WorldWideScience

Sample records for short-wavelength trapped lee

  1. Short wavelength FELS

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs

  2. Short wavelength FELS

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  3. Towards short wavelengths FELs workshop

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Winick, H.

    1993-01-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FELs offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FELs will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program

  4. Towards short wavelengths FELs workshop

    Science.gov (United States)

    Ben-Zvi, I.; Winick, H.

    1993-11-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FEL's offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FEL's will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program.

  5. Short wavelength FELs using the SLAC linac

    International Nuclear Information System (INIS)

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops

  6. Review of short wavelength lasers

    International Nuclear Information System (INIS)

    Hagelstein, P.L.

    1985-01-01

    There has recently been a substantial amount of research devoted to the development of short wavelength amplifiers and lasers. A number of experimental results have been published wherein the observation of significant gain has been claimed on transitions in the EUV and soft x-ray regimes. The present review is intended to discuss the main approaches to the creation of population inversions and laser media in the short wavelength regime, and hopefully aid workers in the field by helping to provide access to a growing literature. The approaches to pumping EUV and soft x-ray lasers are discussed according to inversion mechanism. The approaches may be divided into roughly seven categories, including collisional excitation pumping, recombination pumping, direct photoionization and photoexcitation pumping, metastable state storage plus optical pumping, charge exchange pumping, and finally, the extension of free electron laser techniques into the EUV and soft x-ray regimes. 250 references

  7. Review of short wavelength lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hagelstein, P.L.

    1985-03-18

    There has recently been a substantial amount of research devoted to the development of short wavelength amplifiers and lasers. A number of experimental results have been published wherein the observation of significant gain has been claimed on transitions in the EUV and soft x-ray regimes. The present review is intended to discuss the main approaches to the creation of population inversions and laser media in the short wavelength regime, and hopefully aid workers in the field by helping to provide access to a growing literature. The approaches to pumping EUV and soft x-ray lasers are discussed according to inversion mechanism. The approaches may be divided into roughly seven categories, including collisional excitation pumping, recombination pumping, direct photoionization and photoexcitation pumping, metastable state storage plus optical pumping, charge exchange pumping, and finally, the extension of free electron laser techniques into the EUV and soft x-ray regimes. 250 references.

  8. Wavelength dependent loading of traps in the persistent phosphor SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, H.; Lovy, D. [Department of Physical Chemistry, University of Geneva, Quai E. Ansermet 30, CH-1211 Geneva 4 (Switzerland); Yoon, S.; Pokrant, S. [Laboratory Materials for Energy Conversion, Empa-Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600, Dübendorf (Switzerland); Gartmann, N.; Walfort, B. [LumiNova AG, Speicherstrasse 60a, CH-9053, Teufen (Switzerland); Bierwagen, J., E-mail: Jakob.Bierwagen@unige.ch [Department of Physical Chemistry, University of Geneva, Quai E. Ansermet 30, CH-1211 Geneva 4 (Switzerland)

    2016-02-15

    The persistent phosphorescence and thermoluminescence of SrAl{sub 2}O{sub 4}:Eu{sup 2+}:Dy{sup 3+} is reported for a variety of different excitation wavelengths and excitation temperatures, to provide new insights in the mechanism of the trapping and detrapping. These measurements reveal that the trapping is strongly dependent on the wavelength and temperature. First, with increasing loading temperature, the thermoluminescence peak shifts to lower temperatures which corresponds to a change of trap population. Secondly, the integrated thermoluminescent intensity increases with increasing loading temperature. All wavelength and temperature dependent experiments indicate that the loading of the traps is a thermally activated processes. Utilizing different wavelengths for loading, this effect can be enhanced or reduced. Furthermore excitation with UV-B-light reveals a tendency for detrapping the phosphor, reducing the resulting thermoluminescent intensity and changing the population of the traps.

  9. Short wavelength sources and atoms and ions

    International Nuclear Information System (INIS)

    Kennedy, E.T.

    2008-01-01

    The interaction of ionizing radiation with atoms and ions is a key fundamental process. Experimental progress has depended in particular on the development of short wavelength light sources. Laser-plasma and synchrotron sources have been exploited for several decades and most recently the development of short wavelength Free Electron Laser (FEL) sources is revolutionizing the field. This paper introduces laser plasma and synchrotron sources through examples of their use in studies of the interaction of ionizing radiation with atoms and ions, ranging from few-electron atomic and ionic systems to the many-electron high atomic number actinides. The new FEL source (FLASH) at DESY is introduced. (author)

  10. Self-amplified spontaneous emission for short wavelength coherent radiation

    International Nuclear Information System (INIS)

    Kim, K.J.; Xie, M.

    1992-09-01

    We review the recent progress in our understanding of the self-amplified spontaneous emission (SASE), emphasizing the application to short wavelength generation. Simple formulae are given for the start-up, exponential gain and the saturation of SASE. Accelerator technologies producing high brightness electron beams required for short wavelength SASE are discussed. An example utilizing electron beams from a photocathode-linac system to produce 4nm SASE in the multigigawatt range is presented

  11. Tunable Optical Tweezers for Wavelength-dependent Measurements

    Science.gov (United States)

    2012-04-23

    have been studied in an optical levitation scheme over short laser wavelength ranges20 and for dye-loaded di- electric particles.21 In the first case...M. Block, IEEE J. Sel. Top. Quantum Electron. 2, 1066 (1996). 7K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, I. Andreev, P. Mthunzi, C. T. A...Brown, R. F. Marchington, and A. C. Riches, IEEE J. Sel. Top. Quantum Electron. 13, 1646 (2007). 8K. Dholakia, M. P. MacDonald, P. Zemanek, and T

  12. Short-wavelength luminescence in Ho{sup 3+}-doped KGd(WO{sub 4}){sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, M., E-mail: m.malinowski@elka.pw.edu.p [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Kaczkan, M.; Stopinski, S.; Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Majchrowski, A. [Institute of Applied Physics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland)

    2009-12-15

    Emissions from the high-lying excited states, energy transfer and upconversion processes are investigated in Ho{sup 3+}-activated KGd(WO{sub 4}){sub 2} crystal. The spectral assignment based on time-resolved emission spectra allowed to identify various near ultra-violet (UV), blue and green emissions starting from the excited {sup 3}H{sub 5}, {sup 5}G{sub 4}, {sup 5}G{sub 5}, {sup 5}F{sub 3} and {sup 5}S{sub 2} levels. The temporal behavior of these transitions after pulsed excitation was analyzed as a function of temperature and holmium ions concentration. The shortening and nonexponentiality of the decays, observed with increasing activator concentrations, indicated cross-relaxation (CR) among the Ho{sup 3+} ions. Cross-relaxation rates were experimentally determined as a function of activator concentration and used to evaluate the values of the nearest-neighbor trapping rates X{sub 01} and to model the decays. It was observed that KGW, despite higher than in YAG maximum phonon energy of about 900 cm{sup -1}, is more efficient short-wavelength emitter than YAG. Examples of the excited-state absorption (ESA) and energy transfer (ET) mechanisms responsible for the upconverted, short-wavelength emissions were identified by analyzing fluorescence dynamics and possible energy resonances.

  13. Optimal wavelength scale diffraction gratings for light trapping in solar cells

    International Nuclear Information System (INIS)

    Chong, Teck Kong; Wilson, Jonathan; Mokkapati, Sudha; Catchpole, Kylie R

    2012-01-01

    Dielectric gratings are a promising method of achieving light trapping for thin crystalline silicon solar cells. In this paper, we systematically examine the potential performance of thin silicon solar cells with either silicon (Si) or titanium dioxide (TiO 2 ) gratings using numerical simulations. The square pyramid structure with silicon nitride coating provides the best light trapping among all the symmetric structures investigated, with 89% of the expected short circuit current density of the Lambertian case. For structures where the grating is at the rear of the cell, we show that the light trapping provided by the square pyramid and the checkerboard structure is almost identical. Introducing asymmetry into the grating structures can further improve their light trapping properties. An optimized Si skewed pyramid grating on the front surface of the solar cell results in a maximum short circuit current density, J sc , of 33.4 mA cm −2 , which is 91% of the J sc expected from an ideal Lambertian scatterer. An optimized Si skewed pyramid grating on the rear performs as well as a rear Lambertian scatterer and an optimized TiO 2 grating on the rear results in 84% of the J sc expected from an optimized Si grating. The results show that submicron symmetric and skewed pyramids of Si or TiO 2 are a highly effective way of achieving light trapping in thin film solar cells. TiO 2 structures would have the additional advantage of not increasing recombination within the cell. (paper)

  14. A nonlinear bounce kinetic equation for trapped electrons

    International Nuclear Information System (INIS)

    Gang, F.Y.

    1990-03-01

    A nonlinear bounce averaged drift kinetic equation for trapped electrons is derived. This equation enables one to compute the nonlinear response of the trapped electron distribution function in terms of the field-line projection of a potential fluctuation left-angle e -inqθ φ n right-angle b . It is useful for both analytical and computational studies of the nonlinear evolution of short wavelength (n much-gt 1) trapped electron mode-driven turbulence. 7 refs

  15. Local Analysis Approach for Short Wavelength Geopotential Variations

    Science.gov (United States)

    Bender, P. L.

    2009-12-01

    The value of global spherical harmonic analyses for determining 15 day to 30 day changes in the Earth's gravity field has been demonstrated extensively using data from the GRACE mission and previous missions. However, additional useful information appears to be obtainable from local analyses of the data. A number of such analyses have been carried out by various groups. In the energy approximation, the changes in the height of the satellite altitude geopotential can be determined from the post-fit changes in the satellite separation during individual one-revolution arcs of data from a GRACE-type pair of satellites in a given orbit. For a particular region, it is assumed that short wavelength spatial variations for the arcs crossing that region during a time T of interest would be used to determine corrections to the spherical harmonic results. The main issue in considering higher measurement accuracy in future missions is how much improvement in spatial resolution can be achieved. For this, the shortest wavelengths that can be determined are the most important. And, while the longer wavelength variations are affected by mass distribution changes over much of the globe, the shorter wavelength ones hopefully will be determined mainly by more local changes in the mass distribution. Future missions are expected to have much higher accuracy for measuring changes in the satellite separation than GRACE. However, how large an improvement in the derived results in hydrology will be achieved is still very much a matter of study, particularly because of the effects of uncertainty in the time variations in the atmospheric and oceanic mass distributions. To be specific, it will be assumed that improving the spatial resolution in continental regions away from the coastlines is the objective, and that the satellite altitude is in the range of roughly 290 to 360 km made possible for long missions by drag-free operation. The advantages of putting together the short wavelength

  16. Estimates of SASE power in the short wavelength region

    International Nuclear Information System (INIS)

    Kim, Kwang-Je.

    1992-03-01

    Given a sufficiently bright electron beam, the self-amplified-spontaneous emission (SASE) can provide gigawatts of short wavelength coherent radiation. The advantages of SASE approach are that is requires neither optical cavity nor an imput seed laser. In this note, we estimate the peak power performance of SASE for wavelengths shorter than 1000 Angstrom. At each wavelength, we calculate the saturated power from a uniform parameter undulator and the enhanced power from a tapered undulator. The method described here is an adaptation of that discussed by L.H. Yu, who discussed the harmonic generation scheme with seeded laser, to the case of SASE

  17. OMEGA: a short-wavelength laser for fusion experiments

    International Nuclear Information System (INIS)

    Soures, J.M.; Hutchison, R.J.; Jacobs, S.D.; Lund, L.D.; McCrory, R.L.; Richardson, M.C.

    1983-01-01

    The OMEGA, Nd:glass laser facility was constructed for the purpose of investigating the feasibility of direct-drive laser fusion. With 24 beams producing a total energy of 4 kJ or a peak power of 12 TW, OMEGA is capable of nearly uniform illumination of spherical targets. Six of the OMEGA beams have recently been converted to short-wavelength operation (351 nm). In this paper, we discuss details of the system design and performance, with particular emphasis on the frequency-conversion system and multi-wavelength diagnostic system

  18. Research with high-power short-wavelength lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.; Campbell, E.M.; Lindl, J.D.; Storm, E.

    1985-01-01

    Three important high-temperature, high-density experiments were conducted recently using the 10-TW, short-wavelength Novette laser system at the Lawrence Livermore National Laboratory. These experiments demonstrated successful solutions to problems that arose during previous experiments with long wavelength lasers (lambda greater than or equal to 1μm) in which inertial confinement fusion (ICF), x-ray laser, and other high-temperature physics concepts were being tested. The demonstrations were: (1) large-scale plasmas (typical dimensions of up to 1000 laser wavelengths) were produced in which potentially deleterious laser-plasma instabilities were collisionally damped. (2) Deuterium-tritium fuel was imploded to a density of 20 g/cm 3 and a pressure of 10 10 atm. (3) A 700-fold amplification of soft x rays by stimulated emission at 206 and 209 A (62 eV) from Se +24 ions was observed in a laser-generated plasma. Isoelectronic scaling to 155 A (87 eV) in Y +29 was also demonstrated

  19. Nonlinear propagation of short wavelength drift-Alfven waves

    DEFF Research Database (Denmark)

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens

    1986-01-01

    Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two-dim...

  20. Optical Detection in Ultrafast Short Wavelength Science

    International Nuclear Information System (INIS)

    Fullagar, Wilfred K.; Hall, Chris J.

    2010-01-01

    A new approach to coherent detection of ionising radiation is briefly motivated and recounted. The approach involves optical scattering of coherent light fields by colour centres in transparent solids. It has significant potential for diffractive imaging applications that require high detection dynamic range from pulsed high brilliance short wavelength sources. It also motivates new incarnations of Bragg's X-ray microscope for pump-probe studies of ultrafast molecular structure-dynamics.

  1. Wavelength-selective bleaching of the optical spectra of trapped electrons in organic glasses. II

    International Nuclear Information System (INIS)

    Paraszczak, J.; Willard, J.E.

    1979-01-01

    Further resolution of the inhomogeneous optical spectra of trapped electrons (e - /sub t/) in organic glasses has been obtained from wavelength selective bleaching and thermal decay studies on 3-methylpentane-d 14 (3MP-d 14 ) and 2-methyltetrahydrofuran (MTHF) following γ irradiation in the temperature region of 20 K, and limits on the degree of resolution achievable have been indicated. Exposure of 3MP-d 14 to light of wavelengths >2100 nm (from a tunable laser) reduces the optical densities at the bleaching wavelength and longer to zero, while ''peeling off'' a portion of the O.D. at all shorter wavelengths but leaving the remainder of the spectrum unaffected. The fraction of the integrated optical spectrum, ∫OD d (eV), removed by bleaching at each wavelength tested, and also by thermal decay, is equivalent to the fraction of the total e - /sub t/ spins removed and measured by ESR. 1064 nm light bleaches the spectrum nearly uniformly, confirming that the spectra of all of the e - /sub t/ have blue tails with similar ease of bleaching. Heretofore unobserved low temperature thermal decay of e - /sub t/ occurs at 20 and 40 K (20% of the spin concentration in 30 min, 35% in 3h). The rate of decay of the optical spectrum decreases with decreasing wavelength of observation (2.5, 2.2, 1.8, and 1.5 μ), but at each wavelength is the same at 40 K as at 20 K, consistent

  2. Short wavelength striations on expanding plasma clouds

    International Nuclear Information System (INIS)

    Winske, D.; Gary, S.P.

    1989-01-01

    The growth and evolution of short wavelength (< ion gyroradius) flute modes on a plasma expanding across an ambient magnetic field have been actively studied in recent years, both by means of experiments in the laboratory as well as in space and through numerical simulations. We review the relevant observations and simulations results, discuss the instability mechanism and related linear theory, and describe recent work to bring experiments and theory into better agreement. 30 refs., 6 figs

  3. Acoustic Virtual Vortices with Tunable Orbital Angular Momentum for Trapping of Mie Particles

    Science.gov (United States)

    Marzo, Asier; Caleap, Mihai; Drinkwater, Bruce W.

    2018-01-01

    Acoustic vortices can transfer angular momentum and trap particles. Here, we show that particles trapped in airborne acoustic vortices orbit at high speeds, leading to dynamic instability and ejection. We demonstrate stable trapping inside acoustic vortices by generating sequences of short-pulsed vortices of equal helicity but opposite chirality. This produces a "virtual vortex" with an orbital angular momentum that can be tuned independently of the trapping force. We use this method to adjust the rotational speed of particles inside a vortex beam and, for the first time, create three-dimensional acoustics traps for particles of wavelength order (i.e., Mie particles).

  4. Operational characteristics of the OMEGA short-wavelength laser fusion facility

    International Nuclear Information System (INIS)

    Soures, J.M.; Hutchison, R.; Jacobs, S.; McCrory, R.L.; Peck, R.; Seka, W.

    1984-01-01

    Twelve beams of the OMEGA, 24 beam direct-drive laser facility have been converted to 351-nm wavelength operation. The performance characteristics of this short-wavelength facility will be discussed. Beam-to-beam energy balance of +-2.3% and on-target energy, at 351-nm, in excess of 70 J per beam have been demonstrated. Long-term performance (>600 shots) of the system has been optimized by appropriate choice of index matching liquid, optical materials and coatings. The application of this system in direct-drive laser fusion experiments will be discussed

  5. Short-Wavelength Light Enhances Cortisol Awakening Response in Sleep-Restricted Adolescents

    Directory of Open Access Journals (Sweden)

    Mariana G. Figueiro

    2012-01-01

    Full Text Available Levels of cortisol, a hormone produced by the adrenal gland, follow a daily, 24-hour rhythm with concentrations reaching a minimum in the evening and a peak near rising time. In addition, cortisol levels exhibit a sharp peak in concentration within the first hour after waking; this is known as the cortisol awakening response (CAR. The present study is a secondary analysis of a larger study investigating the impact of short-wavelength (λmax≈470 nm light on CAR in adolescents who were sleep restricted. The study ran over the course of three overnight sessions, at least one week apart. The experimental sessions differed in terms of the light exposure scenarios experienced during the evening prior to sleeping in the laboratory and during the morning after waking from a 4.5-hour sleep opportunity. Eighteen adolescents aged 12–17 years were exposed to dim light or to 40 lux (0.401 W/m2 of 470-nm peaking light for 80 minutes after awakening. Saliva samples were collected every 20 minutes to assess CAR. Exposure to short-wavelength light in the morning significantly enhanced CAR compared to dim light. Morning exposure to short-wavelength light may be a simple, yet practical way to better prepare adolescents for an active day.

  6. Short wavelength limits of current shot noise suppression

    International Nuclear Information System (INIS)

    Nause, Ariel; Dyunin, Egor; Gover, Avraham

    2014-01-01

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect

  7. Short wavelength limits of current shot noise suppression

    Energy Technology Data Exchange (ETDEWEB)

    Nause, Ariel, E-mail: arielnau@post.tau.ac.il [Faculty of Exact Sciences, Department of Physics, Tel Aviv University, Tel Aviv (Israel); Dyunin, Egor; Gover, Avraham [Faculty of Engineering, Department of Physical Electronics, Tel Aviv University, Tel Aviv (Israel)

    2014-08-15

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect.

  8. Lee de Forest King of Radio, Television, and Film

    CERN Document Server

    Adams, Mike

    2012-01-01

    Lee de Forest, Yale doctorate and Oscar winner, gave voice to the radio and the motion picture. Yet by the 1930s, after the radio and the Talkies were regular features of American life, Lee de Forest had seemingly lost everything. Why? Why didn’t he receive the recognition and acclaim he sought his entire life until years later in 1959, when he was awarded an Oscar? A lifelong innovator, Lee de Forest invented the three-element vacuum tube which he developed between 1906 and 1916 as a detector, amplifier, and oscillator of radio waves. As early as 1907, he was broadcasting music programming. In 1918, he began to develop a system for recording and playing back sound by using light patterns on motion picture film. In order to promote and demonstrate his process he made hundreds of short sound films, found theatres for their showing, and issued publicity to gain audiences for his invention. While he received many patents for this technology, he was ignored by the film industry. Lee de Forest, King of Radio, Te...

  9. Sexual dimorphism of short-wavelength photoreceptors in the small white butterfly, Pieris rapae crucivora

    NARCIS (Netherlands)

    Arikawa, K; Wakakuwa, M; Qiu, XD; Kurasawa, M; Stavenga, DG; Qiu, Xudong

    2005-01-01

    The eyes of the female small white butterfly, Pieris rapae crucivora, are furnished with three classes of short-wavelength photoreceptors, with sensitivity peaks in the ultraviolet (UV) (lambda(max) = 360 nm), violet (V) (lambda max = 425 nm), and blue (B) (lambda(max) = 453 nm) wavelength range.

  10. Lack of short-wavelength light during the school day delays dim light melatonin onset (DLMO) in middle school students.

    Science.gov (United States)

    Figueiro, Mariana G; Rea, Mark S

    2010-01-01

    Circadian timing affects sleep onset. Delayed sleep onset can reduce sleep duration in adolescents required to awake early for a fixed school schedule. The absence of short-wavelength ("blue") morning light, which helps entrain the circadian system, can hypothetically delay sleep onset and decrease sleep duration in adolescents. The goal of this study was to investigate whether removal of short-wavelength light during the morning hours delayed the onset of melatonin in young adults. Dim light melatonin onset (DLMO) was measured in eleven 8th-grade students before and after wearing orange glasses, which removed short-wavelength light, for a five-day school week. DLMO was significantly delayed (30 minutes) after the five-day intervention, demonstrating that short-wavelength light exposure during the day can be important for advancing circadian rhythms in students. Lack of short-wavelength light in the morning has been shown to delay the circadian clock in controlled laboratory conditions. The results presented here are the first to show, outside laboratory conditions, that removal of short-wavelength light in the morning hours can delay DLMO in 8th-grade students. These field data, consistent with results from controlled laboratory studies, are directly relevant to lighting practice in schools.

  11. Observation of Mountain Lee Waves with MODIS NIR Column Water Vapor

    Science.gov (United States)

    Lyapustin, A.; Alexander, M. J.; Ott, L.; Molod, A.; Holben, B.; Susskind, J.; Wang, Y.

    2014-01-01

    Mountain lee waves have been previously observed in data from the Moderate Resolution Imaging Spectroradiometer (MODIS) "water vapor" 6.7 micrometers channel which has a typical peak sensitivity at 550 hPa in the free troposphere. This paper reports the first observation of mountain waves generated by the Appalachian Mountains in the MODIS total column water vapor (CWV) product derived from near-infrared (NIR) (0.94 micrometers) measurements, which indicate perturbations very close to the surface. The CWV waves are usually observed during spring and late fall or some summer days with low to moderate CWV (below is approx. 2 cm). The observed lee waves display wavelengths from3-4 to 15kmwith an amplitude of variation often comparable to is approx. 50-70% of the total CWV. Since the bulk of atmospheric water vapor is confined to the boundary layer, this indicates that the impact of thesewaves extends deep into the boundary layer, and these may be the lowest level signatures of mountain lee waves presently detected by remote sensing over the land.

  12. Short wavelength laser-plasma interaction experiments in a spherical geometry

    International Nuclear Information System (INIS)

    Keck, R.L.

    1984-01-01

    Short wavelength (250 to 500 nm) lasers should provide reduced fast electron preheat and increased laser-pellet coupling efficiency when used as laser fusion drivers. As part of an ongoing effort to study short wavelength laser plasm interaction, six beams of the 24 beam OMEGA Nd-glass laser system have been converted to operation at the third harmonic. This system is capable of providing in excess of 250 Joules of 351 nm light on spherical targets at intensities up to 2 x 10/sup 15/ W/cm/sup 2/. To date, experiments have been performed to study the uniformity of irradiation, laser absorption, fast electron production and preheat, energy transport within the target and underdense plasma instabilities. Both x-ray continuum measurements and Kα line measurements indicate that the absorption is dominated by inverse bremsstrahlung. Electron energy transport has been studied using x-ray burn-through and charge collector measurements. The results show that with 351 nm irradiation ablation pressures of order 100 Mbars are generated at intensities of 10/sup 15/ W/cm/sup 2/

  13. Short-wavelength free-electron laser sources and science: a review

    Science.gov (United States)

    Seddon, E. A.; Clarke, J. A.; Dunning, D. J.; Masciovecchio, C.; Milne, C. J.; Parmigiani, F.; Rugg, D.; Spence, J. C. H.; Thompson, N. R.; Ueda, K.; Vinko, S. M.; Wark, J. S.; Wurth, W.

    2017-11-01

    This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area. Dedicated to John M J Madey (1943-2016) and Rodolfo Bonifacio (1940-2016) whose perception, drive and perseverance paved the way for the realisation and development of short-wavelength free-electron lasers.

  14. Influence of wavelength on transient short-circuit current in polycrystalline silicon solar cells

    International Nuclear Information System (INIS)

    Ba, B.; Kane, M.

    1993-10-01

    The influence of the wavelength of a monochromatic illumination on transient short-circuit current in an n/p polycrystalline silicon part solar cell junction is investigated. A wavelength dependence in the initial part of the current decay is observed in the case of cells with moderate grain boundary effects. This influence is attenuated in polycrystalline cells with strong grain boundary activity. (author). 10 refs, 6 figs

  15. Short-wavelength attenuated polychromatic white light during work at night : Limited melatonin suppression without substantial decline of alertness

    NARCIS (Netherlands)

    van de Werken, Maan; Giménez, Marina C; de Vries, Bonnie; Beersma, Domien G M; Gordijn, Marijke C M

    Exposure to light at night increases alertness, but light at night (especially short-wavelength light) also disrupts nocturnal physiology. Such disruption is thought to underlie medical problems for which shiftworkers have increased risk. In 33 male subjects we investigated whether short-wavelength

  16. Evaluation of chromatic cues for trapping Bactrocera tau.

    Science.gov (United States)

    Li, Lei; Ma, Huabo; Niu, Liming; Han, Dongyin; Zhang, Fangping; Chen, Junyu; Fu, Yueguan

    2017-01-01

    Trapping technology based on chromatic cues is an important strategy in controlling Tephritidae (fruit flies). The objectives of this present study were to evaluate the preference of Bactrocera tau for different chromatic cues, and to explore an easy method to print and reproduce coloured paper. Chromatic cues significantly affected the preference of adult B. tau. Wavelengths in the 515-604 nm range were the suitable wavelengths for trapping B. tau. Different-day-old B. tau had different colour preferences. Virtual wavelengths of 595 nm (yellow) and 568 nm (yellowish green) were the optimum wavelengths for trapping 5-7-day-old B. tau and 30-32-day-old B. tau respectively. The trap type and height significantly influenced B. tau attraction efficiency. The number of B. tau on coloured traps hung perpendicular to plant rows was not significantly higher than the number on traps hung parallel to plant rows. The quantisation of colour on the basis of Bruton's wavelength to RGB function can serve as an alternative method for printing and reproducing coloured paper, but a corrected equation should be established between the theoretical wavelength and actual wavelength of coloured paper. Results show that a compound paper coloured yellow (595 nm) and yellowish green (568 nm) installed at 60 and 90 cm above the ground shows the maximum effect for trapping B. tau. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Observation of magnon-phonon interaction at short wavelengths

    International Nuclear Information System (INIS)

    Dolling, G.; Cowley, R.A.

    1966-01-01

    Measurements have been made of the magnon and phonon dispersion relations in uranium dioxide at 9 o K. These measurements provide evidence of a strong interaction between the magnon and phonon excitations and enable a value to be deduced for the coupling constant. The interaction of long-wavelength magnons in ferromagnetic materials has been studied previously with ultrasonic techniques; however, inelastic scattering of slow neutrons enables both the magnon and phonon dispersion relations to be determined for short wavelengths. In those magnetic materials which have been studied by earlier workers, the magnons and phonons either interacted with one another very weakly or else their frequencies were very different. The results could then be understood without introducing any magnon-phonon interaction. In this note we report measurements of both the magnon and the phonon spectra of antiferromagnetic uranium dioxide, which lead to a magnon-phonon coupling constant of 9.6 ± 1.6 o K. Since the Neel temperature is 30.8 o K, this coupling constant is of a similar magnitude to the direct magnetic interactions. (author)

  18. Short-wavelength magnetic recording new methods and analyses

    CERN Document Server

    Ruigrok, JJM

    2013-01-01

    Short-wavelength magnetic recording presents a series of practical solutions to a wide range of problems in the field of magnetic recording. It features many new and original results, all derived from fundamental principles as a result of up-to-date research.A special section is devoted to the playback process, including the calculations of head efficiency and head impedance, derived from new theorems.Features include:A simple and fast method for measuring efficiency; a simple method for the accurate separation of the read and write behaviour of magnetic heads; a new concept - the bandpass hea

  19. Extended short wavelength infrared HgCdTe detectors on silicon substrates

    Science.gov (United States)

    Park, J. H.; Hansel, D.; Mukhortova, A.; Chang, Y.; Kodama, R.; Zhao, J.; Velicu, S.; Aqariden, F.

    2016-09-01

    We report high-quality n-type extended short wavelength infrared (eSWIR) HgCdTe (cutoff wavelength 2.59 μm at 77 K) layers grown on three-inch diameter CdTe/Si substrates by molecular beam epitaxy (MBE). This material is used to fabricate test diodes and arrays with a planar device architecture using arsenic implantation to achieve p-type doping. We use different variations of a test structure with a guarded design to compensate for the lateral leakage current of traditional test diodes. These test diodes with guarded arrays characterize the electrical performance of the active 640 × 512 format, 15 μm pitch detector array.

  20. Use of Awamori-pressed Lees and Tofu Lees as Feed Ingredients for Growing Female Goats

    Directory of Open Access Journals (Sweden)

    Itsuki Nagamine

    2012-12-01

    Full Text Available Okinawan Awamori is produced by fermenting steamed indica rice with black mold, yeast, and water. Awamori-pressed lees is a by-product of the Awamori production process. Tofu lees is a by-product of the Tofu production process. This research consisted of two experiments conducted to elucidate whether or not dried Awamori-pressed lees and Tofu lees can be used as a mixed feed ingredient for raising female goats. In experiment 1, digestion trials were conducted to ascertain the nutritive values of dried Awamori-pressed lees and dried Tofu lees for goats. The digestible crude protein (DCP and total digestible nutrients (TDN contents of dried Awamori-pressed lees and Tofu lees were 22.5%, 22.5% (DCP, and 87.2%, 94.4% (TDN respectively. In experiment 2, 18 female goats (Japanese Saanen×Nubian, three months old, body weight 15.4±0.53 kg were divided into three groups of six animals (control feed group (CFG, Awamori-pressed lees mixed feed group (AMFG, Tofu lees mixed feed group (TMFG. The CFG control used feed containing 20% soybean meal as the main protein source, while the AMFG and TMFG treatments used feed mixed with 20% dried Awamori-pressed lees or dried Tofu lees. The groups were fed mixed feed (volume to provide 100 g/d increase in body weight twice a day (10:00, 16:00. The klein grass hay and water was given ad libitum. The hay intake was measured at 08:00 and 16:00. Body weight and size measurements were taken once a month. At the end of the experiment, a blood sample was drawn from the jugular vein of each animal. The DCP and TDN intakes in AMFG and TMFG showed no significant difference to the CFG. Cumulative measurements of growth in body weight, withers height, chest depth, chest girth, and hip width over the 10 mo period in the AMFG and TMFG were similar to the CFG. By contrast, cumulative growth in body length and hip height in the AMFG and TMFG tended to be larger than the CFG. Cumulative growth in chest width in the AMFG was

  1. A critique of the Lees-Marshment market-oriented party model

    DEFF Research Database (Denmark)

    Ormrod, Robert P.

    2006-01-01

    This article presents conceptual and empirical criticisms of the Lees-Marshment market-oriented party model. Conceptual criticisms are the short-term approach, the narrow focus on voters, the nature of the relationship to competitors, a tendency towards centralisation and the lack of a distinction...

  2. Stability of short wavelength tearing and twisting modes

    International Nuclear Information System (INIS)

    Waelbroeck, F.L.

    1998-01-01

    The stability and mutual interaction of tearing and twisting modes in a torus is governed by matrices that generalize the well-known Δ' stability index. The diagonal elements of these matrices determine the intrinsic stability of modes that reconnect the magnetic field at a single resonant surface. The off-diagonal elements indicate the strength of the coupling between the different modes. The author shows how the elements of these matrices can be evaluated, in the limit of short wavelength, from the free energy driving radially extended ballooning modes. The author applies the results by calculating the tearing and twisting Δ' for a model high-beta equilibrium with circular flux surfaces

  3. Nonlinear saturation of the trapped-ion mode by mode coupling in two dimensions

    International Nuclear Information System (INIS)

    Cohen, B.I.; Tang, W.M.

    1977-01-01

    A study of the nonlinear saturation by mode coupling of the dissipative trapped-ion mode is presented in which both radial and poloidal variations are considered. The saturation mechanism consists of the nonlinear coupling via E x B convection of energy from linearly unstable modes to stable modes. Stabilization is provided at short poloidal wavelengths by Landau damping from trapped and circulating ions, at short radial wavelengths by effects associated with the finite ion banana excursions and at long wavelengths by ion collisions. A one-dimensional, nonlinear partial differential equation for the electrostatic potential derived in earlier work is extended to two dimensions and to third order in amplitude. Included systematically are kinetic effects, e.g., Landau damping and its spatial dependence due to magnetic shear. The stability and accessibility of equilibria are considered in detail for cases far from as well as close to marginal stability. In the first case three-wave interactions are found to be important when the spectrum of unstable modes is sufficiently narrow. In the latter case, it is found that for a single unstable mode, a four-wave interaction can provide the dominant saturation mechanism. Cross-field transport is calculated, and the scaling of results is considered for tokamak parameters

  4. Local instabilities in magnetized rotational flows: A short-wavelength approach

    OpenAIRE

    Kirillov, Oleg N.; Stefani, Frank; Fukumoto, Yasuhide

    2014-01-01

    We perform a local stability analysis of rotational flows in the presence of a constant vertical magnetic field and an azimuthal magnetic field with a general radial dependence. Employing the short-wavelength approximation we develop a unified framework for the investigation of the standard, the helical, and the azimuthal version of the magnetorotational instability, as well as of current-driven kink-type instabilities. Considering the viscous and resistive setup, our main focus is on the cas...

  5. Use of Awamori-pressed Lees and Tofu Lees as Feed Ingredients for Growing Male Goats

    Directory of Open Access Journals (Sweden)

    Itsuki Nagamine

    2013-09-01

    Full Text Available Awamori is produced by fermenting steamed indica rice. Awamori-pressed lees is a by-product of the Awamori production process. Tofu lees is a by-product of the Tofu production process. Research was conducted to test if dried Awamori-pressed lees and Tofu lees can be used as a mixed feed ingredient for raising male goats. Eighteen male kids were divided into three groups of six animals (control feed group (CFG, Awamori-pressed lees mixed feed group (AMFG, Tofu lees mixed feed group (TMFG. The CFG used feed containing 20% soybean meal as the main protein source, while the AMFG and TMFG used feed mixed with 20% dried Awamori-pressed lees or dried Tofu lees. The groups were fed mixed feed (volume to provide 100 g/d increase in body weight and alfalfa hay cubes (2.0 kg/d twice a day (10:00, 16:00. Klein grass hay and water was given ad libitum. Hay intake was measured at 10:00 and 16:00. Body weight and size measurements were taken once a month. At the end of the experiment, a blood sample was drawn from the jugular vein of each animal and the carcass characteristics, the physical and chemical characteristics of loin were analyzed. DCP and TDN intakes in AMFG and TMFG showed no significant difference to the CFG. Cumulative measurements of growth in body weight and size over the 10 mo period in the AMFG and TMFG were similar to the CFG. Blood parameter values were similar to those in normal goats. Dressing carcass weight and percentages, and total weight of meat in the AMFG were similar to that in the CFG, but smaller in the TMFG. The compressed meat juice ratio was higher in both the TMFG and AMFG than the CFG. While the fat in corn, Awamori-pressed lees, and Tofu lees contains more than 50% linoleic acid, the loin fat in both the AMFG and TMFG was very low in linoleic acid due to the increase in the content of oleic acid, stearic acid, and palmitic acid. This indicates that feeding on AMF and TMF does not inhibit hydrogenation by ruminal

  6. Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system

    International Nuclear Information System (INIS)

    Ayano, Satoru; Wakamoto, Yuichi; Yamashita, Shinobu; Yasuda, Kenji

    2006-01-01

    We quantitatively examined the possible damage to the growth and cell division ability of Escherichia coli caused by 1064-nm optical trapping. Using the synchronous behavior of two sister E. coli cells, the growth and interdivision times between those two cells, one of which was trapped by optical tweezers, the other was not irradiated, were compared using an on-chip single cell cultivation system. Cell growth stopped during the optical trapping period, even with the smallest irradiated power on the trapped cells. Moreover, the damage to the cell's growth and interdivision period was proportional to the total irradiated energy (work) on the cell, i.e., irradiation time multiplied by irradiation power. The division ability was more easily affected by a smaller energy, 0.36 J, which was 30% smaller than the energy that adversely affected growth, 0.54 J. The results indicate that the damage caused by optical trapping can be estimated from the total energy applied to cells, and furthermore, that the use of optical trapping for manipulating cells might cause damage to cell division and growth mechanisms, even at wavelengths under 1064 nm, if the total irradiation energy is excessive

  7. Experimental tests of induced spatial incoherence using short laser wavelength

    International Nuclear Information System (INIS)

    Obenschain, S.P.; Grun, J.; Herbst, M.J.

    1986-01-01

    The authors have developed a laser beam smoothing technique called induced spatial incoherence (ISI), which can produce the highly uniform focal profiles required for direct-drive laser fusion. Uniform well-controlled focal profiles are required to obtain the highly symmetric pellet implosions needed for high-energy gain. In recent experiments, the authors' tested the effects of ISI on high-power laser-target interaction. With short laser wavelength, the coupling physics dramatically improved over that obtained with an ordinary laser beam

  8. The Spectrum of Particles with Short-Ranged Interactions in a Harmonic Trap

    Directory of Open Access Journals (Sweden)

    Metsch B. Ch.

    2010-04-01

    Full Text Available The possibility to control short-ranged interactions of cold gases in optical traps by Feshbachresonances makes these systems ideal candidates to study universal scaling properties and Efimov physics. The spectrum of particles in a trap, idealised by a harmonic oscillator potential, in the zero range limit with 2- and 3-particle contact interactions is studied numerically. The Hamiltonian is regularised by restricting the oscillator basis and the coupling constants are tuned such that the ground state energies of the 2- and 3-particle sector are reproduced [1],[2]. Results for 2-, 3-, and 4 particle systems are presented and compared to exact results [3],[4].

  9. The pitfalls of short-range endemism: high vulnerability to ecological and landscape traps

    Directory of Open Access Journals (Sweden)

    Leanda D. Mason

    2018-05-01

    Full Text Available Ecological traps attract biota to low-quality habitats. Landscape traps are zones caught in a vortex of spiralling degradation. Here, we demonstrate how short-range endemic (SRE traits may make such taxa vulnerable to ecological and landscape traps. Three SRE species of mygalomorph spider were used in this study: Idiommata blackwalli, Idiosoma sigillatum and an undescribed Aganippe sp. Mygalomorphs can be long-lived (>43 years and select sites for permanent burrows in their early dispersal phase. Spiderlings from two species, I. blackwalli (n = 20 and Aganippe sp. (n = 50, demonstrated choice for microhabitats under experimental conditions, that correspond to where adults typically occur in situ. An invasive veldt grass microhabitat was selected almost exclusively by spiderlings of I. sigillatum. At present, habitat dominated by veldt grass in Perth, Western Australia, has lower prey diversity and abundance than undisturbed habitats and therefore may act as an ecological trap for this species. Furthermore, as a homogenising force, veldt grass can spread to form a landscape trap in naturally heterogeneous ecosystems. Selection of specialised microhabitats of SREs may explain high extinction rates in old, stable landscapes undergoing (human-induced rapid change.

  10. Treatment of wine lees on an industrial scale. [wine lees processing

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-24

    EtOH and tartaric acid are recovered from wine lees by compressing the lees into pellets, distillation with steam to remove alcohols followed by fractional distillation to recover EtOH, roasting and pulverization of the EtOH-free pellets to coagulate collids, and extraction of the suspension with water and mineral acid to recover tartaric acid. Mother liquors are recirculated through the tartaric acid recovery process and the residual material is dried to a protein product which is useful as fertilizer or as animal feed.

  11. Characterization of Phenolic Compounds in Wine Lees.

    Science.gov (United States)

    Zhijing, Ye; Shavandi, Amin; Harrison, Roland; Bekhit, Alaa El-Din A

    2018-03-25

    The effect of vinification techniques on phenolic compounds and antioxidant activity of wine lees are poorly understood. The present study investigated the antioxidant activity of white and red wine lees generated at early fermentation and during aging. In this study, the total phenol content (TPC), total tannin content (TTC), mean degree of polymerization (mDP), and antioxidant activities of five white and eight red wine lees samples from different vinification backgrounds were determined. The results showed that vinification techniques had a significant ( p tannin content of the samples. White wine lees had high mDP content compared with red ones. Catechin (50-62%) and epicatechin contents were the predominant terminal units of polymeric proanthocyanidin extracted from examined samples. Epigallocatechin was the predominant extension unit of white wine lees, whereas epicatechin was the predominant compound in red wine marc. The ORAC (oxygen radical absorbance capacity) assay was strongly correlated with the DPPH (α, α-diphenyl-β-picrylhydrazyl) assay, and the results showed the strong antioxidant activities associated with red wine lees (PN > 35 mg Trolox/g FDM) (PN: Pinot noir lees; FDM: Freeze-dried Material). This study indicates that tannin is one of the major phenolic compounds available in wine lees that can be useful in human and animal health applications.

  12. Characterization of Phenolic Compounds in Wine Lees

    Science.gov (United States)

    Zhijing, Ye; Shavandi, Amin; Harrison, Roland; Bekhit, Alaa El-Din A.

    2018-01-01

    The effect of vinification techniques on phenolic compounds and antioxidant activity of wine lees are poorly understood. The present study investigated the antioxidant activity of white and red wine lees generated at early fermentation and during aging. In this study, the total phenol content (TPC), total tannin content (TTC), mean degree of polymerization (mDP), and antioxidant activities of five white and eight red wine lees samples from different vinification backgrounds were determined. The results showed that vinification techniques had a significant (p wine lees had high mDP content compared with red ones. Catechin (50–62%) and epicatechin contents were the predominant terminal units of polymeric proanthocyanidin extracted from examined samples. Epigallocatechin was the predominant extension unit of white wine lees, whereas epicatechin was the predominant compound in red wine marc. The ORAC (oxygen radical absorbance capacity) assay was strongly correlated with the DPPH (α,α-diphenyl-β-picrylhydrazyl) assay, and the results showed the strong antioxidant activities associated with red wine lees (PN > 35 mg Trolox/g FDM) (PN: Pinot noir lees; FDM: Freeze-dried Material). This study indicates that tannin is one of the major phenolic compounds available in wine lees that can be useful in human and animal health applications. PMID:29587406

  13. Self Referencing Heterodyne Transient Grating Spectroscopy with Short Wavelength

    Directory of Open Access Journals (Sweden)

    Jakob Grilj

    2015-04-01

    Full Text Available Heterodyning by a phase stable reference electric field is a well known technique to amplify weak nonlinear signals. For short wavelength, the generation of a reference field in front of the sample is challenging because of a lack of suitable beamsplitters. Here, we use a permanent grating which matches the line spacing of the transient grating for the creation of a phase stable reference field. The relative phase among the two can be changed by a relative translation of the permanent and transient gratings in direction orthogonal to the grating lines. We demonstrate the technique for a transient grating on a VO2 thin film and observe constructive as well as destructive interference signals.

  14. A cure for the blues: opsin duplication and subfunctionalization for short-wavelength sensitivity in jewel beetles (Coleoptera: Buprestidae).

    Science.gov (United States)

    Lord, Nathan P; Plimpton, Rebecca L; Sharkey, Camilla R; Suvorov, Anton; Lelito, Jonathan P; Willardson, Barry M; Bybee, Seth M

    2016-05-18

    Arthropods have received much attention as a model for studying opsin evolution in invertebrates. Yet, relatively few studies have investigated the diversity of opsin proteins that underlie spectral sensitivity of the visual pigments within the diverse beetles (Insecta: Coleoptera). Previous work has demonstrated that beetles appear to lack the short-wavelength-sensitive (SWS) opsin class that typically confers sensitivity to the "blue" region of the light spectrum. However, this is contrary to established physiological data in a number of Coleoptera. To explore potential adaptations at the molecular level that may compensate for the loss of the SWS opsin, we carried out an exploration of the opsin proteins within a group of beetles (Buprestidae) where short-wave sensitivity has been demonstrated. RNA-seq data were generated to identify opsin proteins from nine taxa comprising six buprestid species (including three male/female pairs) across four subfamilies. Structural analyses of recovered opsins were conducted and compared to opsin sequences in other insects across the main opsin classes-ultraviolet, short-wavelength, and long-wavelength. All nine buprestids were found to express two opsin copies in each of the ultraviolet and long-wavelength classes, contrary to the single copies recovered in all other molecular studies of adult beetle opsin expression. No SWS opsin class was recovered. Furthermore, the male Agrilus planipennis (emerald ash borer-EAB) expressed a third LWS opsin at low levels that is presumed to be a larval copy. Subsequent homology and structural analyses identified multiple amino acid substitutions in the UVS and LWS copies that could confer short-wavelength sensitivity. This work is the first to compare expressed opsin genes against known electrophysiological data that demonstrate multiple peak sensitivities in Coleoptera. We report the first instance of opsin duplication in adult beetles, which occurs in both the UVS and LWS opsin classes

  15. Characterization of Phenolic Compounds in Wine Lees

    Directory of Open Access Journals (Sweden)

    Ye Zhijing

    2018-03-01

    Full Text Available The effect of vinification techniques on phenolic compounds and antioxidant activity of wine lees are poorly understood. The present study investigated the antioxidant activity of white and red wine lees generated at early fermentation and during aging. In this study, the total phenol content (TPC, total tannin content (TTC, mean degree of polymerization (mDP, and antioxidant activities of five white and eight red wine lees samples from different vinification backgrounds were determined. The results showed that vinification techniques had a significant (p < 0.05 impact on total phenol and tannin content of the samples. White wine lees had high mDP content compared with red ones. Catechin (50–62% and epicatechin contents were the predominant terminal units of polymeric proanthocyanidin extracted from examined samples. Epigallocatechin was the predominant extension unit of white wine lees, whereas epicatechin was the predominant compound in red wine marc. The ORAC (oxygen radical absorbance capacity assay was strongly correlated with the DPPH (α, α-diphenyl-β-picrylhydrazyl assay, and the results showed the strong antioxidant activities associated with red wine lees (PN > 35 mg Trolox/g FDM (PN: Pinot noir lees; FDM: Freeze-dried Material. This study indicates that tannin is one of the major phenolic compounds available in wine lees that can be useful in human and animal health applications.

  16. Magnetic trapping of cold bromine atoms.

    Science.gov (United States)

    Rennick, C J; Lam, J; Doherty, W G; Softley, T P

    2014-01-17

    Magnetic trapping of bromine atoms at temperatures in the millikelvin regime is demonstrated for the first time. The atoms are produced by photodissociation of Br2 molecules in a molecular beam. The lab-frame velocity of Br atoms is controlled by the wavelength and polarization of the photodissociation laser. Careful selection of the wavelength results in one of the pair of atoms having sufficient velocity to exactly cancel that of the parent molecule, and it remains stationary in the lab frame. A trap is formed at the null point between two opposing neodymium permanent magnets. Dissociation of molecules at the field minimum results in the slowest fraction of photofragments remaining trapped. After the ballistic escape of the fastest atoms, the trapped slow atoms are lost only by elastic collisions with the chamber background gas. The measured loss rate is consistent with estimates of the total cross section for only those collisions transferring sufficient kinetic energy to overcome the trapping potential.

  17. THE YUAN-TSEH LEE ARRAY FOR MICROWAVE BACKGROUND ANISOTROPY

    International Nuclear Information System (INIS)

    Ho, Paul T. P.; Altamirano, Pablo; Chang, C.-H.; Chang, S.-H.; Chang, S.-W.; Chen, C.-C.; Chen, K.-J.; Chen, M.-T.; Han, C.-C.; Ho, West M.; Huang, Y.-D.; Hwang, Y.-J.; Ibanez-Romano, Fabiola; Jiang Homin; Koch, Patrick M.; Kubo, Derek Y.; Li, C.-T.; Lim, Jeremy; Lin, K.-Y.; Liu, G.-C.

    2009-01-01

    The Yuan-Tseh Lee Array for microwave background anisotropy is the first interferometer dedicated to study the cosmic microwave background radiation at 3 mm wavelength. The choice of 3 mm is to minimize the contributions from foreground synchrotron radiation and Galactic dust emission. The initial configuration of seven 0.6 m telescopes mounted on a 6 m hexapod platform was dedicated in 2006 October on Mauna Loa, Hawaii. Scientific operations began with the detection of a number of clusters of galaxies via the thermal Sunyaev-Zel'dovich effect. We compare our data with Subaru weak-lensing data to study the structure of dark matter. We also compare our data with X-ray data to derive the Hubble constant.

  18. Laser spectroscopy on atoms and ions using short-wavelength radiation

    International Nuclear Information System (INIS)

    Larsson, Joergen.

    1994-05-01

    Radiative properties and energy structures in atoms and ions have been investigated using UV/VUV radiation. In order to obtain radiation at short wavelengths, frequency mixing of pulsed laser radiation in crystals and gases has been performed using recently developed frequency-mixing schemes. To allow the study of radiative lifetimes shorter than the pulses from standard Q-switched lasers, different techniques have been used to obtain sufficiently short pulses. The Hanle effect has been employed following pulsed laser excitation for the same purpose. High-resolution spectroscopic techniques have been adapted for use with the broad-band, pulsed laser sources which are readily available in the UV/VUV spectral region. In order to investigate sources of radiation in the XUV and soft X-ray spectral regions, harmonic generation in rare gases has been studied. The generation of coherent radiation by the interaction between laser radiation and relativistic electrons in a synchrotron storage ring has also been investigated. 60 refs

  19. Intermittency and dynamical Lee-Yang zeros of open quantum systems.

    Science.gov (United States)

    Hickey, James M; Flindt, Christian; Garrahan, Juan P

    2014-12-01

    We use high-order cumulants to investigate the Lee-Yang zeros of generating functions of dynamical observables in open quantum systems. At long times the generating functions take on a large-deviation form with singularities of the associated cumulant generating functions-or dynamical free energies-signifying phase transitions in the ensemble of dynamical trajectories. We consider a driven three-level system as well as the dissipative Ising model. Both systems exhibit dynamical intermittency in the statistics of quantum jumps. From the short-time behavior of the dynamical Lee-Yang zeros, we identify critical values of the counting field which we attribute to the observed intermittency and dynamical phase coexistence. Furthermore, for the dissipative Ising model we construct a trajectory phase diagram and estimate the value of the transverse field where the stationary state changes from being ferromagnetic (inactive) to paramagnetic (active).

  20. On the linear programming bound for linear Lee codes.

    Science.gov (United States)

    Astola, Helena; Tabus, Ioan

    2016-01-01

    Based on an invariance-type property of the Lee-compositions of a linear Lee code, additional equality constraints can be introduced to the linear programming problem of linear Lee codes. In this paper, we formulate this property in terms of an action of the multiplicative group of the field [Formula: see text] on the set of Lee-compositions. We show some useful properties of certain sums of Lee-numbers, which are the eigenvalues of the Lee association scheme, appearing in the linear programming problem of linear Lee codes. Using the additional equality constraints, we formulate the linear programming problem of linear Lee codes in a very compact form, leading to a fast execution, which allows to efficiently compute the bounds for large parameter values of the linear codes.

  1. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources

    NARCIS (Netherlands)

    Loch, R.A.; Sobierajski, R.; Louis, Eric; Bosgra, J.; Bosgra, J.; Bijkerk, Frederik

    2012-01-01

    The single shot damage thresholds of multilayer optics for highintensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly

  2. Short-Wavelength Infrared (SWIR) spectroscopy of low-grade metamorphic volcanic rocks of the Pilbara Craton

    NARCIS (Netherlands)

    Abweny, Mohammad S.; van Ruitenbeek, Frank J A; de Smeth, Boudewijn; Woldai, Tsehaie; van der Meer, Freek D.; Cudahy, Thomas; Zegers, Tanja; Blom, Jan Kees; Thuss, Barbara

    This paper shows the results of Short-Wavelength Infrared (SWIR) spectroscopy investigations of volcanic rocks sampled from low-grade metamorphic greenstone belts of the Archean Pilbara Craton in Western Australia. From the reflectance spectra a range of spectrally active minerals were identified,

  3. Backscattering of gyrotron radiation and short-wavelength turbulence during electron cyclotron resonance plasma heating in the L-2M stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Batanov, G. M.; Borzosekov, V. D., E-mail: tinborz@gmail.com; Kovrizhnykh, L. M.; Kolik, L. V.; Konchekov, E. M.; Malakhov, D. V.; Petrov, A. E.; Sarksyan, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2013-06-15

    Backscattering of gyrotron radiation ({theta} = {pi}) by short-wavelength density fluctuations (k{sub Up-Tack} = 30 cm{sup -1}) in the plasma of the L-2M stellarator was studied under conditions of electron cyclotron resonance (ECR) plasma heating at the second harmonic of the electron gyrofrequency (75 GHz). The scattering of the O-wave emerging due to the splitting of the linearly polarized gyrotron radiation into the X- and O-waves was analyzed. The signal obtained after homodyne detection of scattered radiation is a result of interference of the reference signal, the quasi-steady component, and the fast oscillating component. The coefficients of reflection of the quasi-steady component, R{sub =}{sup 2}(Y), and fast oscillating component, R{sub {approx}}{sup 2}(Y), of scattered radiation are estimated. The growth of the R{sub {approx}}{sup 2}(Y) coefficient from 3.7 Multiplication-Sign 10{sup -4} to 5.2 Multiplication-Sign 10{sup -4} with increasing ECR heating power from 190 to 430 kW is found to correlate with the decrease in the energy lifetime from 1.9 to 1.46 ms. The relative density of short-wavelength fluctuations is estimated to be Left-Pointing-Angle-Bracket n{sub {approx}}{sup 2} Right-Pointing-Angle-Bracket / Left-Pointing-Angle-Bracket n{sub e}{sup 2} Right-Pointing-Angle-Bracket = 3 Multiplication-Sign 10{sup -7}. It is shown that the frequencies of short-wavelength fluctuations are in the range 10-150 kHz. The recorded short-wavelength fluctuations can be interpreted as structural turbulence, the energy of which comprises {approx}10% of the total fluctuations energy. Simulations of transport processes show that neoclassical heat fluxes are much smaller than anomalous ones. It is suggested that short-wavelength turbulence plays a decisive role in the anomalous heat transport.

  4. Developments in the theory of trapped particle pressure gradient driven turbulence in tokamaks and stellarators

    International Nuclear Information System (INIS)

    Diamond, P.H.; Biglari, H.; Gang, F.Y.

    1991-01-01

    Recent advances in the theory of trapped particle pressure gradient driven turbulence are summarized. A novel theory of trapped ion convective cell turbulence is presented. It is shown that non-linear transfer to small scales occurs, and that saturation levels are not unphysically large, as previously thought. As the virulent saturation mechanism of ion Compton scattering is shown to result in weak turbulence at higher frequencies, it is thus likely that trapped ion convective cells are the major agent of tokamak transport. Fluid like trapped electron modes at short wavelengths (k θ ρ i > 1) are shown to drive an inward particle pinch. The characteristics of convective cell turbulence in flat density discharges are described, as is the stability of dissipative trapped electron modes in stellarators, with flexible magnetic field structure. The role of cross-correlations in the dynamics of multifield models of drift wave turbulence is discussed. (author). 32 refs, 8 figs, 1 tab

  5. Tunable potential well for plasmonic trapping of metallic particles by bowtie nano-apertures.

    Science.gov (United States)

    Lu, Yu; Du, Guangqing; Chen, Feng; Yang, Qing; Bian, Hao; Yong, Jiale; Hou, Xun

    2016-09-26

    In this paper, the tunable optical trapping dependence on wavelength of incident beam is theoretically investigated based on numerical simulations. The Monte Carlo method is taken into account for exploring the trapping characteristics such as average deviation and number distribution histogram of nanoparticles. It is revealed that both the width and the depth of potential well for trapping particles can be flexibly adjusted by tuning the wavelength of the incident beam. In addition, incident wavelengths for the deepest potential well and for the strongest stiffness at bottom are separated. These phenomena are explained as the strong plasmon coupling between tweezers and metallic nanoparticles. In addition, required trapping fluence and particles' distributions show distinctive properties through carefully modifying the incident wavelengths from 1280 nm to 1300 nm. Trapping with lowest laser fluence can be realized with 1280 nm laser and trapping with highest precision can be realized with 1300 nm laser. This work will provide theoretical support for advancing the manipulation of metallic particles and related applications such as single-molecule fluorescence and surface enhanced Raman spectroscopy.

  6. Nonlinear-optical generation of short-wavelength radiation controlled by laser-induced interference structures

    International Nuclear Information System (INIS)

    Popov, A K; Kimberg, V V

    1998-01-01

    A study is reported of the combined influence of laser-induced resonances in the energy continuum, of splitting of discrete resonances in the field of several strong radiations, and of absorption of the initial and generated radiations on totally resonant parametric conversion to the short-wavelength range. It is shown that the radiation power can be increased considerably by interference processes involving quantum transitions. (nonlinear optical phenomena and devices)

  7. Tim Berners-Lee during the WSIS

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Tim Berners-Lee stands in front of the first web server at the Geneva Palexpo during the World Summit on the Information Society (WSIS) in 2003. Tim Berners-Lee developed the first network and server system that lead to the World Wide Web.

  8. Paths to light trapping in thin film GaAs solar cells.

    Science.gov (United States)

    Xiao, Jianling; Fang, Hanlin; Su, Rongbin; Li, Kezheng; Song, Jindong; Krauss, Thomas F; Li, Juntao; Martins, Emiliano R

    2018-03-19

    It is now well established that light trapping is an essential element of thin film solar cell design. Numerous light trapping geometries have already been applied to thin film cells, especially to silicon-based devices. Less attention has been paid to light trapping in GaAs thin film cells, mainly because light trapping is considered less attractive due to the material's direct bandgap and the fact that GaAs suffers from strong surface recombination, which particularly affects etched nanostructures. Here, we study light trapping structures that are implemented in a high-bandgap material on the back of the GaAs active layer, thereby not perturbing the integrity of the GaAs active layer. We study photonic crystal and quasi-random nanostructures both by simulation and by experiment and find that the photonic crystal structures are superior because they exhibit fewer but stronger resonances that are better matched to the narrow wavelength range where GaAs benefits from light trapping. In fact, we show that a 1500 nm thick cell with photonic crystals achieves the same short circuit current as an unpatterned 4000 nm thick cell. These findings are significant because they afford a sizeable reduction in active layer thickness, and therefore a reduction in expensive epitaxial growth time and cost, yet without compromising performance.

  9. 76 FR 30947 - Stephen Lee Seldon: Debarment Order

    Science.gov (United States)

    2011-05-27

    ...] Stephen Lee Seldon: Debarment Order AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY... Act (the FD&C Act) permanently debarring Stephen Lee Seldon, M.D. from providing services in any... authority delegated to the Director (Staff Manual Guide 1410.35), finds that Stephen Lee Seldon has been...

  10. Evidence for nonuniversal behavior of paraconductivity caused by predominant short-wavelength Gaussian fluctuations in YBa2Cu3O6.9

    International Nuclear Information System (INIS)

    Gauzzi, A.; Pavuna, D.

    1995-01-01

    We report on in-plane paraconductivity measurements in thin YBa 2 Cu 3 O 6.9 films. Our analysis of the data shows that the temperature dependence of paraconductivity is affected by lattice disorder and deviates at all temperatures from the universal power laws predicted by both scaling and mean-field theories. This gives evidence for the absence of critical fluctuations and for the failure of the Aslamazov-Larkin universal relation between critical exponent and dimensionality of the spectrum of Gaussian fluctuations. We account quantitatively for the data within the experimental error by introducing a short-wavelength cutoff into this spectrum. This implies that three-dimensional short-wavelength Gaussian fluctuations dominate in YBa 2 Cu 3 O 6.9 and suggests a rapid attenuation of these fluctuations with decreasing wavelength in short-coherence-length systems as compared to the case of the conventional Ginzburg-Landau theory

  11. Interactions between yeast lees and wine polyphenols during simulation of wine aging. II. Analysis of desorbed polyphenol compounds from yeast lees.

    Science.gov (United States)

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2006-05-31

    In the first part of this work, the analysis of the polyphenolic compounds remaining in the wine after different contact times with yeast lees during simulation of red wine aging was undertaken. To achieve a more precise view of the wine polyphenols adsorbed on lees during red wine aging and to establish a clear balance between adsorbed and remnant polyphenol compounds, the specific analysis of the chemical composition of the adsorbed polyphenolic compounds (condensed tannins and anthocyanins) after their partial desorbtion from yeast lees by denaturation treatments was realized in the second part of the study. The total recovery of polyphenol compounds from yeast lees was not complete, since a rather important part of the initial wine colored polyphenols, especially those with a dominant blue color component, remained strongly adsorbed on yeast lees, as monitored by color tristimulus and reflectance spectra measurements. All anthocyanins were recovered at a rather high percentage (about 62%), and it was demonstrated that they were not adsorbed in relation with their sole polarity. Very few monomeric phenolic compounds were extracted from yeast lees. With the use of drastic denaturing treatments, the total recovery of condensed tannins reached 83%. Such tannins extracted from yeast lees exhibited very high polymeric size and a rather high percentage of galloylated residues by comparison with initial wine tannins, indicating that nonpolar tannins were preferentially desorbed from yeast lees by the extraction treatments.

  12. Fabrication and optical characterization of light trapping silicon nanopore and nanoscrew devices

    International Nuclear Information System (INIS)

    Jin, Hyunjong; Logan Liu, G

    2012-01-01

    We have fabricated nanotextured Si substrates that exhibit controllable optical reflection intensities and colors. Si nanopore has a photon trapping nanostructure but has abrupt changes in the index of refraction displaying a darkened specular reflection. Nanoscrew Si shows graded refractive-index photon trapping structures that enable diffuse reflection to be as low as 2.2% over the visible wavelengths. By tuning the 3D nanoscale silicon structure, the optical reflection peak wavelength and intensity are changed in the wavelength range of 300–800 nm, making the surface have different reflectivity and apparent colors. The relation between the surface optical properties with the spatial features of the photon trapping nanostructures is examined. Integration of photon trapping structures with planar Si structure on the same substrate is also demonstrated. The tunable photon trapping silicon structures have potential applications in enhancing the performance of semiconductor photoelectric devices. (paper)

  13. The opto-cryo-mechanical design of the short wavelength camera for the CCAT Observatory

    Science.gov (United States)

    Parshley, Stephen C.; Adams, Joseph; Nikola, Thomas; Stacey, Gordon J.

    2014-07-01

    The CCAT observatory is a 25-m class Gregorian telescope designed for submillimeter observations that will be deployed at Cerro Chajnantor (~5600 m) in the high Atacama Desert region of Chile. The Short Wavelength Camera (SWCam) for CCAT is an integral part of the observatory, enabling the study of star formation at high and low redshifts. SWCam will be a facility instrument, available at first light and operating in the telluric windows at wavelengths of 350, 450, and 850 μm. In order to trace the large curvature of the CCAT focal plane, and to suit the available instrument space, SWCam is divided into seven sub-cameras, each configured to a particular telluric window. A fully refractive optical design in each sub-camera will produce diffraction-limited images. The material of choice for the optical elements is silicon, due to its excellent transmission in the submillimeter and its high index of refraction, enabling thin lenses of a given power. The cryostat's vacuum windows double as the sub-cameras' field lenses and are ~30 cm in diameter. The other lenses are mounted at 4 K. The sub-cameras will share a single cryostat providing thermal intercepts at 80, 15, 4, 1 and 0.1 K, with cooling provided by pulse tube cryocoolers and a dilution refrigerator. The use of the intermediate temperature stage at 15 K minimizes the load at 4 K and reduces operating costs. We discuss our design requirements, specifications, key elements and expected performance of the optical, thermal and mechanical design for the short wavelength camera for CCAT.

  14. Higher-derivative Lee-Wick unification

    International Nuclear Information System (INIS)

    Carone, Christopher D.

    2009-01-01

    We consider gauge coupling unification in Lee-Wick extensions of the Standard Model that include higher-derivative quadratic terms beyond the minimally required set. We determine how the beta functions are modified when some Standard Model particles have two Lee-Wick partners. We show that gauge coupling unification can be achieved in such models without requiring the introduction of additional fields in the higher-derivative theory and we comment on possible ultraviolet completions.

  15. Gamma-ray detection with an UV-enhanced photodiode and scintillation crystals emitting at short wavelengths

    International Nuclear Information System (INIS)

    Johansen, G.A.

    1997-01-01

    A low-noise ion implanted photodiode with high spectral response in the deep blue/UV region has been tested as read-out device for scintillation crystals with matching emission spectra (YAP(Ce), GSO(Ce), BGO and CsI(Tl)). This gamma-ray detector concept is attractive in many industrial applications where compactness, reliability and ambient temperature operation are important. The results show that the amount of detected scintillation light energy falls rapidly off as the wavelength of the scintillation light decreases. It is concluded that the dynamic spectral response of the photodiode, due to increasing carrier collection times, is considerably less than the DC response at short wavelengths. The diode is not useful in pulse mode operation with scintillation crystals emitting at wavelengths below about 400 nm. For read-out of CsI(Tl) with 661.6 keV gamma-radiation, however, the photodiode concept shows better energy resolution (7.1%) than other detectors. (orig.)

  16. Constraints on the Lee-Wick Higgs sector

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Primulando, Reinard

    2009-01-01

    Lee-Wick partners to the standard model Higgs doublet may appear at a mass scale that is significantly lower than that of the remaining Lee-Wick partner states. The relevant effective theory is a two-Higgs doublet model in which one doublet has wrong-sign kinetic and mass terms. We determine bounds on this effective theory, including those from neutral B-meson mixing, b→X s γ, and Z→bb. The results differ from those of conventional two-Higgs doublet models and lead to meaningful constraints on the Lee-Wick Higgs sector.

  17. Hot-plasma decoupling condition for long-wavelength modes

    International Nuclear Information System (INIS)

    Berk, H.L.; Van Dam, J.W.; Spong, D.

    1982-10-01

    The stability of layer modes is analyzed for z-pinch and bumpy cylinder models. These modes are long wavelength across the layer and flute-like along the field line. The stability condition can be expressed in terms of the ratio of hot to core plasma density. It is shown that to achieve conditions close to the Nelson, Lee-Van Dam core beta limit, one needs a considerably smaller hot to core plasma density than is required to achieve stability at zero core beta

  18. The Earl Lee Street Art Campaign

    Science.gov (United States)

    Bubba

    2013-01-01

    This article describes a catchy phrase with more to its meaning than first view. A slogan "All the girls love Earl Lee," appears in street art around the world. Earl Lee is a lovable, handsome man who owns the fictitious Earl Lube industries. Originally intended to bring a smile to people's faces at a time when there wasn't much to smile…

  19. Tim Berners-Lee receives the Millennium Technology Prize

    CERN Multimedia

    2004-01-01

    On 15 April, for his invention of the Web, Tim Berners-Lee was awarded the first ever Millennium Technology Prize by the Finnish Technology Award Foundation, which recognises technological innovations of lasting benefit to society. "Tim Berners-Lee's invention perfectly encapsulates the spirit of the Prize. The Web is encouraging new types of social networks, contributing to transparency and democracy, and opening up new avenues for information management and business development," underlined Pekka Tarjanne, chairman of the jury and former Secretary-General of the International Telecommunication Union (ITU). Tim Berners-Lee is congratulated by Jukka Valtasaari, Finland's Ambassador to the United States. Tim Berners-Lee created the first server, browser and editor, the HTML code, the URL address and the HTTP transmission protocol at CERN in 1990. CERN released the Web into the public domain in 1993. Tim Berners-Lee is currently head of the World Wide Web Consortium, managed by ERCIM (Europe...

  20. Looking for Asian butch-dykes: exploring filmic representations of East Asian butch-dykes in Donna Lee's Enter the Mullet.

    Science.gov (United States)

    Lin, Hui-Ling

    2009-01-01

    Asian butch-dykes have been overlooked in analyses of Chinese cinema, studies that often concentrate on "feminized" transgender roles. This article examines cinematic representations of Asian butch-dykes through film analysis of Enter the Mullet (2004), a five-minute short, and in-depth interviews with the filmmaker, Donna Lee, a Chinese-Canadian in Vancouver. Lee's film is inspired by Enter the Dragon (1973), starring Bruce Lee, the most recognized icon of Asian masculinity. Combining with the mullet hairstyle, which is often associated with White working-class, the filmmaker introduces viewers to the hybrid masculinity of Asian butch-dykes. The article argues that Asian female masculinity can be a strategic means of destabilizing the hegemony of White-male-middle-class masculinity.

  1. Beam dynamics simulations for linacs driving short-wavelength FELs

    International Nuclear Information System (INIS)

    Ferrario, M.; Tazzioli, F.

    1999-01-01

    The fast code HOMDYN has been recently developed, in the framework of the TTF (Tesla test facility) collaboration, in order to study the beam dynamics of linacs delivering high brightness beams as those needed for short wavelength Fel experiments. These linacs are typically driven by radio-frequency photo-injectors, where correlated time dependent space charge effects are of great relevance: these effects cannot be studied by standard beam optics codes (TRACE3D, etc.) and they have been modeled so far by means of multi-particle (Pic or quasistatic) codes requiring heavy cpu time and memory allocations. HOMDYN is able to describe the beam generation at the photo-cathode and the emittance compensation process in the injector even running on a laptop with very modest running rimes (less than a minute). In this paper it is showed how this capability of the code is exploited so to model a whole linac up to the point where the space charge dominated regime is of relevance (200 MeV)

  2. Cavity QED with single trapped Ca+-ions

    International Nuclear Information System (INIS)

    Mundt, A.B.

    2003-02-01

    This thesis reports on the design and setup of a vacuum apparatus allowing the investigation of cavity QED effects with single trapped 40 Ca + ions. The weak coupling of ion and cavity in the 'bad cavity limit' may serve to inter--convert stationary and flying qubits. The ion is confined in a miniaturized Paul trap and cooled via the Doppler effect to the Lamb--Dicke regime. The extent of the atomic wave function is less than 30 nm. The ion is enclosed by a high finesse optical cavity. The technically--involved apparatus allows movement of the trap relative to the cavity and the trapped ion can be placed at any position in the standing wave. By means of a transfer lock the cavity can be resonantly stabilized with the S 1/2 ↔ D 5/2 quadrupole transition at 729 nm (suitable as a qubit) without light at that wavelength being present in the cavity. The coupling of the cavity field to the S 1/2 ↔ D 5/2 quadrupole transition is investigated with various techniques in order to determine the spatial dependence as well as the temporal dynamics. The orthogonal coupling of carrier and first--order sideband transitions at field nodes and antinodes is explored. The coherent interaction of the ion and the cavity field is confirmed by exciting Rabi oscillations with short resonant pulses injected into the cavity. Finally, first experimental steps towards the observation of cavity enhanced spontaneous emission have been taken. (author)

  3. Origin of the waves in ‘A case-study of mesoscale spectra of wind and temperature, observed and simulated’: Lee waves from the Norwegian mountains

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Larsen, Søren Ejling; Hahmann, Andrea N.

    2012-01-01

    their initiation and ending, propagation, spatial orientation and wavelength, are consistent among the different data sources. This evidence and the key wave parameters derived from the WRF simulation, including the Scorer parameter and wave tilt, all suggest that the waves are lee waves generated by uplift from...

  4. Nanometer-scale optical traps using atomic state localization

    International Nuclear Information System (INIS)

    Yavuz, D. D.; Proite, N. A.; Green, J. T.

    2009-01-01

    We suggest a scheme where a laser beam forms an optical trap with a spatial size that is much smaller than the wavelength of light. The key idea is to combine a far-off-resonant dipole trap with a scheme that localizes an atomic excitation.

  5. Short wavelength light filtering by the natural human lens and IOLs -- implications for entrainment of circadian rhythm

    DEFF Research Database (Denmark)

    Brøndsted, Adam Elias; Lundeman, Jesper Holm; Kessel, Line

    2013-01-01

    Photoentrainment of circadian rhythm begins with the stimulation of melanopsin containing retinal ganglion cells that respond directly to blue light. With age, the human lens becomes a strong colour filter attenuating transmission of short wavelengths. The purpose of the study was to examine the ...

  6. A comparison of commercial light-emitting diode baited suction traps for surveillance of Culicoides in northern Europe.

    Science.gov (United States)

    Hope, Andrew; Gubbins, Simon; Sanders, Christopher; Denison, Eric; Barber, James; Stubbins, Francesca; Baylis, Matthew; Carpenter, Simon

    2015-04-22

    The response of Culicoides biting midges (Diptera: Ceratopogonidae) to artificial light sources has led to the use of light-suction traps in surveillance programmes. Recent integration of light emitting diodes (LED) in traps improves flexibility in trapping through reduced power requirements and also allows the wavelength of light used for trapping to be customized. This study investigates the responses of Culicoides to LED light-suction traps emitting different wavelengths of light to make recommendations for use in surveillance. The abundance and diversity of Culicoides collected using commercially available traps fitted with Light Emitting Diode (LED) platforms emitting ultraviolet (UV) (390 nm wavelength), blue (430 nm), green (570 nm), yellow (590 nm), red (660 nm) or white light (425 nm - 750 nm with peaks at 450 nm and 580 nm) were compared. A Centre for Disease Control (CDC) UV light-suction trap was also included within the experimental design which was fitted with a 4 watt UV tube (320-420 nm). Generalised linear models with negative binomial error structure and log-link function were used to compare trap abundance according to LED colour, meteorological conditions and seasonality. The experiment was conducted over 49 nights with 42,766 Culicoides caught in 329 collections. Culicoides obsoletus Meigen and Culicoides scoticus Downes and Kettle responded indiscriminately to all wavelengths of LED used with the exception of red which was significantly less attractive. In contrast, Culicoides dewulfi Goetghebuer and Culicoides pulicaris Linnaeus were found in significantly greater numbers in the green LED trap than in the UV LED trap. The LED traps collected significantly fewer Culicoides than the standard CDC UV light-suction trap. Catches of Culicoides were reduced in LED traps when compared to the standard CDC UV trap, however, their reduced power requirement and small size fulfils a requirement for trapping in logistically challenging areas or where many

  7. Radiation bounce from the Lee-Wick construction?

    International Nuclear Information System (INIS)

    Karouby, Johanna; Brandenberger, Robert

    2010-01-01

    It was recently realized that matter modeled by the scalar field sector of the Lee-Wick standard model yields, in the context of a homogeneous and isotropic cosmological background, a bouncing cosmology. However, bouncing cosmologies induced by pressureless matter are in general unstable to the addition of relativistic matter (i.e. radiation). Here we study the possibility of obtaining a bouncing cosmology if we add not only radiation, but also its Lee-Wick partner, to the matter sector. We find that, in general, no bounce occurs. The only way to obtain a bounce is to choose initial conditions with very special phases of the radiation field and its Lee-Wick partner.

  8. Spectroscopy with trapped highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, Peter

    2009-01-01

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed; and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  9. Web Inventor Berners-Lee starts a Blog

    CERN Multimedia

    Olson, Parmy

    2005-01-01

    Berners-Lee created what is known today as the World Wide Web. Now, just in time for the Web's 15th anniversary and after taking his proverbial stroll around the global dwelling of cyberspace, Berners-Lee is chatting with the rest of us about what he thinks with a blog

  10. Integral equation based stability analysis of short wavelength drift modes in tokamaks

    International Nuclear Information System (INIS)

    Hirose, A.; Elia, M.

    2003-01-01

    Linear stability of electron skin-size drift modes in collisionless tokamak discharges has been investigated in terms of electromagnetic, kinetic integral equations in which neither ions nor electrons are assumed to be adiabatic. A slab-like ion temperature gradient mode persists in such a short wavelength regime. However, toroidicity has a strong stabilizing influence on this mode. In the electron branch, the toroidicity induced skin-size drift mode previously predicted in terms of local kinetic analysis has been recovered. The mode is driven by positive magnetic shear and strongly stabilized for negative shear. The corresponding mixing length anomalous thermal diffusivity exhibits favourable isotope dependence. (author)

  11. Numerical Simulation of a Lee Wave Case over Three-Dimensional Mountainous Terrain under Strong Wind Condition

    Directory of Open Access Journals (Sweden)

    Lei Li

    2013-01-01

    Full Text Available This study of a lee wave event over three-dimensional (3D mountainous terrain in Lantau Island, Hong Kong, using a simulation combining mesoscale model and computational fluid dynamics (CFD model has shown that (1 3D steep mountainous terrain can trigger small scale lee waves under strong wind condition, and the horizontal extent of the wave structure is in a dimension of few kilometers and corresponds to the dimension of the horizontal cross-section of the mountain; (2 the life cycle of the lee wave is short, and the wave structures will continuously form roughly in the same location, then gradually move downstream, and dissipate over time; (3 the lee wave triggered by the mountainous terrain in this case can be categorized into “nonsymmetric vortex shedding” or “turbulent wake,” as defined before based on water tank experiments; (4 the magnitude of the wave is related to strength of wind shear. This study also shows that a simulation combining mesoscale model and CFD can capture complex wave structure in the boundary layer over realistic 3D steep terrain, and have a potential value for operational jobs on air traffic warning, wind energy utilization, and atmospheric environmental assessment.

  12. Ultra-high accuracy optical testing: creating diffraction-limited short-wavelength optical systems

    International Nuclear Information System (INIS)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman, Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli, Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-01-01

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-(angstrom) and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date

  13. Photonic crystal fibre enables short-wavelength two-photon laser scanning fluorescence microscopy with fura-2

    International Nuclear Information System (INIS)

    McConnell, Gail; Riis, Erling

    2004-01-01

    We report on a novel and compact reliable laser source capable of short-wavelength two-photon laser scanning fluorescence microscopy based on soliton self-frequency shift effects in photonic crystal fibre. We demonstrate the function of the system by performing two-photon microscopy of smooth muscle cells and cardiac myocytes from the rat pulmonary vein and Chinese hamster ovary cells loaded with the fluorescent calcium indicator fura-2/AM

  14. Complete synchronization of two Chen-Lee systems

    International Nuclear Information System (INIS)

    Sheu, L-J; Chen, J-H; Chen, H-K; Tam, L-M; Lao, S-K; Chen, W-C; Lin, K-T

    2008-01-01

    This study demonstrates that complete synchronization of two Chen-Lee chaotic systems can be easily achieved. The upper bound of the Chen-Lee chaotic system is estimated numerically. A controller is designed to synchronize two chaotic systems. Sufficient conditions for synchronization are obtained using Lyapunov's direct method. Two numerical examples are presented to verify the proposed synchronization approach

  15. Rainbow trapping in one-dimensional chirped photonic crystals composed of alternating dielectric slabs

    International Nuclear Information System (INIS)

    Shen, Yun; Fu, Jiwu; Yu, Guoping

    2011-01-01

    Highlights: → A simple one-dimensional chirped photonic crystal is proposed to realize rainbow trapping. → The results show different wavelengths can be trapped at different spatial positions. → The structure can be used for optical buffer, memories and filter, sorter, etc. -- Abstract: One-dimensional chirped photonic crystals composed of alternating dielectric slabs are proposed to realize rainbow trapping. We theoretically and numerically demonstrate that not only significantly reduced group velocity can be achieved in the proposed chirped structures, but different wavelengths can be localized in different spatial positions, indicating trapped rainbow. Our results imply a feasible way to slow or even trap light in simple systems, which can be used for optical buffer, memory, data processor and filter, sorter, etc.

  16. One-loop renormalization of Lee-Wick gauge theory

    International Nuclear Information System (INIS)

    Grinstein, Benjamin; O'Connell, Donal

    2008-01-01

    We examine the renormalization of Lee-Wick gauge theory to one-loop order. We show that only knowledge of the wave function renormalization is necessary to determine the running couplings, anomalous dimensions, and vector boson masses. In particular, the logarithmic running of the Lee-Wick vector boson mass is exactly related to the running of the coupling. In the case of an asymptotically free theory, the vector boson mass runs to infinity in the ultraviolet. Thus, the UV fixed point of the pure gauge theory is an ordinary quantum field theory. We find that the coupling runs more quickly in Lee-Wick gauge theory than in ordinary gauge theory, so the Lee-Wick standard model does not naturally unify at any scale. Finally, we present results on the beta function of more general theories containing dimension six operators which differ from previous results in the literature.

  17. Emitted short wavelength infrared radiation for detection and monitoring of volcanic activity

    Science.gov (United States)

    Rothery, D. A.; Francis, P. W.; Wood, C. A.

    1988-01-01

    Thematic Mapper images from LANDSAT were used to monitor volcanoes. Achievements include: (1) the discovery of a magmatic precursor to the 16 Sept. 1986 eruption of Lascar, northern Chile, on images from Mar. and July 1985 and of continuing fumarolic activity after the eruption; (2) the detection of unreported major changes in the distribution of lava lakes on Erta'Ale, Ethiopia; and (3) the mapping of a halo of still-hot spatter surrounding a vent on Mount Erebus, Antarctica, on an image acquired 5 min after a minor eruption otherwise known only from seismic records. A spaceborne short wavelength infrared sensor for observing hot phenomena of volcanoes is proposed. A polar orbit is suggested.

  18. Short-wavelength ablation of polymers in the high-fluence regime

    International Nuclear Information System (INIS)

    Liberatore, Chiara; Juha, Libor; Vyšín, Ludek; Endo, Akira; Mocek, Tomas; Mann, Klaus; Müller, Matthias; Pina, Ladislav; Rocca, Jorge J

    2014-01-01

    Short-wavelength ablation of poly(1,4-phenylene ether-ether-sulfone) (PPEES) and poly(methyl methacrylate) (PMMA) was investigated using extreme ultraviolet (XUV) and soft x-ray (SXR) radiation from plasma-based sources. The initial experiment was performed with a 10 Hz desktop capillary-discharge XUV laser lasing at 46.9 nm. The XUV laser beam was focused onto the sample by a spherical mirror coated with a Si/Sc multilayer. The same materials were irradiated with 13.5 nm radiation emitted by plasmas produced by focusing an optical laser beam onto a xenon gas-puff target. A Schwarzschild focusing optics coated with a Mo/Si multilayer was installed at the source to achieve energy densities exceeding 0.1 J cm −2 in the tight focus. The existing experimental system at the Laser Laboratorium Göttingen was upgraded by implementing a 1.2 J driving laser. An increase of the SXR fluence was secured by improving the alignment technique. (paper)

  19. Wavelength-stepped, actively mode-locked fiber laser based on wavelength-division-multiplexed optical delay lines

    Science.gov (United States)

    Lee, Eunjoo; Kim, Byoung Yoon

    2017-12-01

    We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.

  20. Wrong vertex displacements due to Lee-Wick resonances at LHC

    International Nuclear Information System (INIS)

    Alvarez, E.; Schat, C.; Rold, L. da; Szynkman, A.

    2009-01-01

    We show how a resonance from the recently proposed Lee-Wick Standard Model could lead to wrong vertex displacements at LHCb. We study which could be the possible 'longest lived' Lee-Wick particle that could be created at LHC, and we study its possible decays and detections. We conclude that there is a region in the parameter space which would give wrong vertex displacements as a unique signature of the Lee-Wick Standard Model at LHCb. Further numerical simulation shows that LHC era could explore these wrong vertex displacements through Lee-Wick leptons below 500 GeV. (author)

  1. Trap assisted space charge conduction in p-NiO/n-ZnO heterojunction diode

    International Nuclear Information System (INIS)

    Tyagi, Manisha; Tomar, Monika; Gupta, Vinay

    2015-01-01

    Highlights: • p-NiO/n-ZnO heterojunction diode with enhanced junction parameters has been prepared. • Temperature dependent I–V throw insight into the involved conduction mechanism. • SCLC with exponential trap distribution was found to be the dominant mechanism. • C–V measurement at different frequencies support the presence of traps. - Abstract: The development of short-wavelength p–n junction is essentially important for the realization of transparent electronics for next-generation optoelectronic devices. In the present work, a p–n heterojunction diode based on p-NiO/n-ZnO has been prepared under the optimised growth conditions exhibiting improved electrical and junction parameters. The fabricated heterojunction gives typical current–voltage (I–V) characteristics with good rectifying behaviour (rectification ratio ≈ 10 4 at 2 V). The temperature dependent current–voltage characteristics of heterojunction diode have been studied and origin of conduction mechanism is identified. The space-charge limited conduction with exponential trap distribution having deep level trap is found to be the dominant conduction mechanism in the fabricated p–n heterojunction diode. The conduction and valence band discontinuities for NiO/ZnO heterostructure have been determined from the capacitance–voltage (C–V) measurements

  2. Trapping radioactive ions

    CERN Document Server

    Kluge, Heinz-Jürgen

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  3. Trapping radioactive ions

    International Nuclear Information System (INIS)

    Kluge, H.-J.; Blaum, K.

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning

  4. Cooperatively enhanced dipole forces from artificial atoms in trapped nanodiamonds

    Science.gov (United States)

    Juan, Mathieu L.; Bradac, Carlo; Besga, Benjamin; Johnsson, Mattias; Brennen, Gavin; Molina-Terriza, Gabriel; Volz, Thomas

    2017-03-01

    Optical trapping is a powerful tool to manipulate small particles, from micrometre-size beads in liquid environments to single atoms in vacuum. The trapping mechanism relies on the interaction between a dipole and the electric field of laser light. In atom trapping, the dominant contribution to the associated force typically comes from the allowed optical transition closest to the laser wavelength, whereas for mesoscopic particles it is given by the polarizability of the bulk material. Here, we show that for nanoscale diamond crystals containing a large number of artificial atoms, nitrogen-vacancy colour centres, the contributions from both the nanodiamond and the colour centres to the optical trapping strength can be simultaneously observed in a noisy liquid environment. For wavelengths around the zero-phonon line transition of the colour centres, we observe a 10% increase of overall trapping strength. The magnitude of this effect suggests that due to the large density of centres, cooperative effects between the artificial atoms contribute to the observed modification of the trapping strength. Our approach may enable the study of cooperativity in nanoscale solid-state systems and the use of atomic physics techniques in the field of nano-manipulation.

  5. Retrospective: Ivy Lee and the German Dye Trust.

    Science.gov (United States)

    Hainsworth, Brad E.

    1987-01-01

    Examines the relationship between public relations trailblazer Ivy Lee and the German Dye Trust, which became an agent for the policies of Adolf Hitler. Discusses how Lee's efforts to use this relationship to persuade his contacts to influence the Nazi leadership failed because of his formal connection with this group. (JD)

  6. Temperature distribution and heat radiation of patterned surfaces at short wavelengths

    Science.gov (United States)

    Emig, Thorsten

    2017-05-01

    We analyze the equilibrium spatial distribution of surface temperatures of patterned surfaces. The surface is exposed to a constant external heat flux and has a fixed internal temperature that is coupled to the outside heat fluxes by finite heat conductivity across the surface. It is assumed that the temperatures are sufficiently high so that the thermal wavelength (a few microns at room temperature) is short compared to all geometric length scales of the surface patterns. Hence the radiosity method can be employed. A recursive multiple scattering method is developed that enables rapid convergence to equilibrium temperatures. While the temperature distributions show distinct dependence on the detailed surface shapes (cuboids and cylinder are studied), we demonstrate robust universal relations between the mean and the standard deviation of the temperature distributions and quantities that characterize overall geometric features of the surface shape.

  7. Observation of trapped-electron-mode microturbulence in reversed field pinch plasmas

    Science.gov (United States)

    Duff, J. R.; Williams, Z. R.; Brower, D. L.; Chapman, B. E.; Ding, W. X.; Pueschel, M. J.; Sarff, J. S.; Terry, P. W.

    2018-01-01

    Density fluctuations in the large-density-gradient region of improved confinement Madison Symmetric Torus reversed field pinch (RFP) plasmas exhibit multiple features that are characteristic of the trapped-electron mode (TEM). Core transport in conventional RFP plasmas is governed by magnetic stochasticity stemming from multiple long-wavelength tearing modes. Using inductive current profile control, these tearing modes are reduced, and global confinement is increased to that expected for comparable tokamak plasmas. Under these conditions, new short-wavelength fluctuations distinct from global tearing modes appear in the spectrum at a frequency of f ˜ 50 kHz, which have normalized perpendicular wavenumbers k⊥ρs≲ 0.2 and propagate in the electron diamagnetic drift direction. They exhibit a critical-gradient threshold, and the fluctuation amplitude increases with the local electron density gradient. These characteristics are consistent with predictions from gyrokinetic analysis using the Gene code, including increased TEM turbulence and transport from the interaction of remnant tearing magnetic fluctuations and zonal flow.

  8. Molecular Dynamics Simulations of Collisional Cooling and Ordering of Multiply Charged Ions in a Penning Trap

    International Nuclear Information System (INIS)

    Holder, J.P.; Church, D.A.; Gruber, L.; DeWitt, H.E.; Beck, B.R.; Schneider, D.

    2000-01-01

    Molecular dynamics simulations are used to help design new experiments by modeling the cooling of small numbers of trapped multiply charged ions by Coulomb interactions with laser-cooled Be + ions. A Verlet algorithm is used to integrate the equations of motion of two species of point ions interacting in an ideal Penning trap. We use a time step short enough to follow the cyclotron motion of the ions. Axial and radial temperatures for each species are saved periodically. Direct heating and cooling of each species in the simulation can be performed by periodically rescaling velocities. Of interest are Fe 11+ due to a EUV-optical double resonance for imaging and manipulating the ions, and Ca 14+ since a ground state fine structure transition has a convenient wavelength in the tunable laser range

  9. Trapped-ion anomalous diffusion coefficient on the basis of single mode saturation

    International Nuclear Information System (INIS)

    Koshi, Yuji; Hatayama, Akiyoshi; Ogasawara, Masatada.

    1982-03-01

    Expressions of the anomalous diffusion coefficient due to the dissipative trapped ion instability (DTII) are derived for the case with and without the effect of magnetic shear. Derivation is made by taking into account of the single mode saturation of the DTII previously obtained numerically. In the absence of the shear effect, the diffusion coefficient is proportional to #betta#sub(i)a 2 (#betta#sub(i) is the effective collision frequency of the trapped ions and a is the minor radius of a torus) and is much larger than the neoclassical ion heat conductivity. In the presence of the shear effect, the diffusion coefficient is much smaller than the Kadomtsev and Pogutse's value and is the same order of magnitude as the neoclassical ion heat conductivity. Dependences of the diffusion coefficient on the temperature and on the total particle number density are rather complicated due to the additional spectral cut-off, which is introduced to regularize the short wavelength modes in the numerical analysis. (author)

  10. Theory of modulational interaction of trapped ion convective cells and drift wave turbulence

    International Nuclear Information System (INIS)

    Shapiro, V.D.; Diamond, P.H.; Lebedev, V.; Soloviev, G.; Shevchenko, V.

    1993-01-01

    Theoretical and computational studies of the modulational interaction between trapped ion convective cells and short wavelength drift wave turbulence are discussed. These studies are motivated by the fact that cells and drift waves are expected to coexist in tokamaks so that: (a) cells strain and modulate drift waves, and (b) drift waves open-quote ride on close-quote a background of cells. The results of the authors' investigation indicate that: (1) (nonlinear) parametric growth rates of trapped ion convective cells can exceed linear predictions (for drift wave levels at the mixing length limit); (2) a set of coupled envelope equations, akin to the Zakharov equations from Langmuir turbulence, can be derived and used to predict the formation of a dipole pair of convective cells trapped by the drift wave envelope. This dipole pair is strongly anisotropic, due to the structure of the drift wave Reynolds stress which drives the cell flow. Numerical solutions of the envelope equations are in good agreement with theoretical predictions, and indicate the persistence of the structure in time; (3) strong modulation and trapping of drift waves with k perpendicular ρ > 1 occurs. Extensions to magnetically sheared systems and the broader implications of this work as a paradigm for the dynamics of persistent structures in shearing flows are discussed

  11. Laser spectroscopy of the products of photoevaporation with a short-wavelength (λ = 193 nm) excimer laser

    International Nuclear Information System (INIS)

    Gochelashvili, K S; Zemskov, M E; Evdokimova, O N; Mikhkel'soo, V T; Prokhorov, A M

    1999-01-01

    An excimer laser spectrometer was designed and constructed. It consists of a high-vacuum interaction chamber, a short-wavelength (λ = 193 nm) excimer ArF laser used for evaporation, a probe dye laser pumped by an XeCl excimer laser, and a system for recording a laser-induced fluorescence signal. This spectrometer was used to investigate nonthermal mechanisms of photoevaporation of a number of wide-gap dielectrics. (laser applications and other topics in quantum electronics)

  12. Ultrafast terawatt laser sources for high-field particle acceleration and short wavelength generation

    International Nuclear Information System (INIS)

    Downer, M.C.

    1996-01-01

    The Laser Sources working group concerned itself with recent advances in and future requirements for the development of laser sources relevant to high-energy physics (HEP) colliders, small scale accelerators, and the generation of short wave-length radiation. We heavily emphasized pulsed terawatt peak power laser sources for several reasons. First, their development over the past five years has been rapid and multi-faceted, and has made relativistic light intensity available to the advanced accelerator community, as well as the wider physics community, for the first time. Secondly, they have strongly impacted plasma-based accelerator research over the past two years, producing the first experimental demonstrations of the laser wakefield accelerator (LWFA) in both its resonantly-driven and self-modulated forms. Thirdly, their average power and wall-plug efficiency currently fall well short of projected requirements for future accelerators and other high average power applications, but show considerable promise for improving substantially over the next few years. A review of this rapidly emerging laser technology in the context of advanced accelerator research is therefore timely

  13. Baikov-Lee representations of cut Feynman integrals

    International Nuclear Information System (INIS)

    Harley, Mark; Moriello, Francesco; Schabinger, Robert M.

    2017-01-01

    We develop a general framework for the evaluation of d-dimensional cut Feynman integrals based on the Baikov-Lee representation of purely-virtual Feynman integrals. We implement the generalized Cutkosky cutting rule using Cauchy’s residue theorem and identify a set of constraints which determine the integration domain. The method applies equally well to Feynman integrals with a unitarity cut in a single kinematic channel and to maximally-cut Feynman integrals. Our cut Baikov-Lee representation reproduces the expected relation between cuts and discontinuities in a given kinematic channel and furthermore makes the dependence on the kinematic variables manifest from the beginning. By combining the Baikov-Lee representation of maximally-cut Feynman integrals and the properties of periods of algebraic curves, we are able to obtain complete solution sets for the homogeneous differential equations satisfied by Feynman integrals which go beyond multiple polylogarithms. We apply our formalism to the direct evaluation of a number of interesting cut Feynman integrals.

  14. HPLC-ESR techniques for detection of complex trapped radicals

    International Nuclear Information System (INIS)

    Tu Tiecheng; Dong Jirong; Lin Nianyun; Xie Leidong; Liu Rengzhong

    1992-01-01

    High performance liquid chromatography (HPLC) and ESR combined examination of radical species is an advanced techniques for separation and identification of complex radical species. At SRCL, Waters 990 HPLC has been used to separate the complex trapped radicals and Varian E-112 ESR spectrometer to record the spectra of single trapped radicals after HPLC separation. The advantages of the combined techniques are described as bellow: HPLC is used to separate the long-lived complex trapped radicals derived from reaction of short-lived radicals with spin trap. ESR spectra from single trapped radicals, obtained following HPLC separation of complex trapped radicals, are recorded one by one and well resolved. The structures of short-lived radicals can be inferred from the ESR spectra of the long-lived trapped radicals

  15. Study of short wavelength turbulence in dense plasmas. Final technical report, September 8, 1981-August 7, 1983

    International Nuclear Information System (INIS)

    Chen, F.F.; Joshi, C.

    1983-10-01

    The work includes studies of four topics: (1) Thomson scattering from short wavelength density fluctuations from laser excited plasmas from solid targets; (2) studies of SBS driven ion acoustic waves and it's harmonics in underdense plasmas; (3) studies of optical mixing excitation of electron plasma waves (high frequency density fluctuations) in theta pinch plasma; and (4) computational studies of high frequency wave excitation by intense laser beams in plasmas

  16. Self-trapped states in proteins?

    NARCIS (Netherlands)

    Austin, R. H.; Xie, A. H.; van der Meer, L.; Shinn, M.; Neil, G.

    2003-01-01

    We show here that the temperature dependence of the amide I band of myoglobin shows evidence for a low-lying S-elf-trapped state at 6.15 mum. We have conducted a careful set of picosecond pump-probe experiments providing results as a function of temperature. and wavelength and show that this

  17. Thomas George Lee - Implantation and early development of North American rodents

    DEFF Research Database (Denmark)

    Carter, Anthony Michael

    2011-01-01

    A century ago Thomas G. Lee amassed an unparalleled collection of developmental series of North American rodents such as the thirteen-lined ground squirrel, the Plains pocket gopher and Merriam's kangaroo rat. He was the first to describe the initial attachment of the squirrel blastocyst to the a......A century ago Thomas G. Lee amassed an unparalleled collection of developmental series of North American rodents such as the thirteen-lined ground squirrel, the Plains pocket gopher and Merriam's kangaroo rat. He was the first to describe the initial attachment of the squirrel blastocyst...... to the antimesometrial side of the uterus. The full potential of Lee's material was not realized until after his death, when it came into the possession of Mossman. The latter relied heavily on Lee's collection when writing his seminal monograph on the comparative morphogenesis of fetal membranes and much of Lee...

  18. Trap assisted space charge conduction in p-NiO/n-ZnO heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Manisha [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Tomar, Monika [Physics department, Miranda House, University of Delhi, Delhi-110007 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2015-06-15

    Highlights: • p-NiO/n-ZnO heterojunction diode with enhanced junction parameters has been prepared. • Temperature dependent I–V throw insight into the involved conduction mechanism. • SCLC with exponential trap distribution was found to be the dominant mechanism. • C–V measurement at different frequencies support the presence of traps. - Abstract: The development of short-wavelength p–n junction is essentially important for the realization of transparent electronics for next-generation optoelectronic devices. In the present work, a p–n heterojunction diode based on p-NiO/n-ZnO has been prepared under the optimised growth conditions exhibiting improved electrical and junction parameters. The fabricated heterojunction gives typical current–voltage (I–V) characteristics with good rectifying behaviour (rectification ratio ≈ 10{sup 4} at 2 V). The temperature dependent current–voltage characteristics of heterojunction diode have been studied and origin of conduction mechanism is identified. The space-charge limited conduction with exponential trap distribution having deep level trap is found to be the dominant conduction mechanism in the fabricated p–n heterojunction diode. The conduction and valence band discontinuities for NiO/ZnO heterostructure have been determined from the capacitance–voltage (C–V) measurements.

  19. Tim Berners-Lee and Kofi Annan during the WSIS

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    During the 2003 World Summit on the Information Society (WSIS) at Geneva Palexpo, Tim Berners-Lee W3C's director (World Wide Web consortium) was introduced to Kofi Annan, Secretary General of the United Nations. Tim Berners-Lee developed the first network and server system that lead to the World Wide Web.

  20. Tim Berners-Lee and Kofi Annan during the WSIS

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    During the 2003 World Summit on the Information Society (WSIS) at Geneva Palexpo, Tim Berners-Lee, W3C's director (World Wide Web consortium) was introduced to Kofi Annan, Secretary General of the United Nations. Tim Berners-Lee developed the first network and server system that lead to the World Wide Web.

  1. Deterministic and stochastic trends in the Lee-Carter mortality model

    DEFF Research Database (Denmark)

    Callot, Laurent; Haldrup, Niels; Kallestrup-Lamb, Malene

    The Lee and Carter (1992) model assumes that the deterministic and stochastic time series dynamics loads with identical weights when describing the development of age specific mortality rates. Effectively this means that the main characteristics of the model simplifies to a random walk model...... that characterizes mortality data. We find empirical evidence that this feature of the Lee-Carter model overly restricts the system dynamics and we suggest to separate the deterministic and stochastic time series components at the benefit of improved fit and forecasting performance. In fact, we find...... that the classical Lee-Carter model will otherwise over estimate the reduction of mortality for the younger age groups and will under estimate the reduction of mortality for the older age groups. In practice, our recommendation means that the Lee-Carter model instead of a one-factor model should be formulated...

  2. Surface Variability of Short-wavelength Radiation and Temperature on Exoplanets around M Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin; Tian, Feng [Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084 (China); Wang, Yuwei [Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, QC H3A 0B9 (Canada); Dudhia, Jimy; Chen, Ming, E-mail: tianfengco@tsinghua.edu.cn [National Center for Atmospheric Research, Boulder, CO (United States)

    2017-03-10

    It is a common practice to use 3D General Circulation Models (GCM) with spatial resolution of a few hundred kilometers to simulate the climate of Earth-like exoplanets. The enhanced albedo effect of clouds is especially important for exoplanets in the habitable zones around M dwarfs that likely have fixed substellar regions and substantial cloud coverage. Here, we carry out mesoscale model simulations with 3 km spatial resolution driven by the initial and boundary conditions in a 3D GCM and find that it could significantly underestimate the spatial variability of both the incident short-wavelength radiation and the temperature at planet surface. Our findings suggest that mesoscale models with cloud-resolving capability be considered for future studies of exoplanet climate.

  3. Highly visible-light luminescence properties of the carboxyl-functionalized short and ultrashort MWNTs

    International Nuclear Information System (INIS)

    Luo Yongsong; Xia Xiaohong; Liang Ying; Zhang Yonggang; Ren Qinfeng; Li Jialin; Jia Zhijie; Tang Yiwen

    2007-01-01

    Luminescence of the short multiwalled carbon nanotubes (MWNTs) conjugated with carboxylic acid groups has been studied. The results show that the carboxyl-functionalized short MWNTs could emit luminescence and the emission peak appears at 500 nm with a corresponding optimal excitation wavelength centering at 310 nm. When the short MWNTs are filtered through 0.15 μm polytetrafluoroethylene (PTFE) membrane, the ultrashort MWNTs are obtained from the filtrate. An interesting feature for the ultrashort MWNTs is that the emission intensity is strengthened and the peak is slightly blue shifted to 460 nm. This result indicates that the luminescence properties of MWNTs are strongly affected by the tube length. After chemical oxidization cutting, defects and carboxylic acid groups at the tube end and/or sidewall can be produced; the more shorten of MWNTs, the better dispersion and carboxylic passivation of the nanotubes, and the more intense luminescence emissions. The broad emissions are logically attributed to the trapping of excitation energy by defect sites in the carboxyl-functionalized nanotube structure. - Graphical abstract: Luminescence of the short and ultrashort multiwalled carbon nanotubes (MWNTs) conjugated with carboxylic acid groups, which is logically attributed to the trapping of excitation energy by defect sites, has been studied

  4. Intensity-modulated polarizabilities and magic trapping of alkali-metal and divalent atoms in infrared optical lattices

    Science.gov (United States)

    Topcu, Turker; Derevianko, Andrei

    2014-05-01

    Long range interactions between neutral Rydberg atoms has emerged as a potential means for implementing quantum logical gates. These experiments utilize hyperfine manifold of ground state atoms to act as a qubit basis, while exploiting the Rydberg blockade mechanism to mediate conditional quantum logic. The necessity for overcoming several sources of decoherence makes magic wavelength trapping in optical lattices an indispensable tool for gate experiments. The common wisdom is that atoms in Rydberg states see trapping potentials that are essentially that of a free electron, and can only be trapped at laser intensity minima. We show that although the polarizability of a Rydberg state is always negative, the optical potential can be both attractive or repulsive at long wavelengths (up to ~104 nm). This opens up the possibility of magic trapping Rydberg states with ground state atoms in optical lattices, thereby eliminating the necessity to turn off trapping fields during gate operations. Because the wavelengths are near the CO2 laser band, the photon scattering and the ensuing motional heating is also reduced compared to conventional traps near low lying resonances, alleviating an important source of decoherence. This work was supported by the National Science Foundation (NSF) Grant No. PHY-1212482.

  5. Recovery Of Short Wavelength Geophysical Signals With Future Delay-Doppler Altimeters (Cryosat Ii And Sentinel Type)

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar

    2010-01-01

    altimetry: Factor of 20 improvements in along track resolution. An along-track footprint length that does not vary with wave height (sea state). Twice the precision in sea surface height measurements / sea surface slope measurements. These improvements are studied with respect to retrieval of short...... wavelength geophysical signal related to mainly bathymetric features. The combination of upward continuation from the sea bottom and smoothing the altimeter observations resulted in the best recovery of geophysical signal for simulated 5-Hz DD observations. Simulations carried out in this investigation...

  6. Magneto-optical enhancement of TbFeCo/Al films at short wavelength

    International Nuclear Information System (INIS)

    Song, K.; Ito, H.; Naoe, M.

    1992-01-01

    In this paper, the bilayered films composed of magneto-optical (MO) amorphous Tb-Te-Co alloy and reflective Al layers were deposited successively on glass slide substrates without plasma exposure by using the facing targets sputtering system. The specimen films with the thickness of MO layer t MO below 5 nm showed apparent perpendicular magnetic anisotropy constant Ku of 2 to 3 x 10 6 erg/cm3 and rectangular Kerr loop. The specimen film with t MO of 14 nm took the Kerr rotation angle θ k as large as about 0.36 degree, at the wavelength λ as short as about 400 nm. These values of θ k is considerably larger than those of the bilayered films in the conventional MO media. Normally, the bilayered films with t MO above 50 nm took θ k of about 0.25 degree at θ k of 400 nm

  7. Microfabricated Microwave-Integrated Surface Ion Trap

    Science.gov (United States)

    Revelle, Melissa C.; Blain, Matthew G.; Haltli, Raymond A.; Hollowell, Andrew E.; Nordquist, Christopher D.; Maunz, Peter

    2017-04-01

    Quantum information processing holds the key to solving computational problems that are intractable with classical computers. Trapped ions are a physical realization of a quantum information system in which qubits are encoded in hyperfine energy states. Coupling the qubit states to ion motion, as needed for two-qubit gates, is typically accomplished using Raman laser beams. Alternatively, this coupling can be achieved with strong microwave gradient fields. While microwave radiation is easier to control than a laser, it is challenging to precisely engineer the radiated microwave field. Taking advantage of Sandia's microfabrication techniques, we created a surface ion trap with integrated microwave electrodes with sub-wavelength dimensions. This multi-layered device permits co-location of the microwave antennae and the ion trap electrodes to create localized microwave gradient fields and necessary trapping fields. Here, we characterize the trap design and present simulated microwave performance with progress towards experimental results. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  8. Virginia Lee Burton's "Little House" in Popular Consciousness

    DEFF Research Database (Denmark)

    Goddard, Joseph

    2011-01-01

    This article considers the significance of Victoria Lee Burton’s authorship, specifically The Little House, for lifestyle preferences and the development of environmental consciousness in the postwar period. The article argues that Burton deliberately designed her work to evoke country-friendly s......This article considers the significance of Victoria Lee Burton’s authorship, specifically The Little House, for lifestyle preferences and the development of environmental consciousness in the postwar period. The article argues that Burton deliberately designed her work to evoke country...

  9. Delphine Letort, The Spike Lee Brand: A Study of Documentary Filmmaking

    OpenAIRE

    Lipson, David

    2017-01-01

    Spike Lee is known the world over for films like She’s Gotta Have It (1986), School Daze (1988), Do the Right Thing (1989), etc. This association with fiction films is so strong that one could mistakenly think that Delphine Letort’s book The Spike Lee Brand: A Study of Documentary Filmmaking would explore the connection between these fiction films and the documentary genre. However, the first pages of the book clearly indicate that it will focus on Spike Lee the documentary filmmaker. Making ...

  10. On-chip particle trapping and manipulation

    Science.gov (United States)

    Leake, Kaelyn Danielle

    model and predict a sorting method which combines fluid flow with a single optical source to automatically sort dielectric particles by size in waveguide networks. These simulations were shown to be accurate when repeated on-chip. Lastly I introduce a particle trapping technique that uses Multimode Interference(MMI) patterns in order to trap multiple particles at once. The location of the traps can be adjusted as can the number of trapping location by changing the input wavelength. By changing the wavelength back and forth between two values this MMI can be used to pass a particle down the channel like a conveyor belt.

  11. CONFIRMING THE PRIMARILY SMOOTH STRUCTURE OF THE VEGA DEBRIS DISK AT MILLIMETER WAVELENGTHS

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, A. Meredith; Plambeck, Richard; Chiang, Eugene [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Wilner, David J.; Andrews, Sean M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Mason, Brian [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Carpenter, John M. [California Institute of Technology, Department of Astronomy, MC 105-24, Pasadena, CA 91125 (United States); Chiang, Hsin-Fang [Institute for Astronomy, University of Hawaii, 640 North Aohoku Place, Hilo, HI 96720 (United States); Williams, Jonathan P. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hales, Antonio [Joint ALMA Observatory, Av. El Golf 40, Piso 18, Santiago (Chile); Su, Kate [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Dicker, Simon; Korngut, Phil; Devlin, Mark, E-mail: mhughes@astro.berkeley.edu [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States)

    2012-05-01

    Clumpy structure in the debris disk around Vega has been previously reported at millimeter wavelengths and attributed to concentrations of dust grains trapped in resonances with an unseen planet. However, recent imaging at similar wavelengths with higher sensitivity has disputed the observed structure. We present three new millimeter-wavelength observations that help to resolve the puzzling and contradictory observations. We have observed the Vega system with the Submillimeter Array (SMA) at a wavelength of 880 {mu}m and an angular resolution of 5''; with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at a wavelength of 1.3 mm and an angular resolution of 5''; and with the Green Bank Telescope (GBT) at a wavelength of 3.3 mm and angular resolution of 10''. Despite high sensitivity and short baselines, we do not detect the Vega debris disk in either of the interferometric data sets (SMA and CARMA), which should be sensitive at high significance to clumpy structure based on previously reported observations. We obtain a marginal (3{sigma}) detection of disk emission in the GBT data; the spatial distribution of the emission is not well constrained. We analyze the observations in the context of several different models, demonstrating that the observations are consistent with a smooth, broad, axisymmetric disk with inner radius 20-100 AU and width {approx}> 50 AU. The interferometric data require that at least half of the 860 {mu}m emission detected by previous single-dish observations with the James Clerk Maxwell Telescope be distributed axisymmetrically, ruling out strong contributions from flux concentrations on spatial scales of {approx}<100 AU. These observations support recent results from the Plateau de Bure Interferometer indicating that previous detections of clumpy structure in the Vega debris disk were spurious.

  12. CONFIRMING THE PRIMARILY SMOOTH STRUCTURE OF THE VEGA DEBRIS DISK AT MILLIMETER WAVELENGTHS

    International Nuclear Information System (INIS)

    Hughes, A. Meredith; Plambeck, Richard; Chiang, Eugene; Wilner, David J.; Andrews, Sean M.; Mason, Brian; Carpenter, John M.; Chiang, Hsin-Fang; Williams, Jonathan P.; Hales, Antonio; Su, Kate; Dicker, Simon; Korngut, Phil; Devlin, Mark

    2012-01-01

    Clumpy structure in the debris disk around Vega has been previously reported at millimeter wavelengths and attributed to concentrations of dust grains trapped in resonances with an unseen planet. However, recent imaging at similar wavelengths with higher sensitivity has disputed the observed structure. We present three new millimeter-wavelength observations that help to resolve the puzzling and contradictory observations. We have observed the Vega system with the Submillimeter Array (SMA) at a wavelength of 880 μm and an angular resolution of 5''; with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at a wavelength of 1.3 mm and an angular resolution of 5''; and with the Green Bank Telescope (GBT) at a wavelength of 3.3 mm and angular resolution of 10''. Despite high sensitivity and short baselines, we do not detect the Vega debris disk in either of the interferometric data sets (SMA and CARMA), which should be sensitive at high significance to clumpy structure based on previously reported observations. We obtain a marginal (3σ) detection of disk emission in the GBT data; the spatial distribution of the emission is not well constrained. We analyze the observations in the context of several different models, demonstrating that the observations are consistent with a smooth, broad, axisymmetric disk with inner radius 20-100 AU and width ∼> 50 AU. The interferometric data require that at least half of the 860 μm emission detected by previous single-dish observations with the James Clerk Maxwell Telescope be distributed axisymmetrically, ruling out strong contributions from flux concentrations on spatial scales of ∼<100 AU. These observations support recent results from the Plateau de Bure Interferometer indicating that previous detections of clumpy structure in the Vega debris disk were spurious.

  13. Trapping of Rift Valley Fever (RVF vectors using Light Emitting Diode (LED CDC traps in two arboviral disease hot spots in Kenya

    Directory of Open Access Journals (Sweden)

    Tchouassi David P

    2012-05-01

    Full Text Available Abstract Background Mosquitoes’ response to artificial lights including color has been exploited in trap designs for improved sampling of mosquito vectors. Earlier studies suggest that mosquitoes are attracted to specific wavelengths of light and thus the need to refine techniques to increase mosquito captures following the development of super-bright light-emitting diodes (LEDs which emit narrow wavelengths of light or very specific colors. Therefore, we investigated if LEDs can be effective substitutes for incandescent lamps used in CDC light traps for mosquito surveillance, and if so, determine the best color for attraction of important Rift Valley Fever (RFV vectors. Methods The efficiency of selected colored LED CDC light traps (red, green, blue, violet, combination of blue-green-red (BGR to sample RVF vectors was evaluated relative to incandescent light (as control in a CDC light trap in two RVF hotspots (Marigat and Ijara districts in Kenya. In field experiments, traps were baited with dry ice and captures evaluated for Aedes tricholabis, Ae. mcintoshi, Ae. ochraceus, Mansonia uniformis, Mn. africana and Culex pipiens, following Latin square design with days as replicates. Daily mosquito counts per treatment were analyzed using a generalized linear model with Negative Binomial error structure and log link using R. The incidence rate ratios (IRR that mosquito species chose other treatments instead of the control, were estimated. Results Seasonal preference of Ae.mcintoshi and Ae. ochraceus at Ijara was evident with a bias towards BGR and blue traps respectively in one trapping period but this pattern waned during another period at same site with significantly low numbers recorded in all colored traps except blue relative to the control. Overall results showed that higher captures of all species were recorded in control traps compared to the other LED traps (IRR  Conclusion Based on our trapping design and color, none of the LEDs

  14. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision--a significant trend in the evolution of mammalian vision.

    Science.gov (United States)

    Jacobs, Gerald H

    2013-03-01

    All mammalian cone photopigments are derived from the operation of representatives from two opsin gene families (SWS1 and LWS in marsupial and eutherian mammals; SWS2 and LWS in monotremes), a process that produces cone pigments with respective peak sensitivities in the short and middle-to-long wavelengths. With the exception of a number of primate taxa, the modal pattern for mammals is to have two types of cone photopigment, one drawn from each of the gene families. In recent years, it has been discovered that the SWS1 opsin genes of a widely divergent collection of eutherian mammals have accumulated mutational changes that render them nonfunctional. This alteration reduces the retinal complements of these species to a single cone type, thus rendering ordinary color vision impossible. At present, several dozen species from five mammalian orders have been identified as falling into this category, but the total number of mammalian species that have lost short-wavelength cones in this way is certain to be much larger, perhaps reaching as high as 10% of all species. A number of circumstances that might be used to explain this widespread cone loss can be identified. Among these, the single consistent fact is that the species so affected are nocturnal or, if they are not technically nocturnal, they at least feature retinal organizations that are typically associated with that lifestyle. At the same time, however, there are many nocturnal mammals that retain functional short-wavelength cones. Nocturnality thus appears to set the stage for loss of functional SWS1 opsin genes in mammals, but it cannot be the sole circumstance.

  15. [The medical theory of Lee Je-ma and its character].

    Science.gov (United States)

    Lee, Kyung-Lock

    2005-12-01

    Lee Je-ma 1837-1900) was a prominent scholar as well as an Korean physician. classified every people into four distinctive types: greater yang [tai yang] person, lesser yin [shao yin] person, greater yin [tai yin] person, lesser yin [shao yin] person. This theory would dictate proper treatment for each type in accordance with individual differences of physical and temperament features. Using these four types he created The Medical Science of Four Types. This article is intended to look into the connection between Lee Je-Ma's 'The Medical Science of Four Types' and 'The Modern' with organizing his ideas about the human body and the human being. Through The Modern, the theory of human being underwent a complete change. Human being in The Premodern, which was determined by sex, age and social status has been changed to the individual human being, which is featured by equality. Lee Je-Ma's medical theory of The Medical Science of Four Types would be analyzed as follow. His concept of human body is oriented toward observable objectivity. But on the other hand, it still remains transcendent status of medical science, which is subordinated by philosophy. According to Lee Je-Ma's theory of human being, human is an equal individual in a modern way of thinking, not as a part of hierarchical group. But on the other hand, it still remains incomplete from getting rid of morality aspect that includes virtue and vice in the concept of human body. The common factors in Lee Je-Ma's ideas about the human body and the human being is 'Dualism of mind and body that means all kinds of status and results depends on each individual. As is stated above, Lee Je-Ma's medical theory has many aspects of The Modern and it proves that Korean traditional medicine could be modernized by itself.

  16. Scaling model for high-aspect-ratio microballoon direct-drive implosions at short laser wavelengths

    International Nuclear Information System (INIS)

    Schirmann, D.; Juraszek, D.; Lane, S.M.; Campbell, E.M.

    1992-01-01

    A scaling model for hot spherical ablative implosions in direct-drive mode is presented. The model results have been compared with experiments from LLE, ILE, and LLNL. Reduction of the neutron yield due to illumination nonuniformities is taken into account by the assumption that the neutron emission is cut off when the gas shock wave reflected off the center meets the incoming pusher, i.e., at a time when the probability of shell breakup is greatly enhanced. The main advantage of this semiempirical scaling model is that it elucidates the principal features of these simple implosions and permits one to estimate very quickly the performance of a high-aspect-ratio direct-drive target illuminated by short-wavelength laser light. (Author)

  17. Trapping, self-trapping and the polaron family

    International Nuclear Information System (INIS)

    Stoneham, A M; Gavartin, J; Shluger, A L; Kimmel, A V; Ramo, D Munoz; Roennow, H M; Aeppli, G; Renner, C

    2007-01-01

    The earliest ideas of the polaron recognized that the coupling of an electron to ionic vibrations would affect its apparent mass and could effectively immobilize the carrier (self-trapping). We discuss how these basic ideas have been generalized to recognize new materials and new phenomena. First, there is an interplay between self-trapping and trapping associated with defects or with fluctuations in an amorphous solid. In high dielectric constant oxides, like HfO 2 , this leads to oxygen vacancies having as many as five charge states. In colossal magnetoresistance manganites, this interplay makes possible the scanning tunnelling microscopy (STM) observation of polarons. Second, excitons can self-trap and, by doing so, localize energy in ways that can modify the material properties. Third, new materials introduce new features, with polaron-related ideas emerging for uranium dioxide, gate dielectric oxides, Jahn-Teller systems, semiconducting polymers and biological systems. The phonon modes that initiate self-trapping can be quite different from the longitudinal optic modes usually assumed to dominate. Fourth, there are new phenomena, like possible magnetism in simple oxides, or with the evolution of short-lived polarons, like muons or excitons. The central idea remains that of a particle whose properties are modified by polarizing or deforming its host solid, sometimes profoundly. However, some of the simpler standard assumptions can give a limited, indeed misleading, description of real systems, with qualitative inconsistencies. We discuss representative cases for which theory and experiment can be compared in detail

  18. Hydrogen trapping energy levels and hydrogen diffusion at high and low strain rates (~10{sup 5} s{sup −1} and 10{sup −7} s{sup −1}) in lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, R., E-mail: barrav@post.bgu.ac.il; Eliezer, D.

    2016-09-30

    Duplex stainless steels (DSS) alloys are high strength steels combined with ductility and excellent resistance to stress corrosion cracking, which makes them attractive for the pressure vessels or underwater pipelines industries. Hydrogen embrittlement (HE) is caused by the action of hydrogen in combination with residual or applied stress and can lead to the mechanical degradation of a material. Dynamic and quasi-static experiments were conducted at room temperature and strain rates of 10{sup 5} s{sup −1} and 10{sup −7} s{sup −1} on gas-phase hydrogen charged DSS. Hydrogen trapping in the various defects and its effect on the mechanical properties are discussed in details. A linear model of Lee and Lee was applied to calculate the trap activation energies. It was found that lower strain rates (~10{sup −7} s{sup −1}) will create less deep hydrogen trapping energies values; ~40% lower than in non-loaded sample. In addition, higher dynamic pressure will create higher trapping energy sites for hydrogen. Based on our experimental studies we developed an analytical model for hydrogen trapping. We have found that the strain rate has a direct influence on both hydrogen diffusion and hydrogen potential trapping sites. During deformation processes created at low strain rates (~10{sup −7} s{sup −1}) hydrogen has enough time to migrate with dislocations from deeper potential trapping sites to lower potential trapping sites.

  19. Portable atomic frequency standard based on coherent population trapping

    Science.gov (United States)

    Shi, Fan; Yang, Renfu; Nian, Feng; Zhang, Zhenwei; Cui, Yongshun; Zhao, Huan; Wang, Nuanrang; Feng, Keming

    2015-05-01

    In this work, a portable atomic frequency standard based on coherent population trapping is designed and demonstrated. To achieve a portable prototype, in the system, a single transverse mode 795nm VCSEL modulated by a 3.4GHz RF source is used as a pump laser which generates coherent light fields. The pump beams pass through a vapor cell containing atom gas and buffer gas. This vapor cell is surrounded by a magnetic shield and placed inside a solenoid which applies a longitudinal magnetic field to lift the Zeeman energy levels' degeneracy and to separate the resonance signal, which has no first-order magnetic field dependence, from the field-dependent resonances. The electrical control system comprises two control loops. The first one locks the laser wavelength to the minimum of the absorption spectrum; the second one locks the modulation frequency and output standard frequency. Furthermore, we designed the micro physical package and realized the locking of a coherent population trapping atomic frequency standard portable prototype successfully. The short-term frequency stability of the whole system is measured to be 6×10-11 for averaging times of 1s, and reaches 5×10-12 at an averaging time of 1000s.

  20. Paraconductivity of three-dimensional amorphous superconductors: evidence for a short-wavelength cutoff in the fluctuation spectrum

    International Nuclear Information System (INIS)

    Johnson, W.L.

    1977-10-01

    Measurements of the temperature dependence and magnetic field dependence of the paraconductivity of a three dimensional amorphous superconductor are presented. The data are analyzed in terms of several current theories and are found to give good agreement for low fields and temperatures near T/sub c/. The paraconductivity falls well below predicted theoretical values in the high temperature and high field limits. This is attributed to the reduced role of high wavevector contributions to the paraconductivity. It is shown that the introduction of a short wavelength cutoff in the theoretical fluctuation spectrum provides a phenomelogical account of the discrepancy between theory and experiment

  1. Interferometry on small quantum systems at short wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Usenko, Sergey

    2017-01-15

    The present work concentrates on prototypical studies of light-induced correlated many-body dynamics in complex systems. In its course a reflective split-and-delay unit (SDU) for phase-resolved one-color pump-probe experiments with gas phase samples using VUV-XUV laser pulses was built. The collinear propagation of pump and probe pulses is ensured by the special geometry of the SDU and allows to perform phase-resolved (coherent) autocorrelation measurements. The control of the pump-probe delay with attosecond precision is established by a specially developed diagnostic tool based on an in-vacuum white light interferometer that allows to monitor the relative displacement of the SDU reflectors with nanometer resolution. Phase-resolved (interferometric) pump-probe experiments with developed SDU require spatially-resolved imaging of the ionization volume. For this an electron-ion coincidence spectrometer was built. The spectrometer enables coincident detection of photoionization products using velocity map imaging (VMI) technique for electrons and VMI or spatial imaging for ions. In first experiments using the developed SDU and the spectrometer in the ion spatial-imaging mode linear field autocorrelation of free-electron laser pulses at the central wavelength of 38 nm was recorded. A further focus of the work were energy- and time-resolved resonant two-photon ionization experiments using short tunable UV laser pulses on C{sub 60} fullerene. The experiments demonstrated that dipole-selective excitation on a timescale faster than the characteristic intramolecular energy dissipation limits the number of accessible excitation pathways and thus results in a narrow resonance. Time-dependent one-color pump-probe study showed that nonadiabatic (vibron) coupling is the dominant energy dissipation mechanism for high-lying electronic excited states in C{sub 60}.

  2. Interferometry on small quantum systems at short wavelength

    International Nuclear Information System (INIS)

    Usenko, Sergey

    2017-01-01

    The present work concentrates on prototypical studies of light-induced correlated many-body dynamics in complex systems. In its course a reflective split-and-delay unit (SDU) for phase-resolved one-color pump-probe experiments with gas phase samples using VUV-XUV laser pulses was built. The collinear propagation of pump and probe pulses is ensured by the special geometry of the SDU and allows to perform phase-resolved (coherent) autocorrelation measurements. The control of the pump-probe delay with attosecond precision is established by a specially developed diagnostic tool based on an in-vacuum white light interferometer that allows to monitor the relative displacement of the SDU reflectors with nanometer resolution. Phase-resolved (interferometric) pump-probe experiments with developed SDU require spatially-resolved imaging of the ionization volume. For this an electron-ion coincidence spectrometer was built. The spectrometer enables coincident detection of photoionization products using velocity map imaging (VMI) technique for electrons and VMI or spatial imaging for ions. In first experiments using the developed SDU and the spectrometer in the ion spatial-imaging mode linear field autocorrelation of free-electron laser pulses at the central wavelength of 38 nm was recorded. A further focus of the work were energy- and time-resolved resonant two-photon ionization experiments using short tunable UV laser pulses on C_6_0 fullerene. The experiments demonstrated that dipole-selective excitation on a timescale faster than the characteristic intramolecular energy dissipation limits the number of accessible excitation pathways and thus results in a narrow resonance. Time-dependent one-color pump-probe study showed that nonadiabatic (vibron) coupling is the dominant energy dissipation mechanism for high-lying electronic excited states in C_6_0.

  3. The LEBIT 9.4 T Penning trap system

    Energy Technology Data Exchange (ETDEWEB)

    Ringle, R.; Bollen, G.; Schury, P.; Sun, T. [National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Michigan State University, Department of Physics and Astronomy, East Lansing, MI (United States); Lawton, D.; Schwarz, S. [National Superconducting Cyclotron Laboratory, East Lansing, MI (United States)

    2005-09-01

    The initial experimental program with the Low-Energy Beam and Ion Trap Facility, or LEBIT, will concentrate on Penning trap mass measurements of rare isotopes, delivered by the Coupled Cyclotron Facility (CCF) of the NSCL. The LEBIT Penning trap system has been optimized for high-accuracy mass measurements of very short-lived isotopes. (orig.)

  4. The LEBIT 9.4 T Penning trap system

    International Nuclear Information System (INIS)

    Ringle, R.; Bollen, G.; Schury, P.; Sun, T.; Lawton, D.; Schwarz, S.

    2005-01-01

    The initial experimental program with the Low-Energy Beam and Ion Trap Facility, or LEBIT, will concentrate on Penning trap mass measurements of rare isotopes, delivered by the Coupled Cyclotron Facility (CCF) of the NSCL. The LEBIT Penning trap system has been optimized for high-accuracy mass measurements of very short-lived isotopes. (orig.)

  5. Using chemical wet-etching methods of textured AZO films on a-Si:H solar cells for efficient light trapping

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guo-Sheng; Li, Chien-Yu; Huang, Kuo-Chan; Houng, Mau-Phon, E-mail: mphoung@eembox.ncku.edu.tw

    2015-06-15

    In this paper, Al-doped ZnO (AZO) films are deposited on glasses substrate by RF magnetron sputtering. The optical, electrical and morphological properties of AZO films textured by wet-etching with different etchants, H{sub 3}PO{sub 4}, HCl, and HNO{sub 3} are studied. It is found that the textured structure could enhance the light scattering and light trapping ability of amorphous silicon solar cells. The textured AZO film etched with HNO{sub 3} exhibits optimized optical properties (T% ≧ 80% over entire wavelength, haze ratio > 40% at 550 nm wavelength) and excellent electrical properties (ρ = 5.86 × 10{sup −4} Ωcm). Scanning electron microscopy and Atomic force microscopy are used to observe surface morphology and average roughness of each textured AZO films. Finally, the textured AZO films etched by H{sub 3}PO{sub 4}, HCl and HNO{sub 3} were applied to front electrode layer for p–i–n amorphous silicon solar cells. The highest conversion efficiency of amorphous silicon solar cell fabricated on HNO{sub 3}-etched AZO film was 7.08% with open-circuit voltage, short-circuit current density and fill factor of 895 mV, 14.92 mA/cm{sup 2} and 0.56, respectively. It shows a significantly enhancement in the short-circuit current density and conversion efficiency by 16.2% and 20.2%, respectively, compared with the solar cell fabricated on as-grown AZO film. - Highlights: • The textured surface enhances light scattering and light trapping ability. • The HNO{sub 3}-etched AZO film exhibits excellent optical and electrical properties. • The efficiency of a-Si:H solar cell fabricated on HNO{sub 3}-etched AZO film was 7.08%. • The short-circuit current density enhances to 16.2%. • The conversion efficiency enhances to 20.2%.

  6. Using chemical wet-etching methods of textured AZO films on a-Si:H solar cells for efficient light trapping

    International Nuclear Information System (INIS)

    Lin, Guo-Sheng; Li, Chien-Yu; Huang, Kuo-Chan; Houng, Mau-Phon

    2015-01-01

    In this paper, Al-doped ZnO (AZO) films are deposited on glasses substrate by RF magnetron sputtering. The optical, electrical and morphological properties of AZO films textured by wet-etching with different etchants, H 3 PO 4 , HCl, and HNO 3 are studied. It is found that the textured structure could enhance the light scattering and light trapping ability of amorphous silicon solar cells. The textured AZO film etched with HNO 3 exhibits optimized optical properties (T% ≧ 80% over entire wavelength, haze ratio > 40% at 550 nm wavelength) and excellent electrical properties (ρ = 5.86 × 10 −4 Ωcm). Scanning electron microscopy and Atomic force microscopy are used to observe surface morphology and average roughness of each textured AZO films. Finally, the textured AZO films etched by H 3 PO 4 , HCl and HNO 3 were applied to front electrode layer for p–i–n amorphous silicon solar cells. The highest conversion efficiency of amorphous silicon solar cell fabricated on HNO 3 -etched AZO film was 7.08% with open-circuit voltage, short-circuit current density and fill factor of 895 mV, 14.92 mA/cm 2 and 0.56, respectively. It shows a significantly enhancement in the short-circuit current density and conversion efficiency by 16.2% and 20.2%, respectively, compared with the solar cell fabricated on as-grown AZO film. - Highlights: • The textured surface enhances light scattering and light trapping ability. • The HNO 3 -etched AZO film exhibits excellent optical and electrical properties. • The efficiency of a-Si:H solar cell fabricated on HNO 3 -etched AZO film was 7.08%. • The short-circuit current density enhances to 16.2%. • The conversion efficiency enhances to 20.2%

  7. Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Maojin; Yuan, Zhuliang; Zhi, Xiaohua; Shen, Jianquan [Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190 (China)

    2009-10-15

    Beer lees are the main by-product of the brewing industry. Biohydrogen production from beer lees using anaerobic mixed bacteria was investigated in this study, and the effects of acidic pretreatment, initial pH value and ferrous iron concentration on hydrogen production were studied at 35 C in batch experiments. The hydrogen yield was significantly enhanced by optimizing environmental factors such as hydrochloric acid (HCl) pretreatment of substrate, initial pH value and ferrous iron concentration. The optimal environmental factors of substrate pretreated with 2% HCl, pH = 7.0 and 113.67 mg/l Fe{sup 2+} were observed. A maximum cumulative hydrogen yield of 53.03 ml/g-dry beer lees was achieved, which was approximately 17-fold greater than that in raw beer lees. In addition, the degradation efficiency of the total reducing sugar, and the contents of hemicellulose, cellulose, lignin and metabolites are presented, which showed a strong dependence on the environmental factors. (author)

  8. Awards: New Year Knighthood for Tim Berners-Lee

    CERN Multimedia

    2004-01-01

    Tim Berners-Lee has been awarded his country's highest honour - a knighthood - in the UK's New Year Honours list for his work while at CERN on the World Wide Web. In the same honours list, Roger Cashmore has been made a Companion of the Order of St Michael and St George (CMG) "for his services to international co-operation in particle physics". Cashmore was CERN's Director for Collider Programmes from 1999-2003, and is now Principal of Brasenose College, Oxford. Tim Berners-Lee stands in front of the first web server at Palexpo during the World Summit on the Information Society.

  9. Lee-Nauenberg theorem and Coulomb scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, H; Frenkel, J [Sao Paulo Univ. (Brazil). Instituto de Fisica

    1975-08-01

    Lee-Nauenberg analysis is extended to the case of Coulomb scattering, where the diagonal elements of the Hamiltonian interaction are singular functions. It is shown, using a simple argument, that the leading infrared singularities in the cross-section are mutually canceled out.

  10. Grain-size sorting in grainflows at the lee side of deltas

    NARCIS (Netherlands)

    Kleinhans, M.G.

    2005-01-01

    The sorting of sediment mixtures at the lee slope of deltas (at the angle of repose) is studied with experiments in a narrow, deep flume with subaqueous Gilbert-type deltas using varied flow conditions and different sediment mixtures. Sediment deposition and sorting on the lee slope of the delta

  11. Short-wavelength InAlGaAs/AlGaAs quantum dot superluminescent diodes

    Science.gov (United States)

    Liang, De-Chun; An, Qi; Jin, Peng; Li, Xin-Kun; Wei, Heng; Wu, Ju; Wang, Zhan-Guo

    2011-10-01

    This paper reports the fabrication of J-shaped bent-waveguide superluminescent diodes utilizing an InAlGaAs/AlGaAs quantum dot active region. The emission spectrum of the device is centred at 884 nm with a full width at half maximum of 37 nm and an output power of 18 mW. By incorporating an Al composition into the quantum dot active region, short-wavelength superluminescent diode devices can be obtained. An intersection was found for the light power-injection current curves measured from the straight-waveguide facet and the bent-waveguide facet, respectively. The result is attributed to the conjunct effects of the gain and the additional loss of the bent waveguide. A numerical simulation is performed to verify the qualitative explanation. It is shown that bent waveguide loss is an important factor that affects the output power of J-shaped superluminescent diode devices.

  12. Towards shorter wavelength x-ray lasers using a high power, short pulse pump laser

    International Nuclear Information System (INIS)

    Tighe, W.; Krushelnick, K.; Valeo, E.; Suckewer, S.

    1991-05-01

    A near-terawatt, KrF* laser system, focussable to power densities >10 18 W/cm 2 has been constructed for use as a pump laser in various schemes aimed at the development of x-ray lasing below 5nm. The laser system along with output characteristics such as the pulse duration, the focal spot size, and the percentage of amplified spontaneous emission (ASE) emitted along with the laser pulse will be presented. Schemes intended to lead to shorter wavelength x-ray emission will be described. The resultant requirements on the pump laser characteristics and the target design will be outlined. Results from recent solid target experiments and two-laser experiments, showing the interaction of a high-power, short pulse laser with a preformed plasma, will be presented. 13 refs., 5 figs

  13. Trapping of Rift Valley Fever (RVF) vectors using Light Emitting Diode (LED) CDC traps in two arboviral disease hot spots in Kenya

    Science.gov (United States)

    Background: Mosquitoes’ response to artificial lights including color has been exploited in trap designs for improved sampling of mosquito vectors. Earlier studies suggest that mosquitoes are attracted to specific wavelengths of light and thus the need to refine techniques to increase mosquito captu...

  14. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    Science.gov (United States)

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing

  15. The medical theory of Lee Je-ma and its character

    Directory of Open Access Journals (Sweden)

    LEE Kyung-Lock

    2005-12-01

    Full Text Available Lee Je-ma(李濟馬, 1837-1900 was a prominent scholar as well as an Korean physician He classified every people into four distinctive types: greater yang[tai yang] person, lesser yin[shao yin] person greater yin[tai yin] person, lesser yin[shao yin] person. This theory would dictate proper treatment for each type in accordance with individual differences of physical and temperament features Using these four types he created The Medical Science of Four Types(四象體質論.This article is intended to look into the connection between Lee Je-Ma's 'The Medical Science of Four Types' and 'The Modern' with organizing his ideas about the human body and the human being. Through The Modern, the theory of human being(人間觀 underwent a complete change. Human being in The Premodern, which was determined by sex, age and social status has been changed to the individual human being, which is featured by equality. Lee Je-Ma's medical theory of The Medical Science of Four Types would be analyzed as follow. His concept of human body(人體論 is oriented toward observable objectivity. But on the other hand, it still remains transcendent status of medical science, which is subordinated by philosophy According to Lee Je-Ma's theory of human being human is an equal individual in a modern way of thinking not as a part of hierarchical group. But on the other hand, it still remains incomplete from getting rid of morality aspect that includes virtue and vice in the concept of human body.The common factors in Lee Je-Ma's ideas about the human body and the human being is 'Dualism of mind and body(心身二元論' that means all kinds of status and results depends on each individual. As is stated above, Lee Je-Ma's medical theory has many aspects of The Modern and it proves that Korean traditional medicine could be modernized by itself.

  16. TES arrays for the short wavelength band of the SAFARI instrument on SPICA

    Science.gov (United States)

    Khosropanah, P.; Hijmering, R.; Ridder, M.; Gao, J. R.; Morozov, D.; Mauskopf, P. D.; Trappe, N.; O'Sullivan, C.; Murphy, A.; Griffin, D.; Goldie, D.; Glowacka, D.; Withington, S.; Jackson, B. D.; Audley, M. D.; de Lange, G.

    2012-09-01

    SPICA is an infra-red (IR) telescope with a cryogenically cooled mirror (~5K) with three instruments on board, one of which is SAFARI that is an imaging Fourier Transform Spectrometer (FTS) with three bands covering the wavelength of 34-210 μm. We develop transition edge sensors (TES) array for short wavelength band (34-60 μm) of SAFARI. These are based on superconducting Ti/Au bilayer as TES bolometers with a Tc of about 105 mK and thin Ta film as IR absorbers on suspended silicon nitride (SiN) membranes. These membranes are supported by long and narrow SiN legs that act as weak thermal links between the TES and the bath. Previously an electrical noise equivalent power (NEP) of 4×10-19 W/√Hz was achieved for a single pixel of such detectors. As an intermediate step toward a full-size SAFARI array (43×43), we fabricated several 8×9 detector arrays. Here we describe the design and the outcome of the dark and optical tests of several of these devices. We achieved high yield (<93%) and high uniformity in terms of critical temperature (<5%) and normal resistance (7%) across the arrays. The measured dark NEPs are as low as 5×10-19 W/√Hz with a response time of about 1.4 ms at preferred operating bias point. The optical coupling is implemented using pyramidal horns array on the top and hemispherical cavity behind the chip that gives a measured total optical coupling efficiency of 30±7%.

  17. Long-wavelength microinstabilities in toroidal plasmas

    International Nuclear Information System (INIS)

    Tang, W.W.; Rewoldt, G.

    1993-01-01

    Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in TFTR L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities

  18. Monolithic photonic integration for visible and short near-infrared wavelengths: technologies and platforms for bio and life science applications

    Science.gov (United States)

    Porcel, Marco A. G.; Artundo, Iñigo; Domenech, J. David; Geuzebroek, Douwe; Sunarto, Rino; Hoofman, Romano

    2018-04-01

    This tutorial aims to provide a general overview on the state-of-the-art of photonic integrated circuits (PICs) in the visible and short near-infrared (NIR) wavelength ranges, mostly focusing in silicon nitride (SiN) substrates, and a guide to the necessary steps in the design toward the fabrication of such PICs. The focus is put on bio- and life sciences, given the adequacy and, thus, a large number of applications in this field.

  19. Tim Berners-Lee at the RSIS conference from 8-9 December 2003.

    CERN Multimedia

    Patrice Loiez

    2003-01-01

    Tim Berners-Lee participated in the Role of Science in the Information Society conference held at CERN from 8-9 December 2003. Tim Berners-Lee developed the first network and server system that lead to the World Wide Web.

  20. Laser frequency stabilization using a commercial wavelength meter

    Science.gov (United States)

    Couturier, Luc; Nosske, Ingo; Hu, Fachao; Tan, Canzhu; Qiao, Chang; Jiang, Y. H.; Chen, Peng; Weidemüller, Matthias

    2018-04-01

    We present the characterization of a laser frequency stabilization scheme using a state-of-the-art wavelength meter based on solid Fizeau interferometers. For a frequency-doubled Ti-sapphire laser operated at 461 nm, an absolute Allan deviation below 10-9 with a standard deviation of 1 MHz over 10 h is achieved. Using this laser for cooling and trapping of strontium atoms, the wavemeter scheme provides excellent stability in single-channel operation. Multi-channel operation with a multimode fiber switch results in fluctuations of the atomic fluorescence correlated to residual frequency excursions of the laser. The wavemeter-based frequency stabilization scheme can be applied to a wide range of atoms and molecules for laser spectroscopy, cooling, and trapping.

  1. Subordinations In “To Kill A Mockingbird” By Harper Lee

    OpenAIRE

    Siregar, Rut Sri Novitawaty

    2011-01-01

    Salah satu yang dipelajari mahasiswa adalah tulis menulis. Secara ilmiah tulis menulis adalah penyampaian informasi dalam bentuk tulisan serta bagaimana informasi itu disampaikan. Judul kertas karya ini adalah Kalimat Subordinat yang ditemukan dalam novel To Kill a Mockingbird karya Harper Lee: SUBORDINATION IN TO KILL A MOCKINGBIRD BY HARPER LEE. Penulis mengangkat hal ini karena penulis tertarik dengan bentuk–bentuk serta fungsi-fungsi kalimat subordinat yang terdapat dalam tulisan-tulisan ...

  2. Instability of the Lee-Wick bounce

    International Nuclear Information System (INIS)

    Karouby, Johanna; Brandenberger, Robert; Qiu, Taotao

    2011-01-01

    It was recently realized [Y. F. Cai, T. t. Qiu, R. Brandenberger, and X. m. Zhang, Phys. Rev. D 80, 023511 (2009).] that a model constructed from a Lee-Wick type scalar field theory yields, at the level of homogeneous and isotropic background cosmology, a bouncing cosmology. However, bouncing cosmologies induced by pressureless matter are in general unstable to the addition of relativistic matter (i.e. radiation). Here we study the possibility of obtaining a bouncing cosmology if we add radiation coupled to the Lee-Wick scalar field. This coupling in principle would allow the energy to flow from radiation to matter, thus providing a drain for the radiation energy. However, we find that it takes an extremely unlikely fine-tuning of the initial phases of the field configurations for a sufficient amount of radiative energy to flow into matter. For general initial conditions, the evolution leads to a singularity rather than a smooth bounce.

  3. Status of THe-Trap

    Energy Technology Data Exchange (ETDEWEB)

    Streubel, Sebastian; Eronen, Tommi; Hoecker, Martin; Ketter, Jochen; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Van Dyck, Robert S. Jr. [Department of Physics, University of Washington, Seattle, WA (United States)

    2013-07-01

    THe-Trap (short for Tritium-{sup 3}He Trap) is a Penning-trap setup dedicated to measure the {sup 3}H to {sup 3}He mass-ratio with a relative uncertainty of better than 10{sup -11}. The ratio is of relevance for the KArlsruhe TRItium Neutrino experiment (KATRIN), which aims to measure the electron anti-neutrino mass, by measuring the shape of the β-decay energy spectrum close to its endpoint. An independent measurement of the {sup 3}H to {sup 3}He mass-ratio pins down this endpoint, and thus will help to determine the systematics of KATRIN. The trap setup consists of two Penning-traps: One trap for precision measurements, the other trap for ion storage. Ideally, the trap content will be periodically switched, which reduces the time between the measurements of the two ions' motional frequencies. In 2012, a mass ratio measurement of {sup 12}C{sup 4+} to {sup 14}N{sup 5+} was performed to characterize systematic effects of the traps. This measurement yielded a accuracy of 10{sup -9}. Further investigations revealed that a major reason for the modest accuracy is the large axial amplitude of ∼100 μm, compared to a ideal case of 3 μm at 4 K. In addition, relative magnetic fluctuations at a 3 x 10{sup -10} level on a 10 h timescale need to be significantly improved. In this contribution, the aforementioned findings and further systematic studies will be presented.

  4. Lee waves, benign and malignant

    Science.gov (United States)

    Wurtele, M. G.; Datta, A.

    1992-01-01

    The flow of an incompressible, stratified fluid over an obstacle will produce an oscillation in which buoyancy is the restoring force, called a gravity wave. For disturbances of this scale, the atmosphere may be treated as incompressible; and even the linear approximation will explain many of the phenomena observed in the lee of mountains. However, nonlinearities arise in two ways: (1) through the large (scaled) size of the mountain, and (2) from dynamically singular levels in the fluid field. These produce a complicated array of phenomena that present hazards to aircraft and to lee surface areas. If there is no dynamic barrier, these waves can penetrate vertically into the middle atmosphere (30-100 km attitude), where recent observations show them to be of a length scale that must involve the Coriolis force in any modeling. At these altitudes, the amplitude of the waves is very large, and the waves are studied with a view to their potential impact on the projected National Aerospace Plane. This paper presents the results of analyses and state-of-the-art numerical simulations, validated where possible by observational data.

  5. Photoconductivity and bleaching of trapped electrons at 770C in irradiated methylcyclohexane

    International Nuclear Information System (INIS)

    Dolivo, G.; Gaeumann, T.

    1977-01-01

    The influence of the wavelength and intensity of the bleaching radiation on the thermoluminescence, thermoconductivity, optical absorption and photoconductivity of the methylcyclohexane, protonated and deuterated, was studied. The energy level scheme of the trapped electron in this alkane is very similar to that found in MTHF and 3-MP. The rate of bleaching of the trapped electrons is less in the deuterated product. (U.K.)

  6. Plasmon assisted optical trapping: fundamentals and biomedical applications

    Science.gov (United States)

    Serafetinides, Alexandros A.; Makropoulou, Mersini; Tsigaridas, Georgios N.; Gousetis, Anastasios

    2015-01-01

    The field of optical trapping has dramatically grown due to implementation in various arenas including physics, biology, medicine and nanotechnology. Certainly, optical tweezers are an invaluable tool to manipulate a variation of particles, such as small dielectric spheres, cells, bacteria, chromosomes and even genes, by highly focused laser beams through microscope. As the main disadvantage of the conventional optical trapping systems is the diffraction limit of the incident light, plasmon assisted nanotrapping is reported as a suitable technique for trapping sub-wavelength metallic or dielectric particles. In this work, firstly, we report briefly on the basic theory of plasmon excitation, focusing on the interaction of nanoscale metallic structures with laser light. Secondly, experimental and numerical simulation results are also presented, demonstrating enhancement of the trapping efficiency of glass or SiO2 substrates, coated with Au and Ag nanostructures, with or without nanoparticles. The optical forces were calculated by measuring the particle's escape velocity calibration method. Finally, representative applications of plasmon assisted optical trapping are reviewed, from cancer therapeutics to fundamental biology and cell nanosurgery.

  7. Magnetic multipole induced zero-rotation frequency bounce-resonant loss in a Penning–Malmberg trap used for antihydrogen trapping

    CERN Document Server

    Andresen, G B; Bray, C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Gill, D R; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jørgensen, L V; Kerrigan, S J; Keller, J; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2009-01-01

    In many antihydrogen trapping schemes, antiprotons held in a short-well Penning–Malmberg trap are released into a longer well. This process necessarily causes the bounce-averaged rotation frequency $\\overline{\\Omega}_r$ of the antiprotons around the trap axis to pass through zero. In the presence of a transverse magnetic multipole, experiments and simulations show that many antiprotons (over 30% in some cases) can be lost to a hitherto unidentified bounce-resonant process when $\\overline{\\Omega}_r$ is close to zero.

  8. Nonlinear Simulations of Trapped Electron Mode Turbulence in Low Magnetic Shear Stellarators

    Science.gov (United States)

    Faber, B. J.; Pueschel, M. J.; Terry, P. W.; Hegna, C. C.

    2017-10-01

    Optimized stellarators, like the Helically Symmetric eXperiment (HSX), often operate with small global magnetic shear to avoid low-order rational surfaces and magnetic islands. Nonlinear, flux-tube gyrokinetic simulations of density-gradient-driven Trapped Electron Mode (TEM) turbulence in HSX shows two distinct spectral fluctuation regions: long-wavelength slab-like TEMs localized by global magnetic shear that extend along field lines and short-wavelength TEMs localized by local magnetic shear to a single helical bad curvature region. The slab-like TEMs require computational domains significantly larger than one poloidal turn and are computationally expensive, making turbulent optimization studies challenging. A computationally more efficient, zero-average-magnetic-shear approximation is shown to sufficiently describe the relevant nonlinear physics and replicate finite-shear computations, and can be exploited in quasilinear models based on linear gyrokinetics as a feasible optimization tool. TEM quasilinear heat fluxes are computed with the zero-shear approximation and compared to experimentally-relevant nonlinear gyrokinetic TEM heat fluxes for HSX. Research supported by U.S. DoE Grants DE-FG02-99ER54546, DE-FG02-93ER54222 and DE-FG02-89ER53291.

  9. Charged particle traps II applications

    CERN Document Server

    Werth, Günther; Major, Fouad G

    2009-01-01

    This, the second volume of Charged Particle Traps, is devoted to applications, complementing the first volume’s comprehensive treatment of the theory and practice of charged particle traps, their many variants and refinements. In recent years, applications of far reaching importance have emerged ranging from the ultra-precise mass determinations of elementary particles and their antiparticles and short-lived isotopes, to high-resolution Zeeman spectroscopy on multiply-charged ions, to microwave and optical spectroscopy, some involving "forbidden" transitions from metastable states of such high resolution that optical frequency standards are realized by locking lasers to them. Further the potential application of trapped ions to quantum computing is explored, based on the extraordinary quantum state coherence made possible by the particle isolation. Consideration is given to the Paul and Penning traps as potential quantum information processors.

  10. The Statecraft of Singapore's Lee Kuan Yew

    National Research Council Canada - National Science Library

    Toh, K

    1996-01-01

    .... The ejection of Singapore from the Federation led Lee to focus on two strategic goals: the survival of Singapore as an independent state while simultaneously pursuing nation-building under the threats of communism and internal ethnic conflicts...

  11. Optical Forces on Non-Spherical Nanoparticles Trapped by Optical Waveguides

    Science.gov (United States)

    Hasan Ahmed, Dewan; Sung, Hyung Jin

    2011-07-01

    Numerical simulations of a solid-core polymer waveguide structure were performed to calculate the trapping efficiencies of particles with nanoscale dimensions smaller than the wavelength of the trapping beam. A three-dimensional (3-D) finite element method was employed to calculate the electromagnetic field. The inlet and outlet boundary conditions were obtained using an eigenvalue solver to determine the guided and evanescent mode profiles. The Maxwell stress tensor was considered for the calculation of the transverse and downward trapping efficiencies. A particle at the center of the waveguide showed minimal transverse trapping efficiency and maximal downward trapping efficiency. This trend gradually reversed as the particle moved away from the center of the waveguide. Particles with larger surface areas exhibited higher trapping efficiencies and tended to be trapped near the waveguide. Particles displaced from the wave input tended to be trapped at the waveguide surface. Simulation of an ellipsoidal particle showed that the orientation of the major axis along the waveguide's lateral z-coordinate significantly influenced the trapping efficiency. The particle dimensions along the z-coordinate were more critical than the gap distance (vertical displacement from the floor of the waveguide) between the ellipsoid particle and the waveguide. The present model was validated using the available results reported in the literature for different trapping efficiencies.

  12. Observation of Rayleigh - Taylor growth to short wavelengths on Nike

    International Nuclear Information System (INIS)

    Pawley, C.J.; Bodner, S.E.; Dahlburg, J.P.; Obenschain, S.P.; Schmitt, A.J.; Sethian, J.D.; Sullivan, C.A.; Gardner, J.H.; Aglitskiy, Y.; Chan, Y.; Lehecka, T.

    1999-01-01

    The uniform and smooth focal profile of the Nike KrF laser [S. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to ablatively accelerate 40 μm thick polystyrene planar targets with pulse shaping to minimize shock heating of the compressed material. The foils had imposed small-amplitude sinusoidal wave perturbations of 60, 30, 20, and 12.5 μm wavelength. The shortest wavelength is near the ablative stabilization cutoff for Rayleigh - Taylor growth. Modification of the saturated wave structure due to random laser imprint was observed. Excellent agreement was found between the two-dimensional simulations and experimental data for most cases where the laser imprint was not dominant. copyright 1999 American Institute of Physics

  13. Investigation of concept of efficient short wavelength laser. Final technical report, April 1, 1977-July 31, 1979

    International Nuclear Information System (INIS)

    Piper, L.G.; Krech, R.H.; Pugh, E.; Taylor, R.L.

    1979-01-01

    The feasibility of producing an efficient, short wavelength, storage laser for ICF driven applications by making use of certain state-specific reactions of exoergic azide compounds has been investigated. The ultraviolet (approx. 300 nm) photolysis of gaseous ClN 3 produced prompt emission in the red, which was attributed to the efficient formation of ClN(b 1 Σ + ) with subsequent ClN(X reverse arrow b) fluorescence. Based on these results, a small-scale laser demonstration experiment was constructed using short duration Xe flash lamps as the photolytic source. The results of this latter experiment were negative. The most plausible explanation was that the flash lamps provided sufficient far-uv radiation to dissociate and/or ionize the ClN(b) produced in the primary photolytic step. In parallel, limited experiments were performed on the rapid pyrolysis of a solid, ionic azide, NaN 3 , to produce gaseous N 3 radicals and subsequent production of triplet N 2 molecules

  14. Triniti daripada Perspektif Taoisme: Analisis Pemikiran Jung Young Lee

    Directory of Open Access Journals (Sweden)

    ZURAIZA HUSIN

    2016-06-01

    Full Text Available Jung Young Lee is a Korean-born theologian who employs creatively the doctrine of the Trinity from an Asian worldview. This article aims to analyze Lee’s approaches of the Trinity with the Yin-Yang symbolism. The main reference is based on the book written by him entitled ‘The Trinity in Asian Perspective (1996’. Lee has turned his attention to the topic of Trinity through the lens of the culture and thought patterns of his own milieu. One of the leading point in presenting Yin-Yang principle as Trinitarian thinking, Lee examines the interpretation of the term “in” in the Bible, "Believe me that I am in the Father and the Father is in me" (John 14:11. The statement leads to the point that Yin and Yang cannot exist without each other because relationality is given priority than individuality. The idea is based on the terminology of ‘both/and’. So, ‘and’ indicates a Trinitarian statement, there is interdependence and unification. With reference to Trinity, the Father and the Son are One because of ‘and’. In addition, the same concept implements to the Holy Spirit. Lee views ‘and’ is not only a linking principle in both-and thinking but also the principle that is ‘between’ two. When ‘two’ exists, the third also exist between them. Based on the idea of ‘middle’, represents the connecting element between two, which contributes for the existence of the Third. Accordingly, the Spirit is the third element in the Trinity relationship.

  15. Comparative genomics and stx phage characterization of LEE-negative Shiga toxin-producing Escherichia coli

    Directory of Open Access Journals (Sweden)

    Susan Renee Steyert

    2012-11-01

    Full Text Available Infection by Escherichia coli and Shigella species are among the leading causes of death due to diarrheal disease in the world. Shiga toxin producing Escherichia coli (STEC that do not encode the locus of enterocyte effacement (LEE-negative STEC often possess Shiga toxin gene variants and have been isolated from humans and a variety of animal sources. In this study, we compare the genomes of nine LEE-negative STEC harboring various stx alleles with four complete reference LEE-positive STEC isolates. Compared to a representative collection of prototype E. coli and Shigella isolates representing each of the pathotypes, the whole genome phylogeny demonstrated that these isolates are diverse. Whole genome comparative analysis of the 13 genomes revealed that in addition to the absence of the LEE pathogenicity island, phage encoded genes including non-LEE encoded effectors, were absent from all nine LEE-negative STEC genomes. Several plasmid-encoded virulence factors reportedly identified in LEE-negative STEC isolates were identified in only a subset of the nine LEE-negative isolates further confirming the diversity of this group. In combination with whole genome analysis, we characterized the lambdoid phages harboring the various stx alleles and determined their genomic insertion sites. Although the integrase gene sequence corresponded with genomic location, it was not correlated with stx variant, further highlighting the mosaic nature of these phages. The transcription of these phages in different genomic backgrounds was examined. Expression of the Shiga toxin genes, stx1 and/or stx2, as well as the Q genes, were examined with quantitative reverse transcriptase polymerase chain reaction (qRT-PCR assays. A wide range of basal and induced toxin induction was observed. Overall, this is a first significant foray into the genome space of this unexplored group of emerging and divergent pathogens.

  16. Short communication. Incidence of the OLIPE mass-trapping on olive non-target arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Porcel, M.; Ruano, F.; Sanllorente, O.; Caballero, J. A.; Campos, M.

    2009-07-01

    Due to the widespread of mass-trapping systems for Bactrocera oleae (Gmelin) (Diptera: Tephritidae) control in organic olive cropping, an assessment of the impact on arthropods of the olive agroecosystem was undertaken for the OLIPE trap type. The sampling was carried out in Los Pedroches valley (Cordoba, southern Spain) in three different organic orchard sites. Six OLIPE traps baited with diammonium phosphate were collected from each site (18 in total) from July to November 2002 every 15 days on average. Additionally, in the latest sampling dates, half the traps were reinforced with pheromone to assess its impact on non-target arthropods. From an average of 43.0 catches per trap (cpt) of non-target arthropods during the whole sampling period, the highest number of captures corresponds to the Order Diptera (that represents a 68.5%), followed distantly by the family Formicidae (12.9%) and the Order Lepidoptera (10.4%). Besides the impact on ant populations, other beneficial groups were recorded such as parasitoids (Other Hymenoptera: 2.6%) and predators (Araneae: 1.0%; Neuroptera s.l.: 0.4%). Concerning the temporal distribution of catches, total captures peaked on July and had a slight increase at the beginning of autumn. No significant differences were observed between traps with and without pheromone. The results evidence that a considerable amount of non-specific captures could be prevented by improving the temporal planning of the mass-trapping system. (Author) 25 refs.

  17. Quantitative optical trapping and optical manipulation of micro-sized objects

    Directory of Open Access Journals (Sweden)

    Rania Sayed

    2017-10-01

    Full Text Available An optical tweezers technique is used for ultraprecise micromanipulation to measure positions of micrometer scale objects with a precision down to the nanometer scale. It consists of a high performance research microscope with motorized scanning stage and sensitive position detection system. Up to 10 traps can be used quasi-simultaneously. Non photodamage optical trapping of Escherichia coli (E. coli bacteria cells of 2 µm in length, as an example of motile bacteria, has been shown in this paper. Also, efficient optical trapping and rotation of polystyrene latex particles of 3 µm in diameter have been studied, as an optical handle for the pick and place of other tiny objects. A fast galvoscanner is used to produce multiple optical traps for manipulation of micro-sized objects and optical forces of these trapped objects quantified and measured according to explanation of ray optics regime. The diameter of trapped particle is bigger than the wavelength of the trapping laser light. The force constant (k has been determined in real time from the positional time series recorded from the trapped object that is monitored by a CCD camera through a personal computer.

  18. Practical Improvements to the Lee-More Conductivity Near the Metal-Insulator Transition

    International Nuclear Information System (INIS)

    Desjarlais, Michael P.

    2000-01-01

    The wide-range conductivity model of Lee and More is modified to allow better agreement with recent experimental data and theories for dense plasmas in the metal-insulator transition regime. Modifications primarily include a new ionization equilibrium model, consisting of a smooth blend between single ionization Saha (with a pressure ionization correction) and the generic Thomas-Fermi ionization equilibrium, a more accurate treatment of electron-neutral collisions using a polarization potential, and an empirical modification to the minimum allowed collision time. These simple modifications to the Lee-More algorithm permit a more accurate modeling of the physics near the metal-insulator transition, while preserving the generic Lee-More results elsewhere

  19. Practical improvements to the Lee-More conductivity near the metal-insulator transition

    International Nuclear Information System (INIS)

    Desjarlais, M.P.

    2001-01-01

    The wide-range conductivity model of Lee and More is modified to allow better agreement with recent experimental data and theories for dense plasmas in the metal-insulator transition regime. Modifications primarily include a new ionization equilibrium model, consisting of a smooth blend between single ionization Saha (with a pressure ionization correction) and the generic Thomas-Fermi ionization equilibrium, a more accurate treatment of electron-neutral collisions using a polarization potential, and an empirical modification to the minimum allowed collision time. These simple modifications to the Lee-More algorithm permit a more accurate modeling of the physics near the metal-insulator transition, while preserving the generic Lee-More results elsewhere. (orig.)

  20. Optimization of a miniature short-wavelength infrared objective optics of a short-wavelength infrared to visible upconversion layer attached to a mobile-devices visible camera

    Science.gov (United States)

    Kadosh, Itai; Sarusi, Gabby

    2017-10-01

    The use of dual cameras in parallax in order to detect and create 3-D images in mobile devices has been increasing over the last few years. We propose a concept where the second camera will be operating in the short-wavelength infrared (SWIR-1300 to 1800 nm) and thus have night vision capability while preserving most of the other advantages of dual cameras in terms of depth and 3-D capabilities. In order to maintain commonality of the two cameras, we propose to attach to one of the cameras a SWIR to visible upconversion layer that will convert the SWIR image into a visible image. For this purpose, the fore optics (the objective lenses) should be redesigned for the SWIR spectral range and the additional upconversion layer, whose thickness is mobile device visible range camera sensor (the CMOS sensor). This paper presents such a SWIR objective optical design and optimization that is formed and fit mechanically to the visible objective design but with different lenses in order to maintain the commonality and as a proof-of-concept. Such a SWIR objective design is very challenging since it requires mimicking the original visible mobile camera lenses' sizes and the mechanical housing, so we can adhere to the visible optical and mechanical design. We present in depth a feasibility study and the overall optical system performance of such a SWIR mobile-device camera fore optics design.

  1. Improved performance of P3HT:PCBM solar cells by both anode modification and short-wavelength energy utilization using Tb(aca)3phen

    International Nuclear Information System (INIS)

    Zhuo Zu-Liang; Wang Yong-Sheng; He Da-Wei; Fu Ming

    2014-01-01

    The performance of P3HT:PCBM solar cells was improved by anode modification using spin-coated Tb(aca) 3 phen ultrathin films. The modification of the Tb(aca) 3 phen ultrathin film between the indium tin oxide (ITO) anode and the PE-DOT:PSS layer resulted in a maximum power conversion efficiency (PCE) of 2.99% compared to 2.66% for the reference device, which was due to the increase in the short-circuit current density (J sc ). The PCE improvement could be attributed to the short-wavelength energy utilization and the optimized morphology of the active layers. Tb(aca) 3 phen with its strong down-conversion luminescence properties is suitable for the P3HT:PCBM blend active layer, and the absorption region of the ternary blend films is extended into the near ultraviolet region. Furthermore, the crystallization and the surface morphology of P3HT:PCBM films were improved with the Tb(aca) 3 phen ultrathin film. The ultraviolent—visible absorption spectra, atomic force microscope (AFM), and X-ray diffraction (XRD) of the films were investigated. Both anode modification and short-wavelength energy utilization using Tb(aca) 3 phen in P3HT:PCBM solar cells led to about a 12% PCE increase. (interdisciplinary physics and related areas of science and technology)

  2. Spectroscopy of a Synthetic Trapped Ion Qubit

    Science.gov (United States)

    Hucul, David; Christensen, Justin E.; Hudson, Eric R.; Campbell, Wesley C.

    2017-09-01

    133Ba+ has been identified as an attractive ion for quantum information processing due to the unique combination of its spin-1 /2 nucleus and visible wavelength electronic transitions. Using a microgram source of radioactive material, we trap and laser cool the synthetic A =133 radioisotope of barium II in a radio-frequency ion trap. Using the same, single trapped atom, we measure the isotope shifts and hyperfine structure of the 62P1 /2↔62S1 /2 and 62P1 /2↔52D3 /2 electronic transitions that are needed for laser cooling, state preparation, and state detection of the clock-state hyperfine and optical qubits. We also report the 62P1 /2↔52D3 /2 electronic transition isotope shift for the rare A =130 and 132 barium nuclides, completing the spectroscopic characterization necessary for laser cooling all long-lived barium II isotopes.

  3. Loading an Optical Trap with Diamond Nanocrystals Containing Nitrogen-Vacancy Centers from a Surface

    Science.gov (United States)

    Hsu, Jen-Feng; Ji, Peng; Dutt, M. V. Gurudev; D'Urso, Brian R.

    2015-03-01

    We present a simple and effective method of loading particles into an optical trap. Our primary application of this method is loading photoluminescent material, such as diamond nanocrystals containing nitrogen-vacancy (NV) centers, for coupling the mechanical motion of the trapped crystal with the spin of the NV centers. Highly absorptive material at the trapping laser frequency, such as tartrazine dye, is used as media to attach nanodiamonds and burn into a cloud of air-borne particles as the material is swept near the trapping laser focus on a glass slide. Particles are then trapped with the laser used for burning or transferred to a second laser trap at a different wavelength. Evidence of successful loading diamond nanocrystals into the trap presented includes high sensitivity of the photoluminecscence (PL) to the excitation laser and the PL spectra of the optically trapped particles

  4. Tim Berners-Lee, World Wide Web inventor

    CERN Multimedia

    1998-01-01

    The "Internet, Web, What's next?" conference on 26 June 1998 at CERN: Tim Berners-Lee, inventor of the World Wide Web and Director of the W3C, explains how the Web came to be and gave his views on the future.

  5. Alternative implementation of the chaotic Chen-Lee system

    International Nuclear Information System (INIS)

    Sheu, L.-J.; Tam, L.-M.; Chen, H.-K.; Lao, S.-K.

    2009-01-01

    The chaotic Chen-Lee system was developed with a formalism based on the Euler equations for the motion of a rigid body. It was proved that this system is the governing set of equations for gyro motion with feedback control. Recently, studies were conducted to explore the dynamic behavior of this system, including fractional order behavior, the generation of hyperchaos and perturbation analysis, control and anti-control of chaos, synchronization, etc. In this study, we further explore (1) the stability of the equilibrium points and (2) the implementation of an electronic circuit using the Chen-Lee system. It is shown that not only is this system related to gyro motion but can also be applied to electronic circuits for encryption purposes.

  6. Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection.

    Science.gov (United States)

    Cheng, Rui; Xia, Li

    2016-11-15

    It is shown that for weak Bragg gratings the logarithmic ratio of reflected intensities at any two wavelengths within the spectrum follows a linear relationship with the Bragg wavelength shift, with a slope proportional to their wavelength spacing. This finding is exploited to develop a flexible, efficient, and cheap interrogation solution of weak fiber Bragg grating (FBGs), especially ultra-short FBGs, in distributed sensing based on dual-wavelength differential detection. The concept is experimentally studied in both single and distributed sensing systems with ultra-short FBG sensors. The work may form the basis of new and promising FBG interrogation techniques based on detecting discrete rather than continuous spectra.

  7. Polarisation-preserving photon frequency conversion from a trapped-ion-compatible wavelength to the telecom C-band

    Science.gov (United States)

    Krutyanskiy, V.; Meraner, M.; Schupp, J.; Lanyon, B. P.

    2017-09-01

    We demonstrate polarisation-preserving frequency conversion of single-photon-level light at 854 nm, resonant with a trapped-ion transition and qubit, to the 1550-nm telecom C band. A total photon in / fiber-coupled photon out efficiency of ˜30% is achieved, for a free-running photon noise rate of ˜60 Hz. This performance would enable telecom conversion of 854 nm polarisation qubits, produced in existing trapped-ion systems, with a signal-to-noise ratio greater than 1. In combination with near-future trapped-ion systems, our converter would enable the observation of entanglement between an ion and a photon that has travelled more than 100 km in optical fiber: three orders of magnitude further than the state-of-the-art.

  8. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu

    2014-11-13

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  9. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu; Wu, Ying; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Nayar, Priyanka; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  10. Integrated Visible Photonics for Trapped-Ion Quantum Computing

    Science.gov (United States)

    2017-06-10

    etch to provide a smooth oxide facet, and clearance for fiber positioning for edge input coupling. Integrated Visible Photonics for Trapped-Ion...capability to optically address individual ions at several wavelengths. We demonstrate a dual-layered silicon nitride photonic platform for integration...coherence times, strong coulomb interactions, and optical addressability, hold great promise for implementation of practical quantum information

  11. Measurement and simulation of the pressure ratio between the two traps of double Penning trap mass spectrometers

    International Nuclear Information System (INIS)

    Neidherr, D.; Blaum, K.; Block, M.; Ferrer, R.; Herfurth, F.; Ketelaer, J.; Nagy, Sz.; Weber, C.

    2008-01-01

    Penning traps are ideal tools to perform high-precision mass measurements. For this purpose the cyclotron frequency of the stored charged particles is measured. In case of on-line mass measurements of short-lived nuclides produced at radioactive beam facilities the ions get in general first prepared and cooled by buffer-gas collisions in a preparation trap to reduce their motional amplitudes and are then transported to a precision trap for the cyclotron frequency determination. In modern Penning trap mass spectrometers both traps are placed in the homogeneous region of one superconducting magnet to optimize the transport efficiency. Because the gas pressure inside the precision trap has to be very low in order to minimize the damping of the ion motion caused by collisions with rest gas molecules during the frequency determination, a pumping barrier is installed between both traps. To predict the pressure difference between the two traps in the region of molecular gas flow the motion of each particle can be simulated without consideration of the other particles. Thus, it is possible to calculate the transit probability through a tube of a given geometry. The results are compared with experimentally obtained pressure differences.

  12. Courtland Lee: A Global Advocate for Counseling

    Science.gov (United States)

    Gladding, Samuel T.

    2011-01-01

    Courtland Lee is exemplary in his accomplishments nationally and internationally. His academic achievements are notable in multicultural counseling and social justice. His leadership in counseling has been outstanding with his having served as president of the American Counseling Association, the Association for Multicultural Counseling and…

  13. Photosystem Trap Energies and Spectrally-Dependent Energy-Storage Efficiencies in the Chl d-Utilizing Cyanobacterium, Acaryochloris Marina

    Science.gov (United States)

    Mielke, Steven P.; Kiang, Nancy Y.; Blankenship, Robert E.; Mauzerall, David

    2012-01-01

    Acaryochloris marina is the only species known to utilize chlorophyll (Chl) d as a principal photopigment. The peak absorption wavelength of Chl d is redshifted approx. 40 nm in vivo relative to Chl a, enabling this cyanobacterium to perform oxygenic phototrophy in niche environments enhanced in far-red light. We present measurements of the in vivo energy-storage (E-S) efficiency of photosynthesis in A. marina, obtained using pulsed photoacoustics (PA) over a 90-nm range of excitation wavelengths in the red and far-red. Together with modeling results, these measurements provide the first direct observation of the trap energies of PSI and PSII, and also the photosystem-specific contributions to the total E-S efficiency. We find the maximum observed efficiency in A. marina (40+/-1% at 735 nm) is higher than in the Chl a cyanobacterium Synechococcus leopoliensis (35+/-1% at 690 nm). The efficiency at peak absorption wavelength is also higher in A. marina (36+/-1% at 710 nm vs. 31+/-1% at 670 nm). In both species, the trap efficiencies are approx. 40% (PSI) and approx. 30% (PSII). The PSI trap in A. marina is found to lie at 740+/-5 nm, in agreement with the value inferred from spectroscopic methods. The best fit of the model to the PA data identifies the PSII trap at 723+/-3 nm, supporting the view that the primary electron-donor is Chl d, probably at the accessory (ChlD1) site. A decrease in efficiency beyond the trap wavelength, consistent with uphill energy transfer, is clearly observed and fit by the model. These results demonstrate that the E-S efficiency in A. marina is not thermodynamically limited, suggesting that oxygenic photosynthesis is viable in even redder light environments.

  14. Nooruslikud juubilarid: fotokelder Lee 20 ja fotomuuseum 30 / Mall Parmas, Betty Ester-Väljaots

    Index Scriptorium Estoniae

    Parmas, Mall

    2013-01-01

    Peeter Toominga algatusel 1992. aastal asutatud Lee fotokeldrist. Loetletud fotomuuseumis oma töid eksponeerinud fotograafid. Ülevaatenäitus "Lee fotokelder 20" 17. jaanuarist 20. märtsini, koostaja Betty Ester-Väljaots

  15. Synchronization and anti-synchronization coexist in Chen-Lee chaotic systems

    International Nuclear Information System (INIS)

    Chen, J.-H.; Chen, H.-K.; Lin, Y.-K.

    2009-01-01

    This study demonstrates that synchronization and anti-synchronization can coexist in Chen-Lee chaotic systems by direct linear coupling. Based on Lyapunov's direct method, a linear controller was designed to assure that two different types of synchronization can simultaneously be achieved. Further, the hybrid projective synchronization of Chen-Lee chaotic systems was studied using a nonlinear control scheme. The nonlinear controller was designed according to the Lyapunov stability theory to guarantee the hybrid projective synchronization, including synchronization, anti-synchronization, and projective synchronization. Finally, numerical examples are presented in order to illustrate the proposed synchronization approach.

  16. Economist Innovation Award for Tim Berners-Lee

    CERN Multimedia

    2003-01-01

    In September, Tim Berners-Lee, who invented the World Wide Web at CERN and is now Director of the W3C World Wide Web Consortium, received the 2nd Economist Annual Innovation Award in Computing. With the award The Economist, a British weekly newspaper, recognises individuals responsible for breakthroughs in Bioscience, Computing, Energy and the Environment, and Telecommunications that have a profound impact on industry. A fifth award is given in a special "No Boundaries" category, observing innovation that transcends industries. Candidates for the awards are proposed by The Economist readers and writers, and by a group of judges. Tim Berners-Lee received the Computing award for his global hypertext project, to be known as the World Wide Web, which "forever altered the way information is shared" and is a huge contribution to the efficiency of the scientific community. Based on a programme for storing information using random associations called "Enquire", it...

  17. Geometric light trapping with a V-trap for efficient organic solar cells

    KAUST Repository

    Kim, Soo Jin

    2013-03-14

    The efficiency of today’s most efficient organic solar cells is primarily limited by the ability of the active layer to absorb all the sunlight. While internal quantum efficiencies exceeding 90% are common, the external quantum efficiency rarely exceeds 70%. Light trapping techniques that increase the ability of a given active layer to absorb light are common in inorganic solar cells but have only been applied to organic solar cells with limited success. Here, we analyze the light trapping mechanism for a cell with a V-shape substrate configuration and demonstrate significantly improved photon absorption in an 5.3%-efficient PCDTBT:PC70BM bulk heterojunction polymer solar cell. The measured short circuit current density improves by 29%, in agreement with model predictions, and the power conversion efficiency increases to 7.2%, a 35% improvement over the performance in the absence of a light trap.

  18. A UV pre-ionized dual-wavelength short-pulse high-power CO{sub 2} laser facility for laser particle acceleration research

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahim, N A; Mouris, J F; Davis, R W

    1994-12-01

    In this report we describe the Chalk River dual-wavelength, short-pulse, single-mode, high-power CO{sub 2} laser facility for research in laser particle acceleration and CANDU materials modifications. The facility is designed and built around UV-preionized transversely-excited atmospheric-pressure (TEA) Lumonics CO{sub 2} laser discharge modules. Peak focussed power densities of up to 2 x 10{sup 14} W/cm{sup 2} in 500 ps pulses have been obtained. (author). 10 refs., 9 figs.

  19. Construction of a high resolution microscope with conventional and holographic optical trapping capabilities.

    Science.gov (United States)

    Butterfield, Jacqualine; Hong, Weili; Mershon, Leslie; Vershinin, Michael

    2013-04-22

    High resolution microscope systems with optical traps allow for precise manipulation of various refractive objects, such as dielectric beads (1) or cellular organelles (2,3), as well as for high spatial and temporal resolution readout of their position relative to the center of the trap. The system described herein has one such "traditional" trap operating at 980 nm. It additionally provides a second optical trapping system that uses a commercially available holographic package to simultaneously create and manipulate complex trapping patterns in the field of view of the microscope (4,5) at a wavelength of 1,064 nm. The combination of the two systems allows for the manipulation of multiple refractive objects at the same time while simultaneously conducting high speed and high resolution measurements of motion and force production at nanometer and piconewton scale.

  20. Studies of short-lived radicals in the. gamma. -irradiated aqueous solution of uridine-5'-monophosphate by the spin-trapping method and the liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Kominami, S [Hiroshima Univ. (Japan); Rokushika, S; Hatano, H

    1976-12-01

    An aerated aqueous solution of uridine-5'-monophosphate was ..gamma..-irradiated with 2-methyl-2-nitrosopropane as a spin-trapping reagent. Liquid chromatography was applied to separate the stable nitroxide radicals in the irradiated solution. The radicals were detected by U.V. and e.s.r. spectrometry. The e.s.r. detection showed four peaks in the chromatogram. The orcinol method for detection of the residual sugar moieties was applied before and after reduction of the base to determine the existence of the 5,6-double bond for the molecules in each fraction. From the combined results of the e.s.r. and orcinol methods, the short-lived radicals which were trapped by 2-methyl-2-nitrosopropane were identified as radicals of N-1 and C-6 positions of the base moiety and t-butyl radicals which was the radiolytic product of the trapping reagent.

  1. Long-wavelength microinstabilities in toroidal plasmas

    International Nuclear Information System (INIS)

    Tang, W.M.; Rewoldt, G.

    1993-01-01

    Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Res. (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 29] L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities

  2. [Lee Jungsook, a Korean independence activist and a nurse during the Japanese colonial period].

    Science.gov (United States)

    Kim, Sook Young

    2015-04-01

    This article examines the life of Lee Jungsook, a Korean nurse, as a independence activist during the Japanese colonial period. Lee Jungsook(1896-1950) was born in Bukchung in Hamnam province. She studied at Chungshin girl's high school and worked at Severance hospital. The characteristics and culture of her educational background and work place were very important factors which influenced greatly the life of Lee Jungsook. She learned independent spirit and nationalism from Chungshin girls' high school and worked as nurse at the Severance hospital which were full of intense aspiration for Korea's independence. Many of doctors, professors and medical students were participated in the 3.1 Independence Movement. Lee Jungsook was a founding member of Hyulsungdan who tried to help the independence activists in prison and their families and worked as a main member of Korean Women's Association for Korean Independece and Kyungsung branch of the Korean Red Cross. She was sent to jail by the Japanese government for her independence activism. After being released after serving two years confinement, she worked for the Union for Women's Liberation as a founding member. Lee Joungsook was a great independence activist who had a nursing care spirit as a nurse.

  3. Test procedure for the Master-Lee and the modified Champion four inch hydraulic cutters

    International Nuclear Information System (INIS)

    Crystal, J.B.

    1995-01-01

    The Master-Lee and the modified Champion 4 Inch hydraulic cutters are being retested to gather and document information related to the following: determine if the Master-Lee cutters will cut the trunnions of an Aluminum fuel canister and a Stainless Steel fuel canister; determine if the Master-Lee cutters will cut 1 1/2 inch diameter fire hose; determine if the modified Champion 4 inch blade will cut sections of piping; and determine the effectiveness of the centering device for the Champion 4 Inch cutters. Determining the limitations of the hydraulic cutter will aid in the process of debris removal in the K-Basin. Based on a previous test, the cutters were returned to the manufacturer for modifications. The modifications to the Champion 4 Inch Cutter and further testing of the Master-Lee Cutter are the subjects of these feature tests

  4. Parametric study of the fractional-order Chen-Lee system

    International Nuclear Information System (INIS)

    Tam, L.M.; Tou, W.M.S.

    2008-01-01

    The dynamics of fractional-order systems have attracted a great deal of attention in recent years. In this paper, the effects of parameter changes on the dynamics of the fractional-order Chen-Lee system were studied numerically. The parameter ranges used were relatively broad. The order used for the system was fixed at 2.7 (q 1 = q 2 = q 3 = 0.9). The system displays rich dynamic behaviors, such as a fixed point, periodic motion (including period-3 motion), chaotic motion, and transient chaos. The chaotic motion identified was validated by the confirmation of a positive Lyapunov exponent. Period-doubling routes to chaos in the fractional-order Chen-Lee system were also found

  5. Lee Acculturation Dream Scale for Korean-American college students.

    Science.gov (United States)

    Lee, Sang Bok

    2005-04-01

    This study examined acculturation as represented in dream narratives of 165 Korean immigrant college students living in the USA. A total of 165 dreams were collected and evaluated using the Lee Acculturation Dream Scale, for which locations of dream contents were coded. 39% of the dreams took place in South Korea, while 38% were in the USA. Also, 16% of the dreams included both locations, whereas 7% had no specific dream location. The dreams contained overlapping dream messages, images, scenes, and interactions in both South Korea and the USA. A two-sample t test on the mean scores of the Lee Acculturation Dream Scale indicated no significant difference between men and women.

  6. Parametric study of the fractional-order Chen-Lee system

    Energy Technology Data Exchange (ETDEWEB)

    Tam, L.M. [Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Av. Padre Tomas Pereira S.J., Taipa, Macau (China)], E-mail: fstlmt@umac.mo; Tou, W.M.S. [Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Av. Padre Tomas Pereira S.J., Taipa, Macau (China)

    2008-08-15

    The dynamics of fractional-order systems have attracted a great deal of attention in recent years. In this paper, the effects of parameter changes on the dynamics of the fractional-order Chen-Lee system were studied numerically. The parameter ranges used were relatively broad. The order used for the system was fixed at 2.7 (q{sub 1} = q{sub 2} = q{sub 3} = 0.9). The system displays rich dynamic behaviors, such as a fixed point, periodic motion (including period-3 motion), chaotic motion, and transient chaos. The chaotic motion identified was validated by the confirmation of a positive Lyapunov exponent. Period-doubling routes to chaos in the fractional-order Chen-Lee system were also found.

  7. Short wavelength infrared optical windows for evaluation of benign and malignant tissues

    Science.gov (United States)

    Sordillo, Diana C.; Sordillo, Laura A.; Sordillo, Peter P.; Shi, Lingyan; Alfano, Robert R.

    2017-04-01

    There are three short wavelength infrared (SWIR) optical windows outside the conventionally used first near-infrared (NIR) window (650 to 950 nm). They occur in the 1000- to 2500-nm range and may be considered second, third, and fourth NIR windows. The second (1100 to 1350 nm) and third windows (1600 to 1870 nm) are now being explored through label-free linear and multiphoton imaging. The fourth window (2100 to 2350 nm) has been mostly ignored because of water absorption and the absence of sensitive detectors and ultrafast lasers. With the advent of new technology, use of window IV is now possible. Absorption and scattering properties of light through breast and prostate cancer, bone, lipids, and intralipid solutions at these windows were investigated. We found that breast and prostate cancer and bone have longer total attenuation lengths at NIR windows III and IV, whereas fatty tissues and intralipid have longest lengths at windows II and III. Since collagen is the major chromophore at 2100 and 2350 nm, window IV could be especially valuable in evaluating cancers and boney tissues, whereas windows II and III may be more useful for tissues with high lipid content. SWIR windows may be utilized as additional optical tools for the evaluation of collagen in tissues.

  8. Action spectrum for photobleaching of human lenses by short wavelength visible irradiation

    DEFF Research Database (Denmark)

    Kessel, Line; Larsen, Michael

    2015-01-01

    transmission with increasing laser irradiation. CONCLUSIONS: For a 75 year old lens an effect corresponding to elimination of 15 years or more of optical ageing was obtained. This study of the spectral characteristics and intensity needed to bleach the human lens with single-photon laser effects found...... an action-spectrum peak at 420 nm tailing gradually off toward longer wavelengths and more steeply toward shorter wavelengths. The results may be used to guide experiments with two-photon bleaching....

  9. Disorder improves nanophotonic light trapping in thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paetzold, U. W., E-mail: u.paetzold@fz-juelich.de; Smeets, M.; Meier, M.; Bittkau, K.; Merdzhanova, T.; Smirnov, V.; Carius, R.; Rau, U. [IEK5—Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Michaelis, D.; Waechter, C. [Fraunhofer Institut für Angewandte Optik und Feinmechanik, Albert Einstein Str. 7, D-07745 Jena (Germany)

    2014-03-31

    We present a systematic experimental study on the impact of disorder in advanced nanophotonic light-trapping concepts of thin-film solar cells. Thin-film solar cells made of hydrogenated amorphous silicon were prepared on imprint-textured glass superstrates. For periodically textured superstrates of periods below 500 nm, the nanophotonic light-trapping effect is already superior to state-of-the-art randomly textured front contacts. The nanophotonic light-trapping effect can be associated to light coupling to leaky waveguide modes causing resonances in the external quantum efficiency of only a few nanometer widths for wavelengths longer than 500 nm. With increasing disorder of the nanotextured front contact, these resonances broaden and their relative altitude decreases. Moreover, overall the external quantum efficiency, i.e., the light-trapping effect, increases incrementally with increasing disorder. Thereby, our study is a systematic experimental proof that disorder is conceptually an advantage for nanophotonic light-trapping concepts employing grating couplers in thin-film solar cells. The result is relevant for the large field of research on nanophotonic light trapping in thin-film solar cells which currently investigates and prototypes a number of new concepts including disordered periodic and quasi periodic textures.

  10. Pear distillates from pear juice concentrate: effect of lees in the aromatic composition.

    Science.gov (United States)

    García-Llobodanin, L; Achaerandio, I; Ferrando, M; Güell, C; López, F

    2007-05-02

    Pear juice obtained from pear concentrate was fermented at room temperature using Saccharomyces cerevisiae (BDX, ENOFERM, France) as the fermentation microorganism. During the fermentation process, total sugars were measured. High performance liquid chromatography analyses were used to monitor the fermentation process and to characterize the pear wine. The pear wine obtained was distilled with its lees using three different equipments: a glass alembic (a glass pot still coupled to a glass column), a copper alembic, and a glass alembic with the addition of 5 g/L of copper shavings to the pot still. The same distillations were repeated with the wine without its lees (separated by decanting). Several distillation fractions were collected, up to a total of 500 mL of distillate. Gas chromatography was used to identify and quantify the volatile compounds in each fraction, and the methanol and ethanol contents. Based on these results, the heart fraction was defined. ANOVA tests were performed on the heart fractions to determine quantitative differences between some volatile compounds depending on the equipment used and the presence or absence of the wine lees. From this series of ANOVA tests, it can be concluded that the concentrations of the compounds that are considered to have a negative effect on the quality of the distillates (methanol, ethyl acetate, furfural) decrease or do not change when they are distilled in the presence of lees and in the copper alembic. In addition, the concentrations of the positive compounds (ethyl decanoate and ethyl-2-trans-4-cis-decadienoate) increase in the presence of lees for all of the equipment tested. So, it can be assumed that the distillation of pear wine with its lees in copper alembic leads to a better quality product.

  11. Novel phenomena in clusters irradiated by short-wavelength free-electron lasers

    International Nuclear Information System (INIS)

    Fukuzawa, Hironobu; Ueda, Kiyoshi

    2017-01-01

    By electron spectroscopy, we investigated various phenomena that are caused by the irradiation of extreme ultraviolet (EUV) and X-ray free-electron laser (FEL) pulses on rare-gas clusters. The results for the Ne clusters, which were irradiated by EUVFEL pulses at a photon energy of 20.3 eV below the ionization threshold, illustrate that novel interatomic processes yield low-energy electrons. The results for the Xe clusters, irradiated by EUVFEL pulses at a photon energy of 24.3 eV above the threshold, illustrate that nanoplasma is formed as a result of trapping the photoelectrons and consequently emits low-energy thermal electrons. The results for the Ar clusters irradiated by 5 keV XFEL pulses illustrate that nanoplasma is formed by trapping low-energy Auger electrons and secondary electrons in the tens of fs range, and continuous thermal emission from the plasma occurs in the ps range. (author)

  12. Experimental pseudo-symmetric trap EPSILON

    International Nuclear Information System (INIS)

    Skovoroda, A.A.; Arsenin, V.V.; Dlougach, E.D.; Kulygin, V.M.; Kuyanov, A.Yu.; Timofeev, A.V.; Zhil'tsov, V.A.; Zvonkov, A.V.

    2001-01-01

    Within the framework of the conceptual project 'Adaptive Plasma EXperiment' a trap with the closed magnetic field lines 'Experimental Pseudo-Symmetric trap' is examined. The project APEX is directed at the theoretical and experimental development of physical foundations for stationary thermonuclear reactor on the basis of an alternative magnetic trap with tokamak-level confinement of high β plasma. The fundamental principle of magnetic field pseudosymmetry that should be satisfied for plasma to have tokamak-like confinement is discussed. The calculated in paraxial approximation examples of pseudosymmetric curvilinear elements with poloidal direction of B isolines are adduced. The EPSILON trap consisting of two straight axisymmetric mirrors linked by two curvilinear pseudosymmetric elements is considered. The plasma currents are short-circuited within the curvilinear element what increases the equilibrium β. The untraditional scheme of MHD stabilization of a trap with the closed field lines by the use of divertor inserted into axisymmetric mirror is analyzed. The experimental installation EPSILON-OME that is under construction for experimental check of divertor stabilization is discussed. The possibility of ECR plasma production in EPSILON-OME under conditions of high density and small magnetic field is examined. (author)

  13. Introduction: a short-wavelength-FEL/storage-ring complex

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1984-01-01

    We believe that, in view of the present state of FEL understanding, it is now proper to construct a research facility devoted to the use of coherent radiation and the advancement of FEL physics technology at wavelengths shorter than 1000 A. We show a possible layout of such a facility, which will be referred to as a Coherent xuv Facility (CXF), where research can be conducted on several techniques for generating coherent radiation. Undulators are already well understood and will generate broadly tunable, spatially coherent radiation of bandwidth lambda /Δlambda approx. = 10 2 . A crossed undulator system will extend the undulator capability to include variable polarization. For full coherence, in spatial as well as in longitudinal directions, it is necessary to induce and exploit density modulation in electron beams, as is the case in the transverse optical klystrons (TOKs) and FELs. In TOKs, coherent radiation is generated at harmonics of an input laser frequency, with the electron beam playing the role of a nonlinear medium. Ultimately, FELS would deliver intense, tunable x rays and vuv radiation of extremely narrow spectral width. There are two possible routes to an FEL, one based on feedback by end mirrors, the other based on development of a high-gain, single-pass device. It can be seen, from this paper, that the photon flux increases monotonically, or the wavelength decreases monotonically, as one goes through (1) undulator radiation, (2) TOK radiation, (3) FEL oscillator radiation, to (4) FEL single-pass radiation. Each of these will demand considerable quality development effort. Each will result in photon fluxes of increased value to the users

  14. Surface Plasmon Enhanced Light Trapping in Metal/Silicon Nanobowl Arrays for Thin Film Photovoltaics

    Directory of Open Access Journals (Sweden)

    Ruinan Sun

    2017-01-01

    Full Text Available Enhancing the light absorption in thin film silicon solar cells with nanophotonic and plasmonic structures is important for the realization of high efficiency solar cells with significant cost reduction. In this work, we investigate periodic arrays of conformal metal/silicon nanobowl arrays (MSNBs for light trapping applications in silicon solar cells. They exhibited excellent light-harvesting ability across a wide range of wavelengths up to infrared regimes. The optimized structure (MSNBsH covered by SiO2 passivation layer and hemisphere Ag back reflection layer has a maximal short-circuit density (Jsc 25.5 mA/cm2, which is about 88.8% higher than flat structure counterpart, and the light-conversion efficiency (η is increased two times from 6.3% to 12.6%. The double-side textures offer a promising approach to high efficiency ultrathin silicon solar cells.

  15. Radiative flux calculations at UV and visible wavelengths

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.; Wuebbles, D.J.

    1993-10-01

    A radiative transfer model to calculate the short wavelength fluxes at altitudes between 0 and 80 km has been developed at LLNL. The wavelength range extends from 175--735 nm. This spectral range covers the UV-B wavelength region, 250--350 nm, with sufficient resolution to allow comparison of UV-B measurements with theoretical predictions. Validation studies for the model have been made for both UV-B ground radiation calculations and tropospheric solar radiative forcing calculations for various ozone distributions. These studies indicate that the model produces results which agree well with respect to existing UV calculations from other published models

  16. Comment on 'On higher order corrections to gyrokinetic Vlasov-Poisson equations in the long wavelength limit' [Phys. Plasmas 16, 044506 (2009)

    International Nuclear Information System (INIS)

    Parra, Felix I.; Catto, Peter J.

    2009-01-01

    A recent publication [F. I. Parra and P. J. Catto, Plasma Phys. Controlled Fusion 50, 065014 (2008)] warned against the use of the lower order gyrokinetic Poisson equation at long wavelengths because the long wavelength, radial electric field must remain undetermined to the order the equation is obtained. Another reference [W. W. Lee and R. A. Kolesnikov, Phys. Plasmas 16, 044506 (2009)] criticizes these results by arguing that the higher order terms neglected in the most common gyrokinetic Poisson equation are formally smaller than the terms that are retained. This argument is flawed and ignores that the lower order terms, although formally larger, must cancel without determining the long wavelength, radial electric field. The reason for this cancellation is discussed. In addition, the origin of a nonlinear term present in the gyrokinetic Poisson equation [F. I. Parra and P. J. Catto, Plasma Phys. Controlled Fusion 50, 065014 (2008)] is explained.

  17. Berners-Lee wins inaugural Millennium Technology prize

    CERN Document Server

    2004-01-01

    "World Wide Web inventor Tim Berners-Lee today was named recipient of the first-ever Millennium Technology Prize. The honor, which is accompanied by one million euros, is bestowed by the Finnish Technology Award Foundation as an international acknowledgement of outstanding technological innovation aimed at promoting quality of life and sustainable economic and societal development" (1 page)

  18. Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes

    Science.gov (United States)

    Asahi, Y.; Ishizawa, A.; Watanabe, T.-H.; Tsutsui, H.; Tsuji-Iio, S.

    2014-05-01

    Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger than or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.

  19. Dan Gilmor Column [Berners-Lee and the WWW

    CERN Multimedia

    Gillmore, D

    2002-01-01

    In the keynote speech at the 11th Annual World Wide Web Conference, Tim Berner's Lee said that in the early days of the web, people were worrying about the same thing as today - one company dominating the market and controlling standards (2 pages).

  20. The Statecraft of Lee Kuan Yew, Visionary and Opportunist

    National Research Council Canada - National Science Library

    Thomas, David

    1996-01-01

    ...." "Not so," replied the passenger, Lee Kuan Yew, "Singapore intends to continue to ride along as part of the federation created with Malaysia, Sarawak, and Sabah -- we have no plans for getting off...

  1. Plasmas in compact traps: From ion sources to multidisciplinary research

    Science.gov (United States)

    Mascali, D.; Musumarra, A.; Leone, F.; Galatà, A.; Romano, F. P.; Gammino, S.

    2017-09-01

    In linear (minimum-B) magneto-static traps dense and hot plasmas are heated by electromagnetic radiation in the GHz domain via the Electron Cyclotron Resonance (ECR). The values of plasma density, temperature and confinement times ( n_eτ_i>10^{13} cm ^{-3} s; T_e>10 keV) are similar to the ones of thermonuclear plasmas. The research in this field -devoted to heating and confinement optimization- has been supported by numerical modeling and advanced diagnostics, for probing the plasma especially in a non-invasive way. ECR-based systems are nowadays able to produce extremely intense (tens or hundreds of mA) beams of light ions (p, d, He), and relevant currents of heavier elements (C, O, N) up to heavy ions like Xe, Pb, U. Such beams can be extracted from the trap by a proper electrostatic system. The above-mentioned properties make these plasmas very attractive for interdisciplinary researches also, such as i) nuclear decays rates measurements in stellar-like conditions, ii) energy conversion studies, being exceptional sources of short-wavelength electromagnetic radiation (EUV, X-rays, hard X-rays and gammas, useful in material science and archaeometry), iii) environments allowing precise spectroscopical measurements as benchmarks for magnetized astrophysical plasmas. The talk will give an overview about the state-of-the-art in the field of intense ion sources, and some new perspectives for interdisciplinary research, with a special attention to the developments based at INFN-LNS.

  2. General Robert E. Lee -- Brightest Star in the South

    National Research Council Canada - National Science Library

    Dalton, Kent B

    2006-01-01

    .... Lee's distinctive application of operational art and leadership as the commander of the Army of Northern Virginia, we can discern many lessons which are still pertinent to our commanders at the operational level today...

  3. Correlated evolution of short wavelength sensitive photoreceptor sensitivity and color pattern in Lake Malawi cichlids

    Directory of Open Access Journals (Sweden)

    Michael J. Pauers

    2016-02-01

    Full Text Available For evolutionary ecologists, the holy grail of visual ecology is to establish an unambiguous link between photoreceptor sensitivity, the spectral environment, and the perception of specific visual stimuli (e.g., mates, food, predators, etc.. Due to the bright nuptial colors of the males, and the role female mate choice plays in their evolution, the haplochromine cichlid fishes of the African great lakes are favorite research subjects for such investigations. Despite this attention, current evidence is equivocal; while distinct correlations among photoreceptor sensitivity, photic environment, and male coloration exist in Lake Victorian haplochromines, attempts to find such correlations in Lake Malawian cichlids have failed. Lake Malawi haplochromines have a wide variability in their short-wavelength-sensitive photoreceptors, especially compared to their mid- and long-wavelength-sensitive photoreceptors; these cichlids also vary in the degree to which they express one of three basic color patterns (vertical bars, horizontal stripes, and solid patches of colors, each of which is likely used in a different form of communication. Thus, we hypothesize that, in these fishes, spectral sensitivity and color pattern have evolved in a correlated fashion to maximize visual communication; specifically, ultraviolet sensitivity should be found in vertically-barred species to promote ‘private’ communication, while striped species should be less likely to have ultraviolet sensitivity, since their color pattern carries ‘public’ information. Using phylogenetic independent contrasts, we found that barred species had strong sensitivity to ultraviolet wavelengths, but that striped species typically lacked sensitivity to ultraviolet light. Further, the only variable, even when environmental variables were simultaneously considered, that could predict ultraviolet sensitivity was color pattern. We also found that, using models of correlated evolution, color

  4. Single Mode Fiber Optic Transceiver Using Short Wavelength Active Devices In Long Wavelength Fiber

    Science.gov (United States)

    Gillham, Frederick J.; Campbell, Daniel R.; Corke, Michael; Stowe, David W.

    1990-01-01

    Presently, single mode optical fiber technology is being utilized in systems to supply telephone service to the subscriber. However, in an attempt to be competitive with copper based systems, there are many development programs underway to determine the most cost effective solution while still providing a service that will either satisfy or be upgradeable to satisfy the demands of the consumer for the next 10 to 20 years. One such approach is to combine low cost laser transmitters and silicon receivers, which have been developed for the "compact disc" industry, with fiber that operates in the single mode regime at 1300 nm. In this paper, an optical transceiver will be presented, consisting of a compact disc laser, a silicon detector and a single mode coupler at 1300 nm. A possible system layout is presented which operates at 780 nm bi-directionally for POTS and upgradeable to 1300 nm for video services. There are several important design criteria that have to be considered in the development of such a system which will be addressed. These include: 1. Optimization of coupled power from laser to fiber while maintaining stable launched conditions over a wide range of environmental conditions. 2. Consideration of the multimode operation of the 1300 nm single mode fiber while operating in the 780 nm wavelength region. 3. Development of a low cost pseudo-wavelength division multiplexer for 1300 nm single mode/780 nm multimode operation and a low cost dual mode 50/50, 780 nm splitter using 1300 nm fiber. Details will be given of the design criteria and solution in terms of optimized design. Results of the performance of several prototype devices will be given with indications of the merits of this approach and where further development effort should be applied.

  5. Reducing Short-Wavelength Blue Light in Dry Eye Patients with Unstable Tear Film Improves Performance on Tests of Visual Acuity.

    Science.gov (United States)

    Kaido, Minako; Toda, Ikuko; Oobayashi, Tomoo; Kawashima, Motoko; Katada, Yusaku; Tsubota, Kazuo

    2016-01-01

    To investigate whether suppression of blue light can improve visual function in patients with short tear break up time (BUT) dry eye (DE). Twenty-two patients with short BUT DE (10 men, 12 women; mean age, 32.4 ± 6.4 years; age range, 23-43 years) and 18 healthy controls (10 men, 8 women; mean age, 30.1 ± 7.4 years; age range, 20-49 years) underwent functional visual acuity (VA) examinations with and without wearing eyeglasses with 50% blue light blocked lenses. The functional VA parameters were starting VA, functional VA, and visual maintenance ratio. The baseline mean values (logarithm of the minimum angle of resolution, logMAR) of functional VA and the visual maintenance ratio were significantly worse in the DE patients than in the controls (P 0.05). The DE patients had significant improvement in mean functional VA and visual maintenance ratio while wearing the glasses (P 0.05). Protecting the eyes from short-wavelength blue light may help to ameliorate visual impairment associated with tear instability in patients with DE. This finding represents a new concept, which is that the blue light exposure might be harmful to visual function in patients with short BUT DE.

  6. Reducing Short-Wavelength Blue Light in Dry Eye Patients with Unstable Tear Film Improves Performance on Tests of Visual Acuity.

    Directory of Open Access Journals (Sweden)

    Minako Kaido

    Full Text Available To investigate whether suppression of blue light can improve visual function in patients with short tear break up time (BUT dry eye (DE.Twenty-two patients with short BUT DE (10 men, 12 women; mean age, 32.4 ± 6.4 years; age range, 23-43 years and 18 healthy controls (10 men, 8 women; mean age, 30.1 ± 7.4 years; age range, 20-49 years underwent functional visual acuity (VA examinations with and without wearing eyeglasses with 50% blue light blocked lenses. The functional VA parameters were starting VA, functional VA, and visual maintenance ratio.The baseline mean values (logarithm of the minimum angle of resolution, logMAR of functional VA and the visual maintenance ratio were significantly worse in the DE patients than in the controls (P 0.05. The DE patients had significant improvement in mean functional VA and visual maintenance ratio while wearing the glasses (P 0.05.Protecting the eyes from short-wavelength blue light may help to ameliorate visual impairment associated with tear instability in patients with DE. This finding represents a new concept, which is that the blue light exposure might be harmful to visual function in patients with short BUT DE.

  7. Potential of lees from wine, beer and cider manufacturing as a source of economic nutrients: An overview.

    Science.gov (United States)

    Pérez-Bibbins, B; Torrado-Agrasar, A; Salgado, J M; Oliveira, R Pinheiro de Souza; Domínguez, J M

    2015-06-01

    Lees are the wastes generated during the fermentation and aging processes of different industrial activities concerning alcoholic drinks such as wine, cider and beer. They must be conveniently treated to avoid uncontrolled dumping which causes environmental problems due to their high content of phenols, pesticides, heavy metals, and considerable concentrations of nitrogen, phosphate and potassium as well as high organic content. The companies involved must seek alternative environmental and economic physicochemical and biological treatments for their revalorization consisting in the recovery or transformation of the components of the lees into high value-added compounds. After describing the composition of lees and market of wine, beer and cider industries in Spain, this work aims to review the recent applications of wine, beer and cider lees reported in literature, with special attention to the use of lees as an endless sustainable source of nutrients and the production of yeast extract by autolysis or cell disruption. Lees and/or yeast extract can be used as nutritional supplements with potential exploitation in the biotechnological industry for the production of natural compounds such as xylitol, organic acids, and biosurfactants, among others. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Wavelength dependence of momentum-space images of low-energy electrons generated by short intense laser pulses at high intensities

    International Nuclear Information System (INIS)

    Maharjan, C M; Alnaser, A S; Litvinyuk, I; Ranitovic, P; Cocke, C L

    2006-01-01

    We have measured momentum-space images of low-energy electrons generated by the interaction of short intense laser pulses with argon atoms at high intensities. We have done this over a wavelength range from 400 to 800 nm. The spectra show considerable structure in both the energy and angular distributions of the electrons. Some, but not all, energy features can be identified as multi-photon resonances. The angular structure shows a regularity which transcends the resonant structure and may be due instead to diffraction. The complexity of the results defies easy model-dependent interpretations and invites full solutions to Schroedinger's equation for these systems

  9. Quantization of the Lee static model by the Bogolyubov transformation method

    International Nuclear Information System (INIS)

    Bornyakov, V.G.

    1984-01-01

    The Lee static strong-coupling model is studied. The model permits to find an exact solution for the state vector of the system and for the scattering matrix in the first permanent order of expansion in the inverse value of the coupling constant. The Bogolyubov method has been applied to quantize the Lee model with a hamiltonian, provided a high classical constituent of a boson field exists. Ground state of the system and scattering matrix from the obtained bound state are found. The way to avoid additional zero modes arising at Bogolyubov transformation for creation and annihilation operators is shown

  10. Investigation of concept of efficient short wavelength laser. Quarterly progress report, 1 August 1978--31 October 1978

    International Nuclear Information System (INIS)

    Piper, L.G.; Krech, R.H.; Pugh, E.R.; Taylor, R.L.

    1978-01-01

    A concept for the development of an efficient short wavelength laser based on a class of endoergic molecules-azides is being studied. One of these two laser-device experiments involves generating high concentrations of azide radicals in the thermal pyrolysis of solid, ionic azides, with the subsequent excitation of the N 2 (B 3 pi/sub g/) state from azide-radical recombination. Laser action would then take place upon the N 2 (B 3 pi/sub g/ - A 3 Sigma + /sub u/), first-postive transition. The second laser-demonstration experiment involves creating a high density of NCl(b 1 Sigma + ) state by uv photolysis of ClN 3 . In this case laser emission is expected on the NCl(b 1 Sigma + → X 3 Sigma - ) transition at 665 nm

  11. Co-ordinate single-cell expression of LEE4- and LEE5-encoded proteins of Escherichia coli O157:H7.

    Science.gov (United States)

    Roe, Andrew J; Naylor, Stuart W; Spears, Kevin J; Yull, Helen M; Dransfield, Tracy A; Oxford, Matthew; McKendrick, Iain J; Porter, Megan; Woodward, Martin J; Smith, David G E; Gally, David L

    2004-10-01

    Escherichia coli O157:H7 is a zoonotic pathogen that can express a type III secretion system (TTSS) considered important for colonization and persistence in ruminants. E. coli O157:H7 strains have been shown to vary markedly in levels of protein secreted using the TTSS and this study has confirmed that a high secretion phenotype is more prevalent among isolates associated with human disease than isolates shed by healthy cattle. The variation in secretion levels is a consequence of heterogeneous expression, being dependent on the proportion of bacteria in a population that are actively engaged in protein secretion. This was demonstrated by indirect immunofluorescence and eGFP fusions that examined the expression of locus of enterocyte effacement (LEE)-encoded factors in individual bacteria. In liquid media, the expression of EspA, tir::egfp, intimin, but not map::egfp were co-ordinated in a subpopulation of bacteria. In contrast to E. coli O157:H7, expression of tir::egfp in EPEC E2348/69 was equivalent in all bacteria although the same fusion exhibited variable expression when transformed into an E. coli O157:H7 background. An E. coli O157:H7 strain deleted for the LEE demonstrated weak but variable expression of tir::egfp indicating that the elements controlling the heterogeneous expression lie outside the LEE. The research also demonstrated the rapid induction of tir::egfp and map::egfp on contact with bovine epithelial cells. This control in E. coli O157:H7 may be required to limit exposure of key surface antigens, EspA, Tir and intimin during colonization of cattle but allow their rapid production on contact with bovine gastrointestinal epithelium at the terminal rectum.

  12. Blueprint for a microwave trapped ion quantum computer.

    Science.gov (United States)

    Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G; Mølmer, Klaus; Devitt, Simon J; Wunderlich, Christof; Hensinger, Winfried K

    2017-02-01

    The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion-based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation-based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error-threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.

  13. The Garrett Lee Smith Memorial Suicide Prevention Program

    Science.gov (United States)

    Goldston, David B.; Walrath, Christine M.; McKeon, Richard; Puddy, Richard W.; Lubell, Keri M.; Potter, Lloyd B.; Rodi, Michael S.

    2010-01-01

    In response to calls for greater efforts to reduce youth suicide, the Garrett Lee Smith (GLS) Memorial Act has provided funding for 68 state, territory, and tribal community grants, and 74 college campus grants for suicide prevention efforts. Suicide prevention activities supported by GLS grantees have included education, training programs…

  14. INCA Modelling of the Lee System: strategies for the reduction of nitrogen loads

    Directory of Open Access Journals (Sweden)

    N. J. Flynn

    2002-01-01

    Full Text Available The Integrated Nitrogen Catchment model (INCA was applied successfully to simulate nitrogen concentrations in the River Lee, a northern tributary of the River Thames for 1995-1999. Leaching from urban and agricultural areas was found to control nitrogen dynamics in reaches unaffected by effluent discharges and abstractions; the occurrence of minimal flows resulted in an upward trend in nitrate concentration. Sewage treatment works (STW discharging into the River Lee raised nitrate concentrations substantially, a problem which was compounded by abstractions in the Lower Lee. The average concentration of nitrate (NO3 for the simulation period 1995-96 was 7.87 mg N l-1. Ammonium (NH4 concentrations were simulated less successfully. However, concentrations of ammonium rarely rose to levels which would be of environmental concern. Scenarios were run through INCA to assess strategies for the reduction of nitrate concentrations in the catchment. The conversion of arable land to ungrazed vegetation or to woodland would reduce nitrate concentrations substantially, whilst inclusion of riparian buffer strips would be unsuccessful in reducing nitrate loading. A 50% reduction in nitrate loading from Luton STW would result in a fall of up to 5 mg N l-1 in the reach directly affected (concentrations fell from maxima of 13 to 8 mg N l-1 , nearly a 40 % reduction, whilst a 20% reduction in abstractions would reduce maximum peaks in concentration in the lower Lee by up to 4 mg l-1 (from 17 to 13 mg N l-1, nearly a 25 % reduction,. Keywords: modelling, water quality, nitrogen, nitrate, ammonium, INCA, River Lee, River Thames, land-use.

  15. Tim Berners-Lee: inventor de la World Wide Web

    OpenAIRE

    Universidad de Granada. Biblioteca

    2015-01-01

    El presente Cat??logo contiene la exposici??n organizada por la Biblioteca de la ETSIIT de la Universidad de Granada durante los meses de noviembre-diciembre de 2015 y titulada: "Tim Berners-Lee: inventor de la World Wide Web"

  16. Forecasting selected specific age mortality rate of Malaysia by using Lee-Carter model

    Science.gov (United States)

    Shukri Kamaruddin, Halim; Ismail, Noriszura

    2018-03-01

    Observing mortality pattern and trend is an important subject for any country to maintain a good social-economy in the next projection years. The declining in mortality trend gives a good impression of what a government has done towards macro citizen in one nation. Selecting a particular mortality model can be a tricky based on the approached method adapting. Lee-Carter model is adapted because of its simplicity and reliability of the outcome results with approach of regression. Implementation of Lee-Carter in finding a fitted model and hence its projection has been used worldwide in most of mortality research in developed countries. This paper studies the mortality pattern of Malaysia in the past by using original model of Lee-Carter (1992) and hence its cross-sectional observation for a single age. The data is indexed by age of death and year of death from 1984 to 2012, in which are supplied by Department of Statistics Malaysia. The results are modelled by using RStudio and the keen analysis will focus on the trend and projection of mortality rate and age specific mortality rate in the future. This paper can be extended to different variants extensions of Lee-Carter or any stochastic mortality tool by using Malaysia mortality experience as a centre of the main issue.

  17. Reactions of N2(A3SIGMA/sub u/+) and candidates for short wavelength lasers, March 1, 1984-February 28, 1985

    International Nuclear Information System (INIS)

    Setser, D.W.

    1987-01-01

    There are several potential schemes for efficiently generating high concentrations of the first electronically excited state of nitrogen, N 2 (A 3 Σ/sub u/ + , 6.2 eV) by either chemical or electrical pumping. The goal of this proposal is to study ways of utilizing the energy of the N 2 (A) molecules for developing efficient, short wavelength gas lasers. Such lasers are of potential interest for laser fusion. The authors report both excitation-transfer and dissociative excitation-transfer reactions of N 2 (A) that yield electronically-excited diatomic molecules as products. 25 refs

  18. Measurements of the growth rate of the short wavelength Rayleigh-Taylor instability of foam foil packages driven by a soft x-ray pulse

    International Nuclear Information System (INIS)

    Willi, O.; Pasley, J.; Iwase, A.; Nazarov, W.; Rose, S.J.

    2000-01-01

    The Rayleigh-Taylor instability was studied in the short wavelength regime using single mode targets that were driven by hohlraum radiation allowing the Takabe-Morse roll-over due to ablative stabilisation to be investigated. A temporally shaped soft x-ray drive was generated by focusing one of the PHEBUS laser beams into a gold hohlraum with a maximum radiation temperature of about 120 eV. Thin plastic foils with sinusoidal modulations with wavelengths between 12 and 50 μm, and a perturbation amplitude of about 10% of the wavelength, were used. A low density 50 mg/cc tri-acrylate foam 150 μm in length facing the hohlraum was attached to the modulated foam target. The targets were radiographed face-on at an x-ray energy of about 1.3 keV with a spatial resolution of about 5 μm using a Wolter-like x-ray microscope coupled to an x-ray streak camera with a temporal resolution of 50 ps. The acceleration was obtained from side-on radiography. 2-D hydrodynamic code simulations have been carried out to compare the experimental results with the simulations. (authors)

  19. Relation between the Lee-Wick and Nambu-Jona-Lasinio models of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Klevansky, S.P.; Lemmer, R.H.

    1990-01-01

    The connection between the sigma model of Lee and Wick and the Nambu-Jona-Lasinio (NJL) model is discussed. It is shown that the sigma field potential of the linear Lee-Wick model is identical in form with the variation of the vacuum energy of the NJL system with the baryonic scalar density n s . The sigma field is proportional to n s . Furthermore, the coupling constant and mass of this σ field are fully determined by the NJL model version of the Goldberger-Treiman relation. It is shown further that the restoration of chiral symmetry with increasing baryonic density always occurs via a second order transition in the NJL model, while it is necessarily of first order in the associated linear Lee-Wick model. (orig.)

  20. Persistence of the longnose darter (P. nasuta) in Lee Creek, Oklahoma

    Science.gov (United States)

    Gatlin, Michael R.; Long, James M.

    2011-01-01

    The longnose darter Percina nasuta (Bailey) is one of Oklahoma’s rarest fish species (1) and is listed by the state as endangered. Throughout the rest of its range, which includes Missouri, Arkansas and the far eastern portion of Oklahoma, the longnose darter is classified as “rare” or “threatened” (2, 3, 4, 5, 6, 1). This species inhabits both slow- and fast-water habitats with cobble and gravel substrates in medium to large streams (7, 8, 1). Oklahoma populations of longnose darter are known to occur only in the Poteau River and Lee Creek drainages in Le Flore and Sequoyah counties, respectively (9, 10). Cross and Moore (9) collected longnose darters from the Poteau River in 1947. The species was not collected in a subsequent survey of the Poteau River in 1974 (11), possibly because of the effects from the Wister Dam, which was completed in 1949. Darters are especially susceptible to flow alterations from dams (2, 12). This, together with the 1992 completion of Lee Creek Reservoir in Arkansas, has raised concern for the Lee Creek population of longnose darters (13).

  1. Ultrasonic trap for light scattering measurement

    Science.gov (United States)

    Barton, Petr; Pavlu, Jiri

    2017-04-01

    Light scattering is complex phenomenon occurring widely in space environments, including the dense dusty clouds, nebulas or even the upper atmosphere of the Earth. However, when the size of the dust (or of other scattering center) is close to the incident light wavelength, theoretical determination is difficult. In such case, Mie theory is to be used but there is a lack of the material constants for most space-related materials. For experimental measurement of light scattering, we designed unique apparatus, based on ultrasonic trap. Using acoustic levitation we are able to capture the dust grain in midair, irradiate it with laser, and observe scattering directly with goniometer-mounted photodiode. Advantage of this approach is ability to measure directly in the air (thus, no need for the carrier medium) and possibility to study non-spherical particles. Since the trap development is nearly finished and initial experiments are carried out, the paper presents first tests on water droplets.

  2. Laser trapping of 21Na atoms

    International Nuclear Information System (INIS)

    Lu, Zheng-Tian.

    1994-09-01

    This thesis describes an experiment in which about four thousand radioactive 21 Na (t l/2 = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped 21 Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of 21 Na → 21 Ne + Β + + v e , which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, 21 Na atoms were produced by bombarding 24 Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The 21 Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined

  3. Microwave quantum logic gates for trapped ions.

    Science.gov (United States)

    Ospelkaus, C; Warring, U; Colombe, Y; Brown, K R; Amini, J M; Leibfried, D; Wineland, D J

    2011-08-10

    Control over physical systems at the quantum level is important in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio-frequency or microwave radiation: the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms' motion, but such changes are negligible at these frequencies for freely propagating fields. An exception is in the near field of microwave currents in structures smaller than the free-space wavelength, where stronger gradients can be generated. Here we first manipulate coherently (on timescales of 20 nanoseconds) the internal quantum states of ions held in a microfabricated trap. The controlling magnetic fields are generated by microwave currents in electrodes that are integrated into the trap structure. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation; the entangled state has a fidelity of 0.76(3), where the uncertainty denotes standard error of the mean. Our approach, which involves integrating the quantum control mechanism into the trapping device in a scalable manner, could be applied to quantum information processing, simulation and spectroscopy.

  4. 100G shortwave wavelength division multiplexing solutions for multimode fiber data links

    DEFF Research Database (Denmark)

    Cimoli, Bruno; Estaran Tolosa, Jose Manuel; Rodes Lopez, Guillermo Arturo

    2016-01-01

    We investigate an alternative 100G solution for optical short-range data center links. The presented solution adopts wavelength division multiplexing technology to transmit four channels of 25G over a multimode fiber. A comparative performance analysis of the wavelength-grid selection for the wav...

  5. New Insight into Short-Wavelength Solar Wind Fluctuations from Vlasov Theory

    Science.gov (United States)

    Sahraoui, Fouad; Belmont, G.; Goldstein, M. L.

    2012-01-01

    The nature of solar wind (SW) turbulence below the proton gyroscale is a topic that is being investigated extensively nowadays, both theoretically and observationally. Although recent observations gave evidence of the dominance of kinetic Alfven waves (KAWs) at sub-ion scales with omega omega (sub ci)) is more relevant. Here, we study key properties of the short-wavelength plasma modes under limited, but realistic, SW conditions, Typically Beta(sub i) approx. > Beta (sub e) 1 and for high oblique angles of propagation 80 deg theory, we discuss the relevance of each plasma mode (fast, Bernstein, KAW, whistler) in carrying the energy cascade down to electron scales. We show, in particular, that the shear Alfven mode (known in the magnetohydrodynamic limit) extends at scales kappa rho (sub i) approx. > 1 to frequencies either larger or smaller than omega (sub ci), depending on the anisotropy kappa (parallel )/ kappa(perpendicular). This extension into small scales is more readily called whistler (omega > omega (sub ci)) or KAW (omega < omega (sub ci)) although the mode is essentially the same. This contrasts with the well-accepted idea that the whistler branch always develops as a continuation at high frequencies of the fast magnetosonic mode. We show, furthermore, that the whistler branch is more damped than the KAW one, which makes the latter the more relevant candidate to carry the energy cascade down to electron scales. We discuss how these new findings may facilitate resolution of the controversy concerning the nature of the small-scale turbulence, and we discuss the implications for present and future spacecraft wave measurements in the SW.

  6. W3C head Berners-Lee to be knighted

    CERN Multimedia

    Gross, G

    2004-01-01

    "Tim Berners-Lee, credited with inventing the World Wide Web and now director of the World Wide Web Consortium, will be named a knight commander, Order of the British Empire, by Queen Elizabeth II, the W3C announced Wednesday" (1 page)

  7. T.D Lee and Lisa Randall visit ATLAS

    CERN Multimedia

    Pauline Gagnon

    Professor Tsung-Dao Lee, who received the Nobel Prize for Physics in 1957 for postulating that parity is not conserved in weak interactions, visited the ATLAS detector this month. He is seen here in the company of Peter Jenni, spokesperson for ATLAS. T.D. Lee is still very active at over 80, pursuing his theory work to this day. Professor Lisa Randall from Harvard University, the well-known theorist behind the Randall-Sundrum theory for extra dimensions, was also part of the group visiting the ATLAS detector. She is seen here with Fabiola Gianotti, deputy spokesperson for ATLAS. Lisa Randall's two initial papers have been quoted both more than 2500 times, making her the most cited theoretical physicist in the world in the last five years as of last autumn - a total of about 10,000 citations! One wonders here if Peter is pointing to a CP-violating graviton spotted in the ATLAS cavern... From left to right: Fabiola Gianotti, Gustaaf Brooijmans, convener of the ATLAS Exotics physics gro...

  8. Investigation of concept of efficient short wavelength laser. Quarterly progress report, 1 August 1978--31 October 1978

    Energy Technology Data Exchange (ETDEWEB)

    Piper, L.G.; Krech, R.H.; Pugh, E.R.; Taylor, R.L.

    1978-12-01

    A concept for the development of an efficient short wavelength laser based on a class of endoergic molecules-azides is being studied. One of these two laser-device experiments involves generating high concentrations of azide radicals in the thermal pyrolysis of solid, ionic azides, with the subsequent excitation of the N/sub 2/(B/sup 3/pi/sub g/) state from azide-radical recombination. Laser action would then take place upon the N/sub 2/(B/sup 3/pi/sub g/ - A/sup 3/Sigma/sup +//sub u/), first-postive transition. The second laser-demonstration experiment involves creating a high density of NCl(b/sup 1/Sigma/sup +/) state by uv photolysis of ClN/sub 3/. In this case laser emission is expected on the NCl(b/sup 1/Sigma/sup +/ ..-->.. X/sup 3/Sigma/sup -/) transition at 665 nm.

  9. Investigation of concept of efficient short wavelength laser. Quarterly progress report, 1 November 1978-31 January 1979

    Energy Technology Data Exchange (ETDEWEB)

    Krech, R.H.; Piper, L.G.; Pugh, E.R.; Taylor, R.L.

    1979-03-01

    A concept for the development of an efficient short wavelength laser based on a class of endoergic molecules-azides is being investigated. The first of two laser-device experiments involves generating high concentrations of azide radicals in the thermal pyrolysis of solid, ionic azides, with the subsequent excitation of the N/sub 2/(B/sup 3/..pi../sub g/) state from azide-radical recombination. Laser action would then take place upon the N/sub 2/(B/sup 3/..pi../sub g/-A/sup 3/..sigma../sup +//sub u/), first-positive transition. The second laser-demonstration experiment involves creating a high density of NCl(b/sup 1/..sigma../sup +/) state by uv photolysis of ClN/sub 3/. In this case laser emission is expected on the NCl(b/sup 1/..sigma../sup +/..-->..X/sup 3/..sigma../sup -/) transition at 665 nm.

  10. Reactions of N2(A3Σ/sub u/+) and candidates for short wavelength lasers

    International Nuclear Information System (INIS)

    Setser, D.W.

    1987-01-01

    This proposal is a request for a one year renewal of a contract with the Univ. of California (Lawrence Livermore Laboratory). The proposed experiments are directed towards investigation of possible short-wavelength laser candidate molecules that can be pumped via excitation-transfer reactions with N 2 (A 3 Σ/sub u/ + ) molecules. We will continue our flowing-afterglow experiments to characterize the excitation-transfer collisions between N 2 (A) and promising acceptor diatomic molecules (radicals). We also will extend the studies to include excitation-transfer to Cd and to S atoms. For some chemical systems, a pulsed N 2 (A) source would be very convenient for kinetic measurements and we propose to develop a pulsed N 2 (A) source. During the first year, we have shown that the excitation-transfer reaction between N 2 (A) and SO(X) provides a possible laser candidate. Therefore, we propose to start a program to study the quenching and relaxation kinetics of the SO(A 3 PI) molecule, using pulsed laser excitation techniques to generate specific levels of SO(A 3 PI)

  11. Solutions for ultra-high speed optical wavelength conversion and clock recovery

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2006-01-01

    This paper reports on our recent advances in ultra-fast optical communications relying on ultra-short pulses densely stacked in ultra-high bit rate serial data signals at a single wavelength. The paper describes details in solutions for the network functionalities of wavelength conversion and clock...... recovery at bit rates up to 320 Gb/s...

  12. A Landau fluid model for dissipative trapped electron modes

    International Nuclear Information System (INIS)

    Hedrick, C.L.; Leboeuf, J.N.; Sidikman, K.L.

    1995-09-01

    A Landau fluid model for dissipative trapped electron modes is developed which focuses on an improved description of the ion dynamics. The model is simple enough to allow nonlinear calculations with many harmonics for the times necessary to reach saturation. The model is motivated by a discussion that starts with the gyro-kinetic equation and emphasizes the importance of simultaneously including particular features of magnetic drift resonance, shear, and Landau effects. To ensure that these features are simultaneously incorporated in a Landau fluid model with only two evolution equations, a new approach to determining the closure coefficients is employed. The effect of this technique is to reduce the matching of fluid and kinetic responses to a single variable, rather than two, and to allow focusing on essential features of the fluctuations in question, rather than features that are only important for other types of fluctuations. Radially resolved nonlinear calculations of this model, advanced in time to reach saturation, are presented to partially illustrate its intended use. These calculations have a large number of poloidal and toroidal harmonics to represent the nonlinear dynamics in a converged steady state which includes cascading of energy to both short and long wavelengths

  13. Yang-Lee zeros for a Potts model of helix-coil transition with nontrivial topology

    International Nuclear Information System (INIS)

    Ananikian, N.; Ananikyan, L.; Artuso, R.; Sargsyan, K.

    2007-07-01

    The Yang-Lee partition function zeros of the Q-state Potts model on a zigzag ladder are studied by a transfer-matrix approach. This Q-state model has a non-trivial topology induced by three-site interactions on a zigzag ladder and is proposed as a description of helix-coil transition in homo-polymers. The Yang-Lee zeros are associated to complex values of the solvent-related coupling constant K (magnetic field) and they are exactly derived for arbitrary values of the system parameters: Q, J (coupling constant of hydrogen binding) and temperature. It is shown that there is only a quasi-phase transition for all temperatures. The densities of the Yang-Lee zeros are singular at the edge singularity points and the critical exponent σ = -1/2. (author)

  14. First and second sound in cylindrically trapped gases.

    Science.gov (United States)

    Bertaina, G; Pitaevskii, L; Stringari, S

    2010-10-08

    We investigate the propagation of density and temperature waves in a cylindrically trapped gas with radial harmonic confinement. Starting from two-fluid hydrodynamic theory we derive effective 1D equations for the chemical potential and the temperature which explicitly account for the effects of viscosity and thermal conductivity. Differently from quantum fluids confined by rigid walls, the harmonic confinement allows for the propagation of both first and second sound in the long wavelength limit. We provide quantitative predictions for the two sound velocities of a superfluid Fermi gas at unitarity. For shorter wavelengths we discover a new surprising class of excitations continuously spread over a finite interval of frequencies. This results in a nondissipative damping in the response function which is analytically calculated in the limiting case of a classical ideal gas.

  15. Does one hour of bright or short-wavelength filtered tablet screenlight have a meaningful effect on adolescents' pre-bedtime alertness, sleep, and daytime functioning?

    Science.gov (United States)

    Heath, Melanie; Sutherland, Cate; Bartel, Kate; Gradisar, Michael; Williamson, Paul; Lovato, Nicole; Micic, Gorica

    2014-05-01

    Electronic media use is prevalent among adolescent populations, as is the frequency of sleeplessness. One mechanism proposed for technology affecting adolescents' sleep is the alerting effects from bright screens. Two explanations are provided. First, screens emit significant amounts of short-wavelength light (i.e. blue), which produces acute alertness and alters sleep timing. Second, later chronotypes are hypothesised to be hypersensitive to evening light. This study analysed the pre-sleep alertness (GO/NOGO task speed, accuracy; subjective sleepiness), sleep (sleep diary, polysomnography), and morning functioning of 16 healthy adolescents (M = 17.4 ± 1.9 yrs, 56% f) who used a bright tablet screen (80 lux), dim screen (1 lux) and a filtered short-wavelength screen (f.lux; 50 lux) for 1 hr before their usual bedtime in a within-subjects protocol. Chronotype was analysed as a continuous between-subjects factor; however, no significant interactions occurred. Significant effects occurred between bright and dim screens for GO/NOGO speed and accuracy. However, the magnitude of these differences was small (e.g. GO/NOGO speed = 23 ms, accuracy = 13%), suggesting minimal clinical significance. No significant effects were found for sleep onset latency, slow-rolling eye movements, or the number of SWS and REM minutes in the first two sleep cycles. Future independent studies are needed to test short (1 hr) vs longer (>2 hrs) screen usage to provide evidence for safe-to-harmful levels of screenlight exposure before adolescents' usual bedtime.

  16. What Lee Raymond actually said in Beijing [15th WPC

    International Nuclear Information System (INIS)

    Raymond, Lee.

    1997-01-01

    When Lee Raymond, Chairman and Chief Executive Officer, Exxon Corporation gave this keynote address at the recent World Petroleum Congress in Beijing, he drew attention to the way economic growth alleviates poverty and to the close linkage between economic growth and energy use. He also drew attention to the weakness of the scientific evidence for climate change being caused by fossil fuel burning and his doubts about the wisdom of setting targets for the reduction of CO 2 emissions. At a press conference after the presentation Lee Raymond assented to the suggestion that the European oil companies have been hijacked by the environmentalists. Petroleum Review has reproduced the full text of the speech so that readers can judge for themselves the merits of the arguments and their likely impact on the Kyoto conference. (UK)

  17. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators

    Science.gov (United States)

    Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David

    2011-06-01

    We describe the factors that go into the component choices for a short wavelength IR (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7 °C. In addition, we have mated our InGaAs detector arrays to 640×512 readout integrated integrated circuits to make focal plane arrays (FPAs). The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 μm at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0 °C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling. In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, and provide artifact-free imagery versus conventional laser illuminators.

  18. Comparison of different wavelength pump sources for Tm subnanosecond amplifier

    Science.gov (United States)

    Cserteg, Andras; Guillemet, Sébastien; Hernandez, Yves; Giannone, Domenico

    2012-06-01

    We report here a comparison of different pumping wavelengths for short pulse Thulium fibre amplifiers. We compare the results in terms of efficiency and required fibre length. As we operate the laser in the sub-nanosecond regime, the fibre length is a critical parameter regarding non linear effects. With 793 nm clad-pumping, a 4 m long active fibre was necessary, leading to strong spectral deformation through Self Phase Modulation (SPM). Core-pumping scheme was then more in-depth investigated with several wavelengths tested. Good results with Erbium and Raman shifted pumping sources were obtained, with very short fibre length, aiming to reach a few micro-joules per pulse without (or with limited) SPM.

  19. Lee waves: Benign and malignant

    Science.gov (United States)

    Wurtele, M. G.; Datta, A.; Sharman, R. D.

    1993-01-01

    The flow of an incompressible fluid over an obstacle will produce an oscillation in which buoyancy is the restoring force, called a gravity wave. For disturbances of this scale, the atmosphere may be treated as dynamically incompressible, even though there exists a mean static upward density gradient. Even in the linear approximation - i.e., for small disturbances - this model explains a great many of the flow phenomena observed in the lee of mountains. However, nonlinearities do arise importantly, in three ways: (1) through amplification due to the decrease of mean density with height; (2) through the large (scaled) size of the obstacle, such as a mountain range; and (3) from dynamically singular levels in the fluid field. These effects produce a complicated array of phenomena - large departure of the streamlines from their equilibrium levels, high winds, generation of small scales, turbulence, etc. - that present hazards to aircraft and to lee surface areas. The nonlinear disturbances also interact with the larger-scale flow in such a manner as to impact global weather forecasts and the climatological momentum balance. If there is no dynamic barrier, these waves can penetrate vertically into the middle atmosphere (30-100 km), where recent observations show them to be of a length scale that must involve the coriolis force in any modeling. At these altitudes, the amplitude of the waves is very large, and the phenomena associated with these wave dynamics are being studied with a view to their potential impact on high performance aircraft, including the projected National Aerospace Plane (NASP). The presentation shows the results of analysis and of state-of-the-art numerical simulations, validated where possible by observational data, and illustrated with photographs from nature.

  20. The Role of κ-Carbides as Hydrogen Traps in High-Mn Steels

    Directory of Open Access Journals (Sweden)

    Tobias A. Timmerscheidt

    2017-07-01

    Full Text Available Since the addition of Al to high-Mn steels is known to reduce their sensitivity to hydrogen-induced delayed fracture, we investigate possible trapping effects connected to the presence of Al in the grain interior employing density-functional theory (DFT. The role of Al-based precipitates is also investigated to understand the relevance of short-range ordering effects. So-called E21-Fe3AlC κ-carbides are frequently observed in Fe-Mn-Al-C alloys. Since H tends to occupy the same positions as C in these precipitates, the interaction and competition between both interstitials is also investigated via DFT-based simulations. While the individual H–H/C–H chemical interactions are generally repulsive, the tendency of interstitials to increase the lattice parameter can yield a net increase of the trapping capability. An increased Mn content is shown to enhance H trapping due to attractive short-range interactions. Favorable short-range ordering is expected to occur at the interface between an Fe matrix and the E21-Fe3AlC κ-carbides, which is identified as a particularly attractive trapping site for H. At the same time, accumulation of H at sites of this type is observed to yield decohesion of this interface, thereby promoting fracture formation. The interplay of these effects, evident in the trapping energies at various locations and dependent on the H concentration, can be expressed mathematically, resulting in a term that describes the hydrogen embrittlement.

  1. Polyphenols from Wine Lees as a Novel Functional Bioactive Compound in the Protection Against Oxidative Stress and Hyperlipidaemia

    Directory of Open Access Journals (Sweden)

    Irena Landeka Jurčević

    2017-01-01

    Full Text Available The study examines the potential of wine industry by-product, the lees, as a rich mixture of natural polyphenols, and its physiological potential to reduce postprandial metabolic and oxidative stress caused by a cholesterol-rich diet in in vivo model. Chemical analysis of wine lees showed that their total solid content was 94.2 %. Wine lees contained total phenols, total nonflavonoids and total flavonoids expressed in mg of gallic acid equivalents per 100 g of dry mass: 2316.6±37.9, 1332.5±51.1 and 984.1±28.2, respectively. The content of total anthocyanins expressed in mg of cyanidin-3-glucoside equivalents per 100 g of dry mass was 383.1±21.6. Antioxidant capacity of wine lees determined by the DPPH and FRAP methods and expressed in mM of Trolox equivalents per 100 g was 259.8±1.8 and 45.7±1.05, respectively. The experiment lasted 60 days using C57BL/6 mice divided in four groups: group 1 was fed normal diet and used as control, group 2 was fed normal diet with added wine lees, group 3 was fed high-cholesterol diet (HCD, i.e. normal diet with the addition of sunflower oil, and group 4 was fed HCD with wine lees. HCD increased serum total cholesterol (TC by 2.3-fold, triacylglycerol (TAG by 1.5-fold, low-density lipoprotein (LDL by 3.5-fold and liver malondialdehyde (MDA by 50 %, and reduced liver superoxide dismutase (SOD by 50 %, catalase (CAT by 30 % and glutathione (GSH by 17.5 % compared to control. Conversely, treatment with HCD and wine lees reduced TC and LDL up to 1.4 times more than with HCD only, with depletion of lipid peroxidation (MDA and restoration of SOD and CAT activities in liver, approximating values of the control. HDL levels were unaffected in any group. Serum transaminase activity showed no hepatotoxic properties in the treatment with lees alone. In the proposed model, wine lees as a rich polyphenol source could be a basis for functional food products without alcohol.

  2. Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Stegmaier, M.; Ebert, J.; Pernice, W. H. P., E-mail: wolfram.pernice@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76133 Karlsruhe (Germany); Meckbach, J. M.; Ilin, K.; Siegel, M. [Institute of Micro- und Nanoelectronic Systems, Karlsruhe Institute of Technology, 76187 Karlsruhe (Germany)

    2014-03-03

    Aluminum nitride (AlN) has recently emerged as a promising material for integrated photonics due to a large bandgap and attractive optical properties. Exploiting the wideband transparency, we demonstrate waveguiding in AlN-on-Insulator circuits from near-infrared to ultraviolet wavelengths using nanophotonic components with dimensions down to 40 nm. By measuring the propagation loss over a wide spectral range, we conclude that both scattering and absorption of AlN-intrinsic defects contribute to strong attenuation at short wavelengths, thus providing guidelines for future improvements in thin-film deposition and circuit fabrication.

  3. Spectroscopy of highly charged tungsten ions with Electron Beam Ion Traps

    International Nuclear Information System (INIS)

    Sakaue, Hiroyuki A.; Kato, Daiji; Morita, Shigeru; Murakami, Izumi; Yamamoto, Norimasa; Ohashi, Hayato; Yatsurugi, Junji; Nakamura, Nobuyuki

    2013-01-01

    We present spectra of highly charged tungsten ions in the extreme ultra-violet (EUV) by using electron beam ion traps. The electron energy dependence of spectra is investigated of electron energies from 490 to 1440 eV. Previously unreported lines are presented in the EUV range, and some of them are identified by comparing the wavelengths with theoretical calculations. (author)

  4. Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms.

    Science.gov (United States)

    Tahara, Tatsuki; Mori, Ryota; Kikunaga, Shuhei; Arai, Yasuhiko; Takaki, Yasuhiro

    2015-06-15

    Dual-wavelength phase-shifting digital holography that selectively extracts wavelength information from five wavelength-multiplexed holograms is presented. Specific phase shifts for respective wavelengths are introduced to remove the crosstalk components and extract only the object wave at the desired wavelength from the holograms. Object waves in multiple wavelengths are selectively extracted by utilizing 2π ambiguity and the subtraction procedures based on phase-shifting interferometry. Numerical results show the validity of the proposed technique. The proposed technique is also experimentally demonstrated.

  5. Dynamical fragmentation of flux tubes in the Friedberg-Lee model

    International Nuclear Information System (INIS)

    Loh, S.; Greiner, C.; Mosel, U.; Thoma, M.H.

    1997-01-01

    We present two novel dynamical features of flux tubes in the Friedberg-Lee model. First the fusion of two (anti-)parallel flux tubes, where we extract a string-string interaction potential which has a qualitative similarity to the nucleon-nucleon potential in the Friedberg-Lee model obtained by Koepf et al. Furthermore we show the dynamical breakup of flux tubes via qq-particle production and the disintegration into mesons. We find, as a shortcoming of the present realization of the model, that the full dynamical transport approach presented in a previous publication fails to provide the disintegration mechanism in the semiclassical limit. Therefore, in addition, we present here a molecular dynamical approach for the motion of the quarks and show, as a first application, the space-time development of the quarks and their mean-fields for Lund-type string fragmentation processes. (orig.)

  6. Tim Berners-Lee, World Wide Web inventor

    CERN Multimedia

    1994-01-01

    Former physicist, Tim Berners-Lee invented the World Wide Web as an essential tool for high energy physics at CERN from 1989 to 1994. Together with a small team he conceived HTML, http, URLs, and put up the first server and the first 'what you see is what you get' browser and html editor. Tim is now Director of the Web Consortium W3C, the International Web standards body based at INRIA, MIT and Keio University.

  7. Ultraviolet and short wavelength visible light exposure: why ultraviolet protection alone is not adequate.

    Science.gov (United States)

    Reichow, Alan W; Citek, Karl; Edlich, Richard F

    2006-01-01

    The danger of exposure to ultraviolet (UV) radiation in both the natural environment and artificial occupational settings has long been recognized by national and international standards committees and worker safety agencies. There is an increasing body of literature that suggests that protection from UV exposure is not enough. Unprotected exposure to the short wavelengths of the visible spectrum, termed the "blue light hazard", is gaining acceptance as a true risk to long-term visual health. Global standards and experts in the field are now warning that those individuals who spend considerable time outdoors should seek sun filter eyewear with high impact resistant lenses that provide 100% UV filtration, high levels of blue light filtration, and full visual field lens/frame coverage as provided by high wrap eyewear. The Skin Cancer Foundation has endorsed certain sunglasses as "product[s]...effective [as] UV filter[s] for the eyes and surrounding skin". However, such endorsement does not necessarily mean that the eyewear meets all the protective needs for outdoor use. There are several brands that offer products with such protective characteristics. Performance sun eyewear by Nike Vision, available in both corrective and plano (nonprescription) forms, is one such brand incorporating these protective features.

  8. Liquid argon scintillation detection utilizing wavelength-shifting plates and light guides

    Science.gov (United States)

    Howard, B.

    2018-02-01

    In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this light and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.

  9. Liquid Argon Scintillation Detection Utilizing Wavelength-Shifting Plates and Light Guides

    Energy Technology Data Exchange (ETDEWEB)

    Howard, B. [Indiana U.

    2018-02-06

    In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this light and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.

  10. EUV spectrum of highly charged tungsten ions in electron beam ion trap

    International Nuclear Information System (INIS)

    Sakaue, H.A.; Kato, D.; Murakami, I.; Nakamura, N.

    2016-01-01

    We present spectra of highly charged tungsten ions in the extreme ultra-violet (EUV) by using electron beam ion traps. The electron energy dependence of spectra was investigated for electron energy from 540 to 1370 eV. Previously unreported lines were presented in the EUV range, and comparing the wavelengths with theoretical calculations identified them. (author)

  11. Fast renal trapping of porcine Luteinizing Hormone (pLH shown by 123I-scintigraphic imaging in rats explains its short circulatory half-life

    Directory of Open Access Journals (Sweden)

    Locatelli Alain

    2003-10-01

    Full Text Available Abstract Background Sugar moieties of gonadotropins play no primary role in receptor binding but they strongly affect their circulatory half-life and consequently their in vivo biopotencies. In order to relate more precisely hepatic trapping of these glycoproteic hormones with their circulatory half-life, we undertook a comparative study of the distribution and elimination of porcine LH (pLH and equine CG (eCG which exhibit respectively a short and a long half-life. This was done first by following half-lives of pLH in piglets with hepatic portal circulation shunted or not. It was expected that such a shunt would enhance the short half-life of pLH. Subsequently, scintigraphic imaging of both 123I-pLH and 123I-eCG was performed in intact rats to compare their routes and rates of distribution and elimination. Methods Native pLH or eCG was injected to normal piglets and pLH was tested in liver-shunted anæsthetized piglet. Blood samples were recovered sequentially over one hour time and the hormone concentrations were determined by a specific ELISA method. Scintigraphic imaging of 123I-pLH and 123I-eCG was performed in rats using a OPTI-CGR gamma camera. Results In liver-shunted piglets, the half-life of pLH was found to be as short as in intact piglets (5 min. In the rat, the half-life of pLH was also found to be very short (3–6 min and 123I-pLH was found to accumulate in high quantity in less than 10 min post injection at the level of kidneys but not in the liver. 123I-eCG didn't accumulate in any organ in the rats during the first hour, plasma concentrations of this gonadotropin being still elevated (80% at this time. Conclusion In both the porcine and rat species, the liver is not responsible for the rapid elimination of pLH from the circulation compared to eCG. Our scintigraphic experiments suggest that the very short circulatory half-life of LH is due to rapid renal trapping.

  12. Evidence of behavior-based utilization by the Asian citrus psyllid of a combination of UV and green or yellow wavelengths.

    Directory of Open Access Journals (Sweden)

    Thomson M Paris

    Full Text Available The Asian citrus psyllid, Diaphorina citri, vectors huanglongbing (HLB, the most serious disease affecting citrus globally. D. citri and HLB have spread to the major citrus growing regions of North America causing billions of dollars of damage in Florida alone. The visual behavior of D. citri is not well characterized and more knowledge is needed to improve attractive traps for monitoring and control of the D. citri. Bioassays were conducted to evaluate attraction to light transmitted through different colored filters. The addition of ultra-violet light (< 400 nm enhanced attraction of D. citri to transparent visual targets made of green or yellow filters. However, attraction to blue targets was unaffected by UV light. This is the first study to demonstrate a phytophagous insect responding to a hue that is a combination of long and short wavelengths. Further testing is needed to determine how D. citri uses such discriminatory powers in the field. Our results further imply that D. citri utilize color vision, as the less intense yellow and green hues were chosen over white light. In summary, this research provides an increased understanding of D. citri visual behavior and can be used for the development of a more attractive D. citri trap than those currently available.

  13. Wavelength dependence of the linear growth rate of the Es layer instability

    Directory of Open Access Journals (Sweden)

    R. B. Cosgrove

    2007-06-01

    Full Text Available It has recently been shown, by computation of the linear growth rate, that midlatitude sporadic-E (Es layers are subject to a large scale electrodynamic instability. This instability is a logical candidate to explain certain frontal structuring events, and polarization electric fields, which have been observed in Es layers by ionosondes, by coherent scatter radars, and by rockets. However, the original growth rate derivation assumed an infinitely thin Es layer, and therefore did not address the short wavelength cutoff. Also, the same derivation ignored the effects of F region loading, which is a significant wavelength dependent effect. Herein is given a generalized derivation that remedies both these short comings, and thereby allows a computation of the wavelength dependence of the linear growth rate, as well as computations of various threshold conditions. The wavelength dependence of the linear growth rate is compared with observed periodicities, and the role of the zeroth order meridional wind is explored. A three-dimensional paper model is used to explain the instability geometry, which has been defined formally in previous works.

  14. Fundamental solution of bond pricing in the Ho-Lee stochastic interest rate model under the invariant criteria

    Directory of Open Access Journals (Sweden)

    Burhaneddin İzgi

    2017-03-01

    under the invariant criteria. We obtain transformations between Ho-Lee model with the corresponding linear (1 + 1 partial differential equation and the first Lie canonical form which is identical to the classical heat equation. These transformations help us to generate the fundamental solution for the Ho-Lee model with respect to the fundamental solution of the classical heat equation sense. Moreover, as a financial application of the Ho-Lee model, we choose the drift term from power functions and perform simulations via Milstein method. Furthermore, we obtain important results for the parameter calibration of the corresponding drift term by using the simulation results.

  15. Duke Power's William Lee says INPO's purpose is solving industry problems, not educating the public

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Former Institute of Nuclear Power Operations (INPO) head, William Lee thinks that nuclear critics could misuse institute reports on investigations of nuclear plant construction and operation. If so, that would outweigh any public relations benefits of using the reports to inform and educate the public. Lee thinks the best way to gain public confidence is for the industry to perform well. The four-year-old institute was originally formed to improve operations, but recent problems with unfinished plants led to a system of construction audits. By offering guidance to companies building nuclear plants, INPO is meeting competition from utilities such as Duke Power, which is now marketing its expertise in designing and building plants. Lee emphasizes the importance of asking the right questions that will lead to quality control

  16. Use of fruit bait traps for monitoring of butterflies (Lepidoptera: Nymphalidae

    Directory of Open Access Journals (Sweden)

    Jennifer B. Hughes

    1998-09-01

    Full Text Available There exists great interest in using fruit-feeding adult nymphalid butterflies to monitor changes in tropical forest ecosystems. We intensively sampled the butterfly fauna of mid-elevation tropical moist forest in southern Costa Rica with fruit bait traps to address a series of practical issues concerning the development of a robust, efficient sampling program. Variation in the number of captures and escapes of butterflies at the traps was better explained by the time of day than by the age of bait. Species’ escape rates varied widely, suggesting that short term, less intensive surveys aimed at determining presence or absence of species may be biased. Individuals did not appear to become "trap-happy" or to recognize the traps as food sources. Considering the tradeoff between numbers of traps and frequency of trap servicing, the most efficient sampling regime appears to be baiting and sampling the traps once every other day.

  17. Thermoluminescence dependence on the wavelength of monochromatic UV-radiation in Cu-doped KCl and KBr at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Perez R, A.; Piters, T.; Aceves, R.; Rodriguez M, R.; Perez S, R., E-mail: rperez@cifus.uson.mx [Universidad de Sonora, Departamento de Investigaciones en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2014-08-15

    Thermoluminescence (Tl) dependence on the UV irradiation wavelengths from 200 to 500 nm in Cu-doped KCl and KBr crystals with different thermal treatment has been analyzed. Spectrum of the Tl intensity of each material show lower intensity at wavelengths longer than 420 nm. The Tl intensity depends on the irradiation wavelength. Structure of the Tl intensity spectrum of each sample is very similar to the structure of its optical absorption spectrum, indicating that at each wavelength, monochromatic radiation is absorbed to produce electronic transitions and electron hole pairs. Thermoluminescence of materials with thermal treatment at high temperature shows electron-hole trapping with less efficiency. The results show that Cu-doped alkali-halide materials are good detectors of a wide range of UV monochromatic radiations and could be used to measure UV radiation doses. (Author)

  18. Thermoluminescence dependence on the wavelength of monochromatic UV-radiation in Cu-doped KCl and KBr at room temperature

    International Nuclear Information System (INIS)

    Perez R, A.; Piters, T.; Aceves, R.; Rodriguez M, R.; Perez S, R.

    2014-08-01

    Thermoluminescence (Tl) dependence on the UV irradiation wavelengths from 200 to 500 nm in Cu-doped KCl and KBr crystals with different thermal treatment has been analyzed. Spectrum of the Tl intensity of each material show lower intensity at wavelengths longer than 420 nm. The Tl intensity depends on the irradiation wavelength. Structure of the Tl intensity spectrum of each sample is very similar to the structure of its optical absorption spectrum, indicating that at each wavelength, monochromatic radiation is absorbed to produce electronic transitions and electron hole pairs. Thermoluminescence of materials with thermal treatment at high temperature shows electron-hole trapping with less efficiency. The results show that Cu-doped alkali-halide materials are good detectors of a wide range of UV monochromatic radiations and could be used to measure UV radiation doses. (Author)

  19. Paul Trapping of Radioactive 6He+ Ions and Direct Observation of Their β Decay

    International Nuclear Information System (INIS)

    Flechard, X.; Lienard, E.; Mery, A.; Rodriguez, D.; Ban, G.; Durand, D.; Duval, F.; Herbane, M.; Labalme, M.; Mauger, F.; Naviliat-Cuncic, O.; Velten, Ph.; Thomas, J. C.

    2008-01-01

    We demonstrate that abundant quantities of short-lived β unstable ions can be trapped in a novel transparent Paul trap and that their decay products can directly be detected in coincidence. Low energy 6 He + (807 ms half-life) ions were extracted from the SPIRAL source at GANIL, then decelerated, cooled, and bunched by means of the buffer gas cooling technique. More than 10 8 ions have been stored over a measuring period of six days, and about 10 5 decay coincidences between the beta particles and the 6 Li ++ recoiling ions have been recorded. The technique can be extended to other short-lived species, opening new possibilities for trap assisted decay experiments

  20. Deterministic and stochastic trends in the Lee-Carter mortality model

    DEFF Research Database (Denmark)

    Callot, Laurent; Haldrup, Niels; Kallestrup-Lamb, Malene

    2015-01-01

    The Lee and Carter (1992) model assumes that the deterministic and stochastic time series dynamics load with identical weights when describing the development of age-specific mortality rates. Effectively this means that the main characteristics of the model simplify to a random walk model with age...... mortality data. We find empirical evidence that this feature of the Lee–Carter model overly restricts the system dynamics and we suggest to separate the deterministic and stochastic time series components at the benefit of improved fit and forecasting performance. In fact, we find that the classical Lee......–Carter model will otherwise overestimate the reduction of mortality for the younger age groups and will underestimate the reduction of mortality for the older age groups. In practice, our recommendation means that the Lee–Carter model instead of a one-factor model should be formulated as a two- (or several...

  1. Long-Wavelength Phonon Scattering in Nonpolar Semiconductors

    DEFF Research Database (Denmark)

    Lawætz, Peter

    1969-01-01

    The long-wavelength acoustic- and optical-phonon scattering of carriers in nonpolar semiconductors is considered from a general point of view. The deformation-potential approximation is defined and it is shown that long-range electrostatic forces give a nontrivial correction to the scattering...... of the very-short-range nature of interactions in a covalent semiconductor....

  2. Characterization of Low Noise TES Detectors Fabricated by D-RIE Process for SAFARI Short-Wavelength Band

    Science.gov (United States)

    Khosropanah, P.; Suzuki, T.; Hijmering, R. A.; Ridder, M. L.; Lindeman, M. A.; Gao, J.-R.; Hoevers, H.

    2014-08-01

    SRON is developing TES detectors based on a superconducting Ti/Au bilayer on a suspended SiN membrane for the short-wavelength band of the SAFARI instrument on SPICA mission. We have recently replaced the wet KOH etching of the Si substrate by deep reactive ion etching. The new process enables us to fabricate the detectors on the substrate and release the membrane at the very last step. Therefore the production of SAFARI large arrays (4343) on thin SiN membrane (250 nm) is feasible. It also makes it possible to realize narrow supporting SiN legs of 1 m, which are needed to meet SAFARI NEP requirements. Here we report the current-voltage characteristics, noise performance and impedance measurement of these devices. The measured results are then compared with the distributed leg model that takes into account the thermal fluctuation noise due to the SiN legs. We measured a dark NEP of 0.7 aW/, which is 1.6 times higher than the theoretically expected phonon noise.

  3. Relationship between short-wavelength automatic perimetry and Heidelberg retina tomograph parameters in eyes with ocular hypertension

    Directory of Open Access Journals (Sweden)

    Christos Pitsas

    2015-10-01

    Full Text Available AIM:To compare and correlate optic nerve head parameters obtained byHeidelberg retina tomograph (HRT with short-wavelength automatic perimetry (SWAP indices in eyes with ocular hypertension (OHT.METHODS: One hundred and forty-six patients with OHT included in the present study. All subjects had reliable SWAP and HRT measurements performed within a 2wk period. The eyes were classified as normal/abnormal according to visual field criteria and Moorfields regression analysis (MRA. Correlations between visual field indices and HRT parameters were analyzed using Pearson correlation coefficient (r.RESULTS:Twenty-nine eyes (19.9% had SWAP defects. Twenty-nine eyes (19.9% were classified as abnormal according to global MRA. Six eyes (4.1% had abnormal global MRA and SWAP defects. The k statistic is 0.116 (P=0.12 indicating a very poor agreement between the methods. No statistical significant correlation between HRT and SWAP parameters was detected.CONCLUSION:SWAP defects may coexist with abnormalities of optic disc detected by HRT in eyes with OHT. In most eyes, however, the two methods detect different glaucoma properties.

  4. Agility of Felix Regarding Wavelength and Micropulse Shape

    NARCIS (Netherlands)

    Bakker, R. J.; van der Geer, C. A. J.; Jaroszynski, D. A.; van der Meer, A. F. G.; Oepts, D.; van Amersfoort, P. W.; Anderegg, V.; van Son, P. C.

    1993-01-01

    The user-facility FELIX employs two FELs together covering the spectral range from 6.5 to 110 mum. Adjustment of the undulator strength permits wavelength tuning over a factor of two within two minutes while continuously providing several kilowatts of output power. As FELIX combines short electron

  5. INCA Modelling of the Lee System: strategies for the reduction of nitrogen loads

    Science.gov (United States)

    Flynn, N. J.; Paddison, T.; Whitehead, P. G.

    The Integrated Nitrogen Catchment model (INCA) was applied successfully to simulate nitrogen concentrations in the River Lee, a northern tributary of the River Thames for 1995-1999. Leaching from urban and agricultural areas was found to control nitrogen dynamics in reaches unaffected by effluent discharges and abstractions; the occurrence of minimal flows resulted in an upward trend in nitrate concentration. Sewage treatment works (STW) discharging into the River Lee raised nitrate concentrations substantially, a problem which was compounded by abstractions in the Lower Lee. The average concentration of nitrate (NO3) for the simulation period 1995-96 was 7.87 mg N l-1. Ammonium (NH4) concentrations were simulated less successfully. However, concentrations of ammonium rarely rose to levels which would be of environmental concern. Scenarios were run through INCA to assess strategies for the reduction of nitrate concentrations in the catchment. The conversion of arable land to ungrazed vegetation or to woodland would reduce nitrate concentrations substantially, whilst inclusion of riparian buffer strips would be unsuccessful in reducing nitrate loading. A 50% reduction in nitrate loading from Luton STW would result in a fall of up to 5 mg N l-1 in the reach directly affected (concentrations fell from maxima of 13 to 8 mg N l-1 , nearly a 40 % reduction), whilst a 20% reduction in abstractions would reduce maximum peaks in concentration in the lower Lee by up to 4 mg l-1 (from 17 to 13 mg N l-1, nearly a 25 % reduction),.

  6. A novel ion cooling trap for multi-reflection time-of-flight mass spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Y., E-mail: yito@riken.jp [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Schury, P. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); New Mexico State University, Department Chemistry and Biochemistry, Las Cruces, NM 88003 (United States); Wada, M.; Naimi, S. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Smorra, C. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Sonoda, T. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Mita, H. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Takamine, A. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aoyama Gakuin University, 4-4-25 Shibuya, Shibuya-ku, Tokyo 150-8366 (Japan); Okada, K. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Ozawa, A. [University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Wollnik, H. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); New Mexico State University, Department Chemistry and Biochemistry, Las Cruces, NM 88003 (United States)

    2013-12-15

    Highlights: • Fast cooling time: 2 ms. • High efficiency: ≈27% for {sup 23}Na{sup +} and ≈5.1% for {sup 7}Li{sup +}. • 100% Duty cycle with double trap system. -- Abstract: A radiofrequency quadrupole ion trap system for use with a multi-reflection time-of-flight mass spectrograph (MRTOF) for short-lived nuclei has been developed. The trap system consists of two different parts, an asymmetric taper trap and a flat trap. The ions are cooled to a sufficient small bunch for precise mass measurement with MRTOF in only 2 ms cooling time in the flat trap, then orthogonally ejected to the MRTOF for mass analysis. A trapping efficiency of ≈27% for {sup 23}Na{sup +} and ≈5.1% for {sup 7}Li{sup +} has been achieved.

  7. Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities

    International Nuclear Information System (INIS)

    Haan, S.W.; Herrmann, M.C.; Dittrich, T.R.; Fetterman, A.J.; Marinak, M.M.; Munro, D.H.; Pollaine, S.M.; Salmonson, J.D.; Strobel, G.L.; Suter, L.J.

    2005-01-01

    Targets meant to achieve ignition on the National Ignition Facility (NIF) [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, Laser Focus World 30, 75 (1994)] have been redesigned and their performance simulated. Simulations indicate dramatically reduced growth of short wavelength hydrodynamic instabilities, resulting from two changes in the designs. First, better optimization results from systematic mapping of the ignition target performance over the parameter space of ablator and fuel thickness combinations, using techniques developed by one of us (Herrmann). After the space is mapped with one-dimensional simulations, exploration of it with two-dimensional simulations quantifies the dependence of instability growth on target dimensions. Low modes and high modes grow differently for different designs, allowing a trade-off of the two regimes of growth. Significant improvement in high-mode stability can be achieved, relative to previous designs, with only insignificant increase in low-mode growth. This procedure produces capsule designs that, in simulations, tolerate several times the surface roughness that could be tolerated by capsules optimized by older more heuristic techniques. Another significant reduction in instability growth, by another factor of several, is achieved with ablators with radially varying dopant. In this type of capsule the mid-Z dopant, which is needed in the ablator to minimize x-ray preheat at the ablator-ice interface, is optimally positioned within the ablator. A fabrication scenario for graded dopants already exists, using sputter coating to fabricate the ablator shell. We describe the systematics of these advances in capsule design, discuss the basis behind their improved performance, and summarize how this is affecting our plans for NIF ignition

  8. Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. Analysis of remnant polyphenolic compounds in the resulting wines.

    Science.gov (United States)

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2005-07-13

    Wine aging on yeast lees is a traditional enological practice used during the manufacture of wines. This technique has increased in popularity in recent years for the aging of red wines. Although wine polyphenols interact with yeast lees to a limited extent, such interactions have a large effect on the reactivity toward oxygen of wine polyphenolic compounds and yeast lees. Various domains of the yeast cell wall are protected by wine polyphenols from the action of extracellular hydrolytic enzymatic activities. Polysaccharides released during autolysis are thought to exert a significant effect on the sensory qualities of wine. We studied the chemical composition of polyphenolic compounds remaining in solution or adsorbed on yeast lees after various contact times during the simulation of wine aging. The analysis of the remnant polyphenols in the wine indicated that wine polyphenols adsorption on yeast lees follows biphasic kinetics. An initial and rapid fixation is followed by a slow, constant, and saturating fixation that reaches its maximum after about 1 week. Only very few monomeric phenolic compounds remained adsorbed on yeast lees, and no preferential adsorption of low or high polymeric size tannins occurred. The remnant condensed tannins in the wine contained fewer epigallocatechin units than the initial tannins, indicating that polar condensed tannins were preferentially adsorbed on yeast lees. Conversely, the efficiency of anthocyanin adsorption on yeast lees was unrelated to its polarity.

  9. Short vowel placements in RP past and present

    DEFF Research Database (Denmark)

    Fabricius, Anne

    This study addresses diachronic change in the short vowel system of RP. While TRAP lowering and backing in RP has been reported previously, the movements STRUT has undergone have proven more difficult to determine. This study identifies a TRAP/STRUT 'rotation' using acoustic measurements...

  10. Counter-propagating dual-trap optical tweezers based on linear momentum conservation

    International Nuclear Information System (INIS)

    Ribezzi-Crivellari, M.; Huguet, J. M.; Ritort, F.

    2013-01-01

    We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.

  11. Counter-propagating dual-trap optical tweezers based on linear momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Ribezzi-Crivellari, M.; Huguet, J. M. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ritort, F. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN de Bioingenieria, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid (Spain)

    2013-04-15

    We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.

  12. Molecular transport network security using multi-wavelength optical spins.

    Science.gov (United States)

    Tunsiri, Surachai; Thammawongsa, Nopparat; Mitatha, Somsak; Yupapin, Preecha P

    2016-01-01

    Multi-wavelength generation system using an optical spin within the modified add-drop optical filter known as a PANDA ring resonator for molecular transport network security is proposed. By using the dark-bright soliton pair control, the optical capsules can be constructed and applied to securely transport the trapped molecules within the network. The advantage is that the dark and bright soliton pair (components) can securely propagate for long distance without electromagnetic interference. In operation, the optical intensity from PANDA ring resonator is fed into gold nano-antenna, where the surface plasmon oscillation between soliton pair and metallic waveguide is established.

  13. Charge trapping/de-trapping in nitrided SiO2 dielectrics and its influence on device reliability

    Science.gov (United States)

    Kambour, Kenneth; Hjalmarson, Harold; Nguyen, Duc; Kouhestani, Camron; Devine, Roderick

    2012-02-01

    Field effect devices with insulator gate dielectrics are excellent test vehicles to probe the physics of defects and charge trapping in the insulator/ semiconductor structure. p-channel field effect device reliability under negative bias stressing has been identified to originate from at least two terms: a) charged defect generation at the Si substrate/SiOxNy interface and b) charge trapping at neutral defect pre-cursors in the ``bulk'' of the SiOxNy beyond the interface. Measurements of transistor characteristics enable extraction of the two terms. We report the results of such measurements and demonstrate that short time effects are associated primarily with electric field assisted tunneling of holes from the inversion layer to neutral traps. This is confirmed by bias stressing measurements at different frequencies in the range 1 Hz to 2 MHz. First principles modeling of the tunneling/trapping phenomena is presented. K.Kambour worked under contract FA9453-08-C-0245 with the Air Force Research Laboratory/RVSE. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Outlining the influence of non-conventional yeasts in wine ageing over lees.

    Science.gov (United States)

    Belda, Ignacio; Navascués, Eva; Marquina, Domingo; Santos, Antonio; Calderón, Fernando; Benito, Santiago

    2016-07-01

    During the last decade, the use of innovative yeast cultures of both Saccharomyces cerevisiae and non-Saccharomyces yeasts as alternative tools to manage the winemaking process have turned the oenology industry. Although the contribution of different yeast species to wine quality during fermentation is increasingly understood, information about their role in wine ageing over lees is really scarce. This work aims to analyse the incidence of three non-Saccharomyces yeast species of oenological interest (Torulaspora delbrueckii, Lachancea thermotolerans and Metschnikowia pulcherrima) and of a commercial mannoprotein-overproducer S. cerevisiae strain compared with a conventional industrial yeast strain during wine ageing over lees. To evaluate their incidence in mouthfeel properties of wine after 4 months of ageing, the mannoprotein content of wines was evaluated, together with other wine analytic parameters, such as colour and aroma, biogenic amines and amino acids profile. Some differences among the studied parameters were observed during the study, especially regarding the mannoprotein concentration of wines. Our results suggest that the use of T. delbrueckii lees in wine ageing is a useful tool for the improvement of overall wine quality by notably increasing mannoproteins, reaching values higher than obtained using a S. cerevisiae overproducer strain. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Selective Migration among Southern Blacks: A Reinterpretation of Lee (1951).

    Science.gov (United States)

    Wolff, JosePh L.

    1979-01-01

    Explanations of differences in IQs of Northern and Southern Blacks focus on selective migration (hereditarians) or environmental causes such as education, discrimination and cultural deprivation. In this paper the environmentalist position is questioned and certain neglected features of Lee's data are construed as providing strong evidence for…

  16. Is there an unknown risk for short-wavelength visible laser radiation?

    Energy Technology Data Exchange (ETDEWEB)

    Reidenbach, Hans-Dieter; Beckmann, Dirk; Al Ghouz, Imene; Dollinger, Klaus [Fachhochschule Koeln (Germany). Forschungsbereich Medizintechnik und Nichtionisierende Strahlung; Ott, Guenter [Bundesanstalt fuer Arbeitsschutz und Arbeitsmedizin (BAuA), Dortmund (Germany); Brose, Martin [Berufsgenossenschaft Energie Textil Elektro Medienerzeugnisse (BG ETEM), Koeln (Germany)

    2013-09-01

    A specially designed test apparatus was used in the investigation on temporary blinding. During provisional tests, exposure had been carried out with different wavelengths, power settings and exposure durations. One subject familiar to the effects of temporary blinding experienced an unusual effect, which lasted a long period of time. Concerning that this effect is not known enough to be considered in safety regulations, make it important to publish this report. (orig.)

  17. Cycle 24 COS FUV Internal/External Wavelength Scale Monitor

    Science.gov (United States)

    Fischer, William J.

    2018-02-01

    We report on the monitoring of the COS FUV wavelength scale zero-points during Cycle 24 in program 14855. Select cenwaves were monitored for all FUV gratings at Lifetime Position 3. The target and cenwaves have remained the same since Cycle 21, with a change only to the target acquisition sequence. All measured offsets are within the error goals, although the G140L cenwaves show offsets at the short-wavelength end of segment A that are approaching the tolerance. This behavior will be closely monitored in subsequent iterations of the program.

  18. Lee Miller à travers la Roumanie, l’appareil photo à la main (1946

    Directory of Open Access Journals (Sweden)

    Adrian-Silvan Ionescu

    2012-01-01

    Full Text Available A former model and fashion photographer turned war photographer, Lee Miller visited Romania twice, in 1938 and 1946 respectively. After her second visit she published her impressions and pictures, under the title of Roumania, in Vogue magazine. Besides the published material there are her manuscripts from The Lee Miller Achives at Farley Farm House, East Sussex, England, on which this paper is based. She crossed the border coming from Hungary in early February 1946. Heading for Sibiu her car, a Chevrolet Sedan, slipping on the ice-covered road, stopped on a snowbank far off in the ditch. While looking for help in the nearby village she and her companions left the car unguarded to discover it plundered of everything, wheels included.On a Sunday afternoon she had the privilege of being received by King Mihai I and Queen Mother Elena with whom she talked exstensively. She also took magnificent pictures with the Royal Family in the imposing Peleş Castle. At Sinaia, „the summer capital of Roumania” she had also the opportunity to portray Dinu Brătianu and Iuliu Maniu, the two elderly statesmen. Maniu was surrounded by friends and party members, among whom was young Corneliu Coposu, his private secretary.Moving to Bucharest, she met old friends such as Harri Brauner and his wife, Lena Constante, with whom she wandered through the country eight years ago. Lena and Elena Pătrășcanu, wife of Lucrețiu Pătrășcanu, Minister of Justice, have started a successful marionette theatre where Lee took nice pictures. Other were taken on the streets, with peasants, street vendors and their customers. Harri took her to a bistro where they met Maria Lătărețu, the celebrating folk singer whom Brauner recorded many times. They enjoyed her songs. Suffering from fibrositis, Lee Miller undertook a peculiar treatment in a gypsy village where the inhabitants were dancing bears trainers. She was massaged by a bear weighing about 300 pounds while Brauner took

  19. A State-Space Estimation of the Lee-Carter Mortality Model and Implications for Annuity Pricing

    OpenAIRE

    Man Chung Fung; Gareth W. Peters; Pavel V. Shevchenko

    2015-01-01

    In this article we investigate a state-space representation of the Lee-Carter model which is a benchmark stochastic mortality model for forecasting age-specific death rates. Existing relevant literature focuses mainly on mortality forecasting or pricing of longevity derivatives, while the full implications and methods of using the state-space representation of the Lee-Carter model in pricing retirement income products is yet to be examined. The main contribution of this article is twofold. Fi...

  20. Artificial light pollution: Shifting spectral wavelengths to mitigate physiological and health consequences in a nocturnal marsupial mammal.

    Science.gov (United States)

    Dimovski, Alicia M; Robert, Kylie A

    2018-05-02

    The focus of sustainable lighting tends to be on reduced CO 2 emissions and cost savings, but not on the wider environmental effects. Ironically, the introduction of energy-efficient lighting, such as light emitting diodes (LEDs), may be having a great impact on the health of wildlife. These white LEDs are generated with a high content of short-wavelength 'blue' light. While light of any kind can suppress melatonin and the physiological processes it regulates, these short wavelengths are potent suppressors of melatonin. Here, we manipulated the spectral composition of LED lights and tested their capacity to mitigate the physiological and health consequences associated with their use. We experimentally investigated the impact of white LEDs (peak wavelength 448 nm; mean irradiance 2.87 W/m 2 ), long-wavelength shifted amber LEDs (peak wavelength 605 nm; mean irradiance 2.00 W/m 2 ), and no lighting (irradiance from sky glow light treatments. White LED exposed wallabies had significantly suppressed nocturnal melatonin compared to no light and amber LED exposed wallabies, while there was no difference in lipid peroxidation. Antioxidant capacity declined from baseline to week 10 under all treatments. These results provide further evidence that short-wavelength light at night is a potent suppressor of nocturnal melatonin. Importantly, we also illustrate that shifting the spectral output to longer wavelengths could mitigate these negative physiological impacts. © 2018 Wiley Periodicals, Inc.

  1. [Fundus autofluorescence in patients with inherited retinal diseases : Patterns of fluorescence at two different wavelengths.

    NARCIS (Netherlands)

    Theelen, T.; Boon, C.J.F.; Klevering, B.J.; Hoyng, C.B.

    2008-01-01

    BACKGROUND: Fundus autofluorescence (FAF) may be excited and measured at different wavelengths. In the present study we compared short wavelength and near-infrared FAF patterns of retinal dystrophies. METHODS: We analysed both eyes of 108 patients with diverse retinal dystrophies. Besides colour

  2. Trapped-Ion Quantum Logic with Global Radiation Fields.

    Science.gov (United States)

    Weidt, S; Randall, J; Webster, S C; Lake, K; Webb, A E; Cohen, I; Navickas, T; Lekitsch, B; Retzker, A; Hensinger, W K

    2016-11-25

    Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.

  3. Balancing humans in the biosphere: escaping the overpopulation trap.

    Science.gov (United States)

    Costanza, R

    1990-07-01

    Cultural evolution has allowed humans to change their behaviors and adapt to new conditions much faster than biological evolution. The most critical of these is the overpopulation trap, caused by the imbalance between the short-term incentives to have children and the longterm social and ecological costs of having too many. This process of short-run incentives getting out of sync with longterm goals has been called social traps, as the decision maker is trapped by the local conditions into making a bad decision viewed from a longer perspective. The biological and cultural incentives to procreate combined with rapid reductions in mortality have changed the long-run ecological cost structure. The elimination of social traps requires intervention by education (about the longterm, distributed impacts), insurance, superordinate authority (legal systems, government, religion), and converting the trap to a trade-off. In a sense, this is an extension of the polluter pays principle. Summary suggestions: establish a hierarchy of goals for national and global ecological economic planning and management, sustainability should be the primary longterm goal, replacing the current GNP growth mania; develop better global ecological economic models about the interrelated impacts of population, per capita resource use, and wealth distribution; adjust current incentives to reflect long-run, global costs, including uncertainty; and allow no further decline in the stock of natural capital by taxing natural capital consumption. The US population in 1986 was about 240 million. Current technology and consumption patterns from renewable energy alone could sustain about 85 million people, or about 35% of the current population, or with a more equitable distribution 170 million at a high quality life style on renewable energy alone.

  4. Stability of short-axial-wavelength internal kink modes of an anisotropic plasma

    Science.gov (United States)

    Faghihi, M.; Scheffel, J.

    1987-12-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m ≥ 1) modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also, constant-current-density equilibria can be stabilized for P > P and large β

  5. Expression and Evolution of Short Wavelength Sensitive Opsins in Colugos: A Nocturnal Lineage That Informs Debate on Primate Origins.

    Science.gov (United States)

    Moritz, Gillian L; Lim, Norman T-L; Neitz, Maureen; Peichl, Leo; Dominy, Nathaniel J

    2013-01-01

    A nocturnal activity pattern is central to almost all hypotheses on the adaptive origins of primates. This enduring view has been challenged in recent years on the basis of variation in the opsin genes of nocturnal primates. A correspondence between the opsin genes and activity patterns of species in Euarchonta-the superordinal group that includes the orders Primates, Dermoptera (colugos), and Scandentia (treeshrews)-could prove instructive, yet the basic biology of the dermopteran visual system is practically unknown. Here we show that the eye of the Sunda colugo ( Galeopterus variegatus ) lacks a tapetum lucidum and has an avascular retina, and we report on the expression and spectral sensitivity of cone photopigments. We found that Sunda colugos have intact short wavelength sensitive (S-) and long wavelength sensitive (L-) opsin genes, and that both opsins are expressed in cone photoreceptors of the retina. The inferred peak spectral sensitivities are 451 and 562 nm, respectively. In line with adaptation to nocturnal vision, cone densities are low. Surprisingly, a majority of S-cones coexpress some L-opsin. We also show that the ratio of rates of nonsynonymous to synonymous substitutions of exon 1 of the S-opsin gene is indicative of purifying selection. Taken together, our results suggest that natural selection has favored a functional S-opsin in a nocturnal lineage for at least 45 million years. Accordingly, a nocturnal activity pattern remains the most likely ancestral character state of euprimates.

  6. AlGaN-based laser diodes for the short-wavelength ultraviolet region

    International Nuclear Information System (INIS)

    Yoshida, Harumasa; Kuwabara, Masakazu; Yamashita, Yoji; Takagi, Yasufumi; Uchiyama, Kazuya; Kan, Hirofumi

    2009-01-01

    We have demonstrated the room-temperature operation of GaN/AlGaN and indium-free AlGaN multiple-quantum-well (MQW) laser diodes under the pulsed-current mode. We have successfully grown low-dislocation-density AlGaN films with AlN mole fractions of 20 and 30% on sapphire substrates using the hetero-facet-controlled epitaxial lateral overgrowth (hetero-FACELO) method. GaN/AlGaN and AlGaN MQW laser diodes have been fabricated on the low-dislocation-density Al 0.2 Ga 0.8 N and Al 0.3 Ga 0.7 N films, respectively. The GaN/AlGaN MQW laser diodes lased at a peak wavelength ranging between 359.6 and 354.4 nm. A threshold current density of 8 kA cm -2 , an output power as high as 80 mW and a differential external quantum efficiency (DEQE) of 17.4% have been achieved. The AlGaN MQW laser diodes lased at a peak wavelength down to 336.0 nm far beyond the GaN band gap. For the GaN/AlGaN MQW laser diodes, the modal gain coefficient and the optical internal loss are estimated to be 4.7±0.6 cm kA -1 and 10.6±2.7 cm -1 , respectively. We have observed that the characteristic temperature T 0 ranges from 132 to 89 K and DEQE shows an almost stable tendency with increase of temperature. A temperature coefficient of 0.049 nm K -1 is also found for the GaN/AlGaN MQW laser diode. The results for the AlGaN-based laser diodes grown on high-quality AlGaN films presented here will be essential for the future development of laser diodes emitting much shorter wavelengths.

  7. Tailoring Chirped Moiré Fiber Bragg Gratings for Wavelength-Division-Multiplexing and Optical Code-Division Multiple-Access Applications

    Science.gov (United States)

    Chen, Lawrence R.; Smith, Peter W. E.

    The design and fabrication of chirped Moiré fiber Bragg gratings (CMGs) are presented, which can be used in either (1) transmission as passband filters for providing wavelength selectivity in wavelength-division-multiplexed (WDM) systems or (2) reflection as encoding/decoding elements to decompose short broadband pulses in both wavelength and time in order to implement an optical code-division multiple-access (OCDMA) system. In transmission, the fabricated CMGs have single or multiple flattened passbands ( 12 dB isolation and near constant in-band group delay. It is shown that these filters do not produce any measurable dispersion-induced power penalties when used to provide wavelength selectivity in 2.5 Gbit/s systems. It is also demonstrated how CMGs can be used in reflection to encode/decode short pulses from a wavelength-tunable mode-locked Er-doped fiber laser.

  8. Stability of short-axial-wavelength internal kink modes of an anisotropic plasma

    International Nuclear Information System (INIS)

    Faghihi, M.; Schefffel, J.

    1987-01-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m ≥ 1) modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also, constant-current-density equilibria can be stabilized for Psub(perpendicular) > Psub(parallel) and large βsub(perpendicular). (author)

  9. Brassia campestris L. ssp. chinensis L.var. utilis Tsen et Lee

    African Journals Online (AJOL)

    omodibo

    2012-12-31

    Dec 31, 2012 ... On the basis of morphological and cultural features, the pathogen ... Alternaria isolate from Purple-Caitai showed 99% identity with other ITS sequences of .... Cho KH, Park SH, Kim KT, Kim S, Kim JS, Park BS, Woo JG, Lee HJ.

  10. Stability of short-axial-wavelength internal kink modes of an anisotropic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, M.; Schefffel, J.

    1987-12-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m greater than or equal to 1) modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also, constant-current-density equilibria can be stabilized for Psub(perpendicular) > Psub(parallel) and large ..beta..sub(perpendicular).

  11. Cooling and trapping of neutral mercury atoms; Kuehlen und Fangen von neutralen Hg-Atomen

    Energy Technology Data Exchange (ETDEWEB)

    Villwock, Patrick

    2010-01-15

    as well as the fairly small natural linewidth and wavelength. The UV-laser that has been developed is based on a narrow, detuned single-mode and single-frequency Yb:YAG disk laser with a continuous output power of 5 W at the required wavelength of 1014.9 nm. Up to 280 mW at the desired wavelength of 253.7 nm are provided by the use of two external frequency doubling cavities. As a nonlinear medium a LBO- and BBO-crystal is inserted into two separate build-up cavities. One of these two cavities is stabilized by the implementation of the Haensch-Couillaud-technique, while the other is stabilized by implementation of the Pound-Drever-Hall technique. The fundamental wavelength is stabilized by way of saturation spectroscopy to a Hg-Cell at room temperature. In this manner an absolute stabilization onto the atomic transition of the trapped isotope is achieved using frequency modulation spectroscopy. This laser combined with the presented experimental setup was used for experiments in cooling mercury atoms and trapping them within a 3D-MOT. Mercury is the heaviest non-radioactive element, that has been trapped in a MOT. To this day there are only two other groups who are able to cool and trap mercury atoms within a MOT. At the TU Darmstadt up to (3.2 ± 0.3) x 10{sup 6} {sup 202}Hg-atoms were loaded into a 3D-MOT. This is the highest reported number of Hg-atoms that have been captured from the background vapor. For the first time the dimension and density of such a cloud of Hg-atoms has been measured.

  12. Laser spectroscopy of the 4s4p(3) P-2-4s3d(1) D-2 transition on magnetically trapped calcium atoms

    NARCIS (Netherlands)

    Dammalapati, U.; Norris, I.; Burrows, C.; Riis, E.

    2011-01-01

    Laser excitation of the 4s4p(3) P-2-4s3d(1) D-2 transition in atomic calcium has been observed and the wavelength determined to 1530.5298(6) nm. The metastable 4s4p(3) P-2 atoms were magnetically trapped in the quadrupole magnetic field of a magneto-optical trap. This state represents the only

  13. Spectral and directional dependence of light-trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ulbrich, Carolin

    2011-02-17

    optimizes the power output of the solar cell, instead of the short circuit current density. A new method is proposed to quantify the power mismatch of a given solar cell by varying the composition of the incident spectrum. Experimentally, it is shown exemplary on a silicon thin film tandem solar cell that the efficiency can be increased by 0.5 % absolute by adopting the layer thicknesses to the power matching instead of the current matching. Moreover, the efficiency under standard conditions can be interpolated from the measurements without the need for time-consuming calibrations. It is further shown in this thesis that an angle and energy selectivity of the surface of a solar cell can enhance the light-trapping, and lead to efficiencies in very thin cells above the theoretical limit for non-concentrating solar cells. Simulations determine a theoretically achievable gain of up to 33% in the annual yield if the cell is tracked to the solar path. For non-tracked solar cells, simulations show that there is a wide angle and energy range of acceptable restrictions that lead to only minor losses but also not to gains. In experiments on hydrogenated amorphous silicon thin film solar cells an enhancement of the overall path length in the device up to a factor of 3.5 was demonstrated using a Bragg-like angle selective filter. The total benefit of this potential is, however, limited by parasitic absorption in the adjacent doped layers, in the transparent conductive oxide and at the back reflector. The effective path length enhancement was a maximum factor of about 1.5, in the wavelength regime close to the band gap. Nonetheless, this thesis demonstrates an improvement in the short circuit current density of hydrogenated amorphous silicon solar cells by 0.2 mA/cm{sup 2}. (orig.)

  14. Dual-mode optical fiber-based tweezers for robust trapping and manipulation of absorbing particles in air

    Science.gov (United States)

    Sil, Souvik; Kanti Saha, Tushar; Kumar, Avinash; Bera, Sudipta K.; Banerjee, Ayan

    2017-12-01

    We develop an optical tweezers system using a single dual-mode optical fiber where mesoscopic absorbing particles can be trapped in three dimensions and manipulated employing photophoretic forces. We generate a superposition of fundamental and first order Hermite-Gaussian beam modes by the simple innovation of coupling a laser into a commercial optical fiber designed to be single mode for a wavelength higher than that of the laser. We achieve robust trapping of the absorbing particles for hours using both the pure fundamental and superposition mode beams and attain large manipulation velocities of ˜5 mm s-1 in the axial direction and ˜0.75 mm s-1 in the radial direction. We then demonstrate that the superposition mode is more effective in trapping and manipulation compared to the fundamental mode by around 80%, which may be increased several times by the use of a pure first order Hermite-Gaussian mode. The work has promising implications for trapping and spectroscopy of aerosols in air using simple optical fiber-based traps.

  15. Markkinointisuunnitelma digitaaliseen markkinointiin Case Baan Lee Beach Resort & Sauna

    OpenAIRE

    Lähteenmäki, Essi

    2017-01-01

    Tämän opinnäytetyön tavoitteena on kehittää Baan Lee Beach Resort & Saunan digitaalista markkinointia markkinointisuunnitelman avulla. Yritys on aloittamassa liiketoimintaansa erittäin kilpailulla alalla, jossa digitaalinen markkinointi on tärkeä osa kilpailussa menestymistä ja se on otettava huomioon yrityksen markkinointistrategian tärkeänä osana. Markkinointisuunnitelmalla pyritään takaamaan markkinointistrategian mukainen toiminta. Markkinointisuunnitelmassa kuvataan yrityksen nykyti...

  16. Servicing the first web server - Tim Berners-Lee's NeXT

    CERN Multimedia

    unknown, Association aBCM

    2009-01-01

    In August 2009 a team from the Association aBCM in Lausanne came to CERN to give the world's first web server a health check under the watchful eye of web pioneer Robert Cailliau. They took an image of the hard drive at this time, copies of which were given to Robert Cailliau and Tim Berners-Lee.

  17. Optogalvanic wavelength calibration for laser monitoring of reactive atmospheric species

    Science.gov (United States)

    Webster, C. R.

    1982-01-01

    Laser-based techniques have been successfully employed for monitoring atmospheric species of importance to stratospheric ozone chemistry or tropospheric air quality control. When spectroscopic methods using tunable lasers are used, a simultaneously recorded reference spectrum is required for wavelength calibration. For stable species this is readily achieved by incorporating into the sensing instrument a reference cell containing the species to be monitored. However, when the species of interest is short-lived, this approach is unsuitable. It is proposed that wavelength calibration for short-lived species may be achieved by generating the species of interest in an electrical or RF discharge and using optogalvanic detection as a simple, sensitive, and reliable means of recording calibration spectra. The wide applicability of this method is emphasized. Ultraviolet, visible, or infrared lasers, either CW or pulsed, may be used in aircraft, balloon, or shuttle experiments for sensing atoms, molecules, radicals, or ions.

  18. Short-wavelength electrostatic waves in the earth's magnetosheath

    International Nuclear Information System (INIS)

    Gallagher, D.L.

    1985-01-01

    Recent observations with the ISEE 1 spacecraft have found electric field emissions in the dayside magnetosheath whose frequency spectrum is modulated at twice the spacecraft spin period. The upper frequency cutoff in the frequency-time spectrum of the emission has a characteristic parabola shape or ''festoon'' shape. The low-frequency cutoff ranges from 100 to 400 Hz, while the high-frequency limit ranges from about 1 to 4 kHz. The bandwidth is found to minimize for antenna orientations parallel to the wave vectors. The wave vector does not appear to be related to the local magnetic field, the plasma flow velocity, or the spacecraft-sun directions. The spacecraft observed frequency spectrum results from the spacecraft antenna response to the Doppler-shifted wave vector spectrum which exists in the plasma. Imposed constraints on the plasma rest frame wave vectors and frequencies indicate that emissions occur within the frequency range from about 150 Hz to 1 kHz, with wavelengths between about 40 and 600 m. These constraints strongly suggest that the festoon-shaped emissions are ion-acoustic waves. The small group velocity and k direction of the ion-acoustic mode are consistent with wave generation upstream at the bow shock and convection downstream to locations within the outer dayside magnetosheath

  19. Short wavelength electrostatic waves in the earth's magnetosheath

    International Nuclear Information System (INIS)

    Gallagher, D.L.

    1982-01-01

    Recent observations with the ISEE-1 spacecraft have found electric field emissions in the dayside magnetosheath whose frequency spectrum is modulated at twice the spacecraft spin period. The upper frequency cutoff in the frequency-time spectrum of the emissions has a characteristic parabola shape or ''festoon'' shape. The low frequency cutoff ranges from 100 Hz to 400 Hz, while the high frequency limit ranges from about 1kHz to 4kHz. The bandwidth is found to minimize for antenna orientations parallel to these wave number vectors, requiring the confinement of those vectors to a plane which contains the geocentric solar eclilptic coordinate z-axis. The spacecraft observed frequency spectrum results from the spacecraft antenna response to the Doppler shifted wave vector spectrum which exists in the plasma. Imposed constraints on the plasma rest-frame wave vectors and frequencies indicate that the emissions occur within the frequency range from about 150 Hz to 1 kHz, with wavelengths between about 30 meters and 600 meters. These constraints strongly suggest that the festoon-shaped emissions are ion-acoustic waves. The small group velocity and k vector direction of the ion-acoustic mode are consistent with wave generation upstream at the bow shock and convection downstream to locations within the outer dayside magnetosheath

  20. A relation between deformed superspace and Lee-Wick higher-derivative theories

    Science.gov (United States)

    Dias, M.; Ferrari, A. F.; Palechor, C. A.; Senise, C. R., Jr.

    2015-07-01

    We propose a non-anticommutative superspace that relates to the Lee-Wick type of higher-derivative theories, which are known for their interesting properties and have led to proposals of phenomenologically viable higher-derivative extensions of the Standard Model. The deformation of superspace we consider does not preserve supersymmetry or associativity in general, but, we show that a non-anticommutative version of the Wess-Zumino model can be properly defined. In fact, the definition of chiral and antichiral superfields turns out to be simpler in our case than in the well known N=1/2 supersymmetric case. We show that when the theory is truncated at the first nontrivial order in the deformation parameter, supersymmetry is restored, and we end up with a well-known Lee-Wick type of higher-derivative extension of the Wess-Zumino model. Thus, we show how non-anticommutativity could provide an alternative mechanism for generating these higher-derivative theories.

  1. MIT wavelength tables. Volume 2. Wavelengths by element

    International Nuclear Information System (INIS)

    Phelps, F.M. III.

    1982-01-01

    This volume is the first stage of a project to expand and update the MIT wavelength tables first compiled in the 1930's. For 109,325 atomic emission lines, arranged by element, it presents wavelength in air, wavelength in vacuum, wave number and intensity. All data are stored on computer-readable magnetic tape

  2. Forecasting the mortality rates using Lee-Carter model and Heligman-Pollard model

    Science.gov (United States)

    Ibrahim, R. I.; Ngataman, N.; Abrisam, W. N. A. Wan Mohd

    2017-09-01

    Improvement in life expectancies has driven further declines in mortality. The sustained reduction in mortality rates and its systematic underestimation has been attracting the significant interest of researchers in recent years because of its potential impact on population size and structure, social security systems, and (from an actuarial perspective) the life insurance and pensions industry worldwide. Among all forecasting methods, the Lee-Carter model has been widely accepted by the actuarial community and Heligman-Pollard model has been widely used by researchers in modelling and forecasting future mortality. Therefore, this paper only focuses on Lee-Carter model and Heligman-Pollard model. The main objective of this paper is to investigate how accurately these two models will perform using Malaysian data. Since these models involves nonlinear equations that are explicitly difficult to solve, the Matrix Laboratory Version 8.0 (MATLAB 8.0) software will be used to estimate the parameters of the models. Autoregressive Integrated Moving Average (ARIMA) procedure is applied to acquire the forecasted parameters for both models as the forecasted mortality rates are obtained by using all the values of forecasted parameters. To investigate the accuracy of the estimation, the forecasted results will be compared against actual data of mortality rates. The results indicate that both models provide better results for male population. However, for the elderly female population, Heligman-Pollard model seems to underestimate to the mortality rates while Lee-Carter model seems to overestimate to the mortality rates.

  3. Coherence techniques at extreme ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chang [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The renaissance of Extreme Ultraviolet (EUV) and soft x-ray (SXR) optics in recent years is mainly driven by the desire of printing and observing ever smaller features, as in lithography and microscopy. This attribute is complemented by the unique opportunity for element specific identification presented by the large number of atomic resonances, essentially for all materials in this range of photon energies. Together, these have driven the need for new short-wavelength radiation sources (e.g. third generation synchrotron radiation facilities), and novel optical components, that in turn permit new research in areas that have not yet been fully explored. This dissertation is directed towards advancing this new field by contributing to the characterization of spatial coherence properties of undulator radiation and, for the first time, introducing Fourier optical elements to this short-wavelength spectral region. The first experiment in this dissertation uses the Thompson-Wolf two-pinhole method to characterize the spatial coherence properties of the undulator radiation at Beamline 12 of the Advanced Light Source. High spatial coherence EUV radiation is demonstrated with appropriate spatial filtering. The effects of small vertical source size and beamline apertures are observed. The difference in the measured horizontal and vertical coherence profile evokes further theoretical studies on coherence propagation of an EUV undulator beamline. A numerical simulation based on the Huygens-Fresnel principle is performed.

  4. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers.......Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers....

  5. Extraordinary Light-Trapping Enhancement in Silicon Solar Cell Patterned with Graded Photonic Super-Crystals

    Directory of Open Access Journals (Sweden)

    Safaa Hassan

    2017-12-01

    Full Text Available Light-trapping enhancement in newly discovered graded photonic super-crystals (GPSCs with dual periodicity and dual basis is herein explored for the first time. Broadband, wide-incident-angle, and polarization-independent light-trapping enhancement was achieved in silicon solar cells patterned with these GPSCs. These super-crystals were designed by multi-beam interference, rendering them flexible and efficient. The optical response of the patterned silicon solar cell retained Bloch-mode resonance; however, light absorption was greatly enhanced in broadband wavelengths due to the graded, complex unit super-cell nanostructures, leading to the overlap of Bloch-mode resonances. The broadband, wide-angle light coupling and trapping enhancement mechanism are understood to be due to the spatial variance of the index of refraction, and this spatial variance is due to the varying filling fraction, the dual basis, and the varying lattice constants in different directions.

  6. Option Valuation with Long-run and Short-run Volatility Components

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Ornthanalai, Chayawat

    This paper presents a new model for the valuation of European options, in which the volatility of returns consists of two components. One of these components is a long-run component, and it can be modeled as fully persistent. The other component is short-run and has a zero mean. Our model can...... be viewed as an affine version of Engle and Lee (1999), allowing for easy valuation of European options. The model substantially outperforms a benchmark single-component volatility model that is well-established in the literature, and it fits options better than a model that combines conditional...... model long-maturity and short-maturity options....

  7. Optimization Evaluation: Lee Chemical Superfund Site, City Of Liberty, Clay County, Missouri

    Science.gov (United States)

    The Lee Chemical Superfund Site (site) is located along Missouri Highway 210 in Liberty, Missouri, approximately 15 miles east of Kansas City, Missouri. Currently, the site is a vacant lot of approximately2.5 acres in a flat alluvial plain.

  8. Mechanism of wavelength conversion in polystyrene doped with benzoxanthene: emergence of a complex.

    Science.gov (United States)

    Nakamura, Hidehito; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Sato, Nobuhiro; Shinji, Osamu; Saito, Katashi; Takahashi, Sentaro

    2013-01-01

    Fluorescent guest molecules doped in polymers have been used to convert ultraviolet light into visible light for applications ranging from optical fibres to filters for the cultivation of plants. The wavelength conversion process involves the absorption of light at short wavelengths followed by fluorescence emission at a longer wavelength. However, a precise understanding of the light conversion remains unclear. Here we show light responses for a purified polystyrene base substrates doped with fluorescent benzoxanthene in concentrations varied over four orders of magnitude. The shape of the excitation spectrum for fluorescence emission changes significantly with the concentration of the benzoxanthene, indicating formation of a base substrate/fluorescent molecule complex. Furthermore, the wavelength conversion light yield increases in three stages depending on the nature of the complex. These findings identify a mechanism that will have many applications in wavelength conversion materials.

  9. Improved light trapping in polymer solar cells by light diffusion ink

    International Nuclear Information System (INIS)

    Chao, Yu-Chiang; Lin, Yun-Hsuan; Lin, Ching-Yi; Li, Husan-De; Zhan, Fu-Min; Huang, Yu-Zhang

    2014-01-01

    Light trapping is an important issue for solar cells to increase optical path length and optical absorption. In this work, a light trapping structure was realized for polymer solar cells by utilizing light diffusion ink which is conventionally used in display backlighting. The light scattering particles in the ink cause the deflection of light, and the number of these particles coated on a glass substrate determines the light transmission and scattering characteristics. It was observed that the short-circuit current density did not decrease with decreasing transmittance, but it increased to a highest value at an optimized transmittance. This behaviour is attributed to the trapping of scattered light in the photoactive layer. (paper)

  10. Fast selective trapping and release of picoliter droplets in a 3D microfluidic PDMS multi-trap system with bubbles.

    Science.gov (United States)

    Rambach, Richard W; Biswas, Preetika; Yadav, Ashutosh; Garstecki, Piotr; Franke, Thomas

    2018-02-12

    The selective manipulation and incubation of individual picoliter drops in high-throughput droplet based microfluidic devices still remains challenging. We used a surface acoustic wave (SAW) to induce a bubble in a 3D designed multi-trap polydimethylsiloxane (PDMS) device to manipulate multiple droplets and demonstrate the selection, incubation and on-demand release of aqueous droplets from a continuous oil flow. By controlling the position of the acoustic actuation, individual droplets are addressed and selectively released from a droplet stream of 460 drops per s. A complete trapping and releasing cycle can be as short as 70 ms and has no upper limit for incubation time. We characterize the fluidic function of the hybrid device in terms of electric power, pulse duration and acoustic path.

  11. Measurement of short bunches

    International Nuclear Information System (INIS)

    Wang, D.X.

    1996-01-01

    In recent years, there has been increasing interest in short electron bunches for different applications such as short wavelength FELs, linear colliders, and advanced accelerators such as laser or plasma wakefield accelerators. One would like to meet various requirements such as high peak current, low momentum spread, high luminosity, small ratio of bunch length to plasma wavelength, and accurate timing. Meanwhile, recent development and advances in RF photoinjectors and various bunching schemes make it possible to generate very short electron bunches. Measuring the longitudinal profile and monitoring bunch length are critical to understand the bunching process and longitudinal beam dynamics, and to commission and operate such short bunch machines. In this paper, several commonly used measurement techniques for subpicosecond bunches and their relative advantages and disadvantages are discussed. As examples, bunch length related measurements at Jefferson Lab are presented. At Jefferson Lab, bunch lengths as short as 84 fs have been systematically measured using a zero-phasing technique. A highly sensitive Coherent Synchrotron Radiation (CSR) detector has been developed to noninvasively monitor bunch length for low charge bunches. Phase transfer function measurements provide a means of correcting RF phase drifts and reproducing RF phases to within a couple of tenths of a degree. The measurement results are in excellent agreement with simulations. A comprehensive bunch length control scheme is presented. (author)

  12. Measurement of short bunches

    International Nuclear Information System (INIS)

    Wang, D.X.

    1996-01-01

    In recent years, there has been increasing interest in short electron bunches for different applications such as short wavelength FELs, linear colliders, and advanced accelerators such as laser or plasma wakefield accelerators. One would like to meet various requirements such as high peak current, low momentum spread, high luminosity, small ratio of bunch length to plasma wavelength, and accurate timing. Meanwhile, recent development and advances in RF photoinjectors and various bunching schemes make it possible to generate very short electron bunches. Measuring the longitudinal profile and monitoring bunch length are critical to understand the bunching process and longitudinal beam dynamics, and to commission and operate such short bunch machines. In this paper, several commonly used measurement techniques for subpicosecond bunches and their relative advantages and disadvantages are discussed. As examples, bunch length related measurements at Jefferson lab are presented. At Jefferson Lab, bunch lengths s short as 84 fs have been systematically measured using a zero-phasing technique. A highly sensitive Coherent Synchrotron Radiation (CSR) detector has been developed to noninvasively monitor bunch length for low charge bunches. Phase transfer function measurements provide a means of correcting RF phase drifts and reproducing RF phases to within a couple of tenths of a degree. The measurement results are in excellent agreement with simulations. A comprehensive bunch length control scheme is presented

  13. Triplet Transport to and Trapping by Acceptor End Groups on Conjugated Polyfluorene Chains

    Energy Technology Data Exchange (ETDEWEB)

    Sreearunothai, P.; Miller, J.; Estrada, A.; Asaoka, S.; Kowalczyk, M.; Jang, S.; Cook, A.R.; Preses, J.M.

    2011-08-31

    Triplet excited states created in polyfluorene (pF) molecules having average lengths up to 170 repeat units were transported to and captured by trap groups at the ends in less {approx}40 ns. Almost all of the triplets attached to the chains reached the trap groups, ruling out the presence of substantial numbers of defects that prevent transport. The transport yields a diffusion coefficient D of at least 3 x 10{sup -4} cm{sup 2} s{sup -1}, which is 30 times typical molecular diffusion and close to a value for triplet transport reported by Keller (J. Am. Chem. Soc.2011, 133, 11289-11298). The triplet states were created in solution by pulse radiolysis; time resolution was limited by the rate of attachment of triplets to the pF chains. Naphthylimide (NI) or anthraquinone (AQ) groups attached to the ends of the chains acted as traps for the triplets, although AQ would not have been expected to serve as a trap on the basis of triplet energies of the separate molecules. The depths of the NI and AQ triplet traps were determined by intermolecular triplet transfer equilibria and temperature dependence. The trap depths are shallow, just a few times thermal energy for both, so a small fraction of the triplets reside in the pF chains in equilibrium with the end-trapped triplets. Trapping by AQ appears to arise from charge transfer interactions between the pF chains and the electron-accepting AQ groups. Absorption bands of the end-trapped triplet states are similar in peak wavelength (760 nm) and shape to the 760 nm bands of triplets in the pF chains but have reduced intensities. When an electron donor, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), is added to the solution, it reacts with the end-trapped triplets to remove the 760 nm bands and to make the trapping irreversible. New bands created upon reaction with TMPD may be due to charge transfer states.

  14. Compensation and trapping in CdZnTe radiation detectors studied by thermoelectric emission spectroscopy, thermally stimulated conductivity, and current-voltage measurements

    International Nuclear Information System (INIS)

    James, Ralph B.

    2000-01-01

    In today's commercially available counter-select-grade CdZnTe crystals for radiation detector applications, the thermal ionization energies of the traps and their types, whether electron or hole traps, were measured. The measurements were successfully done using thermoelectric emission spectroscopy (TEES) and thermally stimulated conductivity (TSC). For reliability, the electrical contacts to the sample were found to be very important and, instead of Au Schottky contacts, In Ohmic contacts had to be used. For the filling of the traps, photoexcitation was done at zero bias, at 20K and at wavelengths which gave the maximum bulk photoexcitation for the sample. Between the temperature range from 20 to 400 K, the TSC current was found to be on the order of ∼ 10,000 times or even larger than the TEES current, in agreement with theory, but only TEES could resolve the trap type and was sensitive to the deep traps. Large concentration of hole traps at 0.1 and 0.6 eV were observed and smaller contraction of electron traps at 0.4 eV was seen. These deep traps cause compensation in the material and also cause trapping that degrades the radiation detection measurement

  15. Trapped ion mode in toroidally rotating plasmas

    International Nuclear Information System (INIS)

    Artun, M.; Tang, W.M.; Rewoldt, G.

    1995-04-01

    The influence of radially sheared toroidal flows on the Trapped Ion Mode (TIM) is investigated using a two-dimensional eigenmode code. These radially extended toroidal microinstabilities could significantly influence the interpretation of confinement scaling trends and associated fluctuation properties observed in recent tokamak experiments. In the present analysis, the electrostatic drift kinetic equation is obtained from the general nonlinear gyrokinetic equation in rotating plasmas. In the long perpendicular wavelength limit k τ ρ bi much-lt 1, where ρ bi is the average trapped-ion banana width, the resulting eigenmode equation becomes a coupled system of second order differential equations nmo for the poloidal harmonics. These equations are solved using finite element methods. Numerical results from the analysis of low and medium toroidal mode number instabilities are presented using representative TFTR L-mode input parameters. To illustrate the effects of mode coupling, a case is presented where the poloidal mode coupling is suppressed. The influence of toroidal rotation on a TFTR L-mode shot is also analyzed by including a beam species with considerable larger temperature. A discussion of the numerical results is presented

  16. Effect of light trapping in an amorphous silicon solar cell

    International Nuclear Information System (INIS)

    Iftiquar, S.M.; Jung, Juyeon; Park, Hyeongsik; Cho, Jaehyun; Shin, Chonghoon; Park, Jinjoo; Jung, Junhee; Bong, Sungjae; Kim, Sunbo; Yi, Junsin

    2015-01-01

    Light trapping in amorphous silicon based solar cell has been investigated theoretically. The substrate for these cells can be textured, including pyramidally textured c-Si wafer, to improve capture of incident light. A thin silver layer, deposited on the substrate of an n–i–p cell, ultimately goes at the back of the cell structure and can act a back reflector to improve light trapping. The two physical solar cells we investigated had open circuit voltages (V oc ) of 0.87, 0.90 V, short circuit current densities (J sc ) of 14.2, 15.36 mA/cm 2 respectively. The first cell was investigated for the effect on its performance while having and not having light trapping scheme (LT), when thickness of the active layer (d i ) was changed in the range of 100 nm to 800 nm. In both the approaches, for having or not having LT, the short circuit current density increases with d i while the V oc and fill factor, decreases steadily. However, maximum cell efficiency can be obtained when d i = 400 nm, and hence it was considered optimized thickness of the active layer, that was used for further investigation. With the introduction of light trapping to the second cell, it shows a further enhancement in J sc and red response of the external quantum efficiency to 16.6 mA/cm 2 and by 11.1% respectively. Considering multiple passages of light inside the cell, we obtained an improvement in cell efficiency from 9.7% to 10.6%. - Highlights: • A theoretical analysis of light trapping in p–i–n and n–i–p type solar cells • J sc increases and V oc decreases with the increase in i-layer thickness. • Observed optimized thickness of i-layer as 400 nm • J sc improved from 15.4 mA/cm 2 to 16.6 mA/cm 2 due to the light trapping. • Efficiency (η) improved from 9.7% to 10.6% due to better red response of the EQE

  17. A multidimensional theory for electron trapping by a plasma wake generated in the bubble regime

    International Nuclear Information System (INIS)

    Kostyukov, I; Nerush, E; Pukhov, A; Seredov, V

    2010-01-01

    We present a theory for electron self-injection in nonlinear, multidimensional plasma waves excited by a short laser pulse in the bubble regime or by a short electron beam in the blowout regime. In these regimes, which are typical for electron acceleration in the last impressive experiments, the laser radiation pressure or the electron beam charge pushes out plasma electrons from some region, forming a plasma cavity or a bubble with a huge ion charge. The plasma electrons can be trapped in the bubble and accelerated by the plasma wakefields up to a very high energy. We derive the condition of the electron trapping in the bubble. The developed theory predicts the trapping cross section in terms of the bubble radius and the bubble velocity. It is found that the dynamic bubble deformations observed in the three-dimensional (3D) particle-in-cell (PIC) simulations influence the trapping process significantly. The bubble elongation reduces the gamma-factor of the bubble, thereby strongly enhancing self-injection. The obtained analytical results are in good agreement with the 3D PIC simulations.

  18. Komisjon plaanib ökotoodete eelistamist liidu hangetel / Merike Lees

    Index Scriptorium Estoniae

    Lees, Merike, 1976-

    2004-01-01

    Euroopa Komisjon kavatseb luua reeglid, mis annavad hangetel eelise lisaks keskkonnajuhtimisstandardeid rakendanud ettevõtetele ka ühenduse ökomärgist omavatele toodetele. Ettevõtete juhtide kommentaarid ökomärgise kasutamise kohta. Lisad: Ökotoode peab vastama ligi paarikümnele kriteeriumile; Ökomärgise litsentsi eeltöö tehakse Eestis. Vt. samas: Ökomärgise litsentsi väljastav pädev asutus tuleb Eestisse. Kommenteerivad Merike Lees ja Anu-Maaja Pallok

  19. Tentative identification of polar and mid-polar compounds in extracts from wine lees by liquid chromatography-tandem mass spectrometry in high-resolution mode.

    Science.gov (United States)

    Delgado de la Torre, M P; Priego-Capote, F; Luque de Castro, M D

    2015-06-01

    Sustainable agriculture has a pending goal in the revalorization of agrofood residues. Wine lees are an abundant residue in the oenological industry. This residue, so far, has been used to obtain tartaric acid or pigments but not for being qualitatively characterized as a source of polar and mid-polar compounds such as flavonoids, phenols and essential amino acids. Lees extracts from 11 Spanish wineries have been analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in high resolution mode. The high-resolution power of LC-MS/MS has led to the tentative identification of the most representative compounds present in wine lees, comprising primary amino acids, anthocyans, flavanols, flavonols, flavones and non-flavonoid phenolic compounds, among others. Attending to the profile and content of polar and mid-polar compounds in wine lees, this study underlines the potential of wine lees as an exploitable source to isolate interesting compounds. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Trapping social wasps (Hymenoptera: Vespidae) with acetic acid and saturated short chain alcohols.

    Science.gov (United States)

    Landolt, P J; Smithhisler, C S; Reed, H C; McDonough, L M

    2000-12-01

    Nineteen compounds were evaluated in combination with a solution of acetic acid as baits for trapping the German yellowjacket, Vespula germanica (F.), the western yellowjacket Vespula pensylvanica (Sausssure), and the golden paper wasp Polistes aurifer Saussure. Compounds with three to six carbon chains or branched chains and with a hydroxy functional group were selected for testing based on their similarity to isobutanol. They were compared with isobutanol with acetic acid, which is a known wasp attractant. None of the compounds tested were superior to isobutanol when presented with acetic acid as a lure for these species of wasps. However, traps baited with either the S-(-)- or the racemic mixture of 2-methyl-1-butanol in combination with acetic acid captured similar numbers of both species of yellowjackets, compared with isobutanol with acetic acid. Polistes aurifer responded strongly to the S-(-)-enantiomer and to the racemic mixture of 2-methyl-1-butanol with acetic acid and not to the R-(+)-enantiomer with acetic acid.

  1. Toward A Neutral Mercury Optical Lattice Clock: Determination of the Magic Wavelength for the Ultraviolet clock Transition

    International Nuclear Information System (INIS)

    Mejri, Sinda

    2012-01-01

    A lattice clock combines the advantages of ion and neutral atom based clocks, namely the recoil and first order Doppler free spectroscopy allowed by the Lamb-Dicke regime. This lattice light field shifts the energy levels of the clock transition. However a wavelength can be found where the light-shift of the clock states cancelled to first order. In this thesis, we present the latest advances in optical lattice clock with mercury atoms developed at LNE-SYRTE. After a review of the current performances of different optical clock are currently under development, we focus on the concept of optical lattice clock and the features of the mercury that make him an excellent candidate for the realization of an optical lattice clock achievement the uncertainty of the level of 10 -17 . The second part is devoted to the characterization of the mercury MOT, using a sensitive detection system, which allowed us to evaluate the temperature of different isotopes present in the MOT and have a good evidence of sub-Doppler cooling for the fermionic isotopes. The third part of this these, present the experimental aspects of the implementation and the development of the laser source required for trapping mercury atoms operating near the predicted magic wavelength. Finally, we report on the Lamb-Dicke spectroscopy of the 1S0 →3 P0 clock transition in the 199 Hg atoms confined in lattice trap. With use of the ultra-stable laser system, linked to LNE-SYRTE primary frequency reference, we have determined the center frequency of the transition for a range of lattice wavelengths and different lattice depths. Analyzing these measurement, we have carried out the first experimental determination of the magic wavelength, which is the crucial step towards achieving a highly accurate frequency standard using mercury. (author)

  2. Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals.

    Science.gov (United States)

    Mitchell, Deborah G; Rosen, Gerald M; Tseitlin, Mark; Symmes, Breanna; Eaton, Sandra S; Eaton, Gareth R

    2013-07-16

    The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum. To validate the application of rapid-scan EPR to spin trapping, superoxide was generated by the reaction of xanthine oxidase and hypoxanthine with rates of 0.1-6.0 μM/min and trapped with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO). Spin trapping with BMPO to form the BMPO-OOH adduct converts the very short-lived superoxide radical into a more stable spin adduct. There is good agreement between the hyperfine splitting parameters obtained for BMPO-OOH by CW and rapid-scan EPR. For the same signal acquisition time, the signal/noise ratio is >40 times higher for rapid-scan than for CW EPR. Rapid-scan EPR can detect superoxide produced by Enterococcus faecalis at rates that are too low for detection by CW EPR. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Bio-derived fuels may ease the regeneration of diesel particulate traps

    Energy Technology Data Exchange (ETDEWEB)

    E. Coda Zabetta; M. Hupa; S. Niemi [Aabo Akademi Process Chemistry Centre, Turku (Finland)

    2006-12-15

    Particulate is the most problematic emission from diesel engines. To comply with environmental regulations, these engines are often equipped with particulate traps, which must be regenerated frequently for the sake of efficiency. The regeneration is commonly achieved by rising the temperature in the trap till the particulate self-ignites. However, this method implies energy losses and thermal shocks in the trap. Alternatively, catalysts and additives have been recently considered for reducing the ignition temperature of particulate, but these techniques suffer from poisoning and undesirable byproducts. The present experimental study shows that the ignition temperature of particulate from seed-derived oils (SO) and from blends of SO with diesel fuel oil (DO) can be lower than that of particulate from neat DO. If substantiated by more extensive studies, such finding could have noteworthy implications on the future of fuels and traps. Short communication. 8 refs., 3 figs., 2 tabs.

  4. High color rendering index of remote-type white LEDs with multi-layered quantum dot-phosphor films and short-wavelength pass dichroic filters

    Science.gov (United States)

    Yoon, Hee Chang; Oh, Ji Hye; Do, Young Rag

    2014-09-01

    This paper introduces high color rendering index (CRI) white light-emitting diodes (W-LEDs) coated with red emitting (Sr,Ca)AlSiN3:Eu phosphors and yellowish-green emitting AgIn5S8/ZnS (AIS/ZS) quantum dots (QDs) on glass or a short-wavelength pass dichroic filter (SPDF), which transmit blue wavelength regions and reflect yellow wavelength regions. The red emitting (Sr,Ca)AlSiN3:Eu phosphor film is coated on glass and a SPDF using a screen printing method, and then the yellowish-green emitting AIS/ZS QDs are coated on the red phosphor (Sr,Ca)AlSiN3:Eu film-coated glass and SPDF using the electrospray (e-spray) method.To fabricate the red phosphor film, the optimum amount of phosphor is dispersed in a silicon binder to form a red phosphor paste. The AIS/ZS QDs are mixed with dimethylformamide (DMF), toluene, and poly(methyl methacrylate) (PMMA) for the e-spray coating. The substrates are spin-coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to fabricate a conductive surface. The CRI of the white LEDs is improved through inserting the red phosphor film between the QD layer and the glass substrate. Furthermore, the light intensities of the multi-layered phosphor films are enhanced through changing the glass substrate to the SPDF. The correlated color temperatures (CCTs) vary as a function of the phosphor concentration in the phosphor paste. The optical properties of the yellowish-green AIS/ZS QDs and red (Sr,Ca)AlSiN3:Eu phosphors are characterized using photoluminescence (PL), and the multi-layered QD-phosphor films are measured using electroluminescence (EL) with an InGaN blue LED (λmax = 450 nm) at 60 mA.

  5. Short-term changes in particulate fluxes measured by drifting sediment traps during end summer oligotrophic regime in the NW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    J. C. Marty

    2009-05-01

    Full Text Available Short-term changes in the flux of particulate matter were determined in the central north western Mediterranean Sea (near DYFAMED site using drifting sediment traps at 200 m depth in the course of the DYNAPROC 2 cruise (14 September–17 October 2004. In this period of marked water column stratification, POC fluxes varied by an order of magnitude, in the range of 0.03–0.29 mgC m−2 h−1 over the month and showed very rapid and high variations. Particulate carbon export represented less than 5% of integrated primary production, suggesting that phytoplankton production was essentially sustained by internal recycling of organic matter and retained within the photic zone. While PON and POP fluxes paralleled one another, the elemental ratios POC/PON and POC/POP, varied widely over short-term periods. Values of these ratios generally higher than the conventional Redfield ratio, together with the very low chlorophyll a flux recorded in the traps (mean 0.017 μg m−2 h−1, and the high phaeopigment and acyl lipid hydrolysis metabolite concentrations of the settling material, indicated that the organic matter reaching 200 m depth was reworked (by grazing, fecal pellets production, degradation and that algal sinking, dominated by nano- and picoplankton, made a small contribution to the downward flux. Over time, the relative abundance of individual lipid classes in organic matter (OM changed from glycolipids-dominated to neutral (wax esters, triacylglycerols and phospholipids-dominated, suggesting ecosystem maturation as well as rapid and continual exchanges between dissolved, suspended and sinking pools. Our most striking result was documenting the rapid change in fluxes of the various measured parameters. In the situation encountered here, with dominant regenerated production, a decrease of fluxes was noticed during windy periods (possibly through reduction of grazing. But fluxes increased as soon as calm

  6. Effective long wavelength scalar dynamics in de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Ian; Rigopoulos, Gerasimos, E-mail: ian.moss@newcastle.ac.uk, E-mail: gerasimos.rigopoulos@ncl.ac.uk [School of Mathematics and Statistics, Newcastle University, Herschel Building, Newcastle upon Tyne, NE1 7RU U.K. (United Kingdom)

    2017-05-01

    We discuss the effective infrared theory governing a light scalar's long wavelength dynamics in de Sitter spacetime. We show how the separation of scales around the physical curvature radius k / a ∼ H can be performed consistently with a window function and how short wavelengths can be integrated out in the Schwinger-Keldysh path integral formalism. At leading order, and for time scales Δ t >> H {sup −1}, this results in the well-known Starobinsky stochastic evolution. However, our approach allows for the computation of quantum UV corrections, generating an effective potential on which the stochastic dynamics takes place. The long wavelength stochastic dynamical equations are now second order in time, incorporating temporal scales Δ t ∼ H {sup −1} and resulting in a Kramers equation for the probability distribution—more precisely the Wigner function—in contrast to the more usual Fokker-Planck equation. This feature allows us to non-perturbatively evaluate, within the stochastic formalism, not only expectation values of field correlators, but also the stress-energy tensor of φ.

  7. HISTORY EDUCATION - SOME THOUGHTS FROM THE UK: interviews Peter J. Lee

    Directory of Open Access Journals (Sweden)

    Cristiani Bereta da Silva

    2014-05-01

    Peter Lee was, until he very recently retired, a senior lecturer in the History Education Unit at the Institute of Education at the University of London. Having taught History in primary and secondary schools, Professor Lee has coordinated several research projects related to History Teaching and Learning, including CHATA (Concepts of History and Teaching Approaches a project well-known in Brazil. Several of his publications investigate the ideas that children and teenagers have over History in several books, chapters, and articles – many of these with Rosalyn Ashby as co-author.  Some of his articles have been translated to Portuguese, circulating among researchers concerned with understanding how children learn History. The questions in this interview have been elaborated so that Peter Lee’s reflections may collaborate with the development of History Teaching and History Education research in Brazil. All contact has been made via e-mail, a rather useful tool that has shortened the distance between Florianópolis and London for a few long moments between July and October 2012.

  8. A new trapped-ion instability with large frequency and radial wavenumber

    International Nuclear Information System (INIS)

    Tagger, M.

    1979-01-01

    The need for theoretical previsions concerning anomalous transport in large Tokamaks, as well as the recent results of PLT, ask the question of the process responsible for non-linear saturation of trapped-ion instabilities. This in turn necessitates the knowledge of the linear behaviour of these waves at large frequencies and large radial wavenumbers. We study the linear dispersion relation of these modes, in the radially local approximation, but including a term due to a new physical effect, combining finite banana-width and bounce resonances. Limiting ourselves presently to the first harmonic expansion of the bounce motion of trapped ions, we show that the effect of finite banana-width on the usual trapped-ion mode is complex and quite different from what is generally expected. In addition we show, analytically and numerically, the appearance of a nex branch of this instability. Essentially due to this new effect, it involves large frequencies (ω approximately ωsub(b) and is destabilized by large radial wavelengths (ksub(x) Λ approximately 1, where Λ is the typical banana-width). We discuss the nature of this new mode and its potential relevance of the experiments

  9. ' "Life is Movement": Vernon Lee and Sculpture'

    DEFF Research Database (Denmark)

    Østermark-Johansen, Lene

    2018-01-01

    How do living, breathing human bodies respond to the inert bodies of sculpture? This article examines some of the art-theoretical and psychological writings of Violet Paget (‘Vernon Lee’) and Clementina Anstruther-Thomson of the 1880s and 1890s in an attempt to map the evolution of their formalist...... art criticism. Engaging with the eighteenth-century ghosts of Johann Joachim Winckelmann and Gotthold Ephraim Lessing, Lee and Anstruther-Thomson created their very own exploration of art forms evolving in space and in time. Questioning how our reading of literature affects our reading of sculpture...... from Lee’s early essays in Belcaro: Being Essays on Sundry Aesthetical Questions (1881) to the late collaborative volume Art and Man (1924)....

  10. Vertical structure and microphysical characteristics of precipitation on the high terrain and lee side of the Olympic Mountains

    Science.gov (United States)

    Zagrodnik, J. P.; McMurdie, L. A.; Houze, R.

    2017-12-01

    As mid-latitude cyclones pass over coastal mountain ranges, the processes producing their clouds and precipitation are modified when they encounter complex terrain, leading to a maximum in precipitation fallout on the windward slopes and a minimum on the lee side. The precipitation that does reach the high terrain and lee side of a mountain range can be theoretically determined by a complex interaction between the dynamics of air lifting over the terrain, the thermodynamics of moist air, and the microphysical time required to grow particles large enough to fall out. To date, there have been few observational studies that have focused on the nonlinear microphysical processes contributing to the variability of precipitation that is received on the lee side slopes of a mountain range such as the Olympic Mountains. The 2015-16 Olympic Mountains Experiment (OLYMPEX) collected unprecedented observations on the high terrain and lee side of the Olympic Mountains including frequent soundings on Vancouver Island, dual-polarization Doppler radar, multi-frequency airborne radar, and ground-based particle size and crystal habit observations at the higher elevation Hurricane Ridge site. We utilize these observations to examine the evolution of the vertical structure and microphysical precipitation characteristics over the high terrain and leeside within the context of large-scale dynamic and thermodynamic conditions that evolve during the passage of cold season mid-latitude cyclones. The primary goal is to determine the degree to which the observed variability in lee side precipitation amount and microphysical properties are controlled by variations in temperature, flow speed and direction, shear, and stability associated with characteristic synoptic storm sectors and frontal passages.

  11. UV Photodissociation Action Spectroscopy of Haloanilinium Ions in a Linear Quadrupole Ion Trap Mass Spectrometer

    Science.gov (United States)

    Hansen, Christopher S.; Kirk, Benjamin B.; Blanksby, Stephen J.; O'Hair, Richard. A. J.; Trevitt, Adam J.

    2013-06-01

    UV-vis photodissociation action spectroscopy is becoming increasingly prevalent because of advances in, and commercial availability of, ion trapping technologies and tunable laser sources. This study outlines in detail an instrumental arrangement, combining a commercial ion-trap mass spectrometer and tunable nanosecond pulsed laser source, for performing fully automated photodissociation action spectroscopy on gas-phase ions. The components of the instrumentation are outlined, including the optical and electronic interfacing, in addition to the control software for automating the experiment and performing online analysis of the spectra. To demonstrate the utility of this ensemble, the photodissociation action spectra of 4-chloroanilinium, 4-bromoanilinium, and 4-iodoanilinium cations are presented and discussed. Multiple photoproducts are detected in each case and the photoproduct yields are followed as a function of laser wavelength. It is shown that the wavelength-dependent partitioning of the halide loss, H loss, and NH3 loss channels can be broadly rationalized in terms of the relative carbon-halide bond dissociation energies and processes of energy redistribution. The photodissociation action spectrum of (phenyl)Ag2 + is compared with a literature spectrum as a further benchmark.

  12. Effects of oxide traps, interface traps, and ''border traps'' on metal-oxide-semiconductor devices

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Reber, R.A. Jr.; Meisenheimer, T.L.; Schwank, J.R.; Shaneyfelt, M.R.; Riewe, L.C.

    1993-01-01

    We have identified several features of the 1/f noise and radiation response of metal-oxide-semiconductor (MOS) devices that are difficult to explain with standard defect models. To address this issue, and in response to ambiguities in the literature, we have developed a revised nomenclature for defects in MOS devices that clearly distinguishes the language used to describe the physical location of defects from that used to describe their electrical response. In this nomenclature, ''oxide traps'' are simply defects in the SiO 2 layer of the MOS structure, and ''interface traps'' are defects at the Si/SiO 2 interface. Nothing is presumed about how either type of defect communicates with the underlying Si. Electrically, ''fixed states'' are defined as trap levels that do not communicate with the Si on the time scale of the measurements, but ''switching states'' can exchange charge with the Si. Fixed states presumably are oxide traps in most types of measurements, but switching states can either be interface traps or near-interfacial oxide traps that can communicate with the Si, i.e., ''border traps'' [D. M. Fleetwood, IEEE Trans. Nucl. Sci. NS-39, 269 (1992)]. The effective density of border traps depends on the time scale and bias conditions of the measurements. We show the revised nomenclature can provide focus to discussions of the buildup and annealing of radiation-induced charge in non-radiation-hardened MOS transistors, and to changes in the 1/f noise of MOS devices through irradiation and elevated-temperature annealing

  13. Line ratios and wavelengths of helium-like argon n=2 satellite transitions and resonance lines

    International Nuclear Information System (INIS)

    Biedermann, C.; Radtke, R.; Fournier, K.

    2003-01-01

    The characteristic X-ray emission from helium-like argon was investigated as a mean to diagnose hot plasmas. We have measured the radiation from n=2-1 parent lines and from KLn dielectronic recombination satellites with high wavelength resolution as function of the excitation energy using the Berlin Electron Beam Ion Trap. Values of wavelength relative to the resonance and forbidden line are tabulated and compared with references. The line intensity observed over a wide range of excitation energies is weighted with a Maxwellian electron-energy distribution to analyze line ratios as function of plasma temperature. Line ratios (j+z)/w and k/w compare nicely with theoretical predictions and demonstrate their applicability as temperature diagnostic. The ratio z/(x+y) shows not to depend on the electron density

  14. Mats and LaSpec: High-precision experiments using ion traps and lasers at Fair

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, D.; Lallena, A.M.; Blaum, K.; Bohm, C.; Cakirli, R.B.; Crespo Lopez-Urrutia, J.R.; Eliseev, S.; Ketelaer, J.; Kreim, M.S.; Kowalska, M.; Litvinov, Y.A.; Nagy, S.; Neidherr, D.; Repp, J.; Roux, C.; Schabinger, B.; Ullrich, J.; Nortershauser, W.; Eberhardt, K.; Geppert, C.; Kramer, J.; Krieger, A.; Sanchez, R.; Ahammed, M.; Das, P.; Ray, A.; Algora, A.; Rubio, B.; Tain, J.L.; Audi, G.; Lunney, D.; Naimi, S.; Aysto, J.; Jokinen, A.; Kolhinen, V.; Moore, I.; Beck, D.; Block, M.; Geissel, H.; Heinz, S.; Herfurth, F.; Litvinov, Y.A.; Minaya-Ramirez, E.; Plab, W.R.; Quint, W.; Scheidenberger, C.; Winkler, M.; Bender, M.; Billowes, J.; Campbell, P.; Flanagan, K.T.; Schwarz, S.; Bollen, G.; Ferrer, R.; George, S.; Kester, O.; Brodeur, M.; Brunner, T.; Delheij, P.; Dilling, J.; Ettenauer, S.; Lapierre, A.; Bushaw, B.A.; Cano-Ott, D.; Martinez, T.; Cortes, G.; Gomez-Hornillos, M.B.; Dax, A.; Herlert, A.; Yordanov, D.; De, A.; Dickel, T.; Geissel, H.; Jesch, C.; Kuhl, T.; Petrick, M.; PlaB, W.R.; Scheidenberger, C.; Garcia-Ramos, J.E.; Gartzke, E.; Habs, D.; Szerypo, J.; Thirolf, P.G.; Weber, C.; Gusev, Y.; Nesterenko, D.; Novikov, Y.N.; Popov, A.; Seliverstov, M.; Vasiliev, A.; Vorobjev, G.; Heenen, P.H.; Marx, G.; Schweikhard, L.; Ziegler, F.; Hobein, M.; Schuch, R.; Solders, A.; Suhonen, M.; Huber, G.; Wendt, K.; Huyse, M.; Koudriavtsev, I.; Neyens, G.; Van Duppen, P.; Le Blanc, F.; Matos, M.; Reinhard, P.G.; Schneider, D.

    2010-05-15

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10{sup -9} can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. Decay studies in ion traps will become possible with MATS. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The accuracy of laser-spectroscopic-determined nuclear properties is very high while requirements concerning production rates are moderate. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy. Since MATS and LaSpec require high-quality low

  15. Mats and LaSpec: High-precision experiments using ion traps and lasers at Fair

    International Nuclear Information System (INIS)

    Rodriguez, D.; Lallena, A.M.; Blaum, K.; Bohm, C.; Cakirli, R.B.; Crespo Lopez-Urrutia, J.R.; Eliseev, S.; Ketelaer, J.; Kreim, M.S.; Kowalska, M.; Litvinov, Y.A.; Nagy, S.; Neidherr, D.; Repp, J.; Roux, C.; Schabinger, B.; Ullrich, J.; Nortershauser, W.; Eberhardt, K.; Geppert, C.; Kramer, J.; Krieger, A.; Sanchez, R.; Ahammed, M.; Das, P.; Ray, A.; Algora, A.; Rubio, B.; Tain, J.L.; Audi, G.; Lunney, D.; Naimi, S.; Aysto, J.; Jokinen, A.; Kolhinen, V.; Moore, I.; Beck, D.; Block, M.; Geissel, H.; Heinz, S.; Herfurth, F.; Litvinov, Y.A.; Minaya-Ramirez, E.; Plab, W.R.; Quint, W.; Scheidenberger, C.; Winkler, M.; Bender, M.; Billowes, J.; Campbell, P.; Flanagan, K.T.; Schwarz, S.; Bollen, G.; Ferrer, R.; George, S.; Kester, O.; Brodeur, M.; Brunner, T.; Delheij, P.; Dilling, J.; Ettenauer, S.; Lapierre, A.; Bushaw, B.A.; Cano-Ott, D.; Martinez, T.; Cortes, G.; Gomez-Hornillos, M.B.; Dax, A.; Herlert, A.; Yordanov, D.; De, A.; Dickel, T.; Geissel, H.; Jesch, C.; Kuhl, T.; Petrick, M.; PlaB, W.R.; Scheidenberger, C.; Garcia-Ramos, J.E.; Gartzke, E.; Habs, D.; Szerypo, J.; Thirolf, P.G.; Weber, C.; Gusev, Y.; Nesterenko, D.; Novikov, Y.N.; Popov, A.; Seliverstov, M.; Vasiliev, A.; Vorobjev, G.; Heenen, P.H.; Marx, G.; Schweikhard, L.; Ziegler, F.; Hobein, M.; Schuch, R.; Solders, A.; Suhonen, M.; Huber, G.; Wendt, K.; Huyse, M.; Koudriavtsev, I.; Neyens, G.; Van Duppen, P.; Le Blanc, F.; Matos, M.; Reinhard, P.G.; Schneider, D.

    2010-01-01

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10 -9 can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. Decay studies in ion traps will become possible with MATS. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The accuracy of laser-spectroscopic-determined nuclear properties is very high while requirements concerning production rates are moderate. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy. Since MATS and LaSpec require high-quality low-energy beams

  16. On the Seventh Day, He Rested: Lee Kuan Yew and the Creation of Singapore

    National Research Council Canada - National Science Library

    Neary, Patrick C

    1997-01-01

    ...-oriented domestic policies in pursuit of national goals. Lee's paternal authoritarianism proved to be highly successful, but this success sowed the seeds of discontent now producing weeds in his island paradise.

  17. Shrew trap efficiency

    DEFF Research Database (Denmark)

    Gambalemoke, Mbalitini; Mukinzi, Itoka; Amundala, Drazo

    2008-01-01

    We investigated the efficiency of four trap types (pitfall, Sherman LFA, Victor snap and Museum Special snap traps) to capture shrews. This experiment was conducted in five inter-riverine forest blocks in the region of Kisangani. The total trapping effort was 6,300, 9,240, 5,280 and 5,460 trap......, our results indicate that pitfall traps are the most efficient for capturing shrews: not only do they have a higher efficiency (yield), but the taxonomic diversity of shrews is also higher when pitfall traps are used....

  18. Phenolic characterization of aging wine lees: Correlation with antioxidant activities.

    Science.gov (United States)

    Romero-Díez, R; Rodríguez-Rojo, S; Cocero, M J; Duarte, C M M; Matias, A A; Bronze, M R

    2018-09-01

    Aging wine lees are water-wastes produced during the wine aging inside wood barrels that can be considered as alternative sources of bioactive compounds. Phenolic characterization and antioxidant activity (AA) measurements of wines lees solid-liquid extracts have been undertaken on a dry extract (DE) basis. Solvents with different polarities (water, methanol, ethanol, two hydroalcoholic mixtures and acetone) were used. Total phenolic (TPC) and total flavonoid contents (TFC) were determined. The mixture of 75:25(v/v) EtOH:H 2 O showed the highest values with 254 mg GAE /g DE and 146 mg CATE /g DE respectively. HORAC, HOSC and FRAP were used to determine the AA of the extracts being also highest for the mixture of 75:25(v/v) EtOH:H 2 O (4690 µmol CAE /g DE , 4527 µmol TE /g DE and 2197 µmol TE /g DE , respectively). For ORAC method, methanol extract showed the best value with 2771 µmol TE /g DE . Correlations between TPC, TFC, phenolic compounds and AA were determined. Most relevant compounds contributing to AA were identified using data from mass spectrometry, being mainly anthocyanins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea

    Science.gov (United States)

    Shu, Yeqiang; Xue, Huijie; Wang, Dongxiao; Chai, Fei; Xie, Qiang; Cai, Shuqun; Chen, Rongyu; Chen, Ju; Li, Jian; He, Yunkai

    2016-01-01

    Energetic fluctuations with periods of 9–14 days below a depth of 1400 m were observed in the southern South China Sea (SCS) from 5 years of direct measurements. We interpreted such fluctuations as topographic Rossby waves (TRWs) because they obey the dispersion relation. The TRWs persisted from May 24, 2009 to August 23, 2013, and their bottom current speed with a maximum of ~10 cm/s was one order of magnitude greater than the mean current and comparable to the tidal currents near the bottom. The bottom-trapped TRWs had an approximate trapping depth of 325 m and reference wavelength of ~82 km, which were likely excited by eddies above. Upper layer current speed that peaked approximately every 2 months could offer the energy sources for the persistent TRWs in the southern SCS. Energetic bottom-trapped TRWs may have a comparable role in deep circulation to tides in areas with complex topography. PMID:27075644

  20. Photonic crystals for light trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gjessing, Jo

    2012-07-25

    Solar energy is an abundant and non-polluting source of energy. Nevertheless, the installation of solar cells for energy production is still dependent on subsidies in most parts of the world. One way of reducing the costs of solar cells is to decrease their thickness. This will reduce material consumption and, at the same time, unlock the possibility of using cheaper lower quality solar cell material. However, a thinner solar cell will have a higher optical loss due to insufficient absorption of long wavelength light. Therefore, light-trapping must be improved in order to make thin solar cells economically viable. In this thesis I investigate the potential for light-trapping in thin silicon solar cells by the use of various photonic crystal back-side structures. The first structure I study consists of a periodic array of cylinders in a configuration with a layer of silicon oxide separating the periodic structure from the rear metal reflector. This configuration reduces unwanted parasitic absorption in the reflector and the thickness of the oxide layer provides a new degree of freedom for improving light trapping from the structure. I use a large-period and a small-period approximation to analyze the cylinder structure and to identify criteria that contributes to successful light-trapping. I explore the light-trapping potential of various periodic structures including dimples, inverted pyramids, and cones. The structures are compared in an optical model using a 20 m thick Si slab. I find that the light trapping potential differs between the structures, that the unit cell dimensions for the given structure is more important for light trapping than the type of structure, and that the optimum lattice period does not differ significantly between the different structures. The light-trapping effect of the structures is investigated as a function on incidence angle. The structures provide good light trapping also under angles of incidence up to 60 degrees. The behavior

  1. Photonic crystals for light trapping in solar cells

    International Nuclear Information System (INIS)

    Gjessing, Jo

    2012-01-01

    Solar energy is an abundant and non-polluting source of energy. Nevertheless, the installation of solar cells for energy production is still dependent on subsidies in most parts of the world. One way of reducing the costs of solar cells is to decrease their thickness. This will reduce material consumption and, at the same time, unlock the possibility of using cheaper lower quality solar cell material. However, a thinner solar cell will have a higher optical loss due to insufficient absorption of long wavelength light. Therefore, light-trapping must be improved in order to make thin solar cells economically viable. In this thesis I investigate the potential for light-trapping in thin silicon solar cells by the use of various photonic crystal back-side structures. The first structure I study consists of a periodic array of cylinders in a configuration with a layer of silicon oxide separating the periodic structure from the rear metal reflector. This configuration reduces unwanted parasitic absorption in the reflector and the thickness of the oxide layer provides a new degree of freedom for improving light trapping from the structure. I use a large-period and a small-period approximation to analyze the cylinder structure and to identify criteria that contributes to successful light-trapping. I explore the light-trapping potential of various periodic structures including dimples, inverted pyramids, and cones. The structures are compared in an optical model using a 20 m thick Si slab. I find that the light trapping potential differs between the structures, that the unit cell dimensions for the given structure is more important for light trapping than the type of structure, and that the optimum lattice period does not differ significantly between the different structures. The light-trapping effect of the structures is investigated as a function on incidence angle. The structures provide good light trapping also under angles of incidence up to 60 degrees. The behavior

  2. Monitoring sperm mitochondrial respiration response in a laser trap using ratiometric fluorescence

    Science.gov (United States)

    Mei, Adrian; Botvinick, Elliot; Berns, Michael

    2005-08-01

    Sperm motility is an important area in understanding male infertility. Various techniques, such as the Computer Assisted Sperm Analysis (CASA), have been used to understand sperm motility. Sperm motility is related to the energy (ATP) production of sperm. ATP is produced by the depolarization of the membrane potential of the inner membrane of the mitochondria. In this study, a mitochondrial dye, JC-1, has been used to monitor the energetics of the mitochondria. This fluorescent dye can emit at two different wavelengths, depending on the membrane potential of the mitochondria. It can fluoresce green at low membrane potential and red at high membrane potential. The ratio of the two colors (red/green) allows for an accurate measurement of the change of membrane potential. Various experiments were conducted to quantify the behavior of the dye within the sperm and the reaction of the sperm to trap. Sperm were trapped using laser tweezers. Results have shown that the ratio drops dramatically when sperm are trapped, indicating a depolarization of the membrane. The physiological response to this depolarization is yet to be determined, but the studies indicate that the sperm could have been slightly damaged by the laser. However, knowing that sperm depolarizes their membrane when trapped can help understand how sperm react to their environment and consequently help treat male infertility.

  3. Ultra-short silicon MMI duplexer

    Science.gov (United States)

    Yi, Huaxiang; Huang, Yawen; Wang, Xingjun; Zhou, Zhiping

    2012-11-01

    The fiber-to-the-home (FTTH) systems are growing fast these days, where two different wavelengths are used for upstream and downstream traffic, typically 1310nm and 1490nm. The duplexers are the key elements to separate these wavelengths into different path in central offices (CO) and optical network unit (ONU) in passive optical network (PON). Multimode interference (MMI) has some benefits to be a duplexer including large fabrication tolerance, low-temperature dependence, and low-polarization dependence, but its size is too large to integrate in conventional case. Based on the silicon photonics platform, ultra-short silicon MMI duplexer was demonstrated to separate the 1310nm and 1490nm lights. By studying the theory of self-image phenomena in MMI, the first order images are adopted in order to keep the device short. A cascaded MMI structure was investigated to implement the wavelength splitting, where both the light of 1310nm and 1490nm was input from the same port, and the 1490nm light was coupling cross the first MMI and output at the cross-port in the device while the 1310nm light was coupling through the first and second MMI and output at the bar-port in the device. The experiment was carried on with the SOI wafer of 340nm top silicon. The cascaded MMI was investigated to fold the length of the duplexer as short as 117μm with the extinct ratio over 10dB.

  4. Improvements in the injection system of the Canadian Penning trap mass spectrometer

    CERN Document Server

    Clark, J; Boudreau, C; Buchinger, F; Crawford, J E; Gulick, S; Hardy, J C; Heinz, A; Lee, J K P; Moore, R B; Savard, G; Seweryniak, D; Sharma, K S; Sprouse, G; Vaz, J; Wang, J C; Zhou, Z

    2003-01-01

    The Canadian Penning Trap (CPT) mass spectrometer is designed to make precise mass measurements on a variety of stable and short-lived isotopes. Modifications to the injection system of the CPT have been implemented in recent months, the purpose being to more efficiently collect and transfer weakly-produced reaction products from the target to the Penning trap. These include a magnetic triplet situated after the target chamber to increase the acceptance of the Enge spectrograph, a velocity filter to more effectively separate the beam from the reaction products and the replacement of the Paul trap with a linear trap resulting in more efficient capture and accumulation of ions from the ion cooler. This paper will discuss these recent modifications and how they have increased our ability in making mass measurements on isotopes of low abundance, including those from a sup 2 sup 5 sup 2 Cf fission source.

  5. The LPCTrap facility: A novel transparent Paul trap for high-precision experiments

    International Nuclear Information System (INIS)

    Rodriguez, D.; Mery, A.; Ban, G.; Bregeault, J.; Darius, G.; Durand, D.; Flechard, X.; Herbane, M.; Labalme, M.; Lienard, E.; Mauger, F.; Merrer, Y.; Naviliat-Cuncic, O.; Thomas, J.C.; Vandamme, C.

    2006-01-01

    A trap system has been built to perform high-precision β-decay experiments. The system is coupled to the low-energy beam line of the SPIRAL source at GANIL. The continuous ion beam from SPIRAL with energies between 10 and 20keV is slowed down by means of a buffer-gas-filled RFQ trap and ejected thereafter as short ion bunches into a novel transparent Paul trap. Two pulsed cavities located downstream from the RFQ reduce the energy of the ion bunch down to about a hundred eV for an efficient capture in the Paul trap. We describe here the complete system along with the first results obtained with stable He+4, Cl+35 and Ar+36,40 ions from the SPIRAL ECR source. An overall efficiency of 8.7(8)x10 -4 is achieved for 4 He + ions under specific conditions

  6. Observation of Entanglement of a Single Photon with a Trapped Atom

    International Nuclear Information System (INIS)

    Volz, Juergen; Weber, Markus; Schlenk, Daniel; Rosenfeld, Wenjamin; Vrana, Johannes; Saucke, Karen; Kurtsiefer, Christian; Weinfurter, Harald

    2006-01-01

    We report the observation of entanglement between a single trapped atom and a single photon at a wavelength suitable for low-loss communication over large distances, thereby achieving a crucial step towards long range quantum networks. To verify the entanglement, we introduce a single atom state analysis. This technique is used for full state tomography of the atom-photon qubit pair. The detection efficiency and the entanglement fidelity are high enough to allow in a next step the generation of entangled atoms at large distances, ready for a final loophole-free Bell experiment

  7. Lee-side flow structures of very low aspect ratio cruciform wing–body configurations

    CSIR Research Space (South Africa)

    Tuling, S

    2013-12-01

    Full Text Available A numerical and experimental investigation was performed to study the dominant flow structures in the lee side of a cruciform wing–body configuration at supersonic speeds in the + orientation. The wings or strakes are of very low aspect ratio...

  8. Näitleja Tommy Lee Jonesi meditatsioon režissööritoolis / Andris Feldmanis

    Index Scriptorium Estoniae

    Feldmanis, Andris, 1982-

    2007-01-01

    Vestern "Melquiades Estrada kolm matust" ("The Three Burials of Melquiades Estrada") : stsenarist Guillermo Arriaga : režissöör ja osatäitja Tommy Lee Jones : operaator Chris Menges : Ameerika Ühendriigid, 2005

  9. Using a fast dual-wavelength imaging ellipsometric system to measure the flow thickness profile of an oil thin film

    Science.gov (United States)

    Kuo, Chih-Wei; Han, Chien-Yuan; Jhou, Jhe-Yi; Peng, Zeng-Yi

    2017-11-01

    Dual-wavelength light sources with stroboscopic illumination technique were applied in a process of photoelastic modulated ellipsometry to retrieve two-dimensional ellipsometric parameters of thin films on a silicon substrate. Two laser diodes were alternately switched on and modulated by a programmable pulse generator to generate four short pulses at specific temporal phase angles in a modulation cycle, and short pulses were used to freeze the intensity variation of the PEM modulated signal that allows ellipsometric images to be captured by a charge-coupled device. Although the phase retardation of a photoelastic modulator is related to the light wavelength, we employed an equivalent phase retardation technique to avoid any setting from the photoelastic modulator. As a result, the ellipsometric parameters of different wavelengths may be rapidly obtained using this dual-wavelength ellipsometric system every 4 s. Both static and dynamic experiments are demonstrated in this work.

  10. Comparison of a new digital KM screen test with conventional Hess and Lees screen tests in the mapping of ocular deviations.

    Science.gov (United States)

    Thorisdottir, Rannveig Linda; Sundgren, Johanna; Sheikh, Rafi; Blohmé, Jonas; Hammar, Björn; Kjellström, Sten; Malmsjö, Malin

    2018-05-28

    To evaluate the digital KM screen computerized ocular motility test and to compare it with conventional nondigital techniques using the Hess and Lees screens. Patients with known ocular deviations and a visual acuity of at least 20/100 underwent testing using the digital KM screen and the Hess and Lees screen tests. The examination duration, the subjectively perceived difficulty, and the patient's method of choice were compared for the three tests. The accuracy of test results was compared using Bland-Altman plots between testing methods. A total of 19 patients were included. Examination with the digital KM screen test was less time-consuming than tests with the Hess and Lees screens (P digital KM screen). Patients found the test with the digital KM screen easier to perform than the Lees screen test (P = 0.009) but of similar difficulty to the Hess screen test (P = 0.203). The majority of the patients (83%) preferred the digital KM screen test to both of the other screen methods (P = 0.008). Bland-Altman plots showed that the results obtained with all three tests were similar. The digital KM screen is accurate and time saving and provides similar results to Lees and Hess screen testing. It also has the advantage of a digital data analysis and registration. Copyright © 2018 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  11. Preparing isomerically pure beams of short-lived nuclei at JYFLTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Eronen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (YFL), FIN-40014 (Finland)], E-mail: tommi.eronen@jyu.fi; Elomaa, V.-V.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Rahaman, S.; Rissanen, J.; Weber, C.; Aystoe, J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (YFL), FIN-40014 (Finland)

    2008-10-15

    A new procedure to prepare isomerically clean samples of short-lived ions with a mass resolving power of more than 1 x 10{sup 5} has been developed at the JYFLTRAP tandem Penning trap system. The method utilises a dipolar rf-excitation of the ion motion with separated oscillatory fields in the precision trap. During a subsequent retransfer to the purification trap, the contaminants are rejected and as a consequence, the remaining bunch is isomerically cleaned. This newly-developed method is suitable for very high-resolution cleaning and is at least a factor of five faster than the methods used so far in Penning trap mass spectrometry.

  12. Magnetic traps with a sperical separatrix: Tornado traps

    International Nuclear Information System (INIS)

    Peregood, B.P.; Lehnert, B.

    1979-11-01

    A review is given on the features of magnetic traps with a spherical separatrix, with special emphesis on Tornado spiral coil configurations. The confinement and heating of static plasmas in Tornado traps is treated, including the topology of the magnetic field structure, the magneto-mechanical properties of the magnetic coil system, as well as the particle orbits and plasma behaviour in these traps. In additio, the mode of rotating plasma operation by crossed electric and magnetic fields is being described. The results of experiments on static and rotating plasmas are summarized, and conclusions are drawn about future possibilities of Tornado traps for the creation and containment of hot plasmas. (author)

  13. Magnetic traps with a spherical separatrix: Tornado traps

    International Nuclear Information System (INIS)

    Peregood, B.P.; Lehnert, B.

    1981-01-01

    A review is given on the features of magnetic traps with a spherical separatrix, with special emphasis on Tornado spiral coil configurations. The confinement and heating of static plasms in Tornado traps is treated, including the topology of the magnetic field structure, the magneto-mechanical properties of the magnetic coil system, as well as the particle orbits and plasma behaviour in these traps. In addition, the mode of rotating plasma operation by crossed electric and magnetic fields is described. The results of experiments on static and rotating plasmas are summarized, and conclusions are drawn about future possibilities of Tornado traps in the creation and containment of hot plasmas. (orig.)

  14. Multiple pathways carry signals from short-wavelength-sensitive ('blue') cones to the middle temporal area of the macaque.

    Science.gov (United States)

    Jayakumar, Jaikishan; Roy, Sujata; Dreher, Bogdan; Martin, Paul R; Vidyasagar, Trichur R

    2013-01-01

    We recorded spike activity of single neurones in the middle temporal visual cortical area (MT or V5) of anaesthetised macaque monkeys. We used flashing, stationary spatially circumscribed, cone-isolating and luminance-modulated stimuli of uniform fields to assess the effects of signals originating from the long-, medium- or short- (S) wavelength-sensitive cone classes. Nearly half (41/86) of the tested MT neurones responded reliably to S-cone-isolating stimuli. Response amplitude in the majority of the neurones tested further (19/28) was significantly reduced, though not always completely abolished, during reversible inactivation of visuotopically corresponding regions of the ipsilateral primary visual cortex (striate cortex, area V1). Thus, the present data indicate that signals originating in S-cones reach area MT, either via V1 or via a pathway that does not go through area V1. We did not find a significant difference between the mean latencies of spike responses of MT neurones to signals that bypass V1 and those that do not; the considerable overlap we observed precludes the use of spike-response latency as a criterion to define the routes through which the signals reach MT.

  15. Near-field acoustic microbead trapping as remote anchor for single particle manipulation

    Science.gov (United States)

    Hwang, Jae Youn; Cheon, Dong Young; Shin, Hyunjune; Kim, Hyun Bin; Lee, Jungwoo

    2015-05-01

    We recently proposed an analytical model of a two-dimensional acoustic trapping of polystyrene beads in the ray acoustics regime, where a bead diameter is larger than the wavelength used. As its experimental validation, this paper demonstrates the transverse (or lateral) trapping of individual polystyrene beads in the near field of focused ultrasound. A 100 μm bead is immobilized on the central beam axis by a focused sound beam from a 30 MHz single element lithium niobate transducer, after being laterally displaced through hundreds of micrometers. Maximum displacement, a longest lateral distance at which a trapped bead can be directed towards the central axis, is thus measured over a discrete frequency range from 24 MHz to 36 MHz. The displacement data are found to be between 323.7 μm and 470.2 μm, depending on the transducer's driving frequency and input voltage amplitude. The experimental results are compared with their corresponding model values, and their relative errors lie between 0.9% and 3.9%. The results suggest that this remote maneuvering technique may be employed to manipulate individual cells through solid microbeads, provoking certain cellular reactions to localized mechanical disturbance without direct contact.

  16. The Pitzer-Lee-Kesler-Teja (PLKT) Strategy and Its Implementation by Meta-Computing Software

    Czech Academy of Sciences Publication Activity Database

    Smith, W. R.; Lísal, Martin; Missen, R. W.

    2001-01-01

    Roč. 35, č. 1 (2001), s. 68-73 ISSN 0009-2479 Institutional research plan: CEZ:AV0Z4072921 Keywords : The Pitzer -Lee-Kesler-Teja (PLKT) strategy * implementation Subject RIV: CF - Physical ; Theoretical Chemistry

  17. 50 CFR 697.19 - Trap limits and trap tag requirements for vessels fishing with lobster traps.

    Science.gov (United States)

    2010-10-01

    ... vessels fishing with lobster traps. 697.19 Section 697.19 Wildlife and Fisheries FISHERY CONSERVATION AND... requirements for vessels fishing with lobster traps. (a) Trap limits for vessels fishing or authorized to fish... management area designation certificate or valid limited access American lobster permit specifying one or...

  18. Impacts of trapping and banding activities on productivity of Roseate Terns (Sterna Dougallii)

    Science.gov (United States)

    Zingo, James M.

    1998-01-01

    Although Roseate Terns (Sterna dougallii) habituate to many research activities, trapping and handling breeding adults, or repeatedly handling chicks, may affect reproductive success or chick growth. Protocols for trapping adult Roseate Terns that reduce the chances of nest desertion, neglect of chicks, and injury to adults were developed in the early 1980s, but neither short-term nor long-term effects of research activities on this endangered species have been fully investigated. Therefore, this study had the following main objectives: 1) examine long-term data (1978-1996) to determine if trapping activities have had a major effect on annual reproductive success of a Roseate Tern colony, 2) evaluate the effects of trapping adult terns on reproductive success and chick growth, and 3) evaluate the effects of handling chicks on their growth and survival. There were no significant correlations between measures of trapping disturbance and annual reproductive success in 1978-1996 for the Falkner Island (Stewart B. McKinney National Wildlife Refuge, Connecticut) colony, suggesting that trapping from late incubation through chick rearing using the field protocols described herein does not have a major effect on nesting success of Roseate Terns. In 1987-1996, adult trapping did not reduce prefledging survival of first-hatched chicks, and reduced survival of second-hatched chicks only in 1994 and 1995. Results of more detailed research in 1994-1996 suggest that Roseate Terns may be susceptible to trapping effects only when also faced with extreme conditions such as low food availability and/or high predation pressure. Trapping effects did not occur in most years under apparently average or typical conditions, and otherwise seem to be much less important than other factors affecting nesting success (e.g., predation and food availability). Analyses of chick growth data from 1987-1996 showed that while trapping significantly reduced early growth compared to untrapped controls

  19. The dynamics of interacting nonlinearities governing long wavelength driftwave turbulence

    International Nuclear Information System (INIS)

    Newman, D.E.

    1993-09-01

    Because of the ubiquitous nature of turbulence and the vast array of different systems which have turbulent solutions, the study of turbulence is an area of active research. Much present day understanding of turbulence is rooted in the well established properties of homogeneous Navier-Stokes turbulence, which, due to its relative simplicity, allows for approximate analytic solutions. This work examines a group of turbulent systems with marked differences from Navier-Stokes turbulence, and attempts to quantify some of their properties. This group of systems represents a variety of drift wave fluctuations believed to be of fundamental importance in laboratory fusion devices. From extensive simulation of simple local fluid models of long wavelength drift wave turbulence in tokamaks, a reasonably complete picture of the basic properties of spectral transfer and saturation has emerged. These studies indicate that many conventional notions concerning directions of cascades, locality and isotropy of transfer, frequencies of fluctuations, and stationarity of saturation are not valid for moderate to long wavelengths. In particular, spectral energy transfer at long wavelengths is dominated by the E x B nonlinearity, which carries energy to short scale in a manner that is highly nonlocal and anisotropic. In marked contrast to the canonical self-similar cascade dynamics of Kolmogorov, energy is efficiently passed between modes separated by the entire spectrum range in a correlation time. At short wavelengths, transfer is dominated by the polarization drift nonlinearity. While the standard dual cascade applies in this subrange, it is found that finite spectrum size can produce cascades that are reverse directed and are nonconservative in enstrophy and energy similarity ranges. In regions where both nonlinearities are important, cross-coupling between the nolinearities gives rise to large no frequency shifts as well as changes in the spectral dynamics

  20. Ocean PHILLS Data Collection and Processing: May 2000 Deployment, Lee Stocking Island, Bahamas

    National Research Council Canada - National Science Library

    Leathers, Robert

    2002-01-01

    .... It was deployed in a region near Lee Stocking Island (LSI), Bahamas in May 2000. This document describes the LSI 2000 PHILLS data set and the manner in which it was processed to obtain remote-sensing reflectance images for use by the scientific community...

  1. Comparison of Benedict-Webb-Rubin, Starling and Lee-Kesler equations of state for use in P-V-T calculations

    International Nuclear Information System (INIS)

    McFee, D.G.; Mueller, K.H.; Lielmezs, J.

    1982-01-01

    By means of the available experimental gas compressibility data, the predictive accuracy of the Benedict-Webb-Rubin, Starling and Lee-Kesler equations was tested over wide temperature and pressure ranges for the following commonly used industrial gases: CH 4 , C 2 H 6 , C 3 H 8 , CO 2 , Ar, He, H 2 and N 2 . The root mean square (RMS) percent errors calculated over the T-P range investigated for all compounds, showed a degree of superiority and ease of use of the Lee-Kesler equation over the Benedict-Webb-Rubin and Starling equations. In order to treat quantal fluids H 2 and He, the Benedict-Webb-Rubin equation was modified by making constant B 0 temperature dependent, while the Starling and Lee-Kesler equations were rewritten through inclusion of quantum effect corrected pseudo-critical state parameters. (orig.)

  2. Transition operators in acoustic-wave diffraction theory. I - General theory. II - Short-wavelength behavior, dominant singularities of Zk0 and Zk0 exp -1

    Science.gov (United States)

    Hahne, G. E.

    1991-01-01

    A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.

  3. 77 FR 18852 - Lee Metcalf National Wildlife Refuge, Stevensville, MT; Draft Comprehensive Conservation Plan and...

    Science.gov (United States)

    2012-03-28

    ... business hours at the Lee Metcalf National Wildlife Refuge headquarters located at 4567 Wildfowl Lane... habitats and has created and modified wetlands. Riverfront forest includes early succession tree species...

  4. Tuning of Lee Path Loss Model based on recent RF measurements in 400 MHZ conducted in Riyadh City, Saudi Arabia

    International Nuclear Information System (INIS)

    Alotaibi, Faihan D.; Ali, Adel A.

    2008-01-01

    In mobile radio systems, path loss models are necessary for proper planning, interference estimations, frequently assignments and cell parameters which are basic for network planning process as well as Location Based Services (LBS) techniques that are not based on GPS system. Empirical models are the most adjustable models that can be suited to different types of environments. In this paper, the Lee path loss model has been tuned using Least Square (LS) algorithm to fit measured data for TETRA system operating 400 MHz in Riyadh urban and suburbs. Consequently, Lee model's parameter (L0, y) are obtained for the targeted areas. The performance of the tuned Lee model is then compared to the three most widely used empirical path loss models: Hat, ITU-R and Cost 231 Walfisch-Ikegami non line-of-sight (CWI-NLOS) path loss models. The performance criterion selected for the comparison of various empirical path loss models are the Root Mean Square Error (RMSE) and goodness of fit (R2). The RMSE and R2between the actual and predicted data are calculated for various path loss models. It turned that the tuned Lee model outperforms the other empirical models. (author)

  5. Lee as Critical Thinker: The Example of the Gettysburg Campaign

    Science.gov (United States)

    2012-05-04

    importance were “ Hannibal , Frederick the Great, and especially Napoleon, all of whom were models for Lee as he led the Army of Northern Virginia in battle...Cannae, Leuthen, and Austerlitz. The Battle of Cannae culminated in a double envelopment by Hannibal against the Romans and “is important…because...it shows how Hannibal was able to completely surround a much larger force Roman force (40,000 versus 70,000, as compared with Lee’s 74,000 facing

  6. Presentation and management of trapped neutrophil syndrome (TNS) in UK Border collies.

    Science.gov (United States)

    Mason, S L; Jepson, R; Maltman, M; Batchelor, D J

    2014-01-01

    Three UK bred Border collie puppies were presented for investigation of pyrexia and severe lameness with associated joint swelling. Investigations revealed neutropenia, radiographic findings suggesting metaphyseal osteopathy, and polyarthritis and all dogs were subsequently confirmed with trapped neutrophil syndrome. Clinical improvement was seen after treatment with prednisolone and antibiotics and the dogs all survived to adulthood with a good short- to medium-term outcome. Trapped neutrophil syndrome is an important differential diagnosis for young Border collie dogs in the UK presenting with pyrexia, neutropenia and musculoskeletal signs. © 2013 British Small Animal Veterinary Association.

  7. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  8. Artificial covering on trap nests improves the colonization of trap-nesting wasps

    OpenAIRE

    Taki, Hisatomo; Kevan, Peter G.; Viana, Blandina Felipe; Silva, Fabiana O.; Buck, Matthias

    2008-01-01

    Acesso restrito: Texto completo. p. 225-229 To evaluate the role that a trap-nest cover might have on sampling methodologies, the abundance of each species of trap-nesting Hymenoptera and the parasitism rate in a Canadian forest were compared between artificially covered and uncovered traps. Of trap tubes exposed at eight forest sites in six trap-nest boxes, 531 trap tubes were occupied and 1216 individuals of 12 wasp species of four predatory families, Vespidae (Eumeninae), Crabronidae...

  9. Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap

    CERN Document Server

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Kurchaninov, L; Jonsell, S; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-01-01

    Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilated. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly-identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antipr...

  10. Optical frequency-domain reflectometry using multiple wavelength-swept elements of a DFB laser array

    Science.gov (United States)

    DiLazaro, Tom; Nehmetallah, Georges

    2017-02-01

    Coherent optical frequency-domain reflectometry (C-OFDR) is a distance measurement technique with significant sensitivity and detector bandwidth advantages over normal time-of-flight methods. Although several swept-wavelength laser sources exist, many exhibit short coherence lengths, or require precision mechanical tuning components. Semiconductor distributed feedback lasers (DFBs) are advantageous as a mid-to-long range OFDR source because they exhibit a narrow linewidth and can be rapidly tuned simply via injection current. However, the sweep range of an individual DFB is thermally limited. Here, we present a novel high-resolution OFDR system that uses a compact, monolithic 12-element DFB array to create a continuous, gap-free sweep over a wide wavelength range. Wavelength registration is provided by the incorporation of a HCN gas cell and reference interferometer. The wavelength-swept spectra of the 12 DFBs are combined in post-processing to achieve a continuous total wavelength sweep of more than 40 nm (5.4 THz) in the telecommunications C-Band range.

  11. Stable Trapping of Multielectron Helium Bubbles in a Paul Trap

    Science.gov (United States)

    Joseph, E. M.; Vadakkumbatt, V.; Pal, A.; Ghosh, A.

    2017-06-01

    In a recent experiment, we have used a linear Paul trap to store and study multielectron bubbles (MEBs) in liquid helium. MEBs have a charge-to-mass ratio (between 10^{-4} and 10^{-2} C/kg) which is several orders of magnitude smaller than ions (between 10^6 and 10^8 C/kg) studied in traditional ion traps. In addition, MEBs experience significant drag force while moving through the liquid. As a result, the experimental parameters for stable trapping of MEBs, such as magnitude and frequency of the applied electric fields, are very different from those used in typical ion trap experiments. The purpose of this paper is to model the motion of MEBs inside a linear Paul trap in liquid helium, determine the range of working parameters of the trap, and compare the results with experiments.

  12. Trapping saturation of the bump-on-tail instability and electrostatic harmonic excitation in Earth's foreshock

    International Nuclear Information System (INIS)

    Klimas, A.J.

    1990-01-01

    Trapping saturation of the bump-on-tail instability is discussed using electron plasma Vlasov simulation results. The role of electrostatic harmonic excitation is considered in detail and shown to play a decisive role in the saturation of the instability. An extensive discussion of the simulation results is given to show that the results are not significantly limited by the finite number of Fourier modes used nor by the discrete distribution of those modes in wave number. It is argued that in the leading edge of Earth's electron foreshock a narrow wave number band of unstable field modes leads to trapping saturation of the bump-on-tail instability while simultaneously exciting electrostatic plasma waves at harmonics of the plasma frequency in simialr narrow bands of shorter wavelengths. The argument is based (1) on the observations of Lacombe et al. (1985), who found intense plasma waves at the leading edge of the foreshock with a spectral distribution sufficiently narrow to trap particles in resonance with the waves, and (2) on numerical simulations of the foreshock electron plasma which indicate that trapping saturation of the bump-on-tail instability leads to phase space vortex formation with consequent excitation of electrostatic harmonics. Thus it is suggested that observations of electrostatic harmonics in the leading edge of the foreshock would strongly implicate trapping as the saturation mechanism for the bump-on-tail instability in that region

  13. X-ray spectroscopy of hydrogen-like ions in an electron beam ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Tarbutt, M.R.; Crosby, D.; Silver, J.D. [Univ. of Oxford, Clarendon Lab. (United Kingdom); Myers, E.G. [Dept. of Physics, Florida State Univ., Tallahassee, FL (United States); Nakamura, N.; Ohtani, S. [ICORP, JST, Chofu, Tokyo (Japan)

    2001-07-01

    The X-ray emission from highly charged hydrogen-like ions in an electron beam ion trap is free from the problems of satellite contamination and Doppler shifts inherent in fast-beam sources. This is a favourable situation for the measurement of ground-state Lamb shifts in these ions. We present recent progress toward this goal, and discuss a method whereby wavelength comparison between transitions in hydrogenlike ions of different nuclear charge Z, enable the measurement of QED effects without requiring an absolute calibration.

  14. Wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback

    International Nuclear Information System (INIS)

    Osborne, S; Heinricht, P; Brandonisio, N; Amann, A; O’Brien, S

    2012-01-01

    The wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback are presented. These devices incorporate slotted regions etched into the laser ridge waveguide for tailoring the output spectrum. Experimental measurements are presented demonstrating that optical injection in one or both modes of these devices can induce wavelength bistability. Measured switching dynamics with modulated optical injection are shown to be in excellent agreement with numerical simulations based on a simple rate equation model. We also demonstrate experimentally that time-delayed optical feedback can induce wavelength bistability for short external cavity lengths. Numerical simulations indicate that this two-colour optical feedback system can provide fast optical memory functionality based on injected optical pulses without the need for an external holding beam. (paper)

  15. Electron self-trapped at molybdenum complex in lead molybdate: An EPRand TSL comparative study

    Czech Academy of Sciences Publication Activity Database

    Buryi, Maksym; Laguta, Valentyn; Fasoli, M.; Moretti, F.; Trubitsyn, M.; Volnianskii, M.; Vedda, A.; Nikl, Martin

    2017-01-01

    Roč. 192, Dec (2017), s. 767-774 ISSN 0022-2313 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088; GA ČR GA17-09933S EU Projects: European Commission(XE) 690599 - ASCIMAT Institutional support: RVO:68378271 Keywords : EPR * wavelength resolved TSL * self-trapped electron * lead molybdate * molecular orbitals Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.686, year: 2016

  16. Experimental studies on the production and suppression mechanism of the hot electrons produced by short wavelength laser

    International Nuclear Information System (INIS)

    Qi Lanying; Jiang Xiaohua; Zhao Xuewei; Li Sanwei; Zhang Wenhai; Li Chaoguang; Zheng Zhijian; Ding Yongkun

    1999-12-01

    The experiments on gold-disk and hohlraum and plastic hydrocarbon (CH) film targets irradiated by laser beams with wavelength 0.35 μm (Xingguang-II) and 0.53 μm (Shenguang-I) are performed. The characteristics of hot electrons are commonly deduced from spectrum of hard X-ray. Associated with the measurement of backward SRS and 3/2ω 0 , the production mechanism of hot electrons for different target type is analyzed in laser plasma with shorter wavelength. A effective way to suppress hot electrons has been found

  17. Laser Cooling and Trapping of Neutral Strontium for Spectroscopic Measurements of Casimir-Polder Potentials

    Science.gov (United States)

    Cook, Eryn C.

    Casimir and Casimir-Polder effects are forces between electrically neutral bodies and particles in vacuum, arising entirely from quantum fluctuations. The modification to the vacuum electromagnetic-field modes imposed by the presence of any particle or surface can result in these mechanical forces, which are often the dominant interaction at small separations. These effects play an increasingly critical role in the operation of micro- and nano-mechanical systems as well as miniaturized atomic traps for precision sensors and quantum-information devices. Despite their fundamental importance, calculations present theoretical and numeric challenges, and precise atom-surface potential measurements are lacking in many geometric and distance regimes. The spectroscopic measurement of Casimir-Polder-induced energy level shifts in optical-lattice trapped atoms offers a new experimental method to probe atom-surface interactions. Strontium, the current front-runner among optical frequency metrology systems, has demonstrated characteristics ideal for such precision measurements. An alkaline earth atom possessing ultra-narrow intercombination transitions, strontium can be loaded into an optical lattice at the "magic" wavelength where the probe transition is unperturbed by the trap light. Translation of the lattice will permit controlled transport of tightly-confined atomic samples to well-calibrated atom-surface separations, while optical transition shifts serve as a direct probe of the Casimir-Polder potential. We have constructed a strontium magneto-optical trap (MOT) for future Casimir-Polder experiments. This thesis will describe the strontium apparatus, initial trap performance, and some details of the proposed measurement procedure.

  18. On the geodesic incompleteness of spacetimes containing marginally (outer) trapped surfaces

    International Nuclear Information System (INIS)

    Costa e Silva, I P

    2012-01-01

    In a recent paper, Eichmair et al (2012 arXiv:1204.0278v1) have proved a Gannon–Lee-type singularity theorem based on the existence of marginally outer trapped surfaces (MOTS) on noncompact initial data sets for globally hyperbolic spacetimes. A natural question is whether the corresponding incomplete geodesics could still be complete in a possible non-globally hyperbolic extension of spacetime. In this paper, some variants of their result are given with weaker causality assumptions, thus suggesting that the answer is generically negative, at least if the putative extension has no closed timelike curves. We consider first marginally trapped surfaces (MTS) in chronological spacetimes, introducing the natural notion of a generic MTS, a notion also applicable to MOTS. In particular, a Hawking–Penrose-type singularity theorem is proven in chronological spacetimes with dimension n ⩾ 3 containing a generic MTS. Such surfaces naturally arise as cross-sections of quasi-local generalizations of black hole horizons, such as dynamical and trapping horizons, and we discuss some natural conditions which ensure the existence of MTS in initial data sets. Nevertheless, much of the more recent literature has focused on MOTS rather than MTS as quasi-local substitutes for the description of black holes, as they are arguably more natural and easier to handle in a number of situations. It is therefore pertinent to ask to what extent one can deduce the existence of singularities in the presence of MOTS alone. We address this issue and show that singularities indeed arise in the presence of generic MOTS, but under slightly stronger causal conditions than those in the case of MTS (specifically, for causally simple spacetimes). On the other hand, we show that with additional conditions on the MOTS itself, namely that it is either the boundary of a compact spatial region, or strictly stable in a suitable sense, a Penrose–Hawking-type singularity theorem can still be established for

  19. Retrospective accident dosimetry using trapped charges

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. I.; Kim, J. L.; Chang, I.; Kim, B. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Dicentric chromosome aberrations technique scoring of aberrations in metaphases prepared from human lymphocytes is most commonly used. This is considered as a reliable technique because the sample is extracted from the individual human body itself. There are other techniques in biological dosimetry such as Fluorescence In Situ Hybridization (FISH) using translocations, premature chromosome condensation (PCC) and micronucleus assay. However the minimum detectable doses (MDD) are relatively high and sample preparation time is also relatively longer. Therefore, there is limitation in use of these techniques for the purpose of triage in a short time in case of emergency situation relating large number of persons. Electronic paramagnetic resonance (EPR) technique is based on the signal from unpaired electrons such as free radicals in irradiated materials especially tooth enamel, however it has also limitation for the purpose of triage because of difficulty of sample taking and its high MDD. Recently as physical methods, thermoluminescence (TL) and optically stimulated luminescence (OSL) technique have been attracted due to its lower MDD and simplicity of sample preparation. Density of the trapped charges is generally proportional to the radiation dose absorbed and the intensity of emitting light is also proportional to the density of trapped charges, thus it can be applied to measure radiation dose retrospectively. In this presentation, TL and OSL techniques are going to introduced and discussed as physical methods for retrospective accident dosimetry using trapped charges especially in electronic component materials. As a tool for dose reconstruction for emergency situation, thermoluminescece and optically stimulated luminescence techniques which are based on trapped charges during exposure of material are introduced. These techniques have several advantages such as high sensitivity, fast evaluation and ease to sample collection over common biological dosimetry and EPR

  20. Trapping a magnetic field of 7.9 T using a bulk magnet fabricated from stack of coated conductors

    International Nuclear Information System (INIS)

    Tamegai, T.; Hirai, T.; Sun, Y.; Pyon, S.

    2016-01-01

    Highlight: • A bulk magnet is fabricated using double stack of coated conductors (CC). • Magneto-optical imaging of the CC confirmed its homogeneity. • The fabricated bulk magnet has successfully trapped a magnetic field of 7.9 T. • The trapped magnetic field is consistent with the magnetic induction calculated from J_c(B) characteristics of the CC. - Abstract: We have fabricated a bulk magnet using double stack, each 130 layers, of short segments of coated conductors (CCs). The bulk magnet is magnetized by field-cooling in a magnetic field of 9 T down to 4.2 K. After reducing the magnetic field down to zero, we have successfully trapped a magnetic field of 7.9 T at the centre of the double stack. The magnetic field profile of the bulk magnet is calculated by fully considering the J_c(B) characteristics of the short segment of the CC. The trapped magnetic field values measured by Hall probes at three locations near the centre of the double stacks agree reasonably well with the calculated magnetic induction.

  1. Trapping Dust to Form Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Growing a planet from a dust grain is hard work! A new study explores how vortices in protoplanetary disks can assist this process.When Dust Growth FailsTop: ALMA image of the protoplanetary disk of V1247 Orionis, with different emission components labeled. Bottom: Synthetic image constructed from the best-fit model. [Kraus et al. 2017]Gradual accretion onto a seed particle seems like a reasonable way to grow a planet from a grain of dust; after all, planetary embryos orbit within dusty protoplanetary disks, which provides them with plenty of fuel to accrete so they can grow. Theres a challenge to this picture, though: the radial drift problem.The radial drift problem acknowledges that, as growing dust grains orbit within the disk, the drag force on them continues to grow as well. For large enough dust grains perhaps around 1 millimeter the drag force will cause the grains orbits to decay, and the particles drift into the star before they are able to grow into planetesimals and planets.A Close-Up Look with ALMASo how do we overcome the radial drift problem in order to form planets? A commonly proposed mechanism is dust trapping, in which long-lived vortices in the disk trap the dust particles, preventing them from falling inwards. This allows the particles to persist for millions of years long enough to grow beyond the radial drift barrier.Observationally, these dust-trapping vortices should have signatures: we would expect to see, at millimeter wavelengths, specific bright, asymmetric structures where the trapping occurs in protoplanetary disks. Such disk structures have been difficult to spot with past instrumentation, but the Atacama Large Millimeter/submillimeter Array (ALMA) has made some new observations of the disk V1247 Orionis that might be just what were looking for.Schematic of the authors model for the disk of V1247 Orionis. [Kraus et al. 2017]Trapped in a Vortex?ALMAs observations of V1247 Orionis are reported by a team of scientists led by Stefan

  2. Visible-light wavelength matched microsphere assembly of TiO{sub 2} superfine nanorods and the enhanced photovoltaic performance

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Xiyun; Wang, Yumin; Zhang, Xiang; Sun, Hongxia; Zhang, Qingsong; Niu, Laiyou; Liu, Juan; Zhou, Xingfu, E-mail: Zhouxf@njtech.edu.cn

    2015-05-15

    Graphical abstract: A novel visible-light wavelength matched microspheres assembly of TiO{sub 2} superfine nanorods with a diameter of ∼5 nm was fabricated via a hydrothermal method. The as-prepared rutile TiO{sub 2} microspheres have a uniform diameter of ∼450 nm and show a good light-trapping performance. Dye-sensitized solar cell based on this sample shows a satisfactory energy conversion efficiency of 6.59% and is the highest PCE reported for intrinsic rutile TiO{sub 2}. The further optimized DSSC shows a conversion efficiency of 8.3%, though the internal resistance is higher and the dye absorption is lower than that of widely used anatase TiO{sub 2} nanoparticles. - Highlights: • Microsphere assembly of TiO{sub 2} nanorods with a diameter of ∼5 nm was fabricated. • TiO{sub 2} microspheres size is well matched with the visible light wavelength. • TiO{sub 2} microsphere enhances the light-scattering ability. • Rutile TiO{sub 2} microsphere shows an energy conversion efficiency of 6.59%. • The highest PCE reported for intrinsic rutile TiO{sub 2} is obtained. - Abstract: According to the Mie scattering theory, spheres with the size matched with light wavelength are most suitable for light scattering and enhance the light trapping ability. In this paper, a novel visible-light wavelength matched sphere assembly of TiO{sub 2} superfine nanorods was fabricated via a simple one-step hydrothermal method. The morphology and the structure were examined by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The visible subwavelength TiO{sub 2} microsphere resembling an immature chinese chestnut is composed of countless superfine TiO{sub 2} nanorods, the diameter of these building blocks of superfine TiO{sub 2} nanorods is ∼5 nm. The obtained TiO{sub 2} sphere has an average diameter of ca. 450 nm, which matches well with the visible light wavelength and cause the

  3. Nematode-Trapping Fungi.

    Science.gov (United States)

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  4. Fast shuttling of a particle under weak spring-constant noise of the moving trap

    Science.gov (United States)

    Lu, Xiao-Jing; Ruschhaupt, A.; Muga, J. G.

    2018-05-01

    We investigate the excitation of a quantum particle shuttled in a harmonic trap with weak spring-constant colored noise. The Ornstein-Uhlenbeck model for the noise correlation function describes a wide range of possible noises, in particular for short correlation times the white-noise limit examined by Lu et al. [Phys. Rev. A 89, 063414 (2014)], 10.1103/PhysRevA.89.063414 and, by averaging over correlation times, "1 /f flicker noise." We find expressions for the excitation energy in terms of static (independent of trap motion) and dynamical sensitivities, with opposite behavior with respect to shuttling time, and demonstrate that the excitation can be reduced by proper process timing and design of the trap trajectory.

  5. Trapping in irradiated p-on-n silicon sensors at fluences anticipated at the HL-LHC outer tracker

    CERN Document Server

    Adam, W.; Dragicevic, M.; Friedl, M.; Fruehwirth, R.; Hoch, M.; Hrubec, J.; Krammer, M.; Treberspurg, W.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Luyckx, S.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Grebenyuk, A.; Lenzi, Th.; Leonard, A.; Maerschalk, Th.; Mohammadi, A.; Pernie, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Zeid, S.Abu; Blekman, F.; De Bruyn, I.; D'Hondt, J.; Daci, N.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Mulders, P.; Van Onsem, G.; Van Parijs, I.; Strom, D.A.; Basegmez, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; De Callatay, B.; Delaere, C.; Pree, T.Du; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Michotte, D.; Nuttens, C.; Perrini, L.; Pagano, D.; Quertenmont, L.; Selvaggi, M.; Marono, M.Vidal; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G.H.; Harkonen, J.; Lampen, T.; Luukka, P.R.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Tuuva, T.; Beaulieu, G.; Boudoul, G.; Combaret, C.; Contardo, D.; Gallbit, G.; Lumb, N.; Mathez, H.; Mirabito, L.; Perries, S.; Sabes, D.; Vander Donckt, M.; Verdier, P.; Viret, S.; Zoccarato, Y.; Agram, J.L.; Conte, E.; Fontaine, J.Ch.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.M.; Chabert, E.; Charles, L.; Goetzmann, Ch.; Gross, L.; Hosselet, J.; Mathieu, C.; Richer, M.; Skovpen, K.; Pistone, C.; Fluegge, G.; Kuensken, A.; Geisler, M.; Pooth, O.; Stahl, A.; Autermann, C.; Edelhoff, M.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schwering, G.; Wittmer, B.; Wlochal, M.; Zhukov, V.; Bartosik, N.; Behr, J.; Burgmeier, A.; Calligaris, L.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Fluke, G.; Garcia, J.Garay; Gizhko, A.; Hansen, K.; Harb, A.; Hauk, J.; Kalogeropoulos, A.; Kleinwort, C.; Korol, I.; Lange, W.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Schroeder, M.; Seitz, C.; Spannagel, S.; Zuber, A.; Biskop, H.; Blobel, V.; Buhmann, P.; Centis-Vignali, M.; Draeger, A.R.; Erfle, J.; Garutti, E.; Haller, J.; Hoffmann, M.; Junkes, A.; Lapsien, T.; Mattig, S.; Matysek, M.; Perieanu, A.; Poehlsen, J.; Poehlsen, T.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Sola, V.; Steinbruck, G.; Wellhausen, J.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Eber, R.; Freund, B.; Hartmann, F.; Hauth, Th.; Heindl, S.; Hoffmann, K.H.; Husemann, U.; Kornmeyer, A.; Mallows, S.; Muller, Th.; Nuernberg, A.; Printz, M.; Simonis, H.J.; Steck, P.; Weber, M.; Weiler, Th.; Bhardwaj, A.; Kumar, A.; Ranjan, K.; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Creanza, D.; De Palma, M.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Di Mattia, A.; Potenza, R.; Saizu, M.A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Civinini, C.; Gallo, E.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Ciulli, V.; D'Alessandro, R.; Gonzi, S.; Gori, V.; Focardi, E.; Lenzi, P.; Scarlini, E.; Tropiano, A.; Viliani, L.; Ferro, F.; Robutti, E.; Lo Vetere, M.; Gennai, S.; Malvezzi, S.; Menasce, D.; Moroni, L.; Pedrini, D.; Dinardo, M.; Fiorendi, S.; Manzoni, R.A.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Dorigo, T.; Giubilato, P.; Pozzobon, N.; Tosi, M.; Zucchetta, A.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Bilei, G.M.; Bissi, L.; Checcucci, B.; Magalotti, D.; Menichelli, M.; Saha, A.; Servoli, L.; Storchi, L.; Biasini, M.; Conti, E.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Passeri, D.; Placidi, P.; Salvatore, M.; Santocchia, A.; Solestizi, L.A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M.A.; Dell'Orso, R.; Fedi, G.; Giassi, A.; Grippo, M.T.; Lomtadze, T.; Magazzu, G.; Mazzoni, E.; Minuti, M.; Moggi, A.; Moon, C.S.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Savoy-Navarro, A.; Serban, A.T.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.; Calzolari, F.; Donato, S.; Fiori, F.; Ligabue, F.; Vernieri, C.; Demaria, N.; Rivetti, A.; Bellan, R.; Casasso, S.; Costa, M.; Covarelli, R.; Migliore, E.; Monteil, E.; Musich, M.; Pacher, L.; Ravera, F.; Romero, A.; Solano, A.; Trapani, P.; Jaramillo Echeverria, R.; Fernandez, M.; Gomez, G.; Moya, D.; F. Gonzalez Sanchez, J.; Munoz Sanchez, F.J.; Vila, I.; Virto, A.L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Breuker, H.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Alfonso, M.; D'Auria, A.; Detraz, S.; De Visscher, S.; Deyrail, D.; Faccio, F.; Felici, D.; Frank, N.; Gill, K.; Giordano, D.; Harris, P.; Honma, A.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Mannelli, M.; Marchioro, A.; Marconi, S.; Martina, S.; Mersi, S.; Michelis, S.; Moll, M.; Onnela, A.; Pakulski, T.; Pavis, S.; Peisert, A.; Pernot, J.F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Rzonca, M.; Stoye, M.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; Bani, L.; di Calafiori, D.; Casal, B.; Djambazov, L.; Donega, M.; Dunser, M.; Eller, P.; Grab, C.; Hits, D.; Horisberger, U.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Perrozzi, L.; Roeser, U.; Rossini, M.; Starodumov, A.; Takahashi, M.; Wallny, R.; Amsler, C.; Bosiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.H.; Dietz, C.; Grundler, U.; Hou, W.S.; Lu, R.S.; Moya, M.; Wilken, R.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; El Nasr-Storey, S.Seif; Cole, J.; Hobson, P.; Leggat, D.; Reid, I.D.; Teodorescu, L.; Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; Magnan, A.M.; Pesaresi, M.; Raymond, D.M.; Uchida, K.; Coughlan, J.A.; Harder, K.; Ilic, J.; Tomalin, I.R.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay; Burt, K.; Ellison, J.; Hanson, G.; Malberti, M.; Olmedo, M.; Cerati, G.; Sharma, V.; Vartak, A.; Yagil, A.; Della Porta, G.Zevi; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; McColl, N.; Mullin, S.; White, D.; Cumalat, J.P.; Ford, W.T.; Gaz, A.; Krohn, M.; Stenson, K.; Wagner, S.R.; Baldin, B.; Bolla, G.; Burkett, K.; Butler, J.; Cheung, H.; Chramowicz, J.; Christian, D.; Cooper, W.E.; Deptuch, G.; Derylo, G.; Gingu, C.; Gruenendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Jung, A.; Joshi, U.; Kahlid, F.; Lei, C.M.; Lipton, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Yin, H.; Adams, M.R.; Berry, D.R.; Evdokimov, A.; Evdokimov, O.; Gerber, C.E.; Hofman, D.J.; Kapustka, B.K.; O'Brien, C.; Sandoval Gonzalez, D.I.; Trauger, H.; Turner, P.; Parashar, N.; Stupak, J.; I.I.I.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D.H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Benelli, G.; Gray, J.; Majumder, D.; Noonan, D.; Sanders, S.; Stringer, R.; Ivanov, A.; Makouski, M.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J.G.; Cremaldi, L.M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Bose, S.; Claes, D.R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Meier, F.; Monroy, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Duggan, D.; Halkiadakis, E.; Lath, A.; Park, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Mendez, H.; Ramirez Vargas, J.E.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Kaufman, G.; Mirman, N.; Ryd, A.; Salvati, E.; Skinnari, L.; Thom, J.; Thompson, J.; Tucker, J.; Winstrom, L.; Akgun, B.; Ecklund, K.M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Osipenkov, I.; Perloff, A.; Ulmer, K.A.; Delannoy, A.G.; D'Angelo, P.; Johns, W.

    2016-04-22

    The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200 $\\mu$m thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to $3 \\cdot 10^{15}$ neq/cm$^2$. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulation assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. The effective trapping rates determined for both electrons and holes...

  6. Characteristics of trapped electrons and electron traps in single crystals

    International Nuclear Information System (INIS)

    Budzinski, E.E.; Potter, W.R.; Potienko, G.; Box, H.C.

    1979-01-01

    Two additional carbohydrates are reported whose crystal structures trap electrons intermolecularly in single crystals x irradiated at low temperature, namely sucrose and rhamnose. Five carbohydrate and polyhydroxy compounds are now known which exhibit this phenomenon. The following characteristics of the phenomenon were investigated: (1) the hyperfine couplings of the electron with protons of the polarized hydroxy groups forming the trap; (2) the distances between these protons and the trapped electron; (3) the spin density of the electron at the protons and (4) the relative stabilities of the electron trapped in various crystal structures

  7. Precise mass measurements of exotic nuclei--the SHIPTRAP Penning trap mass spectrometer

    International Nuclear Information System (INIS)

    Herfurth, F.; Ackermann, D.; Block, M.; Dworschak, M.; Eliseev, S.; Hessberger, F.; Hofmann, S.; Kluge, H.-J.; Maero, G.; Martin, A.; Mazzocco, M.; Rauth, C.; Vorobjev, G.; Blaum, K.; Ferrer, R.; Neidherr, D.; Chaudhuri, A.; Marx, G.; Schweikhard, L.; Neumayr, J.

    2007-01-01

    The SHIPTRAP Penning trap mass spectrometer has been designed and constructed to measure the mass of short-lived, radioactive nuclei. The radioactive nuclei are produced in fusion-evaporation reactions and separated in flight with the velocity filter SHIP at GSI in Darmstadt. They are captured in a gas cell and transfered to a double Penning trap mass spectrometer. There, the cyclotron frequencies of the radioactive ions are determined and yield mass values with uncertainties ≥4.5·10 -8 . More than 50 nuclei have been investigated so far with the present overall efficiency of about 0.5 to 2%

  8. Near-field acoustic microbead trapping as remote anchor for single particle manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jae Youn [Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of); Cheon, Dong Young; Shin, Hyunjune; Kim, Hyun Bin; Lee, Jungwoo, E-mail: jwlee@kw.ac.kr [Department of Electronic Engineering, Kwangwoon University, Seoul (Korea, Republic of)

    2015-05-04

    We recently proposed an analytical model of a two-dimensional acoustic trapping of polystyrene beads in the ray acoustics regime, where a bead diameter is larger than the wavelength used. As its experimental validation, this paper demonstrates the transverse (or lateral) trapping of individual polystyrene beads in the near field of focused ultrasound. A 100 μm bead is immobilized on the central beam axis by a focused sound beam from a 30 MHz single element lithium niobate transducer, after being laterally displaced through hundreds of micrometers. Maximum displacement, a longest lateral distance at which a trapped bead can be directed towards the central axis, is thus measured over a discrete frequency range from 24 MHz to 36 MHz. The displacement data are found to be between 323.7 μm and 470.2 μm, depending on the transducer's driving frequency and input voltage amplitude. The experimental results are compared with their corresponding model values, and their relative errors lie between 0.9% and 3.9%. The results suggest that this remote maneuvering technique may be employed to manipulate individual cells through solid microbeads, provoking certain cellular reactions to localized mechanical disturbance without direct contact.

  9. Determination of Seed Soundness in Conifers Cryptomeria japonica and Chamaecyparis obtusa Using Narrow-Multiband Spectral Imaging in the Short-Wavelength Infrared Range

    Science.gov (United States)

    Matsuda, Osamu; Hara, Masashi; Tobita, Hiroyuki; Yazaki, Kenichi; Nakagawa, Toshinori; Shimizu, Kuniyoshi; Uemura, Akira; Utsugi, Hajime

    2015-01-01

    Regeneration of planted forests of Cryptomeria japonica (sugi) and Chamaecyparis obtuse (hinoki) is the pressing importance to the forest administration in Japan. Low seed germination rate of these species, however, has hampered low-cost production of their seedlings for reforestation. The primary cause of the low germinability has been attributed to highly frequent formation of anatomically unsound seeds, which are indistinguishable from sound germinable seeds by visible observation and other common criteria such as size and weight. To establish a method for sound seed selection in these species, hyperspectral imaging technique was used to identify a wavelength range where reflectance spectra differ clearly between sound and unsound seeds. In sound seeds of both species, reflectance in a narrow waveband centered at 1,730 nm, corresponding to a lipid absorption band in the short-wavelength infrared (SWIR) range, was greatly depressed relative to that in adjacent wavebands on either side. Such depression was absent or less prominent in unsound seeds. Based on these observations, a reflectance index SQI, abbreviated for seed quality index, was formulated using reflectance at three narrow SWIR wavebands so that it represents the extent of the depression. SQI calculated from seed area-averaged reflectance spectra and spatial distribution patterns of pixelwise SQI within each seed area were both proven as reliable criteria for sound seed selection. Enrichment of sound seeds was accompanied by an increase in germination rate of the seed lot. Thus, the methods described are readily applicable toward low-cost seedling production in combination with single seed sowing technology. PMID:26083366

  10. Wavelength converter placement for different RWA algorithms in wavelength-routed all-optical networks

    Science.gov (United States)

    Chu, Xiaowen; Li, Bo; Chlamtac, Imrich

    2002-07-01

    Sparse wavelength conversion and appropriate routing and wavelength assignment (RWA) algorithms are the two key factors in improving the blocking performance in wavelength-routed all-optical networks. It has been shown that the optimal placement of a limited number of wavelength converters in an arbitrary mesh network is an NP complete problem. There have been various heuristic algorithms proposed in the literature, in which most of them assume that a static routing and random wavelength assignment RWA algorithm is employed. However, the existing work shows that fixed-alternate routing and dynamic routing RWA algorithms can achieve much better blocking performance. Our study in this paper further demonstrates that the wavelength converter placement and RWA algorithms are closely related in the sense that a well designed wavelength converter placement mechanism for a particular RWA algorithm might not work well with a different RWA algorithm. Therefore, the wavelength converter placement and the RWA have to be considered jointly. The objective of this paper is to investigate the wavelength converter placement problem under fixed-alternate routing algorithm and least-loaded routing algorithm. Under the fixed-alternate routing algorithm, we propose a heuristic algorithm called Minimum Blocking Probability First (MBPF) algorithm for wavelength converter placement. Under the least-loaded routing algorithm, we propose a heuristic converter placement algorithm called Weighted Maximum Segment Length (WMSL) algorithm. The objective of the converter placement algorithm is to minimize the overall blocking probability. Extensive simulation studies have been carried out over three typical mesh networks, including the 14-node NSFNET, 19-node EON and 38-node CTNET. We observe that the proposed algorithms not only outperform existing wavelength converter placement algorithms by a large margin, but they also can achieve almost the same performance comparing with full wavelength

  11. Grey relational analysis for evaluating the effects of different rates of wine lees-derived biochar application on a plant-soil system with multi-metal contamination.

    Science.gov (United States)

    Xu, Min; Zhu, Qihong; Wu, Jun; He, Yan; Yang, Gang; Zhang, Xiaohong; Li, Li; Yu, Xiaoyu; Peng, Hong; Wang, Lilin

    2018-03-01

    In this study, grey relational analysis (GRA) was used to investigate the effects of different application rates of wine lees-derived biochar on a plant-soil system with multi-metal contamination. A pot experiment was conducted to determine rice growth in multi-metal-contaminated soil amended with samples of wine lees-derived biochar, and 47 indicators (including soil properties, microbial activity, and plant physiology) were selected as evaluation indexes to assess the plant-soil system. The results indicated that higher wine lees-derived biochar application rates (2% W/W) were favorable for soil fertility, the bioconcentration factor (BF), and the mobility factor (MF, %) (with the exception of Cr, Zn, and Hg), but an application of 1% produced the highest plant growth, enzymatic activities, and bacterial diversity. The richness of the bacterial communities was reduced in the soil amended with the wine lees-derived biochar. According to the GRA assessment, the 1% application rate of wine lees-derived biochar was more suitable for restoring the holistic plant-soil system than were the application rates of 0, 0.5, and 2% (W/W). Furthermore, this study shows that GRA is a useful method for evaluating plant-soil systems.

  12. Confinement in a cryogenic Penning trap of highest charge state ions from EBIT

    International Nuclear Information System (INIS)

    Schneider, D.

    1994-01-01

    The retrapping of highly charged Xe 44+ and Th 68+,72+ ions extracted from an open-quotes Electron Beam Ion Trapclose quotes (EBIT) is demonstrated after injection of the ions into RETRAP, a cryogenic Penning trap (up to 6 Tesla magnetic field) currently with an open cylinder design. Ion extraction in a short pulse (5-20 μsec) from EBIT, essential for efficient retrapping, is employed. The ions are slowed down upon entering a deceleration tube mounted above the trap within the magnetic field. The potential is then rapidly (100 ns) decreased, enabling low energy ions to enter the trap. Capture efficiencies up to 25% are observed via detection of the delayed ion release pulse with a detector below the trap. Signal voltages induced in a tuned circuit due to single and multiple ions have been observed by tuning the ion resonant axial oscillation frequencies for different ions. Results from transporting and retrapping of the ions, as well as their detection, are described and the trapping efficiency is discussed, The motivation for these studies is to cool the trapped very highly charged ions to low temperatures (< 4 K) in order to perform ultrahigh resolution precision spectroscopy, collision studies at ultra low energies and to observe phase transitions in Coulomb clusters of highly charged ions

  13. Generation of ultra-short relativistic-electron-bunch by a laser wakefield

    NARCIS (Netherlands)

    Khachatryan, A.G.; Boller, Klaus J.; van Goor, F.A.

    2003-01-01

    The possibility of the generation of an ultra-short (about one micron long) relativistic (up to a few GeVs) electron-bunch in a moderately nonlinear laser wakefield excited in an underdense plasma by an intense laser pulse is investigated. The ultra-short bunch is formed by trapping, effective

  14. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    OpenAIRE

    Fang, Jin-Qing; Liu, Qiang

    2013-01-01

    Nobelist TD Lee scientist cooperation network (TDLSCN) and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scie...

  15. Group III nitride semiconductors for short wavelength light-emitting devices

    Science.gov (United States)

    Orton, J. W.; Foxon, C. T.

    1998-01-01

    The group III nitrides (AlN, GaN and InN) represent an important trio of semiconductors because of their direct band gaps which span the range 1.95-6.2 eV, including the whole of the visible region and extending well out into the ultraviolet (UV) range. They form a complete series of ternary alloys which, in principle, makes available any band gap within this range and the fact that they also generate efficient luminescence has been the main driving force for their recent technological development. High brightness visible light-emitting diodes (LEDs) are now commercially available, a development which has transformed the market for LED-based full colour displays and which has opened the way to many other applications, such as in traffic lights and efficient low voltage, flat panel white light sources. Continuously operating UV laser diodes have also been demonstrated in the laboratory, exciting tremendous interest for high-density optical storage systems, UV lithography and projection displays. In a remarkably short space of time, the nitrides have therefore caught up with and, in some ways, surpassed the wide band gap II-VI compounds (ZnCdSSe) as materials for short wavelength optoelectronic devices. The purpose of this paper is to review these developments and to provide essential background material in the form of the structural, electronic and optical properties of the nitrides, relevant to these applications. We have been guided by the fact that the devices so far available are based on the binary compound GaN (which is relatively well developed at the present time), together with the ternary alloys AlGaN and InGaN, containing modest amounts of Al or In. We therefore concentrate, to a considerable extent, on the properties of GaN, then introduce those of the alloys as appropriate, emphasizing their use in the formation of the heterostructures employed in devices. The nitrides crystallize preferentially in the hexagonal wurtzite structure and devices have so

  16. Results from the commissioning of the double Penning trap system MLLTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Kolhinen, Veli; Gartzke, Eva; Habs, Dietrich; Neumayr, Juergen; Schuermann, Christian; Szerypo, Jerzy; Thirolf, Peter [Fakultaet fuer Physik, LMU Muenchen, Garching (Germany); Maier-Leibnitz Laboratory, Garching (Germany)

    2009-07-01

    A cylindrical double Penning trap has been installed and successfully commissioned at the Maier-Leibnitz Laboratory (MLL) in Garching. This trap system has been designed to isobarically purify low energy ion beams and perform highly accurate mass measurements. Test measurements were performed by using an offline Rb surface ion source producing singly charged {sup 85}Rb and {sup 87}Rb ions. A mass resolving power of 139(2).10{sup 3} has been reached with the purification trap for {sup 85}Rb ions and a relative mass uncertainty of the order of {delta}m/m=2.9.10{sup -8} with the measurement trap for {sup 85}Rb ions by using {sup 87}Rb as reference ions. This value does not yet include systematic uncertainties. Detailed studies of systematic uncertainties arising from magnetic field changes caused by short term temperature and pressure fluctuations in the experimental area and from the long term decay of the magnetic field strength have been performed and the result of the analysis is presented. Mass measurements with offline actinide alpha recoil ion sources providing heavy radioactive species (e.g. {sup 240}U) are in preparation.

  17. Berners-Lee and the IPEN reality

    International Nuclear Information System (INIS)

    Sacramento, Jose Miguel Noronha; Rogero, Jose Roberto

    2010-01-01

    This article discusses a study held with researchers from IPEN and organizations that operate or could act as IPEN partners or clients on research projects and consumption of its products and services. The survey had its origin in the perception of the difficulties in alignment of IPEN with the demands of society, taking as a point of attention processes used in the disclosure and dissemination of scientific knowledge to the public other than the academic communities or specialists in the areas of IPEN usually operates. Were mapped communication flows between the researchers of IPEN and between companies and the IPEN so as to identify the necessary conditions to improve communication between different universes such as academic and business. The comparison of the conditions currently found in the IPEN with the 1991 initial proposal of Tim Berners-Lee when creating the World Wide Web to CERN and with web portals of organizations similar to IPEN provided valuable grants for the planning of next steps of IPEN organization in terms of its relationship with potential partners and, ultimately, the society. (author)

  18. Wavelength Measurements of Ni L-shell Lines between 9 and 15 A

    Science.gov (United States)

    Gu, Ming F.; Beiersdorfer, P.; Brown, G. V.; Chen, H.; Thorn, D. B.; Kahn, S. M.

    2006-09-01

    We present accurate wavelength measurements of nikel L-shell X-ray lines resulting from Δ n ≥ 1 transitions (mostly, 2 - 3 transitions) between 9 and 15 Å. We have used the electron beam ion trap, SuperEBIT, at the Lawrence Livermore National Laboratory and a flat field grating spectrometer to record the spectra. Most significant emission lines of Ni XIX -- XXVI in our spectral coverage are identified. The resulting data set provides valuable input in the analyses of high resolution X-ray spectra of stellar coronae sources, including the Sun. This work was performed under the auspices of U.S. DOE contract No. W-7405-Eng-48, and supported by NASA APRA Grant NAG5-5419.

  19. Effect of trap position on the efficiency of trapping in treelike scale-free networks

    International Nuclear Information System (INIS)

    Zhang Zhongzhi; Lin Yuan; Ma Youjun

    2011-01-01

    The conventional wisdom is that the role and impact of nodes on dynamical processes in scale-free networks are not homogenous, because of the presence of highly connected nodes at the tail of their power-law degree distribution. In this paper, we explore the influence of different nodes as traps on the trapping efficiency of the trapping problem taking place on scale-free networks. To this end, we study in detail the trapping problem in two families of deterministically growing scale-free networks with treelike structure: one family is non-fractal, the other is fractal. In the first part of this work, we attack a special case of random walks on the two network families with a perfect trap located at a hub, i.e. node with the highest degree. The second study addresses the case with trap distributed uniformly over all nodes in the networks. For these two cases, we compute analytically the mean trapping time (MTT), a quantitative indicator characterizing the trapping efficiency of the trapping process. We show that in the non-fractal scale-free networks the MTT for both cases follows different scalings with the network order (number of network nodes), implying that trap's position has a significant effect on the trapping efficiency. In contrast, it is presented that for both cases in the fractal scale-free networks, the two leading scalings exhibit the same dependence on the network order, suggesting that the location of trap has no essential impact on the trapping efficiency. We also show that for both cases of the trapping problem, the trapping efficiency is more efficient in the non-fractal scale-free networks than in their fractal counterparts.

  20. Influence of trap location on the efficiency of trapping in dendrimers and regular hyperbranched polymers.

    Science.gov (United States)

    Lin, Yuan; Zhang, Zhongzhi

    2013-03-07

    The trapping process in polymer systems constitutes a fundamental mechanism for various other dynamical processes taking place in these systems. In this paper, we study the trapping problem in two representative polymer networks, Cayley trees and Vicsek fractals, which separately model dendrimers and regular hyperbranched polymers. Our goal is to explore the impact of trap location on the efficiency of trapping in these two important polymer systems, with the efficiency being measured by the average trapping time (ATT) that is the average of source-to-trap mean first-passage time over every staring point in the whole networks. For Cayley trees, we derive an exact analytic formula for the ATT to an arbitrary trap node, based on which we further obtain the explicit expression of ATT for the case that the trap is uniformly distributed. For Vicsek fractals, we provide the closed-form solution for ATT to a peripheral node farthest from the central node, as well as the numerical solutions for the case when the trap is placed on other nodes. Moreover, we derive the exact formula for the ATT corresponding to the trapping problem when the trap has a uniform distribution over all nodes. Our results show that the influence of trap location on the trapping efficiency is completely different for the two polymer networks. In Cayley trees, the leading scaling of ATT increases with the shortest distance between the trap and the central node, implying that trap's position has an essential impact on the trapping efficiency; while in Vicsek fractals, the effect of location of the trap is negligible, since the dominant behavior of ATT is identical, respective of the location where the trap is placed. We also present that for all cases of trapping problems being studied, the trapping process is more efficient in Cayley trees than in Vicsek fractals. We demonstrate that all differences related to trapping in the two polymer systems are rooted in their underlying topological structures.

  1. Towards trapped antihydrogen

    CERN Document Server

    Jorgensen, L V; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page, R D; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Substantial progress has been made in the last few years in the nascent field of antihydrogen physics. The next big step forward is expected to be the trapping of the formed antihydrogen atoms using a magnetic multipole trap. ALPHA is a new international project that started to take data in 2006 at CERN’s Antiproton Decelerator facility. The primary goal of ALPHA is stable trapping of cold antihydrogen atoms to facilitate measurements of its properties. We discuss the status of the ALPHA project and the prospects for antihydrogen trapping.

  2. Spatial patterns of bee captures in North American bowl trapping surveys

    Science.gov (United States)

    Droege, Sam; Tepedino, Vincent J.; Lebuhn, Gretchen; Link, William; Minckley, Robert L.; Chen, Qian; Conrad, Casey

    2010-01-01

    1. Bowl and pan traps are now commonly used to capture bees (Hymenoptera: Apiformes) for research and surveys. 2. Studies of how arrangement and spacing of bowl traps affect captures of bees are needed to increase the efficiency of this capture technique. 3. We present results from seven studies of bowl traps placed in trapping webs, grids, and transects in four North American ecoregions (Mid-Atlantic, Coastal California, Chihuahuan Desert, and Columbia Plateau). 4. Over 6000 specimens from 31 bee genera were captured and analysed across the studies. 5. Based on the results from trapping webs and distance tests, the per bowl capture rate of bees does not plateau until bowls are spaced 3–5 m apart. 6. Minor clumping of bee captures within transects was detected, with 26 of 56 transects having index of dispersion values that conform to a clumped distribution and 39 transects having positive Green's index values, 13 with zero, and only four negative. However, degree of clumping was slight with an average value of only 0.06 (the index ranges from -1 to 1) with only five values >0.15. Similarly, runs tests were significant for only 5.9% of the transects. 7. Results indicate that (i) capture rates are unaffected by short distances between bowls within transects and (ii) that bowls and transects should be dispersed throughout a study site.

  3. Two-species mixing in a nested Penning trap for antihydrogen trapping

    International Nuclear Information System (INIS)

    Ordonez, C. A.; Weathers, D. L.

    2008-01-01

    There exists an international quest to trap neutral antimatter in the form of antihydrogen for scientific study. One method that is being developed for trapping antihydrogen employs a nested Penning trap. Such a trap serves to mix positrons and antiprotons so as to produce low energy antihydrogen atoms. Mixing is achieved when the confinement volumes of the two species overlap one another. In the work presented here, a theoretical understanding of the mixing process is developed by analyzing a mixing scheme that was recently reported [G. Gabrielse et al., Phys. Rev. Lett. 100, 113001 (2008)]. The results indicate that positron space charge or collisions among antiprotons may substantially reduce the fraction of antiprotons that have an energy suitable for antihydrogen trapping

  4. Universal few-body physics in a harmonic trap

    International Nuclear Information System (INIS)

    Tolle, S.; Hammer, H.W.; Metsch, B.Ch.

    2011-01-01

    Few-body systems with resonant short-range interactions display universal properties that do not depend on the details of their structure or their interactions at short distances. In the three-body system, these properties include the existence of a geometric spectrum of three-body Efimov states and a discrete scaling symmetry. Similar universal properties appear in 4-body and possibly higher-body systems as well. We set up an effective theory for few-body systems in a harmonic trap and study the modification of universal physics for 3- and 4-particle systems in external confinement. In particular, we focus on systems where the Efimov effect can occur and investigate the dependence of the 4-body spectrum on the experimental tuning parameters. (authors)

  5. Short-wavelength multiline erbium-doped fiber ring laser by a broadband long-period fiber grating inscribed in a taper transition

    International Nuclear Information System (INIS)

    Anzueto-Sánchez, G; Martínez-Rios, A

    2014-01-01

    A stable multiwavelength all-fiber erbium-doped fiber ring laser (EDFRL) based on a broadband long-period fiber grating (LPFG) inscribed in a fiber taper transition is presented. The LPFG’s characteristics were engineered to provide a higher loss at the natural lasing wavelength of the laser cavity. The LPFG inscribed on a taper transition provided a depth greater than 25 dB, and posterior chemical etching provided a broad notch band to inhibit laser generation on the long-wavelength side of the EDF gain. Up to four simultaneous laser wavelengths are generated in the range of 1530–1535 nm. (paper)

  6. Dynamic analysis of trapping and escaping in dual beam optical trap

    Science.gov (United States)

    Li, Wenqiang; Hu, Huizhu; Su, Heming; Li, Zhenggang; Shen, Yu

    2016-10-01

    In this paper, we simulate the dynamic movement of a dielectric sphere in optical trap. This dynamic analysis can be used to calibrate optical forces, increase trapping efficiency and measure viscous coefficient of surrounding medium. Since an accurate dynamic analysis is based on a detailed force calculation, we calculate all forces a sphere receives. We get the forces of dual-beam gradient radiation pressure on a micron-sized dielectric sphere in the ray optics regime and utilize Einstein-Ornstein-Uhlenbeck to deal with its Brownian motion forces. Hydrodynamic viscous force also exists when the sphere moves in liquid. Forces from buoyance and gravity are also taken into consideration. Then we simulate trajectory of a sphere when it is subject to all these forces in a dual optical trap. From our dynamic analysis, the sphere can be trapped at an equilibrium point in static water, although it permanently fluctuates around the equilibrium point due to thermal effects. We go a step further to analyze the effects of misalignment of two optical traps. Trapping and escaping phenomena of the sphere in flowing water are also simulated. In flowing water, the sphere is dragged away from the equilibrium point. This dragging distance increases with the decrease of optical power, which results in escaping of the sphere with optical power below a threshold. In both trapping and escaping process we calculate the forces and position of the sphere. Finally, we analyze a trapping region in dual optical tweezers.

  7. The low-energy-beam and ion-trap facility at NSCL/MSU

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, S. E-mail: schwarz@nscl.msu.edu; Bollen, G.; Lawton, D.; Lofy, P.; Morrissey, D.J.; Ottarson, J.; Ringle, R.; Schury, P.; Sun, T.; Varentsov, V.; Weissman, L

    2003-05-01

    The goal of the low-energy-beam and ion-trap (LEBIT) project is to convert the high-energy exotic beams produced at NSCL/MSU into low-energy low-emittance beams. This beam manipulation will be done by a combination of a high-pressure gas stopping cell and a radio-frequency quadrupole ion accumulator and buncher. The first experimental program to profit from the low-energy beams produced will be high-accuracy mass measurements on very short-lived isotopes with a 9.4 T Penning trap system. The status of the project is presented with an emphasis on recent stopping tests range of 100 MeV/A {sup 40}Ar{sup 18+} ions in a gas cell.

  8. The low-energy-beam and ion-trap facility at NSCL/MSU

    International Nuclear Information System (INIS)

    Schwarz, S.; Bollen, G.; Lawton, D.; Lofy, P.; Morrissey, D.J.; Ottarson, J.; Ringle, R.; Schury, P.; Sun, T.; Varentsov, V.; Weissman, L.

    2003-01-01

    The goal of the low-energy-beam and ion-trap (LEBIT) project is to convert the high-energy exotic beams produced at NSCL/MSU into low-energy low-emittance beams. This beam manipulation will be done by a combination of a high-pressure gas stopping cell and a radio-frequency quadrupole ion accumulator and buncher. The first experimental program to profit from the low-energy beams produced will be high-accuracy mass measurements on very short-lived isotopes with a 9.4 T Penning trap system. The status of the project is presented with an emphasis on recent stopping tests range of 100 MeV/A 40 Ar 18+ ions in a gas cell

  9. Universal Properties of a Trapped Two-Component Fermi Gas at Unitarity

    International Nuclear Information System (INIS)

    Blume, D.; Stecher, J. von; Greene, Chris H.

    2007-01-01

    We treat the trapped two-component Fermi system, in which unlike fermions interact through a two-body short-range potential having no bound state but an infinite scattering length. By accurately solving the Schroedinger equation for up to N=6 fermions, we show that no many-body bound states exist other than those bound by the trapping potential, and we demonstrate unique universal properties of the system: Certain excitation frequencies are separated by 2(ℎ/2π)ω, the wave functions agree with analytical predictions and a virial theorem is fulfilled. Further calculations up to N=30 determine the excitation gap, an experimentally accessible universal quantity, and it agrees with recent predictions based on a density functional approach

  10. LEBIT - a low-energy beam and ion trap facility at NSCL/MSU

    International Nuclear Information System (INIS)

    Schwarz, S.; Bollen, G.; Davies, D.; Lawton, D.; Lofy, P.; Morrissey, D. J.; Ottarson, J.; Ringle, R.; Schury, P.; Sun, T.; VanWasshenova, D.; Sun, T.; Weissman, L.; Wiggins, D.

    2003-01-01

    The Low Energy Beam and Ion Trap (LEBIT) Project aims to convert the high-energy exotic beams produced at NSCL/MSU into low-energy low-emittance beams. A combination of a high-pressure gas stopping cell and a radiofrequency quadrupole (RFQ) ion accumulator and buncher will be used to manipulate the beam accordingly. High-accuracy mass measurements on very short-lived isotopes with a 9.4 T Penning trap system will be the first experimental program to profit from the low-energy beams. The status of the project is presented with a focus on recent stopping tests of 100-140 MeV/A Ar18+ ions in a gas cell

  11. Deuterium trapping in tungsten

    Science.gov (United States)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  12. Deuterium trapping in tungsten

    International Nuclear Information System (INIS)

    Poon, M.

    2004-01-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D 2 molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  13. Deuterium trapping in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M

    2004-07-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D{sub 2} molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  14. Resonant nano-antennas for light trapping in plasmonic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mokkapati, S; Beck, F J; Catchpole, K R [Centre for Sustainable Energy Systems, College of Engineering and Computer Science, Australian National University, Canberra, 0200 (Australia); De Waele, R; Polman, A, E-mail: sudha.mokkapati@anu.edu.au [Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands)

    2011-05-11

    We investigate the influence of nanoparticle height on light trapping in thin-film solar cells covered with metal nanoparticles. We show that in taller nanoparticles the scattering cross-section is enhanced by resonant excitation of plasmonic standing waves. Tall nanoparticles have higher coupling efficiency when placed on the illuminated surface of the cell than on the rear of the cell due to their forward scattering nature. One of the major factors affecting the coupling efficiency of these particles is the phase shift of surface plasmon polaritons propagating along the nanoparticle due to reflection from the Ag/Si or Ag/air interface. The high scattering cross-sections of tall nanoparticles on the illuminated surface of the cell could be exploited for efficient light trapping by modifying the coupling efficiency of nanoparticles by engineering this phase shift. We demonstrate that the path length enhancement (with a nanoparticle of height 500 nm) at an incident wavelength of 700 nm can be increased from {approx}6 to {approx}16 by modifying the phase shift at the Ag/air interface by coating the surface of the nanoparticle with a layer of Si.

  15. Status and outlook of CHIP-TRAP: The Central Michigan University high precision Penning trap

    Science.gov (United States)

    Redshaw, M.; Bryce, R. A.; Hawks, P.; Gamage, N. D.; Hunt, C.; Kandegedara, R. M. E. B.; Ratnayake, I. S.; Sharp, L.

    2016-06-01

    At Central Michigan University we are developing a high-precision Penning trap mass spectrometer (CHIP-TRAP) that will focus on measurements with long-lived radioactive isotopes. CHIP-TRAP will consist of a pair of hyperbolic precision-measurement Penning traps, and a cylindrical capture/filter trap in a 12 T magnetic field. Ions will be produced by external ion sources, including a laser ablation source, and transported to the capture trap at low energies enabling ions of a given m / q ratio to be selected via their time-of-flight. In the capture trap, contaminant ions will be removed with a mass-selective rf dipole excitation and the ion of interest will be transported to the measurement traps. A phase-sensitive image charge detection technique will be used for simultaneous cyclotron frequency measurements on single ions in the two precision traps, resulting in a reduction in statistical uncertainty due to magnetic field fluctuations.

  16. Evaluation method for acoustic trapping performance by tracking motion of trapped microparticle

    Science.gov (United States)

    Lim, Hae Gyun; Ham Kim, Hyung; Yoon, Changhan

    2018-05-01

    We report a method to evaluate the performances of a single-beam acoustic tweezer using a high-frequency ultrasound transducer. The motion of a microparticle trapped by a 45-MHz single-element transducer was captured and analyzed to deduce the magnitude of trapping force. In the proposed method, the motion of a trapped microparticle was analyzed from a series of microscopy images to compute trapping force; thus, no additional equipment such as microfluidics is required. The method could be used to estimate the effective trapping force in an acoustic tweezer experiment to assess cell membrane deformability by attaching a microbead to the surface of a cell and tracking the motion of the trapped bead, which is similar to a bead-based assay that uses optical tweezers. The results showed that the trapping force increased with increasing acoustic intensity and duty factor, but the force eventually reached a plateau at a higher acoustic intensity. They demonstrated that this method could be used as a simple tool to evaluate the performance and to optimize the operating conditions of acoustic tweezers.

  17. Enhancing Light-Trapping Properties of Amorphous Si Thin-Film Solar Cells Containing High-Reflective Silver Conductors Fabricated Using a Nonvacuum Process

    Directory of Open Access Journals (Sweden)

    Jun-Chin Liu

    2014-01-01

    Full Text Available We proposed a low-cost and highly reflective liquid organic sheet silver conductor using back contact reflectors in amorphous silicon (a-Si single junction superstrate configuration thin-film solar cells produced using a nonvacuum screen printing process. A comparison of silver conductor samples with vacuum-system-sputtered silver samples indicated that the short-circuit current density (Jsc of sheet silver conductor cells was higher than 1.25 mA/cm2. Using external quantum efficiency measurements, the sheet silver conductor using back contact reflectors in cells was observed to effectively enhance the light-trapping ability in a long wavelength region (between 600 nm and 800 nm. Consequently, we achieved an optimal initial active area efficiency and module conversion efficiency of 9.02% and 6.55%, respectively, for the a-Si solar cells. The results indicated that the highly reflective sheet silver conductor back contact reflector layer prepared using a nonvacuum process is a suitable candidate for high-performance a-Si thin-film solar cells.

  18. On the influence of crystal size and wavelength on native SAD phasing.

    Science.gov (United States)

    Liebschner, Dorothee; Yamada, Yusuke; Matsugaki, Naohiro; Senda, Miki; Senda, Toshiya

    2016-06-01

    Native SAD is an emerging phasing technique that uses the anomalous signal of native heavy atoms to obtain crystallographic phases. The method does not require specific sample preparation to add anomalous scatterers, as the light atoms contained in the native sample are used as marker atoms. The most abundant anomalous scatterer used for native SAD, which is present in almost all proteins, is sulfur. However, the absorption edge of sulfur is at low energy (2.472 keV = 5.016 Å), which makes it challenging to carry out native SAD phasing experiments as most synchrotron beamlines are optimized for shorter wavelength ranges where the anomalous signal of sulfur is weak; for longer wavelengths, which produce larger anomalous differences, the absorption of X-rays by the sample, solvent, loop and surrounding medium (e.g. air) increases tremendously. Therefore, a compromise has to be found between measuring strong anomalous signal and minimizing absorption. It was thus hypothesized that shorter wavelengths should be used for large crystals and longer wavelengths for small crystals, but no thorough experimental analyses have been reported to date. To study the influence of crystal size and wavelength, native SAD experiments were carried out at different wavelengths (1.9 and 2.7 Å with a helium cone; 3.0 and 3.3 Å with a helium chamber) using lysozyme and ferredoxin reductase crystals of various sizes. For the tested crystals, the results suggest that larger sample sizes do not have a detrimental effect on native SAD data and that long wavelengths give a clear advantage with small samples compared with short wavelengths. The resolution dependency of substructure determination was analyzed and showed that high-symmetry crystals with small unit cells require higher resolution for the successful placement of heavy atoms.

  19. The Friedberg-Lee symmetry and minimal seesaw model

    International Nuclear Information System (INIS)

    He Xiaogang; Liao Wei

    2009-01-01

    The Friedberg-Lee (FL) symmetry is generated by a transformation of a fermionic field q to q+ξz. This symmetry puts very restrictive constraints on allowed terms in a Lagrangian. Applying this symmetry to N fermionic fields, we find that the number of independent fields is reduced to N-1 if the fields have gauge interaction or the transformation is a local one. Using this property, we find that a seesaw model originally with three generations of left- and right-handed neutrinos, with the left-handed neutrinos unaffected but the right-handed neutrinos transformed under the local FL translation, is reduced to an effective theory of minimal seesaw which has only two right-handed neutrinos. The symmetry predicts that one of the light neutrino masses must be zero.

  20. Time-Dependent Trapping of Pollinators Driven by the Alignment of Floral Phenology with Insect Circadian Rhythms

    Directory of Open Access Journals (Sweden)

    Jenny Y. Y. Lau

    2017-06-01

    Full Text Available Several evolutionary lineages in the early divergent angiosperm family Annonaceae possess flowers with a distinctive pollinator trapping mechanism, in which floral phenological events are very precisely timed in relation with pollinator activity patterns. This contrasts with previously described angiosperm pollinator traps, which predominantly function as pitfall traps. We assess the circadian rhythms of pollinators independently of their interactions with flowers, and correlate these data with detailed assessments of floral phenology. We reveal a close temporal alignment between patterns of pollinator activity and the floral phenology driving the trapping mechanism (termed ‘circadian trapping’ here. Non-trapping species with anthesis of standard duration (c. 48 h cannot be pollinated effectively by pollinators with a morning-unimodal activity pattern; non-trapping species with abbreviated anthesis (23–27 h face limitations in utilizing pollinators with a bimodal circadian activity; whereas species that trap pollinators (all with short anthesis can utilize a broader range of potential pollinators, including those with both unimodal and bimodal circadian rhythms. In addition to broadening the range of potential pollinators based on their activity patterns, circadian trapping endows other selective advantages, including the possibility of an extended staminate phase to promote pollen deposition, and enhanced interfloral movement of pollinators. The relevance of the alignment of floral phenological changes with peaks in pollinator activity is furthermore evaluated for pitfall trap pollination systems.

  1. Calcium Atom Trap for Atom Trap Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kwang Hoon; Park, Hyun Min; Han, Jae Min; Kim, Taek Soo; Cha, Yong Ho; Lim, Gwon; Jeong, Do Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Trace isotope analysis has been an important role in science, archaeological dating, geology, biology and nuclear industry. Artificially produced fission products such as Sr-90, Cs-135 and Kr-85 can be released to the environment when nuclear accident occurs and the reprocessing factory operates. Thus, the analysis of them has been of interest in nuclear industry. But it is difficult to detect them due to low natural abundance less then 10-10. The ultra-trace radio isotopes have been analyzed by the radio-chemical method, accelerator mass spectrometer, and laser based method. The radiochemical method has been used in the nuclear industry. But this method has disadvantages of long measurement time for long lived radioisotopes and toxic chemical process for the purification. The accelerator mass spectrometer has high isotope selectivity, but the system is huge and it has the isobar effects. The laser based method, such as RIMS (Resonance Ionization Mass Spectrometry) is a basically isobar-effect free method. Recently, ATTA (Atom Trap Trace Analysis), one of the laser based method, has been successfully demonstrated sufficient isotope selectivity with small system size. It has been applied for the detection of Kr-81 and Kr-85. However, it is not suitable for real sample detection, because it requires steady atomic beam generation during detection and is not allowed simultaneous detection of other isotopes. Therefore, we proposed the coupled method of Atom Trap and Mass Spectrometer. It consists of three parts, neutral atom trap, ionization and mass spectrometer. In this paper, we present the demonstration of the magneto-optical trap of neutral calcium. We discuss the isotope selective characteristics of the MOT (Magneto Optical Trap) of calcium by the fluorescence measurement. In addition, the frequency stabilization of the trap beam will be presented

  2. Trapping of Embolic Particles in a Vessel Phantom by Cavitation-Enhanced Acoustic Streaming

    Science.gov (United States)

    Maxwell, Adam D.; Park, Simone; Vaughan, Benjamin L.; Cain, Charles A.; Grotberg, James B.; Xu, Zhen

    2014-01-01

    Cavitation clouds generated by short, high-amplitude, focused ultrasound pulses were previously observed to attract, trap, and erode thrombus fragments in a vessel phantom. This phenomenon may offer a noninvasive method to capture and eliminate embolic fragments flowing through the bloodstream during a cardiovascular intervention. In this article, the mechanism of embolus trapping was explored by particle image velocimetry (PIV). PIV was used to examine the fluid streaming patterns generated by ultrasound in a vessel phantom with and without crossflow of blood-mimicking fluid. Cavitation enhanced streaming, which generated fluid vortices adjacent to the focus. The focal streaming velocity, uf, was as high as 120 cm/s, while mean crossflow velocities, uc, were imposed up to 14 cm/s. When a solid particle 3-4 mm diameter was introduced into crossflow, it was trapped near the focus. Increasing uf promoted particle trapping while increasing uc promoted particle escape. The maximum crossflow Reynolds number at which particles could be trapped, Rec, was approximately linear with focal streaming number, Ref, i.e. Rec = 0.25Ref + 67.44 (R2=0.76) corresponding to dimensional velocities uc=0.084uf + 3.122 for 20 < uf < 120 cm/s. The fluidic pressure map was estimated from PIV and indicated a negative pressure gradient towards the focus, trapping the embolus near this location. PMID:25109407

  3. A live-trap and trapping technique for fossorial mammals

    African Journals Online (AJOL)

    mammals. G.C. Hickman. An effective live-trap was designed for Cryptomys hottentotus .... that there is an animal in the burrow system, and to lessen the likelihood of the .... the further testing and modification of existing trap types. Not only is it ...

  4. Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells

    International Nuclear Information System (INIS)

    McPheeters, Claiborne O; Yu, Edward T; Hu, Dongzhi; Schaadt, Daniel M

    2012-01-01

    Sub-wavelength photonic structures and nanoscale materials have the potential to greatly improve the efficiencies of solar cells by enabling maximum absorption of sunlight. Semiconductor heterostructures provide versatile opportunities for improving absorption of infrared radiation in photovoltaic devices, which accounts for half of the power in the solar spectrum. These ideas can be combined in quantum-well solar cells and related structures in which sub-wavelength metal and dielectric scattering elements are integrated for light trapping. Measurements and simulations of GaAs solar cells with less than one micron of active material demonstrate the benefits of incorporating In(Ga)As quantum-wells and quantum-dots to improve their performance. Simulations that incorporate a realistic model of absorption in quantum-wells show that the use of broadband photonic structures with such devices can substantially improve the benefit of incorporating heterostructures, enabling meaningful improvements in their performance

  5. Trap Generation Dynamics in Photo-Oxidised DEH Doped Polymers

    Directory of Open Access Journals (Sweden)

    David M. Goldie

    2015-07-01

    Full Text Available A series of polyester films doped with a hole transport molecule, p-diethylaminobenzaldehyde-1,1'-diphenylhydrazone (DEH, have been systematically exposed to ultraviolet radiation with a peak wavelength of about 375 nm. The electronic performance of the films, evaluated using time-of-flight and space-charge current injection methods, is observed to continuously degrade with increasing ultraviolet exposure. The degradation is attributed to photo cyclic oxidation of DEH that results in the creation of indazole (IND molecules which function as bulk hole traps. A proposed model for the generation dynamics of the IND traps is capable of describing both the reduction in current injection and the associated time-of-flight hole mobility provided around 1% of the DEH population produce highly reactive photo-excited states which are completely converted to indazole during the UV exposure period. The rapid reaction of these states is incompatible with bulk oxygen diffusion-reaction kinetics within the films and is attributed to the creation of excited states within the reaction radius of soluble oxygen. It is suggested that encapsulation strategies to preserve the electronic integrity of the films should accordingly focus upon limiting the critical supply of oxygen for photo cyclic reaction.

  6. Acceleration of ageing on lees in red wines by application of ultrasounds

    OpenAIRE

    Fresno, Juan Manuel del; Morata Barrado, Antonio Dionisio; Loira, Iris; Escott, Carlos; Cuerda, Rafael; Calderon Fernandez, Fernando; Suarez Lepe, Jose Antonio

    2017-01-01

    A transfer of parietal polysaccharides and mannoproteins is produced during aging on lees [1]. This transfer of compounds to wine is carried out after cell death. It comes to breakdown of polysaccharides from cell wall (yeast autolysis). This technique increases the density in wines [2] and gives more body and structure. Interactions between yeast polysaccharides and wine tannins will result in decrease of tannic perception (decrease of astringency). Increase of varietal characteristics is pr...

  7. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    Science.gov (United States)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  8. Long wavelength infrared radiation thermometry for non-contact temperature measurements in gas turbines

    Science.gov (United States)

    Manara, J.; Zipf, M.; Stark, T.; Arduini, M.; Ebert, H.-P.; Tutschke, A.; Hallam, A.; Hanspal, J.; Langley, M.; Hodge, D.; Hartmann, J.

    2017-01-01

    The objective of the EU project "Sensors Towards Advanced Monitoring and Control of Gas Turbine Engines (acronym STARGATE)" is the development of a suite of advanced sensors, instrumentation and related systems in order to contribute to the developing of the next generation of green and efficient gas turbine engines. One work package of the project deals with the design and development of a long wavelength infrared (LWIR) radiation thermometer for the non-contact measurement of the surface temperature of thermal barrier coatings (TBCs) during the operation of gas turbine engines. For opaque surfaces (e.g. metals or superalloys) radiation thermometers which are sensitive in the near or short wavelength infrared are used as state-of-the-art method for non-contact temperature measurements. But this is not suitable for oxide ceramic based TBCs (e.g. partially yttria stabilized zirconia) as oxide ceramics are semi-transparent in the near and short wavelength infrared spectral region. Fortunately the applied ceramic materials are non-transparent in the long wavelength infrared and additionally exhibit a high emittance in this wavelength region. Therefore, a LWIR pyrometer can be used for non-contact temperature measurements of the surfaces of TBCs as such pyrometers overcome the described limitation of existing techniques. For performing non-contact temperature measurements in gas turbines one has to know the infrared-optical properties of the applied TBCs as well as of the hot combustion gas in order to properly analyse the measurement data. For reaching a low uncertainty on the one hand the emittance of the TBC should be high (>0.9) in order to reduce reflections from the hot surrounding and on the other hand the absorbance of the hot combustion gas should be low (<0.1) in order to decrease the influence of the gas on the measured signal. This paper presents the results of the work performed by the authors with focus on the implementation of the LWIR pyrometer and the

  9. Case Study: Trap Crop with Pheromone Traps for Suppressing Euschistus servus (Heteroptera: Pentatomidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available The brown stink bug, Euschistus servus (Say, can disperse from source habitats, including corn, Zea mays L., and peanut, Arachis hypogaea L., into cotton, Gossypium hirsutum L. Therefore, a 2-year on-farm experiment was conducted to determine the effectiveness of a sorghum (Sorghum bicolor (L. Moench spp. bicolor trap crop, with or without Euschistus spp. pheromone traps, to suppress dispersal of this pest to cotton. In 2004, density of E. servus was lower in cotton fields with sorghum trap crops (with or without pheromone traps compared to control cotton fields. Similarly, in 2006, density of E. servus was lower in cotton fields with sorghum trap crops and pheromone traps compared to control cotton fields. Thus, the combination of the sorghum trap crop and pheromone traps effectively suppressed dispersal of E. servus into cotton. Inclusion of pheromone traps with trap crops potentially offers additional benefits, including: (1 reducing the density of E. servus adults in a trap crop, especially females, to possibly decrease the local population over time and reduce the overwintering population, (2 reducing dispersal of E. servus adults from the trap crop into cotton, and (3 potentially attracting more dispersing E. servus adults into a trap crop during a period of time when preferred food is not prevalent in the landscape.

  10. Angular trap for macroparticles

    International Nuclear Information System (INIS)

    Aksyonov, D.S.

    2013-01-01

    Properties of angular macroparticle traps were investigated in this work. These properties are required to design vacuum arc plasma filters. The correlation between trap geometry parameters and its ability to absorb macroparticles were found. Calculations allow one to predict the behaviour of filtering abilities of separators which contain such traps in their design. Recommendations regarding the use of angular traps in filters of different builds are given.

  11. Trapped antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Butler, E., E-mail: eoin.butler@cern.ch [CERN, Physics Department (Switzerland); Andresen, G. B. [Aarhus University, Department of Physics and Astronomy (Denmark); Ashkezari, M. D. [Simon Fraser University, Department of Physics (Canada); Baquero-Ruiz, M. [University of California, Department of Physics (United States); Bertsche, W. [Swansea University, Department of Physics (United Kingdom); Bowe, P. D. [Aarhus University, Department of Physics and Astronomy (Denmark); Cesar, C. L. [Universidade Federal do Rio de Janeiro, Instituto de Fisica (Brazil); Chapman, S. [University of California, Department of Physics (United States); Charlton, M.; Deller, A.; Eriksson, S. [Swansea University, Department of Physics (United Kingdom); Fajans, J. [University of California, Department of Physics (United States); Friesen, T.; Fujiwara, M. C. [University of Calgary, Department of Physics and Astronomy (Canada); Gill, D. R. [TRIUMF (Canada); Gutierrez, A. [University of British Columbia, Department of Physics and Astronomy (Canada); Hangst, J. S. [Aarhus University, Department of Physics and Astronomy (Denmark); Hardy, W. N. [University of British Columbia, Department of Physics and Astronomy (Canada); Hayden, M. E. [Simon Fraser University, Department of Physics (Canada); Humphries, A. J. [Swansea University, Department of Physics (United Kingdom); Collaboration: ALPHA Collaboration; and others

    2012-12-15

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only {approx}1 T ({approx}0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be 'born' inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 10{sup 4} times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been trapped for at least 172 ms and then released-the first instance of a purely antimatter atomic system confined for any length of time (Andresen et al., Nature 468:673, 2010). We present a description of the main components of the ALPHA traps and detectors that were key to realising this result. We discuss how the antihydrogen atoms were identified and how they were discriminated from the background processes. Since the results published in Andresen et al. (Nature 468:673, 2010), refinements in the antihydrogen production technique have allowed many more antihydrogen atoms to be trapped, and held for much longer times. We have identified antihydrogen atoms that have been trapped for at least 1,000 s in the apparatus (Andresen et al., Nature Physics 7:558, 2011). This is more than sufficient time to interrogate the atoms spectroscopically, as well as to ensure that they have relaxed to their ground state.

  12. Long-wavelength photonic integrated circuits and avalanche photodetectors

    Science.gov (United States)

    Tsou, Yi-Jen D.; Zaytsev, Sergey; Pauchard, Alexandre; Hummel, Steve; Lo, Yu-Hwa

    2001-10-01

    Fast-growing internet traffic volume require high data communication bandwidth over longer distances. Access network bottlenecks put pressure on short-range (SR) telecommunication systems. To effectively address these datacom and telecom market needs, low-cost, high-speed laser modules at 1310 to 1550 nm wavelengths and avalanche photodetectors are required. The great success of GaAs 850nm VCSEls for Gb/s Ethernet has motivated efforts to extend VCSEL technology to longer wavelengths in the 1310 and 1550 nm regimes. However, the technological challenges associated with materials for long wavelength VCSELs are tremendous. Even with recent advances in this area, it is believed that significant additional development is necessary before long wavelength VCSELs that meet commercial specifications will be widely available. In addition, the more stringent OC192 and OC768 specifications for single-mode fiber (SMF) datacom may require more than just a long wavelength laser diode, VCSEL or not, to address numerous cost and performance issues. We believe that photonic integrated circuits (PICs), which compactly integrate surface-emitting lasers with additional active and passive optical components with extended functionality, will provide the best solutions to today's problems. Photonic integrated circuits have been investigated for more than a decade. However, they have produced limited commercial impact to date primarily because the highly complicated fabrication processes produce significant yield and device performance issues. In this presentation, we will discuss a new technology platform of InP-based PICs compatible with surface-emitting laser technology, as well as a high data rate externally modulated laser module. Avalanche photodetectors (APDs) are the key component in the receiver to achieve high data rate over long transmission distance because of their high sensitivity and large gain- bandwidth product. We have used wafer fusion technology to achieve In

  13. Beam self-trapping in a BCT crystal

    Science.gov (United States)

    Matusevich, V.; Kiessling, A.; Kowarschik, R.; Zagorskiy, A. E.; Shepelevich, V. V.

    2006-01-01

    We present some aspects of wave self-focusing and self-defocusing in a photorefractive Ba 0.77Ca 0.23TiO 3 (BCT) crystal without external electric field and without background illumination. The effects depend on the cross-section of the input beam. We show that by decreasing of the diameter of the input beam from 730 μm the fanning effect disappears at 150 μm. A symmetrical self-focusing is observed for input diameters from 150 um down to 40 μm and a symmetrical self-defocusing for input diameters from 40 μm down to 20 μm. The 1D self-trapping is detected at 65 μm in BCT. Light power and wavelength are correspondingly 3 mW and 633 nm. The experimental results are supplemented with numerical calculations based on both photovoltaic model and model of screening soliton.

  14. Optimization of multifunnel traps for emerald ash borer (Coleoptera: Buprestidae): influence of size, trap coating, and color.

    Science.gov (United States)

    Francese, Joseph A; Rietz, Michael L; Mastro, Victor C

    2013-12-01

    Field assays were conducted in southeastern and south-central Michigan in 2011 and 2012 to optimize green and purple multifunnel (Lindgren funnel) traps for use as a survey tool for the emerald ash borer, Agrilus planipennis Fairmaire. Larger sized (12- and 16-unit) multifunnel traps caught more beetles than their smaller-sized (4- and 8-unit) counterparts. Green traps coated with untinted (white) fluon caught almost four times as many adult A. planipennis as Rain-X and tinted (green) fluon-coated traps and almost 33 times more beetles than untreated control traps. Purple multifunnel traps generally caught much lower numbers of A. planipennis adults than green traps, and trap catch on them was not affected by differences in the type of coating applied. However, trap coating was necessary as untreated control purple traps caught significantly less beetles than traps treated with Rain-X and untinted or tinted (purple) fluon. Proportions of male beetles captured were generally much higher on green traps than on purple traps, but sex ratios were not affected by trap coating. In 2012, a new shade of purple plastic, based on a better color match to an attractive purple paint than the previously used purple, was used for trapping assays. When multifunnel traps were treated with fluon, green traps caught more A. planipennis adults than both shades of purple and a prism trap that was manufactured based on the same color match. Trap catch was not affected by diluting the fluon concentration applied to traps to 50% (1:1 mixture in water). At 10%, trap catch was significantly lowered.

  15. The Brain Dead Patient Is Still Sentient: A Further Reply to Patrick Lee and Germain Grisez.

    Science.gov (United States)

    Austriaco, Nicanor Pier Giorgio

    2016-06-01

    Patrick Lee and Germain Grisez have argued that the total brain dead patient is still dead because the integrated entity that remains is not even an animal, not only because he is not sentient but also, and more importantly, because he has lost the radical capacity for sentience. In this essay, written from within and as a contribution to the Catholic philosophical tradition, I respond to Lee and Grisez's argument by proposing that the brain dead patient is still sentient because an animal with an intact but severed spinal cord can still perceive and respond to external stimuli. The brain dead patient is an unconscious sentient organism. © The Author 2016. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Nonperturbative effects on Tc of interacting Bose gases in power-law traps

    International Nuclear Information System (INIS)

    Zobay, O.; Metikas, G.; Kleinert, H.

    2005-01-01

    The critical temperature T c of an interacting Bose gas trapped in a general power-law potential V(x)=Σ i U i vertical bar x i vertical bar p i is calculated with the help of variational perturbation theory. It is shown that the interaction-induced shift in T c fulfills the relation (T c -T c 0 )/T c 0 =D 1 (η)a+D ' (η)a 2η +O(a 2 ) with T c 0 the critical temperature of the trapped ideal gas, a the s-wave scattering length divided by the thermal wavelength at T c , and η=1/2+Σ i p i -1 the potential-shape parameter. The terms D 1 (η)a and D ' (η)a 2η describe the leading-order perturbative and nonperturbative contributions to the critical temperature, respectively. This result quantitatively shows how an increasingly inhomogeneous potential suppresses the influence of critical fluctuations. The appearance of the a 2η contribution is qualitatively explained in terms of the Ginzburg criterion

  17. WDM cross-connect cascade based on all-optical wavelength converters for routing and wavelength slot interchanging using a reduced number of internal wavelengths

    DEFF Research Database (Denmark)

    Pedersen, Rune Johan Skullerud; Mikkelsen, Benny; Jørgensen, Bo Foged

    1998-01-01

    interchanging can be used to create a robust and nonblocking OXC. However, for an OXC with n fiber inlets each carrying m wavelengths the OXC requires n×m internal wavelengths, which constrains the size of the cross-connect. In this paper we therefore propose and demonstrate an architecture that uses a reduced......Optical transport layers need rearrangeable wavelength-division multiplexing optical cross-connects (OXCs) to increase the capacity and flexibility of the network. It has previously been shown that a cross-connect based on all-optical wavelength converters for routing as well as wavelength slot...... set of internal wavelengths without sacrificing cross-connecting capabilities. By inserting a partly equipped OXC with the new architecture in a 10-Gbit/s re-circulating loop setup we demonstrate the possibility of cascading up to ten OXCs. Furthermore, we investigate the regenerating effect...

  18. Nonsingular cosmology with a scale-invariant spectrum of cosmological perturbations from Lee-Wick theory

    International Nuclear Information System (INIS)

    Cai Yifu; Qiu Taotao; Brandenberger, Robert; Zhang Xinmin

    2009-01-01

    We study the cosmology of a Lee-Wick type scalar field theory. First, we consider homogeneous and isotropic background solutions and find that they are nonsingular, leading to cosmological bounces. Next, we analyze the spectrum of cosmological perturbations which result from this model. Unless either the potential of the Lee-Wick theory or the initial conditions are finely tuned, it is impossible to obtain background solutions which have a sufficiently long period of inflation after the bounce. More interestingly, however, we find that in the generic noninflationary bouncing cosmology, perturbations created from quantum vacuum fluctuations in the contracting phase have the correct form to lead to a scale-invariant spectrum of metric inhomogeneities in the expanding phase. Since the background is nonsingular, the evolution of the fluctuations is defined unambiguously through the bounce. We also analyze the evolution of fluctuations which emerge from thermal initial conditions in the contracting phase. The spectrum of gravitational waves stemming from quantum vacuum fluctuations in the contracting phase is also scale-invariant, and the tensor to scalar ratio is not suppressed.

  19. Ultra-short period X-ray mirrors: Production and investigation

    International Nuclear Information System (INIS)

    Bibishkin, M.S.; Chkhalo, N.I.; Fraerman, A.A.; Pestov, A.E.; Prokhorov, K.A.; Salashchenko, N.N.; Vainer, Yu.A.

    2005-01-01

    Technological problems that deal with manufacturing of highly effective ultra-short (d=0.7-3.2 nm) period X-ray multilayer mirrors (MLM) are discussed in the article. In an example of Cr/Sc and W/B 4 C MLM it is experimentally shown, that the problem of periodicity and selectivity for multilayer dispersive X-ray elements has been generally solved by now. However, the problem of short-period MLM reflectivity increase related to existing of transitive borders between layers in structures remains rather urgent. The new technique of tungsten deposition using the RF source in order to decrease roughness in borders is discussed and tested. The results of measurements on wavelengths of 0.154, 0.834 and 1.759 nm are given. The RbAP crystals ordinary used in experiments and short-period W/B 4 C MLM produced are compared. The specular and non-specular characteristics of scattering on the 0.154 nm wavelengths are also measured in order to study transitive borders structures

  20. The low-energy-beam and ion-trap facility at NSCL/MSU

    CERN Document Server

    Schwarz, S; Lawton, D; Lofy, P; Morrissey, D J; Ottarson, J; Ringle, R; Schury, P; Sun, T; Varentsov, V; Weissman, L

    2003-01-01

    The goal of the low-energy-beam and ion-trap (LEBIT) project is to convert the high-energy exotic beams produced at NSCL/MSU into low-energy low-emittance beams. This beam manipulation will be done by a combination of a high-pressure gas stopping cell and a radio-frequency quadrupole ion accumulator and buncher. The first experimental program to profit from the low-energy beams produced will be high-accuracy mass measurements on very short-lived isotopes with a 9.4 T Penning trap system. The status of the project is presented with an emphasis on recent stopping tests range of 100 MeV/A sup 4 sup 0 Ar sup 1 sup 8 sup + ions in a gas cell.

  1. Diskoseismology: Probing accretion disks. I - Trapped adiabatic oscillations

    Science.gov (United States)

    Nowak, Michael A.; Wagoner, Robert V.

    1991-01-01

    The normal modes of acoustic oscillations within thin accretion disks which are terminated by an innermost stable orbit around a slowly rotating black hole or weakly magnetized compact neutron star are analyzed. The dominant relativistic effects which allow modes to be trapped within the inner region of the disk are approximated via a modified Newtonian potential. A general formalism is developed for investigating the adiabatic oscillations of arbitrary unperturbed disk models. The generic behavior is explored by way of an expansion of the Lagrangian displacement about the plane of symmetry and by assuming separable solutions with the same radial wavelength for the horizontal and vertical perturbations. The lowest eigenfrequencies and eigenfunctions of a particular set of radial and quadrupole modes which have minimum motion normal for the plane are obtained. These modes correspond to the standard dispersion relation of disk theory.

  2. Repulsively interacting fermions in a two-dimensional deformed trap with spin-orbit coupling

    DEFF Research Database (Denmark)

    Marchukov, O. V.; Fedorov, D. V.; Jensen, A. S.

    2015-01-01

    We investigate a two-dimensional system of fermions with two internal (spin) degrees of freedom. It is confined by a deformed harmonic trap and subject to a Zeeman field, Rashba or Dresselhaus one-body spin-orbit couplings and two-body short range repulsion. We obtain self-consistent mean-field $N...

  3. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  4. Fighting with Reality: Considering Mark Johnson's Pragmatic Realism through Bruce Lee's Jeet Kune Do Method

    Science.gov (United States)

    Miller, Alexander David

    2015-01-01

    This dissertation considers the supportive and complementary relation between Mark Johnson's embodied realism and Bruce Lee's Jeet Kune Do as a philosophical practice. In exploring this relationship, the emphasis on one's embodiment condition and its relationship with metaphor and self-expression are the primary focus. First, this work involves…

  5. 77 FR 14032 - John H. Chafee Coastal Barrier Resources System; Lee County, FL, and Newport County, RI...

    Science.gov (United States)

    2012-03-08

    ... conduct a comprehensive review of the history of the CBRS unit in question. The Service has a large... by Lee County, and 1 restaurant. The Service's assessment of 2011 aerial imagery estimates that the...

  6. Universal Two-Body Spectra of Ultracold Harmonically Trapped Atoms in Two and Three Dimensions

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas

    2012-01-01

    of the short-range interaction. The results in three dimensions are examplified for narrow s-wave Feshbach resonances and we show how effective range corrections can modify the rearrangement of the level structure. However, this requires extremely narrow resonances or very tight traps that are not currently...

  7. Wavelength conversion devices

    DEFF Research Database (Denmark)

    Mikkelsen, Benny; Durhuus, Terji; Jørgensen, Carsten

    1996-01-01

    system requirements. The ideal wavelength converter should be transparent to the bit rate and signal format and provide an unchirped output signal with both a high extinction ratio and a large signal-to-noise ratio. It should allow conversion to both shorter and longer wavelengths with equal performance...

  8. Functional renormalization group approach to the Yang-Lee edge singularity

    Energy Technology Data Exchange (ETDEWEB)

    An, X. [Department of Physics, University of Illinois at Chicago,845 W. Taylor St., Chicago, IL 60607 (United States); Mesterházy, D. [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Stephanov, M.A. [Department of Physics, University of Illinois at Chicago,845 W. Taylor St., Chicago, IL 60607 (United States)

    2016-07-08

    We determine the scaling properties of the Yang-Lee edge singularity as described by a one-component scalar field theory with imaginary cubic coupling, using the nonperturbative functional renormalization group in 3≤d≤6 Euclidean dimensions. We find very good agreement with high-temperature series data in d=3 dimensions and compare our results to recent estimates of critical exponents obtained with the four-loop ϵ=6−d expansion and the conformal bootstrap. The relevance of operator insertions at the corresponding fixed point of the RG β functions is discussed and we estimate the error associated with O(∂{sup 4}) truncations of the scale-dependent effective action.

  9. Investigation of beam purity after in-trap decay and Coulomb excitation of $^{62}$Mn-$^{62}$Fe

    CERN Multimedia

    Clement, E; Gernhaeuser, R A; Diriken, J V J; Huyse, M L

    2008-01-01

    The in-trap decay of short lived radioactive ions is not well understood. This poses a problem for Coulomb excitation experiments at MINIBALL, where the normalization of the experiment depends strongly on observed secondary target excitation, which in turn strongly depends on the knowledge of the beam composition. For pure ISOLDE beams of short lived isotopes, the in-trap decay becomes important since a large fraction of the beam is transformed in unwanted daughter isotopes. In this proposal we intend to quantify the production of these daughter products in the REXTRAP accurately by making use of the short lived isotopes $^{61,62}$Mn and the newly installed Bragg ionization chamber at the end of the REX linear accelerator. Apart from the technical interest, the A=62 beam provides as well a good physics case, concerning the development of collectivity in neutron-rich Fe isotopes. Coulomb excitation, utilizing the standard MINIBALL setup, is proposed on both A=62 Mn and Fe. The Fe beam would be the first post-a...

  10. Trapping of embolic particles in a vessel phantom by cavitation-enhanced acoustic streaming

    International Nuclear Information System (INIS)

    Maxwell, Adam D; Park, Simone; Cain, Charles A; Grotberg, James B; Xu, Zhen; Vaughan, Benjamin L

    2014-01-01

    Cavitation clouds generated by short, high-amplitude, focused ultrasound pulses were previously observed to attract, trap, and erode thrombus fragments in a vessel phantom. This phenomenon may offer a noninvasive method to capture and eliminate embolic fragments flowing through the bloodstream during a cardiovascular intervention. In this article, the mechanism of embolus trapping was explored by particle image velocimetry (PIV). PIV was used to examine the fluid streaming patterns generated by ultrasound in a vessel phantom with and without crossflow of blood-mimicking fluid. Cavitation enhanced streaming, which generated fluid vortices adjacent to the focus. The focal streaming velocity, u f , was as high as 120 cm/s, while mean crossflow velocities, u c , were imposed up to 14 cm/s. When a solid particle 3–4 mm diameter was introduced into crossflow, it was trapped near the focus. Increasing u f promoted particle trapping while increasing u c promoted particle escape. The maximum crossflow Reynolds number at which particles could be trapped, Re c , was approximately linear with focal streaming number, Re f , i.e. Re c = 0.25Re f + 67.44 (R 2 = 0.76) corresponding to dimensional velocities u c = 0.084u f + 3.122 for 20 < u f  < 120 cm/s. The fluidic pressure map was estimated from PIV and indicated a negative pressure gradient towards the focus, trapping the embolus near this location. (paper)

  11. Analysis of the membrane fouling on cross-flow ultrafiltration and microfiltration of soy sauce lees; Shoyuhiireden no kurosuforo roka ni okeru fauringu no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Furukakwa, T. [Kikkoman Corporation, Chiba (Japan); Kobayashi, H.; Kokubo, K.; Watanabe, A. [Niigata University, Niigata (Japan). Graduate School of Science and Technology

    2000-05-10

    Although since the 1980's Japanese soy sauce manufactures have developed cross-flow membrane filtration systems to recover soy sauce from its lees, the mechanisms by which the membrane fouls during filtration have not been theoretically discussed. Calculated flux declines using a theoretical equation developed for cross-flow cake filtration were compared against experimental results involving the filtration of soy sauce lees using polysulfone ultrafiltration and micro filtration membranes. Membrane fouling due to the deposition and intrusion of soy sauce lees was evaluated from the hydraulic resistances of the membrane and the cake layer. Calculated flux declines with time agree with the experimental results. Specific resistance of the cake layer which is an adjustable parameter of the equation, decreases with increasing cross-flow velocity. Hydraulic resistance exhibited by the membranes is independent of feed flow velocity. However, the resistance of the cake layers decreases with increasing cross-flow velocity. This corresponds to the steady-state flux increase. In conclusion, the main cause of fouling in the filtration of soy sauce lees is cake layer formation. By using the cake filtration model for cross-flow, the flux decline with time during the filtration is capable of being predicted. (author)

  12. A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles

    Directory of Open Access Journals (Sweden)

    M. I. Cotterell

    2017-08-01

    Full Text Available Calculations of aerosol radiative forcing require knowledge of wavelength-dependent aerosol optical properties, such as single-scattering albedo. These aerosol optical properties can be calculated using Mie theory from knowledge of the key microphysical properties of particle size and refractive index, assuming that atmospheric particles are well-approximated to be spherical and homogeneous. We provide refractive index determinations for aqueous aerosol particles containing the key atmospherically relevant inorganic solutes of NaCl, NaNO3, (NH42SO4, NH4HSO4 and Na2SO4, reporting the refractive index variation with both wavelength (400–650 nm and relative humidity (from 100 % to the efflorescence value of the salt. The accurate and precise retrieval of refractive index is performed using single-particle cavity ring-down spectroscopy. This approach involves probing a single aerosol particle confined in a Bessel laser beam optical trap through a combination of extinction measurements using cavity ring-down spectroscopy and elastic light-scattering measurements. Further, we assess the accuracy of these refractive index measurements, comparing our data with previously reported data sets from different measurement techniques but at a single wavelength. Finally, we provide a Cauchy dispersion model that parameterises refractive index measurements in terms of both wavelength and relative humidity. Our parameterisations should provide useful information to researchers requiring an accurate and comprehensive treatment of the wavelength and relative humidity dependence of refractive index for the inorganic component of atmospheric aerosol.

  13. Search For Trapped Antihydrogen

    CERN Document Server

    Andresen, Gorm B.; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D.; Bray, Crystal C.; Butler, Eoin; Cesar, Claudio L.; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C.; Gill, David R.; Hangst, Jeffrey S.; Hardy, Walter N.; Hayano, Ryugo S.; Hayden, Michael E.; Humphries, Andrew J.; Hydomako, Richard; Jonsell, Svante; Jorgensen, Lars V.; Kurchaninov, Lenoid; Lambo, Ricardo; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Nasr, Sarah Seif El; Silveira, Daniel M.; So, Chukman; Storey, James W.; Thompson, Robert I.; van der Werf, Dirk P.; Wilding, Dean; Wurtele, Jonathan S.; Yamazaki, Yasunori

    2011-01-01

    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consist...

  14. Injection into electron plasma traps

    International Nuclear Information System (INIS)

    Gorgadze, Vladimir; Pasquini, Thomas A.; Fajans, Joel; Wurtele, Jonathan S.

    2003-01-01

    Computational studies and experimental measurements of plasma injection into a Malmberg-Penning trap reveal that the number of trapped particles can be an order of magnitude higher than predicted by a simple estimates based on a ballistic trapping model. Enhanced trapping is associated with a rich nonlinear dynamics generated by the space-charge forces of the evolving trapped electron density. A particle-in-cell simulation is used to identify the physical mechanisms that lead to the increase in trapped electrons. The simulations initially show strong two-stream interactions between the electrons emitted from the cathode and those reflected off the end plug of the trap. This is followed by virtual cathode oscillations near the injection region. As electrons are trapped, the initially hollow longitudinal phase-space is filled, and the transverse radial density profile evolves so that the plasma potential matches that of the cathode. Simple theoretical arguments are given that describe the different dynamical regimes. Good agreement is found between simulation and theory

  15. [Trapping techniques for Solenopsis invicta].

    Science.gov (United States)

    Liang, Xiao-song; Zhang, Qiang; Zhuang, Yiong-lin; Li, Gui-wen; Ji, Lin-peng; Wang, Jian-guo; Dai, Hua-guo

    2007-06-01

    A field study was made to investigate the trapping effects of different attractants, traps, and wind directions on Solenopsis invicta. The results showed that among the test attractants, TB1 (50 g fishmeal, 40 g peptone, 10 ml 10% sucrose water solution and 20 ml soybean oil) had the best effect, followed by TB2 (ham), TB6 (100 g cornmeal and 20 ml soybean oil) and TB4 (10 ml 10% sucrose water solution, 100 g sugarcane powder and 20 ml soybean oil), with a mean capture efficiency being 77.6, 58.7, 29 and 7.7 individuals per trap, respectively. No S. invicta was trapped with TB3 (10 ml 10% sucrose water solution, 100 g cornmeal and 20 ml soybean oil) and TB5 (honey). Tube trap was superior to dish trap, with a trapping efficiency of 75.2 and 35 individuals per trap, respectively. The attractants had better effects in leeward than in windward.

  16. Separation of effects of oxide-trapped charge and interface-trapped charge on mobility in irradiated power MOSFETs

    International Nuclear Information System (INIS)

    Zupac, D.; Galloway, K.F.; Khosropour, P.; Anderson, S.R.; Schrimpf, R.D.

    1993-01-01

    An effective approach to separating the effects of oxide-trapped charge and interface-trapped charge on mobility degradation in irradiated MOSFETs is demonstrated. It is based on analyzing mobility data sets which have different functional relationships between the radiation-induced-oxide-trapped charge and interface-trapped charge. Separation of effects of oxide-trapped charge and interface-trapped charge is possible only if these two trapped charge components are not linearly dependent. A significant contribution of oxide-trapped charge to mobility degradation is demonstrated and quantified

  17. Role of short-wavelength filtering lenses in delaying myopia progression and amelioration of asthenopia in juveniles

    Directory of Open Access Journals (Sweden)

    Hai-Lan Zhao

    2017-08-01

    Full Text Available AIM: To evaluate the positive effects of blue-violet light filtering lenses in delaying myopia and relieving asthenopia in juveniles. METHODS: Sixty ametropia juveniles (aged range, 11-15y were randomized into two groups: the test group (30 children, 60 eyes, wearing blue-violet light filtering lenses; and the control group (30 children, 60 eyes, wearing ordinary aspherical lenses. Baseline refractive power of the affected eyes and axial length of the two groups was recorded. After 1-year, the patients underwent contrast sensitivity (glare and non-glare under bright and dark conditions, accommodation-related testing, asthenopia questionnaire assessment, and adverse reaction questionnaire assessment. RESULTS: After 1y of wearing the filtering lenses, changes in refractive power and axial length were not significantly different between the two groups (P>0.05. Under bright conditions, the contrast sensitivities at low and medium-frequency grating (vision angles of 6.3°, 4.0°, and 2.5° with glare in the test group were significantly higher than in the control group (P0.05. In the test group, the amplitude of accommodation, accommodative lag, and accommodative sensitivity of patients wearing glasses for 6 and 12mo were significantly elevated (P0.05, and the asthenopia grating was not significantly decreased (P>0.05. In addition, after wearing glasses for 6 to 12mo, the asthenopia grating of patients in the test group decreased significantly compared with the control group (P0.05. CONCLUSION: A 1-year follow-up reveal that compare with ordinary glasses, short-wavelength filtering lenses (blue/violet-light filters increase the low- and medium-frequency contrast sensitivity under bright conditions and improved accommodation. They effectively relieved asthenopia without severe adverse reactions, suggesting potential for clinical application. However, no significant advantages in terms of refractive power or axial length progression were found compared

  18. Inhibitory Effects of Trapping Agents of Sulfur Drug Reactive Intermediates against Major Human Cytochrome P450 Isoforms

    Directory of Open Access Journals (Sweden)

    Jasleen K. Sodhi

    2017-07-01

    Full Text Available In some cases, the formation of reactive species from the metabolism of xenobiotics has been linked to toxicity and therefore it is imperative to detect potential bioactivation for candidate drugs during drug discovery. Reactive species can covalently bind to trapping agents in in vitro incubations of compound with human liver microsomes (HLM fortified with β-nicotinamide adenine dinucleotide phosphate (NADPH, resulting in a stable conjugate of trapping agent and reactive species, thereby facilitating analytical detection and providing evidence of short-lived reactive metabolites. Since reactive metabolites are typically generated by cytochrome P450 (CYP oxidation, it is important to ensure high concentrations of trapping agents are not inhibiting the activities of CYP isoforms. Here we assessed the inhibitory properties of fourteen trapping agents against the major human CYP isoforms (CYP1A2, 2C9, 2C19, 2D6 and 3A. Based on our findings, eleven trapping agents displayed inhibition, three of which had IC50 values less than 1 mM (2-mercaptoethanol, N-methylmaleimide and N-ethylmaleimide (NEM. Three trapping agents (dimedone, N-acetyl-lysine and arsenite did not inhibit CYP isoforms at concentrations tested. To illustrate effects of CYP inhibition by trapping agents on reactive intermediate trapping, an example drug (ticlopidine and trapping agent (NEM were chosen for further studies. For the same amount of ticlopidine (1 μM, increasing concentrations of the trapping agent NEM (0.007–40 mM resulted in a bell-shaped response curve of NEM-trapped ticlopidine S-oxide (TSO-NEM, due to CYP inhibition by NEM. Thus, trapping studies should be designed to include several concentrations of trapping agent to ensure optimal trapping of reactive metabolites.

  19. The Case for Open-Market Purchases in a Liquidity Trap

    OpenAIRE

    Auerbach, Alan J.; Obstfeld, Maurice

    2004-01-01

    Prevalent thinking about liquidity traps suggests that the perfect substitutability of money and bonds at a zero short-term nominal interest rate renders open-market operations ineffective for achieving macroeconomic stabilization goals. We show that even were this the case, there remains a powerful argument for large-scale open market operations as a fiscal policy tool. As we also demonstrate, however, this same reasoning implies that open-market operations will be beneficial for stabilizati...

  20. Fast quantum logic gates with trapped-ion qubits

    Science.gov (United States)

    Schäfer, V. M.; Ballance, C. J.; Thirumalai, K.; Stephenson, L. J.; Ballance, T. G.; Steane, A. M.; Lucas, D. M.

    2018-03-01

    Quantum bits (qubits) based on individual trapped atomic ions are a promising technology for building a quantum computer. The elementary operations necessary to do so have been achieved with the required precision for some error-correction schemes. However, the essential two-qubit logic gate that is used to generate quantum entanglement has hitherto always been performed in an adiabatic regime (in which the gate is slow compared with the characteristic motional frequencies of the ions in the trap), resulting in logic speeds of the order of 10 kilohertz. There have been numerous proposals of methods for performing gates faster than this natural ‘speed limit’ of the trap. Here we implement one such method, which uses amplitude-shaped laser pulses to drive the motion of the ions along trajectories designed so that the gate operation is insensitive to the optical phase of the pulses. This enables fast (megahertz-rate) quantum logic that is robust to fluctuations in the optical phase, which would otherwise be an important source of experimental error. We demonstrate entanglement generation for gate times as short as 480 nanoseconds—less than a single oscillation period of an ion in the trap and eight orders of magnitude shorter than the memory coherence time measured in similar calcium-43 hyperfine qubits. The power of the method is most evident at intermediate timescales, at which it yields a gate error more than ten times lower than can be attained using conventional techniques; for example, we achieve a 1.6-microsecond-duration gate with a fidelity of 99.8 per cent. Faster and higher-fidelity gates are possible at the cost of greater laser intensity. The method requires only a single amplitude-shaped pulse and one pair of beams derived from a continuous-wave laser. It offers the prospect of combining the unrivalled coherence properties, operation fidelities and optical connectivity of trapped-ion qubits with the submicrosecond logic speeds that are usually

  1. Electron scattering off short-lived radioactive nuclei

    International Nuclear Information System (INIS)

    Wang, S.; Emoto, T.; Furukawa, Y.

    2009-01-01

    We have established a novel method which make electron scattering off short-lived radioactive nuclei come into being. This novel method was named SCRIT (Self-Confining RI ion Target). It was based on the well known "ion trapping" phenomenon in electron storage rings. Stable nucleus, 133 Cs, was used as target nucleus in the R&D experiment. The luminosity of interaction between stored electrons and Cs ions was about 1.02(0.06) × 10 26 cm -2 s -1 at beam current around 80 mA. The angular distribution of elastically scattered electrons from trapped Cs ions was measured. And an online luminosity monitor was used to monitor the change of luminosity during the experiment. (author)

  2. Efficient soft x-ray generation in short wavelength laser produced plasmas

    International Nuclear Information System (INIS)

    Mochizuki, T.; Yamanaka, C.

    1987-01-01

    Intense x-ray generation in 1.053, 0.53, 0.26 μm laser-produced plasma has been investigated in the photon energy range of 0.1 to 3keV. The x-ray spectrum is found to have several humps which move to the higher energy side as the atomic number of the target increases. This atomic dependence is explained by a semi-Moseley's law and allows us to predict a target material most suitable for generating the photons of desired energies. Conversion efficiencies of 1.5 -- 3keV x-rays are obtained also as a function of laser wavelength at the intensity of 10/sup 13/W/cm/sup 2/. The conversion efficiency of keV x rays has been enhanced by a factor of 2 -- 3 with a controlled prepulse laser. From the semi-Moseley's law we find that cryogenic targets using either Xe or Kr in a liquid or solid phase may be most useful for a number of applications because they radiate 1 -- 3 keV x rays efficiently and never deposit on the x-ray optical components and the objects to be exposed

  3. Effects of low or high doses of short wavelength ultraviolet light (UVB) on Langerhans cells and skin allograft survival

    International Nuclear Information System (INIS)

    Odling, K.A.; Halliday, G.M.; Muller, H.K.

    1987-01-01

    Donor C57BL mouse shaved dorsal trunk or tail skin was exposed to high (200 mJ/cm 2 ) or low (40 mJ/cm 2 ) doses of short wavelength ultraviolet light (UVB) before grafting on to the thorax of BALB/c mouse recipients of the same sex. Skin grafted 1-14 days following a single high dose of UVB irradiation was ultrastructurally depleted of LC and survived significantly longer than unirradiated skin before being rejected. After a 21-day interval between exposure and grafting when LC were again present in the epidermis there was no significant difference between treated and control graft survival. Exposure to low dose UVB irradiation only significantly increased graft survival for skin transplanted 1-3 days after irradiation; skin grafted 4 days following irradiation survived for a similar period to unirradiated control skin grafts. Electronmicroscopy showed that the low UVB dose did not deplete LC from the epidermis. We conclude that after low dose UVB treatment the class II MHC antigens on the LC Plasma membrane were lost temporarily, thus prolonging graft survival, but when the plasma membrane antigens were re-expressed graft survival returned to normal. In contrast, high-dose UVB irradiation prolonged graft survival by depleting LC from the epidermis, with graft survival only returning to control values as LC repopulated the epidermis

  4. Electron traps in semiconducting polymers : Exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H. T.; Mandoc, M. M.; Blom, P. W. M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  5. Electron traps in semiconducting polymers: exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H.T.; Mandoc, M.M.; Blom, P.W.M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  6. Intracluster dust, circumstellar shells, and the wavelength dependence of polarization in orion

    International Nuclear Information System (INIS)

    Breger, M.

    1977-01-01

    The wavelength dependence of polarization of 21 polarized stars near the Orion Nebula has been measured. Most stars fit the standard interstellar law. The wavelength of maximum linear polarization, lambda/sub max/, ranges from normal values to 0.71μm. The polarimetric, spectroscopic, and photometric data support a normal reddening law (Rapprox. =3) for most Orion stars, and present evidence for unusually large grain sizes in front of some Orion stars. For the stars BR 545 and BR 885 large values of lambda/sub max/ are associated with unusually large values of total to selective extinction.A division of the observed polarization into intracluster dust and circumstellar shell components shows that the presence of shells does not usually lead to linear polarization in the optical wavelength region. Also, no association of polarization with known light variability could be found. The nature of the intracluster dust clouds is discussed briefly.The results of searches for circular polarization as well as short-period variability are presented in two appendices

  7. Secretion Trap Tagging of Secreted and Membrane-Spanning Proteins Using Arabidopsis Gene Traps

    Science.gov (United States)

    Andrew T. Groover; Joseph R. Fontana; Juana M. Arroyo; Cristina Yordan; W. Richard McCombie; Robert A. Martienssen

    2003-01-01

    Secreted and membrane-spanning proteins play fundamental roles in plant development but pose challenges for genetic identification and characterization. We describe a "secretion trap" screen for gene trap insertions in genes encoding proteins routed through the secretory pathway. The gene trap transposon encodes a ß-glucuronidase reporter enzyme...

  8. Trapping for invasive crayfish: comparisons of efficacy and selectivity of baited traps versus novel artificial refuge traps

    Directory of Open Access Journals (Sweden)

    Green Nicky

    2018-01-01

    Full Text Available Non-native crayfish can dominate the invertebrate biomass of invaded freshwaters, with their high ecological impacts resulting in their populations being controlled by numerous methods, especially trapping. Although baited funnel traps (BTs are commonly used, they tend to be selective in mainly catching large-bodied males. Here, the efficacy and selectivity of BTs were tested against an alternative trapping method based on artificial refuges (ARTs that comprised of a metal base with several tubes (refuges attached. The target species was signal crayfish Pacifastacus leniusculus in an upland river in southwest England. Trapping was completed in April to October over two consecutive years. In total, 5897 crayfish were captured, with 87% captured in ARTs. Comparison of the catch per unit effort (CPUE between the trapping methods in the same 24 hour periods revealed significantly higher CPUE in ARTs than of BTs. ARTs fished for 6 consecutive days had higher catches than both methods over 24 hours. Whilst catches in BTs were significantly dominated by males (1.49M:1F, the sex ratio of catches in ARTs was 0.99M:1F. The mean carapace length of crayfish was also significantly larger in BTs (43.2 ± 0.6 mm than in ARTs (33.6 ± 0.2 mm. Thus, ARTs had higher CPUE over 24 hour and 6 day periods versus BTs and also captured a greater proportion of smaller and female individuals. These results indicate that when trapping methods are deployed for managing invasions, the use of ARTs removes substantial numbers of crayfish of both sexes and of varying body sizes.

  9. Electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Metcalf, H.J.

    1986-01-01

    Cooling and trapping of neutral atoms is a new branch of applied physics that has potential for application in many areas. The authors present an introduction to laser cooling and magnetic trapping. Some basic ideas and fundamental limitations are discussed, and the first successful experiments are reviewed. Trapping a neutral object depends on the interaction between an inhomogeneous electromagnetic field and a multiple moment that results in the exchange of kinetic for potential energy. In neutral atom traps, the potential energy must be stored as internal atomic energy, resulting in two immediate and extremely important consequences. First, the atomic energy levels will necessarily shift as the atoms move in the trap, and, second, practical traps for ground state neutral atoms atr necessarily very shallow compared to thermal energy. This small depth also dictates stringent vacuum requirements because a trapped atom cannot survive a single collision with a thermal energy background gas molecule. Neutral trapping, therefore, depends on substantial cooling of a thermal atomic sample and is inextricably connected with the cooling process

  10. Dual-mode plasmonic nanorod type antenna based on the concept of a trapped dipole.

    Science.gov (United States)

    Panaretos, Anastasios H; Werner, Douglas H

    2015-04-06

    In this paper we theoretically investigate the feasibility of creating a dual-mode plasmonic nanorod antenna. The proposed design methodology relies on adapting to optical wavelengths the principles of operation of trapped dipole antennas, which have been widely used in the low MHz frequency range. This type of antenna typically employs parallel LC circuits, also referred to as "traps", which are connected along the two arms of the dipole. By judiciously choosing the resonant frequency of these traps, as well as their position along the arms of the dipole, it is feasible to excite the λ/2 resonance of both the original dipole as well as the shorter section defined by the length of wire between the two traps. This effectively enables the dipole antenna to have a dual-mode of operation. Our analysis reveals that the implementation of this concept at the nanoscale requires that two cylindrical pockets (i.e. loading volumes) be introduced along the length of the nanoantenna, inside which plasmonic core-shell particles are embedded. By properly selecting the geometry and constitution of the core-shell particle as well as the constitution of the host material of the two loading volumes and their position along the nanorod, the equivalent effect of a resonant parallel LC circuit can be realized. This effectively enables a dual-mode operation of the nanorod antenna. The proposed methodology introduces a compact approach for the realization of dual-mode optical sensors while at the same time it clearly illustrates the inherent tuning capabilities that core-shell particles can offer in a practical framework.

  11. Private information alone can trigger trapping of ant colonies in local feeding optima.

    Science.gov (United States)

    Czaczkes, Tomer J; Salmane, Anete K; Klampfleuthner, Felicia A M; Heinze, Jürgen

    2016-03-01

    Ant colonies are famous for using trail pheromones to make collective decisions. Trail pheromone systems are characterised by positive feedback, which results in rapid collective decision making. However, in an iconic experiment, ants were shown to become 'trapped' in exploiting a poor food source, if it was discovered earlier. This has conventionally been explained by the established pheromone trail becoming too strong for new trails to compete. However, many social insects have a well-developed memory, and private information often overrules conflicting social information. Thus, route memory could also explain this collective 'trapping' effect. Here, we disentangled the effects of social and private information in two 'trapping' experiments: one in which ants were presented with a good and a poor food source, and one in which ants were presented with a long and a short path to the same food source. We found that private information is sufficient to trigger trapping in selecting the poorer of two food sources, and may be sufficient to cause it altogether. Memories did not trigger trapping in the shortest path experiment, probably because sufficiently detailed memories did not form. The fact that collective decisions can be triggered by private information alone may require other collective patterns previously attributed solely to social information use to be reconsidered. © 2016. Published by The Company of Biologists Ltd.

  12. Distribution of non-LEE-encoded type 3 secretion system dependent effectors in enteropathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Fábia A. Salvador

    2014-09-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC are important human gastroenteritis agents. The prevalence of six non-LEE genes encoding type 3 translocated effectors was investigated. The nleC, cif and nleB genes were more prevalent in typical than in atypical EPEC, although a higher diversity of genes combinations was observed in atypical EPEC.

  13. Generation of hyperchaos from the Chen-Lee system via sinusoidal perturbation

    International Nuclear Information System (INIS)

    Tam, L.M.; Chen, J.H.; Chen, H.K.; Wai Meng Si Tou

    2008-01-01

    A system with more than one positive Lyapunov exponent can be classified as a hyperchaotic system. In this study, a sinusoidal perturbation was designed for generating hyperchaos from the Chen-Lee chaotic system. The hyperchaos was identified by the existence of two positive Lyapunov exponents and bifurcation diagrams. The system is hyperchaotic in several different regions of the parameters c, ε, and ω. It was found that this method not only can enhance or suppress chaotic behavior, but also induces chaos in non-chaotic parameter ranges. In addition, two interesting dynamical behaviors, Hopf bifurcation and intermittency, were also found in this study

  14. Generation of hyperchaos from the Chen-Lee system via sinusoidal perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Tam, L.M. [Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Av. Padre Thomas Pereira S.J., Taipa, Macau (China)], E-mail: fstlmt@umac.mo; Chen, J.H. [Department of Mechanical Engineering, Chung Hua University, Hsinchu, Taiwan (China); Chen, H.K. [Department of Mechanical Engineering, Hsiuping Institute of Technology, Taichung, Taiwan (China); Wai Meng Si Tou [Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Av. Padre Thomas Pereira S.J., Taipa, Macau (China)

    2008-11-15

    A system with more than one positive Lyapunov exponent can be classified as a hyperchaotic system. In this study, a sinusoidal perturbation was designed for generating hyperchaos from the Chen-Lee chaotic system. The hyperchaos was identified by the existence of two positive Lyapunov exponents and bifurcation diagrams. The system is hyperchaotic in several different regions of the parameters c, {epsilon}, and {omega}. It was found that this method not only can enhance or suppress chaotic behavior, but also induces chaos in non-chaotic parameter ranges. In addition, two interesting dynamical behaviors, Hopf bifurcation and intermittency, were also found in this study.

  15. Lee-Yang zeroes and logarithmic corrections in the Φ44 theory

    International Nuclear Information System (INIS)

    Kenna, R.; Lang, C.B.

    1993-01-01

    The leading mean-field critical behaviour of φ 4 4 -theory is modified by multiplicative logarithmic corrections. We analyse these corrections both analytically and numerically. In particular we present a finite-size scaling theory for the Lee-Yang zeroes and temperature zeroes, both of which exhibit logarithmic corrections. On lattices from size 8 4 to 24 4 , Monte-Carlo cluster methods and multi-histogram techniques are used to determine the partition function zeroes closest to the critical point. Finite-size scaling behaviour is verified and the logarithmic corrections are found to be in good agreement with our analytical predictions. (orig.)

  16. The β-decay Paul trap: A radiofrequency-quadrupole ion trap for precision β-decay studies

    International Nuclear Information System (INIS)

    Scielzo, N.D.; Li, G.; Sternberg, M.G.; Savard, G.; Bertone, P.F.; Buchinger, F.; Caldwell, S.; Clark, J.A.; Crawford, J.; Deibel, C.M.; Fallis, J.; Greene, J.P.

    2012-01-01

    The β-decay Paul trap is a linear radiofrequency-quadrupole ion trap that has been developed for precision β-decay studies. The design of the trap electrodes allows a variety of radiation detectors to surround the cloud of trapped ions. The momentum of the low-energy recoiling daughter nuclei following β decay is negligibly perturbed by scattering and is available for study. This advantageous property of traps allows the kinematics of particles that are difficult or even impossible to directly detect to be precisely reconstructed using conservation of energy and momentum. An ion-trap system offers several advantages over atom traps, such as higher trapping efficiencies and element-independent capabilities. The first precision experiment using this system is a measurement of β-decay angular correlations in the decay of 8 Li performed by inferring the momentum of the neutrino from the kinematic shifts imparted to the breakup α particles. Many other β-decay studies that would benefit from a determination of the nuclear recoil can be performed with this system.

  17. The {beta}-decay Paul trap: A radiofrequency-quadrupole ion trap for precision {beta}-decay studies

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, N.D., E-mail: scielzo1@llnl.gov [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Li, G. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 (Canada); Sternberg, M.G.; Savard, G. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, University of Chicago, Chicago, Illinois 60637 (United States); Bertone, P.F. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Buchinger, F. [Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 (Canada); Caldwell, S. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, University of Chicago, Chicago, Illinois 60637 (United States); Clark, J.A. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Crawford, J. [Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 (Canada); Deibel, C.M. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824 (United States); Fallis, J. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (Canada); Greene, J.P. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); and others

    2012-07-21

    The {beta}-decay Paul trap is a linear radiofrequency-quadrupole ion trap that has been developed for precision {beta}-decay studies. The design of the trap electrodes allows a variety of radiation detectors to surround the cloud of trapped ions. The momentum of the low-energy recoiling daughter nuclei following {beta} decay is negligibly perturbed by scattering and is available for study. This advantageous property of traps allows the kinematics of particles that are difficult or even impossible to directly detect to be precisely reconstructed using conservation of energy and momentum. An ion-trap system offers several advantages over atom traps, such as higher trapping efficiencies and element-independent capabilities. The first precision experiment using this system is a measurement of {beta}-decay angular correlations in the decay of {sup 8}Li performed by inferring the momentum of the neutrino from the kinematic shifts imparted to the breakup {alpha} particles. Many other {beta}-decay studies that would benefit from a determination of the nuclear recoil can be performed with this system.

  18. Short-timescale variability in cataclysmic binaries

    International Nuclear Information System (INIS)

    Cordova, F.A.; Mason, K.O.

    1982-01-01

    Rapid variability, including flickering and pulsations, has been detected in cataclysmic binaries at optical and x-ray frequencies. In the case of the novalike variable TT Arietis, simultaneous observations reveal that the x-ray and optical flickering activity is strongly correlated, while short period pulsations are observed that occur at the same frequencies in both wavelength bands

  19. Integrating reaction and analysis: investigation of higher-order reactions by cryogenic trapping

    Directory of Open Access Journals (Sweden)

    Skrollan Stockinger

    2013-09-01

    Full Text Available A new approach for the investigation of a higher-order reaction by on-column reaction gas chromatography is presented. The reaction and the analytical separation are combined in a single experiment to investigate the Diels–Alder reaction of benzenediazonium-2-carboxylate as a benzyne precursor with various anthracene derivatives, i.e. anthracene, 9-bromoanthracene, 9-anthracenecarboxaldehyde and 9-anthracenemethanol. To overcome limitations of short reaction contact times at elevated temperatures a novel experimental setup was developed involving a cooling trap to achieve focusing and mixing of the reactants at a defined spot in a fused-silica capillary. This trap functions as a reactor within the separation column in the oven of a gas chromatograph. The reactants are sequentially injected to avoid undefined mixing in the injection port. An experimental protocol was developed with optimized injection intervals and cooling times to achieve sufficient conversions at short reaction times. Reaction products were rapidly identified by mass spectrometric detection. This new approach represents a practical procedure to investigate higher-order reactions at an analytical level and it simultaneously provides valuable information for the optimization of the reaction conditions.

  20. Energy transfer in coupled nonlinear phononic waveguides: transition from wandering breather to nonlinear self-trapping

    International Nuclear Information System (INIS)

    Kosevich, Y A; Manevitch, L I; Savin, A V

    2007-01-01

    We consider, both analytically and numerically, the dynamics of stationary and slowly-moving breathers (localized short-wavelength excitations) in two weakly coupled nonlinear oscillator chains (nonlinear phononic waveguides). We show that there are two qualitatively different dynamical regimes of the coupled breathers: the oscillatory exchange of the low-amplitude breather between the phononic waveguides (wandering breather), and one-waveguide-localization (nonlinear self-trapping) of the high-amplitude breather. We also show that phase-coherent dynamics of the coupled breathers in two weakly linked nonlinear phononic waveguides has a profound analogy, and is described by a similar pair of equations, to the tunnelling quantum dynamics of two weakly linked Bose-Einstein condensates in a symmetric double-well potential (single bosonic Josephson junction). The exchange of phonon energy and excitations between the coupled phononic waveguides takes on the role which the exchange of atoms via quantum tunnelling plays in the case of the coupled condensates. On the basis of this analogy, we predict a new tunnelling mode of the coupled Bose-Einstein condensates in a single bosonic Josephson junction in which their relative phase oscillates around π/2. The dynamics of relative phase of two weakly linked Bose-Einstein condensates can be studied by means of interference, while the dynamics of the exchange of lattice excitations in coupled nonlinear phononic waveguides can be observed by means of light scattering