, other benign lesions can cause similar pictures which can be successfully treated by surgery. 66 cases of benign causes of gastric filling defect were analyzed at this point of view, which was verified pathologically by endoscope or surgery during recent 7 years in Yensei University College of Medicine, Severance Hospital. The characteristic radiological picture of each disease was discussed for precise radiologic diagnosis. 1. Of total 66 cases, there were 52 cases of benign gastric tumor 10 cases of gastric varices, 5 cases of gastric bezoar, 5 cases of corrosive gastritis, 3 cases of granulomatous disease and one case of gastric hematoma. 2. The most frequent causes of benign tumors were adenomatous polyp (35/42) and the next was leiomyoma (4/42). Others were one of case of carcinoid, neurofibroma and cyst. 3. Characteristic of benign adenomatous polyp were relatively small in size, smooth surface and were observed that large size, benign polyp was frequently type IV lesion with a stalk. 4. Submucosal tumors such as leiomyoma needed differential diagnosis with polypoid malignant cancer. However, the characteristic points of differentiation was well circumscribed smooth margined filling defect without definite mucosal destruction on surface. 5. Gastric varices showed multiple lobulated filling defected especially on gastric fundus that changed its size and shape by respiration and posture of patients. Same varices lesions on esophagus and history of liver disease were helpful for easier diagnosis. 6. Gastric bezoar showed well defined movable mass

  8. Benign gastric filling defect

    International Nuclear Information System (INIS)

    Oh, K. K.; Lee, Y. H.; Cho, O. K.; Park, C. Y.

    1979-01-01

    The gastric lesion is a common source of complaints to Orientals, however, evaluation of gastric symptoms and laboratory examination offer little specific aid in the diagnosis of gastric diseases. Thus roentgenography of gastrointestinal tract is one of the most reliable method for detail diagnosis. On double contract study of stomach, gastric filling defect is mostly caused by malignant gastric cancer, however, other benign lesions can cause similar pictures which can be successfully treated by surgery. 66 cases of benign causes of gastric filling defect were analyzed at this point of view, which was verified pathologically by endoscope or surgery during recent 7 years in Yensei University College of Medicine, Severance Hospital. The characteristic radiological picture of each disease was discussed for precise radiologic diagnosis. 1. Of total 66 cases, there were 52 cases of benign gastric tumor 10 cases of gastric varices, 5 cases of gastric bezoar, 5 cases of corrosive gastritis, 3 cases of granulomatous disease and one case of gastric hematoma. 2. The most frequent causes of benign tumors were adenomatous polyp (35/42) and the next was leiomyoma (4/42). Others were one of case of carcinoid, neurofibroma and cyst. 3. Characteristic of benign adenomatous polyp were relatively small in size, smooth surface and were observed that large size, benign polyp was frequently type IV lesion with a stalk. 4. Submucosal tumors such as leiomyoma needed differential diagnosis with polypoid malignant cancer. However, the characteristic points of differentiation was well circumscribed smooth margined filling defect without definite mucosal destruction on surface. 5. Gastric varices showed multiple lobulated filling defected especially on gastric fundus that changed its size and shape by respiration and posture of patients. Same varices lesions on esophagus and history of liver disease were helpful for easier diagnosis. 6. Gastric bezoar showed well defined movable mass

  9. Benign gastric filling defect

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K. K.; Lee, Y. H.; Cho, O. K.; Park, C. Y. [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    The gastric lesion is a common source of complaints to Orientals, however, evaluation of gastric symptoms and laboratory examination offer little specific aid in the diagnosis of gastric diseases. Thus roentgenography of gastrointestinal tract is one of the most reliable method for detail diagnosis. On double contract study of stomach, gastric filling defect is mostly caused by malignant gastric cancer, however, other benign lesions can cause similar pictures which can be successfully treated by surgery. 66 cases of benign causes of gastric filling defect were analyzed at this point of view, which was verified pathologically by endoscope or surgery during recent 7 years in Yensei University College of Medicine, Severance Hospital. The characteristic radiological picture of each disease was discussed for precise radiologic diagnosis. 1. Of total 66 cases, there were 52 cases of benign gastric tumor 10 cases of gastric varices, 5 cases of gastric bezoar, 5 cases of corrosive gastritis, 3 cases of granulomatous disease and one case of gastric hematoma. 2. The most frequent causes of benign tumors were adenomatous polyp (35/42) and the next was leiomyoma (4/42). Others were one of case of carcinoid, neurofibroma and cyst. 3. Characteristic of benign adenomatous polyp were relatively small in size, smooth surface and were observed that large size, benign polyp was frequently type IV lesion with a stalk. 4. Submucosal tumors such as leiomyoma needed differential diagnosis with polypoid malignant cancer. However, the characteristic points of differentiation was well circumscribed smooth margined filling defect without definite mucosal destruction on surface. 5. Gastric varices showed multiple lobulated filling defected especially on gastric fundus that changed its size and shape by respiration and posture of patients. Same varices lesions on esophagus and history of liver disease were helpful for easier diagnosis. 6. Gastric bezoar showed well defined movable mass

  10. Effects of in-cascade defect clustering on near-term defect evolution

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-08-01

    The effects of in-cascade defect clustering on the nature of the subsequent defect population are being studied using stochastic annealing simulations applied to cascades generated in molecular dynamics (MD) simulations. The results of the simulations illustrates the strong influence of the defect configuration existing in the primary damage state on subsequent defect evolution. The large differences in mobility and stability of vacancy and interstitial defects and the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades have been shown to be significant factors affecting the evolution of the defect distribution. In recent work, the effects of initial cluster sizes appear to be extremely important.

  11. Quasi-one-dimensional metals on semiconductor surfaces with defects

    International Nuclear Information System (INIS)

    Hasegawa, Shuji

    2010-01-01

    Several examples are known in which massive arrays of metal atomic chains are formed on semiconductor surfaces that show quasi-one-dimensional metallic electronic structures. In this review, Au chains on Si(557) and Si(553) surfaces, and In chains on Si(111) surfaces, are introduced and discussed with regard to the physical properties determined by experimental data from scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES) and electrical conductivity measurements. They show quasi-one-dimensional Fermi surfaces and parabolic band dispersion along the chains. All of them are known from STM and ARPES to exhibit metal-insulator transitions by cooling and charge-density-wave formation due to Peierls instability of the metallic chains. The electrical conductivity, however, reveals the metal-insulator transition only on the less-defective surfaces (Si(553)-Au and Si(111)-In), but not on a more-defective surface (Si(557)-Au). The latter shows an insulating character over the whole temperature range. Compared with the electronic structure (Fermi surfaces and band dispersions), the transport property is more sensitive to the defects. With an increase in defect density, the conductivity only along the metal atomic chains was significantly reduced, showing that atomic-scale point defects decisively interrupt the electrical transport along the atomic chains and hide the intrinsic property of transport in quasi-one-dimensional systems.

  12. Enhanced defects recombination in ion irradiated SiC

    International Nuclear Information System (INIS)

    Izzo, G.; Litrico, G.; Grassia, F.; Calcagno, L.; Foti, G.

    2010-01-01

    Point defects induced in SiC by ion irradiation show a recombination at temperatures as low as 320 K and this process is enhanced after running current density ranging from 80 to 120 A/cm 2 . Ion irradiation induces in SiC the formation of different defect levels and low-temperature annealing changes their concentration. Some levels (S 0 , S x and S 2 ) show a recombination and simultaneously a new level (S 1 ) is formed. An enhanced recombination of defects is besides observed after running current in the diode at room temperature. The carriers introduction reduces the S 2 trap concentration, while the remaining levels are not modified. The recombination is negligible up to a current density of 50 A/cm 2 and increases at higher current density. The enhanced recombination of the S 2 trap occurs at 300 K, which otherwise requires a 400 K annealing temperature. The process can be related to the electron-hole recombination at the associated defect.

  13. A defect-driven diagnostic method for machine tool spindles.

    Science.gov (United States)

    Vogl, Gregory W; Donmez, M Alkan

    2015-01-01

    Simple vibration-based metrics are, in many cases, insufficient to diagnose machine tool spindle condition. These metrics couple defect-based motion with spindle dynamics; diagnostics should be defect-driven. A new method and spindle condition estimation device (SCED) were developed to acquire data and to separate system dynamics from defect geometry. Based on this method, a spindle condition metric relying only on defect geometry is proposed. Application of the SCED on various milling and turning spindles shows that the new approach is robust for diagnosing the machine tool spindle condition.

  14. CT appearance of congenital defect resembling the Hangman's fracture

    International Nuclear Information System (INIS)

    Williams, J.P. III; Baker, D.H.; Miller, W.A.

    1999-01-01

    Purpose. Congenital defects of C2 are rare and can be confused with Hangman's fractures. CT has been advocated as aiding in differentiation between an acute fracture and congenital defects. Methods. We present a case of a 2-year-old recent accident victim, who was erroneously diagnosed by plain film and CT as having a Hangman's fracture. Results. The CT demonstrated an atypical appearance of a congenital defect. Conclusion. This case shows that the radiographic differentiation between a Hangman's fracture and a congenital defect is more difficult than previously described. (orig.)

  15. Dirichlet topological defects

    International Nuclear Information System (INIS)

    Carroll, S.M.; Trodden, M.

    1998-01-01

    We propose a class of field theories featuring solitonic solutions in which topological defects can end when they intersect other defects of equal or higher dimensionality. Such configurations may be termed open-quotes Dirichlet topological defects,close quotes in analogy with the D-branes of string theory. Our discussion focuses on defects in scalar field theories with either gauge or global symmetries, in 3+1 dimensions; the types of defects considered include walls ending on walls, strings on walls, and strings on strings. copyright 1998 The American Physical Society

  16. Dual approaches for defects condensation

    Energy Technology Data Exchange (ETDEWEB)

    Rougemont, Romulo; Grigorio, Leonardo de Souza; Wotzasek, Clovis [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Guimaraes, Marcelo Santos [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2009-07-01

    Full text. Due to the fact that the QCD running coupling constant becomes larger as we go into the low energy (or large distance) limit of the theory, a perturbative treatment of its infrared (IR) region is impossible. In particular, a formal mathematical demonstration of color confinement and a complete physical understanding of the exact mechanism that confines quarks and gluons are two missing points in our current knowledge of the IR-QCD. It was known that due to the Meissner effect of expulsion of magnetic fields in a electric condensate that usual superconductors should confine magnetic monopoles. That point led to the conjecture that the QCD vacuum could be a condensate of chromomagnetic monopoles, a dual superconductor (DSC). Such a chromomagnetic condensate should be responsible for the dual Meissner effect which is expected to lead to the confinement of color charges immersed in this medium. In dual superconductor models of color confinement, magnetic monopoles appear as topological defects in points of the space where the abelian projection becomes singular. Also, condensation of other kinds of defects such as vortices in superfluids and line-like defects in solids are responsible for a great variety of phase transitions, which once more proves the relevance of the subject. In the present work we review two methods that allow us to approach the condensation of defects: the Kleinert Mechanism (KM) and the Julia-Toulouse Mechanism (JTM). We show that in the limit where the vortex gauge field goes to zero, which we identify as the signature of the condensation of defects in the dual picture, these are two equivalent dual prescriptions for obtaining an effective theory for a phase where defects are condensed, starting from the fundamental theory defined in the normal phase where defects are diluted. (author)

  17. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome?

    Science.gov (United States)

    Abbott, D H; Barnett, D K; Bruns, C M; Dumesic, D A

    2005-01-01

    The aetiology of polycystic ovary syndrome (PCOS) remains unknown. This familial syndrome is prevalent among reproductive-aged women and its inheritance indicates a dominant regulatory gene with incomplete penetrance. However, promising candidate genes have proven unreliable as markers for the PCOS phenotype. This lack of genetic linkage may represent both extreme heterogeneity of PCOS and difficulty in establishing a universally accepted PCOS diagnosis. Nevertheless, hyperandrogenism is one of the most consistently expressed PCOS traits. Animal models that mimic fetal androgen excess may thus provide unique insight into the origins of the PCOS syndrome. Many female mammals exposed to androgen excess in utero or during early post-natal life typically show masculinized and defeminized behaviour, ovulatory dysfunction and virilized genitalia, although behavioural and ovulatory dysfunction can coexist without virilized genitalia based upon the timing of androgen excess. One animal model shows particular relevance to PCOS: the prenatally androgenized female rhesus monkey. Females exposed to androgen excess early in gestation exhibit hyperandrogenism, oligomenorrhoea and enlarged, polyfollicular ovaries, in addition to LH hypersecretion, impaired embryo development, insulin resistance accompanying abdominal obesity, impaired insulin response to glucose and hyperlipidaemia. Female monkeys exposed to androgen excess late in gestation mimic these programmed changes, except for LH and insulin secretion defects. In utero androgen excess may thus variably perturb multiple organ system programming and thereby provide a single, fetal origin for a heterogeneous adult syndrome.

  18. Point-Defect Mediated Bonding of Pt Clusters on (5,5) Carbon Nanotubes

    DEFF Research Database (Denmark)

    Wang, J. G.; Lv, Y. A.; Li, X. N.

    2009-01-01

    The adhesion of various sizes of Pt clusters on the metallic (5,5) carbon nanotubes (CNTs) with and without the point defect has been investigated by means of density functional theory (DFT). The calculations show that the binding energies of Pt-n (n = 1-6) clusters on the defect free CNTs are more......). The stronger orbital hybridization between the Pt atom and the carbon atom shows larger charge transfers on the defective CNTs than on the defect free CNTs, which allows the strong interaction between Pt clusters and CNTs. On the basis of DFT calculations, CNTs with point defect can be used as the catalyst...

  19. Dislocation defect interaction in irradiated Cu

    International Nuclear Information System (INIS)

    Schaeublin, R.; Yao, Z.; Spaetig, P.; Victoria, M.

    2005-01-01

    Pure Cu single crystals irradiated at room temperature to low doses with 590 MeV protons have been deformed in situ in a transmission electron microscope in order to identify the basic mechanisms at the origin of hardening. Cu irradiated to 10 -4 dpa shows at room temperature a yield shear stress of 13.7 MPa to be compared to the 8.8 MPa of the unirradiated Cu. Irradiation induced damage consists at 90% of 2 nm stacking fault tetrahedra, the remaining being dislocation loops and unidentified defects. In-situ deformation reveals that dislocation-defect interaction can take several forms. Usually, dislocations pinned by defects bow out under the applied stress and escape without leaving any visible defect. From the escape angles obtained at 183 K, an average critical stress of 100 MPa is deduced. In some cases, the pinning of dislocations leads to debris that are about 20 nm long, which formation could be recorded during the in situ experiment

  20. Ion-irradiation-induced defects in bundles of carbon nanotubes

    International Nuclear Information System (INIS)

    Salonen, E.; Krasheninnikov, A.V.; Nordlund, K.

    2002-01-01

    We study the structure and formation yields of atomic-scale defects produced by low-dose Ar ion irradiation in bundles of single-wall carbon nanotubes. For this, we employ empirical potential molecular dynamics and simulate ion impact events over an energy range of 100-1000 eV. We show that the most common defects produced at all energies are vacancies on nanotube walls, which at low temperatures are metastable but long-lived defects. We further calculate the spatial distribution of the defects, which proved to be highly non-uniform. We also show that ion irradiation gives rise to the formations of inter-tube covalent bonds mediated by carbon recoils and nanotube lattice distortions due to dangling bond saturation. The number of inter-tube links, as well as the overall damage, linearly grows with the energy of incident ions

  1. Defect forces, defect couples and path integrals in fracture mechanics

    International Nuclear Information System (INIS)

    Roche, R.L.

    1979-07-01

    In this work, it is shown that the path integrals can be introduced without any reference to the material behavior. The method is based on the definition in a continuous medium of a set of vectors and couples having the dimension of a force or a moment. More precisely, definitions are given of volume defect forces, surface defect forces, volume defect couples, and surface defect couples. This is done with the help of the stress working variation of a particule moving through the solid. The most important result is: the resultant of all the defect forces included in a volume V is the J integral on the surface surrounding V and the moment resultant is the L integral. So these integrals are defined without any assumption on the material constitutive equation. Another result is the material form of the virtual work principle - defect forces are acting like conventional forces in the conventional principles of virtual work. This lead to the introduction of the energy momentum tensor and of the associated couple stress. Application of this method is made to fracture mechanics in studying the defect forces distribution around a crack [fr

  2. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  3. Fracture of vacancy-defected carbon nanotubes and their embedded nanocomposites

    International Nuclear Information System (INIS)

    Xiao Shaoping; Hou Wenyi

    2006-01-01

    In this paper, we investigate effects of vacancy defects on fracture of carbon nanotubes and carbon nanotube/aluminum composites. Our studies show that even a one-atom vacancy defect can dramatically reduce the failure stresses and strains of carbon nanotubes. Consequently, nanocomposites, in which vacancy-defected nanotubes are embedded, exhibit different characteristics from those in which pristine nanotubes are embedded. It has been found that defected nanotubes with a small volume fraction cannot reinforce but instead weaken nanocomposite materials. Although a large volume fraction of defected nanotubes can slightly increase the failure stresses of nanocomposites, the failure strains of nanocomposites are always decreased

  4. Left-right correlation in coupled F-center defects.

    Science.gov (United States)

    Janesko, Benjamin G

    2016-08-07

    This work explores how left-right correlation, a textbook problem in electronic structure theory, manifests in a textbook example of electrons trapped in crystal defects. I show that adjacent F-center defects in lithium fluoride display symptoms of "strong" left-right correlation, symptoms similar to those seen in stretched H2. Simulations of UV/visible absorption spectra qualitatively fail to reproduce experiment unless left-right correlation is taken into account. This is of interest to both the electronic structure theory and crystal-defect communities. Theorists have a new well-behaved system to test their methods. Crystal-defect groups are cautioned that the approximations that successfully model single F-centers may fail for adjacent F-centers.

  5. Left-right correlation in coupled F-center defects

    International Nuclear Information System (INIS)

    Janesko, Benjamin G.

    2016-01-01

    This work explores how left-right correlation, a textbook problem in electronic structure theory, manifests in a textbook example of electrons trapped in crystal defects. I show that adjacent F-center defects in lithium fluoride display symptoms of “strong” left-right correlation, symptoms similar to those seen in stretched H 2 . Simulations of UV/visible absorption spectra qualitatively fail to reproduce experiment unless left-right correlation is taken into account. This is of interest to both the electronic structure theory and crystal-defect communities. Theorists have a new well-behaved system to test their methods. Crystal-defect groups are cautioned that the approximations that successfully model single F-centers may fail for adjacent F-centers.

  6. Electron transport in ethanol & methanol absorbed defected graphene

    Science.gov (United States)

    Dandeliya, Sushmita; Srivastava, Anurag

    2018-05-01

    In the present paper, the sensitivity of ethanol and methanol molecules on surface of single vacancy defected graphene has been investigated using density functional theory (DFT). The changes in structural and electronic properties before and after adsorption of ethanol and methanol were analyzed and the obtained results show high adsorption energy and charge transfer. High adsorption happens at the active site with monovacancy defect on graphene surface. Present work confirms that the defected graphene increases the surface reactivity towards ethanol and methanol molecules. The presence of molecules near the active site affects the electronic and transport properties of defected graphene which makes it a promising choice for designing methanol and ethanol sensor.

  7. Detection of paint polishing defects

    Science.gov (United States)

    Rebeggiani, S.; Wagner, M.; Mazal, J.; Rosén, B.-G.; Dahlén, M.

    2018-06-01

    Surface finish plays a major role on perceived product quality, and is the first thing a potential buyer sees. Today end-of-line repairs of the body of cars and trucks are inevitably to secure required surface quality. Defects that occur in the paint shop, like dust particles, are eliminated by manual sanding/polishing which lead to other types of defects when the last polishing step is not performed correctly or not fully completed. One of those defects is known as ‘polishing roses’ or holograms, which are incredibly hard to detect in artificial light but are clearly visible in sunlight. This paper will present the first tests with a measurement set-up newly developed to measure and analyse polishing roses. The results showed good correlations to human visual evaluations where repaired panels were estimated based on the defects’ intensity, severity and viewing angle.

  8. Dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Han, Zongying [College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Union Research Center of Fuel Cell, School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chen, Haipeng [College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Zhou, Shixue, E-mail: zhoushixue66@163.com [College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590 (China)

    2017-02-01

    Highlights: • Clarify the effect of vacancy defect on H{sub 2} dissociation on Mg (0001) surface. • Demonstrate the effects of vacancy defect on H atom diffusion. • Reveal the minimum energy diffusion path of H atom from magnesium surface into bulk. - Abstract: First-principles calculations with the density functional theory (DFT) have been carried out to study dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces. Results show that energy barriers of 1.42 eV and 1.28 eV require to be overcome for H{sub 2} dissociation on defect-free and vacancy defective Mg (0001) surfaces respectively, indicating that reactivity of Mg (0001) surface is moderately increased due to vacancy defect. Besides, the existence of vacancy defect changes the preferential H atom diffusion entrance to the subsurface and reduces the diffusion energy barrier. An interesting remark is that the minimum energy diffusion path of H atom from magnesium surface into bulk is a spiral channel formed by staggered octahedral and tetrahedral interstitials. The diffusion barriers computed for H atom penetration from the surface into inner-layers are all less than 0.70 eV, which is much smaller than the activation energy for H{sub 2} dissociation on the Mg (0001) surface. This suggests that H{sub 2} dissociation is more likely than H diffusion to be rate-limiting step for magnesium hydrogenation.

  9. Is bone transplantation the gold standard for repair of alveolar bone defects?

    Directory of Open Access Journals (Sweden)

    Cassio Eduardo Raposo-Amaral

    2014-01-01

    Full Text Available New strategies to fulfill craniofacial bone defects have gained attention in recent years due to the morbidity of autologous bone graft harvesting. We aimed to evaluate the in vivo efficacy of bone tissue engineering strategy using mesenchymal stem cells associated with two matrices (bovine bone mineral and α-tricalcium phosphate, compared to an autologous bone transfer. A total of 28 adult, male, non-immunosuppressed Wistar rats underwent a critical-sized osseous defect of 5 mm diameter in the alveolar region. Animals were divided into five groups. Group 1 (n = 7 defects were repaired with autogenous bone grafts; Group 2 (n = 5 defects were repaired with bovine bone mineral free of cells; Group 3 (n = 5 defects were repaired with bovine bone mineral loaded with mesenchymal stem cells; Group 4 (n = 5 defects were repaired with α-tricalcium phosphate free of cells; and Group 5 (n = 6 defects were repaired with α-tricalcium phosphate loaded with mesenchymal stem cells. Groups 2–5 were compared to Group 1, the reference group. Healing response was evaluated by histomorphometry and computerized tomography. Histomorphometrically, Group 1 showed 60.27% ± 16.13% of bone in the defect. Groups 2 and 3 showed 23.02% ± 8.6% (p = 0.01 and 38.35% ± 19.59% (p = 0.06 of bone in the defect, respectively. Groups 4 and 5 showed 51.48% ± 11.7% (p = 0.30 and 61.80% ± 2.14% (p = 0.88 of bone in the defect, respectively. Animals whose bone defects were repaired with α-tricalcium phosphate and mesenchymal stem cells presented the highest bone volume filling the defects; both were not statistically different from autogenous bone.

  10. Developmental programming: Prenatal BPA treatment disrupts timing of LH surge and ovarian follicular wave dynamics in adult sheep

    International Nuclear Information System (INIS)

    Veiga-Lopez, A.; Beckett, E.M.; Abi Salloum, B.; Ye, W.; Padmanabhan, V.

    2014-01-01

    Developmental exposure to BPA adversely affects reproductive function. In sheep, prenatal BPA treatment induces reproductive neuroendocrine defects, manifested as LH excess and dampened LH surge and perturbs early ovarian gene expression. In this study we hypothesized that prenatal BPA treatment will also disrupt ovarian follicular dynamics. Pregnant sheep were treated from days 30 to 90 of gestation with 3 different BPA doses (0.05, 0.5, or 5 mg/kg BW/day). All female offspring were estrus synchronized and transrectal ultrasonography was performed daily for 22 days to monitor ovarian follicular and corpora lutea dynamics. Blood samples were collected to assess preovulatory hormonal changes and luteal progesterone dynamics. Statistical analysis revealed that the time interval between the estradiol rise and the preovulatory LH surge was shortened in the BPA-treated females. None of the three BPA doses had an effect on corpora lutea, progestogenic cycles, and mean number or duration of ovulatory and non-ovulatory follicles. However, differences in follicular count trajectories were evident in all three follicular size classes (2–3 mm, 4–5 mm, and ≥ 6 mm) of prenatal BPA-treated animals compared to controls. Number of follicular waves tended also to be more variable in the prenatal BPA-treated groups ranging from 2 to 5 follicular waves per cycle, while this was restricted to 3 to 4 waves in control females. These changes in ovarian follicular dynamics coupled with defects in time interval between estradiol rise and preovulatory LH release are likely to lead to subfertility in prenatal BPA-treated females. - Highlights: • Prenatal BPA shortens interval between estradiol rise and preovulatory LH surge. • Prenatal BPA affects follicular count trajectory and follicular wave occurrence. • Prenatal BPA does not affect ovulatory rate and progesterone dynamics

  11. Developmental programming: Prenatal BPA treatment disrupts timing of LH surge and ovarian follicular wave dynamics in adult sheep

    Energy Technology Data Exchange (ETDEWEB)

    Veiga-Lopez, A.; Beckett, E.M.; Abi Salloum, B. [Department of Pediatrics, University of Michigan, Ann Arbor, MI (United States); Ye, W. [Department of Biostatistics, University of Michigan, Ann Arbor, MI (United States); Padmanabhan, V., E-mail: vasantha@umich.edu [Department of Pediatrics, University of Michigan, Ann Arbor, MI (United States); The Reproductive Sciences Program, University of Michigan, Ann Arbor, MI (United States)

    2014-09-01

    Developmental exposure to BPA adversely affects reproductive function. In sheep, prenatal BPA treatment induces reproductive neuroendocrine defects, manifested as LH excess and dampened LH surge and perturbs early ovarian gene expression. In this study we hypothesized that prenatal BPA treatment will also disrupt ovarian follicular dynamics. Pregnant sheep were treated from days 30 to 90 of gestation with 3 different BPA doses (0.05, 0.5, or 5 mg/kg BW/day). All female offspring were estrus synchronized and transrectal ultrasonography was performed daily for 22 days to monitor ovarian follicular and corpora lutea dynamics. Blood samples were collected to assess preovulatory hormonal changes and luteal progesterone dynamics. Statistical analysis revealed that the time interval between the estradiol rise and the preovulatory LH surge was shortened in the BPA-treated females. None of the three BPA doses had an effect on corpora lutea, progestogenic cycles, and mean number or duration of ovulatory and non-ovulatory follicles. However, differences in follicular count trajectories were evident in all three follicular size classes (2–3 mm, 4–5 mm, and ≥ 6 mm) of prenatal BPA-treated animals compared to controls. Number of follicular waves tended also to be more variable in the prenatal BPA-treated groups ranging from 2 to 5 follicular waves per cycle, while this was restricted to 3 to 4 waves in control females. These changes in ovarian follicular dynamics coupled with defects in time interval between estradiol rise and preovulatory LH release are likely to lead to subfertility in prenatal BPA-treated females. - Highlights: • Prenatal BPA shortens interval between estradiol rise and preovulatory LH surge. • Prenatal BPA affects follicular count trajectory and follicular wave occurrence. • Prenatal BPA does not affect ovulatory rate and progesterone dynamics.

  12. The estimation of defects influence on lifetime of NPP equipment components

    International Nuclear Information System (INIS)

    Ovchinikov, A.V.; Vasilchenko, G.S.; Rivkin, E.Y.

    1998-01-01

    Estimating the influence of defects on NPP components lifetime requires several typical operations: testing the objects without destroying the means of control, scheme of detected defects and performing calculations. The basic methods for revealing defects are ultrasonic, radiographic and visual control. A technique was developed for lifetime calculation of reactor equipment with defects using minimum information about defects and properties of material. The experience obtained during several years has shown good results. Experimental data of tests concerning destruction of construction elements showed good reliability

  13. Dark matter from cosmic defects on galactic scales?

    International Nuclear Information System (INIS)

    Guerreiro, N.; Carvalho, J. P. M. de; Avelino, P. P.; Martins, C. J. A. P.

    2008-01-01

    We discuss the possible dynamical role of extended cosmic defects on galactic scales, specifically focusing on the possibility that they may provide the dark matter suggested by the classical problem of galactic rotation curves. We emphasize that the more standard defects (such as Goto-Nambu strings) are unsuitable for this task but show that more general models (such as transonic wiggly strings) could in principle have a better chance. In any case, we show that observational data severely restricts any such scenarios.

  14. Study of irradiation induced defects in silicon

    International Nuclear Information System (INIS)

    Pal, Gayatri; Sebastian, K.C.; Somayajulu, D.R.S.; Chintalapudi, S.N.

    2000-01-01

    Pure high resistivity (6000 ohm-cm) silicon wafers were recoil implanted with 1.8 MeV 111 In ions. As-irradiated wafers showed a 13 MHz quadrupole interaction frequency, which was not observed earlier. The annealing behaviour of these defects in the implanted wafers was studied between room temperature and 1073 K. At different annealing temperatures two more interaction frequencies corresponding to defect complexes D2 and D3 are observed. Even though the experimental conditions were different, these are identical to the earlier reported ones. Based on an empirical point charge model calculation, an attempt is made to identify the configuration of these defect complexes. (author)

  15. Reality check on girth weld defect acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    Brust, Bud; Kalyanam, Suresh; Shim, Do-Jun; Wilkowski, Gery [Engineering Mechanics Corporation of Columbus, Columbus, OH, (United States)

    2010-07-01

    Girth weld defect tolerance criteria for pipeline construction has evolved with time. Recently, ERPG recommended a new Tier 2 girth weld defect acceptance criterion. This paper described the new development on girth weld defect acceptance criteria. The inherent conservatisms of alternative girth weld defect acceptance criteria from the 2007 API 1104 Appendix A, CSA Z662 Appendix K, are compared to those from the proposed EPRG Tier 2 criteria. It is found that the API and CSA codes have the same empirical limit-load criteria. As well, there are conservatisms in the proposed EPRG Tier 2. The results showed that there are various reasons why large amounts of conservatism in the allowable flaw lengths in the CSA Appendix K,2007 API 1104 Appendix A, and proposed EPRG Tier 2 girth weld defect criterion exist. Small conservatisms on failure stress can result in large conservatisms in flaw size.

  16. Elastic dipoles of point defects from atomistic simulations

    Science.gov (United States)

    Varvenne, Céline; Clouet, Emmanuel

    2017-12-01

    The interaction of point defects with an external stress field or with other structural defects is usually well described within continuum elasticity by the elastic dipole approximation. Extraction of the elastic dipoles from atomistic simulations is therefore a fundamental step to connect an atomistic description of the defect with continuum models. This can be done either by a fitting of the point-defect displacement field, by a summation of the Kanzaki forces, or by a linking equation to the residual stress. We perform here a detailed comparison of these different available methods to extract elastic dipoles, and show that they all lead to the same values when the supercell of the atomistic simulations is large enough and when the anharmonic region around the point defect is correctly handled. But, for small simulation cells compatible with ab initio calculations, only the definition through the residual stress appears tractable. The approach is illustrated by considering various point defects (vacancy, self-interstitial, and hydrogen solute atom) in zirconium, using both empirical potentials and ab initio calculations.

  17. On holographic defect entropy

    International Nuclear Information System (INIS)

    Estes, John; Jensen, Kristan; O’Bannon, Andy; Tsatis, Efstratios; Wrase, Timm

    2014-01-01

    We study a number of (3+1)- and (2+1)-dimensional defect and boundary conformal field theories holographically dual to supergravity theories. In all cases the defects or boundaries are planar, and the defects are codimension-one. Using holography, we compute the entanglement entropy of a (hemi-)spherical region centered on the defect (boundary). We define defect and boundary entropies from the entanglement entropy by an appropriate background subtraction. For some (3+1)-dimensional theories we find evidence that the defect/boundary entropy changes monotonically under certain renormalization group flows triggered by operators localized at the defect or boundary. This provides evidence that the g-theorem of (1+1)-dimensional field theories generalizes to higher dimensions

  18. PAT challenges routine techniques on defect spectroscopy in material science

    International Nuclear Information System (INIS)

    Badawi, E.A.

    2005-01-01

    Atomic or Point Defects are the most simple defects in solids. Due to the small size their direct observation by the routine techniques is not possible. A single type of defects (thermal defect) was observed in the quenching process. Using the Arrhenius method and threshold method we recommended the accurate both method of treatments. The calculated values for formation enthalpies and self-diffusion using positron lifetime and Doppler broadening in a good agreement in (A356.0) and (A413.1). Specifically it is show how PAT detect defect concentrations, (formation- migration) enthalpies and grain size for the material under investigation. Most of the these data are reported

  19. Intrinsic defects in silicon carbide for spin-based quantum applications

    International Nuclear Information System (INIS)

    Vladimir Dyakonov

    2014-01-01

    We present a set of experiments demonstrating a high potential of atomic-scale defects in SiC for various spin-based applications, including quantum information processing and photonics. In particular, we show that defect spn qubits in SiC can be addressed, manipulated and selectively read out by means of the double radio-optical resonance. The situation reminds the one in the atomic spectroscopy, where the atoms have their individual extremely sharp optical and RF resonance fingerprints. We also generate inverse population in some intrinsic defects, resulting in stimulated microwave emission at RT. This is a crucial step towards implementation of highly-integrable solid-state masers and extraordinarily sensitive microwave detectors. As an application example, we incorporate intrinsic defects in LED structures and show that they can be electrically driven at room temperature. (author)

  20. Atrial septal defect in a Korean wild raccoon dog.

    Science.gov (United States)

    Yim, Soomi; Choi, Sooyoung; Kim, Jongtaek; Chung, Jin-Young; Park, Inchul

    2017-10-07

    An approximately two-year-old, male 6.1 kg body weight, Korean wild raccoon dog (Nyctereutes procyonoides koreensis) was captured by the wildlife medical rescue center of Kangwon National University. Upon physical examination, the heart rate was 87 beats per min and there were no clinical signs. The hematological, and blood biochemical profiles revealed no remarkable findings; however, thoracic radiographs showed cardiac enlargement, especially in the right atrium. On electrocardiogram, sinus node dysfunction and bradyarrhythmia were revealed. Echocardiography showed a left-to-right shunting atrial septal defect. Based on these findings, this Korean wild raccoon dog was diagnosed with atrial septal defect. This is the rare case report of atrial septal defect in wildlife.

  1. Observation of defects evolution in electronic materials

    Science.gov (United States)

    Jang, Jung Hun

    Advanced characterization techniques have been used to obtain a better understanding of the microstructure of electronic materials. The structural evolution, especially defects, has been investigated during the film growth and post-growth processes. Obtaining the relation between the defect evolution and growth/post-growth parameters is very important to obtain highly crystalline films. In this work, the growth and post-growth related defects in GaN, ZnO, strained-Si/SiGe films have been studied using several advanced characterization techniques. First of all, the growth of related defects in GaN and p-type ZnO films have been studied. The effect of growth parameters, such as growth temperature, gas flow rate, dopants used during the deposition, on the crystalline quality of the GaN and ZnO layers was investigated by high resolution X-ray diffraction (HRXRD) and transmission electron microscopy (TEM). In GaN films, it was found that the edge and mixed type threading dislocations were the dominant defects so that the only relevant figure of merit (FOM) for the crystalline quality should be the FWHM value of o-RC of the surface perpendicular plane which could be determined by a grazing incidence x-ray diffraction (GIXD) technique as shown in this work. The understanding of the relationship between the defect evolution and growth parameters allowed for the growth of high crystalline GaN films. For ZnO films, it was found that the degree of texture and crystalline quality of P-doped ZnO films decreased with increasing the phosphorus atomic percent. In addition, the result from the x-ray diffraction line profile analysis showed that the 0.5 at % P-doped ZnO film showed much higher microstrain than the 1.0 at % P-doped ZnO film, which indicated that the phosphorus atoms were segregated with increasing P atomic percentage. Finally, post-growth related defects in strained-Si/SiGe films were investigated. Postgrowth processes used in this work included high temperature N2

  2. Inspection of surface defects for cladding tube with laser

    International Nuclear Information System (INIS)

    Senoo, Shigeo; Igarashi, Miyuki; Satoh, Masakazu; Miura, Makoto

    1978-01-01

    This paper presents the results of experiment on mechanizing the visual inspection of surface defects of cladding tubes and improving the reliability of surface defect inspection. Laser spot inspection method was adopted for this purpose. Since laser speckle pattern includes many informations about surface aspects, the method can be utilized as an effective means for detection or classification of the surface defects. Laser beam is focussed on cladding tube surfaces, and the reflected laser beam forms typical stellar speckle patterns on a screen. Sample cladding tubes are driven in longitudinal direction, and a photo-detector is placed at a position where secondary reflection will fall on the detector. Reflected laser beam from defect-free surfaces shows uniform distribution on the detector. When the incident focussed laser beam is directed to defects, the intensity of the reflected light is reduced. In the second method, laser beam is scanned by a rotating cube mirror. As the results of experiment, the typical patterns caused by defects were observed. It is clear that reflection patterns change with the kinds of defects. The sensitivity of defect detection decreases with the increase in laser beam diameter. Surface defect detection by intensity change was also tested. (Kato, T.)

  3. Anosognosia for obvious visual field defects in stroke patients.

    Science.gov (United States)

    Baier, Bernhard; Geber, Christian; Müller-Forell, Wiebke; Müller, Notger; Dieterich, Marianne; Karnath, Hans-Otto

    2015-01-01

    Patients with anosognosia for visual field defect (AVFD) fail to recognize consciously their visual field defect. There is still unclarity whether specific neural correlates are associated with AVFD. We studied AVFD in 54 patients with acute stroke and a visual field defect. Nineteen percent of this unselected sample showed AVFD. By using modern voxelwise lesion-behaviour mapping techniques we found an association between AVFD and parts of the lingual gyrus, the cuneus as well as the posterior cingulate and corpus callosum. Damage to these regions appears to induce unawareness of visual field defects and thus may play a significant role for conscious visual perception.

  4. Defects in semiconductors

    CERN Document Server

    Romano, Lucia; Jagadish, Chennupati

    2015-01-01

    This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoret

  5. Phase-enhanced defect sensitivity for EUV mask inspection

    Science.gov (United States)

    Wang, Yow-Gwo; Miyakawa, Ryan; Chao, Weilun; Goldberg, Kenneth; Neureuther, Andy; Naulleau, Patrick

    2014-10-01

    In this paper, we present a complete study on mask blank and patterned mask inspection utilizing the Zernike phase contrast method. The Zernike phase contrast method provides in-focus inspection ability to study phase defects with enhanced defect sensitivity. However, the 90 degree phase shift in the pupil will significantly reduce the amplitude defect signal at focus. In order to detect both types of defects with a single scan, an optimized phase shift instead of 90 degree on the pupil plane is proposed to achieve an acceptable trade-off on their signal strengths. We can get a 70% of its maximum signal strength at focus for both amplitude and phase defects with a 47 degree phase shift. For SNR, the tradeoff between speckle noise and signal strength has to be considered. The SNR of phase and amplitude defects at focus can both reach 11 with 13 degree phase shift and 50% apodization. Moreover, the simulation results on patterned mask inspection of partially hidden phase defects with die-to-database inspection approach on the blank inspection tool show that the improvement of the Zernike phase method is more limited. A 40% enhancement of peak signal strength can be achieved with the Zernike phase contrast method when the defect is centered in the space, while the enhancement drops to less than 10% when it is beneath the line.

  6. Human chorionic ganodotropin binding sites in the human endometrium

    International Nuclear Information System (INIS)

    Bhattacharya, S.; Banerjee, J.; Sen, S.; Manna, P.R.

    1993-01-01

    The existence of high-affinity and low-capacity specific binding sites for luteinizing hormone/human chorionic gonadotropin (hCG) has been reported in porcine, rabbit and rat uteri. The authors have identified the hCG binding sites in the human endometrium collected from 35-42-year-old ovulatory and anovulatory women. The binding characteristics of hCG to endometrial tissue preparations from ovulatory and anovulatory women showed saturability with high affinity and low capacity. Scatchard plot analysis showed the dissociation constant of specific binding sites in the ovulatory women to be 3.5x10 -10 mol/l and in anovulatory women to be 3.1x10 -10 mol/l. The maximum binding capacity varied considerably between ovulatory and anovulatory endometrium. Among the divalent metal ions tested Zn 2+ effected a remarkable increase in [ 125 I]hCG binding to the endometrium, whereas Mn 2+ showed a marginal increase and other metal ions did not have any effect. Data obtained with human endometrium indicate an influence of the functional state of the ovary on [ 125 I]hCG binding to endometrium. 14 refs., 3 figs

  7. Induced Magnetic Moment in Defected Single-Walled Carbon Nanotubes

    International Nuclear Information System (INIS)

    Liu Hong

    2006-01-01

    The existence of a large induced magnetic moment in defect single-walled carbon nanotube(SWNT) is predicted using the Green's function method. Specific to this magnetic moment of defect SWNT is its magnitude which is several orders of magnitude larger than that of perfect SWNT. The induced magnetic moment also shows certain remarkable features. Therefore, we suggest that two pair-defect orientations in SWNT can be distinguished in experiment through the direction of the induced magnetic moment at some Specific energy points

  8. Inflaton fluctuations in the presence of cosmological defects

    Science.gov (United States)

    Cho, Hing-Tong; Ng, Kin-Wang; Wang, I.-Chin

    2014-11-01

    We study quantum fluctuations of a free massless scalar field during inflation in the presence of a point, line, or plane defect such as a black hole, cosmic string, or domain wall, using a perturbative expansion in powers of small defect parameters. We provide results for the scalar two-point correlation functions that show explicitly a small violation of translational invariance during inflation.

  9. Blood flow patterns underlie developmental heart defects.

    Science.gov (United States)

    Midgett, Madeline; Thornburg, Kent; Rugonyi, Sandra

    2017-03-01

    Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10-35% led predominantly to ventricular septal defects, whereas constricting by 35-60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment. NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel "dose-response" type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. Copyright © 2017 the American Physiological Society.

  10. High resolution deep level transient spectroscopy and process-induced defects in silicon

    International Nuclear Information System (INIS)

    Evans-Freeman, J.H.; Emiroglu, D.; Vernon-Parry, K.D.

    2004-01-01

    High resolution, or Laplace, deep level transient spectroscopy (LDLTS) enables the identification of very closely spaced energetic levels in a semiconductor bandgap. DLTS may resolve peaks with a separation of tens of electron volts, but LDLTS can resolve defect energy separations as low as a few MeV. In this paper, we present results from LDLTS applied to ion implantation-induced defects in silicon, with particular emphasis on characterisation of end-of-range interstitial type defects. Silicon was implanted with a variety of ions from mass 28 to 166. A combination of LDLTS and direct capture cross-section measurements was employed to show that electrically active small extended defects were present in the as-implanted samples. Larger dislocations were then generated in Si by oxygenation to act as a control sample. These stacking faults had typical lengths of microns, and their electrical activity was subsequently characterised by LDLTS. This was to establish the sensitivity of LDLTS to defects whose carrier capture is characterised by a non-exponential filling process and an evolving band structure as carrier capture proceeds. The LDLTS spectra show several components in capacitance transients originating from both the end-of-range defects, and the stacking faults, and also clearly show that the carrier emission rates reduce as these extended defects fill with carriers. The end-of-range defects and the stacking faults are shown to have the same electrical behaviour

  11. Fibrous metaphyseal defects

    International Nuclear Information System (INIS)

    Ritschl, P.; Hajek, P.C.; Pechmann, U.

    1989-01-01

    Sixteen patients with fibrous metaphyseal defects were examined with both plain radiography and magnetic resonance (MR) imaging. Depending on the age of the fibrous metaphyseal defects, characteristic radiomorphologic changes were found which correlated well with MR images. Following intravenous Gadolinium-DTPA injection, fibrous metaphyseal defects invariably exhibited a hyperintense border and signal enhancement. (orig./GDG)

  12. Vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association with Mayer-Rokitansky-Küster-Hauser syndrome in co-occurrence: two case reports and a review of the literature.

    Science.gov (United States)

    Bjørsum-Meyer, Thomas; Herlin, Morten; Qvist, Niels; Petersen, Michael B

    2016-12-21

    The vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome are rare conditions. We aimed to present two cases with the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser co-occurrence from our local surgical center and through a systematic literature search detect published cases. Furthermore, we aimed to collect existing knowledge in the embryopathogenesis and genetics in order to discuss a possible link between the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome. Our first case was a white girl delivered by caesarean section at 37 weeks of gestation; our second case was a white girl born at a gestational age of 40 weeks. A co-occurrence of vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome was diagnosed in both cases. We performed a systematic literature search in PubMed ((VACTERL) OR (VATER)) AND ((MRKH) OR (Mayer-Rokitansky-Küster-Hauser) OR (mullerian agenesis) OR (mullerian aplasia) OR (MURCS)) without limitations. A similar search was performed in Embase and the Cochrane library. We added two cases from our local center. All cases (n = 9) presented with anal atresia and renal defect. Vertebral defects were present in eight patients. Rectovestibular fistula was confirmed in seven patients. Along with the uterovaginal agenesis, fallopian tube aplasia appeared in five of nine cases and in two cases ovarian involvement also existed. The co-occurrence of the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal

  13. ILT based defect simulation of inspection images accurately predicts mask defect printability on wafer

    Science.gov (United States)

    Deep, Prakash; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2016-05-01

    At advanced technology nodes mask complexity has been increased because of large-scale use of resolution enhancement technologies (RET) which includes Optical Proximity Correction (OPC), Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO). The number of defects detected during inspection of such mask increased drastically and differentiation of critical and non-critical defects are more challenging, complex and time consuming. Because of significant defectivity of EUVL masks and non-availability of actinic inspection, it is important and also challenging to predict the criticality of defects for printability on wafer. This is one of the significant barriers for the adoption of EUVL for semiconductor manufacturing. Techniques to decide criticality of defects from images captured using non actinic inspection images is desired till actinic inspection is not available. High resolution inspection of photomask images detects many defects which are used for process and mask qualification. Repairing all defects is not practical and probably not required, however it's imperative to know which defects are severe enough to impact wafer before repair. Additionally, wafer printability check is always desired after repairing a defect. AIMSTM review is the industry standard for this, however doing AIMSTM review for all defects is expensive and very time consuming. Fast, accurate and an economical mechanism is desired which can predict defect printability on wafer accurately and quickly from images captured using high resolution inspection machine. Predicting defect printability from such images is challenging due to the fact that the high resolution images do not correlate with actual mask contours. The challenge is increased due to use of different optical condition during inspection other than actual scanner condition, and defects found in such images do not have correlation with actual impact on wafer. Our automated defect simulation tool predicts

  14. Light-induced defects in hybrid lead halide perovskite

    Science.gov (United States)

    Sharia, Onise; Schneider, William

    One of the main challenges facing organohalide perovskites for solar application is stability. Solar cells must last decades to be economically viable alternatives to traditional energy sources. While some causes of instability can be avoided through engineering, light-induced defects can be fundamentally limiting factor for practical application of the material. Light creates large numbers of electron and hole pairs that can contribute to degradation processes. Using ab initio theoretical methods, we systematically explore first steps of light induced defect formation in methyl ammonium lead iodide, MAPbI3. In particular, we study charged and neutral Frenkel pair formation involving Pb and I atoms. We find that most of the defects, except negatively charged Pb Frenkel pairs, are reversible, and thus most do not lead to degradation. Negative Pb defects create a mid-gap state and localize the conduction band electron. A minimum energy path study shows that, once the first defect is created, Pb atoms migrate relatively fast. The defects have two detrimental effects on the material. First, they create charge traps below the conduction band. Second, they can lead to degradation of the material by forming Pb clusters.

  15. Defect structure in proton-irradiated copper and nickel

    International Nuclear Information System (INIS)

    Tsukuda, Noboru; Ehrhart, P.; Jaeger, W.; Schilling, W.; Dworschak, F.; Gadalla, A.A.

    1987-01-01

    This single crystals of copper or nickel with a thickness of about 10 μm are irradiated with 3 MeV protons at room temperature and the structures of resultant defects are investigated based on measurements of the effects of irradiation on the electrical resistivity, length, lattice constants, x-ray diffraction line profile and electron microscopic observations. The measurements show that the electrical resistivity increases with irradiation dose, while leveling off at high dose due to overlapping of irradiation cascades. The lattice constants decreases, indicating that many vacancies still remain while most of the interstitial stoms are eliminated, absorbed or consumed for dislocation loop formation. The x-ray line profile undergoes broadening, which is the result of dislocation loops, dislocation networks and SFT's introduced by the proton irradiation. Various defects have different effects though they cannot be identified separately from the profile alone. A satellite peak appears at a low angle, which seems to arise from periodic defect structures that are found in electron microscopic observations. In both copper and nickel, such periodic defect structures are seen over a wide range from high to low dose. Defect-free and defect-rich domains (defect walls), 0.5 to several μm in size, are alingned parallel to the {001} plane at intervals of 60 nm. The defect walls, which consist of dislocations, dislocation loops and SFT's, is 20 - 40 nm thick. (Nogami, K.)

  16. SEM analysis of defects and wear on Ni-Ti rotary instruments.

    Science.gov (United States)

    Arantes, Werington Borges; da Silva, Celso Monteiro; Lage-Marques, José Luiz; Habitante, Sandramarcia; da Rosa, Luiz Carlos Laureano; de Medeiros, João Marcelo Ferreira

    2014-01-01

    SEM analysis of endodontic instruments from a Ni-Ti rotary system was assessed, before and after using them, considering their defects and deformations. Twenty Twisted File®, BioRąCe®, Mtwo®, and EndoWave® instruments were micrographed at 190× magnification. The files were washed and micrographed again to view alterations as to the presence or absence of irregular edges, grooves, microcavities, and scraping. Simulated root canal preparations were performed using these instruments. The instruments were cleaned and received a microscopic analysis after being used five times. After analysis tests were tested using Fisher's exact test and Kappa to evaluate the concordance among examiners. There was a statistically significant difference with respect to deformations between Twisted File® and other instruments (p  0.05). All Twisted File® instruments showed the same defects; however damage were lower than those found in BioRace® and Mtwo®. The Endowave® did not show the same defects. In accordance with the data we conclude that the presence of defects was higher in Twisted File® instruments as the instruments and BioRace® Mtwo® brand, the defect rate was smaller and Endowave® instruments had no defects. Regarding the presence of wear after five uses among the groups all instruments showed changes in their cutting blades. © 2014 Wiley Periodicals, Inc.

  17. Chemotaxis-defective mutants of the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Dusenbery, D B; Sheridan, R E; Russell, R L

    1975-06-01

    The technique of countercurrent separation has been used to isolate 17 independent chemotaxis-defective mutants of the nematode Caenorhabditis elegans. The mutants, selected to be relatively insensitive to the normally attractive salt NaCl, show varying degrees of residual sensitivity; some are actually weakly repelled by NaCl. The mutants are due to single gene defects, are autosomal and recessive, and identify at least five complementation groups.

  18. Long bone reconstruction using multilevel lengthening of bone defect fragments.

    Science.gov (United States)

    Borzunov, Dmitry Y

    2012-08-01

    This paper presents experimental findings to substantiate the use of multilevel bone fragment lengthening for managing extensive long bone defects caused by diverse aetiologies and shows its clinical introduction which could provide a solution for the problem of reducing the total treatment time. Both experimental and clinical multilevel lengthening to bridge bone defect gaps was performed with the use of the Ilizarov method only. The experimental findings and clinical outcomes showed that multilevel defect fragment lengthening could provide sufficient bone formation and reduction of the total osteosynthesis time in one stage as compared to traditional Ilizarov bone transport. The method of multilevel regeneration enabled management of critical-size defects that measured on average 13.5 ± 0.7 cm in 78 patients. The experimental and clinical results proved the efficiency of the Ilizarov non-free multilevel bone plasty that can be recommended for practical use.

  19. Vacancy-type defects induced by grinding of Si wafers studied by monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Yoshihara, Nakaaki [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Mizushima, Yoriko [Devices and Materials Labs Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Kim, Youngsuk [ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Disco Corporation, Ota, Tokyo 143-8580 (Japan); Nakamura, Tomoji [Devices and Materials Labs Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); Ohba, Takayuki [ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Oshima, Nagayasu; Suzuki, Ryoichi [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2014-10-07

    Vacancy-type defects introduced by the grinding of Czochralski-grown Si wafers were studied using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and the lifetime spectra of positrons showed that vacancy-type defects were introduced in the surface region (<98 nm), and the major defect species were identified as (i) relatively small vacancies incorporated in dislocations and (ii) large vacancy clusters. Annealing experiments showed that the defect concentration decreased with increasing annealing temperature in the range between 100 and 500°C. After 600–700°C annealing, the defect-rich region expanded up to about 170 nm, which was attributed to rearrangements of dislocation networks, and a resultant emission of point defects toward the inside of the sample. Above 800°C, the stability limit of those vacancies was reached and they started to disappear. After the vacancies were annealed out (900°C), oxygen-related defects were the major point defects and they were located at <25 nm.

  20. Extracting software static defect models using data mining

    Directory of Open Access Journals (Sweden)

    Ahmed H. Yousef

    2015-03-01

    Full Text Available Large software projects are subject to quality risks of having defective modules that will cause failures during the software execution. Several software repositories contain source code of large projects that are composed of many modules. These software repositories include data for the software metrics of these modules and the defective state of each module. In this paper, a data mining approach is used to show the attributes that predict the defective state of software modules. Software solution architecture is proposed to convert the extracted knowledge into data mining models that can be integrated with the current software project metrics and bugs data in order to enhance the prediction. The results show better prediction capabilities when all the algorithms are combined using weighted votes. When only one individual algorithm is used, Naïve Bayes algorithm has the best results, then the Neural Network and the Decision Trees algorithms.

  1. Defect-induced transitions in synchronous asymmetric exclusion processes

    International Nuclear Information System (INIS)

    Liu Mingzhe; Wang Ruili; Jiang Rui; Hu Maobin; Gao Yang

    2009-01-01

    The effects of a single local defect in synchronous asymmetric exclusion processes are investigated via theoretical analysis and Monte Carlo simulations. Our theoretical analysis shows that there are four possible stationary phases, i.e., the (low density, low density), (low density, high density), (high density, low density) and (high density, high density) in the system. In the (high density, low density) phase, the system can reach a maximal current which is determined by the local defect, but independent of boundary conditions. A phenomenological domain wall approach is developed to predict dynamic behavior at phase boundaries. The effects of defective hopping probability p on density profiles and currents are investigated. Our investigation shows that the value of p determines phase transitions when entrance rate α and exit rate β are fixed. Density profiles and currents obtained from theoretical calculations are in agreement with Monte Carlo simulations

  2. N+ ion-implantation-induced defects in ZnO studied with a slow positron beam

    International Nuclear Information System (INIS)

    Chen, Z Q; Sekiguchi, T; Yuan, X L; Maekawa, M; Kawasuso, A

    2004-01-01

    Undoped ZnO single crystals were implanted with multiple-energy N + ions ranging from 50 to 380 keV with doses from 10 12 to 10 14 cm -2 . Positron annihilation measurements show that vacancy defects are introduced in the implanted layers. The concentration of the vacancy defects increases with increasing ion dose. The annealing behaviour of the defects can be divided into four stages, which correspond to the formation and recovery of large vacancy clusters and the formation and disappearance of vacancy-impurity complexes, respectively. All the implantation-induced defects are removed by annealing at 1200 deg. C. Cathodoluminescence measurements show that the ion-implantation-induced defects act as nonradiative recombination centres to suppress the ultraviolet (UV) emission. After annealing, these defects disappear gradually and the UV emission reappears, which coincides with positron annihilation measurements. Hall measurements reveal that after N + implantation, the ZnO layer still shows n-type conductivity

  3. Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos.

    Science.gov (United States)

    Jones, Elizabeth A V; Yuan, Li; Breant, Christine; Watts, Ryan J; Eichmann, Anne

    2008-08-01

    Targeted inactivation of genes involved in murine cardiovascular development frequently leads to abnormalities in blood flow. As blood fluid dynamics play a crucial role in shaping vessel morphology, the presence of flow defects generally prohibits the precise assignment of the role of the mutated gene product in the vasculature. In this study, we show how to distinguish between genetic defects caused by targeted inactivation of the neuropilin 1 (Nrp1) receptor and hemodynamic defects occurring in homozygous knockout embryos. Our analysis of a Nrp1 null allele bred onto a C57BL/6 background shows that vessel remodeling defects occur concomitantly with the onset of blood flow and cause death of homozygous mutants at E10.5. Using mouse embryo culture, we establish that hemodynamic defects are already present at E8.5 and continuous circulation is never established in homozygous mutants. The geometry of yolk sac blood vessels is altered and remodeling into yolk sac arteries and veins does not occur. To separate flow-induced deficiencies from those caused by the Nrp1 mutation, we arrested blood flow in cultured wild-type and mutant embryos and followed their vascular development. We find that loss of Nrp1 function rather than flow induces the altered geometry of the capillary plexus. Endothelial cell migration, but not replication, is altered in Nrp1 mutants. Gene expression analysis of endothelial cells isolated from freshly dissected wild-type and mutants and after culture in no-flow conditions showed down-regulation of the arterial marker genes connexin 40 and ephrin B2 related to the loss of Nrp1 function. This method allows genetic defects caused by loss-of-function of a gene important for cardiovascular development to be isolated even in the presence of hemodynamic defects.

  4. The effect of dietary protein on reproduction in the mare. IV. Serum progestagen, FSH, LH and melatonin concentrations during the anovulatory, transitional and ovulatory periods in the non-pregnant mare

    Directory of Open Access Journals (Sweden)

    F.E. Van Niekerk

    1997-07-01

    Full Text Available The effect of total protein intake and protein quality on the serum concentrations of certain reproductive hormones during the anovulatory, transitional and ovulatory periods were studied in 36 Anglo-Arab mares. High-quality protein stimulated FSH and LH production during the late transitional period. Serum progestagen and melatonin concentrations were unaffected by the quality of protein nutrition during the anovulatory period. Mares receiving high-quality protein exhibited a 10-14-day cyclical pattern of FSH release approximately 4-6 weeks earlier than the mares fed the lower-quality protein diet, and also ovulated 3-4 weeks earlier than the mares on the lower-quality protein diet. Progesterone concentrations during the 1st oestrous cycle after the anovulatory period were unaffected by protein quality in the diet.

  5. Behavior of duplex stainless steel casting defects under mechanical loadings

    International Nuclear Information System (INIS)

    Jayet-Gendrot, S.; Gilles, P.

    2000-01-01

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied under the most severe assumptions: presence of a large defect, accidental loadings and end-of-life material properties accounting for its thermal aging embrittlement at the service temperature. The casting defects are idealized as semi-circular surface cracks or notches that have envelope dimensions. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster's envelope. The results show that shrinkage cavities are far less harmful than envelope notches thanks to the metal bridges between cavities. Under fatigue loadings, the generalized initiation of a cluster of cavities (defined when the cluster becomes a crack of the same global size) is reached for a number of cycles that is much higher than the one leading to the initiation of a notch. In the case of monotonic loadings, specimens with casting defects offer a very high resistance to ductile tearing. The tests are analyzed in order to develop a method that takes into account the behavior of casting defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modeling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (orig.)

  6. Effect of noise on defect chaos in a reaction-diffusion model.

    Science.gov (United States)

    Wang, Hongli; Ouyang, Qi

    2005-06-01

    The influence of noise on defect chaos due to breakup of spiral waves through Doppler and Eckhaus instabilities is investigated numerically with a modified Fitzhugh-Nagumo model. By numerical simulations we show that the noise can drastically enhance the creation and annihilation rates of topological defects. The noise-free probability distribution function for defects in this model is found not to fit with the previously reported squared-Poisson distribution. Under the influence of noise, the distributions are flattened, and can fit with the squared-Poisson or the modified-Poisson distribution. The defect lifetime and diffusive property of defects under the influence of noise are also checked in this model.

  7. Investigation of shinning Spot Defect on Hot-Dip Galvanized Steel Sheets

    International Nuclear Information System (INIS)

    Yonggang, Liu; Lei, Cui

    2014-01-01

    Shinning spot defects on galvanized steel sheets were studied by optical microscope, scanning electron microscope(SEM), Energy Dispersive Spectrometer (EDS) and Laser-Induced Breakdown Spectroscopy Original Position Statistic Distribution Analysis (LIBSOPA) in this study. The research shows that the coating thickness of shinning spot defects which caused by the substrate defect is much lower than normal area, and when skin passed, the shinning spot defect area can not touch with skin pass roll which result in the surface of shinning spot is flat while normal area is rough. The different coating morphologies have different effects on the reflection of light, which cause the shinning spot defects more brighter than normal area

  8. Micromagnetic simulation of exploratory magnetic logic device with missing corner defect

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaokuo, E-mail: yangxk0123@163.com; Cai, Li; Zhang, Bin; Cui, Huanqing; Zhang, Mingliang

    2015-11-15

    Magnetic film nanostructures are attractive components of nonvolatile magnetoresistive memories and nanomagnet logic circuits. Recently, we studied switching properties (i.e., null logic preserving) of rectangle shape nanomagnet subjected to fabrication imperfections. Specifically, we presented typical missing corner material-related imperfections and adopted an isosceles triangle to model this defect for nanomagnets. Micromagnetic simulation shows that this kind of imperfections modeling method agrees well with previous experimental observations. Using the proposed defect modeling scheme, we investigate in detail the switching characteristics of different defective stand-alone and coupled nanomagnets. The results suggest that the state transition of defective nanomagnet element highly depends on defect type and device’s aspect ratio, and the defect type B{sub d} needs the largest coercive field, while the defect type D requires the largest null field for switching. These findings can provide key technical parameters and guides for nanomagnet logic circuit design. - Highlights: • We have modeled missing corner defect issue for nanomagnet logic device. • The logic state of defective NML element highly depends on defect type and AR. • The NML device with defect type B{sub d} needs the largest coercive field to reverse state. • The defect type D in the NML devices requires the largest null field to switch.

  9. Defect-band mediated ferromagnetism in Gd-doped ZnO thin films

    KAUST Repository

    Venkatesh, S.

    2015-01-07

    Gd-doped ZnO thin films prepared by pulsed laser deposition with Gd concentrations varying from 0.02–0.45 atomic percent (at. %) showed deposition oxygen pressure controlled ferromagnetism. Thin films prepared with Gd dopant levels (showed that the ferromagnetic exchange is mediated by a spin-split defect band formed due to oxygen deficiency related defect complexes. Mott\\'s theory of variable range of hopping conduction confirms the formation of the impurity/defect band near the Fermi level.

  10. Corrosion Behavior of X80 Steel with Coupled Coating Defects under Alternating Current Interference in Alkaline Environment.

    Science.gov (United States)

    Li, Zhong; Li, Caiyu; Qian, Hongchang; Li, Jun; Huang, Liang; Du, Cuiwei

    2017-06-28

    The corrosion behavior of X80 steel in the presence of coupled coating defects was simulated and studied under the interference of alternating current (AC) in an alkaline environment. The results from electrochemical measurements showed that the electrode potential of the coating defect with the smaller exposed area was lower than that with the larger area, which indicated that the steel with the smaller coating defect was more prone to corrosion. The result of weight loss tests also showed that the smaller coating defect had induced a higher corrosion rate. However, the corrosion rate of X80 steel at the larger coating defect decreased gradually with the increase of the larger defect area at a constant smaller defect area. The corrosion morphology images showed that the coating defects with smaller areas suffered from more severe pitting corrosion.

  11. Band gap control in a line-defect magnonic crystal waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Morozova, M. A., E-mail: mamorozovama@yandex.ru; Grishin, S. V.; Sadovnikov, A. V.; Romanenko, D. V.; Sharaevskii, Yu. P.; Nikitov, S. A. [Laboratory ' Metamaterials,' Saratov State University, Astrakhanskaya 83, Saratov 410012 (Russian Federation)

    2015-12-14

    We report on the experimental observation of the spin wave spectrum control in a line-defect magnonic crystal (MC) waveguide. We demonstrate the possibility to control the forbidden frequency band (band gap) for spin waves tuning the line-defect width. In particular, this frequency may be greater or lower than the one of 1D MC waveguide without line-defect. By means of space-resolved Brillouin light scattering technique, we study the localization of magnetization amplitude in the line-defect area. We show that the length of this localization region depends on the line-defect width. These results agree well with theoretical calculations of spin wave spectrum using the proposed model of two coupled magnonic crystal waveguides. The proposed simple geometry of MC with line-defect can be used as a logic and multiplexing block for application in the novel field of magnonic devices.

  12. Prevention of congenital defects induced by prenatal alcohol exposure (Conference Presentation)

    Science.gov (United States)

    Sheehan, Megan M.; Karunamuni, Ganga; Pedersen, Cameron J.; Gu, Shi; Doughman, Yong Qiu; Jenkins, Michael W.; Watanabe, Michiko; Rollins, Andrew M.

    2017-02-01

    Nearly 2 million women in the United States alone are at risk for an alcohol-exposed pregnancy, including more than 600,000 who binge drink. Even low levels of prenatal alcohol exposure (PAE) can lead to a variety of birth defects, including craniofacial and neurodevelopmental defects, as well as increased risk of miscarriages and stillbirths. Studies have also shown an interaction between drinking while pregnant and an increase in congenital heart defects (CHD), including atrioventricular septal defects and other malformations. We have previously established a quail model of PAE, modeling a single binge drinking episode in the third week of a woman's pregnancy. Using optical coherence tomography (OCT), we quantified intraventricular septum thickness, great vessel diameters, and atrioventricular valve volumes. Early-stage ethanol-exposed embryos had smaller cardiac cushions (valve precursors) and increased retrograde flow, while late-stage embryos presented with gross head/body defects, and exhibited smaller atrio-ventricular (AV) valves, interventricular septum, and aortic vessels. We previously showed that supplementation with the methyl donor betaine reduced gross defects, improved survival rates, and prevented cardiac defects. Here we show that these preventative effects are also observed with folate (another methyl donor) supplementation. Folate also appears to normalize retrograde flow levels which are elevated by ethanol exposure. Finally, preliminary findings have shown that glutathione, a crucial antioxidant, is noticeably effective at improving survival rates and minimizing gross defects in ethanol-exposed embryos. Current investigations will examine the impact of glutathione supplementation on PAE-related CHDs.

  13. Quantitative Evaluation of Remote Field Eddy Current Defect Signals

    International Nuclear Information System (INIS)

    Jeong, Jin Oh; Yi, Jae Kyung; Kim, Hyoung Jean

    2000-01-01

    The remote field eddy current (RFEC) inspection was performed on the ductile cast iron pipes with nominal outer diameter of 100mm, which were machined with various shapes and sizes of defects. Ductile cast iron pipes which are used as water supply pipe have the non-uniform thickness and asymmetric cross section due to relatively high degree of allowable errors during the manufacturing processes. These characteristics of ductile cast in pipes cause the long range background noises in RFEC signals along the pipe. In this study, tile machined defects in pipes were effectively classified by the moving window average (MWA) method which eliminated the long-range noise. The voltage plane polar plots (VPPP) method was used to quantitatively evaluate the depth and circumferential degree of defects. The VPPP signatures showed that the angle between defect signature and the normalized in-phase component on the VPPP is linear to the depth of defects. The nondestructive RFEC technique proved to be capable of quantitatively evaluating the machined defects of underground water supply pipe

  14. Facts about Birth Defects

    Science.gov (United States)

    ... label> Information For… Media Policy Makers Facts about Birth Defects Language: English (US) Español (Spanish) Recommend on ... having a baby born without a birth defect. Birth Defects Are Common Every 4 ½ minutes, a ...

  15. Determination of weld defect characteristics using focused probes

    International Nuclear Information System (INIS)

    Saglio, Robert; Touffait, A.-M.; Prot, A.-C.

    1977-01-01

    A method is described which allows, by means of an experimentally discovered law, the determination of the geometrical characteristics of the detected defects. This determination is based on the properties of focused probes, and particularly on what is called their 'effective ultrasonic beam'. The main result is the ability to describe a defect with a given and known accuracy. Examples are given which show practical applications of the method [fr

  16. Digital detection system of surface defects for large aperture optical elements

    International Nuclear Information System (INIS)

    Fan Yong; Chen Niannian; Gao Lingling; Jia Yuan; Wang Junbo; Cheng Xiaofeng

    2009-01-01

    Based on the light defect images against the dark background in a scattering imaging system, a digital detection system of surface defects for large aperture optical elements has been presented. In the system, the image is segmented by a multi-area self-adaptive threshold segmentation method, then a pixel labeling method based on replacing arrays is adopted to extract defect features quickly, and at last the defects are classified through back-propagation neural networks. Experiment results show that the system can achieve real-time detection and classification. (authors)

  17. Developmental defects in zebrafish for classification of EGF pathway inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Pruvot, Benoist; Curé, Yoann; Djiotsa, Joachim; Voncken, Audrey; Muller, Marc, E-mail: m.muller@ulg.ac.be

    2014-01-15

    One of the major challenges when testing drug candidates targeted at a specific pathway in whole animals is the discrimination between specific effects and unwanted, off-target effects. Here we used the zebrafish to define several developmental defects caused by impairment of Egf signaling, a major pathway of interest in tumor biology. We inactivated Egf signaling by genetically blocking Egf expression or using specific inhibitors of the Egf receptor function. We show that the combined occurrence of defects in cartilage formation, disturbance of blood flow in the trunk and a decrease of myelin basic protein expression represent good indicators for impairment of Egf signaling. Finally, we present a classification of known tyrosine kinase inhibitors according to their specificity for the Egf pathway. In conclusion, we show that developmental indicators can help to discriminate between specific effects on the target pathway from off-target effects in molecularly targeted drug screening experiments in whole animal systems. - Highlights: • We analyze the functions of Egf signaling on zebrafish development. • Genetic blocking of Egf expression causes cartilage, myelin and circulatory defects. • Chemical inhibition of Egf receptor function causes similar defects. • Developmental defects can reveal the specificity of Egf pathway inhibitors.

  18. Developmental defects in zebrafish for classification of EGF pathway inhibitors

    International Nuclear Information System (INIS)

    Pruvot, Benoist; Curé, Yoann; Djiotsa, Joachim; Voncken, Audrey; Muller, Marc

    2014-01-01

    One of the major challenges when testing drug candidates targeted at a specific pathway in whole animals is the discrimination between specific effects and unwanted, off-target effects. Here we used the zebrafish to define several developmental defects caused by impairment of Egf signaling, a major pathway of interest in tumor biology. We inactivated Egf signaling by genetically blocking Egf expression or using specific inhibitors of the Egf receptor function. We show that the combined occurrence of defects in cartilage formation, disturbance of blood flow in the trunk and a decrease of myelin basic protein expression represent good indicators for impairment of Egf signaling. Finally, we present a classification of known tyrosine kinase inhibitors according to their specificity for the Egf pathway. In conclusion, we show that developmental indicators can help to discriminate between specific effects on the target pathway from off-target effects in molecularly targeted drug screening experiments in whole animal systems. - Highlights: • We analyze the functions of Egf signaling on zebrafish development. • Genetic blocking of Egf expression causes cartilage, myelin and circulatory defects. • Chemical inhibition of Egf receptor function causes similar defects. • Developmental defects can reveal the specificity of Egf pathway inhibitors

  19. Yarn-dyed fabric defect classification based on convolutional neural network

    Science.gov (United States)

    Jing, Junfeng; Dong, Amei; Li, Pengfei; Zhang, Kaibing

    2017-09-01

    Considering that manual inspection of the yarn-dyed fabric can be time consuming and inefficient, we propose a yarn-dyed fabric defect classification method by using a convolutional neural network (CNN) based on a modified AlexNet. CNN shows powerful ability in performing feature extraction and fusion by simulating the learning mechanism of human brain. The local response normalization layers in AlexNet are replaced by the batch normalization layers, which can enhance both the computational efficiency and classification accuracy. In the training process of the network, the characteristics of the defect are extracted step by step and the essential features of the image can be obtained from the fusion of the edge details with several convolution operations. Then the max-pooling layers, the dropout layers, and the fully connected layers are employed in the classification model to reduce the computation cost and extract more precise features of the defective fabric. Finally, the results of the defect classification are predicted by the softmax function. The experimental results show promising performance with an acceptable average classification rate and strong robustness on yarn-dyed fabric defect classification.

  20. Spin-wave dispersion of nanostructured magnonic crystals with periodic defects

    Directory of Open Access Journals (Sweden)

    V. L. Zhang

    2016-11-01

    Full Text Available The spin-wave dispersions in nanostructured magnonic crystals with periodic defects have been mapped by Brillouin light scattering. The otherwise perfect crystals are one-dimensional arrays of alternating 460nm-wide Ni80Fe20 stripes and 40nm-wide air gaps, where one in ten Ni80Fe20 stripes is a defect of width other than 460 nm. Experimentally, the defects are manifested as additional Brillouin peaks, lying within the first and second bandgaps of the perfect crystal, whose frequencies decrease with increasing defect stripe width. Finite-element calculations, based on a supercell comprising one defect and nine perfect Py stripes, show that the defect modes are localized about the defects, with the localization exhibiting an approximate U-shaped dependence on defect size. Calculations also reveal extra magnon branches and the opening of mini-bandgaps, within the allowed bands of the perfect crystal, arising from Bragg reflections at the boundaries of the shorter supercell Brillouin zone. Simulated magnetization profiles of the band-edge modes of the major and mini-bandgaps reveal their different symmetries and localization properties. The findings could find application in microwave magnonic devices like single-frequency passband spin-wave filters.

  1. Curvature-Controlled Topological Defects

    Directory of Open Access Journals (Sweden)

    Luka Mesarec

    2017-05-01

    Full Text Available Effectively, two-dimensional (2D closed films exhibiting in-plane orientational ordering (ordered shells might be instrumental for the realization of scaled crystals. In them, ordered shells are expected to play the role of atoms. Furthermore, topological defects (TDs within them would determine their valence. Namely, bonding among shells within an isotropic liquid matrix could be established via appropriate nano-binders (i.e., linkers which tend to be attached to the cores of TDs exploiting the defect core replacement mechanism. Consequently, by varying configurations of TDs one could nucleate growth of scaled crystals displaying different symmetries. For this purpose, it is of interest to develop a simple and robust mechanism via which one could control the position and number of TDs in such atoms. In this paper, we use a minimal mesoscopic model, where variational parameters are the 2D curvature tensor and the 2D orientational tensor order parameter. We demonstrate numerically the efficiency of the effective topological defect cancellation mechanism to predict positional assembling of TDs in ordered films characterized by spatially nonhomogeneous Gaussian curvature. Furthermore, we show how one could efficiently switch among qualitatively different structures by using a relative volume v of ordered shells, which represents a relatively simple naturally accessible control parameter.

  2. Treatment experience of surgical repair for long-term skull defect

    Directory of Open Access Journals (Sweden)

    Shou-cheng FAN

    2015-12-01

    Full Text Available Retrospective analysis was performed on 30 patients of skull defect who underwent surgical repair. Intraoperative and postoperative curative effect was evaluated on those patients, and the results showed that the incidence rate of intraoperative dura mater defect (P = 0.001, early postoperative complications [new epilepsy (P = 0.035 and effusion (P = 0.021] and late postoperative complications [foreign body sensation (P = 0.035 and dizziness and headache (P = 0.050] in long-term skull defect group were all higher than those in control group. In conclusion, surgical repair of long-term skull defect incurring high risk and various complications will not be an ideal management. Therefore, early surgical treatment for skull defect is suggested. DOI: 10.3969/j.issn.1672-6731.2015.12.016

  3. Study of the irradiation defects in 3C-SiC

    International Nuclear Information System (INIS)

    Lefevre, J.

    2007-01-01

    This work deals with the study of the irradiation defects in the cubic polytype 3C of the n type silicon carbide. Low temperature photoluminescence and electron spin resonance techniques have been used. In situ photoluminescence measurements after irradiation at 10 K by electrons have shown that the nature of the defects induced is identical to those observed after irradiation at ambient temperature with electrons, protons or carbon ions. No regeneration of these defects has been revealed after in situ annealings until 300 K. The electrons Van de Graff accelerator of the Irradiated Solid Laboratory has allowed to irradiate sample of 3C in a range of energies between 190 keV and 1 MeV. It has then been possible to estimate the appearance threshold of the irradiation defects but especially to be able to determine the displacement threshold energy of silicon in this SiC polytype. The found value of 25 eV is in good agreement with the first experimental result proposed by X. Kerbiriou with the use of the ESR. Annealings in the range of high temperatures have been carried out. The evolution of the irradiation defects has been followed in photoluminescence and in ESR. The results show that, in one part, the vacancy of the silicon negatively charged is essentially the only compensating defect in 3C-SiC of n type and that, in another part, the majority of the defects are annealed below 1200 C. Only the D1 defect remains after annealings until 1600 C. The D1 center is in fact a native defect in SiC; indeed, it has been identified alone in non irradiated samples. A systematic study of these last samples show the absence of D1 in samples strongly compensated. The compared results of photoluminescence and of positons annihilation are in good agreement for the possible attribution of D1 to the bi-vacancy V C -V Si . One of the most interesting result of this last work has been obtained using the ESR technique under excitation with a neodymium laser. The measurements, carried

  4. Crystal defect studies using x-ray diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.

  5. Crystal defect studies using x-ray diffuse scattering

    International Nuclear Information System (INIS)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above

  6. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  7. Defects in dilute nitrides

    International Nuclear Information System (INIS)

    Chen, W.M.; Buyanova, I.A.; Tu, C.W.; Yonezu, H.

    2005-01-01

    We provide a brief review our recent results from optically detected magnetic resonance studies of grown-in non-radiative defects in dilute nitrides, i.e. Ga(In)NAs and Ga(Al,In)NP. Defect complexes involving intrinsic defects such as As Ga antisites and Ga i self interstitials were positively identified.Effects of growth conditions, chemical compositions and post-growth treatments on formation of the defects are closely examined. These grown-in defects are shown to play an important role in non-radiative carrier recombination and thus in degrading optical quality of the alloys, harmful to performance of potential optoelectronic and photonic devices based on these dilute nitrides. (author)

  8. Genital and Urinary Tract Defects

    Science.gov (United States)

    ... conditions > Genital and urinary tract defects Genital and urinary tract defects E-mail to a friend Please fill ... and extra fluids. What problems can genital and urinary tract defects cause? Genital and urinary tract defects affect ...

  9. Contribution of dynamic focusing to ultrasonic defect characterization

    International Nuclear Information System (INIS)

    Mahaut, S.

    1997-01-01

    Non destructive testing of vessels of pressurized water reactors uses ultrasonic focused transducers, with spherically shaped emitting surface or requiring an acoustic lens. But a mechanically focused transducer has to be used for a given inspection zone and for a fixed control configuration. The aim of this thesis is to improve ultrasonic defect characterization using adaptive dynamic focusing. Such a technique makes use of a ultrasonic defect characterization using adaptive dynamic focusing. Such a technique makes use of an ultrasonic transducer split into an array of individually controlled elements, allowing to apply delay and amplitude laws, calculated from modeling or experimentally deduced. Acoustical characteristics of the ultrasonic beam in the inspected specimen this can be electronically controlled; refraction angle, depth focusing, beam width. We briefly describe in the first chapter a theoretical modeling of the ultrasonic field radiated through a fluid/solid interface, extended to phase array transducers. This model is based on the integral formulation of Rayleigh, modified to take into account transmission through a fluid/solid (homogeneous and isotropic), of planar or cylindrical shape. In the second chapter an experimental study of this technique, with delay and amplitude laws given from the model, is presented, showing the efficiency of this method to adjust the acoustic performances. In he third chapter, experimental delay laws, extracted from the time distribution of signals received by the array (issued from a preliminary detected reflector), are used to provide an optimal imaging of the defect. This self-focusing procedure shows to adapt to a defect without using theoretical delays. The last chapter is dedicated to different applications devoted to improved defect characterization. The first application uses amplitude distribution received by the array, pointing out geometric characteristics of the reflector, while the second application

  10. Detection and depth determination of corrosion defects in embedded bolts using ultrasonic testing technique

    International Nuclear Information System (INIS)

    Lin, Shan; Fukutomi, Hiroyuki; Yuya, Hideki; Ito, Keisuke

    2011-01-01

    A great number of anchor bolts are used to fix various components to concrete foundation in thermal and nuclear power plants. As aging power plants degrade, it is feared that defects resulted from corrosion may occur underground. In this paper, a measurement method utilizing the phased array technique is developed to detect such defects. Measurement results show that this method can detect local and circumferential corrosion defects introduced artificially, but defect echo position appears to be farther away from the bolt head than is actually the case. A finite element simulation of wave propagation shows that longitudinal waves excited by a phased array probe are mode converted and reflected at the defect and at bolt wall, which results in the position of the defect echo appearing to be farther away than the defect actually is. Moreover, an approach for determining the depth of defects using measurement results is also proposed based on numerical results. The depths determined by the proposed approach agree with the actual depths with a maximum error of 1.8 mm and a RMSE of 1.06 mm. (author)

  11. Arabidopsis thaliana plants lacking the ARP2/3 complex show defects in cell wall assembly and auxin distribution.

    Science.gov (United States)

    Pratap Sahi, Vaidurya; Cifrová, Petra; García-González, Judith; Kotannal Baby, Innu; Mouillé, Gregory; Gineau, Emilie; Müller, Karel; Baluška, František; Soukup, Aleš; Petrášek, Jan; Schwarzerová, Katerina

    2017-12-25

    The cytoskeleton plays an important role in the synthesis of plant cell walls. Both microtubules and actin cytoskeleton are known to be involved in the morphogenesis of plant cells through their role in cell wall building. The role of ARP2/3-nucleated actin cytoskeleton in the morphogenesis of cotyledon pavement cells has been described before. Seedlings of Arabidopsis mutants lacking a functional ARP2/3 complex display specific cell wall-associated defects. In three independent Arabidopsis mutant lines lacking subunits of the ARP2/3 complex, phenotypes associated with the loss of the complex were analysed throughout plant development. Organ size and anatomy, cell wall composition, and auxin distribution were investigated. ARP2/3-related phenotype is associated with changes in cell wall composition, and the phenotype is manifested especially in mature tissues. Cell walls of mature plants contain less cellulose and a higher amount of homogalacturonan, and display changes in cell wall lignification. Vascular bundles of mutant inflorescence stems show a changed pattern of AUX1-YFP expression. Plants lacking a functional ARP2/3 complex have decreased basipetal auxin transport. The results suggest that the ARP2/3 complex has a morphogenetic function related to cell wall synthesis and auxin transport. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Point defects and defect clusters examined on the basis of some fundamental experiments

    International Nuclear Information System (INIS)

    Zuppiroli, L.

    1975-01-01

    On progressing from the centre of the defect to the surface the theoretical approach to a point defect passes from electronic theories to elastic theory. Experiments by which the point defect can be observed fall into two categories. Those which detect long-range effects: measurement of dimensional variations in the sample; measurement of the mean crystal parameter variation; elastic X-ray scattering near the nodes of the reciprocal lattice (Huang scattering). Those which detect more local effects: low-temperature resistivity measurement; positron capture and annihilation; local scattering far from the reciprocal lattice nodes. Experiments involving both short and long-range effects can always be found. This is the case for example with the dechanneling of α particles by defects. Certain of the experimental methods quoted above apply also to the study of point defect clusters. These methods are illustrated by some of their most striking results which over the last twenty years have refined our knowledge of point defects and defect clusters: length and crystal parameter measurements; diffuse X-ray scattering; low-temperature resistivity measurements; ion emission microscopy; electron microscopy; elastoresistivity [fr

  13. Birth Defects (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Birth Defects KidsHealth / For Parents / Birth Defects What's in ... Prevented? Print en español Anomalías congénitas What Are Birth Defects? While still in the womb, some babies ...

  14. Defect of the Eyelids.

    Science.gov (United States)

    Lu, Guanning Nina; Pelton, Ron W; Humphrey, Clinton D; Kriet, John David

    2017-08-01

    Eyelid defects disrupt the complex natural form and function of the eyelids and present a surgical challenge. Detailed knowledge of eyelid anatomy is essential in evaluating a defect and composing a reconstructive plan. Numerous reconstructive techniques have been described, including primary closure, grafting, and a variety of local flaps. This article describes an updated reconstructive ladder for eyelid defects that can be used in various permutations to solve most eyelid defects. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. BUILDING OF EXTENSIVE DIAPHYSIS DEFECTS IN LONG BONES

    Directory of Open Access Journals (Sweden)

    A. P. Barabash

    2014-01-01

    Full Text Available The problem of extensive diaphysis bone defect replacement in long bones has been investigated. Treatment results of three patients (one with neoplastic process, two with supparative bone damage are given. The sizes of defects were from 16 to 20 cm. Su pervision terms consisted 1-3 years. There were two defect replacement variants: cellular titanium nickelide alongside with interlocking internal fixation - in 2 patients, and metallic prosthesis of ProSpon company (Czech Republic - in 4 patients. Two patients after segmental resection of limb bone tumours and diaphysis endoprosthesis show positive treatment results. Long-term treatment by different methods in 4 patients with chronic fistulous form of post-traumatic osteomyelitis were unsuccessful.

  16. An optimization method for defects reduction in fiber laser keyhole welding

    Science.gov (United States)

    Ai, Yuewei; Jiang, Ping; Shao, Xinyu; Wang, Chunming; Li, Peigen; Mi, Gaoyang; Liu, Yang; Liu, Wei

    2016-01-01

    Laser welding has been widely used in automotive, power, chemical, nuclear and aerospace industries. The quality of welded joints is closely related to the existing defects which are primarily determined by the welding process parameters. This paper proposes a defects optimization method that takes the formation mechanism of welding defects and weld geometric features into consideration. The analysis of welding defects formation mechanism aims to investigate the relationship between welding defects and process parameters, and weld features are considered to identify the optimal process parameters for the desired welded joints with minimum defects. The improved back-propagation neural network possessing good modeling for nonlinear problems is adopted to establish the mathematical model and the obtained model is solved by genetic algorithm. The proposed method is validated by macroweld profile, microstructure and microhardness in the confirmation tests. The results show that the proposed method is effective at reducing welding defects and obtaining high-quality joints for fiber laser keyhole welding in practical production.

  17. Heat-Treatment of Defective UiO-66 from Modulated Synthesis: Adsorption and Stability Studies

    International Nuclear Information System (INIS)

    Jiao, Yang; Liu, Yang; Zhu, Guanghui; Hungerford, Julian T.; Bhattacharyya, Souryadeep

    2017-01-01

    Defect engineering in metal-organic frameworks (MOFs) is an emerging strategy that can be used to control physical or chemical characteristics of MOFs, including adsorption behavior and textural, mechanical, and conductive properties. Understanding the impact of defects on textural properties and chemical stability of MOFs is imperative to the development of MOFs with tunable defect sites. In this work, systematic adsorption measurements were performed with three adsorbate molecules (SO 2 , benzene, and cyclohexane) to investigate changes in the pore size of defective UiO-66. Compared to the parent UiO-66, the defective UiO-66 shows significant changes in adsorption capacities among the selected adsorbate molecules, demonstrating that pore size is significantly enlarged by the missing cluster defects. BET surface area analysis and DFT calculations were also performed to interrogate the chemical stability of the defective MOFs after exposure to water and acidic environments. This work shows that pore size can be tuned as a function of defect concentration. Further, it is shown that the structural incorporation of trifluoroacetate groups in defective UiO-66 leads to an increase in average pore size without sacrificing chemical stability toward water and acidic species. The results of this work advance the understanding of textural properties and chemical stability of defect-engineered MOFs and also suggest a preparation method for synthesizing defective but stable MOFs.

  18. Thermal buckling behavior of defective CNTs under pre-load: A molecular dynamics study.

    Science.gov (United States)

    Mehralian, Fahimeh; Tadi Beni, Yaghoub; Kiani, Yaser

    2017-05-01

    Current study is concentrated on the extraordinary properties of defective carbon nanotubes (CNTs). The role of vacancy defects in thermal buckling response of precompressed CNTs is explored via molecular dynamics (MD) simulations. Defective CNTs are initially compressed at a certain ratio of their critical buckling strain and then undergo a uniform temperature rise. Comprehensive study is implemented on both armchair and zigzag CNTs with different vacancy defects including monovacancy, symmetric bivacancy and asymmetric bivacancy. The results reveal that defects have a pronounced impact on the buckling behavior of CNTs; interestingly, defective CNTs under compressive pre-load show higher resistance to thermal buckling than pristine ones. In the following, the buckling response of defective CNTs is shown to be dependent on the vacancy defects, location of defects and chirality. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. N{sup +} ion-implantation-induced defects in ZnO studied with a slow positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z Q [Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan (Japan); Sekiguchi, T [Nanomaterials Laboratory, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Yuan, X L [Nanomaterials Laboratory, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Maekawa, M [Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan (Japan); Kawasuso, A [Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan (Japan)

    2004-01-21

    Undoped ZnO single crystals were implanted with multiple-energy N{sup +} ions ranging from 50 to 380 keV with doses from 10{sup 12} to 10{sup 14} cm{sup -2}. Positron annihilation measurements show that vacancy defects are introduced in the implanted layers. The concentration of the vacancy defects increases with increasing ion dose. The annealing behaviour of the defects can be divided into four stages, which correspond to the formation and recovery of large vacancy clusters and the formation and disappearance of vacancy-impurity complexes, respectively. All the implantation-induced defects are removed by annealing at 1200 deg. C. Cathodoluminescence measurements show that the ion-implantation-induced defects act as nonradiative recombination centres to suppress the ultraviolet (UV) emission. After annealing, these defects disappear gradually and the UV emission reappears, which coincides with positron annihilation measurements. Hall measurements reveal that after N{sup +} implantation, the ZnO layer still shows n-type conductivity.

  20. Defects in alpha and gamma crystalline nylon6: A computational study

    Directory of Open Access Journals (Sweden)

    Saeid Arabnejad

    2015-10-01

    Full Text Available We present a comparative Density Functional Tight Binding study of structures, energetics, and vibrational properties of α and γ crystalline phases of nylon6 with different types of defects: single and double chain vacancies and interstitials. The defect formation energies are: for a single vacancy 0.66 and 0.64 kcal/mol per monomer, and for an interstitial strand 1.35 and 2.45 kcal/mol per monomer in the α and γ phases, respectively. The presence of defects does not materially influence the relative stability of the two phases, within the accuracy of the method. The inclusion of phononic contributions has a negligible effect. The calculations show that even if it were possible to synthesize the pure phases of nylon6, the defects will be easily induced at room temperature, because vacancy formation energies in both phases are of the order of kT at room temperature. The formation of interstitial defects, on the contrary, requires the energy equivalent to multiple kT values and is much less likely; it is also much less probable in the γ phase than in α. The vibration spectra do not show significant sensitivity to the presence of these defects.

  1. Formation of topological defects

    International Nuclear Information System (INIS)

    Vachaspati, T.

    1991-01-01

    We consider the formation of point and line topological defects (monopoles and strings) from a general point of view by allowing the probability of formation of a defect to vary. To investigate the statistical properties of the defects at formation we give qualitative arguments that are independent of any particular model in which such defects occur. These arguments are substantiated by numerical results in the case of strings and for monopoles in two dimensions. We find that the network of strings at formation undergoes a transition at a certain critical density below which there are no infinite strings and the closed-string (loop) distribution is exponentially suppressed at large lengths. The results are contrasted with the results of statistical arguments applied to a box of strings in dynamical equilibrium. We argue that if point defects were to form with smaller probability, the distance between monopoles and antimonopoles would decrease while the monopole-to-monopole distance would increase. We find that monopoles are always paired with antimonopoles but the pairing becomes clean only when the number density of defects is small. A similar reasoning would also apply to other defects

  2. Distribution of defects in wind turbine blades and reliability assessment of blades containing defects

    DEFF Research Database (Denmark)

    Stensgaard Toft, Henrik; Branner, Kim; Berring, Peter

    2009-01-01

    on the assumption that one error in the production process tends to trigger several defects. For both models additional information about number, type and size of the defects is included as stochastic variables. The probability of failure for a wind turbine blade will not only depend on variations in the material......In the present paper two stochastic models for the distribution of defects in wind turbine blades are proposed. The first model assumes that the individual defects are completely randomly distributed in the blade. The second model assumes that the defects occur in clusters of different size based...... properties and the load but also on potential defects in the blades. As a numerical example the probability of failure is calculated for the main spar both with and without defects in terms of delaminations. The delaminations increase the probability of failure compared to a perfect blade, but by applying...

  3. Strip defect recognition in electrical tests of silicon microstrip sensors

    Energy Technology Data Exchange (ETDEWEB)

    Valentan, Manfred, E-mail: valentan@mpp.mpg.de

    2017-02-11

    This contribution describes the measurement procedure and data analysis of AC-coupled double-sided silicon microstrip sensors with polysilicon resistor biasing. The most thorough test of a strip sensor is an electrical measurement of all strips of the sensor; the measured observables include e.g. the strip's current and the coupling capacitance. These measurements are performed to find defective strips, e.g. broken capacitors (pinholes) or implant shorts between two adjacent strips. When a strip has a defect, its observables will show a deviation from the “typical value”. To recognize and quantify certain defects, it is necessary to determine these typical values, i.e. the values the observables would have without the defect. As a novel approach, local least-median-of-squares linear fits are applied to determine these “would-be” values of the observables. A least-median-of-squares fit is robust against outliers, i.e. it ignores the observable values of defective strips. Knowing the typical values allows to recognize, distinguish and quantify a whole range of strip defects. This contribution explains how the various defects appear in the data and in which order the defects can be recognized. The method has been used to find strip defects on 30 double-sided trapezoidal microstrip sensors for the Belle II Silicon Vertex Detector, which have been measured at the Institute of High Energy Physics, Vienna (Austria).

  4. Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sellaiyan, S.; Uedono, A. [University of Tsukuba, Division of Applied Physics, Tsukuba, Ibaraki (Japan); Sivaji, K.; Janet Priscilla, S. [University of Madras, Department of Nuclear Physics, Chennai (India); Sivasankari, J. [Anna University, Department of Physics, Chennai (India); Selvalakshmi, T. [National Institute of Technology, Nanomaterials Laboratory, Department of Physics, Tiruchirappalli (India)

    2016-10-15

    Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F{sub 2} {sup 2+} and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F{sub 2} {sup 2+} to F{sup +} and this F{sup +} is converted into F centers at 416 nm. (orig.)

  5. Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy

    Science.gov (United States)

    Sellaiyan, S.; Uedono, A.; Sivaji, K.; Janet Priscilla, S.; Sivasankari, J.; Selvalakshmi, T.

    2016-10-01

    Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 °C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 °C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 °C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F2 2+ and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F2 2+ to F+ and this F+ is converted into F centers at 416 nm.

  6. Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Sellaiyan, S.; Uedono, A.; Sivaji, K.; Janet Priscilla, S.; Sivasankari, J.; Selvalakshmi, T.

    2016-01-01

    Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F_2 "2"+ and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F_2 "2"+ to F"+ and this F"+ is converted into F centers at 416 nm. (orig.)

  7. Cariogenic properties of Streptococcus mutans clinical isolates with sortase defects.

    Science.gov (United States)

    Lapirattanakul, Jinthana; Takashima, Yukiko; Tantivitayakul, Pornpen; Maudcheingka, Thaniya; Leelataweewud, Pattarawadee; Nakano, Kazuhiko; Matsumoto-Nakano, Michiyo

    2017-09-01

    In Streptococcus mutans, a Gram-positive pathogen of dental caries, several surface proteins are anchored by the activity of sortase enzyme. Although various reports have shown that constructed S. mutans mutants deficient of sortase as well as laboratory reference strains with a sortase gene mutation have low cariogenic potential, no known studies have investigated clinical isolates with sortase defects. Here, we examined the cariogenic properties of S. mutans clinical isolates with sortase defects as well as caries status in humans harboring such defective isolates. Sortase-defective clinical isolates were evaluated for biofilm formation, sucrose-dependent adhesion, stress-induced dextran-dependent aggregation, acid production, and acid tolerance. Additionally, caries indices of subjects possessing such defective isolates were determined. Our in vitro results indicated that biofilm with a lower quantity was formed by sortase-defective as compared to non-defective isolates. Moreover, impairments of sucrose-dependent adhesion and stress-induced dextran-dependent aggregation were found among the isolates with defects, whereas no alterations were seen in regard to acid production or tolerance. Furthermore, glucan-binding protein C, a surface protein anchored by sortase activity, was predominantly detected in culture supernatants of all sortase-defective S. mutans isolates. Although the sortase-defective isolates showed lower cariogenic potential because of a reduction in some cariogenic properties, deft/DMFT indices revealed that all subjects harboring those isolates had caries experience. Our findings suggest the impairment of cariogenic properties in S. mutans clinical isolates with sortase defects, though the detection of these defective isolates seemed not to imply low caries risk in the subjects harboring them. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Enhancing native defect sensitivity for EUV actinic blank inspection: optimized pupil engineering and photon noise study

    Science.gov (United States)

    Wang, Yow-Gwo; Neureuther, Andrew; Naulleau, Patrick

    2016-03-01

    In this paper, we discuss the impact of optimized pupil engineering and photon noise on native defect sensitivity in EUV actinic blank inspection. Native defects include phase-dominated defects, absorber defects, and defects with a combination of phase and absorption behavior. First, we extend the idea of the Zernike phase contrast (ZPC) method and study the impact of optimum phase shift in the pupil plane on native defect sensitivity, showing a 23% signal-to-noise ratio (SNR) enhancement compare to bright field (BF) for a phase defect with 20% absorption. We also describe the possibility to increase target defect SNR on target defect sizes at the price of losing the sensitivity on smaller (non-critical) defects. Moreover, we show the advantage of the optimized phase contrast (OZPC) method over BF EUV actinic blank inspection. A single focus scan from OZPC has better inspection efficiency over BF. Second, we make a detailed comparison between the phase contrast with apodization (AZPC) method and dark field (DF) method based on defect sensitivity in the presence of both photon shot noise and camera noise. Performance is compared for a variety of photon levels, mask roughness conditions, and combinations of defect phase and absorption.

  9. Natural defects and defects created by ionic implantation in zinc tellurium

    International Nuclear Information System (INIS)

    Roche, J.P.; Dupuy, M.; Pfister, J.C.

    1977-01-01

    Various defects have been studied in ZnTe crystals by transmission electron microscope and by scanning electron microscope in cathodo-luminescence mode: grain boundaries, sub-grain boundaries, twins. Ionic implants of boron (100 keV - 2x10 14 and 10 15 ions cm -2 ) were made on these crystals followed by isochrone annealing (30 minutes) of zinc under partial pressure at 550, 650 and 750 0 C. The nature of the defects was determined by transmission electron microscope: these are interstitial loops (b=1/3 ) the size of which varies between 20 A (non-annealed sample) and 180A (annealed at 750 0 C). The transmission electron microscope was also used to make concentration profiles of defects depending on depth. It is found that for the same implant (2x10 14 ions.cm -2 ), the defect peak moves towards the exterior of the crystal as the annealing temperature rises (400 - 1000 and 7000 A for the three annealings). These results are explained from a model which allows for the coalescence of defects and considers the surface of the sample as being the principal source of vacancies. During the annealings, the migration of vacancies brings about the gradual annihilation of the implant defects. The adjustment of certain calculation parameters on the computer result in giving 2 eV as energy value for the formation of vacancies [fr

  10. Human vision-based algorithm to hide defective pixels in LCDs

    Science.gov (United States)

    Kimpe, Tom; Coulier, Stefaan; Van Hoey, Gert

    2006-02-01

    Producing displays without pixel defects or repairing defective pixels is technically not possible at this moment. This paper presents a new approach to solve this problem: defects are made invisible for the user by using image processing algorithms based on characteristics of the human eye. The performance of this new algorithm has been evaluated using two different methods. First of all the theoretical response of the human eye was analyzed on a series of images and this before and after applying the defective pixel compensation algorithm. These results show that indeed it is possible to mask a defective pixel. A second method was to perform a psycho-visual test where users were asked whether or not a defective pixel could be perceived. The results of these user tests also confirm the value of the new algorithm. Our "defective pixel correction" algorithm can be implemented very efficiently and cost-effectively as pixel-dataprocessing algorithms inside the display in for instance an FPGA, a DSP or a microprocessor. The described techniques are also valid for both monochrome and color displays ranging from high-quality medical displays to consumer LCDTV applications.

  11. Modeling the relationships among internal defect features and external Appalachian hardwood log defect indicators

    Science.gov (United States)

    R. Edward. Thomas

    2009-01-01

    As a hardwood tree grows and develops, surface defects such as branch stubs and wounds are overgrown. Evidence of these defects remain on the log surface for decades and in many instances for the life of the tree. As the tree grows the defect is encapsulated or grown over by new wood. During this process the appearance of the defect in the tree's bark changes. The...

  12. Automatic classification of blank substrate defects

    Science.gov (United States)

    Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati

    2014-10-01

    Mask preparation stages are crucial in mask manufacturing, since this mask is to later act as a template for considerable number of dies on wafer. Defects on the initial blank substrate, and subsequent cleaned and coated substrates, can have a profound impact on the usability of the finished mask. This emphasizes the need for early and accurate identification of blank substrate defects and the risk they pose to the patterned reticle. While Automatic Defect Classification (ADC) is a well-developed technology for inspection and analysis of defects on patterned wafers and masks in the semiconductors industry, ADC for mask blanks is still in the early stages of adoption and development. Calibre ADC is a powerful analysis tool for fast, accurate, consistent and automatic classification of defects on mask blanks. Accurate, automated classification of mask blanks leads to better usability of blanks by enabling defect avoidance technologies during mask writing. Detailed information on blank defects can help to select appropriate job-decks to be written on the mask by defect avoidance tools [1][4][5]. Smart algorithms separate critical defects from the potentially large number of non-critical defects or false defects detected at various stages during mask blank preparation. Mechanisms used by Calibre ADC to identify and characterize defects include defect location and size, signal polarity (dark, bright) in both transmitted and reflected review images, distinguishing defect signals from background noise in defect images. The Calibre ADC engine then uses a decision tree to translate this information into a defect classification code. Using this automated process improves classification accuracy, repeatability and speed, while avoiding the subjectivity of human judgment compared to the alternative of manual defect classification by trained personnel [2]. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at MP Mask

  13. Scaling defect decay and the reionization history of the Universe

    International Nuclear Information System (INIS)

    Avelino, P.P.; Barbosa, D.

    2004-01-01

    We consider a model for the reionization history of the Universe in which a significant fraction of the observed optical depth is a result of direct reionization by the decay products of a scaling cosmic defect network. We show that such network can make a significant contribution to the reionization history of the Universe even if its energy density is very small (the defect energy density has to be greater than about 10 -11 of the background density). We compute the Cosmic Microwave Background temperature, polarization and temperature-polarization cross power spectrum and show that a contribution to the observed optical depth due to the decay products of a scaling defect network may help to reconcile a high optical depth with a low redshift of complete reionization suggested by quasar data. However, if the energy density of defects is approximately a constant fraction of the background density then these models do not explain the large scale bump in the temperature-polarization cross power spectrum observed by Wilkinson Microwave Anisotropy Probe

  14. Absorption and atom mobility in electric field: point defect role in glasses

    International Nuclear Information System (INIS)

    Serruys, Y.; Vigouroux, J.P.

    1986-10-01

    During the surface analysis of dielectric materials, the impinging ionising particles induce point defects localised in the band gap and build an electrical charge. The electric field created by the charged defects modifies the physico-chemical properties of surface and bulk. We show that the fundamental study of defects allows a better understanding of technological phenomena such as dielectric breakdown, fracture and diffusion [fr

  15. Self-organized defect strings in two-dimensional crystals.

    Science.gov (United States)

    Lechner, Wolfgang; Polster, David; Maret, Georg; Keim, Peter; Dellago, Christoph

    2013-12-01

    Using experiments with single-particle resolution and computer simulations we study the collective behavior of multiple vacancies injected into two-dimensional crystals. We find that the defects assemble into linear strings, terminated by dislocations with antiparallel Burgers vectors. We show that these defect strings propagate through the crystal in a succession of rapid one-dimensional gliding and rare rotations. While the rotation rate decreases exponentially with the number of defects in the string, the diffusion constant is constant for large strings. By monitoring the separation of the dislocations at the end points, we measure their effective interactions with high precision beyond their spontaneous formation and annihilation, and we explain the double-well form of the dislocation interaction in terms of continuum elasticity theory.

  16. Defects improved photocatalytic ability of TiO2

    International Nuclear Information System (INIS)

    Li, Lei; Tian, Hong-Wei; Meng, Fan-Ling; Hu, Xiao-Ying; Zheng, Wei-Tao; Sun, Chang Q.

    2014-01-01

    Highlights: • Defect improves the photocatalytic ability by band gap narrowing and carrier life prolonging. • Atomic undercoordination shortens the local bonds, entraps, and polarizes electrons. • Polarization lowers the local workfunction and lengthens carrier life. • Entrapment and polarization narrows the band gap tuning the wavelength of absorption. - Abstract: Defect generation forms an important means modulating the photocatalytic ability of TiO 2 with mechanisms that remain yet unclear. Here we show that a spectral distillation clarifies the impact of defect on modulating the band gap, electroaffinity, and work function of the substance. Firstly, by analyzing XPS measurements, we calibrated the 2p 3/2 level of 451.47 eV for an isolated Ti atom and its shifts by 2.14 and 6.94 eV, respectively, upon Ti and TiO 2 bulk formation. Spectral difference between the defected and the un-defected TiO 2 skin revealed then that the 2p 3/2 level shifts further from 6.94 to 9.67 eV due to the defect-induced quantum entrapment. This entrapment is associated with an elevation of the upper edges of both the 2p 3/2 and the conduction band by polarization. The shortening and strengthening of bonds between undercoordinated atoms densify and entrap the core electrons, which in turn polarize the dangling bond electrons of defect atoms. The entrapment and polarization mediate thus the band gap, the electroaffinity, the work function, and the photocatalytic ability of TiO 2

  17. Holographic Chern-Simons defects

    International Nuclear Information System (INIS)

    Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; Sugimoto, Shigeki

    2016-01-01

    We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.

  18. Amino acids interacting with defected carbon nanotubes: ab initio calculations

    Directory of Open Access Journals (Sweden)

    M. Darvish Ganji

    2016-09-01

    Full Text Available The adsorption of a number of amino acids on a defected single-walled carbon nanotube (SWCNT is investigated by using the density-functional theory (DFT calculations. The adsorption energies and equilibrium distances are calculated for various configurations such as amino acid attaching to defect sites heptagon, pentagon and hexagon in defective tube and also for several molecular orientations with respect to the nanotube surface. The results showed that amino acids prefer to be physisorbed on the outer surface of the defected nanotube with different interaction strength following the hierarchy histidine > glycine > phenylalanine > cysteine. Comparing these findings with those obtained for perfect SWCNTs reveals that the adsorption energy of the amino acids increase for adsorption onto defected CNTs. The adsorption nature has also been evaluated by means of electronics structures analysis within the Mulliken population and DOS spectra for the interacting entities.

  19. Formation Mechanisms for Entry and Exit Defects in Bobbin Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    Abbas Tamadon

    2018-01-01

    Full Text Available Bobbin friction stir welding (BFSW is an innovative variant for the solid state welding process whereby a rotating symmetrical tool causes a fully penetrated bond. Despite the process development, there are still unknown variables in the characterization of the process parameters which can cause uncontrolled weld defects. The entry zone and the exit zone consist of two discontinuity-defects and removing them is one of the current challenges for improving the weld quality. In the present research, the characteristic features of the entry and exit defects in the weld structure and formation mechanism of them during the BFSW processing was investigated. Using stacked layers of multi-colour plasticine the material flow, analogous to metal flow, can be visualised. By using different colours as the path markers of the analogue model, the streamline flow can be easily delineated in the discontinuity defects compared with the metal welds. AA6082-T6 aluminium plates and multi-layered plasticine slabs were employed to replicate the entry-exit defects in the metal weld and analogue samples. The fixed-bobbin tool utilized for this research was optimized by adding a thread feature and tri-flat geometry to the pin and closed-end spiral scrolls on both shoulder surfaces. Samples were processed at different rotating and longitudinal speeds to show the degree of dependency on the welding parameters for the defects. The analogue models showed that the entry zone and the exit zone of the BFSW are affected by the inhomogeneity of the material flow regime which causes the ejection or disruption of the plastic flow in the gap between the bobbin shoulders. The trial aluminium welds showed that the elimination of entry-exit defects in the weld body is not completely possible but the size of the defects can be minimized by modification of the welding parameters. For the entry zone, the flow pattern evolution suggested formation mechanisms for a sprayed tail, island zone

  20. Strengthening of defected beam–column joints using CFRP

    Directory of Open Access Journals (Sweden)

    Mohamed H. Mahmoud

    2014-01-01

    Full Text Available This paper presents an experimental study for the structural performance of reinforced concrete (RC exterior beam–column joints rehabilitated using carbon-fiber-reinforced polymer (CFRP. The present experimental program consists of testing 10 half-scale specimens divided into three groups covering three possible defects in addition to an adequately detailed control specimen. The considered defects include the absence of the transverse reinforcement within the joint core, insufficient bond length for the beam main reinforcement and inadequate spliced implanted column on the joint. Three different strengthening schemes were used to rehabilitate the defected beam–column joints including externally bonded CFRP strips and sheets in addition to near surface mounted (NSM CFRP strips. The failure criteria including ultimate capacity, mode of failure, initial stiffness, ductility and the developed ultimate strain in the reinforcing steel and CFRP were considered and compared for each group for the control and the CFRP-strengthened specimens. The test results showed that the proposed CFRP strengthening configurations represented the best choice for strengthening the first two defects from the viewpoint of the studied failure criteria. On the other hand, the results of the third group showed that strengthening the joint using NSM strip technique enabled the specimen to outperform the structural performance of the control specimen while strengthening the joints using externally bonded CFRP strips and sheets failed to restore the strengthened joints capacity.

  1. Strengthening of defected beam-column joints using CFRP.

    Science.gov (United States)

    Mahmoud, Mohamed H; Afefy, Hamdy M; Kassem, Nesreen M; Fawzy, Tarek M

    2014-01-01

    This paper presents an experimental study for the structural performance of reinforced concrete (RC) exterior beam-column joints rehabilitated using carbon-fiber-reinforced polymer (CFRP). The present experimental program consists of testing 10 half-scale specimens divided into three groups covering three possible defects in addition to an adequately detailed control specimen. The considered defects include the absence of the transverse reinforcement within the joint core, insufficient bond length for the beam main reinforcement and inadequate spliced implanted column on the joint. Three different strengthening schemes were used to rehabilitate the defected beam-column joints including externally bonded CFRP strips and sheets in addition to near surface mounted (NSM) CFRP strips. The failure criteria including ultimate capacity, mode of failure, initial stiffness, ductility and the developed ultimate strain in the reinforcing steel and CFRP were considered and compared for each group for the control and the CFRP-strengthened specimens. The test results showed that the proposed CFRP strengthening configurations represented the best choice for strengthening the first two defects from the viewpoint of the studied failure criteria. On the other hand, the results of the third group showed that strengthening the joint using NSM strip technique enabled the specimen to outperform the structural performance of the control specimen while strengthening the joints using externally bonded CFRP strips and sheets failed to restore the strengthened joints capacity.

  2. Behavior of duplex stainless steel casting defects under mechanical loadings

    Energy Technology Data Exchange (ETDEWEB)

    Jayet-Gendrot, S [Electricite de France, 77 - Moret-sur-Loing (France). Dept. of Materials Study; Gilles, P; Migne, C [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1997-04-01

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster`s envelope. The tests are analyzed in order to develop a method that takes into account the behavior of castings defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modelling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (author) 18 refs.

  3. Recovery of Frenkel defects in fcc metals

    International Nuclear Information System (INIS)

    Chaplin, R.L.; Miller, M.G.

    1976-01-01

    Because of the production of Frenkel defects occurs most readily along specific crystallographic directions in fcc structures, the recovery mechanism by which annihilation occurs should also be related to the same crystallographic orientations. The recovery path of a diffusing interstitial requires the formation of a temporary metastable state as a close-pair Frenkel defect prior to annihilation. A theoretical treatment of this scheme for interstitial-vacancy recombination shows that during the Isub(D) diffusion there is an experimentally measurable difference if the recovery forms a Isub(B) or a Isub(C) close-pair configuration in aluminum. Experimental results are given which show a difference from the theoretical predictions, and it is concluded that the assumed analytical function describing the interstitial-vacancy distribution created by a 0.4 MeV electron irradiation should be modified. (author)

  4. Osterix-Cre transgene causes craniofacial bone development defect

    Science.gov (United States)

    Wang, Li; Mishina, Yuji; Liu, Fei

    2015-01-01

    The Cre/loxP system has been widely used to generate tissue-specific gene knockout mice. Inducible (Tet-off) Osx-GFP::Cre (Osx-Cre) mouse line that targets osteoblasts is widely used in the bone research field. In this study, we investigated the effect of Osx-Cre on craniofacial bone development. We found that newborn Osx-Cre mice showed severe hypomineralization in parietal, frontal, and nasal bones as well as the coronal sutural area when compared to control mice. As the mice matured the intramembranous bone hypomineralization phenotype became less severe. The major hypomineralization defect in parietal, frontal, and nasal bones had mostly disappeared by postnatal day 21, but the defect in sutural areas persisted. Importantly, Doxycycline treatment eliminated cranial bone defects at birth which indicates that Cre expression may be responsible for the phenotype. In addition, we showed that the primary calvarial osteoblasts isolated from neonatal Osx-Cre mice had comparable differentiation ability compared to their littermate controls. This study reinforces the idea that Cre positive litter mates are indispensable controls in studies using conditional gene deletion. PMID:25550101

  5. Nitrotyrosine adsorption on defective graphene: A density functional theory study

    Science.gov (United States)

    Majidi, R.; Karami, A. R.

    2015-06-01

    We have applied density functional theory to study adsorption of nitrotyrosine on perfect and defective graphene sheets. The graphene sheets with Stone-Wales (SW) defect, pentagon-nonagon (5-9) single vacancy, and pentagon-octagon-pentagon (5-8-5) double vacancy were considered. The calculations of adsorption energy showed that nitrotyrosine presents a more strong interaction with defective graphene rather than with perfect graphene sheet. The order of interaction strength is: SW>5-9>5-8-5>perfect graphene. It is found that the electronic properties of perfect and defective graphene are sensitive to the presence of nitrotyrosine. Hence, graphene sheets can be considered as a good sensor for detection of nitrotyrosine molecule which is observed in connection with several human disorders, such as Parkinson's and Alzheimer's disease.

  6. Subsurface defects structural evolution in nano-cutting of single crystal copper

    International Nuclear Information System (INIS)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Sun, Yazhou; Guo, Yongbo; Liang, Yingchun

    2015-01-01

    Highlights: • An innovative analysis method is adopted to analyze nano-cutting process accurately. • A characteristic SFT and stair-rod dislocation are found in subsurface defect layer. • The formation mechanism of stair-rod dislocation is investigated. • The local atomic structure of subsurface defects is introduced. - Abstract: In this work, molecular dynamics simulation is performed to study the subsurface defects structural distribution and its evolution during nano-cutting process of single crystal copper. The formation mechanism of chip and machined surface is interviewed by analyzing the dislocation evolution and atomic migration. The centro-symmetry parameter and spherical harmonics method are adopted to characterize the distribution and evolution of the subsurface defect structures and local atomic structures. The results show that stacking faults, dislocation loops, “V-shaped” dislocation loops, and plenty of point defects are formed during the machined surface being formed in shear-slip zone. In subsurface damage layers, stair-rod dislocation, stacking fault tetrahedra, atomic cluster defect, and vacancy defect are formed. And the formation mechanism of stair-rod dislocation is investigated by atomic-scale structure evolution. The local atomic structures of subsurface defects are icosahedrons, hexagonal close packed, body-centered cubic, and defect face center cubic, and the variations of local atomic structures are investigated

  7. Subsurface defects structural evolution in nano-cutting of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quanlong [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bai, Qingshun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chen, Jiaxuan, E-mail: wangquanlong0@hit.edu.cn [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Yazhou [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Yongbo [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Liang, Yingchun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-07-30

    Highlights: • An innovative analysis method is adopted to analyze nano-cutting process accurately. • A characteristic SFT and stair-rod dislocation are found in subsurface defect layer. • The formation mechanism of stair-rod dislocation is investigated. • The local atomic structure of subsurface defects is introduced. - Abstract: In this work, molecular dynamics simulation is performed to study the subsurface defects structural distribution and its evolution during nano-cutting process of single crystal copper. The formation mechanism of chip and machined surface is interviewed by analyzing the dislocation evolution and atomic migration. The centro-symmetry parameter and spherical harmonics method are adopted to characterize the distribution and evolution of the subsurface defect structures and local atomic structures. The results show that stacking faults, dislocation loops, “V-shaped” dislocation loops, and plenty of point defects are formed during the machined surface being formed in shear-slip zone. In subsurface damage layers, stair-rod dislocation, stacking fault tetrahedra, atomic cluster defect, and vacancy defect are formed. And the formation mechanism of stair-rod dislocation is investigated by atomic-scale structure evolution. The local atomic structures of subsurface defects are icosahedrons, hexagonal close packed, body-centered cubic, and defect face center cubic, and the variations of local atomic structures are investigated.

  8. Nonlinear effects in defect production by atomic and molecular ion implantation

    International Nuclear Information System (INIS)

    David, C.; Dholakia, Manan; Chandra, Sharat; Nair, K. G. M.; Panigrahi, B. K.; Amirthapandian, S.; Amarendra, G.; Varghese Anto, C.; Santhana Raman, P.; Kennedy, John

    2015-01-01

    This report deals with studies concerning vacancy related defects created in silicon due to implantation of 200 keV per atom aluminium and its molecular ions up to a plurality of 4. The depth profiles of vacancy defects in samples in their as implanted condition are carried out by Doppler broadening spectroscopy using low energy positron beams. In contrast to studies in the literature reporting a progressive increase in damage with plurality, implantation of aluminium atomic and molecular ions up to Al 3 , resulted in production of similar concentration of vacancy defects. However, a drastic increase in vacancy defects is observed due to Al 4 implantation. The observed behavioural trend with respect to plurality has even translated to the number of vacancies locked in vacancy clusters, as determined through gold labelling experiments. The impact of aluminium atomic and molecular ions simulated using MD showed a monotonic increase in production of vacancy defects for cluster sizes up to 4. The trend in damage production with plurality has been explained on the basis of a defect evolution scheme in which for medium defect concentrations, there is a saturation of the as-implanted damage and an increase for higher defect concentrations

  9. Defect dynamics and coarsening dynamics in smectic-C films

    Science.gov (United States)

    Pargellis, A. N.; Finn, P.; Goodby, J. W.; Panizza, P.; Yurke, B.; Cladis, P. E.

    1992-12-01

    We study the dynamics of defects generated in free-standing films of liquid crystals following a thermal quench from the smectic-A phase to the smectic-C phase. The defects are type-1 disclinations, and the strain field between defect pairs is confined to 2π walls. We compare our observations with a phenomenological model that includes dipole coupling of the director field to an external ordering field. This model is able to account for both the observed coalescence dynamics and the observed ordering dynamics. In the absence of an ordering field, our model predicts the defect density ρ to scale with time t as ρ lnρ~t-1. When the dipole coupling of the director field to an external ordering field is included, both the model and experiments show the defect coarsening proceeds as ρ~e-αt with the strain field confined to 2π walls. The external ordering field most likely arises from the director's tendency to align with edge dislocations within the liquid-crystal film.

  10. Point defects in solids

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The principal properties of point defects are studied: thermodynamics, electronic structure, interactions with etended defects, production by irradiation. Some measuring methods are presented: atomic diffusion, spectroscopic methods, diffuse scattering of neutron and X rays, positron annihilation, molecular dynamics. Then points defects in various materials are investigated: ionic crystals, oxides, semiconductor materials, metals, intermetallic compounds, carbides, nitrides [fr

  11. Impact of interstitial iron on the study of meta-stable B-O defects in Czochralski silicon: Further evidence of a single defect

    Science.gov (United States)

    Kim, Moonyong; Chen, Daniel; Abbott, Malcolm; Nampalli, Nitin; Wenham, Stuart; Stefani, Bruno; Hallam, Brett

    2018-04-01

    We explore the influence of interstitial iron (Fei) on lifetime spectroscopy of boron-oxygen (B-O) related degradation in p-type Czochralski silicon. Theoretical and experimental evidence presented in this study indicate that iron-boron pair (Fe-B) related reactions could have influenced several key experimental results used to derive theories on the fundamental properties of the B-O defect. Firstly, the presence of Fei can account for higher apparent capture cross-section ratios (k) of approximately 100 observed in previous studies during early stages of B-O related degradation. Secondly, the association of Fe-B pairs can explain the initial stage of a two-stage recovery of carrier lifetime with dark annealing after partial degradation. Thirdly, Fei can result in high apparent k values after the permanent deactivation of B-O defects. Subsequently, we show that a single k value can describe the recombination properties associated with B-O defects throughout degradation, that the recovery during dark annealing occurs with a single-stage, and both the fast- and slow-stage B-O related degradation can be permanently deactivated during illuminated annealing. Accounting for the recombination activity of Fei provides further evidence that the B-O defect is a single defect, rather than two separate defects normally attributed to fast-forming recombination centers and slow-forming recombination centers. Implications of this finding for the nature of the B-O defect are also discussed.

  12. Study on on-machine defects measuring system on high power laser optical elements

    Science.gov (United States)

    Luo, Chi; Shi, Feng; Lin, Zhifan; Zhang, Tong; Wang, Guilin

    2017-10-01

    The influence of surface defects on high power laser optical elements will cause some harm to the performances of imaging system, including the energy consumption and the damage of film layer. To further increase surface defects on high power laser optical element, on-machine defects measuring system was investigated. Firstly, the selection and design are completed by the working condition analysis of the on-machine defects detection system. By designing on processing algorithms to realize the classification recognition and evaluation of surface defects. The calibration experiment of the scratch was done by using the self-made standard alignment plate. Finally, the detection and evaluation of surface defects of large diameter semi-cylindrical silicon mirror are realized. The calibration results show that the size deviation is less than 4% that meet the precision requirement of the detection of the defects. Through the detection of images the on-machine defects detection system can realize the accurate identification of surface defects.

  13. Quantitative Evaluation of Defect Based on Ultrasonic Guided Wave and CHMM

    Directory of Open Access Journals (Sweden)

    Chen Le

    2016-01-01

    Full Text Available The axial length of pipe defects is not linear with the reflection coefficient, which is difficult to identify the axial length of the defect by the reflection coefficient method. Continuous Hidden Markov Model (CHMM is proposed to accurately classify the axial length of defects, achieving the objective of preliminary quantitative evaluation. Firstly, wavelet packet decomposition method is used to extract the characteristic information of the guided wave signal, and Kernel Sliced Inverse Regression (KSIR method is used to reduce the dimension of feature set. Then, a variety of CHMM models are trained for classification. Finally, the trained models are used to identify the artificial corrosion defects on the outer surface of the pipe. The results show that the CHMM model has better robustness and can accurately identify the axial defects.

  14. On the performance limiting behavior of defect clusters in commercial silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L.; Chen, W.; Jones, K. [National Renewable Energy Lab., Golden, CO (United States); Gee, J. [Sandia National Labs., Albuquerque, NM (United States)

    1998-09-01

    The authors report the observation of defect clusters in high-quality, commercial silicon solar cell substrates. The nature of the defect clusters, their mechanism of formation, and precipitation of metallic impurities at the defect clusters are discussed. This defect configuration influences the device performance in a unique way--by primarily degrading the voltage-related parameters. Network modeling is used to show that, in an N/P junction device, these regions act as shunts that dissipate power generated within the cell.

  15. EUV actinic defect inspection and defect printability at the sub-32 nm half pitch

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Sungmin; Kearney, Patrick; Wurm, Stefan; Goodwin, Frank; Han, Hakseung; Goldberg, Kenneth; Mochi, Iacopp; Gullikson, Eric M.

    2009-08-01

    Extreme ultraviolet (EUV) mask blanks with embedded phase defects were inspected with a reticle actinic inspection tool (AIT) and the Lasertec M7360. The Lasertec M7360, operated at SEMA TECH's Mask Blank Development Center (MBDC) in Albany, NY, has a sensitivity to multilayer defects down to 40-45 nm, which is not likely sufficient for mask blank development below the 32 nm half-pitch node. Phase defect printability was simulated to calculate the required defect sensitivity for a next generation blank inspection tool to support reticle development for the sub-32 nm half-pitch technology node. Defect mitigation technology is proposed to take advantage of mask blanks with some defects. This technology will reduce the cost of ownership of EUV mask blanks. This paper will also discuss the kind of infrastructure that will be required for the development and mass production stages.

  16. Regularities of radiation defects build up on oxide materials surface

    International Nuclear Information System (INIS)

    Bitenbaev, M.I.; Polyakov, A.I.; Tuseev, T.

    2005-01-01

    Analysis of experimental data by radiation defects study on different oxide elements (silicon, beryllium, aluminium, rare earth elements) irradiated by the photo-, gamma-, neutron-, alpha- radiation, protons and helium ions show, that gas adsorption process on the surface centers and radiation defects build up in metal oxide correlated between themselves. These processes were described by the equivalent kinetic equations for analysis of radiation defects build up in the different metal oxides. It was revealed in the result of the analysis: number of radiation defects are droningly increasing up to limit value with the treatment temperature growth. Constant of radicals death at ionizing radiation increases as well. Amount of surface defects in different oxides defining absorbing activity of these materials looks as: silicon oxide→beryllium oxide→aluminium oxide. So it was found, that most optimal material for absorbing system preparation is silicon oxide by it power intensity and berylium oxide by it adsorption efficiency

  17. Curvature-induced defect unbinding and dynamics in active nematic toroids

    Science.gov (United States)

    Ellis, Perry W.; Pearce, Daniel J. G.; Chang, Ya-Wen; Goldsztein, Guillermo; Giomi, Luca; Fernandez-Nieves, Alberto

    2018-01-01

    Nematic order on curved surfaces is often disrupted by the presence of topological defects, which are singular regions in which the orientational order is undefined. In the presence of force-generating active materials, these defects are able to migrate through space like swimming microorganisms. We use toroidal surfaces to show that despite their highly chaotic and non-equilibrium dynamics, pairs of defects unbind and segregate in regions of opposite Gaussian curvature. Using numerical simulations, we find that the degree of defect unbinding can be controlled by tuning the system activity, and even suppressed in strongly active systems. Furthermore, by using the defects as active microrheological tracers and quantitatively comparing our experimental and theoretical results, we are able to determine material properties of the active nematic. Our results illustrate how topology and geometry can be used to control the behaviour of active materials, and introduce a new avenue for the quantitative mechanical characterization of active fluids.

  18. Accurate defect die placement and nuisance defect reduction for reticle die-to-die inspections

    Science.gov (United States)

    Wen, Vincent; Huang, L. R.; Lin, C. J.; Tseng, Y. N.; Huang, W. H.; Tuo, Laurent C.; Wylie, Mark; Chen, Ellison; Wang, Elvik; Glasser, Joshua; Kelkar, Amrish; Wu, David

    2015-10-01

    Die-to-die reticle inspections are among the simplest and most sensitive reticle inspections because of the use of an identical-design neighboring-die for the reference image. However, this inspection mode can have two key disadvantages: (1) The location of the defect is indeterminate because it is unclear to the inspector whether the test or reference image is defective; and (2) nuisance and false defects from mask manufacturing noise and tool optical variation can limit the usable sensitivity. The use of a new sequencing approach for a die-to-die inspection can resolve these issues without any additional scan time, without sacrifice in sensitivity requirement, and with a manageable increase in computation load. In this paper we explore another approach for die-to-die inspections using a new method of defect processing and sequencing. Utilizing die-to-die double arbitration during defect detection has been proven through extensive testing to generate accurate placement of the defect in the correct die to ensure efficient defect disposition at the AIMS step. The use of this method maintained the required inspection sensitivity for mask quality as verified with programmed-defectmask qualification and then further validated with production masks comparing the current inspection approach to the new method. Furthermore, this approach can significantly reduce the total number of defects that need to be reviewed by essentially eliminating the nuisance and false defects that can result from a die-to-die inspection. This "double-win" will significantly reduce the effort in classifying a die-to-die inspection result and will lead to improved cycle times.

  19. Multiscale crystal defect dynamics: A coarse-grained lattice defect model based on crystal microstructure

    Science.gov (United States)

    Lyu, Dandan; Li, Shaofan

    2017-10-01

    Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.

  20. Surface defects and chiral algebras

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States); Gaiotto, Davide [Perimeter Institute for Theoretical Physics,31 Caroline St N, Waterloo, ON N2L 2Y5 (Canada); Shao, Shu-Heng [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States)

    2017-05-26

    We investigate superconformal surface defects in four-dimensional N=2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfeld-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. In each case we find perfect agreement with the predicted characters.

  1. Chemical stability and defect formation in CaHfO3

    KAUST Repository

    Alay-E-Abbas, Syed Muhammad

    2014-04-01

    Defects in CaHfO3 are investigated by ab initio calculations based on density functional theory. Pristine and anion-deficient CaHfO 3 are found to be insulating, whereas cation-deficient CaHfO 3 is hole-doped. The formation energies of neutral and charged cation and anion vacancies are evaluated to determine the stability in different chemical environments. Moreover, the energies of the partial and full Schottky defect reactions are computed. We show that clustering of anion vacancies in the HfO layers is energetically favorable for sufficiently high defect concentrations and results in metallicity. © 2014 EPLA.

  2. Chemical stability and defect formation in CaHfO3

    KAUST Repository

    Alay-E-Abbas, Syed Muhammad; Nazir, Safdar; Mun Wong, Kin; Shaukat, Ali; Schwingenschlö gl, Udo

    2014-01-01

    Defects in CaHfO3 are investigated by ab initio calculations based on density functional theory. Pristine and anion-deficient CaHfO 3 are found to be insulating, whereas cation-deficient CaHfO 3 is hole-doped. The formation energies of neutral and charged cation and anion vacancies are evaluated to determine the stability in different chemical environments. Moreover, the energies of the partial and full Schottky defect reactions are computed. We show that clustering of anion vacancies in the HfO layers is energetically favorable for sufficiently high defect concentrations and results in metallicity. © 2014 EPLA.

  3. Laterality defects in the national birth defects prevention study 1998-2007 birth prevalence and descriptive epidemiology

    Science.gov (United States)

    Little is known epidemiologically about laterality defects. Using data from the National Birth Defects Prevention Study (NBDPS), a large multi-site case-control study of birth defects, we analyzed prevalence and selected characteristics in children born with laterality defects born from 1998 to 2007...

  4. [Effect of simvastatin on inducing endothelial progenitor cells homing and promoting bone defect repair].

    Science.gov (United States)

    Song, Quansheng; Wang, Lingying; Zhu, Jinglin; Han, Xiaoguang; Li, Xu; Yang, Yanlin; Sun, Yan; Song, Chunli

    2010-09-01

    To investigate the effect of simvastatin on inducing endothelial progenitor cells (EPCs) homing and promoting bone defect repair, and to explore the mechanism of local implanting simvastatin in promoting bone formation. Simvastatin (50 mg) compounded with polylactic acid (PLA, 200 mg) or only PLA (200 mg) was dissolved in acetone (1 mL) to prepare implanted materials (Simvastatin-PLA material, PLA material). EPCs were harvested from bone marrow of 2 male rabbits and cultured with M199; after identified by immunohistochemistry, the cell suspension of EPCs at the 3rd generation (2 x 10(6) cells/mL) was prepared and transplanted into 12 female rabbits through auricular veins (2 mL). After 3 days, the models of cranial defect with 15 cm diameter were made in the 12 female rabbits. And the defects were repaired with Simvastatin-PLA materials (experimental group, n=6) and PLA materials (control group, n=6), respectively. The bone repair was observed after 8 weeks of operation by gross appearance, X-ray film, and histology; gelatin-ink perfusion and HE staining were used to show the new vessels formation in the defect. Fluorescence in situ hybridization (FISH) was performed to show the EPCs homing at the defect site. All experimental animals of 2 groups survived to the end of the experiment. After 8 weeks in experimental group, new bone formation was observed in the bone defect by gross and histology, and an irregular, hyperdense shadow by X-ray film; no similar changes were observed in control group. FISH showed that the male EPC containing Y chromosome was found in the wall of new vessels in the defect of experimental group, while no male EPC containing Y chromosome was found in control group. The percentage of new bone formation in defect area was 91.63% +/- 4.07% in experimental group and 59.45% +/- 5.43% in control group, showing significant difference (P < 0.05). Simvastatin can promote bone defect repair, and its mechanism is probably associated with inducing EPCs

  5. Pressure tests to assess the significance of defects in boiler and superheater tubing

    International Nuclear Information System (INIS)

    Guest, J.C.; Hutchings, J.A.

    1975-01-01

    Internal pressure tests on 9 per cent Cr-1 per cent Mo steel tubing containing artificial defects demonstrated that the resultant loss of strength was less than a simple calculation based on the reduced tube thickness would suggest. Bursting tests on tubes containing longitudinal defects of varying length, depth and acuity showed notch strengthening at ambient temperature and at 550 0 C. A flow stress concept developed for simple bursting tests was shown to apply to creep conditions at 550 0 C. Results of creep and short-term bursting tests show that the length as well as the depth of the defect is an important factor affecting the life of bursting strength of the tubes. Defects less than 10 per cent of the tube thickness were found to have an insignificant effect. (author)

  6. Defects at oxide surfaces

    CERN Document Server

    Thornton, Geoff

    2015-01-01

    This book presents the basics and characterization of defects at oxide surfaces. It provides a state-of-the-art review of the field, containing information to the various types of surface defects, describes analytical methods to study defects, their chemical activity and the catalytic reactivity of oxides. Numerical simulations of defective structures complete the picture developed. Defects on planar surfaces form the focus of much of the book, although the investigation of powder samples also form an important part. The experimental study of planar surfaces opens the possibility of applying the large armoury of techniques that have been developed over the last half-century to study surfaces in ultra-high vacuum. This enables the acquisition of atomic level data under well-controlled conditions, providing a stringent test of theoretical methods. The latter can then be more reliably applied to systems such as nanoparticles for which accurate methods of characterization of structure and electronic properties ha...

  7. Atomic structure of defects in GaN:Mg grown with Ga polarity

    International Nuclear Information System (INIS)

    Liliental-Weber, Z.; Tomaszewicz, T.; Zakharov, D.; Jasinski, J.; O'Keefe, M.A.; Hautakangas, S.; Laakso, A.; Saarinen, K.

    2003-01-01

    Electron microscope phase images, produced by direct reconstruction of the scattered electron wave from a focal series of high-resolution images, were used to determine the nature of defects formed in GaN:Mg crystals. We studied bulk crystals grown from dilute solutions of atomic nitrogen in liquid gallium at high pressure and thin films grown by the MOCVD method. All the crystals were grown with Ga-polarity. In both types of samples the majority of defects were three dimensional Mg-rich hexagonal pyramids with bases on the (0001) plane and six walls on {11(und 2)3} planes seen in cross-section as triangulars. Some other defects appear in cross-section as trapezoidal (rectangular) defects as a result of presence of truncated pyramids. Both type of defects have hollow centers. They are decorated by Mg on all six side walls and a base. The GaN which grows inside on the defect walls shows polarity inversion. It is shown that change of polarity starts from the defect tip and propagates to the base, and that the stacking sequence changes from ab in the matrix to bc inside the defect. Exchange of the Ga sublattice with the N sublattice within the defect leads to 0.6 ± 0.2(angstrom) displacement between Ga sublattices outside and inside the defects. It is proposed that lateral overgrowth of the cavities formed within the defect takes place to restore matrix polarity on the defect base

  8. 48 CFR 1615.407-1 - Rate reduction for defective pricing or defective cost or pricing data.

    Science.gov (United States)

    2010-10-01

    ... defective pricing or defective cost or pricing data. 1615.407-1 Section 1615.407-1 Federal Acquisition... CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 1615.407-1 Rate reduction for defective pricing or defective cost or pricing data. The clause set forth in section 1652.215-70...

  9. 48 CFR 1652.215-70 - Rate Reduction for Defective Pricing or Defective Cost or Pricing Data.

    Science.gov (United States)

    2010-10-01

    ... Defective Pricing or Defective Cost or Pricing Data. 1652.215-70 Section 1652.215-70 Federal Acquisition... CLAUSES AND FORMS CONTRACT CLAUSES Texts of FEHBP Clauses 1652.215-70 Rate Reduction for Defective Pricing or Defective Cost or Pricing Data. As prescribed in 1615.407-1, the following clause shall be...

  10. Point defects in platinum

    International Nuclear Information System (INIS)

    Piercy, G.R.

    1960-01-01

    An investigation was made of the mobility and types of point defect introduced in platinum by deformation in liquid nitrogen, quenching into water from 1600 o C, or reactor irradiation at 50 o C. In all cases the activation energy for motion of the defect was determined from measurements of electrical resistivity. Measurements of density, hardness, and x-ray line broadening were also made there applicable. These experiments indicated that the principal defects remaining in platinum after irradiation were single vacant lattice sites and after quenching were pairs of vacant lattice sites. Those present after deformation In liquid nitrogen were single vacant lattice sites and another type of defect, perhaps interstitial atoms. (author)

  11. Effect of sp3-hybridized defects on the oscillatory behavior of carbon nanotube oscillators

    International Nuclear Information System (INIS)

    Guo, Taiyu; Ding, Tony Weixi; Pei, Qing-Xiang; Zhang, Yong-Wei

    2011-01-01

    Using molecular dynamics simulations, we investigate the oscillatory behaviors of carbon nanotube oscillators containing sp 3 -hybridized defects formed by hydrogen chemisorption. It is found that the presence of these defects significantly affects the kinetic and potential energies of the nanotube systems, which in turn affects their oscillation periods and frequencies. We have also studied the oscillatory characteristics of the oscillators containing sp 3 -hybridized Stone-Wales defects. Our results show that it is possible to control the motion of the inner nanotube by introducing sp 3 -hybridized defects on the outer nanotube, which provides a potential way to tune the oscillatory behavior of nanotube oscillators. -- Highlights: → sp 3 -hybridized defects increase energy dissipation. → sp 3 -hybridized defects arranged in a row have stronger effect than that in a ring. → sp 3 -hybridized defects reduces the effect of SW defects.

  12. Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects

    KAUST Repository

    Wu, Ying

    2013-05-06

    In this work, we investigate wave transmission property through a zero index metamaterial (ZIM) waveguide embedded with rectangular dielectric defects. We show that total reflection and total transmission (cloaking) can be achieved by adjusting the geometric sizes and/or permittivities of the defects. Our work provides another possibility of manipulating wave propagation through ZIM in addition to the widely studied dielectric defects with cylindrical geometries.

  13. Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects

    KAUST Repository

    Wu, Ying; Li, Jichun

    2013-01-01

    In this work, we investigate wave transmission property through a zero index metamaterial (ZIM) waveguide embedded with rectangular dielectric defects. We show that total reflection and total transmission (cloaking) can be achieved by adjusting the geometric sizes and/or permittivities of the defects. Our work provides another possibility of manipulating wave propagation through ZIM in addition to the widely studied dielectric defects with cylindrical geometries.

  14. Electronic transport of bilayer graphene with asymmetry line defects

    Science.gov (United States)

    Zhao, Xiao-Ming; Wu, Ya-Jie; Chen, Chan; Liang, Ying; Kou, Su-Peng

    2016-11-01

    In this paper, we study the quantum properties of a bilayer graphene with (asymmetry) line defects. The localized states are found around the line defects. Thus, the line defects on one certain layer of the bilayer graphene can lead to an electric transport channel. By adding a bias potential along the direction of the line defects, we calculate the electric conductivity of bilayer graphene with line defects using the Landauer-Büttiker theory, and show that the channel affects the electric conductivity remarkably by comparing the results with those in a perfect bilayer graphene. This one-dimensional line electric channel has the potential to be applied in nanotechnology engineering. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921803 and 2012CB921704), the National Natural Science Foundation of China (Grant Nos. 11174035, 11474025, 11504285, and 11404090), the Specialized Research Fund for the Doctoral Program of Higher Education, China, the Fundamental Research Funds for the Central Universities, China, the Scientific Research Program Fund of the Shaanxi Provincial Education Department, China (Grant No. 15JK1363), and the Young Talent Fund of University Association for Science and Technology in Shaanxi Province, China.

  15. Repair of a mandibular defect with a free vascularized coccygeal vertebra transfer in a dog.

    Science.gov (United States)

    Yeh, L S; Hou, S M

    1994-01-01

    Bilateral mandibular defects in a male mongrel dog were repaired. On the left side, a free vascularized coccygeal bone graft that included the median caudal artery and caudal vein was used to correct the defect. On the right side, the defect was bridged with a bone plate and screws. For further immobilization, the muzzle was temporarily taped for 3 weeks and a pharyngostomy tube was used for nutritional support. The dog was able to eat dry commercial food satisfactorily within 2 months of surgery despite mild malocclusion. Radiographs taken 2 months and 18 months postoperatively showed bony union with graft hypertrophy in the left mandible, whereas the right mandibular defect showed protracted nonunion. The results indicate that vascularized coccygeal vertebra transfer provides an alternative for the management of canine mandibular defects.

  16. Dual-probe spectroscopic fingerprints of defects in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Petersen, Dirch Hjorth

    2014-01-01

    (e.g., an extended graphene sheet). Applying this method, we study the transport anisotropies in pristine graphene sheets, and analyze the spectroscopic fingerprints arising from quantum interference around single-site defects, such as vacancies and adatoms. Furthermore, we demonstrate that the dual......-probe setup is a useful tool for characterizing the electronic transport properties of extended defects or designed nanostructures. In particular, we show that nanoscale perforations, or antidots, in a graphene sheet display Fano-type resonances with a strong dependence on the edge geometry of the perforation....

  17. Effects of osteochondral defect size on cartilage regeneration using a double-network hydrogel.

    Science.gov (United States)

    Higa, Kotaro; Kitamura, Nobuto; Goto, Keiko; Kurokawa, Takayuki; Gong, Jian Ping; Kanaya, Fuminori; Yasuda, Kazunori

    2017-05-22

    There has been increased interest in one-step cell-free procedures to avoid the problems related to cell manipulation and its inherent disadvantages. We have studied the chondrogenic induction ability of a PAMPS/PDMAAm double-network (DN) gel and found it to induce chondrogenesis in animal osteochondral defect models. The purpose of this study was to investigate whether the healing process and the degree of cartilage regeneration induced by the cell-free method using DN gel are influenced by the size of osteochondral defects. A total of 63 mature female Japanese white rabbits were used in this study, randomly divided into 3 groups of 21 rabbits each. A 2.5-mm diameter osteochondral defect was created in the femoral trochlea of the patellofemoral joint of bilateral knees in Group I, a 4.3-mm osteochondral defect in Group II, and a 5.8-mm osteochondral defect in Group III. In the right knee of each animal, a DN gel plug was implanted so that a vacant space of 2-mm depth was left above the plug. In the left knee, we did not conduct any treatment to obtain control data. Animals were sacrificed at 2, 4, and 12 weeks after surgery, and gross and histological evaluations were made. The present study demonstrated that all sizes of the DN gel implanted defects as well as the 2.5mm untreated defects showed cartilage regeneration at 4 and 12 weeks. The 4.3-mm and 5.8-mm untreated defects did not show cartilage regeneration during the 12-week period. The quantitative score reported by O'Driscoll et al. was significantly higher in the 4.3-mm and 5.8-mm DN gel-implanted defects than the untreated defects at 4 and 12 weeks (p regeneration in defects between 2.5 and 5.8 mm, offering a promising device to establish a cell-free cartilage regeneration therapy and applicable to various sizes of osteochondral defects.

  18. Atomistic simulation of the point defects in TaW ordered alloy

    Indian Academy of Sciences (India)

    atom method (MAEAM), the formation, migration and activation energies of the point defects for six-kind migration mechanisms in B2-type TaW alloy have been investigated. The results showed that the anti-site defects TaW and WTa were easier to form than Ta and W vacancies owing to their lower formation energies.

  19. On the influence of extrinsic point defects on irradiation-induced point-defect distributions in silicon

    International Nuclear Information System (INIS)

    Vanhellemont, J.; Romano-Rodriguez, A.

    1994-01-01

    A semi-quantitative model describing the influence of interfaces and stress fields on {113}-defect generation in silicon during 1-MeV electron irradiation, is further developed to take into account also the role of extrinsic point defects. It is shown that the observed distribution of {113}-defects in high-flux electron-irradiated silicon and its dependence on irradiation temperature and dopant concentration can be understood by taking into account not only the influence of the surfaces and interfaces as sinks for intrinsic point defects but also the thermal stability of the bulk sinks for intrinsic point defects. In heavily doped silicon the bulk sinks are related with pairing reactions of the dopant atoms with the generated intrinsic point defects or related with enhanced recombination of vacancies and self-interstitials at extrinsic point defects. The obtained theoretical results are correlated with published experimental data on boron-and phosphorus-doped silicon and are illustrated with observations obtained by irradiating cross-section transmission electron microscopy samples of wafer with highly doped surface layers. (orig.)

  20. Improvement of defect characterization in ultrasonic testing by adaptative learning network

    International Nuclear Information System (INIS)

    Bieth, M.; Adamonis, D.C.; Jusino, A.

    1982-01-01

    Numerous methods exist now for signal analysis in ultrasonic testing. These methods give more or less accurate information for defects characterization. In this paper is presented the development of a particular system based on a computer Signal processing: the Adaptative Learning Network (ALN) allowing the discrimination of defects in function of their nature. The ultrasonic signal is sampled and characterized by parameters amplitude-time and amplitude-frequency. The method was tested on stainless steel tubes welds showing fatigue cracks. The ALN model developed allows, under certain conditions, the discrimination of cracks from other defects [fr

  1. Evidence against or for topological defects in the BOOMERanG data?

    International Nuclear Information System (INIS)

    Bouchet, F.R.; Peter, P.; Riazuelo, A.; Sakellariadou, M.

    2002-01-01

    The recently released BOOMERanG data were taken as 'contradicting topological defect predictions'. We show that such a statement is partly misleading. Indeed, the presence of a series of acoustic peaks is perfectly compatible with a non-negligible topological defect contribution. In such a mixed perturbation model (inflation and topological defects) for the source of primordial fluctuations, the natural prediction is a slightly lower amplitude for the Doppler peaks, a feature shared by many other purely inflationary models. Thus, for the moment, it seems difficult to rule out these models with the current data

  2. Defective ribosome assembly in Shwachman-Diamond syndrome.

    Science.gov (United States)

    Wong, Chi C; Traynor, David; Basse, Nicolas; Kay, Robert R; Warren, Alan J

    2011-10-20

    Shwachman-Diamond syndrome (SDS), a recessive leukemia predisposition disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, skeletal abnormalities and poor growth, is caused by mutations in the highly conserved SBDS gene. Here, we test the hypothesis that defective ribosome biogenesis underlies the pathogenesis of SDS. We create conditional mutants in the essential SBDS ortholog of the ancient eukaryote Dictyostelium discoideum using temperature-sensitive, self-splicing inteins, showing that mutant cells fail to grow at the restrictive temperature because ribosomal subunit joining is markedly impaired. Remarkably, wild type human SBDS complements the growth and ribosome assembly defects in mutant Dictyostelium cells, but disease-associated human SBDS variants are defective. SBDS directly interacts with the GTPase elongation factor-like 1 (EFL1) on nascent 60S subunits in vivo and together they catalyze eviction of the ribosome antiassociation factor eukaryotic initiation factor 6 (eIF6), a prerequisite for the translational activation of ribosomes. Importantly, lymphoblasts from SDS patients harbor a striking defect in ribosomal subunit joining whose magnitude is inversely proportional to the level of SBDS protein. These findings in Dictyostelium and SDS patient cells provide compelling support for the hypothesis that SDS is a ribosomopathy caused by corruption of an essential cytoplasmic step in 60S subunit maturation.

  3. Symmetry-forbidden intervalley scattering by atomic defects in monolayer transition-metal dichalcogenides

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Martiny, Johannes H. J.; Low, Tony

    2017-01-01

    protectionmechanism against intervalley scattering in monolayer TMDs. The predicteddefectdependent selection rules for intervalley scattering can be verified viaFourier transform scanning tunneling spectroscopy (FT-STS), and provide aunique identification of, e.g., atomic vacancy defects (M vs X). Our findingsare......Intervalley scattering by atomic defects in monolayer transition metaldichalcogenides (TDMs; MX2) presents a serious obstacle for applicationsexploiting their unique valley-contrasting properties. Here, we show that thesymmetry of the atomic defects can give rise to an unconventional...

  4. Photochemical Creation of Fluorescent Quantum Defects in Semiconducting Carbon Nanotube Hosts.

    Science.gov (United States)

    Wu, Xiaojian; Kim, Mijin; Kwon, Hyejin; Wang, YuHuang

    2018-01-15

    Quantum defects are an emerging class of synthetic single-photon emitters that hold vast potential for near-infrared imaging, chemical sensing, materials engineering, and quantum information processing. Herein, we show that it is possible to optically direct the synthetic creation of molecularly tunable fluorescent quantum defects in semiconducting single-walled carbon nanotube hosts through photochemical reactions. By exciting the host semiconductor with light that resonates with its electronic transition, we find that halide-containing aryl groups can covalently bond to the sp 2 carbon lattice. The introduced quantum defects generate bright photoluminescence that allows tracking of the reaction progress in situ. We show that the reaction is independent of temperature but correlates strongly with the photon energy used to drive the reaction, suggesting a photochemical mechanism rather than photothermal effects. This type of photochemical reactions opens the possibility to control the synthesis of fluorescent quantum defects using light and may enable lithographic patterning of quantum emitters with electronic and molecular precision. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Point defect thermodynamics and diffusion in Fe3C: A first-principles study

    International Nuclear Information System (INIS)

    Chao Jiang; Uberuaga, B.P.; Srinivasan, S.G.

    2008-01-01

    The point defect structure of cementite (Fe 3 C) is investigated using a combination of the statistical mechanical Wagner-Schottky model and first-principles calculations within the generalized gradient approximation. Large 128-atom supercells are employed to obtain fully converged point defect formation energies. The present study unambiguously shows that carbon vacancies and octahedral carbon interstitials are the structural defects in C-depleted and C-rich cementite, respectively. The dominant thermal defects in C-depleted and stoichiometric cementite are found to be carbon Frenkel pairs. In C-rich cementite, however, the primary thermal excitations are strongly temperature-dependent: interbranch, Schottky and Frenkel defects dominate successively with increasing temperature. Using the nudged elastic band technique, the migration barriers of major point defects in cementite are also determined and compared with available experiments in the literature

  6. Bone compositional study during healing of subcritical calvarial defects in rats by Raman spectroscopy

    Science.gov (United States)

    Ahmed, Rafay; Wing Lun Law, Alan; Cheung, Tsz Wing; Lau, Condon

    2017-07-01

    Subcritical calvarial defects are important to study bone regeneration during healing. In this study 1mm calvarial defects were created using trephine in the parietal bones of Sprague-Dawley rats (n=7) that served as in vivo defects. Subjects were sacrificed after 7 days and the additional defects were created on the harvested skull with the same method to serve as control defects. Raman spectroscopy is established to investigate mineral/matrix ratio, carbonate/phosphate ratio and crystallinity of three different surfaces; in vivo defects, control defects and normal surface. Results show 21% and 23% decrease in mineral/matrix after 7 days of healing from surface to in vivo and control to in vivo defects, respectively. Carbonate to phosphate ratio was found to be increased by 39% while crystallinity decreased by 26% in both surface to in vivo and control to in vivo defects. This model allows to study the regenerated bone without mechanically perturbing healing surface.

  7. Six-dimensional Origin of $\\mathcal{N}=4$ SYM with Duality Defects

    CERN Document Server

    Assel, Benjamin

    2016-12-14

    We study the topologically twisted compactification of the 6d $(2,0)$ M5-brane theory on an elliptically fibered K\\"ahler three-fold preserving two supercharges. We show that upon reducing on the elliptic fiber, the 4d theory is $\\mathcal{N}=4$ Super-Yang Mills, with varying complexified coupling $\\tau$, in the presence of defects. For abelian gauge group this agrees with the so-called duality twisted theory, and we determine a non-abelian generalization to $U(N)$. When the elliptic fibration is singular, the 4d theory contains 3d walls (along the branch-cuts of $\\tau$) and 2d surface defects, around which the 4d theory undergoes $SL(2,\\mathbb{Z})$ duality transformations. Such duality defects carry chiral fields, which from the 6d point of view arise as modes of the two-form $B$ in the tensor multiplet. Each duality defect has a flavor symmetry associated to it, which is encoded in the structure of the singular elliptic fiber above the defect. Generically 2d surface defects will intersect in points in 4d, wh...

  8. Structural integrity evaluation of SG tube with surface wear-type defects

    International Nuclear Information System (INIS)

    Kim, Jong Min; Huh, Nam Su; Chang, Yoon Suk; Kim, Young Jin; Hwang, Seong Sik; Kim, Joung Soo

    2006-01-01

    During the last two decades, several guidelines have been developed and used for assessing the integrity of a defective Steam Generator (SG) tube that is generally caused by stress corrosion cracking or wall-thinning phenomenon. However, as some of SG tubes are also failed due to fretting and so on, alternative failure estimation schemes are required for relevant defects. In this paper, parametric three-dimensional Finite Element (FE) analyses are carried out under internal pressure condition to simulate the failure behavior of SG tubes with different defect configurations; elliptical wear, tapered and flat wear type defects. Maximum pressures based on material strengths are obtained from more than a hundred FE results to predict the failure of SG tube. After investigating the effect of key parameters such as defect depth, defect length and wrap angle, simplified failure estimation equations are proposed in relation to the equivalent stress at the deepest point in wear region. Comparison of failure pressures predicted by the proposed estimation scheme with corresponding burst test data showed a good agreement

  9. Congenital Heart Defects and CCHD

    Science.gov (United States)

    ... and more. Stony Point, NY 10980 Close X Home > Complications & Loss > Birth defects & other health conditions > Congenital heart defects and ... in congenital heart defects. You have a family history of congenital heart ... syndrome or VCF. After birth Your baby may be tested for CCHD as ...

  10. Neutron diffraction and lattice defects

    International Nuclear Information System (INIS)

    Hamaguchi, Yoshikazu

    1974-01-01

    Study on lattice defects by neutron diffraction technique is described. Wave length of neutron wave is longer than that of X-ray, and absorption cross-section is small. Number of defects observed by ESR is up to several defects, and the number studied with electron microscopes is more than 100. Information obtained by neutron diffraction concerns the number of defects between these two ranges. For practical analysis, several probable models are selected from the data of ESR or electron microscopes, and most probable one is determined by calculation. Then, defect concentration is obtained from scattering cross section. It is possible to measure elastic scattering exclusively by neutron diffraction. Minimum detectable concentration estimated is about 0.5% and 10 20 - 10 21 defects per unit volume. A chopper and a time of flight system are used as a measuring system. Cold neutrons are obtained from the neutron sources inserted into reactors. Examples of measurements by using similar equipments to PTNS-I system of Japan Atomic Energy Research Institute are presented. Interstitial concentration in the graphite irradiated by fast neutrons is shown. Defects in irradiated MgO were also investigated by measuring scattering cross section. Study of defects in Ge was made by measuring total cross section, and model analysis was performed in comparison with various models. (Kato, T.)

  11. Mechanical properties and fracture behaviour of defective phosphorene nanotubes under uniaxial tension

    Science.gov (United States)

    Liu, Ping; Pei, Qing-Xiang; Huang, Wei; Zhang, Yong-Wei

    2017-12-01

    The easy formation of vacancy defects and the asymmetry in the two sublayers of phosphorene nanotubes (PNTs) may result in brand new mechanical properties and failure behaviour. Herein, we investigate the mechanical properties and fracture behaviour of defective PNTs under uniaxial tension using molecular dynamics simulations. Our simulation results show that atomic vacancies cause local stress concentration and thus significantly reduce the fracture strength and fracture strain of PNTs. More specifically, a 1% defect concentration is able to reduce the fracture strength and fracture strain by as much as 50% and 66%, respectively. Interestingly, the reduction in the mechanical properties is found to depend on the defect location: a defect located in the outer sublayer has a stronger effect than one located in the inner layer, especially for PNTs with a small diameter. Temperature is also found to strongly influence the mechanical properties of both defect-free and defective PNTs. When the temperature is increased from 0 K to 400 K, the fracture strength and fracture strain of defective PNTs with a defect concentration of 1% are reduced further by 71% and 61%, respectively. These findings are of great importance for the structural design of PNTs as building blocks in nanodevices.

  12. Defects in boron ion implanted silicon

    International Nuclear Information System (INIS)

    Wu, W.K.

    1975-05-01

    The crystal defects formed after post-implantation annealing of B-ion-implanted Si irradiated at 100 keV to a moderate dose (2 x 10 14 /cm 2 ) were studied by transmission electron microscopy. Contrast analysis and annealing kinetics show at least two different kinds of linear rod-like defects along broken bracket 110 broken bracket directions. One kind either shrinks steadily remaining on broken bracket 110 broken bracket at high temperatures (greater than 850 0 C), or transforms into a perfect dislocation loop which rotates toward broken bracket 112 broken bracket perpendicular to its Burgers vector. The other kind shrinks steadily at moderate temperatures (approximately 800 0 C). The activation energy for shrinkage of the latter (3.5 +- 0.1 eV) is the same as that for B diffusion in Si, suggesting that this linear defect is a boron precipitate. There also exist a large number of perfect dislocation loops with Burgers vector a/2broken bracket 110 broken bracket. The depth distribution of all these defects was determined by stereomicroscopy. The B precipitates lying parallel to the foil surfaces are shown to be at a depth of about 3500 +- 600 A. The loops are also at the same depth, but with a broader spread, +-1100 A. Si samples containing B and samples containing no B (P-doped) were irradiated in the 650-kV electron microscope. Irradiation at 620 0 C resulted in the growth of very long linear defects in the B-doped samples but not in the others, suggesting that at 620 0 C Si interstitials produced by the electron beam replace substitutional B some of which precipitates in the form of long rods along broken bracket 110 broken bracket. (DLC)

  13. Estimates of point defect production in α-quartz using molecular dynamics simulations

    Science.gov (United States)

    Cowen, Benjamin J.; El-Genk, Mohamed S.

    2017-07-01

    Molecular dynamics (MD) simulations are performed to investigate the production of point defects in α-quartz by oxygen and silicon primary knock-on atoms (PKAs) of 0.25-2 keV. The Wigner-Seitz (WS) defect analysis is used to identify the produced vacancies, interstitials, and antisites, and the coordination defect analysis is used to identify the under and over-coordinated oxygen and silicon atoms. The defects at the end of the ballistic phase and the residual defects, after annealing, increase with increased PKA energy, and are statistically the same for the oxygen and silicon PKAs. The WS defect analysis results show that the numbers of the oxygen vacancies and interstitials (VO, Oi) at the end of the ballistic phase is the highest, followed closely by those of the silicon vacancies and interstitials (VSi, Sii). The number of the residual oxygen and silicon vacancies and interstitials are statistically the same. In addition, the under-coordinated OI and SiIII, which are the primary defects during the ballistic phase, have high annealing efficiencies (>89%). The over-coordinated defects of OIII and SiV, which are not nearly as abundant in the ballistic phase, have much lower annealing efficiencies (PKA energy.

  14. Influence of cover defects on the attenuation of radon with earthen covers

    International Nuclear Information System (INIS)

    Kalkwarf, D.R.; Mayer, D.W.

    1983-11-01

    Experimental and theoretical evaluations of radon flux through laboratory-scale defective soil columns are presented together with a survey of literature on the formation and prevention of defects in soil covers. This report focuses on air-filled, centimeter-scale defects that are most probable in earthen covers for attenuating radon emission from uranium-mill tailings. Examples include shirnkage and erosion cracks, erosion piping, animal burrows and air channels formed by the biodegradation of vegetation roots. Calculations based on mathematical models indicate that collections of defects which could increase the radon flux from an earthen cover by a factor of two would be easily detected by visual inspection. However, these models ignore air-turbulence in the defect and drying of the soil around the defect. Laboratory measurements showed that turbulent diffusion of radon occurred through defects as narrow as 0.3 cm when subjected to a transverse air velocity of 1 to 6 miles per hour at the surface. Both turbulence and more-rapid drying of soil can accelerate radon flux to the cover surface. Consequently, recommended methods to inhibit defect formation should be applied. 29 references, 3 figures, 5 tables

  15. Defect properties of CuCrO2: A density functional theory calculation

    International Nuclear Information System (INIS)

    Fang Zhi-Jie; Zhu Ji-Zhen; Zhou Jiang; Mo Man

    2012-01-01

    Using the first-principles methods, we study the formation energetics properties of intrinsic defects, and the charge doping properties of extrinsic defects in transparent conducting oxides CuCrO 2 . Intrinsic defects, some typical acceptor-type, and donor-type extrinsic defects in their relevant charge state are considered. By systematically calculating the formation energies and transition energy, the results of calculation show that, V Cu , O i , and O Cu are the relevant intrinsic defects in CuCrO 2 ; among these intrinsic defects, V Cu is the most efficient acceptor in CuCrO 2 . It is found that all the donor-type extrinsic defects have difficulty in inducing n-conductivity in CuCrO 2 because of their deep transition energy level. For all the acceptor-type extrinsic defects, substituting Mg for Cr is the most prominent doping acceptor with relative shallow transition energy levels in CuCrO 2 . Our calculation results are expected to be a guide for preparing promising n-type and p-type materials in CuCrO 2 . (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. A first principles study of native defects in alpha-quartz

    CERN Document Server

    Roma, G

    2003-01-01

    We present a study of several neutral and charged oxygen and silicon defects in alpha-quartz. We performed plane waves pseudopotential calculations in the framework of density functional theory in the local density approximation. We will show the structures that we obtained for vacancies and interstitials in several charge states and the corresponding formation energies. We discuss the reciprocal dependence of formation energies of charged defects (and thus concentrations) and the electron chemical potential on each other and we determine the latter by iterative self-consistent solution of the equation imposing charge neutrality. Results on defect concentrations, their dependence on oxygen partial pressure, and self-doping effects are presented.

  17. Elastic fields, dipole tensors, and interaction between self-interstitial atom defects in bcc transition metals

    Science.gov (United States)

    Dudarev, S. L.; Ma, Pui-Wai

    2018-03-01

    Density functional theory (DFT) calculations show that self-interstitial atom (SIA) defects in nonmagnetic body-centered-cubic (bcc) metals adopt strongly anisotropic configurations, elongated in the direction [S. Han et al., Phys. Rev. B 66, 220101 (2002), 10.1103/PhysRevB.66.220101; D. Nguyen-Manh et al., Phys. Rev. B 73, 020101 (2006), 10.1103/PhysRevB.73.020101; P. M. Derlet et al., Phys. Rev. B 76, 054107 (2007), 10.1103/PhysRevB.76.054107; S. L. Dudarev, Annu. Rev. Mater. Res. 43, 35 (2013), 10.1146/annurev-matsci-071312-121626]. Elastic distortions, associated with such anisotropic atomic structures, appear similar to distortions around small prismatic dislocation loops, although the extent of this similarity has never been quantified. We derive analytical formulas for the dipole tensors of SIA defects, which show that, in addition to the prismatic dislocation looplike character, the elastic field of a SIA defect also has a significant isotropic dilatation component. Using empirical potentials and DFT calculations, we parametrize dipole tensors of defects for all the nonmagnetic bcc transition metals. This enables a quantitative evaluation of the energy of elastic interaction between the defects, which also shows that in a periodic three-dimensional simple cubic arrangement of crowdions, long-range elastic interactions between a defect and all its images favor a orientation of the defect.

  18. Defect-tuning exchange bias of ferromagnet/antiferromagnet core/shell nanoparticles by numerical study

    International Nuclear Information System (INIS)

    Mao Zhongquan; Chen Xi; Zhan Xiaozhi

    2012-01-01

    The influence of non-magnetic defects on the exchange bias (EB) of ferromagnet (FM)/antiferromagnet (AFM) core/shell nanoparticles is studied by Monte Carlo simulations. It is found that the EB can be tuned by defects in different positions. Defects at both the AFM and FM interfaces reduce the EB field while they enhance the coercive field by decreasing the effective interface coupling. However, the EB field and the coercive field show respectively a non-monotonic and a monotonic dependence on the defect concentration when the defects are located inside the AFM shell, indicating a similar microscopic mechanism to that proposed in the domain state model. These results suggest a way to optimize the EB effect for applications. (paper)

  19. Ginzburg regime and its effects on topological defect formation

    International Nuclear Information System (INIS)

    Bettencourt, Luis M. A.; Antunes, Nuno D.; Zurek, W. H.

    2000-01-01

    The Ginzburg temperature has historically been proposed as the energy scale of formation of topological defects at a second order symmetry breaking phase transition. More recently alternative proposals which compute the time of formation of defects from the critical dynamics of the system have been gaining both theoretical and experimental support. We investigate, using a canonical model for string formation, how these two pictures compare. In particular we show that prolonged exposure of a critical field configuration to the Ginzburg regime results in no substantial suppression of the final density of defects formed. These results eliminate the Ginzburg regime as a possible cause of erasure of vortex lines in the recent 4 He pressure quench experiments. (c) 2000 The American Physical Society

  20. Point defects in cubic boron nitride after neutron irradiation

    International Nuclear Information System (INIS)

    Atobe, Kozo; Honda, Makoto; Ide, Munetoshi; Yamaji, Hiromichi; Matsukawa, Tokuo; Fukuoka, Noboru; Okada, Moritami; Nakagawa, Masuo.

    1993-01-01

    The production of point defects induced by reactor neutrons and the thermal behavior of defects in sintered cubic boron nitride are investigated using the optical absorption and electron spin resonance (ESR) methods. A strong structureless absorption over the visible region was observed after fast neutron irradiation to a dose of 5.3 x 10 16 n/cm 2 (E > 0.1 MeV) at 25 K. This specimen also shows an ESR signal with g-value 2.006 ± 0.001, which can be tentatively identified as an electron trapped in a nitrogen vacancy. On examination of the thermal decay of the signal, the activation energy for recovery of the defects was determined to be about 1.79 eV. (author)

  1. Lyophilized allogeneic bone grafts for cystic and discontinuity defects of the jaws

    International Nuclear Information System (INIS)

    Pill Hoon Choung; Eun Seok Kim

    1999-01-01

    Allogenic bone grafts have been used after various processing in each institute was made by lyophilized allogenic bone and used for maxillofacial reconstruction. Three types of lyophilized allogenic bone grafts as powder, chip and block form were performed to reconstruct the following defects: 1) maxillectomy, 2) mandiblectomy, 3) cystectomy, 4) cleft alveolus, 5) gap in orthognathic osteotomy, 6) peri-implant defect, 7) extraction socket, and 8) facial contouring. Above defects can be classified as cystic and discontinuity defects of the maxilia and the mandible. Because discontinuity defects have more difficult problems to reconstruct considering mechanical strength of the allogenic bone. We performed allogenic bone grafts on 50 cystic defects and 12 discontinuity defects of the jaws. Among them, 3 cases were removed due to infection, and the others had no complications. In reconstruction of cystic defects, the defects were filled with allogenic chip which were made from allogenic block bone at the surgery, which later were changed to host bone. Three cases of them showed tooth eruption through the allogenic bone grafting site, changing the eruption pathway, which was interrupted by the lesion. in reconstruction of discontinuity defects, usually allogenic bone has been used as a tray, in which PMCB or demineralized bone chips were filled. But we tried to reconstruct this discontinuity defect using allogeneic bone block without inside filling of PMCB different from tray type. We will present the results of allogenic bone grafts using cranial bone, costochondral graft, and the mandible

  2. Computer simulation of defect cluster

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, Eiichi [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics

    1996-04-01

    In order to elucidate individual element process of various defects and defect clusters of used materials under irradiation environments, interatomic potential with reliability was investigated. And for comparison with experimental results, it is often required to adopt the temperature effect and to investigate in details mechanism of one dimensional motion of micro conversion loop and so forth using the molecular dynamic (MD) method. Furthermore, temperature effect is also supposed for stable structure of defects and defect clusters, and many problems relating to alloy element are also remained. And, simulation on photon life at the defects and defect clusters thought to be important under comparison with equipment can also be supposed an improvement of effectiveness due to relation to theses products. In this paper, some topics in such flow was extracted to explain them. In particular, future important problems will be potential preparation of alloy, structure, dynamic behavior and limited temperature of intralattice atomic cluster. (G.K.)

  3. Tissue-engineered bone constructed in a bioreactor for repairing critical-sized bone defects in sheep.

    Science.gov (United States)

    Li, Deqiang; Li, Ming; Liu, Peilai; Zhang, Yuankai; Lu, Jianxi; Li, Jianmin

    2014-11-01

    Repair of bone defects, particularly critical-sized bone defects, is a considerable challenge in orthopaedics. Tissue-engineered bones provide an effective approach. However, previous studies mainly focused on the repair of bone defects in small animals. For better clinical application, repairing critical-sized bone defects in large animals must be studied. This study investigated the effect of a tissue-engineered bone for repairing critical-sized bone defect in sheep. A tissue-engineered bone was constructed by culturing bone marrow mesenchymal-stem-cell-derived osteoblast cells seeded in a porous β-tricalcium phosphate ceramic (β-TCP) scaffold in a perfusion bioreactor. A critical-sized bone defect in sheep was repaired with the tissue-engineered bone. At the eighth and 16th week after the implantation of the tissue-engineered bone, X-ray examination and histological analysis were performed to evaluate the defect. The bone defect with only the β-TCP scaffold served as the control. X-ray showed that the bone defect was successfully repaired 16 weeks after implantation of the tissue-engineered bone; histological sections showed that a sufficient volume of new bones formed in β-TCP 16 weeks after implantation. Eight and 16 weeks after implantation, the volume of new bones that formed in the tissue-engineered bone group was more than that in the β-TCP scaffold group (P bone improved osteogenesis in vivo and enhanced the ability to repair critical-sized bone defects in large animals.

  4. Congenital platelet function defects

    Science.gov (United States)

    ... pool disorder; Glanzmann's thrombasthenia; Bernard-Soulier syndrome; Platelet function defects - congenital ... Congenital platelet function defects are bleeding disorders that cause reduced platelet function. Most of the time, people with these disorders have ...

  5. Metallography of defects

    International Nuclear Information System (INIS)

    Borisova, E.A.; Bochvar, G.A.; Brun, M.Ya.

    1980-01-01

    Different types of defects of metallurgical, technological and exploitation origin in intermediate and final products of titanium alloys, are considered. The examples of metallic and nonmetallic inclusions, chemical homogeneity, different grains, bands, cracks, places of searing, porosity are given; methods of detecting the above defects are described. The methods of metallography, X-ray spectral analysis, measuring microhardness are used

  6. Piezoelectricity induced defect modes for shear waves in a periodically stratified supperlattice

    Science.gov (United States)

    Piliposyan, Davit

    2018-01-01

    Properties of shear waves in a piezoelectric stratified periodic structure with a defect layer are studied for a superlattice with identical piezoelectric materials in a unit cell. Due to the electro-mechanical coupling in piezoelectric materials the structure exhibits defect modes in the superlattice with full transmission peaks both for full contact and electrically shorted interfaces. The results show an existence of one or two transmission peaks depending on the interfacial conditions. In the long wavelength region where coupling between electro-magnetic and elastic waves creates frequency band gaps the defect layer introduces one or two defect modes transmitting both electro-magnetic and elastic energies. Other parameters affecting the defect modes are the thickness of the defect layer, differences in refractive indexes and the magnitude of the angle of the incident wave. The results of the paper may be useful in the design of narrow band filters or multi-channel piezoelectric filters.

  7. Investigation on the effect of atomic defects on the breaking behaviors of gold nanowires

    International Nuclear Information System (INIS)

    Wang Fenying; Sun Wei; Wang Hongbo; Zhao Jianwei; Kiguchi, Manabu; Sun Changqing

    2012-01-01

    The mechanical properties and breaking behaviors of the [100]-oriented single-crystal gold nanowires containing a set of defect ratios have been studied at different temperatures using molecular dynamics simulations. The size of the nanowire is 10a × 10a × 30a (a stands for lattice constant, 0.408 nm for gold). The mechanical strengths of the nanowires decrease with the increasing temperature. However, the defects that enhance the local thermal energy have improved the nanowire mechanical strength under a wide range of temperature. Comparing to the single-crystal nanowire, the existence of the atomic defects extends the elastic deformation showing a larger yield strain. By summarizing 300 samples at each temperature, the statistical breaking position distribution shows that the nanowire breaking behavior is sensitive to the atomic defects when the defect ratio is 5 % at 100 K, whereas the ratio is 1 % when temperatures are 300 and 500 K.

  8. A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals

    Science.gov (United States)

    Zhang, Lu; Fan, Ya-Xian; Liu, Huan; Han, Xu; Lu, Wen-Qiang; Tao, Zhi-Yong

    2018-04-01

    A magnetically tunable, non-Bragg defect mode (NBDM) was created in the terahertz frequency range by inserting a defect in the middle of a periodically corrugated waveguide filled with liquid crystals (LCs). In the periodic waveguide, non-Bragg gaps beyond the Bragg ones, which appear in the transmission spectra, are created by different transverse mode resonances. The transmission spectra of the waveguide containing a defect showed that a defect mode was present inside the non-Bragg gap. The NBDM has quite different features compared to the Bragg defect mode, which includes more complex, high-order guided wave modes. In our study, we filled the corrugated waveguide with LCs to realize the tunability of the NBDM. The simulated results showed that the NBDM in a corrugated waveguide filled with LCs can be used in filters, sensors, switches, and other terahertz integrated devices.

  9. Studies on intrinsic defects related to Zn vacancy in ZnO nanoparticles

    International Nuclear Information System (INIS)

    Singh, V.P.; Das, D.; Rath, Chandana

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Williamson–Hall analysis of ZnO indicates strain in the lattice and size is of 20 nm. ► PL shows a broad emission peak in visible range due to native defects. ► Raman active modes corresponding to P6 3 mc and a few additional modes are observed. ► FTIR detects few local vibrational modes of hydrogen attached to zinc vacancies. ► V Zn -H and Zn + O divacancies are confirmed by PAS. -- Abstract: ZnO being a well known optoelectronic semiconductor, investigations related to the defects are very promising. In this report, we have attempted to detect the defects in ZnO nanoparticles synthesized by the conventional coprecipitation route using various spectroscopic techniques. The broad emission peak observed in photoluminescence spectrum and the non zero slope in Williamson–Hall analysis indicate the defects induced strain in the ZnO lattice. A few additional modes observed in Raman spectrum could be due to the breakdown of the translation symmetry of the lattice caused by defects and/or impurities. The presence of impurities can be ruled out as XRD pattern shows pure wurtzite structure. The presence of the vibrational band related to the Zn vacancies (V Zn ), unintentional hydrogen dopants and their complex defects confirm the defects in ZnO lattice. Positron life time components τ 1 and τ 2 additionally support V Zn attached to hydrogen and to a cluster of Zn and O di-vacancies respectively.

  10. Irradiated strut allografts for reconstructing tumour defects: how effective?

    International Nuclear Information System (INIS)

    Astrid Lobo Gajiwala; Manish Agarwal; Ajay Puri; Cynthia D Lima

    2008-01-01

    Full text: Allografts are biological options for reconstructing large bone defects. We report our experience with 87 irradiated (25 kGy of gamma radiation) strut allografts used in various defects following tumour surgery. Reconstruction in 35 full segment defects involved 22 full segment allografts used alone, 4 allograft prosthetic composites (APC) and 9 allografts combined with a vascularized fibula. Twelve partial segment defects were reconstructed with allograft struts (including 2 APC). Full segment allograft struts (mainly fibulae) were used in 40 contained post-curettage defects. The cases were studied for time to incorporation and complications. The follow-up ranged from 12 to 72 months. Of the 26 full segment defects where allograft alone or APC was used, 2 were lost to follow-up, 5 died before incorporation and 3 grafts were removed (2 infection and 1 local recurrence). Six united primarily at 2-4 years. Seven patients with non union were autografted at both junctions resulting in 6 unions. One patient had early plate breakage and refused further treatment. One allograft fractured after union after autografting. Two of 4 APC also united. In contrast, the 9 allograft-vascularized fibula combinations showed unambiguous incorporation between 5-9 months with only one junction requiring bone grafting. Of the 12 partial segment struts, barring one removed for infection, 11 have completely incorporated. Thirty one out of 40 struts placed within contained post curettage defects have incorporated (2 removed for infection and seven lost to follow-up). There were total 6 infections (7%) 4 of which occurred 1-2 years after surgery. Irradiated full segment struts alone incorporate poorly and are best used combined with a live fibula. Irradiated full and partial segment allografts used inside contained defects give consistently good results. Frozen grafts seem to incorporate faster and better than lyophilised grafts. (Author)

  11. Shallow nitrogen ion implantation: Evolution of chemical state and defect structure in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Manojkumar, P.A., E-mail: manoj@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Chirayath, V.A.; Balamurugan, A.K.; Krishna, Nanda Gopala; Ilango, S.; Kamruddin, M.; Amarendra, G.; Tyagi, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Raj, Baldev [National Institute of Advanced Studies, Bangalore 560 012 (India)

    2016-09-15

    Highlights: • Low energy nitrogen ion implantation in titanium was studied. • Chemical and defect states were analyzed using SIMS, XPS and PAS. • SIMS and depth resolved XPS data showed good agreement. • Depth resolved defect and chemical states information were revealed. • Formation of 3 layers of defect states proposed to fit PAS results. - Abstract: Evolution of chemical states and defect structure in titanium during low energy nitrogen ion implantation by Plasma Immersion Ion Implantation (PIII) process is studied. The underlying process of chemical state evolution is investigated using secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The implantation induced defect structure evolution as a function of dose is elucidated using variable energy positron annihilation Doppler broadening spectroscopy (PAS) and the results were corroborated with chemical state. Formation of 3 layers of defect state was modeled to fit PAS results.

  12. Formation of Defect-Free Latex Films on Porous Fiber Supports

    KAUST Repository

    Lively, Ryan P.

    2011-09-28

    We present here the creation of a defect-free polyvinylidene chloride barrier layer on the lumen-side of a hollow fiber sorbent. Hollow fiber sorbents have previously been shown to be promising materials for enabling low-cost CO 2 capture, provided a defect-free lumen-side barrier layer can be created. Film experiments examined the effect of drying rate, latex age, substrate porosity (porous vs nonporous), and substrate hydrophobicity/ hydrophilicity. Film studies show that in ideal conditions (i.e., slow drying, fresh latex, and smooth nonporous substrate), a defect-free film can be formed, whereas the other permutations of the variables investigated led to defective films. These results were extended to hollow fiber sorbents, and despite using fresh latex and relatively slow drying conditions, a defective lumen-side layer resulted. XRD and DSC indicate that polyvinylidene chloride latex develops crystallinity over time, thereby inhibiting proper film formation as confirmed by SEM and gas permeation. This and other key additional challenges associated with the porous hollow fiber substrate vs the nonporous flat substrate were overcome. By employing a toluene-vapor saturated drying gas (a swelling solvent for polyvinylidene chloride) a defect-free lumen-side barrier layer was created, as investigated by gas and water vapor permeation. © 2011 American Chemical Society.

  13. Implications of defect clusters formed in cascades on free defect generation and microstructural development

    International Nuclear Information System (INIS)

    Wiedersich, H.

    1992-12-01

    A large fraction of the defects produced by irradiation with energetic neutrons or heavy ions originates in cascades. Not only increased recombination of vacancy and interstitial defects but also significant clustering of like defects occur. Both processes reduce the number of point defects available for long range migration. Consequences of defect clustering in cascades will be discussed in a semi-quantitative form with the aid of calculations using a very simplified model: Quasi-steady-state distributions of immobile vacancy and/or interstitial clusters develop which, in turn, can become significant sinks for mobile defects, and, therefore reduce their lifetime. Although cluster sinks will cause segregation and, potentially, precipitation of second phases due to local changes of composition, the finite lifetime of clusters will not lead to lasting, local compositional changes. A transition from highly dense interstitial and vacancy cluster distributions to the void swelling regime occurs when the thermal evaporation of vacancies from small vacancy clusters becomes significant at higher temperatures. Unequal clustering of vacancies and interstitials leads to an imbalance of their fluxes of in the matrix and, hence, to unequal contributions to atom transport by interstitials and by vacancies even in the quasi-steady state approximation

  14. Characterization of point defects in monolayer arsenene

    Science.gov (United States)

    Liang, Xiongyi; Ng, Siu-Pang; Ding, Ning; Wu, Chi-Man Lawrence

    2018-06-01

    Topological defects that are inevitably found in 2D materials can dramatically affect their properties. Using density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) method, the structural, thermodynamic, electronic and magnetic properties of six types of typical point defects in arsenene, i.e. the Stone-Wales defect, single and double vacancies and adatoms, were systemically studied. It was found that these defects were all more easily generated in arsenene with lower formation energies than those with graphene and silicene. Stone-Wales defects can be transformed from pristine arsenene by overcoming a barrier of 2.19 eV and single vacancy defects tend to coalesce into double vacancy defects by diffusion. However, a type of adatom defect does not exhibit kinetic stability at room temperature. In addition, SV defects and another type of adatom defect can remarkably affect the electronic and magnetic properties of arsenene, e.g. they can introduce localized states near the Fermi level, as well as a strongly local magnetic moment due to dangling bond and unpaired electron. Furthermore, the simulated scanning tunneling microscopy (STM) and Raman spectroscopy were computed and the types of point defects can be fully characterized by correlating the STM images and Raman spectra to the defective atomistic structures. The results provide significant insights to the effect of defects in arsenene for potential applications, as well as identifications of two helpful tools (STM and Raman spectroscopy) to distinguish the type of defects in arsenene for future experiments.

  15. Xenon Defects in Uranium Dioxide From First Principles and Interatomic Potentials

    Science.gov (United States)

    Thompson, Alexander

    In this thesis, we examine the defect energetics and migration energies of xenon atoms in uranium dioxide (UO2) from first principles and interatomic potentials. We also parameterize new, accurate interatomic potentials for xenon and uranium dioxide. To achieve accurate energetics and provide a foundation for subsequent calculations, we address difficulties in finding consistent energetics within Hubbard U corrected density functional theory (DFT+U). We propose a method of slowly ramping the U parameter in order to guide the calculation into low energy orbital occupations. We find that this method is successful for a variety of materials. We then examine the defect energetics of several noble gas atoms in UO2 for several different defect sites. We show that the energy to incorporate large noble gas atoms into interstitial sites is so large that it is energetically favorable for a Schottky defect cluster to be created to relieve the strain. We find that, thermodynamically, xenon will rarely ever be in the interstitial site of UO2. To study larger defects associated with the migration of xenon in UO 2, we turn to interatomic potentials. We benchmark several previously published potentials against DFT+U defect energetics and migration barriers. Using a combination of molecular dynamics and nudged elastic band calculations, we find a new, low energy migration pathway for xenon in UO2. We create a new potential for xenon that yields accurate defect energetics. We fit this new potential with a method we call Iterative Potential Refinement that parameterizes potentials to first principles data via a genetic algorithm. The potential finds accurate energetics for defects with relatively low amounts of strain (xenon in defect clusters). It is important to find accurate energetics for these sorts of low-strain defects because they essentially represent small xenon bubbles. Finally, we parameterize a new UO2 potential that simultaneously yields accurate vibrational properties

  16. Beating Birth Defects

    Centers for Disease Control (CDC) Podcasts

    Each year in the U.S., one in 33 babies is affected by a major birth defect. Women can greatly improve their chances of giving birth to a healthy baby by avoiding some of the risk factors for birth defects before and during pregnancy. In this podcast, Dr. Stuart Shapira discusses ways to improve the chances of giving birth to a healthy baby.

  17. Influence of the geometrical soft effect on the radiographic detection of artificial defects

    International Nuclear Information System (INIS)

    Bodson, F.; Launay, J.P.

    1980-11-01

    The influence of the geometrical soft effect on image quality and on the sensitivity to detection of artificial defects has been assessed for radiographies achieved with Ir 192 and Co 60 sources. The results show that the threshold of detectability of defects depends increasingly on the geometrical soft effects as the thickness radiographed becomes greater and that the defects in question are finite. The image quality remains accepable on the whole [fr

  18. Defect pair formation in fluorine and nitrogen codoped TiO2

    Science.gov (United States)

    Kordatos, A.; Kelaidis, N.; Chroneos, A.

    2018-04-01

    Titanium oxide is extensively investigated because of its high chemical stability and its photocatalytic properties; nevertheless, the large band gap limits its activity to a small portion of the solar spectrum. Nitrogen and fluorine codoping is an efficient defect engineering strategy to increase the photocatalytic activity of titanium oxide. In the present study, we apply density functional theory to investigate the interaction of nitrogen with fluorine and the formation of defect pairs. We show that in fluorine and nitrogen codoped titanium oxide, the FiNi, FONi, and FiNTi defects can form. Their impact on the electronic structure of titanium oxide is discussed.

  19. Effects of crystal defects on the diffuse scattering of X-rays

    International Nuclear Information System (INIS)

    Kremser, R.

    1974-01-01

    This thesis concerns with the influence of crystal defects in germanium-drifted silicium and in α=quartz on the intensity of the diffuse X-ray scattering. The experiments were performed at low and high temperatures to show the effect of the atomic thermal motion on the intensity of the diffuse maxima. The comparison of the results for pure silicium and for the germanium-drifted crystal gives information about the relation between the frequency-spectra and the defects of the drifted silicium. For α-quarts it was not possible to relate unequivocally the observed changes in the intensity to individual defects. (C.R.)

  20. Toward Intelligent Software Defect Detection

    Science.gov (United States)

    Benson, Markland J.

    2011-01-01

    Source code level software defect detection has gone from state of the art to a software engineering best practice. Automated code analysis tools streamline many of the aspects of formal code inspections but have the drawback of being difficult to construct and either prone to false positives or severely limited in the set of defects that can be detected. Machine learning technology provides the promise of learning software defects by example, easing construction of detectors and broadening the range of defects that can be found. Pinpointing software defects with the same level of granularity as prominent source code analysis tools distinguishes this research from past efforts, which focused on analyzing software engineering metrics data with granularity limited to that of a particular function rather than a line of code.

  1. Laser-damage susceptibility of nodular defects in dielectric mirror coatings: AFM measurements and electric-field modeling

    International Nuclear Information System (INIS)

    Kozlowski, M.R.; DeFord, J.F.; Staggs, M.C.

    1993-01-01

    Atomic force microscopy (AFM) and electromagnetic field modeling were used to study the influence of nodular coating defects on laser-induced damage of multilayer dielectric coatings. In studies of HfO 2 /SiO 2 mirrors with 1.06 μm illumination, AFM results showed that nodular defects with high dome heights (>0.6 μm) were most susceptible to laser damage. Crater defects, formed by nodules ejected from the coating prior to illumination, were not damaged when illuminated over the same range of fluences. A finite-difference time-domain electromagnetic modeling code was used to study the influence of 3-D nodule defects on the E-field distribution within the interference coating. The modeling results show that Enfield enhancements as large as a factor of 4 can be present at the defects. Crater defects, however, result in minimal enhancement of the E-fields within the coating. These modeling results are consistent with the AFM experimental data, indicating that E-field enhancement is a contributing mechanism in defect-dominated laser damage of optical coatings

  2. Thyroid Medication Use and Birth Defects in the National Birth Defects Prevention Study.

    Science.gov (United States)

    Howley, Meredith M; Fisher, Sarah C; Van Zutphen, Alissa R; Waller, Dorothy K; Carmichael, Suzan L; Browne, Marilyn L

    2017-11-01

    Thyroid disorders are common among reproductive-aged women, with hypothyroidism affecting 2 to 3% of pregnancies, and hyperthyroidism affecting an additional 0.1 to 1%. We examined associations between thyroid medications and individual birth defects using data from the National Birth Defects Prevention Study (NBDPS). The NBDPS is a multisite, population-based, case-control study that included pregnancies with estimated delivery dates from 1997 to 2011. We analyzed self-reported thyroid medication use from mothers of 31,409 birth defect cases and 11,536 unaffected controls. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regression for birth defects with five or more exposed cases, controlling for maternal age, race/ethnicity, and study center. Crude ORs and exact 95% CIs were estimated for defects with 3 to 4 exposed cases. Thyroid hormone was used by 738 (2.3%) case and 237 (2.1%) control mothers, and was associated with anencephaly (OR = 1.68; 95% CI, 1.03-2.73), holoprosencephaly (OR = 2.48; 95% CI, 1.13-5.44), hydrocephaly (1.77; 95% CI, 1.07-2.95) and small intestinal atresia (OR = 1.81; 95% CI, 1.04-3.15). Anti-thyroid medication was used by 34 (0.1%) case and 10 (<0.1%) control mothers, and was associated with aortic valve stenosis (OR = 6.91; 95% CI, 1.21-27.0). While new associations were identified, our findings are relatively consistent with previous NBDPS analyses. Our findings suggest thyroid medication use is not associated with most birth defects studied in the NBDPS, but may be associated with some specific birth defects. These results should not be interpreted to suggest that medications used to treat thyroid disease are teratogens, as the observed associations may reflect effects of the underlying thyroid disease. Birth Defects Research 109:1471-1481, 2017.© 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. UCN anomalous losses and the UCN capture cross section on material defects

    International Nuclear Information System (INIS)

    Serebrov, A.; Romanenko, N.; Zherebtsov, O.; Lasakov, M.; Vasiliev, A.; Fomin, A.; Geltenbort, P.; Krasnoshekova, I.; Kharitonov, A.; Varlamov, V.

    2005-01-01

    Experimental data shows anomalously large ultra cold neutrons (UCN) reflection losses and that the process of UCN reflection is not completely coherent. UCN anomalous losses under reflection cannot be explained in the context of neutron optics calculations. UCN losses by means of incoherent scattering on material defects are considered and cross-section values calculated. The UCN capture cross section on material defects is enhanced by a factor of 10 4 due to localization of UCN around defects. This phenomenon can explain anomalous losses of UCN

  4. Electronic structure of defects in semiconductor heterojunctions

    International Nuclear Information System (INIS)

    Haussy, Bernard; Ganghoffer, Jean Francois

    2002-01-01

    Full text.heterojunctions and semiconductors and superlattices are well known and well used by people interested in optoelectronics communications. Components based on the use of heterojunctions are interesting for confinement of light and increase of quantum efficiency. An heterojunction is the contact zone between two different semiconductors, for example GaAs and Ga 1-x Al x As. Superlattices are a succession of heterojunctions (up to 10 or 20). These systems have been the subjects of many experiments ao analyse the contact between semiconductors. They also have been theoretically studied by different types of approach. The main result of those studies is the prediciton of band discontinuities. Defects in heterojunctions are real traps for charge carriers; they can affect the efficiency of the component decreasing the currents and the fluxes in it. the knowledge of their electronic structure is important, a great density of defects deeply modifies the electronic structure of the whole material creating real new bands of energy in the band structure of the component. in the first part of this work, we will describe the heterostructure and the defect in terms of quantum wells and discrete levels. This approach allows us to show the role of the width of the quantum well describing the structure but induces specific behaviours due to the one dimensional modelling. Then a perturbative treatment is proposed using the Green's functions formalism. We build atomic chains with different types of atoms featuring the heterostructure and the defect. Densities of states of a structure with a defect and levels associated to the defect are obtained. Results are comparable with the free electrons work, but the modelling do not induce problems due to a one dimensional approach. To extend our modelling, a three dimensions approach, based on a cavity model, is investigated. The influence of the defect, - of hydrogenoid type - introduced in the structure, is described by a cavity

  5. Defect generation/passivation by low energy hydrogen implant for silicon solar cells

    International Nuclear Information System (INIS)

    Sopori, B.L.; Zhou, T.Q.; Rozgonyi, G.A.

    1990-01-01

    Low energy ion implant is shown to produce defects in silicon. These defects include surface damage, hydrogen agglomeration, formation of platelets with (111) habit plane and decoration of dislocations. Hydrogen also produces an inversion type of surface on boron doped silicon. These effects indicate that a preferred approach for passivation is to incorporate hydrogen from the back side of the cell. A backside H + implant technique is described. The results show that degree of passivation differs for various devices. A comparison of the defect structures of hydrogenated devices indicates that the structure and the distribution of defects in the bulk of the material plays a significant role in determining the degree of passivation

  6. First interim examination of defected BWR and PWR rods tested in unlimited air at 2290C

    International Nuclear Information System (INIS)

    Einziger, R.E.; Cook, J.A.

    1983-01-01

    A five-year whole rod test was initiated to investigate the long-term stability of spent fuel rods under a variety of possible dry storage conditions. Both PWR and BWR rods were included in the test. The first interim examination was conducted after three months of testing to determine if there was any degradation in those defected rods stored in an unlimited air atmosphere. Visual observations, diametral measurements and radiographic smears were used to assess the degree of cladding deformation and particulate dispersal. The PWR rod showed no measurable change from the pre-test condition. The two original artificial defects had not changed in appearance and there was no diametral growth of the cladding. One of the defects in BWR rod showed significant deformation. There was approximately 10% cladding strain at the defect site and a small axial crack had formed. The fuel in the defect did not appear to be friable. The second defect showed no visible change and no cladding strain. Following examination, the test was continued at 230 0 C. Another interim examination is planned during the summer of 1983. This paper discusses the details and meaning of the data from the first interim examination

  7. Point-Defect Mediated Bonding of Pt Clusters on (5,5) Carbon Nanotubes

    DEFF Research Database (Denmark)

    Wang, J. G.; Lv, Y. A.; Li, X. N.

    2009-01-01

    The adhesion of various sizes of Pt clusters on the metallic (5,5) carbon nanotubes (CNTs) with and without the point defect has been investigated by means of density functional theory (DFT). The calculations show that the binding energies of Pt-n (n = 1-6) clusters on the defect free CNTs are mo...

  8. Study of residue type defect formation mechanism and the effect of advanced defect reduction (ADR) rinse process

    Science.gov (United States)

    Arima, Hiroshi; Yoshida, Yuichi; Yoshihara, Kosuke; Shibata, Tsuyoshi; Kushida, Yuki; Nakagawa, Hiroki; Nishimura, Yukio; Yamaguchi, Yoshikazu

    2009-03-01

    Residue type defect is one of yield detractors in lithography process. It is known that occurrence of the residue type defect is dependent on resist development process and the defect is reduced by optimized rinsing condition. However, the defect formation is affected by resist materials and substrate conditions. Therefore, it is necessary to optimize the development process condition by each mask level. Those optimization steps require a large amount of time and effort. The formation mechanism is investigated from viewpoint of both material and process. The defect formation is affected by resist material types, substrate condition and development process condition (D.I.W. rinse step). Optimized resist formulation and new rinse technology significantly reduce the residue type defect.

  9. Strained interface defects in silicon nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Benjamin G.; Stradins, Paul [National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO (United States); Hiller, Daniel; Zacharias, Margit [IMTEK - Faculty of Engineering, Albert-Ludwigs-University Freiburg (Germany); Luo, Jun-Wei; Beard, Matthew C. [Chemical and Materials Science, National Renewable Energy Laboratory, Golden, CO (United States); Semonin, Octavi E. [Chemical and Materials Science, National Renewable Energy Laboratory, Golden, CO (United States); Department of Physics, University of Colorado, Boulder, CO (United States)

    2012-08-07

    The surface of silicon nanocrystals embedded in an oxide matrix can contain numerous interface defects. These defects strongly affect the nanocrystals' photoluminescence efficiency and optical absorption. Dangling-bond defects are nearly eliminated by H{sub 2} passivation, thus decreasing absorption below the quantum-confined bandgap and enhancing PL efficiency by an order of magnitude. However, there remain numerous other defects seen in absorption by photothermal deflection spectroscopy; these defects cause non-radiative recombination that limits the PL efficiency to <15%. Using atomistic pseudopotential simulations, we attribute these defects to two specific types of distorted bonds: Si-Si and bridging Si-O-Si bonds between two Si atoms at the nanocrystal surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Craniotomy Frontal Bone Defect

    African Journals Online (AJOL)

    2018-03-01

    Mar 1, 2018 ... Defect reconstruction and fixation of the graft: The defect of ... where all loose fragments of fractured frontal bone was removed via the ... Mandible. • Ilium. • Allograft ... pediatric patients owing to skull growth. Thus, autologous ...

  11. A Hybrid Instance Selection Using Nearest-Neighbor for Cross-Project Defect Prediction

    Institute of Scientific and Technical Information of China (English)

    Duksan Ryu; Jong-In Jang; Jongmoon Baik; Member; ACM; IEEE

    2015-01-01

    Software defect prediction (SDP) is an active research field in software engineering to identify defect-prone modules. Thanks to SDP, limited testing resources can be effectively allocated to defect-prone modules. Although SDP requires suffcient local data within a company, there are cases where local data are not available, e.g., pilot projects. Companies without local data can employ cross-project defect prediction (CPDP) using external data to build classifiers. The major challenge of CPDP is different distributions between training and test data. To tackle this, instances of source data similar to target data are selected to build classifiers. Software datasets have a class imbalance problem meaning the ratio of defective class to clean class is far low. It usually lowers the performance of classifiers. We propose a Hybrid Instance Selection Using Nearest-Neighbor (HISNN) method that performs a hybrid classification selectively learning local knowledge (via k-nearest neighbor) and global knowledge (via na¨ıve Bayes). Instances having strong local knowledge are identified via nearest-neighbors with the same class label. Previous studies showed low PD (probability of detection) or high PF (probability of false alarm) which is impractical to use. The experimental results show that HISNN produces high overall performance as well as high PD and low PF.

  12. Who named the quantum defect?

    International Nuclear Information System (INIS)

    Rau, A.R.P.; Inokuti, M.

    1997-01-01

    The notion of the quantum defect is important in atomic and molecular spectroscopy and also in unifying spectroscopy with collision theory. In the latter context, the quantum defect may be viewed as an ancestor of the phase shift. However, the origin of the term quantum defect does not seem to be explained in standard textbooks. It occurred in a 1921 paper by Schroedinger, preceding quantum mechanics, yet giving the correct meaning as an index of the short-range interactions with the core of an atom. The authors present the early history of the quantum-defect idea, and sketch its recent developments

  13. A fast button surface defects detection method based on convolutional neural network

    Science.gov (United States)

    Liu, Lizhe; Cao, Danhua; Wu, Songlin; Wu, Yubin; Wei, Taoran

    2018-01-01

    Considering the complexity of the button surface texture and the variety of buttons and defects, we propose a fast visual method for button surface defect detection, based on convolutional neural network (CNN). CNN has the ability to extract the essential features by training, avoiding designing complex feature operators adapted to different kinds of buttons, textures and defects. Firstly, we obtain the normalized button region and then use HOG-SVM method to identify the front and back side of the button. Finally, a convolutional neural network is developed to recognize the defects. Aiming at detecting the subtle defects, we propose a network structure with multiple feature channels input. To deal with the defects of different scales, we take a strategy of multi-scale image block detection. The experimental results show that our method is valid for a variety of buttons and able to recognize all kinds of defects that have occurred, including dent, crack, stain, hole, wrong paint and uneven. The detection rate exceeds 96%, which is much better than traditional methods based on SVM and methods based on template match. Our method can reach the speed of 5 fps on DSP based smart camera with 600 MHz frequency.

  14. First-principles study of point defects in CePO{sub 4} monazite

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Yong; Zhao, Xiaofeng [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Teng, Yuancheng, E-mail: tyc239@163.com [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Bi, Beng [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Lili [Institute of Computer Application, China Academy of Engineering Physics, Mianyang 621900 (China); Wu, Lang; Zhang, Kuibao [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China)

    2016-12-15

    CePO{sub 4} monazite is an important radiation-resistant material that may act as a potential minor actinides waste form. Here, we present the results of the calculations for the basic radiation defect modellings in CePO{sub 4} crystals, along with the examination of their defect formation energies and effect of the defect concentrations. This study focused on building a fully-relaxed CePO{sub 4} model with the step iterative optimization from the DFT-GGA calculations using the VASP and CASTEP databases. The results show that the Frenkel defect configuration resulting from the center interstitials has a lower energy when compared to two adjacent orthophosphate centers (the saddle point position). High formation energies were found for all the types of intrinsic Frenkel and vacancy defects. The formation energies conform to the following trend (given in the decreasing order of energy): Ce Frenkel (12.41 eV) > O Frenkel (11.02 eV) > Ce vacancy (9.09 eV) > O vacancy (6.69 eV). We observed almost no effect from the defect concentrations on the defect formation energies.

  15. Ultrasonic characterization of defective porcelain tiles

    Directory of Open Access Journals (Sweden)

    Eren, E.

    2012-08-01

    Full Text Available The aim of this work is the optimization of ultrasonic methods in the non-destructive testing of sintered porcelain tiles containing defects. For this reason, a silicon nitride ball, carbon black and PMMA (Polymethylmethacrylate were imbedded in porcelain tile granules before pressing to make special defects in tiles. After sintering at 1220ºC, the time of flight of the ultrasonic waves and ultrasonic signal amplitudes through the sintered porcelain tiles were measured by a contact ultrasonic transducer operating on pulse-echo mode. This method can allow for defect detection using the A-scan. The results of the test showed that the amplitude of the received peak for a defective part is smaller than for a part which has no defects. Depending on the size, shape and position of the defect, its peak can be detected. Additionally, an immersion pulse-echo C-scan method was also used to differentiate between defects in porcelain tiles. By using this technique, it is possible to determine the place and shape of defects. To support the results of the ultrasonic investigation, a SEM characterization was also made.

    El fin principal de este trabajo es la optimización de métodos ultrasónicos en la prueba no destructiva de azulejos sinterizados de porcelana que contienen defectos. Por lo tanto, bolas del nitruro de silicio, negros de carbón y PMMA (polimetilmetacrilato fueron encajados en gránulos del azulejo de porcelana antes de presionar para hacer defectos especiales en azulejos. Después de sinterizado en 1220ºC, el tiempo de vuelo de las ondas ultrasónicas fue medido a través del azulejo sinterizado de la porcelana. El tiempo del vuelo de ondas ultrasónicas fue medido por un transductor de contacto ultrasónico operando en modo eco-pulso. Este método puede permitir la detección de defectos usando escaneo-A. Los resultados de la prueba demostraron que la amplitud del pico recibido por partes defectuosas es más pequeño que la parte

  16. Defects and oxidation of group-III monochalcogenide monolayers

    Science.gov (United States)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun

    2017-09-01

    Among various two-dimensional (2D) materials, monolayer group-III monochalcogenides (GaS, GaSe, InS, and InSe) stand out owing to their potential applications in microelectronics and optoelectronics. Devices made of these novel 2D materials are sensitive to environmental gases, especially O2 molecules. To address this critical issue, here we systematically investigate the oxidization behaviors of perfect and defective group-III monochalcogenide monolayers by first-principles calculations. The perfect monolayers show superior oxidation resistance with large barriers of 3.02-3.20 eV for the dissociation and chemisorption of O2 molecules. In contrast, the defective monolayers with single chalcogen vacancy are vulnerable to O2, showing small barriers of only 0.26-0.36 eV for the chemisorption of an O2 molecule. Interestingly, filling an O2 molecule to the chalcogen vacancy of group-III monochalcogenide monolayers could preserve the electronic band structure of the perfect system—the bandgaps are almost intact and the carrier effective masses are only moderately disturbed. On the other hand, the defective monolayers with single vacancies of group-III atoms carry local magnetic moments of 1-2 μB. These results help experimental design and synthesis of group-III monochalcogenides based 2D devices with high performance and stability.

  17. Serine biosynthesis and transport defects.

    Science.gov (United States)

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Stereomicroscopic evaluation of defects caused by torsional fatigue in used hand and rotary nickel-titanium instruments.

    Science.gov (United States)

    Asthana, Geeta; Kapadwala, Marsrat I; Parmar, Girish J

    2016-01-01

    The aim of this study was to evaluate defects caused by torsional fatigue in used hand and rotary nickel-titanium (Ni-Ti) instruments by stereomicroscopic examination. One hundred five greater taper Ni-Ti instruments were used including Protaper universal hand (Dentsply Maillefer, Ballaigues, Switzerland), Protaper universal rotary (Dentsply Maillefer, Ballaigues, Switzerland), and Revo-S rotary (MicroMega, Besançon, France) files. Files were used on lower anterior teeth. After every use, the files were observed with both naked eyes and stereomicroscope at 20× magnification (Olympus, Shinjuku, Tokyo, Japan) to evaluate defects caused by torsional fatigue. Scoring was assigned to each file according to the degree of damage. The results were statistically analyzed using the Mann-Whitney U test and the Kruskal-Wallis test. A greater number of defects were seen under the stereomicroscope than on examining with naked eyes. However, the difference in methods of evaluation was not statistically significant. Revo-S files showed minimum defects, while Protaper universal hand showed maximum defects. The intergroup comparison of defects showed that the bend in Protaper universal hand instruments was statistically significant. Visible defects in Ni-Ti files due to torsional fatigue were seen by naked eyes as well as by stereomicroscope. This study emphasizes that all the files should be observed before and after every instrument cycle to minimize the risk of separation.

  19. Optimal lot sizing in screening processes with returnable defective items

    Science.gov (United States)

    Vishkaei, Behzad Maleki; Niaki, S. T. A.; Farhangi, Milad; Rashti, Mehdi Ebrahimnezhad Moghadam

    2014-07-01

    This paper is an extension of Hsu and Hsu (Int J Ind Eng Comput 3(5):939-948, 2012) aiming to determine the optimal order quantity of product batches that contain defective items with percentage nonconforming following a known probability density function. The orders are subject to 100 % screening process at a rate higher than the demand rate. Shortage is backordered, and defective items in each ordering cycle are stored in a warehouse to be returned to the supplier when a new order is received. Although the retailer does not sell defective items at a lower price and only trades perfect items (to avoid loss), a higher holding cost incurs to store defective items. Using the renewal-reward theorem, the optimal order and shortage quantities are determined. Some numerical examples are solved at the end to clarify the applicability of the proposed model and to compare the new policy to an existing one. The results show that the new policy provides better expected profit per time.

  20. Paternal occupation and birth defects: findings from the National Birth Defects Prevention Study.

    NARCIS (Netherlands)

    Desrosiers, T.A.; Herring, A.H.; Shapira, S.K.; Hooiveld, M.; Luben, T.J.; Herdt-Losavio, M.L.; Lin, S.; Olshan, A.F.

    2012-01-01

    Objectives: Several epidemiological studies have suggested that certain paternal occupations may be associated with an increased prevalence of birth defects in offspring. Using data from the National Birth Defects Prevention Study, the authors investigated the association between paternal occupation

  1. [Inconformity between soft tissue defect and bony defect in incomplete cleft palate].

    Science.gov (United States)

    Zhou, Xia; Ma, Lian

    2014-12-01

    To evaluate the inconformity between soft tissue defect and bony defect by observing the cleft extent of palate with complete secondary palate bony cleft in incomplete cleft palate patient. The patients with incomplete cleft palate treated in Hospital of Stomatology Peking University from July 2012 to June 2013 were reviewed, of which 75 cases with complete secondary palate bony cleft were selected in this study. The CT scan and intraoral photograph were taken before operation. The patients were classified as four types according to the extent of soft tissue defect. Type 1: soft tissue defect reached incisive foremen region, Type 2 was hard and soft cleft palate, Type 3 soft cleft palate and Type 4 submucous cleft palate. Type 1 was defined as conformity group (CG). The other three types were defined as inconformity group (ICG) and divided into three subgroups (ICG-I), (ICG-II) and (ICG-III). Fifty-seven patients were in ICG group, and the rate of inconformity was 76% (57/75). The percentage of ICG-I, ICG-II and ICG-III was 47% (27/57), 23% (13/57) and 30% (17/57), respevtively. There are different types of soft tissue deformity with complete secondary palate bony cleft. The inconformity between soft tissue and hard tissue defect exits in 3/4 of isolated cleft palate patients.

  2. Chemical characterisation of non-defective and defective green arabica and robusta coffees by electrospray ionization-mass spectrometry (ESI-MS).

    Science.gov (United States)

    Mendonça, Juliana C F; Franca, Adriana S; Oliveira, Leandro S; Nunes, Marcella

    2008-11-15

    The coffee roasted in Brazil is considered to be of low quality, due to the presence of defective coffee beans that depreciate the beverage quality. These beans, although being separated from the non-defective ones prior to roasting, are still commercialized in the coffee trading market. Thus, it was the aim of this work to verify the feasibility of employing ESI-MS to identify chemical characteristics that will allow the discrimination of Arabica and Robusta species and also of defective and non-defective coffees. Aqueous extracts of green (raw) defective and non-defective coffee beans were analyzed by direct infusion electrospray ionization mass spectrometry (ESI-MS) and this technique provided characteristic fingerprinting mass spectra that not only allowed for discrimination of species but also between defective and non-defective coffee beans. ESI-MS profiles in the positive mode (ESI(+)-MS) provided separation between defective and non-defective coffees within a given species, whereas ESI-MS profiles in the negative mode (ESI(-)-MS) provided separation between Arabica and Robusta coffees. Copyright © 2008 Elsevier Ltd. All rights reserved.

  3. Determination and microscopic study of incipient defects in irradiated power reactor fuel rods. Final report

    International Nuclear Information System (INIS)

    Pasupathi, V.; Perrin, J.S.; Roberts, E.

    1978-05-01

    This report presents the results of nondestructive and destructive examinations carried out on the Point Beach-1 (PWR) and Dresden-3 (BWR) candidate fuel rods selected for the study of pellet-clad interaction (PCI) induced incipient defects. In addition, the report includes results of examination of sections from Oskarshamn-1 (BWR) fuel rods. Eddy current examination of Point Beach-1 rods showed indications of possible incipient defects in the fuel rods. The profilometry and the gamma scan data also indicated that the source of the eddy current indications may be incipient defects. No failed rods or rods with incipient failure were found in the sample from Point Beach-1. Despite the lack of success in finding incipient defects and filed rods, the mechanism for fuel rod failures in Point Beach-1 is postulated to be PCI-related, with high startup rates and fuel handling being the key elements. Nine out of the 10 candidate fuel rods from Dresden-3 (BWR) were failed, and all the failed rods had leaked water so that the initial mechanism was observed. Examination of clad inner surfaces of the specimens from failed and unfailed rods showed fuel deposits of widely varying appearance. The deposits were found to contain uranium, cesium, and tellurium. Transmission electron microscopy of clad specimens showed evidence of microscopic strain. Metallographic examination of fuel pellets from the peak transient power location showed extensive grain boundary separation and axial movement of the fuel indicative of rapid release of fission products. Examination of Oskarshamn clad specimens did not show any stress corrosion crack (SCC) type defects. The defects found in the examinations appear to be related to secondary hydriding. The clad inner surface of the Oskarshamn specimens also showed uranium-rich deposits of varying features

  4. Topological defects from the multiverse

    Science.gov (United States)

    Zhang, Jun; Blanco-Pillado, Jose J.; Garriga, Jaume; Vilenkin, Alexander

    2015-05-01

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.

  5. Topological defects from the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Blanco-Pillado, Jose J. [Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, 48013, Bilbao (Spain); Garriga, Jaume [Departament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, 08028, Barcelona (Spain); Vilenkin, Alexander [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2015-05-28

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.

  6. Topological defects from the multiverse

    International Nuclear Information System (INIS)

    Zhang, Jun; Vilenkin, Alexander; Blanco-Pillado, Jose J.; Garriga, Jaume

    2015-01-01

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble

  7. Woven fabric defects detection based on texture classification algorithm

    International Nuclear Information System (INIS)

    Ben Salem, Y.; Nasri, S.

    2011-01-01

    In this paper we have compared two famous methods in texture classification to solve the problem of recognition and classification of defects occurring in a textile manufacture. We have compared local binary patterns method with co-occurrence matrix. The classifier used is the support vector machines (SVM). The system has been tested using TILDA database. The results obtained are interesting and show that LBP is a good method for the problems of recognition and classifcation defects, it gives a good running time especially for the real time applications.

  8. Yang Monopoles and Emergent Three-Dimensional Topological Defects in Interacting Bosons

    Science.gov (United States)

    Yan, Yangqian; Zhou, Qi

    2018-06-01

    The Yang monopole as a zero-dimensional topological defect has been well established in multiple fields in physics. However, it remains an intriguing question to understand the interaction effects on Yang monopoles. Here, we show that the collective motion of many interacting bosons gives rise to exotic topological defects that are distinct from Yang monopoles seen by a single particle. Whereas interactions may distribute Yang monopoles in the parameter space or glue them to a single giant one of multiple charges, three-dimensional topological defects also arise from continuous manifolds of degenerate many-body eigenstates. Their projections in lower dimensions lead to knotted nodal lines and nodal rings. Our results suggest that ultracold bosonic atoms can be used to create emergent topological defects and directly measure topological invariants that are not easy to access in solids.

  9. Metastable gravity on classical defects

    International Nuclear Information System (INIS)

    Ringeval, Christophe; Rombouts, Jan-Willem

    2005-01-01

    We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the dominant energy condition for codimension N c =2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension N c >2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasilocalized gravity

  10. Application of artificial neural networks to evaluate weld defects of nuclear components

    International Nuclear Information System (INIS)

    Amin, E.S.

    2007-01-01

    Artificial neural networks (ANNs) are computational representations based on the biological neural architecture of the brain. ANNs have been successfully applied to a wide range of engineering and scientific applications, such as signal, image processing and data analysis. Although Radiographic testing is widely used for welding defects, it is unsuccessful in identifying some welding defects because of the nature of image formation and quality. Neoteric algorithms have been used for the purpose of weld defects identifications in radiographic images to replace the expert knowledge. The application of artificial neural networks in noise detection of radiographic films is used. Radial Basis (RB) and learning vector quantization (LVQ) were applied. The method shows good performance in weld defects recognition and classification problems.

  11. Evaluation and management of abnormal uterine bleeding in premenopausal women.

    Science.gov (United States)

    Sweet, Mary Gayle; Schmidt-Dalton, Tarin A; Weiss, Patrice M; Madsen, Keith P

    2012-01-01

    Up to 14 percent of women experience irregular or excessively heavy menstrual bleeding. This abnormal uterine bleeding generally can be divided into anovulatory and ovulatory patterns. Chronic anovulation can lead to irregular bleeding, prolonged unopposed estrogen stimulation of the endometrium, and increased risk of endometrial cancer. Causes include polycystic ovary syndrome, uncontrolled diabetes mellitus, thyroid dysfunction, hyperprolactinemia, and use of antipsychotics or antiepileptics. Women 35 years or older with recurrent anovulation, women younger than 35 years with risk factors for endometrial cancer, and women with excessive bleeding unresponsive to medical therapy should undergo endometrial biopsy. Treatment with combination oral contraceptives or progestins may regulate menstrual cycles. Histologic findings of hyperplasia without atypia may be treated with cyclic or continuous progestin. Women who have hyperplasia with atypia or adenocarcinoma should be referred to a gynecologist or gynecologic oncologist, respectively. Ovulatory abnormal uterine bleeding, or menorrhagia, may be caused by thyroid dysfunction, coagulation defects (most commonly von Willebrand disease), endometrial polyps, and submucosal fibroids. Transvaginal ultrasonography or saline infusion sonohysterography may be used to evaluate menorrhagia. The levonorgestrel-releasing intrauterine system is an effective treatment for menorrhagia. Oral progesterone for 21 days per month and nonsteroidal anti-inflammatory drugs are also effective. Tranexamic acid is approved by the U.S. Food and Drug Administration for the treatment of ovulatory bleeding, but is expensive. When clear structural causes are identified or medical management is ineffective, polypectomy, fibroidectomy, uterine artery embolization, and endometrial ablation may be considered. Hysterectomy is the most definitive treatment.

  12. Radiation damage and defect behavior in proton irradiated lithium-counterdoped n+p silicon solar cells

    Science.gov (United States)

    Stupica, John; Goradia, Chandra; Swartz, Clifford K.; Weinberg, Irving

    1987-01-01

    Two lithium-counterdoped n+p silicon solar cells with different lithium concentrations were irradiated by 10-MeV protons. Cell performance was measured as a function of fluence, and it was found that the cell with the highest concentration of lithium had the highest radiation resistance. Deep level transient spectroscopy which showed two deep level defects that were lithium related. Relating the defect energy levels obtained from this study with those from earlier work using 1-MeV electron irradiation shows no correlation of the defect energy levels. There is one marked similarity: the absence of the boron-interstitial-oxygen-interstitial defect. This consistency strengthens the belief that lithium interacts with oxygen to prevent the formation of the boron interstitial-oxygen interstitial defect. The results indicate that, in general, addition of lithium in small amounts to the p-base of a boron doped silicon solar cell such that the base remains p-type, tends to increase the radiation resistance of the cell.

  13. Simulation based mask defect repair verification and disposition

    Science.gov (United States)

    Guo, Eric; Zhao, Shirley; Zhang, Skin; Qian, Sandy; Cheng, Guojie; Vikram, Abhishek; Li, Ling; Chen, Ye; Hsiang, Chingyun; Zhang, Gary; Su, Bo

    2009-10-01

    As the industry moves towards sub-65nm technology nodes, the mask inspection, with increased sensitivity and shrinking critical defect size, catches more and more nuisance and false defects. Increased defect counts pose great challenges in the post inspection defect classification and disposition: which defect is real defect, and among the real defects, which defect should be repaired and how to verify the post-repair defects. In this paper, we address the challenges in mask defect verification and disposition, in particular, in post repair defect verification by an efficient methodology, using SEM mask defect images, and optical inspection mask defects images (only for verification of phase and transmission related defects). We will demonstrate the flow using programmed mask defects in sub-65nm technology node design. In total 20 types of defects were designed including defects found in typical real circuit environments with 30 different sizes designed for each type. The SEM image was taken for each programmed defect after the test mask was made. Selected defects were repaired and SEM images from the test mask were taken again. Wafers were printed with the test mask before and after repair as defect printability references. A software tool SMDD-Simulation based Mask Defect Disposition-has been used in this study. The software is used to extract edges from the mask SEM images and convert them into polygons to save in GDSII format. Then, the converted polygons from the SEM images were filled with the correct tone to form mask patterns and were merged back into the original GDSII design file. This merge is for the purpose of contour simulation-since normally the SEM images cover only small area (~1 μm) and accurate simulation requires including larger area of optical proximity effect. With lithography process model, the resist contour of area of interest (AOI-the area surrounding a mask defect) can be simulated. If such complicated model is not available, a simple

  14. Defects in new protective aprons

    International Nuclear Information System (INIS)

    Glaze, S.; LeBlanc, A.D.; Bushong, S.C.

    1984-01-01

    Upon careful examination, several defects have been detected in new protective aprons. The nature of the defects is identified and described. Although the occurrence of such defects has not exceeded 5%, they are significant enough to warrant return of the lead apron to the supplier. It is recommended that the integrity of all new protective aprons be verified upon receipt as well as at yearly intervals

  15. Tunable single photonic defect-mode in cholesteric liquid crystals with laser-induced local modifications of helix

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Lee, Chee Heng; Fujii, Akihiko; Ozaki, Masanori

    2006-01-01

    The authors demonstrate a tunable single photonic defect-mode in a single cholesteric liquid crystal material based on a structural defect introduced by local modification of the helix. An unpolymerized region of cholesteric liquid crystal acting as the defect was left between two polymerized regions via a two-photon excitation laser-lithography process. Upon polymerization, the cholesteric liquid crystal helix elongated and became thermally stable, and a single photonic defect mode was exhibited due to the contrast in the helix pitch at the defect. The defect mode showed tunability upon heating, and a 36 nm redshift was seen over a temperature range of 30 deg. C

  16. DFT simulation on H2 adsorption over Ni-decorated defective h-BN nanosheets

    Science.gov (United States)

    Zhou, Xuan; Chu, Wei; Zhou, Yanan; Sun, Wenjing; Xue, Ying

    2018-05-01

    Nickel doped defective h-BN nanosheets and their potential application on hydrogen storage were explored by density functional theory (DFT) calculation. Three types of defective h-BN (SW defect, VB and VN substrates) were modeled. In comparison with the SW defect, the B or N vacancy can improve the interaction between Ni atom and h-BN nanosheet strikingly. Furthermore, the Ni-doped SW defect sheet shows chemisorption on H2 molecules, and the Hsbnd H bond is partially dissociated. While on the VB sheet, Ni adatom interacts with H2 in the range of physisorption. However, the Ni-functionalized VN sheet exhibits a desirable adsorption on H2, and the corresponding energy varies from -0.40 to -0.51 eV, which is favorable for H2 adsorption and release at ambient conditions. As a result, the VN substrate is expected to a desirable support for H2 storage. Our work provides an insight into H2 storage on Ni-functionalized defective h-BN monolayer.

  17. Phosphorus doped and defects engineered graphene for improved electrochemical sensing: synergistic effect of dopants and defects

    International Nuclear Information System (INIS)

    Chu, Ke; Wang, Fan; Tian, Ye; Wei, Zhen

    2017-01-01

    Heteroatom-doped graphene materials emerged as promising metal-free catalysts have recently attracted a growing interest in electrochemical sensing applications. However, their catalytic activity and sensing performances still need to be further improved. Herein, we reported the development of unique phosphorus (P)-doped and plasma-etched graphene (denoted as PG-E) as an efficient metal-free electrocatalyst for dopamine (DA) sensing. It was demonstrated that introducing both P-dopants and plasma-engineered defects in graphene could synergistically improve the activity toward electrocatalytic oxidation of DA by increasing the accessible active sites and promoting the electron transport capability. The resulting PG-E modified electrode showed exceptional DA sensing performances with low detection limit, high selectivity and good stability. These results suggested that the synergistic effect of dopants and defects might be an important factor for developing the advanced graphene-based metal-free catalysts for electrochemical sensing.

  18. Platelet rich fibrin in jaw defects

    Science.gov (United States)

    Nica, Diana; Ianes, Emilia; Pricop, Marius

    2016-03-01

    Platelet rich fibrin (PRF) is a tissue product of autologous origin abundant in growth factors, widely used in regenerative procedures. Aim of the study: Evaluation of the regenerative effect of PRF added in the bony defects (after tooth removal or after cystectomy) Material and methods: The comparative nonrandomized study included 22 patients divided into 2 groups. The first group (the test group) included 10 patients where the bony defects were treated without any harvesting material. The second group included 12 patients where the bony defects were filled with PRF. The bony defect design was not critical, with one to two walls missing. After the surgeries, a close clinically monitoring was carried out. The selected cases were investigated using both cone beam computer tomography (CBCT) and radiographic techniques after 10 weeks postoperatively. Results: Faster bone regeneration was observed in the bony defects filled with PRF comparing with the not grafted bony defects. Conclusions: PRF added in the bony defects accelerates the bone regeneration. This simplifies the surgical procedures and decreases the economic costs.

  19. Effect of triangular vacancy defect on thermal conductivity and thermal rectification in graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping, E-mail: yangpingdm@ujs.edu.cn [Laboratory of Advanced Manufacturing and Reliability for MEMS/NEMS/OEDS, Jiangsu University, Zhenjiang 212013 (China); Li, Xialong; Zhao, Yanfan [Laboratory of Advanced Manufacturing and Reliability for MEMS/NEMS/OEDS, Jiangsu University, Zhenjiang 212013 (China); Yang, Haiying [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Shuting, E-mail: wangst@mail.hust.edu.cn [School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2013-11-01

    We investigate the thermal transport properties of armchair graphene nanoribbons (AGNRs) possessing various sizes of triangular vacancy defect within a temperature range of 200–600 K by using classical molecular dynamics simulation. The results show that the thermal conductivities of the graphene nanoribbons decrease with increasing sizes of triangular vacancy defects in both directions across the whole temperature range tested, and the presence of the defect can decrease the thermal conductivity by more than 40% as the number of removed cluster atoms is increased to 25 (1.56% for vacancy concentration) owing to the effect of phonon–defect scattering. In the meantime, we find the thermal conductivity of defective graphene nanoribbons is insensitive to the temperature change at higher vacancy concentrations. Furthermore, the dependence of temperatures and various sizes of triangular vacancy defect for the thermal rectification ration are also detected. This work implies a possible route to achieve thermal rectifier for 2D materials by defect engineering.

  20. Algorithm of Defect Segmentation for AFP Based on Prepregs

    Directory of Open Access Journals (Sweden)

    CAI Zhiqiang

    2017-04-01

    Full Text Available In order to ensure the performance of the automated fiber placement forming parts, according to the homogeneity of the image of the prepreg surface along the fiber direction, a defect segmentation algorithm which was the combination of gray compensation and substraction algorithm based on image processing technology was proposed. The gray compensation matrix of image was used to compensate the gray image, and the maximum error point of the image matrix was eliminated according to the characteristics that the gray error obeys the normal distribution. The standard image was established, using the allowed deviation coefficient K as a criterion for substraction segmentation. Experiments show that the algorithm has good effect, fast speed in segmenting two kinds of typical laying defect of bubbles or foreign objects, and provides a good theoretical basis to realize automatic laying defect online monitoring.

  1. Maternal and perinatal aspects of birth defects: a case-control study

    Directory of Open Access Journals (Sweden)

    Geiza Cesar Nhoncanse

    2014-03-01

    Full Text Available Objective: To assess the prevalence of congenital defects and to investigate their maternal and perinatal associated aspects by reviewing Birth Certificates. Methods: Among all born alive infants from January 2003 to December 2007 in Maternidade da Santa Casa de Misericórdia of São Carlos, Southeast Brazil (12,199 infants, cases were identified as the newborns whose Birth Certificates registered any congenital defect. The same sex neonate born immediately after the case was chosen as a control. In total, 13 variables were analyzed: six were maternal related, three represented labor and delivery conditions and four were linked to fetal status. The chi-square and Fisher's exact tests were used to compare the variables, being significant p<0.05. Results: The prevalence of congenital defects was 0.38% and the association of two or more defects represented 32% of all cases. The number of mothers whose education level was equal or less than eight years was significantly higher among the group with birth defects (p=0.047. A higher frequency of prematurity (p<0.001 and cesarean delivery (p=0.004 was observed among children with birth defects. This group also showed lower birth weight and Apgar scores in the 1st and the 5th minute (p<0.001. Conclusions: The prevalence of congenital defect of 0.38% is possibly due to underreporting. The defects notified in the Birth Certificates were only the most visible ones, regardless of their severity. There is a need of adequate epidemiological monitoring of birth defects in order to create and expand prevention and treatment programs.

  2. Failure Pressure Estimates of Steam Generator Tubes Containing Wear-type Defects

    International Nuclear Information System (INIS)

    Yoon-Suk Chang; Jong-Min Kim; Nam-Su Huh; Young-Jin Kim; Seong Sik Hwang; Joung-Soo Kim

    2006-01-01

    It is commonly requested that steam generator tubes with defects exceeding 40% of wall thickness in depth should be plugged to sustain all postulated loads with appropriate margin. The critical defect dimensions have been determined based on the concept of plastic instability. This criterion, however, is known to be too conservative for some locations and types of defects. In this context, the accurate failure estimation for steam generator tubes with a defect draws increasing attention. Although several guidelines have been developed and are used for assessing the integrity of defected tubes, most of these guidelines are related to stress corrosion cracking or wall-thinning phenomena. As some of steam generator tubes are also failed due to fretting and so on, alternative failure estimation schemes for relevant defects are required. In this paper, three-dimensional finite element (FE) analyses are carried out under internal pressure condition to simulate the failure behavior of steam generator tubes with different defect configurations; elliptical wastage type, wear scar type and rectangular wastage type defects. Maximum pressures based on material strengths are obtained from more than a hundred FE results to predict the failure of the steam generator tube. After investigating the effect of key parameters such as wastage depth, wastage length and wrap angle, simplified failure estimation equations are proposed in relation to the equivalent stress at the deepest point in wastage region. Comparison of failure pressures predicted according to the proposed estimation scheme with some corresponding burst test data shows good agreement, which provides a confidence in the use of the proposed equations to assess the integrity of steam generator tubes with wear-type defects. (authors)

  3. Little string origin of surface defects

    Energy Technology Data Exchange (ETDEWEB)

    Haouzi, Nathan; Schmid, Christian [Center for Theoretical Physics, University of California, Berkeley,LeConte Hall, Berkeley (United States)

    2017-05-16

    We derive a large class of codimension-two defects of 4d N=4 Super Yang-Mills (SYM) theory from the (2,0) little string. The origin of the little string is type IIB theory compactified on an ADE singularity. The defects are D-branes wrapping the 2-cycles of the singularity. We use this construction to make contact with the description of SYM defects due to Gukov and Witten https://arxiv.org/abs/hep-th/0612073. Furthermore, we provide a geometric perspective on the nilpotent orbit classification of codimension-two defects, and the connection to ADE-type Toda CFT. The only data needed to specify the defects is a set of weights of the algebra obeying certain constraints, which we give explicitly. We highlight the differences between the defect classification in the little string theory and its (2,0) CFT limit.

  4. Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films

    Science.gov (United States)

    Peng, Weina; Anand, Benoy; Liu, Lihong; Sampat, Siddharth; Bearden, Brandon E.; Malko, Anton V.; Chabal, Yves J.

    2016-01-01

    The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (~1017 cm-3) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites.The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state

  5. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects.

    Science.gov (United States)

    Van der Stok, Johan; Van der Jagt, Olav P; Amin Yavari, Saber; De Haas, Mirthe F P; Waarsing, Jan H; Jahr, Holger; Van Lieshout, Esther M M; Patka, Peter; Verhaar, Jan A N; Zadpoor, Amir A; Weinans, Harrie

    2013-05-01

    Porous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut size reduces the stiffness of the structure and may have a positive effect on bone formation. Two scaffolds with struts of 120-µm (titanium-120) or 230-µm (titanium-230) were studied in a load-bearing critical femoral bone defect in rats. The defect was stabilized with an internal plate and treated with titanium-120, titanium-230, or left empty. In vivo micro-CT scans at 4, 8, and 12 weeks showed more bone in the defects treated with scaffolds. Finally, 18.4 ± 7.1 mm(3) (titanium-120, p = 0.015) and 18.7 ± 8.0 mm(3) (titanium-230, p = 0.012) of bone was formed in those defects, significantly more than in the empty defects (5.8 ± 5.1 mm(3) ). Bending tests on the excised femurs after 12 weeks showed that the fusion strength reached 62% (titanium-120) and 45% (titanium-230) of the intact contralateral femurs, but there was no significant difference between the two scaffolds. This study showed that in addition to adequate mechanical support, porous titanium scaffolds facilitate bone formation, which results in high mechanical integrity of the treated large bone defects. Copyright © 2012 Orthopaedic Research Society.

  6. Change in women's eating habits during the menstrual cycle.

    Science.gov (United States)

    Kammoun, Ines; Ben Saâda, Wafa; Sifaou, Amira; Haouat, Emna; Kandara, Hajer; Ben Salem, Leila; Ben Slama, Claude

    2017-02-01

    During the menstrual cycle, the influence of hormonal variations on dietary habits in women has been suggested by several studies. In this context, our work aimed to assess the spontaneous food intake and the anthropometric parameters of women at different periods of their menstrual cycles. This prospective study included 30 healthy women with regular periods (28 to 30 days), aged between 18 and 45. We assessed the spontaneous food intake and the anthropometric measurements (weight and waist circumference) of the participants, during the follicular, peri-ovulatory and luteal phases of their menstrual cycles. Our results showed a slight but significant increase in body weight during the luteal phase (P=0.022) and the follicular phase (P=0.017) compared with the peri-ovulatory phase, without any significant change in waist circumference. The caloric intake increased during the peri-ovulatory (P<0.001) and the luteal phases (P<0.001), compared with the follicular phase, with a significant increase in carbohydrate (P<0.001), lipid (P=0.008) and protein (P=0.008) intake. Our study showed a significant decrease in women's weight during the peri-ovulatory phase, with a significant increase in caloric intake during the luteal phase of the menstrual cycle. Divergent results have been reported by other authors and the physiopathology of these changes is still poorly understood. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Various Stone-Wales defects in phagraphene

    Science.gov (United States)

    Openov, L. A.; Podlivaev, A. I.

    2016-08-01

    Various Stone-Wales defects in phagraphene, which is a graphene allotrope, predicted recently are studied in terms of the nonorthogonal tight-binding model. The energies of the defect formation and the heights of energy barriers preventing the formation and annealing of the defects are found. Corresponding frequency factors in the Arrhenius formula are calculated. The evolution of the defect structure is studied in the real-time mode using the molecular dynamics method.

  8. Repair of tracheomalacia with inflammatory defect and mediastinitis.

    Science.gov (United States)

    Sandu, Kishore; Monnier, Yan; Hurni, Michel; Bernath, Marc-Andre; Monnier, Philippe; Wang, Yabo; Ris, Hans-Beat

    2011-01-01

    We describe a novel repair of an anterior inflammatory tracheal defect with mediastinitis, which occurred after external tracheal suspension of localized intrathoracic tracheomalacia. The malacic tracheal segment of 4-cm length containing the inflammatory tracheal defect was noncircumferentially resected. A temporary endotracheal silicone stent was introduced, and the trachea was closed by a pedicled pectoralis muscle flap reinforced with an embedded rib segment. Retrieval of the stent 5 months postoperatively resulted in a re-epithelialized, persistently stable, noncollapsible tracheal segment that showed the same diameter and configuration as the nonreconstructed part of the trachea. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Transfer-matrix approach for modulated structures with defects

    International Nuclear Information System (INIS)

    Kostyrko, T.

    2000-01-01

    We consider scattering of electrons by defects in a periodically modulated, quasi-one-dimensional structure, within a tight-binding model. Combining a transfer matrix method and a Green function method we derive a formula for a Landauer conductance and show its equivalence to the result of Kubo linear response theory. We obtain explicitly unperturbed lattice Green functions from their equations of motion, using the transfer matrices. We apply the presented formalism in computations of the conductance of several multiband modulated structures with defects: (a) carbon nanotubes (b) two-dimensional (2D) superlattice (c) modulated leads with 1D wire in the tunneling regime. (c) 2000 The American Physical Society

  10. Influences of Stone–Wales defects on the structure, stability and electronic properties of antimonene: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yonghong, E-mail: hchyh2001@tom.com [School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100 (China); Wu, Yunyi [Department of Energy Materials and Technology, General Research Institute for Nonferrous Metals, Beijing (China); Zhang, Shengli [Institute of Optoelectronics & Nanomaterials, Herbert Gleiter Institute of Nanoscience, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2016-12-15

    Defects are inevitably present in materials, and their existence strongly affects the fundamental physical properties of 2D materials. Here, we performed first-principles calculations to study the structural and electronic properties of antimonene with Stone–Wales defects, highlighting the differences in the structure and electronic properties. Our calculations show that the presence of a SW defect in antimonene changes the geometrical symmetry. And the band gap decreases in electronic band structure with the decrease of the SW defect concentration. The formation energy and cohesive energy of a SW defect in antimonene are studied, showing the possibility of its existence and its good stability, respectively. The difference charge density near the SW defect is explored, by which the structural deformations of antimonene are explained. At last, we calculated the STM images for the SW defective antimonene to provide more information and characters for possible experimental observation. These results may provide meaningful references to the development and design of novel nanodevices based on new 2D materials.

  11. Quantum computing with defects.

    Science.gov (United States)

    Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D

    2010-05-11

    Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.

  12. Charged Semiconductor Defects Structure, Thermodynamics and Diffusion

    CERN Document Server

    Seebauer, Edmund G

    2009-01-01

    The technologically useful properties of a solid often depend upon the types and concentrations of the defects it contains. Not surprisingly, defects in semiconductors have been studied for many years, in many cases with a view towards controlling their behavior through various forms of "defect engineering." For example, in the bulk, charging significantly affects the total concentration of defects that are available to mediate phenomena such as solid-state diffusion. Surface defects play an important role in mediating surface mass transport during high temperature processing steps such as epitaxial film deposition, diffusional smoothing in reflow, and nanostructure formation in memory device fabrication. Charged Semiconductor Defects details the current state of knowledge regarding the properties of the ionized defects that can affect the behavior of advanced transistors, photo-active devices, catalysts, and sensors. Features: Group IV, III-V, and oxide semiconductors; Intrinsic and extrinsic defects; and, P...

  13. Defective homing is associated with altered Cdc42 activity in cells from patients with Fanconi anemia group A

    Science.gov (United States)

    Zhang, Xiaoling; Shang, Xun; Guo, Fukun; Murphy, Kim; Kirby, Michelle; Kelly, Patrick; Reeves, Lilith; Smith, Franklin O.; Williams, David A.

    2008-01-01

    Previous studies showed that Fanconi anemia (FA) murine stem cells have defective reconstitution after bone marrow (BM) transplantation. The mechanism underlying this defect is not known. Here, we report defective homing of FA patient BM progenitors transplanted into mouse models. Using cells from patients carrying mutations in FA complementation group A (FA-A), we show that when transplanted into nonobese diabetic/severe combined immunodeficiency (NOD/SCID) recipient mice, FA-A BM cells exhibited impaired homing activity. FA-A cells also showed defects in both cell-cell and cell-matrix adhesion. Complementation of FA-A deficiency by reexpression of FANCA readily restored adhesion of FA-A cells. A significant decrease in the activity of the Rho GTPase Cdc42 was found associated with these defective functions in patient-derived cells, and expression of a constitutively active Cdc42 mutant was able to rescue the adhesion defect of FA-A cells. These results provide the first evidence that FA proteins influence human BM progenitor homing and adhesion via the small GTPase Cdc42-regulated signaling pathway. PMID:18565850

  14. Classification and printability of EUV mask defects from SEM images

    Science.gov (United States)

    Cho, Wonil; Price, Daniel; Morgan, Paul A.; Rost, Daniel; Satake, Masaki; Tolani, Vikram L.

    2017-10-01

    Classification and Printability of EUV Mask Defects from SEM images EUV lithography is starting to show more promise for patterning some critical layers at 5nm technology node and beyond. However, there still are many key technical obstacles to overcome before bringing EUV Lithography into high volume manufacturing (HVM). One of the greatest obstacles is manufacturing defect-free masks. For pattern defect inspections in the mask-shop, cutting-edge 193nm optical inspection tools have been used so far due to lacking any e-beam mask inspection (EBMI) or EUV actinic pattern inspection (API) tools. The main issue with current 193nm inspection tools is the limited resolution for mask dimensions targeted for EUV patterning. The theoretical resolution limit for 193nm mask inspection tools is about 60nm HP on masks, which means that main feature sizes on EUV masks will be well beyond the practical resolution of 193nm inspection tools. Nevertheless, 193nm inspection tools with various illumination conditions that maximize defect sensitivity and/or main-pattern modulation are being explored for initial EUV defect detection. Due to the generally low signal-to-noise in the 193nm inspection imaging at EUV patterning dimensions, these inspections often result in hundreds and thousands of defects which then need to be accurately reviewed and dispositioned. Manually reviewing each defect is difficult due to poor resolution. In addition, the lack of a reliable aerial dispositioning system makes it very challenging to disposition for printability. In this paper, we present the use of SEM images of EUV masks for higher resolution review and disposition of defects. In this approach, most of the defects detected by the 193nm inspection tools are first imaged on a mask SEM tool. These images together with the corresponding post-OPC design clips are provided to KLA-Tencor's Reticle Decision Center (RDC) platform which provides ADC (Automated Defect Classification) and S2A (SEM

  15. Syndromes and Disorders Associated with Omphalocele (III: Single Gene Disorders, Neural Tube Defects, Diaphragmatic Defects and Others

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-06-01

    Full Text Available Omphalocele can be associated with single gene disorders, neural tube defects, diaphragmatic defects, fetal valproate syndrome, and syndromes of unknown etiology. This article provides a comprehensive review of omphalocele-related disorders: otopalatodigital syndrome type II; Melnick–Needles syndrome; Rieger syndrome; neural tube defects; Meckel syndrome; Shprintzen–Goldberg omphalocele syndrome; lethal omphalocele-cleft palate syndrome; cerebro-costo-mandibular syndrome; fetal valproate syndrome; Marshall–Smith syndrome; fibrochondrogenesis; hydrolethalus syndrome; Fryns syndrome; omphalocele, diaphragmatic defects, radial anomalies and various internal malformations; diaphragmatic defects, limb deficiencies and ossification defects of skull; Donnai–Barrow syndrome; CHARGE syndrome; Goltz syndrome; Carpenter syndrome; Toriello–Carey syndrome; familial omphalocele; Cornelia de Lange syndrome; C syndrome; Elejalde syndrome; Malpuech syndrome; cervical ribs, Sprengel anomaly, anal atresia and urethral obstruction; hydrocephalus with associated malformations; Kennerknecht syndrome; lymphedema, atrial septal defect and facial changes; and craniosynostosis- mental retardation syndrome of Lin and Gettig. Perinatal identification of omphalocele should alert one to the possibility of omphalocele-related disorders and familial inheritance and prompt a thorough genetic counseling for these disorders.

  16. Application of elastic net and infrared spectroscopy in the discrimination between defective and non-defective roasted coffees.

    Science.gov (United States)

    Craig, Ana Paula; Franca, Adriana S; Oliveira, Leandro S; Irudayaraj, Joseph; Ileleji, Klein

    2014-10-01

    The quality of the coffee beverage is negatively affected by the presence of defective coffee beans and its evaluation still relies on highly subjective sensory panels. To tackle the problem of subjectivity, sophisticated analytical techniques have been developed and have been shown capable of discriminating defective from non-defective coffees after roasting. However, these techniques are not adequate for routine analysis, for they are laborious (sample preparation) and time consuming, and reliable, simpler and faster techniques need to be developed for such purpose. Thus, it was the aim of this study to evaluate the performance of infrared spectroscopic methods, namely FTIR and NIR, for the discrimination of roasted defective and non-defective coffees, employing a novel statistical approach. The classification models based on Elastic Net exhibited high percentage of correct classification, and the discriminant infrared spectra variables extracted provided a good interpretation of the models. The discrimination of defective and non-defective beans was associated with main chemical descriptors of coffee, such as carbohydrates, proteins/amino acids, lipids, caffeine and chlorogenic acids. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Importance of elastic finite-size effects: Neutral defects in ionic compounds

    Science.gov (United States)

    Burr, P. A.; Cooper, M. W. D.

    2017-09-01

    Small system sizes are a well-known source of error in density functional theory (DFT) calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite-size effects have been well characterized, but self-interaction of charge-neutral defects is often discounted or assumed to follow an asymptotic behavior and thus easily corrected with linear elastic theory. Here we show that elastic effects are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequately small supercells are used; moreover, the spurious self-interaction does not follow the behavior predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground-state structure of (charge-neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768, and 1500 atoms), and careful analysis determines that elastic, not electrostatic, effects are responsible. The spurious self-interaction was also observed in nonoxide ionic compounds irrespective of the computational method used, thereby resolving long-standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects is a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g., hybrid functionals) or when modeling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studied oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells: greater than 96 atoms.

  18. Magnetoencephalography signals are influenced by skull defects.

    Science.gov (United States)

    Lau, S; Flemming, L; Haueisen, J

    2014-08-01

    Magnetoencephalography (MEG) signals had previously been hypothesized to have negligible sensitivity to skull defects. The objective is to experimentally investigate the influence of conducting skull defects on MEG and EEG signals. A miniaturized electric dipole was implanted in vivo into rabbit brains. Simultaneous recording using 64-channel EEG and 16-channel MEG was conducted, first above the intact skull and then above a skull defect. Skull defects were filled with agar gels, which had been formulated to have tissue-like homogeneous conductivities. The dipole was moved beneath the skull defects, and measurements were taken at regularly spaced points. The EEG signal amplitude increased 2-10 times, whereas the MEG signal amplitude reduced by as much as 20%. The EEG signal amplitude deviated more when the source was under the edge of the defect, whereas the MEG signal amplitude deviated more when the source was central under the defect. The change in MEG field-map topography (relative difference measure, RDM(∗)=0.15) was geometrically related to the skull defect edge. MEG and EEG signals can be substantially affected by skull defects. MEG source modeling requires realistic volume conductor head models that incorporate skull defects. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Defect identification in semiconductors with positron annihilation: experiment and theory

    Science.gov (United States)

    Tuomisto, Filip

    2015-03-01

    Positron annihilation spectroscopy is a very powerful technique for the detection, identification and quantification of vacancy-type defects in semiconductors. In the past decades, it has been used to reveal the relationship between opto-electronic properties and specific defects in a wide variety of materials - examples include parasitic yellow luminescence in GaN, dominant acceptor defects in ZnO and broad-band absorption causing brown coloration in natural diamond. In typical binary compound semiconductors, the selective sensitivity of the technique is rather strongly limited to cation vacancies that possess significant open volume and suitable charge (negative of neutral). On the other hand, oxygen vacancies in oxide semiconductors are a widely debated topic. The properties attributed to oxygen vacancies include the inherent n-type conduction, poor p-type dopability, coloration (absorption), deep level luminescence and non-radiative recombination, while the only direct experimental evidence of their existence has been obtained on the crystal surface. We will present recent advances in combining state-of-the-art positron annihilation experiments and ab initio computational approaches. The latter can be used to model both the positron lifetime and the electron-positron momentum distribution - quantities that can be directly compared with experimental results. We have applied these methods to study vacancy-type defects in III-nitride semiconductors (GaN, AlN, InN) and oxides such as ZnO, SnO2, In2O3andGa2O3. We will show that cation-vacancy-related defects are important compensating centers in all these materials when they are n-type. In addition, we will show that anion (N, O) vacancies can be detected when they appear as complexes with cation vacancies.

  20. A novel method to alleviate flash-line defects in coining process

    KAUST Repository

    Xu, Jiangping

    2013-04-01

    We employ a finite element framework based on a dynamic explicit algorithm to predict the flash-line defects in the coining process. The distribution of the flash-line is obtained by building a radial friction work model at the element level. The elasto-plastic behavior of porous materials undergoing large deformations is considered where the constitutive level updates are the result of a local variational minimization problem. We study the material flow at different strokes of the die across the entire coining process and observe that the change in the flow direction of the material in the rim region may contribute to the flash lines. Our proposed framework shows that a part of the rim region in which the flash-line defects appear is consistent with the reported experimental results. We also propose a novel method of redesigning the rim geometry of the workpiece to alleviate the flash-line defects which also shows good agreement with experiments. © 2012 Elsevier Inc. All rights reserved.

  1. Impurity Role In Mechanically Induced Defects

    International Nuclear Information System (INIS)

    Howell, R.H.; Asoka-Kumar, P.; Hartley, J.; Sterne, P.

    2000-01-01

    An improved understanding of dislocation dynamics and interactions is an outstanding problem in the multi scale modeling of materials properties, and is the current focus of major theoretical efforts world wide. We have developed experimental and theoretical tools that will enable us to measure and calculate quantities defined by the defect structure. Unique to the measurements is a new spectroscopy that determines the detailed elemental composition at the defect site. The measurements are based on positron annihilation spectroscopy performed with a 3 MeV positron beam [1]. Positron annihilation spectroscopy is highly sensitive to dislocations and associated defects and can provide unique elements of the defect size and structure. Performing this spectroscopy with a highly penetrating positron beam enables flexibility in sample handling. Experiments on fatigued and stressed samples have been done and in situ measurement capabilities have been developed. We have recently performed significant upgrades to the accelerator operation and novel new experiments have been performed [2-4] To relate the spectrographic results and the detailed structure of a defect requires detailed calculations. Measurements are coupled with calculated results based on a description of positions of atoms at the defect. This gives an atomistic view of dislocations and associated defects including impurity interactions. Our ability to probe impurity interactions is a unique contribution to defect understanding not easily addressed by other atomistic spectroscopies

  2. Defect-impurity complex induced long-range ferromagnetism in GaN nanowires

    KAUST Repository

    Assa Aravindh, S

    2015-12-14

    Present work investigates the structural, electronic and magnetic properties of Gd doped wurtzite GaN nanowires (NWs) oriented along the [0001] direction in presence of intrinsic defects by employing the GGA + U approximation. We find that Ga vacancy (VGa) exhibits lower formation energy compared to N vacancy. Further stabilization of point defects occurs due to the presence of Gd. The strength of ferromagnetism (FM) increases by additional positive charge induced by the VGa. Electronic structure analysis shows that VGa introduces defect levels in the band gap leading to ferromagnetic coupling due to the hybridization of the p states of the Ga and N atoms with the Gd d and f states. Ferromagnetic exchange coupling energy of 76.4 meV is obtained in presence of Gd-VGa complex; hence, the FM is largely determined by the cation vacancy-rare earth complex defects in GaN NWs.

  3. Development of eddy current sensor for detecting defect on ferromagnetic material

    International Nuclear Information System (INIS)

    Choi, Duck Su; Lee, Hyang Beom

    2002-01-01

    In this paper, the eddy current sensor is developed for observing the ability of detecting defect on ferromagnetic material with variation of frequency and velocity. In order to research the characteristics on eddy current sensor. The circuit which is designed for processing detected voltage is developed and differential frequency is used for eddy current sensor to detect defect with variation of frequency. The ability of eddy current sensor to detect defects is studied with variation of velocity adjusted by rotating the circular plate. This study shows that the ability of eddy current sensor for detecting defect is increased and decreased by frequency. This fact means that the sensor has its best ability at a certain frequency. And the ability of eddy current sensor by velocity is decreased by increased velocity. Therefore, the eddy current sensor has to be developed with consideration of its operation velocity and frequency.

  4. Defect-impurity complex induced long-range ferromagnetism in GaN nanowires

    KAUST Repository

    Assa Aravindh, S; Roqan, Iman S.

    2015-01-01

    Present work investigates the structural, electronic and magnetic properties of Gd doped wurtzite GaN nanowires (NWs) oriented along the [0001] direction in presence of intrinsic defects by employing the GGA + U approximation. We find that Ga vacancy (VGa) exhibits lower formation energy compared to N vacancy. Further stabilization of point defects occurs due to the presence of Gd. The strength of ferromagnetism (FM) increases by additional positive charge induced by the VGa. Electronic structure analysis shows that VGa introduces defect levels in the band gap leading to ferromagnetic coupling due to the hybridization of the p states of the Ga and N atoms with the Gd d and f states. Ferromagnetic exchange coupling energy of 76.4 meV is obtained in presence of Gd-VGa complex; hence, the FM is largely determined by the cation vacancy-rare earth complex defects in GaN NWs.

  5. A semi-mechanistic approach to calculate the probability of fuel defects

    International Nuclear Information System (INIS)

    Tayal, M.; Millen, E.; Sejnoha, R.

    1992-10-01

    In this paper the authors describe the status of a semi-mechanistic approach to the calculation of the probability of fuel defects. This approach expresses the defect probability in terms of fundamental parameters such as local stresses, local strains, and fission product concentration. The calculations of defect probability continue to reflect the influences of the conventional parameters like power ramp, burnup and CANLUB. In addition, the new approach provides a mechanism to account for the impacts of additional factors involving detailed fuel design and reactor operation, for example pellet density, pellet shape and size, sheath diameter and thickness, pellet/sheath clearance, and coolant temperature and pressure. The approach has been validated against a previous empirical correlation. AN illustrative example shows how the defect thresholds are influenced by changes in the internal design of the element and in the coolant pressure. (Author) (7 figs., tab., 12 refs.)

  6. Defect properties from X-ray scattering experiments

    International Nuclear Information System (INIS)

    Peisl, H.

    1976-01-01

    Lattice distortions due to defects in crystals can be studied most directly by elastic X-ray or neutron scattering experiments. The 'size' of the defects can be determined from the shift of the Bragg reflections. Defect induced diffuse scattering intensity close to and between Bragg reflections gives information on the strength and symmetry of the distortion fields and yields the atomic structure of point defects (interstitials, vacancies, small aggregates). Diffuse scattering is a very sensitive method to decide whether defects are present as isolated point defects or have formed aggregates. X-ray scattering has been used to study defects produced in various ionic crystals by γ- and neutron irradiation. After an introduction to the principles of the method the experimental results will be reviewed and discussed in some detail. (orig.) [de

  7. Formation of defects at high temperature plastic deformation of gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Mikhnovich, V.V.

    2006-03-14

    The purpose of the present thesis consists in acquiring more concrete information concerning the mechanism of the movement of dislocations and types of defects that appear during the process of dislocation motion on the basis of systematic experimental studies of the GaAs deformation. Experimental studies concerning the dependence of the stress of the samples from their deformation at different values of the deformation parameters (like temperature and deformation speed) were conducted in this paper. To determine the concentration of defects introduced in samples during the deformation process the positron annihilation spectroscopy (PAS) method was used. The second chapter of this paper deals with models of movement of dislocations and origination of defects during deformation of the samples. In the third chapter channels and models of positron annihilation in the GaAs samples are investigated. In the forth chapter the used experimental methods, preparation procedure of test samples and technical data of conducted experiments are described. The fifth chapter shows the results of deformation experiments. The sixth chapter shows the results of positron lifetime measurements by the PAS method. In the seventh chapter one can find analyses of the values of defects concentration that were introduced in samples during deformation. (orig.)

  8. Modeling of Powder Bed Manufacturing Defects

    Science.gov (United States)

    Mindt, H.-W.; Desmaison, O.; Megahed, M.; Peralta, A.; Neumann, J.

    2018-01-01

    Powder bed additive manufacturing offers unmatched capabilities. The deposition resolution achieved is extremely high enabling the production of innovative functional products and materials. Achieving the desired final quality is, however, hampered by many potential defects that have to be managed in due course of the manufacturing process. Defects observed in products manufactured via powder bed fusion have been studied experimentally. In this effort we have relied on experiments reported in the literature and—when experimental data were not sufficient—we have performed additional experiments providing an extended foundation for defect analysis. There is large interest in reducing the effort and cost of additive manufacturing process qualification and certification using integrated computational material engineering. A prerequisite is, however, that numerical methods can indeed capture defects. A multiscale multiphysics platform is developed and applied to predict and explain the origin of several defects that have been observed experimentally during laser-based powder bed fusion processes. The models utilized are briefly introduced. The ability of the models to capture the observed defects is verified. The root cause of the defects is explained by analyzing the numerical results thus confirming the ability of numerical methods to provide a foundation for rapid process qualification.

  9. A study of the electrical properties of defects in silicon

    International Nuclear Information System (INIS)

    Blood, A.M.

    1998-01-01

    This work contains the most comprehensive qualitative and quantitative electron beam induced current (EBIC) study of recombination at contaminated defects in silicon. It is also a rigorous quantitative investigation of the effect of hydrogen on individual transition metal contaminated defects. In addition, the recombination behaviour exhibited by point and extended defects has been investigated using EBIC and deep level transient spectroscopy (DLTS). As a result of these measurements, techniques for the preparation of transition metal contaminated specimens have been refined. Successful hydrogen passivation of copper, nickel and iron contaminated silicon specimens containing oxidation-induced stacking faults has been achieved in two experimental systems. It is found that hydrogen passivates those states that are deepest in the semiconductor band gap in preference to those that are shallow. Furthermore, it has been concluded that during hydrogen passivation treatment, even at low temperatures, unwanted metallic impurities can be introduced. Three types of recombination behaviour have been identified from the defects-studied in this work and they are discussed with relevance to present recombination models. An investigation of the recombination behaviour of defects that lie in the depletion region and in the specimen bulk has concluded that the recombination type observed is independent of the depth of the defect. Evidence for the presence of compound defects showing mixed recombination behaviour type is presented. In conclusion, it is postulated that the transition metal impurities introduce a 'band of states' with a range of energies rather than a single energy state. This proposal is provided as an explanation for the recombination types found in this work and the effect of the hydrogen passivation. This work is placed in context of previous investigations into the behaviour of dislocations in silicon in the presence of transition metals, and the ability of

  10. Photoluminescence study of trap-state defect on TiO2 thin films at different substrate temperature via RF magnetron sputtering

    Science.gov (United States)

    Abdullah, S. A.; Sahdan, M. Z.; Nafarizal, N.; Saim, H.; Bakri, A. S.; Cik Rohaida, C. H.; Adriyanto, F.; Sari, Y.

    2018-04-01

    This paper highlights the defect levels using photoluminescence spectroscopy of TiO2 thin films. The TiO2 were deposited by Magnetron Sputtering system with 200, 300, 400, and 500 °C substrate temperature on microscope glass substrate. The PL result shows profound effect of various substrate temperatures to defect levels of oxygen vacancies and Ti3+ at titanium interstitial site. Increasing temperature would minimize the oxygen vacancy defect, however Ti3+ shows otherwise. Green region of PL consist of trapped hole for oxygen vacancy, while red region of PL is trapped electron associated to structural defect Ti3+. Green PL is dominant peak at temperature 200 °C, indicating that oxygen vacancy is the main defect at this temperature. However, PL peak shows slightly same value for others samples indicating that the temperature did not give high influence to other level of defect after 200 °C.

  11. Determination of defect content and defect profile in semiconductor heterostructures

    International Nuclear Information System (INIS)

    Zubiaga, A; Garcia, J A; Plazaola, F; Zuniga-Perez, J; Munoz-Sanjose, V

    2011-01-01

    In this article we present an overview of the technique to obtain the defects depth profile and width of a deposited layer and multilayer based on positron annihilation spectroscopy. In particular we apply the method to ZnO and ZnO/ZnCdO layers deposited on sapphire substrates. After introducing some terminology we first calculate the trend that the W/S parameters of the Doppler broadening measurements must follow, both in a qualitative and quantitative way. From this point we extend the results to calculate the width and defect profiles in deposited layer samples.

  12. Determination of defect content and defect profile in semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zubiaga, A [Laboratory of Physics, HUT, PO Box 1100, 02015 TKK, Espoo (Finland); Garcia, J A; Plazaola, F [Zientzia eta Teknologia Fakultatea, Euskal Herriko Unbertsitatea, P. K. 644, 48080, Bilbao (Spain); Zuniga-Perez, J; Munoz-Sanjose, V, E-mail: fernando.plazaola@ehu.es [Universitat de Valencia, Departamento de Fisica Aplicada i Electromagnetisme, Dr. Moliner 50, 46100 Burjassot, Valencia (Spain)

    2011-01-10

    In this article we present an overview of the technique to obtain the defects depth profile and width of a deposited layer and multilayer based on positron annihilation spectroscopy. In particular we apply the method to ZnO and ZnO/ZnCdO layers deposited on sapphire substrates. After introducing some terminology we first calculate the trend that the W/S parameters of the Doppler broadening measurements must follow, both in a qualitative and quantitative way. From this point we extend the results to calculate the width and defect profiles in deposited layer samples.

  13. Congenital heart defects in Williams syndrome.

    Science.gov (United States)

    Yuan, Shi-Min

    2017-01-01

    Yuan SM. Congenital heart defects in Williams syndrome. Turk J Pediatr 2017; 59: 225-232. Williams syndrome (WS), also known as Williams-Beuren syndrome, is a rare genetic disorder involving multiple systems including the circulatory system. However, the etiologies of the associated congenital heart defects in WS patients have not been sufficiently elucidated and represent therapeutic challenges. The typical congenital heart defects in WS were supravalvar aortic stenosis, pulmonary stenosis (both valvular and peripheral), aortic coarctation and mitral valvar prolapse. The atypical cardiovascular anomalies include tetralogy of Fallot, atrial septal defects, aortic and mitral valvular insufficiencies, bicuspid aortic valves, ventricular septal defects, total anomalous pulmonary venous return, double chambered right ventricle, Ebstein anomaly and arterial anomalies. Deletion of the elastin gene on chromosome 7q11.23 leads to deficiency or abnormal deposition of elastin during cardiovascular development, thereby leading to widespread cardiovascular abnormalities in WS. In this article, the distribution, treatment and surgical outcomes of typical and atypical cardiac defects in WS are discussed.

  14. Secondary defects in non-metallic solids

    International Nuclear Information System (INIS)

    Ashbee, K.H.G.; Hobbs, L.W.

    1977-01-01

    This paper points out features of secondary defect formation which are peculiar to non-metallic solids (excluding elemental semiconductors). Most of the materials of interest are compounds of two or more (usually more or less ionic) atomic species, and immediate consequence of which is a need to maintain both stoichiometry (or accommodate non-stoichiometry) and order. Primary defects in these solids, whether produced thermally, chemically or by irradiation, seldom are present or aggregate in exactly stoichiometric proportions, and the resulting extending defect structures can be quite distinct from those found in metallic solids. Where stoichiometry is maintained, it is often convenient to describe extended defects in terms of alterations in the arrangement of 'molecular' units. The adoption of this procedure enables several novel features of extended defect structures in non-metals to be explained. There are several ways in which a range of non-stoichiometry can be accommodated, which include structural elimination of point defects, nucleation of new coherent phases of altered stoichiometry, and decomposition. (author)

  15. A study of process-related electrical defects in SOI lateral bipolar transistors fabricated by ion implantation

    Science.gov (United States)

    Yau, J.-B.; Cai, J.; Hashemi, P.; Balakrishnan, K.; D'Emic, C.; Ning, T. H.

    2018-04-01

    We report a systematic study of process-related electrical defects in symmetric lateral NPN transistors on silicon-on-insulator (SOI) fabricated using ion implantation for all the doped regions. A primary objective of this study is to see if pipe defects (emitter-collector shorts caused by locally enhanced dopant diffusion) are a show stopper for such bipolar technology. Measurements of IC-VCE and Gummel currents in parallel-connected transistor chains as a function of post-fabrication rapid thermal anneal cycles allow several process-related electrical defects to be identified. They include defective emitter-base and collector-base diodes, pipe defects, and defects associated with a dopant-deficient region in an extrinsic base adjacent its intrinsic base. There is no evidence of pipe defects being a major concern in SOI lateral bipolar transistors.

  16. The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene.

    Science.gov (United States)

    Wei, Yujie; Wu, Jiangtao; Yin, Hanqing; Shi, Xinghua; Yang, Ronggui; Dresselhaus, Mildred

    2012-09-01

    The two-dimensional crystalline structures in graphene challenge the applicability of existing theories that have been used for characterizing its three-dimensional counterparts. It is crucial to establish reliable structure-property relationships in the important two-dimensional crystals to fully use their remarkable properties. With the success in synthesizing large-area polycrystalline graphene, understanding how grain boundaries (GBs) in graphene alter its physical properties is of both scientific and technological importance. A recent work showed that more GB defects could counter intuitively give rise to higher strength in tilt GBs (ref. 10). We show here that GB strength can either increase or decrease with the tilt, and the behaviour can be explained well by continuum mechanics. It is not just the density of defects that affects the mechanical properties, but the detailed arrangements of defects are also important. The strengths of tilt GBs increase as the square of the tilt angles if pentagon-heptagon defects are evenly spaced, and the trend breaks down in other cases. We find that mechanical failure always starts from the bond shared by hexagon-heptagon rings. Our present work provides fundamental guidance towards understanding how defects interact in two-dimensional crystals, which is important for using high-strength and stretchable graphene for biological and electronic applications.

  17. Talbot effect of the defective grating in deep Fresnel region

    Science.gov (United States)

    Teng, Shuyun; Wang, Junhong; Zhang, Wei; Cui, Yuwei

    2015-02-01

    Talbot effect of the grating with different defect is studied theoretically and experimentally in this paper. The defects of grating include the loss of the diffraction unit, the dislocation of the diffraction unit and the modulation of the unit separation. The exact diffraction distributions of three kinds of defective gratings are obtained according to the finite-difference time-domain (FDTD) method. The calculation results show the image of the missing or dislocating unit appears at the Talbot distance (as mentioned in K. Patorski Prog. Opt., 27, 1989, pp.1-108). This is the so-called self-repair ability of grating imaging. In addition, some more phenomena are discovered. The loss or the dislocation of diffraction unit causes the diffraction distortion within a certain radial angle. The regular modulation of unit separation changes the original diffraction, but the new periodicity of the diffraction distribution rebuilds. The self-imaging of grating with smaller random modulation still keeps the partial self-repair ability, and yet this characteristic depends on the modulation degree of defective grating. These diffraction phenomena of the defective gratings are explained by use of the diffraction theory of grating. The practical experiment is also performed and the experimental results confirm the theoretic predictions.

  18. Neuroradiologic findings in children with mitochondrial disorder: correlation with mitochondrial respiratory chain defects

    International Nuclear Information System (INIS)

    Kim, Jinna; Lee, Seung-Koo; Kim, Dong Ik; Kim, Eung Yeop; Lee, Young-Mock; Lee, Joon Soo; Kim, Heung Dong

    2008-01-01

    Mitochondrial disorders are a heterogeneous group of disorders affecting energy metabolism that can present at any age with a wide variety of clinical symptoms. We investigated brain magnetic resonance (MR) findings in 40 children with defects of the mitochondrial respiratory chain (MRC) complex and correlated them with the type of MRC defects. Enrolled were 40 children with MRC defects in biochemical enzyme assay of the muscle specimen. Twenty-one children were found to have classical syndromes of mitochondrial disorders and 19 children presented nonspecific mitochondrial encephalomyopathies. Their brain MR imaging findings were retrospectively reviewed and correlated with the biochemical defect in the MRC complex. Children with MRC defects showed various neuroradiologic features on brain MR imaging that resulted from a complex genetic background and a heterogeneous phenotype. Rapid progression of atrophy involving all structures of the brain with variable involvement of deep gray and white matter are the most frequent MR findings in children with MRC defects in both classical syndromes of mitochondrial disorder and nonspecific mitochondrial encephalomyopathies. The type of biochemical defect in the MRC complex enzyme did not correlate with brain MR findings in child patients. (orig.)

  19. Neuroradiologic findings in children with mitochondrial disorder: correlation with mitochondrial respiratory chain defects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinna; Lee, Seung-Koo; Kim, Dong Ik [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Seoul (Korea); Kim, Eung Yeop [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Brain Korea 21 Project for Medical Science, Seoul (Korea); Lee, Young-Mock; Lee, Joon Soo [Yonsei University College of Medicine, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children' s Hospital, Brain Research Institute, Seoul (Korea); Kim, Heung Dong [Yonsei University College of Medicine, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children' s Hospital, Brain Research Institute, Seoul (Korea); Yonsei University College of Medicine, Department of Pediatrics, Seoul (Korea)

    2008-08-15

    Mitochondrial disorders are a heterogeneous group of disorders affecting energy metabolism that can present at any age with a wide variety of clinical symptoms. We investigated brain magnetic resonance (MR) findings in 40 children with defects of the mitochondrial respiratory chain (MRC) complex and correlated them with the type of MRC defects. Enrolled were 40 children with MRC defects in biochemical enzyme assay of the muscle specimen. Twenty-one children were found to have classical syndromes of mitochondrial disorders and 19 children presented nonspecific mitochondrial encephalomyopathies. Their brain MR imaging findings were retrospectively reviewed and correlated with the biochemical defect in the MRC complex. Children with MRC defects showed various neuroradiologic features on brain MR imaging that resulted from a complex genetic background and a heterogeneous phenotype. Rapid progression of atrophy involving all structures of the brain with variable involvement of deep gray and white matter are the most frequent MR findings in children with MRC defects in both classical syndromes of mitochondrial disorder and nonspecific mitochondrial encephalomyopathies. The type of biochemical defect in the MRC complex enzyme did not correlate with brain MR findings in child patients. (orig.)

  20. Defining defect specifications to optimize photomask production and requalification

    Science.gov (United States)

    Fiekowsky, Peter

    2006-10-01

    Reducing defect repairs and accelerating defect analysis is becoming more important as the total cost of defect repairs on advanced masks increases. Photomask defect specs based on printability, as measured on AIMS microscopes has been used for years, but the fundamental defect spec is still the defect size, as measured on the photomask, requiring the repair of many unprintable defects. ADAS, the Automated Defect Analysis System from AVI is now available in most advanced mask shops. It makes the use of pure printability specs, or "Optimal Defect Specs" practical. This software uses advanced algorithms to eliminate false defects caused by approximations in the inspection algorithm, classify each defect, simulate each defect and disposition each defect based on its printability and location. This paper defines "optimal defect specs", explains why they are now practical and economic, gives a method of determining them and provides accuracy data.

  1. [BIPADDLED SPLIT PECTORALIS MAJOR MYOCUTANEOUS FLAPS FOR IMMEDIATE RECONSTRUCTION OF ORAL MUCOSAL DEFECTS AND NECK DEFECTS AFTER RESECTION OF RECURRENT ORAL CANCER].

    Science.gov (United States)

    Chen, Jie; Jiang, Canhua; Li, Ning; Gao, Zhengyang; Chen, Lichun; Wu, Xiaoshan; Chen, Xinqun; Jian, Xinchun

    2015-07-01

    To investigate the feasibility of the bipaddled split pectoralis major myocutaneous flap for immediate reconstruction of oral mucosal defects and neck defects after resection of recurrent oral cancer. Six patients with oral mucosal defects combined with neck defects after recurrent oral cancer resection were treated with bipaddled split pectoralis major myocutaneous flap between September 2013 and September 2014. There were 5 males and 1 female with an average age of 54.7 years (range, 45-62 years), including 4 cases of recurrent tongue cancer, 1 case of recurrent mandibular gingival cancer, and 1 case of mouth floor carcinoma. All patients underwent local recurrence at 8 to 14 months after first operation, with no distant metastasis. The defects of the intraoral mucosa was 4.0 cm x 2.5 cm to 6.5 cm x 3.5 cm and the defect of the neck skin was 5.5 cm x 3.5 cm to 7.5 cm x 5.0 cm. The pectoralis major myocutaneous flaps (14.0 cm x 3.5 cm to 17.0 cm x 5.5 cm) were incised at the level of the 3rd to the 4th rib, and then split down along the muscle fiber till about 2 cm away from the thoracoacromial vessels, forming 2 independent skin paddles with 1-2 branch vessels to the pedicles of the distal ones. The distal skin paddles were used for oral reconstruction while the proximal paddles for repair of neck defects. The chest donor sites were sutured directly. Cervical haematoma and infection happened in 1 patient respectively after operation, and were cured after symptomatic treatment. All 6 split pectoralis major myocutaneous flaps with 12 skin paddles completely survived. All patients were followed up 6 to 18 months (mean, 11 months). One patient died of pulmonary metastasis at 8 months after operation and the other 5 survived without relapse or metastasis during follow-up. The intraoral paddles showed good shape with satisfactory speech function and swallowing recovery. The paddles also healed perfectly on the neck with flat outlooks, and all patients obtained full

  2. Metastable and bistable defects in silicon

    International Nuclear Information System (INIS)

    Mukashev, Bulat N; Abdullin, Kh A; Gorelkinskii, Yurii V

    2000-01-01

    Existing data on the properties and structure of metastable and bistable defects in silicon are analyzed. Primary radiation-induced defects (vacancies, self-interstitial atoms, and Frenkel pairs), complexes of oxygen, carbon, hydrogen, and other impurity atoms and defects with negative correlation energy are considered. (reviews of topical problems)

  3. Topological defects in extended inflation

    International Nuclear Information System (INIS)

    Copeland, E.J.; Kolb, E.W.; Chicago Univ., IL; Liddle, A.R.

    1990-04-01

    We consider the production of topological defects, especially cosmic strings, in extended inflation models. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large-scale structure via cosmic strings. 18 refs

  4. Topological defects in extended inflation

    International Nuclear Information System (INIS)

    Copeland, E.J.; Kolb, E.W.; Liddle, A.R.

    1990-01-01

    We consider the production of topological defects, especially cosmic strings, in extended-inflation models. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of the bubbles when they collide. This mechanism allows a natural combination of inflation and large-scale structure via cosmic strings

  5. Probing defects in ZnO nanostructures by Photoluminescence and Positron Annihilation Spectroscopy

    Science.gov (United States)

    Ghosh, Manoranjan; Raychaudhuri, A. K.; Chaudhuri, S. K.; Das, Dipankar

    2008-03-01

    We have investigated defect related emission in the blue green region (2.2 eV -- 2.5 eV) of ZnO nanostructures having spherical (5 nm-15 nm) as well as those with hexagonal platelet and rod like morphologies (20nm-100 nm), synthesized by solvo-thermal route. This emission show anomalous size dependence. Emission energy near 2.2 eV, shifts to higher energy (2.5 eV) for increase in size beyond 20nm when shape of the nanostructures changes. This change in photoluminescence has a close correlation with the size (and shape) induced change in the positron trapping rate which is directly proportional to the defect concentration. The trapping rates show non-monotonous dependence on size. It increases initially as the size increases (5nm-15nm) and then decreases as the size increases beyond 20nm. While increase of the trapping rate on size reduction is expected due to accumulation of more defects at the surface, the initial dependence of the trapping rate on the size (below 20nm) is anomalous. The data are explained by the presence of defects like Zn vacancy and confinement due to size reduction.

  6. Mitochondrial respiratory chain Complex I defects in Fanconi anemia complementation group A.

    Science.gov (United States)

    Ravera, Silvia; Vaccaro, Daniele; Cuccarolo, Paola; Columbaro, Marta; Capanni, Cristina; Bartolucci, Martina; Panfoli, Isabella; Morelli, Alessandro; Dufour, Carlo; Cappelli, Enrico; Degan, Paolo

    2013-10-01

    Fanconi anemia (FA) is a rare and complex inherited blood disorder of the child. At least 15 genes are associated with the disease. The highest frequency of mutations belongs to groups A, C and G. Genetic instability and cytokine hypersensitivity support the selection of leukemic over non-leukemic stem cells. FA cellular phenotype is characterized by alterations in red-ox state, mitochondrial functionality and energy metabolism as reported in the past however a clear picture of the altered biochemical phenotype in FA is still elusive and the final biochemical defect(s) still unknown. Here we report an analysis of the respiratory fluxes in FANCA primary fibroblasts, lymphocytes and lymphoblasts. FANCA mutants show defective respiration through Complex I, diminished ATP production and metabolic sufferance with an increased AMP/ATP ratio. Respiration in FANCC mutants is normal. Treatment with N-acetyl-cysteine (NAC) restores oxygen consumption to normal level. Defective respiration in FANCA mutants appear correlated with the FA pro-oxidative phenotype which is consistent with the altered morphology of FANCA mitochondria. Electron microscopy measures indeed show profound alterations in mitochondrial ultrastructure and shape. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Defect accumulation under cascade damage conditions

    DEFF Research Database (Denmark)

    Trinkaus, H.; Singh, B.N.; Woo, C.H.

    1994-01-01

    in terms of this reaction kinetics taking into account cluster production, dissociation, migration and annihilation at extended sinks. Microstructural features which are characteristic of cascade damage and cannot be explained in terms of the conventional single defect reaction kinetics are emphasized......There is now ample evidence from both experimental and computer simulation studies that in displacement cascades not only intense recombination takes place but also efficient clustering of both self-interstitial atoms (SIAs) and vacancies. The size distributions of the two types of defects produced...... reactions kinetics associated with the specific features of cascade damage is described, with emphasis on asymmetries between SIA and vacancy type defects concerning their production, stability, mobility and interactions with other defects. Defect accumulation under cascade damage conditions is discussed...

  8. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects.

    Science.gov (United States)

    Hoemann, Caroline D; Hurtig, Mark; Rossomacha, Evgeny; Sun, Jun; Chevrier, Anik; Shive, Matthew S; Buschmann, Michael D

    2005-12-01

    one hour postoperatively, chitosan-glycerol phosphate/blood clots showed increased adhesion to the walls of the defects as compared with the blood clots in the untreated microfracture defects. After histological processing, all blood clots in the control microfracture defects had been lost, whereas chitosanglycerol phosphate/blood clot adhered to and was partly retained on the surfaces of the defect. At six months, defects that had been treated with chitosan-glycerol phosphate/blood were filled with significantly more hyaline repair tissue (p cartilage repair compared with microfracture alone by increasing the amount of tissue and improving its biochemical composition and cellular organization.

  9. Building defects in Danish construction: project characteristics influencing the occurrence of defects at handover

    DEFF Research Database (Denmark)

    Schultz, Casper Siebken; Jørgensen, Kirsten; Bonke, Sten

    2015-01-01

    Defects in construction have gained much attention from both the public and academia. Danish construction is no exception and a number of political initiatives have been established to address the unsatisfying amounts of defects. One of the political initiatives, benchmarking, collects and provides...... those with many and/or serious defects. The article reviews the results from studying two quantitative data sets: (I) benchmarking data from 329 building projects and 621 contracts and (II) questionnaire data from an electronic survey comprising 130 contractors. This study provides in-depth knowledge...

  10. Quantum computing with defects

    Science.gov (United States)

    Varley, Joel

    2011-03-01

    The development of a quantum computer is contingent upon the identification and design of systems for use as qubits, the basic units of quantum information. One of the most promising candidates consists of a defect in diamond known as the nitrogen-vacancy (NV-1) center, since it is an individually-addressable quantum system that can be initialized, manipulated, and measured with high fidelity at room temperature. While the success of the NV-1 stems from its nature as a localized ``deep-center'' point defect, no systematic effort has been made to identify other defects that might behave in a similar way. We provide guidelines for identifying other defect centers with similar properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate systems. To elucidate these points, we compare electronic structure calculations of the NV-1 center in diamond with those of several deep centers in 4H silicon carbide (SiC). Using hybrid functionals, we report formation energies, configuration-coordinate diagrams, and defect-level diagrams to compare and contrast the properties of these defects. We find that the NC VSi - 1 center in SiC, a structural analog of the NV-1 center in diamond, may be a suitable center with very different optical transition energies. We also discuss how the proposed criteria can be translated into guidelines to discover NV analogs in other tetrahedrally coordinated materials. This work was performed in collaboration with J. R. Weber, W. F. Koehl, B. B. Buckley, A. Janotti, C. G. Van de Walle, and D. D. Awschalom. This work was supported by ARO, AFOSR, and NSF.

  11. Direct Observation of Radiation Defects: Experiment and Interpretation

    International Nuclear Information System (INIS)

    Dudarev, S.L.

    2012-01-01

    at low cost in comparison with the mock-up tests, offer scientific insight and make it possible to perform, in combination with experimental information derived from fission and ion-beam irradiation experiments, the preliminary assessment of power plant operating scenarios. Defining the limits of visibility of small defect clusters and dislocation loops, and optimal diffraction conditions for electron microscope imaging, remains one of the central problems of electron microscopy of irradiated materials. Using computer image simulations based on the propagation- interpolation algorithm for solving the Howie-Basinski equations, it is possible to investigate the relation between the actual and the 'observed' size of small loops, the part played by many-beam dynamical diffraction effects, and limitations of electron microscope imaging in identifying the structure of small defects. A particularly impressive and useful application of electron microscopy is given by recent in situ electron microscope observations, providing real-time visualization of dynamics of defects produced by ultra-high-energy electron irradiation, or showing microstructural evolution occurring under ion beam irradiation. Such observations have revolutionized our understanding of how properties of metals and alloys change in the extreme radiation and thermal environments of a fission or a fusion power plant. The key feature of in situ electron microscopy is its ability to exhibit the time-dependent dynamics of migration, interaction, and transformation of radiation defects, and to visualize the entire complexity of evolving defect and dislocation networks. For example, in situ electron microscope observations provided evidence of violation of the Burgers vector conservation law for dislocations on the nanoscale. This gave a vital clue needed for modeling microscopic processes responsible for the formation of unusual high temperature dislocation structures in iron, and for explaining the origin of the

  12. Study on acoustic emission signals of active defect in pressure piping under hydraulic pressure

    International Nuclear Information System (INIS)

    Ai Qiong; Liu Caixue; Wang Yao; He Pan; Song Jian

    2009-01-01

    Experimental investigations of acoustic emission (AE) of active defect in pressure piping with a prefabricated crack under hydraulic pressure tester were conducted. AE signals of fatigue-crack-growth in pressure piping were monitored incessantly in all processes, and all signals recorded were analyzed and processed. The result of signal processing show that the amplitude and energy of acoustic emission signals from defect in pressure pipeline increase gradually with the load time, and thus the active defects in pipeline can be identified; the amplitude, energy and count of acoustic emission signals increase sharply before the defect runs through, and we can forecast the penetrated leakage of pipeline. (authors)

  13. Reduced TCA Flux in Diabetic Myotubes: Determined by Single Defects?

    Science.gov (United States)

    Gaster, Michael

    2012-01-01

    The diabetic phenotype is complex, requiring elucidation of key initiating defects. Diabetic myotubes express a primary reduced tricarboxylic acid (TCA) cycle flux but at present it is unclear in which part of the TCA cycle the defect is localised. In order to localise the defect we studied ATP production in isolated mitochondria from substrates entering the TCA cycle at various points. ATP production was measured by luminescence with or without concomitant ATP utilisation by hexokinase in mitochondria isolated from myotubes established from eight lean and eight type 2 diabetic subjects. The ATP production of investigated substrate combinations was significantly reduced in mitochondria isolated from type 2 diabetic subjects compared to lean. However, when ATP synthesis rates at different substrate combinations were normalized to the corresponding individual pyruvate-malate rate, there was no significant difference between groups. These results show that the primary reduced TCA cycle flux in diabetic myotubes is not explained by defects in specific part of the TCA cycle but rather results from a general downregulation of the TCA cycle.

  14. Structural and electronic properties of zigzag InP nanoribbons with Stone–Wales type defects

    International Nuclear Information System (INIS)

    Longo, R C; Carrete, J; Varela, L M; Gallego, L J

    2016-01-01

    By means of density-functional-theoretic calculations, we investigate the structural and electronic properties of a hexagonal InP sheet and of hydrogen-passivated zigzag InP nanoribbons (ZInPNRs) with Stone–Wales (SW)-type defects. Our results show that the influence of this kind of defect is not limited to the defected region but it leads to the formation of ripples that extend across the systems, in keeping with the results obtained recently for graphene and silicene sheets. The presence of SW defects in ZInPNRs causes an appreciable broadening of the band gap and transforms the indirect-bandgap perfect ZInPNR into a direct-bandgap semiconductor. An external transverse electric field, regardless of its direction, reduces the gap in both the perfect and defective ZInPNRs. (paper)

  15. Defect identification using positrons

    International Nuclear Information System (INIS)

    Beling, C.D.; Fung, S.

    2001-01-01

    The current use of the lifetime and Doppler broadening techniques in defect identification is demonstrated with two studies, the first being the identification of carbon vacancy in n-6H SiC through lifetime spectroscopy, and the second the production of de-hydrogenated voids in α-Si:H through light soaking. Some less conventional ideas are presented for more specific defect identification, namely (i) the amalgamation of lifetime and Doppler techniques with conventional deep level transient spectroscopy in what may be called ''positron-deep level transient spectroscopy'', and (ii) the extraction of more spatial information on vacancy defects by means of what may be called ''Fourier transform Doppler broadening of annihilation radiation spectroscopy'' (orig.)

  16. Positron lifetime calculation for defects and defect clusters in graphite

    International Nuclear Information System (INIS)

    Onitsuka, T.; Ohkubo, H.; Takenaka, M.; Tsukuda, N.; Kuramoto, E.

    2000-01-01

    Calculations of positron lifetime have been made for vacancy type defects in graphite and compared with experimental results. Defect structures were obtained in a model graphite lattice after including relaxation of whole lattice as determined by the molecular dynamics method, where the interatomic potential given by Pablo Andribet, Dominguez-Vazguez, Mari Carmen Perez-Martin, Alonso, Jimenez-Rodriguez [Nucl. Instrum. and Meth. 115 (1996) 501] was used. For the defect structures obtained via lattice relaxation positron lifetime was calculated under the so-called atomic superposition method. Positron lifetimes 204 and 222 ps were obtained for the graphite matrix and a single vacancy, respectively, which can be compared with the experimental results 208 and 233 ps. For planar vacancy clusters, e.g., vacancy loops, lifetime calculation was also made and indicated that lifetime increases with the number of vacancies in a cluster. This is consistent with the experimental result in the region of higher annealing temperature (above 1200 deg. C), where the increase of positron lifetime is seen, probably corresponding to the clustering of mobile vacancies

  17. A Baseline-Free Defect Imaging Technique in Plates Using Time Reversal of Lamb Waves

    International Nuclear Information System (INIS)

    Jeong, Hyunjo; Cho, Sungjong; Wei, Wei

    2011-01-01

    We present an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A 0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional sidebands that contain the time-of-flight information on the defect location. One of the side-band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free imaging of a defect. (fundamental areas of phenomenology(including applications))

  18. Coarse-grained molecular dynamics modeling of the kinetics of lamellar block copolymer defect annealing

    Science.gov (United States)

    Peters, Andrew J.; Lawson, Richard A.; Nation, Benjamin D.; Ludovice, Peter J.; Henderson, Clifford L.

    2016-01-01

    State-of-the-art block copolymer (BCP)-directed self-assembly (DSA) methods still yield defect densities orders of magnitude higher than is necessary in semiconductor fabrication despite free-energy calculations that suggest equilibrium defect densities are much lower than is necessary for economic fabrication. This disparity suggests that the main problem may lie in the kinetics of defect removal. This work uses a coarse-grained model to study the rates, pathways, and dependencies of healing a common defect to give insight into the fundamental processes that control defect healing and give guidance on optimal process conditions for BCP-DSA. It is found that bulk simulations yield an exponential drop in defect heal rate above χN˜30. Thin films show no change in rate associated with the energy barrier below χN˜50, significantly higher than the χN values found previously for self-consistent field theory studies that neglect fluctuations. Above χN˜50, the simulations show an increase in energy barrier scaling with 1/2 to 1/3 of the bulk systems. This is because thin films always begin healing at the free interface or the BCP-underlayer interface, where the increased A-B contact area associated with the transition state is minimized, while the infinitely thick films cannot begin healing at an interface.

  19. Revealing the properties of defects formed by CH3NH2 molecules in organic-inorganic hybrid perovskite MAPbBr3

    Science.gov (United States)

    Wang, Ji; Zhang, Ao; Yan, Jun; Li, Dan; Chen, Yunlin

    2017-03-01

    The properties of defects in organic-inorganic hybrid perovskite are widely studied from the first-principles calculation. However, the defects of methylamine (methylamine = CH3NH2), which would be easily formed during the preparation of the organic-inorganic hybrid perovskite, are rarely investigated. Thermodynamic properties as well as defect states of methylamine embedded MAPbX3 (MA = methyl-ammonium = CH3NH3, X = Br, I) are studied based on first-principles calculations of density functional theory. It was found that there is a shallow defect level near the highest occupied molecular orbital, which induced by the interstitial methylamine defect in MAPbBr3, will lead to an increase of photoluminescence. The calculation results showed that interstitial defect states of methylamine may move deeper due to the interaction between methylamine molecules and methyl-ammonium cations. It was also showed that the interstitial methylamine defect is stable at room temperature, and the defect can be removed easily by annealing.

  20. Developmental programming: Prenatal BPA treatment disrupts timing of LH surge and ovarian follicular wave dynamics in adult sheep

    Science.gov (United States)

    Veiga-Lopez, A; Beckett, EM; Abi Salloum, B; Ye, W; Padmanabhan, V

    2014-01-01

    Developmental exposure to BPA adversely affects reproductive function. In sheep, prenatal BPA treatment induces reproductive neuroendocrine defects, manifested as LH excess and dampened LH surge and perturbs early ovarian gene expression. In this study we hypothesized that prenatal BPA treatment will also disrupt ovarian follicular dynamics. Pregnant sheep were treated from days 30 to 90 of gestation with 3 different BPA doses (0.05, 0.5, or 5 mg/kg BW/day). All female offspring were estrus synchronized and transrectal ultrasonography was performed daily for 22 days to monitor ovarian follicular and corpora lutea dynamics. Blood samples were collected to assess hormonal preovulatory changes and luteal progesterone dynamics. Statistical analysis revealed that the time interval between the estradiol rise and the preovulatory LH surge was shortened in the BPA-treated females. None of the three BPA doses had an effect on corpora lutea, progestogenic cycles, and mean or duration of ovulatory and non-ovulatory follicles. However, differences in follicular count trajectories were evident in all three follicular size classes (2–3 mm, 4–5 mm, and ≥ 6 mm) of prenatal BPA-treated animals compared to controls. Number of follicular waves tended also to be more variable in the prenatal BPA-treated groups ranging from 2 to 5 follicular waves per cycle, while this was restricted to 3 to 4 waves in control females. These changes in ovarian follicular dynamics coupled with defects in time interval between estradiol rise and preovulatory LH release are likely to lead to subfertility in prenatal BPA-treated females. PMID:24923655

  1. Regenerative wound healing in acute degree III mandibular defects in dogs.

    Science.gov (United States)

    Mardas, Nikos; Kraehenmann, Michael; Dard, Michel

    2012-05-01

    To evaluate the healing events in degree III furcation defects in dogs following the application of the combination of an enamel matrix derivative with a biphasic calcium phosphate (Emdogain Plus). Seventeen degree III furcation defects, 5 mm high and 4 mm wide, were created in 9 dogs. In both groups, the defects were conditioned with EDTA. One defect was treated with Emdogain Plus (n = 9), while the contralateral defect serving as control remained empty (n = 8). The defects in both groups were fully covered by coronally repositioned flaps. After 5 months of healing, histologic and histometric analysis was preformed. A significant amount of new attachment and bone formation was observed in both control and test specimens. However, in a number of control specimens, ankylosis was also observed. In the control and test groups, respectively, the mean new cementum length was 10.8 ± 2.1 mm and 8.6 ± 3.2 mm; the mean periodontal ligament length was 7.6 ± 3.8 mm and 8.1 ± 4.0 mm. The mean new bone height was 4.4 ± 1.3 mm and 4.3 ± 1.6 mm in the control and test groups, respectively. No statistical differences were found between the two groups in terms of amount of cementum, periodontal ligament, and alveolar bone regeneration. The present study failed to show higher amounts of newly formed cementum and bone following treatment of acute degree III mandibular furcation defects following use of Emdogain Plus compared with a coronally advanced flap. Emdogain Plus seems to have a protective role against ankylosis in this type of defect.

  2. Research on Forming Mechanisms and Controlling Measurements for Surface Light Spot Defects of Galvanizing Steel Coils for Automobile Use

    Science.gov (United States)

    Guangmin, Wei; Haiyan, Sun; Jianqiang, Shi; Lianxuan, Wang; Haihong, Wu

    When producing high surface quality galvanizing steel coils for automobile use, there are always many light spots on the surface since Hansteel CGL No.1 has been put into operation. The defect samples were analyzed by SEM and EDS. The result shows that cause for light spot is not only one. There are more Mn and P in high strength auto sheet, which can result in difficulty to be cleaned off the oxide on the hot rolled coils, so the defects coming. This is why the defects come with high strength auto sheet. When coils galvanized, the defects can't be covered up. To the contrary, the defects will be more obvious when zinc growing on the surface. And sometimes zinc or residue can adhere to work rolls when strips passing through SPM. The deposits then press normal coating. So the light spots come more. When the defect comes from pressing, there is no defect on steel base. The causation is found and measures were taken including high pressure cleaning equipments adopted. Result shows that the defects disappeared.

  3. Limits on passivating defects in semiconductors: the case of Si edge dislocations.

    Science.gov (United States)

    Chan, Tzu-Liang; West, D; Zhang, S B

    2011-07-15

    By minimizing the free energy while constraining dopant density, we derive a universal curve that relates the formation energy (E(form)) of doping and the efficiency of defect passivation in terms of segregation of dopants at defect sites. The universal curve takes the simple form of a Fermi-Dirac distribution. Our imposed constraint defines a chemical potential that assumes the role of "Fermi energy," which sets the thermodynamic limit on the E(form) required to overcome the effect of entropy such that dopant segregation at defects in semiconductors can occur. Using Si edge dislocation as an example, we show by first-principles calculations how to map the experimentally measurable passivation efficiency to our calculated E(form) by using the universal curve for typical n- and p-type substitutional dopants. We show that n-type dopants are ineffective. Among p-type dopants, B can satisfy the thermodynamic limit while improving electronic properties.

  4. Defect evolution in a Ni−Mo−Cr−Fe alloy subjected to high-dose Kr ion irradiation at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Massey de los [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234 (Australia); Nuclear Fuel Cycle Royal Commission (NFCRC), 50 Grenfell Street Adelaide South Australia, 5000 (Australia); Voskoboinikov, Roman [The National Research Centre ‘Kurchatov Institute’, Kurchatov Sq 1, Moscow 123182 (Russian Federation); Kirk, Marquis A. [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Huang, Hefei [Shanghai Institute of Applied Physics, Chinese Academy of Science (CAS), 2019 Jialuo Road, Jiading District, Shanghai 201800 (China); Lumpkin, Greg [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234 (Australia); Bhattacharyya, Dhriti, E-mail: dhriti.bhattacharyya@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234 (Australia)

    2016-06-15

    A candidate Ni−Mo−Cr−Fe alloy (GH3535) for application as a structural material in a molten salt nuclear reactor was irradiated with 1 MeV Kr{sup 2+} ions (723 K, max dose of 100 dpa) at the IVEM-Tandem facility. The evolution of defects like dislocation loops and vacancy- and self-interstitial clusters was examined in-situ. For obtaining a deeper insight into the true nature of these defects, the irradiated sample was further analysed under a TEM post-facto. The results show that there is a range of different types of defects formed under irradiation. Interaction of radiation defects with each other and with pre-existing defects, e.g., linear dislocations, leads to the formation of complex microstructures. Molecular dynamics simulations used to obtain a greater understanding of these defect transformations showed that the interaction between linear dislocations and radiation induced dislocation loops could form faulted structures that explain the fringed contrast of these defects observed in TEM.

  5. Electronic structure of point defects in semiconductors

    International Nuclear Information System (INIS)

    Bruneval, Fabien

    2014-01-01

    This 'Habilitation a diriger des Recherches' memoir presents most of my scientific activities during the past 7 years, in the field of electronic structure calculations of defects in solids. Point defects (vacancies, interstitials, impurities) in functional materials are a key parameter to determine if these materials will actually fill the role they have been assigned or not. Indeed, the presence of defects cannot be avoided when the temperature is increased or when the material is subjected to external stresses, such as irradiation in the nuclear reactors and in artificial satellites with solar radiations. However, in many cases, defects are introduced in the materials on purpose to tune the electronic transport, optical or even magnetic properties. This procedure is called the doping of semiconductors, which is the foundation technique for transistors, diodes, or photovoltaic cells. However, doping is not always straightforward and unexpected features may occur, such as doping asymmetry or Fermi level pinning, which can only be explained by complex phenomena involving different types of defects or complexes of defects. In this context, the calculations of electronic structure ab initio is an ideal tool to complement the experimental observations, to gain the understanding of phenomena at the atomic level, and even to predict the properties of defects. The power of the ab initio calculations comes from their ability to describe any system of electrons and nuclei without any specific adjustment. But although there is a strong need for numerical simulations in this field, the ab initio calculations for defects are still under development as of today. The work presented in this memoir summarizes my contributions to methodological developments on this subject. These developments have followed two main tracks. The first topic is the better understanding of the unavoidable finite size effects. Indeed, defects in semiconductors or insulators are generally present in

  6. Point defects and atomic transport in crystals

    International Nuclear Information System (INIS)

    Lidiard, A.B.

    1981-02-01

    There are two principle aspects to the theory of atomic transport in crystals as caused by the action of point defects, namely (1) the calculation of relevant properties of the point defects (energies and other thermodynamic characteristics of the different possible defects, activation energies and other mobility parameters) and (2) the statistical mechanics of assemblies of defects, both equilibrium and non-equilibrium assemblies. In the five lectures given here both these aspects are touched on. The first two lectures are concerned with the calculation of relevant point defect properties, particularly in ionic crystals. The first lecture is more general, the second is concerned particularly with some recent calculations of the free volumes of formation of defects in various ionic solids; these solve a rather long-standing problem in this area. The remaining three lectures are concerned with the kinetic theory of defects mainly in relaxation, drift and diffusion situations

  7. The effect of bulk/surface defects ratio change on the photocatalysis of TiO_2 nanosheet film

    International Nuclear Information System (INIS)

    Wang, Fangfang; Ge, Wenna; Shen, Tong; Ye, Bangjiao; Fu, Zhengping; Lu, Yalin

    2017-01-01

    Highlights: • The defect behaviors of TiO_2 nanosheet array films were studied by positron annihilation spectroscopy. • Different bulk/surface defect ratios were realized by annealing at different temperature. • It was concluded that bulk defects are mainly Ti"3"+ vacancy defects. • The separation efficiency of photogenerated electrons and holes could be significantly improved by optimizing the bulk/surface defects ratio. - Abstract: The photocatalysis behavior of TiO_2 nanosheet array films was studied, in which the ratio of bulk/surface defects were adjusted by annealing at different temperature. Combining positron annihilation spectroscopy, EPR and XPS, we concluded that the bulk defects belonged to Ti"3"+ related vacancy defects. The results show that the separation efficiency of photogenerated electrons and holes could be significantly improved by optimizing the bulk/surface defects ratio of TiO_2 nanosheet films, and in turn enhancing the photocatalysis behaviors.

  8. Antigravity from a spacetime defect

    OpenAIRE

    Klinkhamer, F. R.; Queiruga, J. M.

    2018-01-01

    We argue that there may exist spacetime defects embedded in Minkowski spacetime, which have negative active gravitational mass. One such spacetime defect then repels a test particle, corresponding to what may be called "antigravity."

  9. Defect studies in copper-based p-type transparent conducting oxides

    Science.gov (United States)

    Ameena, Fnu

    Among other intrinsic open-volume defects, copper vacancy (VCu) has been theoretically identified as the major acceptor in p-type Cu-based semiconducting transparent oxides, which has potential as low-cost photovoltaic absorbers in semi-transparent solar cells. A series of positron annihilation experiments with pure Cu, Cu2O, and CuO presented strong presence of VCu and its complexes in the copper oxides. The lifetime data also showed that the density of VCu was becoming higher as the oxidation state of Cu increased which was consistent with the decrease in the formation energy of VCu. Doppler broadening measurements further indicated that electrons with low momentum made more contribution to the contributed as pure Cu oxidizes to copper oxides. The metastable defects are known to be generated in Cu2O upon illumination and it has been known to affect the performance of Cu2O-based hetero-junctions used in solar cells. The metastable effect was studied using positron annihilation lifetime spectroscopy and its data showed the change in the defect population upon light exposure and the minimal effect of light-induced electron density increase in the bulk of materials to the average lifetime of the positrons. The change in the defect population is concluded to be related to the dissociation and association of VCu -- V Cu complexes. For example, the shorter lifetime under light was ascribed to the annihilation with smaller size vacancies, which explains the dissociation of the complexes with light illumination. Doppler broadening of the annihilation was independent of light illumination, which suggested that the chemical nature of the defects remained without change upon their dissociation and association -- only the size distribution of copper vacancies varied. The delafossite metal oxides, CuMIIIO2 are emerging wide-bandgap p-type semiconductors. In this research, the formation energies of structural vacancies are calculated using Van Vechten cavity model as an attempt

  10. Simulating the production of free defects in irradiated metals

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1995-01-01

    Under cascade-producing irradiation by high energy neutrons or charged particles, only a small fraction of the initially displaced atoms contribute to the population of free defects that are available to migrate throughout the metal and cause microstructural changes. Although, in principle, computer simulations of free defect production could best be done using molecular dynamics, in practice, the wide ranges of time and distance scales involved can be done only by a combination of atomistic models that employ various levels of approximation. An atomic-scale, multi-model approach has been developed that combines molecular dynamics, binary collision models and stochastic annealing simulation. The annealing simulation is utilized in calibrating binary collision simulations to the results of molecular dynamics calculations, as well as to model the subsequent migration of the defects on more macroscopic time and size scales. The annealing simulation and the method of calibrating the multi-model approach are discussed, and the results of simulations of cascades in copper are presented. The temperature dependence of free defect production following simulated annealing of isolated cascades in copper shows a differential in the fractions of free vacancies and interstitial defects escaping from the cascade above stage V. This differential, a consequence of the direct formation of interstitial clusters in cascades and the relative thermal stability of vacancy and interstitial clusters during subsequent annealing, is the basis for the production bias mechanism of void swelling. (orig.)

  11. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study

    International Nuclear Information System (INIS)

    Zhang Yonghui; Chen Yabin; Zhou Kaige; Liu Caihong; Zeng Jing; Zhang Haoli; Peng Yong

    2009-01-01

    The interactions between four different graphenes (including pristine, B- or N-doped and defective graphenes) and small gas molecules (CO, NO, NO 2 and NH 3 ) were investigated by using density functional computations to exploit their potential applications as gas sensors. The structural and electronic properties of the graphene-molecule adsorption adducts are strongly dependent on the graphene structure and the molecular adsorption configuration. All four gas molecules show much stronger adsorption on the doped or defective graphenes than that on the pristine graphene. The defective graphene shows the highest adsorption energy with CO, NO and NO 2 molecules, while the B-doped graphene gives the tightest binding with NH 3 . Meanwhile, the strong interactions between the adsorbed molecules and the modified graphenes induce dramatic changes to graphene's electronic properties. The transport behavior of a gas sensor using B-doped graphene shows a sensitivity two orders of magnitude higher than that of pristine graphene. This work reveals that the sensitivity of graphene-based chemical gas sensors could be drastically improved by introducing the appropriate dopant or defect.

  12. On the Enthalpy and Entropy of Point Defect Formation in Crystals

    Science.gov (United States)

    Kobelev, N. P.; Khonik, V. A.

    2018-03-01

    A standard way to determine the formation enthalpy H and entropy S of point defect formation in crystals consists in the application of the Arrhenius equation for the defect concentration. In this work, we show that a formal use of this method actually gives the effective (apparent) values of these quantities, which appear to be significantly overestimated. The underlying physical reason lies in temperature-dependent formation enthalpy of the defects, which is controlled by temperature dependence of the elastic moduli. We present an evaluation of the "true" H- and S-values for aluminum, which are derived on the basis of experimental data by taking into account temperature dependence of the formation enthalpy related to temperature dependence of the elastic moduli. The knowledge of the "true" activation parameters is needed for a correct calculation of the defect concentration constituting thus an issue of major importance for different fundamental and application issues of condensed matter physics and chemistry.

  13. Fetal programming: prenatal testosterone treatment leads to follicular persistence/luteal defects; partial restoration of ovarian function by cyclic progesterone treatment.

    Science.gov (United States)

    Manikkam, Mohan; Steckler, Teresa L; Welch, Kathleen B; Inskeep, E Keith; Padmanabhan, Vasantha

    2006-04-01

    Prenatal testosterone (T) excess during midgestation leads to estrous cycle defects and polycystic ovaries in sheep. We hypothesized that follicular persistence causes polycystic ovaries and that cyclic progesterone (P) treatment would overcome follicular persistence and restore cyclicity. Twice-weekly blood samples for P measurements were taken from control (C; n = 16) and prenatally T-treated (T60; n = 14; 100 mg T, im, twice weekly from d 30-90 of gestation) Suffolk sheep starting before the onset of puberty and continuing through the second breeding season. A subset of C and T60 sheep were treated cyclically with a modified controlled internal drug-releasing device for 13-14 d every 17 d during the first anestrus (CP, 7; TP, 6). Transrectal ovarian ultrasonography was performed for 8 d in the first and 21 d in the second breeding season. Prenatal T excess reduced the number, but increased the duration of progestogenic cycles, reduced the proportion of ewes with normal cycles, increased the proportion of ewes with subluteal cycles, decreased the proportion of ewes with ovulatory cycles, induced the occurrence of persistent follicles, and reduced the number of corpora lutea in those that cycled. Cyclic P treatment in anestrus, which produced one third the P concentration seen during luteal phase of cycle, did not reduce the number of persistent follicles, but increased the number of progestogenic cycles while reducing their duration. These findings suggested that follicular persistence might contribute to the polycystic ovarian morphology. Cyclic P treatment was able to only partially restore follicular dynamics, but this may be related to the low replacement concentrations of P achieved.

  14. Effects of supervised aerobic training on the levels of anti-Mullerian hormone and adiposity measures in women with normo-ovulatory and polycystic ovary syndrome.

    Science.gov (United States)

    Al-Eisa, Einas; Gabr, Sami Ali; Alghadir, Ahmad Hieder

    2017-04-01

    To evaluate the change in the levels of anti-Mullerian hormone, adiponectin, weight loss and fertility parameters in obese women with or without polycystic ovary syndrome, following 12 weeks of supervised aerobic exercise. This study was conducted from August 2013 to October 2014 among obese women with or without polycystic ovary syndrome referred to Obstetrics and Gynecology clinic, Mansoura University Hospital, Faculty of Medicine, Mansoura, Egypt. Patients were classified into three age-matched groups; group A had controls, group B had patients with polycystic ovary syndrome and group C had obese women. Anti-Mullerian hormone, adiponectin, follicle-stimulating hormone, oestrogen, fasting insulin, fasting glucose, homeostasis model of assessment of insulin resistance, antral follicle count, hirsutism score, weight, menstrual cyclicity and ovulatory function were assessed at baseline and following 12 weeks of supervised aerobic exercise. Statistical analysis was performed using SPSS 17. Of the 90 patients, there were 30(33.3%) in each group. The mean age was 28.7±3.84 years in group A, 27.9±4.1 years in group B and 27.6±5.7 in group C. The 30(33.3%) participants who responded to aerobic exercise interventions showed significant improvements in reproductive function), with lower baseline anti-Mullerian hormone levels, greater weight loss and higher adiponectin level compared to the the 30(33.3%) participants who did not respond to the exercise programme. Weight loss, fertility hormones, follicle-stimulating hormone, prolactin, oestrogen, antral follicle count, baseline anti-Mullerian hormone, and adiponectin were significantly correlated to the improvement in reproductive function (psyndromes, there were significant improvements in ovarian process with an ovulation rate of 13(43.3%) and a restoration of menstrual cycle with a rate of 17(56.7 %) following 12 weeks of supervised aerobic exercise. Moderate aerobic training for 12 weeks had a positive significant

  15. In and Cd as defect traps in titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Schell, Juliana, E-mail: juliana.schell@cern.ch [European Organization for Nuclear Research (CERN) (Switzerland); Lupascu, Doru C. [University of Duisburg-Essen, Institute for Materials Science and Center for Nanointegration, Duisburg-Essen (CENIDE) (Germany); Martins Correia, João Guilherme [European Organization for Nuclear Research (CERN) (Switzerland); Carbonari, Artur Wilson [Universidade de São Paulo, Instituto de Pesquisas Energéticas e Nucleares (Brazil); Deicher, Manfred [Universität des Saarlandes, Experimentalphysik (Germany); Barbosa, Marcelo Baptista [Instituto de Física dos Materiais da Universidade do Porto (Portugal); Mansano, Ronaldo Domingues [Universidade de São Paulo, Escola Politécnica (Brazil); Johnston, Karl [European Organization for Nuclear Research (CERN) (Switzerland); Ribeiro, Ibere S. [Universidade de São Paulo, Instituto de Pesquisas Energéticas e Nucleares (Brazil); Collaboration: ISOLDE Collaboration, ISOLDE (European Organization for Nuclear Research (CERN) (Switzerland)

    2017-11-15

    We present a study of TiO{sub 2} single crystals from the point of view of the dopant atom that simultaneously behaves as the probing element. We used gamma-gamma time dependent perturbed angular correlations working with selected tracer elements ({sup 111}In/ {sup 111}Cd, {sup 111m}Cd/ {sup 111}Cd) together to investigate the different behavior of Cd and In dopants, particularly their interaction with point defects in the TiO{sub 2} lattice. Results show that the hyperfine interactions observed at {sup 111}Cd from {sup 111}In or {sup 111m}Cd decay are quite different. {sup 111}In/ {sup 111}Cd results show a single site fraction characterized by a quadrupole frequency with asymmetry parameter similar to those observed for the same probe nuclei in bulk TiO{sub 2} oxides. Results for {sup 111m}Cd/ {sup 111}Cd reveal two site fractions, one characterized by the same hyperfine parameters to those measured in bulk TiO{sub 2} and another fraction characterized by a quadrupole frequency and asymmetry parameters with higher values, as observed in thin TiO{sub 2} films and correlated with point defects. The results are discussed emphasizing the differences for Cd and In as defect traps on TiO{sub 2}.

  16. Integrating image processing and classification technology into automated polarizing film defect inspection

    Science.gov (United States)

    Kuo, Chung-Feng Jeffrey; Lai, Chun-Yu; Kao, Chih-Hsiang; Chiu, Chin-Hsun

    2018-05-01

    In order to improve the current manual inspection and classification process for polarizing film on production lines, this study proposes a high precision automated inspection and classification system for polarizing film, which is used for recognition and classification of four common defects: dent, foreign material, bright spot, and scratch. First, the median filter is used to remove the impulse noise in the defect image of polarizing film. The random noise in the background is smoothed by the improved anisotropic diffusion, while the edge detail of the defect region is sharpened. Next, the defect image is transformed by Fourier transform to the frequency domain, combined with a Butterworth high pass filter to sharpen the edge detail of the defect region, and brought back by inverse Fourier transform to the spatial domain to complete the image enhancement process. For image segmentation, the edge of the defect region is found by Canny edge detector, and then the complete defect region is obtained by two-stage morphology processing. For defect classification, the feature values, including maximum gray level, eccentricity, the contrast, and homogeneity of gray level co-occurrence matrix (GLCM) extracted from the images, are used as the input of the radial basis function neural network (RBFNN) and back-propagation neural network (BPNN) classifier, 96 defect images are then used as training samples, and 84 defect images are used as testing samples to validate the classification effect. The result shows that the classification accuracy by using RBFNN is 98.9%. Thus, our proposed system can be used by manufacturing companies for a higher yield rate and lower cost. The processing time of one single image is 2.57 seconds, thus meeting the practical application requirement of an industrial production line.

  17. Influence of point defects on the near edge structure of hexagonal boron nitride

    Science.gov (United States)

    McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.

    2017-10-01

    Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.

  18. Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe

    Energy Technology Data Exchange (ETDEWEB)

    Qingbang, Han; Ling, Chen; Changping, Zhu [Changzhou Key Laboratory of Sensor Networks and Environmental Sensing, College of IOT, Hohai University Changzhou, Jiangsu, 213022 (China)

    2014-02-18

    The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain, the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency.

  19. Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe

    International Nuclear Information System (INIS)

    Qingbang, Han; Ling, Chen; Changping, Zhu

    2014-01-01

    The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain, the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency

  20. A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures.

    Science.gov (United States)

    Ganesan, K; Ghosh, Subrata; Gopala Krishna, Nanda; Ilango, S; Kamruddin, M; Tyagi, A K

    2016-08-10

    Defects in planar and vertically oriented nanographitic structures (NGSs) synthesized by plasma enhanced chemical vapor deposition (PECVD) have been investigated using Raman and X-ray photoelectron spectroscopy. While Raman spectra reveal the dominance of vacancy and boundary type defects respectively in vertical and planar NGSs, XPS provides additional information on vacancy related defect peaks in the C 1s spectrum, which originate from non-conjugated carbon atoms in the hexagonal lattice. Although an excellent correlation prevails between these two techniques, our results show that estimation of surface defects by XPS is more accurate than Raman analysis. Nuances of these techniques are discussed in the context of assessing defects in nanographitic structures.

  1. How to operate safely steam generators with multiple tube through-wall defects

    International Nuclear Information System (INIS)

    Hernalsteen, P.

    1993-01-01

    For a Nuclear Power Plant (NPP) of the Pressurized Water Reactor (PWR) type, the Steam Generator (SG) tube bundle represents the major but also the thinnest part of the primary pressure boundary. To the extent that no tube material has yet been identified to be immune to corrosion, defects may initiate in service and easily propagate through wall. While not a desirable feature, a Through Wall Deep (TWD) defect does not necessarily pose a threat to either the structural integrity or leaktightness and this paper shows how SG can (and indeed, do) operate safely and reliably while having many tubes affected by deep and even TWD defects

  2. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    Science.gov (United States)

    Gorai, Prashun; Seebauer, Edmund G.

    2014-07-01

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO2 (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.

  3. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    International Nuclear Information System (INIS)

    Gorai, Prashun; Seebauer, Edmund G.

    2014-01-01

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO 2 (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.

  4. Computer programs for eddy-current defect studies

    Energy Technology Data Exchange (ETDEWEB)

    Pate, J. R.; Dodd, C. V. [Oak Ridge National Lab., TN (USA)

    1990-06-01

    Several computer programs to aid in the design of eddy-current tests and probes have been written. The programs, written in Fortran, deal in various ways with the response to defects exhibited by four types of probes: the pancake probe, the reflection probe, the circumferential boreside probe, and the circumferential encircling probe. Programs are included which calculate the impedance or voltage change in a coil due to a defect, which calculate and plot the defect sensitivity factor of a coil, and which invert calculated or experimental readings to obtain the size of a defect. The theory upon which the programs are based is the Burrows point defect theory, and thus the calculations of the programs will be more accurate for small defects. 6 refs., 21 figs.

  5. Computer programs for eddy-current defect studies

    International Nuclear Information System (INIS)

    Pate, J.R.; Dodd, C.V.

    1990-06-01

    Several computer programs to aid in the design of eddy-current tests and probes have been written. The programs, written in Fortran, deal in various ways with the response to defects exhibited by four types of probes: the pancake probe, the reflection probe, the circumferential boreside probe, and the circumferential encircling probe. Programs are included which calculate the impedance or voltage change in a coil due to a defect, which calculate and plot the defect sensitivity factor of a coil, and which invert calculated or experimental readings to obtain the size of a defect. The theory upon which the programs are based is the Burrows point defect theory, and thus the calculations of the programs will be more accurate for small defects. 6 refs., 21 figs

  6. Effect of platelet-rich plasma combined with demineralised bone matrix on bone healing in rabbit ulnar defects.

    Science.gov (United States)

    Galanis, Vasilios; Fiska, Alice; Kapetanakis, Stylianos; Kazakos, Konstantinos; Demetriou, Thespis

    2017-09-01

    This study evaluates the effect of autologous platelet-rich plasma (PRP) combined with xenogeneic demineralised bone matrix (DBM) on bone healing of critical-size ulnar defects (2-2.5 times the ulnar diameter) in New Zealand White rabbits. Critical-size defects were created unilaterally in the ulna of 36 rabbits, while keeping the contralateral limb intact. They were divided into three groups. In Group A, the defect was filled with autologous PRP and in Group B, with autologous PRP combined with DBM; in Group C, the defect remained empty. The rabbits were euthanised 12 weeks postoperatively. Radiological, biomechanical and histological assessments were carried out and statistical analysis of the results was performed. Group B had significantly higher radiological and histological scores than Groups A and C. Defects in Group B showed significant new bone formation, whereas there was minimal or no new bone formation in Groups A and C. Only specimens in Group B showed macroscopic bone union. Biomechanical evaluation of the treated and intact contralateral limbs in Group B showed significant differences. In this study, statistically significant enhancement of bone healing was found in critical-size defects treated with PRP and DBM, as shown by radiological findings, gross assessment, and biomechanical and histopathological results. Defects in the two other groups remained unbridged. Therefore, PRP was effective only when it was used in combination with a bone graft. Copyright: © Singapore Medical Association

  7. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua; Hu, Zhixin; Probert, Matt; Li, Kun; Lv, Danhui; Yang, Xinan; Gu, Lin; Mao, Nannan; Feng, Qingliang; Xie, Liming; Zhang, Jin; Wu, Dianzhong; Zhang, Zhiyong; Jin, Chuanhong; Ji, Wei; Zhang, Xixiang; Yuan, Jun; Zhang, Ze

    2015-01-01

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm '2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  8. Areva solutions for management of defective fuel

    International Nuclear Information System (INIS)

    Morlaes, I.; Vo Van, V.

    2014-01-01

    Defective fuel management is a major challenge for nuclear operators when all fuel must be long-term managed. This paper describes AREVA solutions for managing defective fuel. Transport AREVA performs shipments of defective fuel in Europe and proposes casks that are licensed for that purpose in Europe and in the USA. The paper presents the transport experience and the new European licensing approach of defective fuel transport. Dry Interim Storage AREVA is implementing the defective fuel storage in the USA, compliant with the Safety Authority's requirements. In Europe, AREVA is developing a new, more long-term oriented storage solution for defective fuel, the best available technology regarding safety requirements. The paper describes these storage solutions. Treatment Various types of defective fuel coming from around the world have been treated in the AREVA La Hague plant. Specific treatment procedures were developed when needed. The paper presents operational elements related to this experience. (authors)

  9. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua

    2015-02-19

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm \\'2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  10. Defect-impurity interactions in ion-implanted metals

    International Nuclear Information System (INIS)

    Turos, A.

    1986-01-01

    An overview of defect-impurity interactions in metals is presented. When point defects become mobile they migrate towards the sinks and on the way can be captured by impurity atoms forming stable associations so-called complexes. In some metallic systems complexes can also be formed athermally during ion implantation by trapping point defects already in the collision cascade. An association of a point defect with an impurity atom leads to its displacement from the lattice site. The structure and stability of complexes are strongly temperature dependent. With increasing temperature they dissociate or grow by multiple defect trapping. The appearance of freely migrating point defects at elevated temperatures, due to ion bombardment or thermal annealing, causes via coupling with defect fluxes, important impurity redistribution. Because of the sensitivity of many metal-in-metal implanted systems to radiation damage the understanding of this processes is essential for a proper interpretation of the lattice occupancy measurements and the optimization of implantation conditions. (author)

  11. Mechanism of Si intercalation in defective graphene on SiC

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-10-01

    Previously reported experimental findings on Si-intercalated graphene on SiC(0001) seem to indicate the possibility of an intercalation process based on the migration of the intercalant through atomic defects in the graphene sheet. We employ density functional theory to show that such a process is in fact feasible and obtain insight into its details. By means of total energy and nudged elastic band calculations we are able to establish the mechanism on an atomic level and to determine the driving forces involved in the different steps of the intercalation process through atomic defects.

  12. Links between environmental geochemistry and rate of birth defects: Shanxi Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Yu Haiying [State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Geography, Beijing Normal University, Beijing 100875 (China); College of Resources and Environmental Sciences, Sichuan Agricultural University, Ya' an, Sichuan 625014 (China); Zhang Keli, E-mail: keli@bnu.edu.cn [State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Geography, Beijing Normal University, Beijing 100875 (China)

    2011-01-01

    The rate of birth defects in Shanxi Province is among the highest worldwide. In order to identify the impacts of geochemical and environmental factors on birth defect risk, samples of soil, water and food were collected from an area with an unusually high rate of birth defects (study area) and an area with a low rate of birth defects (control area) in Shanxi Province, China. Element contents were determined by ICP-OES, and the results were analyzed using a non-parametric test and stepwise regression. Differences in the level and distribution of 14 geochemical elements, namely arsenic (As), selenium (Se), molybdenum (Mo), zinc (Zn), strontium (Sr), iron (Fe), tin (Sn), magnesium (Mg), vanadium (V), calcium (Ca), copper (Cu), aluminum (Al), potassium (K) and sulfur (S) were thus compared between the study and control areas. The results reveal that the geochemical element contents in soil, water and food show a significant difference between the study area and control area, and suggest that the study area was characterized by higher S and lower Sr and Al contents. These findings, based on statistical analysis, may be useful in directing further epidemiological investigations identifying the leading causes of birth defects. - Research Highlights: {yields} Environmental geochemistry has an significant impact on birth defects in the regions with an unusually high rate of birth defects. {yields} An excess of S and deficiency of Sr and Al are the distinctive environmental features associated with the high rate of birth defects in the Shanxi Province of China. {yields} Geochemical anomalies is a non-medical basis for effective prevention and cure of birth defects.

  13. Links between environmental geochemistry and rate of birth defects: Shanxi Province, China

    International Nuclear Information System (INIS)

    Yu Haiying; Zhang Keli

    2011-01-01

    The rate of birth defects in Shanxi Province is among the highest worldwide. In order to identify the impacts of geochemical and environmental factors on birth defect risk, samples of soil, water and food were collected from an area with an unusually high rate of birth defects (study area) and an area with a low rate of birth defects (control area) in Shanxi Province, China. Element contents were determined by ICP-OES, and the results were analyzed using a non-parametric test and stepwise regression. Differences in the level and distribution of 14 geochemical elements, namely arsenic (As), selenium (Se), molybdenum (Mo), zinc (Zn), strontium (Sr), iron (Fe), tin (Sn), magnesium (Mg), vanadium (V), calcium (Ca), copper (Cu), aluminum (Al), potassium (K) and sulfur (S) were thus compared between the study and control areas. The results reveal that the geochemical element contents in soil, water and food show a significant difference between the study area and control area, and suggest that the study area was characterized by higher S and lower Sr and Al contents. These findings, based on statistical analysis, may be useful in directing further epidemiological investigations identifying the leading causes of birth defects. - Research Highlights: → Environmental geochemistry has an significant impact on birth defects in the regions with an unusually high rate of birth defects. → An excess of S and deficiency of Sr and Al are the distinctive environmental features associated with the high rate of birth defects in the Shanxi Province of China. → Geochemical anomalies is a non-medical basis for effective prevention and cure of birth defects.

  14. Electronic structure and STM images simulation of defects on hBN/ black-phosphorene heterostructures: A theoretical study

    Science.gov (United States)

    Ospina, D. A.; Cisternas, E.; Duque, C. A.; Correa, J. D.

    2018-03-01

    By first principles calculations which include van der Waals interactions, we studied the electronic structure of hexagonal boron-nitride/black-phosphorene heterostructures (hBN/BP). In particular the role of several kind of defects on the electronic properties of black-phosphorene monolayer and hBN/BP heterostructure was analyzed. The defects under consideration were single and double vacancies, as well Stone-Wale type defects, all of them present in the phosphorene layer. In this way, we found that the electronic structure of the hBN/BP is modified according the type of defect that is introduced. As a remarkable feature, our results show occupied states at the Fermi Level introduced by a single vacancy in the energy gap of the hBN/BP heterostructure. Additionally, we performed simulations of scanning tunneling microscopy images. These simulations show that is possible to discriminate the kind of defect even when the black-phosphorene monolayer is part of the heterostructure hBN/BP. Our results may help to discriminate among several kind of defects during experimental characterization of these novel materials.

  15. Nucleation of point defects in low-fluence ion-implanted GaAs and GaP

    International Nuclear Information System (INIS)

    Wesch, W.; Wendler, E.; Gaertner, K.

    1992-01-01

    The defect production due to low-fluence medium-mass ion implantation into GaAs and GaP at room temperature is investigated. In the parameter region analysed weakly damaged layers are created containing point defects and point defects complexes. Temperature dependent channeling measurements show different structures of the damage produced in the two materials. The depth profiles of the near-edge optical absorption coefficient K sufficiently correspond to the profiles of the primarily produced vacancy concentration N vac . The absorption coefficient K(N vac ) determined from the depth profiles of the two magnitudes shows a square root dependence for GaAs, whereas for GaP a linear dependence is found. The differences observed are discussed in the frame of different nucleation mechanisms. (orig.)

  16. Congenital Heart Defects (For Parents)

    Science.gov (United States)

    ... to be associated with genetic disorders, such as Down syndrome . But the cause of most congenital heart defects isn't known. While they can't be prevented, many treatments are available for the defects and related health ...

  17. Testing of defects in Si semiconductor apparatus by using single-photon detection

    International Nuclear Information System (INIS)

    Zhongliang, Pan; Ling, Chen; Guangju, Chen

    2013-01-01

    The failure analysis of semiconductor apparatus is very needed for ensuring product quality, which can find several types of defects in the semiconductor apparatus. A new testing method for the defects in Si semiconductor apparatus is presented in this paper, the method makes use of photon emissions to find out the failure positions or failure components by taking advantage of the infrared photo emission characteristics of semiconductor apparatus. These emitted photons carry the information of the apparatus structure. If there are defects in the apparatus, these photons can help in understanding the apparatus properties and detecting the defects. An algorithm for the generation of circuit input vectors are presented in this paper to enhance the strength of the emitted photons for the given components in the semiconductor apparatus. The multiple-valued logic, the static timing analysis and path sensitizations, are used in the algorithm. A lot of experimental results for the Si semiconductor apparatus show that many types of defects such as contact spiking and latchup failure etc., can be detected accurately by the method proposed in this paper

  18. Influence of Dopants in ZnO Films on Defects

    Science.gov (United States)

    Peng, Cheng-Xiao; Weng, Hui-Min; Zhang, Yang; Ma, Xing-Ping; Ye, Bang-Jiao

    2008-12-01

    The influence of dopants in ZnO films on defects is investigated by slow positron annihilation technique. The results show S that parameters meet SAl > Sun > SAg for Al-doped ZnO films, undoped and Ag-doped ZnO films. Zinc vacancies are found in all ZnO films with different dopants. According to S parameter and the same defect type, it can be induced that the zinc vacancy concentration is the highest in the Al-doped ZnO film, and it is the least in the Ag-doped ZnO film. When Al atoms are doped in the ZnO films grown on silicon substrates, Zn vacancies increase as compared to the undoped and Ag-doped ZnO films. The dopant concentration could determine the position of Fermi level in materials, while defect formation energy of zinc vacancy strongly depends on the position of Fermi level, so its concentration varies with dopant element and dopant concentration.

  19. Momentum conserving defects in affine Toda field theories

    Energy Technology Data Exchange (ETDEWEB)

    Bristow, Rebecca; Bowcock, Peter [Department of Mathematical Sciences, Durham University,Durham, DH1 3LE (United Kingdom)

    2017-05-30

    Type II integrable defects with more than one degree of freedom at the defect are investigated. A condition on the form of the Lagrangian for such defects is found which ensures the existence of a conserved momentum in the presence of the defect. In addition it is shown that for any Lagrangian satisfying this condition, the defect equations of motion, when taken to hold everywhere, can be extended to give a Bäcklund transformation between the bulk theories on either side of the defect. This strongly suggests that such systems are integrable. Momentum conserving defects and Bäcklund transformations for affine Toda field theories based on the A{sub n}, B{sub n}, C{sub n} and D{sub n} series of Lie algebras are found. The defect associated with the D{sub 4} affine Toda field theory is examined in more detail. In particular classical time delays for solitons passing through the defect are calculated.

  20. Radiation defect distribution in silicon irradiated with 600 keV electrons

    International Nuclear Information System (INIS)

    Hazdra, P.; Dorschner, H.

    2003-01-01

    Low-doped n-type float zone silicon was irradiated with 600 keV electrons to fluences from 2x10 13 to 1x10 15 cm -2 . Radiation defects, their introduction rates and full-depth profiles were measured by two complementary methods - the capacitance deep level spectroscopy and the high-voltage current transient spectroscopy. Results show that, in the vicinity of the anode junction, the profile of vacancy-related defect centers is strongly influenced by electric field and an excessive generation of vacancies. In the bulk, the slope of the profile can be derived from the distribution of absorbed dose taking into the account the threshold energy necessary for Frenkel pair formation and the dependency of the defect introduction rate on electron energy

  1. Stone-Wales defects can cause a metal-semiconductor transition in carbon nanotubes depending on their orientation

    International Nuclear Information System (INIS)

    Partovi-Azar, P; Namiranian, A

    2012-01-01

    It has been shown that the two different orientations of Stone-Wales (SW) defects, i.e. longitudinal and circumferential SW defects, on carbon nanotubes (CNTs) result in two different electronic structures. Based on density functional theory we have shown that the longitudinal SW defects do not open a bandgap near the Fermi energy, while a relatively small bandgap emerges in tubes with circumferential defects. We argue that the bandgap opening in the presence of circumferential SW defects is a consequence of long-range symmetry breaking which can spread all the way along the tube. Specifically, the distribution of contracted and stretched bond lengths due to the presence of defects, and hopping energies for low-energy electrons, i.e. the 2p z electrons, show two different patterns for the two types of defects. Interplay between the geometric features and the electronic properties of the tubes have also been studied for different defect concentrations. Considering π-orbital charge density, it has also been shown that the deviations of bond lengths from their relaxed length result in different doping for two defect orientations around the defects - electron-rich for a circumferential defect and hole-rich for a longitudinal one. We have also shown that, in the tubes having both types of defects, circumferential defects would dominate and impose their electronic properties. (paper)

  2. Defects in conformal field theory

    International Nuclear Information System (INIS)

    Billò, Marco; Gonçalves, Vasco; Lauria, Edoardo; Meineri, Marco

    2016-01-01

    We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.

  3. Defects in conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Billò, Marco [Dipartimento di Fisica, Università di Torino, and Istituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1 I-10125 Torino (Italy); Gonçalves, Vasco [Centro de Física do Porto,Departamento de Física e Astronomia Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); ICTP South American Institute for Fundamental Research Instituto de Física Teórica,UNESP - University Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Lauria, Edoardo [Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Meineri, Marco [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Scuola Normale Superiore, and Istituto Nazionale di Fisica Nucleare - sezione di Pisa,Piazza dei Cavalieri 7 I-56126 Pisa (Italy)

    2016-04-15

    We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.

  4. Measurement Variability of Vertical Scanning Interferometry Tool Used for Orbiter Window Defect Assessment

    Science.gov (United States)

    Padula, Santo, II

    2009-01-01

    The ability to sufficiently measure orbiter window defects to allow for window recertification has been an ongoing challenge for the orbiter vehicle program. The recent Columbia accident has forced even tighter constraints on the criteria that must be met in order to recertify windows for flight. As a result, new techniques are being investigated to improve the reliability, accuracy and resolution of the defect detection process. The methodology devised in this work, which is based on the utilization of a vertical scanning interferometric (VSI) tool, shows great promise for meeting the ever increasing requirements for defect detection. This methodology has the potential of a 10-100 fold greater resolution of the true defect depth than can be obtained from the currently employed micrometer based methodology. An added benefit is that it also produces a digital elevation map of the defect, thereby providing information about the defect morphology which can be utilized to ascertain the type of debris that induced the damage. However, in order to successfully implement such a tool, a greater understanding of the resolution capability and measurement repeatability must be obtained. This work focused on assessing the variability of the VSI-based measurement methodology and revealed that the VSI measurement tool was more repeatable and more precise than the current micrometer based approach, even in situations where operator variation could affect the measurement. The analysis also showed that the VSI technique was relatively insensitive to the hardware and software settings employed, making the technique extremely robust and desirable

  5. Role of the bond defect for structural transformations between crystalline and amorphous silicon: A molecular-dynamics study

    International Nuclear Information System (INIS)

    Stock, D. M.; Weber, B.; Gaertner, K.

    2000-01-01

    The relation between the bond defect, which is a topological defect, and structural transformations between crystalline and amorphous silicon, is studied by molecular-dynamics simulations. The investigation of 1-keV boron implantation into crystalline silicon proves that the bond defect can also be generated directly by collisional-induced bond switching in addition to its formation by incomplete recombination of primary defects. This supports the assumption that the bond defect may play an important role in the amorphization process of silicon by light ions. The analysis of the interface between (001) silicon and amorphous silicon shows that there are two typical defect configurations at the interface which result from two different orientations of the bond defect with respect to the interface. Thus the bond defect appears to be a characteristic structural feature of the interface. Moreover, annealing results indicate that the bond defect acts as a growth site for interface-mediated crystallization

  6. Oxidation behavior of graphene-coated copper at intrinsic graphene defects of different origins.

    Science.gov (United States)

    Kwak, Jinsung; Jo, Yongsu; Park, Soon-Dong; Kim, Na Yeon; Kim, Se-Yang; Shin, Hyung-Joon; Lee, Zonghoon; Kim, Sung Youb; Kwon, Soon-Yong

    2017-11-16

    The development of ultrathin barrier films is vital to the advanced semiconductor industry. Graphene appears to hold promise as a protective coating; however, the polycrystalline and defective nature of engineered graphene hinders its practical applications. Here, we investigate the oxidation behavior of graphene-coated Cu foils at intrinsic graphene defects of different origins. Macro-scale information regarding the spatial distribution and oxidation resistance of various graphene defects is readily obtained using optical and electron microscopies after the hot-plate annealing. The controlled oxidation experiments reveal that the degree of structural deficiency is strongly dependent on the origins of the structural defects, the crystallographic orientations of the underlying Cu grains, the growth conditions of graphene, and the kinetics of the graphene growth. The obtained experimental and theoretical results show that oxygen radicals, decomposed from water molecules in ambient air, are effectively inverted at Stone-Wales defects into the graphene/Cu interface with the assistance of facilitators.

  7. Defect- and dopant-controlled carbon nanotubes fabricated by self-assembly of graphene nanoribbons

    Institute of Scientific and Technical Information of China (English)

    Cun Zhang and Shaohua Chen

    2015-01-01

    Molecular dynamics simulations showed that a basal carbon nanotube can activate and guide the fabrication of single-walled carbon nanotubes (CNTs) on its internal surface by self-assembly of edge-unpassivated graphene nanoribbons with defects. Furthermore, the distribution of defects on self-assembled CNTs is controllable. The system temperature and defect fraction are two main factors that influence the success of self-assembly. Due to possible joint flaws formed at the boundaries under a relatively high constant temperature, a technique based on increasing the temperature is adopted. Self-assembly is always successful for graphene nanoribbons with relatively small defect fractions, while it will fail in cases with relatively large ones. Similar to the self-assembly of graphene nanoribbons with defects, graphene nanoribbons with different types of dopants can also be self-assembled into carbon nanotubes. The finding provides a possible fabrication technique not only for carbon nanotubes with metallic or semi-con- ductive properties but also for carbon nanotubes with electromagnetic induction characteristics.

  8. Concurrence of metaphyseal fibrous defect and osteosarcoma

    International Nuclear Information System (INIS)

    Kyriakos, M.; Murphy, W.A.

    1981-01-01

    The case of a 15-year-old girl with juxtaposition of a femoral metaphyseal fibrous defect (fibrous cortical defect) and an osteosarcoma is reported. Despite the relatively common occurrence of metaphyseal fibrous defects, their reported association with other bone tumors is exceedingly rare. Only two previous acceptable examples of this association were found. Reports of malignant transformation of metaphyseal fibrous defect were reviewed and rejected because they lacked convincing radiologic or histopathologic evidence of a pre-existent benign fibrous lesion. The finding of a malignant bone tumor in association with a metaphyseal fibrous defect appears to be a chance occurrence. (orig.)

  9. Coarse-grained molecular dynamics modeling of the kinetics of lamellar BCP defect annealing

    Science.gov (United States)

    Peters, Andrew J.; Lawson, Richard A.; Nation, Benjamin D.; Ludovice, Peter J.; Henderson, Clifford L.

    2015-03-01

    Directed self-assembly of block copolymers (BCPs) is a process that has received great interest in the field of nanomanufacturing in the past decade, and great strides towards forming high quality aligned patterns have been made. But state of the art methods still yield defectivities orders of magnitude higher than is necessary in semi-conductor fabrication even though free energy calculations suggest that equilibrium defectivities are much lower than is necessary for economic semi-conductor fabrication. This disparity suggests that the main problem may lie in the kinetics of defect removal. This work uses a coarse-grained model to study the rates, pathways, and dependencies of healing a common defect to give insight into the fundamental processes that control defect healing and give guidance on optimal process conditions for BCP-DSA. It is found that infinitely thick films yield an exponential drop in defect heal rate above χN ~ 30. Below χN ~ 30, the rate of transport was similar to the rate at which the transition state was reached so that the overall rate changed only slightly. The energy barrier in periodic simulations increased with 0.31 χN on average. Thin film simulations show no change in rate associated with the energy barrier below χN ~ 50, and then show an increase in energy barrier scaling with 0.16χN. Thin film simulations always begin to heal at either the free interface or the BCP-underlayer interface where the increased A-B contact area associated with the transition state will be minimized, while the infinitely thick films must start healing in the bulk where the A-B contact area is increased. It is also found that cooperative chain movement is required for the defect to start healing.

  10. Extrusion product defects: a statistical study

    International Nuclear Information System (INIS)

    Qamar, S.Z.; Arif, A.F.M.; Sheikh, A.K.

    2003-01-01

    In any manufacturing environment, defects resulting in rework or rejection are directly related to product cost and quality, and indirectly linked with process, tooling and product design. An analysis of product defects is therefore integral to any attempt at improving productivity, efficiency and quality. Commercial aluminum extrusion is generally a hot working process and consists of a series of different but integrated operations: billet preheating and sizing, die set and container preheating, billet loading and deformation, product sizing and stretching/roll-correction, age hardening, and painting/anodizing. Product defects can be traced back to problems in billet material and preparation, die and die set design and maintenance, process variable aberrations (ram speed, extrusion pressure, container temperature, etc), and post-extrusion treatment (age hardening, painting/anodizing, etc). The current paper attempts to analyze statistically the product defects commonly encountered in a commercial hot aluminum extrusion setup. Real-world rejection data, covering a period of nine years, has been researched and collected from a local structural aluminum extrusion facility. Rejection probabilities have been calculated for all the defects studied. The nine-year rejection data have been statistically analyzed on the basis of (i) an overall breakdown of defects, (ii) year-wise rejection behavior, (iii) breakdown of defects in each of three cost centers: press, anodizing, and painting. (author)

  11. Reconstruction of radial bone defect in rat by calcium silicate biomaterials.

    Science.gov (United States)

    Oryan, Ahmad; Alidadi, Soodeh

    2018-05-15

    Despite many attempts, an appropriate therapeutic method has not yet been found to enhance bone formation, mechanical strength and structural and functional performances of large bone defects. In the present study, the bone regenerative potential of calcium silicate (CS) biomaterials combined with chitosan (CH) as calcium silicate/chitosan (CSC) scaffold was investigated in a critical radial bone defect in a rat model. The bioimplants were bilaterally implanted in the defects of 20 adult Sprague-Dawley rats. The rats were euthanized and the bone specimens were harvested at the 56th postoperative day. The healed radial bones were evaluated by three-dimensional CT, radiology, histomorphometric analysis, biomechanics, and scanning electron microscopy. The XRD analysis of the CS biomaterial showed its similarity to wollastonite (β-SiCO 3 ). The degradation rate of the CSC scaffold was much higher and it induced milder inflammatory reaction when compared to the CH alone. More bone formation and higher biomechanical performance were observed in the CSC treated group in comparison with the CH treated ones in histological, CT scan and biomechanical examinations. Scanning electron microscopic observation demonstrated the formation of more hydroxyapatite crystals in the defects treated with CSC. This study showed that the CSC biomaterials could be used as proper biodegradable materials in the field of bone reconstruction and tissue engineering. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Primordial inhomogeneities from massive defects during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Firouzjahi, Hassan; Karami, Asieh; Rostami, Tahereh, E-mail: firouz@ipm.ir, E-mail: karami@ipm.ir, E-mail: t.rostami@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-10-01

    We consider the imprints of local massive defects, such as a black hole or a massive monopole, during inflation. The massive defect breaks the background homogeneity. We consider the limit that the physical Schwarzschild radius of the defect is much smaller than the inflationary Hubble radius so a perturbative analysis is allowed. The inhomogeneities induced in scalar and gravitational wave power spectrum are calculated. We obtain the amplitudes of dipole, quadrupole and octupole anisotropies in curvature perturbation power spectrum and identify the relative configuration of the defect to CMB sphere in which large observable dipole asymmetry can be generated. We observe a curious reflection symmetry in which the configuration where the defect is inside the CMB comoving sphere has the same inhomogeneous variance as its mirror configuration where the defect is outside the CMB sphere.

  13. Defective aluminium nitride nanotubes: a new way for spintronics? A density functional study

    International Nuclear Information System (INIS)

    Simeoni, M; Santucci, S; Picozzi, S; Delley, B

    2006-01-01

    The structural and electronic properties (in terms of Mulliken charges, density of states and band structures) of pristine and defective (10,0) AlN nanotubes have been calculated within density functional theory. The results show that, in several defective tubes, a spontaneous spin-polarization arises, due to the presence of spin-split flat bands close to the Fermi level, with a strong localization of the corresponding electronic states and of the magnetic moments. The highest positive spin-magnetization (3 μ B per cell) is found for the vacancy in the Al site, while the other magnetic tubes (the vacancy in N, C and O substitutional for N and Al, respectively) show a magnetization of only 1 μ B per cell. The spontaneous magnetization of some defective tubes might open the way to their use for spintronic applications

  14. Improving reticle defect disposition via fully automated lithography simulation

    Science.gov (United States)

    Mann, Raunak; Goodman, Eliot; Lao, Keith; Ha, Steven; Vacca, Anthony; Fiekowsky, Peter; Fiekowsky, Dan

    2016-03-01

    Most advanced wafer fabs have embraced complex pattern decoration, which creates numerous challenges during in-fab reticle qualification. These optical proximity correction (OPC) techniques create assist features that tend to be very close in size and shape to the main patterns as seen in Figure 1. A small defect on an assist feature will most likely have little or no impact on the fidelity of the wafer image, whereas the same defect on a main feature could significantly decrease device functionality. In order to properly disposition these defects, reticle inspection technicians need an efficient method that automatically separates main from assist features and predicts the resulting defect impact on the wafer image. Analysis System (ADAS) defect simulation system[1]. Up until now, using ADAS simulation was limited to engineers due to the complexity of the settings that need to be manually entered in order to create an accurate result. A single error in entering one of these values can cause erroneous results, therefore full automation is necessary. In this study, we propose a new method where all needed simulation parameters are automatically loaded into ADAS. This is accomplished in two parts. First we have created a scanner parameter database that is automatically identified from mask product and level names. Second, we automatically determine the appropriate simulation printability threshold by using a new reference image (provided by the inspection tool) that contains a known measured value of the reticle critical dimension (CD). This new method automatically loads the correct scanner conditions, sets the appropriate simulation threshold, and automatically measures the percentage of CD change caused by the defect. This streamlines qualification and reduces the number of reticles being put on hold, waiting for engineer review. We also present data showing the consistency and reliability of the new method, along with the impact on the efficiency of in

  15. Porosity Defect Remodeling and Tensile Analysis of Cast Steel

    Directory of Open Access Journals (Sweden)

    Linfeng Sun

    2016-02-01

    Full Text Available Tensile properties on ASTM A216 WCB cast steel with centerline porosity defect were studied with radiographic mapping and finite element remodeling technique. Non-linear elastic and plastic behaviors dependent on porosity were mathematically described by relevant equation sets. According to the ASTM E8 tensile test standard, matrix and defect specimens were machined into two categories by two types of height. After applying radiographic inspection, defect morphologies were mapped to the mid-sections of the finite element models and the porosity fraction fields had been generated with interpolation method. ABAQUS input parameters were confirmed by trial simulations to the matrix specimen and comparison with experimental outcomes. Fine agreements of the result curves between simulations and experiments could be observed, and predicted positions of the tensile fracture were found to be in accordance with the tests. Chord modulus was used to obtain the equivalent elastic stiffness because of the non-linear features. The results showed that elongation was the most influenced term to the defect cast steel, compared with elastic stiffness and yield stress. Additional visual explanations on the tensile fracture caused by void propagation were also given by the result contours at different mechanical stages, including distributions of Mises stress and plastic strain.

  16. Topological defects in confined populations of spindle-shaped cells

    Science.gov (United States)

    Duclos, Guillaume; Erlenkämper, Christoph; Joanny, Jean-François; Silberzan, Pascal

    2017-01-01

    Most spindle-shaped cells (including smooth muscles and sarcomas) organize in vivo into well-aligned `nematic’ domains, creating intrinsic topological defects that may be used to probe the behaviour of these active nematic systems. Active non-cellular nematics have been shown to be dominated by activity, yielding complex chaotic flows. However, the regime in which live spindle-shaped cells operate, and the importance of cell-substrate friction in particular, remains largely unexplored. Using in vitro experiments, we show that these active cellular nematics operate in a regime in which activity is effectively damped by friction, and that the interaction between defects is controlled by the system’s elastic nematic energy. Due to the activity of the cells, these defects behave as self-propelled particles and pairwise annihilate until all displacements freeze as cell crowding increases. When confined in mesoscopic circular domains, the system evolves towards two identical +1/2 disclinations facing each other. The most likely reduced positions of these defects are independent of the size of the disk, the cells’ activity or even the cell type, but are well described by equilibrium liquid crystal theory. These cell-based systems thus operate in a regime more stable than other active nematics, which may be necessary for their biological function.

  17. A DFT study of Cu nanoparticles adsorbed on defective graphene

    International Nuclear Information System (INIS)

    García-Rodríguez, D.E.; Mendoza-Huizar, L.H.; Díaz, C.

    2017-01-01

    Highlights: • Cu_n supported on graphene may be a promising electrode material for DBFC's cells. • Cu_n/graphene interaction is rather local and size independent. • Cu_1_3 anchors strongly to defects in graphene, while keeping its gas-phase properties. - Abstract: Metal nanoparticles adsorbed on graphene are systems of interest for processes relative to catalytic reactions and alternative energy production. Graphene decorated with Cu-nanoparticles, in particular, could be a good alternative material for electrodes in direct borohydride fuel cells. However our knowledge of this system is still very limited. Based on density functional theory, we have analyzed the interaction of Cu_n nanoparticles (n = 4, 5, 6, 7, 13) with pristine and defective-graphene. We have considered two types of defects, a single vacancy (SV), and an extended lineal structural defect (ELSD), formed by heptagon-pentagon pairs. Our analysis has revealed the covalent character of the Cu_n-graphene interaction for pristine- and ELSD-graphene, and a more ionic-like interaction for SV-graphene. Furthermore, our analysis shows that the interaction between the nanoparticles and the graphene is rather local, i.e., only the nanoparticle atoms close to the contact region are involved in the interaction, being the electronic contact region much higher for defective-graphene than for pristine-graphene. Thus, the higher the particle the lower its average electronic and structural distortion.

  18. Large-Scale Molecular Simulations on the Mechanical Response and Failure Behavior of a defective Graphene: Cases of 5-8-5 Defects

    Science.gov (United States)

    Wang, Shuaiwei; Yang, Baocheng; Yuan, Jinyun; Si, Yubing; Chen, Houyang

    2015-10-01

    Understanding the effect of defects on mechanical responses and failure behaviors of a graphene membrane is important for its applications. As examples, in this paper, a family of graphene with various 5-8-5 defects are designed and their mechanical responses are investigated by employing molecular dynamics simulations. The dependence of fracture strength and strain as well as Young’s moduli on the nearest neighbor distance and defect types is examined. By introducing the 5-8-5 defects into graphene, the fracture strength and strain become smaller. However, the Young’s moduli of DL (Linear arrangement of repeat unit 5-8-5 defect along zigzag-direction of graphene), DS (a Slope angle between repeat unit 5-8-5 defect and zigzag direction of graphene) and DZ (Zigzag-like 5-8-5 defects) defects in the zigzag direction become larger than those in the pristine graphene in the same direction. A maximum increase of 11.8% of Young’s modulus is obtained. Furthermore, the brittle cracking mechanism is proposed for the graphene with 5-8-5 defects. The present work may provide insights in controlling the mechanical properties by preparing defects in the graphene, and give a full picture for the applications of graphene with defects in flexible electronics and nanodevices.

  19. Decelerating defects and non-ergodic critical behaviour in a unidirectionally coupled map lattice

    International Nuclear Information System (INIS)

    Ashwin, Peter; Sturman, Rob

    2003-01-01

    We examine a coupled map lattice (CML) consisting of an infinite chain of logistic maps coupled in one direction by inhibitory coupling. We find that for sufficiently strong coupling strength there are dynamical states with 'decelerating defects', where defects between stable patterns (with chaotic temporal evolution and average spatial period two) slow down but never stop. These defects annihilate each other when they meet. We show for certain states that this leads to a lack of convergence (non-ergodicity) of averages taken from observables in the system and conjecture that this is typical for the system

  20. Lectures on cosmic topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Vachaspati, T [Department of Astronomy and Astrophysics, Colaba, Mumbai (India) and Physics Department, Case Western Reserve University, Cleveland (United States)

    2001-11-15

    These lectures review certain topological defects and aspects of their cosmology. Unconventional material includes brief descriptions of electroweak defects, the structure of domain walls in non-Abelian theories, and the spectrum of magnetic monopoles in SU(5) Grand Unified theory. (author)

  1. Experience of using allograft transplantation to reconstruct bone defect at Dr. Soetomo Hospital, Surabaya, Indonesia

    International Nuclear Information System (INIS)

    Ferdiansyah Abdurrahman

    1999-01-01

    To evaluate the result of allograft transplantation to reconstruct bone defect. The study was case series. All of the cases have been evaluated clinically and radiologically. All of the operations were carried out at Dr. Soetomo Hospital as the referral hospital. Twenty one patients with bone defect were caused by tumour (11 patients), injury (7 patients) infection (1 patient), and congenitial anomaly (2 patients). Out of 21 patients, 15 (78.8%) were already radiologically united, and out of 21 patients 14 (73.7%) patients showed an excellent and good limb function, whereas 5 (26.3%) patients showed a fair and poor result respectively. Allograft transplantation gave a good result to reconstruct bone defect

  2. The effect of bulk/surface defects ratio change on the photocatalysis of TiO2 nanosheet film

    Science.gov (United States)

    Wang, Fangfang; Ge, Wenna; Shen, Tong; Ye, Bangjiao; Fu, Zhengping; Lu, Yalin

    2017-07-01

    The photocatalysis behavior of TiO2 nanosheet array films was studied, in which the ratio of bulk/surface defects were adjusted by annealing at different temperature. Combining positron annihilation spectroscopy, EPR and XPS, we concluded that the bulk defects belonged to Ti3+ related vacancy defects. The results show that the separation efficiency of photogenerated electrons and holes could be significantly improved by optimizing the bulk/surface defects ratio of TiO2 nanosheet films, and in turn enhancing the photocatalysis behaviors.

  3. Dynamic CT of portal hypertensive gastropathy: significance of transient gastric perfusion defect sign

    International Nuclear Information System (INIS)

    Kim, T.U.; Kim, S.; Woo, S.K.; Lee, J.W.; Lee, T.H.; Jeong, Y.J.; Heo, J.

    2008-01-01

    Aim: To evaluate the 'transient gastric perfusion defect' sign as a way of diagnosing portal hypertensive gastropathy (PHG) on multidetector computed tomography (CT). Materials and methods: Ninety-two consecutive patients with cirrhosis underwent three-phase CT and endoscopy. Endoscopy was performed within 3 days of the CT examination. As controls, 92 patients without clinical evidence of chronic liver diseases who underwent CT and endoscopy were enrolled; the findings at endoscopy were used as a reference standard for patients with PHG. Two radiologists who were unaware of the results of the endoscopy retrospectively interpreted the CT images. PHG was diagnosed on dynamic CT if the transient gastric perfusion defect sign was present. The transient gastric perfusion defect was defined as the presence of transient, segmental or subsegmental hypo-attenuating mucosa in the fundus or body of the stomach on hepatic arterial imaging that returned to normal attenuation on portal venous or equilibrium-phase imaging. The frequency of the transient gastric perfusion defect sign was compared between these two groups using Fisher's exact test. The frequency, sensitivity, specificity, positive predictive values, and negative predictive values of the transient gastric perfusion defect sign were also compared between patients with PHG and without PHG in the cirrhosis group. Results: Nine patients of 92 patients with cirrhosis were excluded because of previous procedure or motion artifact; the remaining 83 patients with cirrhosis were evaluated. In the cirrhosis group, 40 (48.1%) of 83 patients showed the transient gastric perfusion defect sign. In the control group, none of the 92 patients showed the transient gastric perfusion defect sign. In the cirrhotic group, the frequency of the transient gastric perfusion defect sign was significantly higher in the patients with PHG (75%, 36/48) than in patients without PHG (11.4%, 4/35). The sensitivity, specificity, positive predictive

  4. Rectifiability of Line Defects in Liquid Crystals with Variable Degree of Orientation

    Science.gov (United States)

    Alper, Onur

    2018-04-01

    In [2], H ardt, L in and the author proved that the defect set of minimizers of the modified Ericksen energy for nematic liquid crystals consists locally of a finite union of isolated points and Hölder continuous curves with finitely many crossings. In this article, we show that each Hölder continuous curve in the defect set is of finite length. Hence, locally, the defect set is rectifiable. For the most part, the proof closely follows the work of D e L ellis et al. (Rectifiability and upper minkowski bounds for singularities of harmonic q-valued maps, arXiv:1612.01813, 2016) on harmonic Q-valued maps. The blow-up analysis in A lper et al. (Calc Var Partial Differ Equ 56(5):128, 2017) allows us to simplify the covering arguments in [11] and locally estimate the length of line defects in a geometric fashion.

  5. Defect-Tolerant Monolayer Transition Metal Dichalcogenides

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Rasmussen, Filip Anselm; Kuhar, Korina

    2016-01-01

    Localized electronic states formed inside the band gap of a semiconductor due to crystal defects can be detrimental to the material's optoelectronic properties. Semiconductors with a lower tendency to form defect induced deep gap states are termed defect-tolerant. Here we provide a systematic first...... the gap. These ideas are made quantitative by introducing a descriptor that measures the degree of similarity of the conduction and valence band manifolds. Finally, the study is generalized to nonpolar nanoribbons of the TMDs where we find that only the defect sensitive materials form edge states within......-principles investigation of defect tolerance in 29 monolayer transition metal dichalcogenides (TMDs) of interest for nanoscale optoelectronics. We find that the TMDs based on group VI and X metals form deep gap states upon creation of a chalcogen (S, Se, Te) vacancy, while the TMDs based on group IV metals form only...

  6. [Toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect].

    Science.gov (United States)

    Liao, R Y; Liu, S

    2016-06-20

    To investigate the toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect. The normal human liver cells (L02 cells) and liver cells with CYP3A4 gene defect were exposed to trichloroethylene at different doses (0.0, 0.4, 0.8, 1.6, 3.2, and 6.4 mmol/L). CCK8 assay and RT-qPCR were used to measure cell viability and changes in the expression of apoptosis genes and oncogenes. After being exposed to trichloroethylene at doses of 1.6, 3.2, and 6.4 mmol/L, the liver cells with CYP3A4 gene defect showed significantly higher cell viability than L02 cells (0.91±0.06/0.89±0.05/0.85±0.07 vs 0.80±0.04/0.73±0.06/0.67±0.07, Ptrichloroethylene groups showed significant increases in the expression of the apoptosis genes caspase-3, caspase-8, and caspase-9 (PTrichloroethylene exposure has a less effect on the expression of apoptosis genes and oncogenes in liver cells with CYP3A4 gene defect than in normal human liver cells, suggesting that CYP3A4 gene defect reduces the inductive effect of trichloroethylene on apoptosis genes and oncogenes.

  7. PISC II: Parametric studies. Effect of defect characteristics on immersion focusing probe testing results

    International Nuclear Information System (INIS)

    Dombret, P.

    1989-09-01

    The results of the Round-Robin trials conducted under the PISC I exercise (1976-1980) showed large discrepancies in the defect detection and sizing capability among different flaws. To identify the causes of such dispersions and quantify the effects, a Parametric Study was included in the PISC II project, taking into consideration most characteristics of planar flaws. A number of steel specimens containing various artificial defects was made available for the measurements. The defects were ultrasonically scanned by standard methods and by some advanced techniques the high performance of which had been established in the PISC Round-Robin Tests. This report deals with the beam focusing technique: 2 MHz 45 0 shear wave transducers have been used in immersion to collect the signals generated by the reference reflectors. The results show that the depth and the size of a defect do not affect significantly its detection and sizing, provided that the natural variation of sensitivity and of beam diameter along the propagation axis is taken into account. On the other hand, parameters such as the orientation and the roughness modify the conditions of impact and interference of the acoustic beam with the defect surface, and therefore strongly influence the energy partition in diffracted and specularly reflected rays. As an example, sharp smooth defects insonified under an angle of 45 0 return to the transducer signals approximately 10 times smaller than the ASME code calibration level

  8. Production of freely-migrating defects during irradiation

    International Nuclear Information System (INIS)

    Rehn, L.E.; Okamoto, P.R.

    1986-09-01

    During irradiation at elevated temperatures, vacancy and interstitial defects that escape can produce several different types of microstructural changes. Hence the production rate of freely-migrating defects must be known as a function of irradiating particle species and energy before quantitative correlations can be made between microstructural changes. Our fundamental knowledge of freely-migrating defect production has increased substantially in recent years. Critical experimental findings that led to the improved understanding are reviewed in this paper. A strong similarity is found for the dependence of freely-migrating defect production on primary recoil energy as measured in a variety of metals and alloys by different authors. The efficiency for producing freely-migrating defects decreases much more strongly with increasing primary recoil energy than does the efficiency for creating stable defects at liquid helium temperatures. The stronger decrease can be understood in terms of additional intracascade recombination that results from the nonrandom distribution of defects existing in the primary damage state for high primary recoil energies. Although the existing data base is limited to fcc materials, the strong similarity in the reported investigations suggests that the same dependence of freely-migrating defect production on primary recoil energy may be characteristic of a wide variety of other alloy systems as well. 52 refs., 4 figs

  9. Human diseases associated with defective DNA repair

    International Nuclear Information System (INIS)

    Friedberg, E.C.; Ehmann, U.K.; Williams, J.I.

    1979-01-01

    The observations on xeroderma pigmentosum (XP) cells in culture were the first indications of defective DNA repair in association with human disease. Since then, a wealth of information on DNA repair in XP, and to a lesser extent in other diseases, has accumulated in the literature. Rather than clarifying the understanding of DNA repair mechanisms in normal cells and of defective DNA repair in human disease, the literature suggests an extraordinary complexity of both of the phenomena. In this review a number of discrete human diseases are considered separately. An attempt was made to systematically describe the pertinent clinical features and cellular and biochemical defects in these diseases, with an emphasis on defects in DNA metabolism, particularly DNA repair. Wherever possible observations have been correlated and unifying hypotheses presented concerning the nature of the basic defect(s) in these diseases. Discussions of the following diseases are presented: XP, ataxia telangiectasia; Fanconi's anemia; Hutchinson-Gilford progeria syndrome; Bloom's syndrome, Cockayne's syndrome; Down's syndrome; retinoblastoma; chronic lymphocytic leukemia; and other miscellaneous human diseases with possble DNA repair defects

  10. Evaluation of Osteoconductive and Osteogenic Potential of a Dentin-Based Bone Substitute Using a Calvarial Defect Model

    Directory of Open Access Journals (Sweden)

    Ibrahim Hussain

    2012-01-01

    Full Text Available The aim of this study was to assess the osteoconductive and osteogenic properties of processed bovine dentin using a robust rabbit calvarial defect model. In total, 16 New Zealand White rabbits were operated to create three circular defects in the calvaria. One defect was left unfilled, one filled with collected autogenous bone, and the third defect was filled with the dentin-based bone substitute. Following surgery and after a healing period of either 1 or 6 weeks, a CT scan was obtained. Following sacrificing, the tissues were processed for histological examination. The CT data showed the density in the area grafted with the dentin-based material was higher than the surrounding bone and the areas grafted with autologous bone after 1 week and 6 weeks of healing. The area left unfilled remained an empty defect after 1 week and 6 weeks. Histological examination of the defects filled with the dentin product after 6 weeks showed soft tissue encapsulation around the dentin particles. It can be concluded that the rabbit calvarial model used in this study is a robust model for the assessment of bone materials. Bovine dentin is a biostable material; however, it may not be suitable for repairing large 4-wall defects.

  11. Iatrogenic Urethral Defect Repairment: A Case Report

    Directory of Open Access Journals (Sweden)

    Ulas Fidan

    2013-10-01

    Full Text Available    Iatrogenic urethral defect is a complication that occurs after vaginal surgical procedures. Many surgical methods according to place of defect are described in case of injury of urethra. In this article, we reported the repairment of distal urethral defect with the help of greft taken from labia minor. This defect is made by the excision of the granulation tissue that occurred after chronic paraurethral  gland infection.

  12. Repairing Nanoparticle Surface Defects.

    Science.gov (United States)

    Marino, Emanuele; Kodger, Thomas E; Crisp, Ryan W; Timmerman, Dolf; MacArthur, Katherine E; Heggen, Marc; Schall, Peter

    2017-10-23

    Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We utilized atomically thin semiconductor nanoplatelets as a convenient platform for studying, both microscopically and spectroscopically, the development of defects during ligand exchange with the conductive ligands Na 4 SnS 4 and (NH 4 ) 4 Sn 2 S 6 . These defects can be repaired via mild chemical or thermal routes, through the addition of L-type ligands or wet annealing, respectively. This results in a higher-quality, conductive, colloidally stable nanomaterial that may be used as the active film in optoelectronic devices. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. Ab initio study of point defects in PbSe and PbTe: Bulk and nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Wrasse, E. O. [Instituto de Física, Universidade Federal de Uberlândia, 38408-100, Uberlândia, MG, Brazil and Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Venezuela, P. [Instituto de Física, Universidade Federal Fluminense, 24210-346, Niteroi, RJ (Brazil); Baierle, R. J., E-mail: rbaierle@smail.ufsm.br [Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil)

    2014-11-14

    First principles investigations, within the spin-polarized density functional theory, are performed to study energetic stability and electronic properties of point defects (vacancies and antisites) in PbSe and PbTe: bulk and nanowire (NW). Our results show that the energetic stability of these defects is ruled by relaxation process. These defects have lower formation energies in the nanowire structures as compared to the bulk, being more stable in the surface of the NWs. We also show that in the bulk system only one charge state is stable, otherwise, due to the larger band gaps, more than one charge state may be stable in the NWs. In addition, we have investigated how the presence of intrinsic defects affects the electronic properties of bulk and NW systems. Vacancies give rise to new electronic states near to the edges of the valence and conduction bands while the energetic position of the electronic states from antisites depends on the charge state, being localized inside the band gap or near the edges of the valence or conduction bands. We discuss how these changes in the electronic properties due to intrinsic defects may affect the thermoelectric properties of PbSe and PbTe NWs.

  14. Defect States Emerging from a Non-Hermitian Flatband of Photonic Zero Modes

    Science.gov (United States)

    Qi, Bingkun; Zhang, Lingxuan; Ge, Li

    2018-03-01

    We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength.

  15. Exploring of defects in He+ implanted Si(100) by slow positron beam

    International Nuclear Information System (INIS)

    Zhang Tianhao; Weng Huimin; Fan Yangmei; Du Jiangfeng; Zhou Xianyi; Han Rongdian; Zhang Miao; Lin Chenglu

    2001-01-01

    Si(100) crystal implanted by 5 x 10 16 cm -2 , 140 keV He + was probed by slow positron beam, and defect distribution along depth was obtained from the relation between S parameter and positron incidence energy. The near surface region of implanted sample was only slightly damaged. Small vacancies and vacancy clusters less than 1 nm in diameter were the dominant defects, while the deeper region around the He + projected range was heavily damaged and had dense larger helium micro-bubbles and microvoids. Thermal anneal study at different temperatures showed that low temperature annealing could remove most vacancy-type defects effectively. However, annealing at high temperature enlarged the diameters of micro-bubbles and microvoids

  16. Three-dimensional characterization of extreme ultraviolet mask blank defects by interference contrast photoemission electron microscopy.

    Science.gov (United States)

    Lin, Jingquan; Weber, Nils; Escher, Matthias; Maul, Jochen; Han, Hak-Seung; Merkel, Michael; Wurm, Stefan; Schönhense, Gerd; Kleineberg, Ulf

    2008-09-29

    A photoemission electron microscope based on a new contrast mechanism "interference contrast" is applied to characterize extreme ultraviolet lithography mask blank defects. Inspection results show that positioning of interference destructive condition (node of standing wave field) on surface of multilayer in the local region of a phase defect is necessary to obtain best visibility of the defect on mask blank. A comparative experiment reveals superiority of the interference contrast photoemission electron microscope (Extreme UV illumination) over a topographic contrast one (UV illumination with Hg discharge lamp) in detecting extreme ultraviolet mask blank phase defects. A depth-resolved detection of a mask blank defect, either by measuring anti-node peak shift in the EUV-PEEM image under varying inspection wavelength condition or by counting interference fringes with a fixed illumination wavelength, is discussed.

  17. Structural Defects in Donor-Acceptor Blends: Influence on the Performance of Organic Solar Cells

    Science.gov (United States)

    Sergeeva, Natalia; Ullbrich, Sascha; Hofacker, Andreas; Koerner, Christian; Leo, Karl

    2018-02-01

    Defects play an important role in the performance of organic solar cells. The investigation of trap states and their origin can provide ways to further improve their performance. Here, we investigate defects in a system composed of the small-molecule oligothiophene derivative DCV5T-Me blended with C60 , which shows power conversion efficiencies above 8% when used in a solar cell. From a reconstruction of the density of trap states by impedance spectroscopy, we obtain a Gaussian distribution of trap states with Et=470 meV below the electron transport level, Nt=8 ×1014 cm-3 , and σt=41 meV . From Voc vs illumination intensity and open-circuit corrected charge carrier extraction measurements, we find that these defects lead to trap-assisted recombination. Moreover, drift-diffusion simulations show that the trap states decrease the fill factor by 10%. By conducting degradation measurements and varying the blend ratio, we find that the observed trap states are structural defects in the C60 phase due to the distortion of the natural morphology induced by the mixing.

  18. Ruptured Aneurysms of the Occipital Artery Associated with Congenital Occipital Bone Defect.

    Science.gov (United States)

    Kawasaki, Toshinari; Yoshida, Kazumichi; Kikuchi, Takayuki; Ishii, Akira; Takagi, Yasushi; Miyamoto, Susumu

    2017-01-01

    Traumatic aneurysms of the superficial temporal artery have been frequently reported in the literature, whereas traumatic aneurysms of the occipital artery (OA) are extremely rare. A 30-year-old man had been followed at another hospital for meningoencephalocele associated with his congenital occipital bone defect. He was admitted to our hospital with a chief complaint of neck swelling and pain during a football game. Computed tomography and magnetic resonance imaging showed a hematoma in his right neck along with the meningoencephalocele. In addition, it showed an atrophic cerebellum with a cyst protruding from his occipital bone defect. Digital subtraction angiography of the right OA showed 3 aneurysms responsible for the large hematoma in his neck. Endovascular embolization with 20% N-butyl-2-cyanoacrylate was performed for treatment of the ruptured aneurysms followed by emergent surgical evacuation of the hematoma. An occipital cranioplasty with titanium mesh was performed 10 months after the emergent intervention. In this patient, the congenital occipital bone defect with meningoencephalocele might have been the remote source of risk for traumatic pseudoaneurysms along the muscle branches of the OA. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Intrinsic defects and spectral characteristics of SrZrO3 perovskite

    Science.gov (United States)

    Li, Zhenzhang; Duan, He; Jin, Yahong; Zhang, Shaoan; Lv, Yang; Xu, Qinfang; Hu, Yihua

    2018-04-01

    First-principles calculations and experiment analysis were performed to study the internal relation between seven types of intrinsic defects and the persistent luminescence in SrZrO3 host material. The calculation shows that rich zirconium defects have the low energy cost and thus are easy to form. Zr vacancies are too high energy to play any role in defect which is related luminescence phenomenon of SrZrO3 phosphor. However, oxygen vacancies stand out as a likely candidate, because it can yield two carrier reservoirs: a fully-occupied singlet electron's reservoir which lies above the valence band maximum, and an empty triply degenerate hole's reservoir which is just below the conduction band minimum. Sr vacancies are not directly relevant to the persistent luminescence due to its too shallow electron trap level. The characteristics of these defects are fully explained by the equilibrium properties of SrZrO3. An experimental study of the thermoluminescence glow for these defects is conducted and the calculation is consistent with the experimental results. A mechanism of the persistent luminescence for SrZrO3:Pr3+, Eu3+ is explained according to oxygen vacancies trap center. Findings of this study may serve as theoretical references for controlling intrinsic traps by more refined experiments.

  20. Unexpected properties of the inductively coupled plasma induced defect in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, S.M.M., E-mail: sergio@up.ac.za; Auret, F.D.; Janse van Rensburg, P.J.; Nel, J.M.

    2014-04-15

    Inductively coupled plasma (ICP) etching of germanium introduces a single defect, the E{sub 0.31} electron trap, for a large range of argon partial pressures from 4×10{sup –3} to 6.5×10{sup –4} mbar that correspond to ion energies of 8 to 60 eV. Ge of three crystallographic orientations, (1 0 0), (1 1 0) and (1 1 1), treated with 20 and 60 eV ICP had defect concentration profiles that were similar in appearance, with a maximum concentration of 10{sup 14} cm{sup −3} extending more than a µm into the material, approximately three orders of magnitude deeper than what TRIM simulations predicted. All profiles were measured using Laplace deep level transient spectroscopy (L-DLTS), a technique that is sensitive to defect concentrations as low as 10{sup 11} cm{sup −3}. Isochronal annealing of samples showed concentration curves broadening after a 400 K anneal and decreasing to the 10{sup 13} cm{sup −3} level after a 450 K anneal. Unannealed samples measured after a year exhibited similar decreases in defect concentration without broadening of their profiles. A 550 K anneal lowered the defect concentration to levels below the L-DLTS detection limit. Thereafter additional plasma treatment of the surface failed to reintroduce this defect indicating that the structure required for the formation of E{sub 0.31} was no longer present in the region under observation.