Critical dynamics of the Potts model: short-time Monte Carlo simulations
International Nuclear Information System (INIS)
Silva, Roberto da; Drugowich de Felicio, J.R.
2004-01-01
We calculate the new dynamic exponent θ of the 4-state Potts model, using short-time simulations. Our estimates θ1=-0.0471(33) and θ2=-0.0429(11) obtained by following the behavior of the magnetization or measuring the evolution of the time correlation function of the magnetization corroborate the conjecture by Okano et al. [Nucl. Phys. B 485 (1997) 727]. In addition, these values agree with previous estimate of the same dynamic exponent for the two-dimensional Ising model with three-spin interactions in one direction, that is known to belong to the same universality class as the 4-state Potts model. The anomalous dimension of initial magnetization x0=zθ+β/ν is calculated by an alternative way that mixes two different initial conditions. We have also estimated the values of the static exponents β and ν. They are in complete agreement with the pertinent results of the literature
Short-time quantum dynamics of sharp boundaries potentials
Energy Technology Data Exchange (ETDEWEB)
Granot, Er' el, E-mail: erel@ariel.ac.il; Marchewka, Avi
2015-02-15
Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically.
Short-time quantum dynamics of sharp boundaries potentials
Granot, Er'el; Marchewka, Avi
2015-02-01
Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically.
Short-time quantum dynamics of sharp boundaries potentials
International Nuclear Information System (INIS)
Granot, Er'el; Marchewka, Avi
2015-01-01
Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically
X-ray testing for short-time dynamic applications
International Nuclear Information System (INIS)
Kurfiss, Malte; Moser, Stefan; Popko, Gregor; Nau, Siegfried
2017-01-01
For nondestructive testing purposes new challenges are short-time dynamic processes. The application of x-ray flash tubes and modern high-speed cameras allows the observation of the opening of air-bags or the energy absorption of compressed tubes as occurring during a vehicle crash. Special algorithms designed for computerized tomography analyses allow the 3D reconstruction at individual time points of the dynamic process. Possibilities and limitations of the actual techniques are discussed.
Short-time dynamics of random-bond Potts ferromagnet with continuous self-dual quenched disorders
Pan, Z. Q.; Ying, H. P.; Gu, D. W.
2001-01-01
We present Monte Carlo simulation results of random-bond Potts ferromagnet with the Olson-Young self-dual distribution of quenched disorders in two-dimensions. By exploring the short-time scaling dynamics, we find universal power-law critical behavior of the magnetization and Binder cumulant at the critical point, and thus obtain estimates of the dynamic exponent $z$ and magnetic exponent $\\eta$, as well as the exponent $\\theta$. Our special attention is paid to the dynamic process for the $q...
Energy Technology Data Exchange (ETDEWEB)
Kurfiss, Malte; Moser, Stefan; Popko, Gregor; Nau, Siegfried [Fraunhofer-Institut fuer Kurzzeitdynamik, Efringen-Kirchen (Germany). Ernst-Mach-Inst. (EMI)
2017-08-01
For nondestructive testing purposes new challenges are short-time dynamic processes. The application of x-ray flash tubes and modern high-speed cameras allows the observation of the opening of air-bags or the energy absorption of compressed tubes as occurring during a vehicle crash. Special algorithms designed for computerized tomography analyses allow the 3D reconstruction at individual time points of the dynamic process. Possibilities and limitations of the actual techniques are discussed.
Takahashi, Osamu; Nomura, Tetsuo; Tabayashi, Kiyohiko; Yamasaki, Katsuyoshi
2008-07-01
We performed spectral analysis by using the maximum entropy method instead of the traditional Fourier transform technique to investigate the short-time behavior in molecular systems, such as the energy transfer between vibrational modes and chemical reactions. This procedure was applied to direct ab initio molecular dynamics calculations for the decomposition of formic acid. More reactive trajectories of dehydrolation than those of decarboxylation were obtained for Z-formic acid, which was consistent with the prediction of previous theoretical and experimental studies. Short-time maximum entropy method analyses were performed for typical reactive and non-reactive trajectories. Spectrograms of a reactive trajectory were obtained; these clearly showed the reactant, transient, and product regions, especially for the dehydrolation path.
Effective description of the short-time dynamics in open quantum systems
Rossi, Matteo A. C.; Foti, Caterina; Cuccoli, Alessandro; Trapani, Jacopo; Verrucchi, Paola; Paris, Matteo G. A.
2017-09-01
We address the dynamics of a bosonic system coupled to either a bosonic or a magnetic environment and derive a set of sufficient conditions that allow one to describe the dynamics in terms of the effective interaction with a classical fluctuating field. We find that for short interaction times the dynamics of the open system is described by a Gaussian noise map for several different interaction models and independently on the temperature of the environment. In order to go beyond a qualitative understanding of the origin and physical meaning of the above short-time constraint, we take a general viewpoint and, based on an algebraic approach, suggest that any quantum environment can be described by classical fields whenever global symmetries lead to the definition of environmental operators that remain well defined when increasing the size, i.e., the number of dynamical variables, of the environment. In the case of the bosonic environment this statement is exactly demonstrated via a constructive procedure that explicitly shows why a large number of environmental dynamical variables and, necessarily, global symmetries, entail the set of conditions derived in the first part of the work.
Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.
Saller, Maximilian A C; Habershon, Scott
2017-07-11
Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.
Fernandes, Brian; Hegde, Manu; Stanish, Paul C.; Mišković, Zoran L.; Radovanovic, Pavle V.
2017-09-01
We developed a comprehensive theoretical model describing the photoluminescence decay dynamics at short and long time scales based on the donor-acceptor defect interactions in γ-Ga2O3 nanocrystals, and quantitatively determined the importance of exclusion distance and spatial distribution of defects. We allowed for donors and acceptors to be adjacent to each other or separated by different exclusion distances. The optimal exclusion distance was found to be comparable to the donor Bohr radius and have a strong effect on the photoluminescence decay curve at short times. The importance of the exclusion distance at short time scales was confirmed by Monte Carlo simulations.
Optimal filtering of dynamics in short-time features for music organization
DEFF Research Database (Denmark)
Arenas-García, Jerónimo; Larsen, Jan; Hansen, Lars Kai
2006-01-01
There is an increasing interest in customizable methods for organizing music collections. Relevant music characterization can be obtained from short-time features, but it is not obvious how to combine them to get useful information. In this work, a novel method, denoted as the Positive Constrained...... Orthonormalized Partial Least Squares (POPLS), is proposed. Working on the periodograms of MFCCs time series, this supervised method finds optimal filters which pick up the most discriminative temporal information for any music organization task. Two examples are presented in the paper, the first being a simple...... proof-of-concept, where an altosax with and without vibrato is modelled. A more complex \\$11\\$ music genre classification setup is also investigated to illustrate the robustness and validity of the proposed method on larger datasets. Both experiments showed the good properties of our method, as well...
International Nuclear Information System (INIS)
Dekker, H.
1980-01-01
It is shown how to solve the master equation for a Markov process including a critical point by means of successive approximations in terms of a small parameter. A critical point occurs if, by adjusting an externally controlled quantity, the system shows a transition from normal monostable to bistable behaviour. The fundamental idea of the theory is to separate the master equation into its proper irreducible part and a corrective remainder. The irreducible or zeroth order stochastic approximation will be a relatively simple Fokker-Planck equation that contains the essential features of the process. Once the solution of this irreducible equation is known, the higher order corrections in the original master equation can be incorporated in a systematic manner. (Auth.)
Short-time dynamics of phenylene-rings in bisphenol based engineering thermoplastics
International Nuclear Information System (INIS)
Arrese-Igor, S.; Arbe, A.; Alegria, A.; Colmenero, J.; Frick, B.
2003-01-01
We have recently performed one of the first approaches by means of quasielastic neutron scattering (QENS) to the problem of identifying the molecular motions giving rise to the secondary relaxations of engineering thermoplastics. Preliminary results point to phenylene ring π-flips as the main motion causing the observed quasielastic broadening in the ∼10 -10 -10 -9 s time scale below the glass transition temperature T g . Continuing our study of sub-T g dynamics in these systems by QENS, measurements on polycarbonate (PC) and polysulfone (PSF) with deuterated methyl groups (d6) in the ∼10 -13 -10 -11 s time scale have been performed. The intermediate scattering function shows a smooth second decay in addition to that of vibrations and 'fast dynamics' at T > or approx. 200 K. The extrapolation of phenylene π-flip motion to faster times does not explain the decay observed. However, a non-negligible contribution of π-flips at T≥350 K in PCd6 is noticeable, whereas for PSFd6 some effect can be inferred above ∼450 K. In the temperature region where the π-flips do not contribute to the spectra we have characterised the signal by assuming a temperature dependent distribution of small angle oscillations of phenylene rings leading to an activation energy of 0.18 eV
Antipersistent dynamics in short time scale variability of self-potential signals
Directory of Open Access Journals (Sweden)
M. Ragosta
2000-06-01
Full Text Available Time scale properties of self-potential signals are investigated through the analysis of the second order structure function (variogram, a powerful tool to investigate the spatial and temporal variability of observational data. In this work we analyse two sequences of self-potential values measured by means of a geophysical monitoring array located in a seismically active area of Southern Italy. The range of scales investigated goes from a few minutes to several days. It is shown that signal fluctuations are characterised by two time scale ranges in which self-potential variability appears to follow slightly different dynamical behaviours. Results point to the presence of fractal, non stationary features expressing a long term correlation with scaling coefficients which are the clue of stabilising mechanisms. In the scale ranges in which the series show scale invariant behaviour, self-potentials evolve like fractional Brownian motions with anticorrelated increments typical of processes regulated by negative feedback mechanisms (antipersistence. On scales below about 6 h the strength of such an antipersistence appears to be slightly greater than that observed on larger time scales where the fluctuations are less efficiently stabilised.
Lainscsek, Claudia; Weyhenmeyer, Jonathan; Hernandez, Manuel E; Poizner, Howard; Sejnowski, Terrence J
2013-01-01
Time series analysis with delay differential equations (DDEs) reveals non-linear properties of the underlying dynamical system and can serve as a non-linear time-domain classification tool. Here global DDE models were used to analyze short segments of simulated time series from a known dynamical system, the Rössler system, in high noise regimes. In a companion paper, we apply the DDE model developed here to classify short segments of encephalographic (EEG) data recorded from patients with Parkinson's disease and healthy subjects. Nine simulated subjects in each of two distinct classes were generated by varying the bifurcation parameter b and keeping the other two parameters (a and c) of the Rössler system fixed. All choices of b were in the chaotic parameter range. We diluted the simulated data using white noise ranging from 10 to -30 dB signal-to-noise ratios (SNR). Structure selection was supervised by selecting the number of terms, delays, and order of non-linearity of the model DDE model that best linearly separated the two classes of data. The distances d from the linear dividing hyperplane was then used to assess the classification performance by computing the area A' under the ROC curve. The selected model was tested on untrained data using repeated random sub-sampling validation. DDEs were able to accurately distinguish the two dynamical conditions, and moreover, to quantify the changes in the dynamics. There was a significant correlation between the dynamical bifurcation parameter b of the simulated data and the classification parameter d from our analysis. This correlation still held for new simulated subjects with new dynamical parameters selected from each of the two dynamical regimes. Furthermore, the correlation was robust to added noise, being significant even when the noise was greater than the signal. We conclude that DDE models may be used as a generalizable and reliable classification tool for even small segments of noisy data.
International Nuclear Information System (INIS)
Kuepfer, H.; Keller, C.; Meier-Hirmer, R.; Wiech, U.; Salama, K.; Selvamanickam, V.; Green, S.M.; Luo, H.L.; Politis, C.
1990-01-01
The time-dependent behavior of the critical current density j c is investigated by ac inductive measurements. The variation of db/dt of the ac field between 0.1 and 3 T/s reveals a short-time relaxation in the millisecond regime before j c exhibits the familiar logarithmic decay. At fields above the irreversibility line only this short-time relaxation is observed. Our experimental time scale allows us to obtain the unrelaxed critical current density j c0 at certain fields and temperatures
Krstacic, Goran; Krstacic, Antonija; Smalcelj, Anton; Milicic, Davor; Jembrek-Gostovic, Mirjana
2007-04-01
Dynamic analysis techniques may quantify abnormalities in heart rate variability (HRV) based on nonlinear and fractal analysis (chaos theory). The article emphasizes clinical and prognostic significance of dynamic changes in short-time series applied on patients with coronary heart disease (CHD) during the exercise electrocardiograph (ECG) test. The subjects were included in the series after complete cardiovascular diagnostic data. Series of R-R and ST-T intervals were obtained from exercise ECG data after sampling digitally. The range rescaled analysis method determined the fractal dimension of the intervals. To quantify fractal long-range correlation's properties of heart rate variability, the detrended fluctuation analysis technique was used. Approximate entropy (ApEn) was applied to quantify the regularity and complexity of time series, as well as unpredictability of fluctuations in time series. It was found that the short-term fractal scaling exponent (alpha(1)) is significantly lower in patients with CHD (0.93 +/- 0.07 vs 1.09 +/- 0.04; P chaos theory during the exercise ECG test point out the multifractal time series in CHD patients who loss normal fractal characteristics and regularity in HRV. Nonlinear analysis technique may complement traditional ECG analysis.
Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas
2018-02-01
Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi
Dynamic critical behaviour and scaling
International Nuclear Information System (INIS)
Oezoguz, B.E.
2001-01-01
Traditionally the scaling is the property of dynamical systems at thermal equilibrium. In second order phase transitions scaling behaviour is due to the infinite correlation length around the critical point. In first order phase transitions however, the correlation length remains finite and a different type of scaling can be observed. For first order phase transitions all singularities are governed by the volume of the system. Recently, a different type of scaling, namely dynamic scaling has attracted attention in second order phase transitions. In dynamic scaling, when a system prepared at high temperature is quenched to the critical temperature, it exhibits scaling behaviour. Dynamic scaling has been applied to various spin systems and the validity of the arguments are shown. Firstly, in this thesis project the dynamic scaling is applied to 4-dimensional using spin system which exhibits second order phase transition with mean-field critical indices. Secondly, it is shown that although the dynamic is quite different, first order phase transitions also has a different type of dynamic scaling
Critical Thresholds in Earth-System Dynamics
Rothman, D.
2017-12-01
The history of the Earth system is a story of change. Some changesare gradual and benign, but others, especially those associated withcatastrophic mass extinction, are relatively abrupt and destructive.What sets one group apart from the other? Here I hypothesize thatperturbations of Earth's carbon cycle lead to mass extinction if theyexceed either a critical rate at long time scales or a critical sizeat short time scales. By analyzing 31 carbon-isotopic events duringthe last 542 million years, I identify the critical rate with a limitimposed by mass conservation. Further analysis identifies thecrossover timescale separating fast from slow events with thetimescale of the ocean's homeostatic response to a change in pH. Theproduct of the critical rate and the crossover timescale then yieldsthe critical size. The modern critical size for the marine carboncycle is roughly similar to the mass of carbon that human activitieswill likely have added to the oceans by the year 2100.
Potential barrier classification by short-time measurement
International Nuclear Information System (INIS)
Granot, Er'el; Marchewka, Avi
2006-01-01
We investigate the short-time dynamics of a delta-function potential barrier on an initially confined wave packet. There are mainly two conclusions: (A) At short times the probability density of the first particles that passed through the barrier is unaffected by it. (B) When the barrier is absorptive (i.e., its potential is imaginary) it affects the transmitted wave function at shorter times than a real potential barrier. Therefore, it is possible to distinguish between an imaginary and a real potential barrier by measuring its effect at short times only on the transmitting wave function
Potential barrier classification by short-time measurement
Granot, Er'El; Marchewka, Avi
2006-03-01
We investigate the short-time dynamics of a delta-function potential barrier on an initially confined wave packet. There are mainly two conclusions: (A) At short times the probability density of the first particles that passed through the barrier is unaffected by it. (B) When the barrier is absorptive (i.e., its potential is imaginary) it affects the transmitted wave function at shorter times than a real potential barrier. Therefore, it is possible to distinguish between an imaginary and a real potential barrier by measuring its effect at short times only on the transmitting wave function.
Critical dynamics in associative memory networks
Directory of Open Access Journals (Sweden)
Maximilian eUhlig
2013-07-01
Full Text Available Critical behavior in neural networks is characterized by scale-free avalanche size distributions and can be explained by self-regulatory mechanisms. Theoretical and experimental evidence indicates that information storage capacity reaches its maximum in the critical regime. We study the effect of structural connectivity formed by Hebbian learning on the criticality of network dynamics. The network endowed with Hebbian learning only does not allow for simultaneous information storage and criticality. However, the critical regime is can be stabilized by short-term synaptic dynamics in the form of synaptic depression and facilitation or, alternatively, by homeostatic adaptation of the synaptic weights. We show that a heterogeneous distribution of maximal synaptic strengths does not preclude criticality if the Hebbian learning is alternated with periods of critical dynamics recovery. We discuss the relevance of these findings for the flexibility of memory in aging and with respect to the recent theory of synaptic plasticity.
Forecast model of landslides in a short time
International Nuclear Information System (INIS)
Sanchez Lopez, Reinaldo
2006-01-01
The IDEAM in development of their functions as member of the national technical committee for the prevention and disasters attention (SNPAD) accomplishes the follow-up, monitoring and forecast in real time of the environmental dynamics that in extreme situations constitute threats and natural risks. One of the frequent dynamics and of greater impact is related to landslides, those that affect persistently the life of the persons, the infrastructure, the socioeconomic activities and the balance of the environment. The landslide in Colombia and in the world are caused mainly by effects of the rain, due to that, IDEAM has come developing forecast model, as an instrument for risk management in a short time. This article presents aspects related to their structure, operation, temporary space resolution, products, results, achievements and projections of the model. Conceptually, the model is support by the principle of the dynamic temporary - space, of the processes that consolidate natural hazards, particularly in areas where the man has come building the risk. Structurally, the model is composed by two sub-models; the general susceptibility of the earthly model and the critical rain model as a denotative factor, that consolidate the hazard process. In real time, the model, works as a GIS, permitting the automatic zoning of the landslides hazard for issue public advisory warming to help makers decisions on the risk that cause frequently these events, in the country
Unstable dynamics, nonequilibrium phases, and criticality in networked excitable media
International Nuclear Information System (INIS)
Franciscis, S. de; Torres, J. J.; Marro, J.
2010-01-01
Excitable systems are of great theoretical and practical interest in mathematics, physics, chemistry, and biology. Here, we numerically study models of excitable media, namely, networks whose nodes may occasionally be dormant and the connection weights are allowed to vary with the system activity on a short-time scale, which is a convenient and realistic representation. The resulting global activity is quite sensitive to stimuli and eventually becomes unstable also in the absence of any stimuli. Outstanding consequences of such unstable dynamics are the spontaneous occurrence of various nonequilibrium phases--including associative-memory phases and one in which the global activity wanders irregularly, e.g., chaotically among all or part of the dynamic attractors--and 1/f noise as the system is driven into the phase region corresponding to the most irregular behavior. A net result is resilience which results in an efficient search in the model attractor space that can explain the origin of some observed behavior in neural, genetic, and ill-condensed matter systems. By extensive computer simulation we also address a previously conjectured relation between observed power-law distributions and the possible occurrence of a ''critical state'' during functionality of, e.g., cortical networks, and describe the precise nature of such criticality in the model which may serve to guide future experiments.
Dynamic trapping near a quantum critical point
Kolodrubetz, Michael; Katz, Emanuel; Polkovnikov, Anatoli
2015-02-01
The study of dynamics in closed quantum systems has been revitalized by the emergence of experimental systems that are well-isolated from their environment. In this paper, we consider the closed-system dynamics of an archetypal model: spins driven across a second-order quantum critical point, which are traditionally described by the Kibble-Zurek mechanism. Imbuing the driving field with Newtonian dynamics, we find that the full closed system exhibits a robust new phenomenon—dynamic critical trapping—in which the system is self-trapped near the critical point due to efficient absorption of field kinetic energy by heating the quantum spins. We quantify limits in which this phenomenon can be observed and generalize these results by developing a Kibble-Zurek scaling theory that incorporates the dynamic field. Our findings can potentially be interesting in the context of early universe physics, where the role of the driving field is played by the inflaton or a modulus field.
Transient nanobubbles in short-time electrolysis
Svetovoy, Vitaly; Sanders, Remco G.P.; Elwenspoek, Michael Curt
2013-01-01
Water electrolysis in a microsystem is observed and analyzed on a short-time scale of ∼10 μs. The very unusual properties of the process are stressed. An extremely high current density is observed because the process is not limited by the diffusion of electroactive species. The high current is
Critical dynamics in population vaccinating behavior.
Pananos, A Demetri; Bury, Thomas M; Wang, Clara; Schonfeld, Justin; Mohanty, Sharada P; Nyhan, Brendan; Salathé, Marcel; Bauch, Chris T
2017-12-26
Vaccine refusal can lead to renewed outbreaks of previously eliminated diseases and even delay global eradication. Vaccinating decisions exemplify a complex, coupled system where vaccinating behavior and disease dynamics influence one another. Such systems often exhibit critical phenomena-special dynamics close to a tipping point leading to a new dynamical regime. For instance, critical slowing down (declining rate of recovery from small perturbations) may emerge as a tipping point is approached. Here, we collected and geocoded tweets about measles-mumps-rubella vaccine and classified their sentiment using machine-learning algorithms. We also extracted data on measles-related Google searches. We find critical slowing down in the data at the level of California and the United States in the years before and after the 2014-2015 Disneyland, California measles outbreak. Critical slowing down starts growing appreciably several years before the Disneyland outbreak as vaccine uptake declines and the population approaches the tipping point. However, due to the adaptive nature of coupled behavior-disease systems, the population responds to the outbreak by moving away from the tipping point, causing "critical speeding up" whereby resilience to perturbations increases. A mathematical model of measles transmission and vaccine sentiment predicts the same qualitative patterns in the neighborhood of a tipping point to greatly reduced vaccine uptake and large epidemics. These results support the hypothesis that population vaccinating behavior near the disease elimination threshold is a critical phenomenon. Developing new analytical tools to detect these patterns in digital social data might help us identify populations at heightened risk of widespread vaccine refusal. Copyright © 2017 the Author(s). Published by PNAS.
Avoided critical behavior in dynamically forced wetting.
Snoeijer, Jacco H; Delon, Giles; Fermigier, Marc; Andreotti, Bruno
2006-05-05
A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a critical speed. In this Letter we study the dynamical wetting transition at which a liquid film gets deposited by withdrawing a vertical plate out of a liquid reservoir. It has recently been predicted that this wetting transition is critical with diverging time scales and coincides with the disappearance of stationary menisci. We demonstrate experimentally and theoretically that the transition is due to the formation of a solitary wave, well below the critical point. As a consequence, relaxation times remain finite at threshold. The structure of the liquid deposited on the plate involves a capillary ridge that does not trivially match the Landau-Levich film.
Quench dynamics across quantum critical points
International Nuclear Information System (INIS)
Sengupta, K.; Powell, Stephen; Sachdev, Subir
2004-01-01
We study the quantum dynamics of a number of model systems as their coupling constants are changed rapidly across a quantum critical point. The primary motivation is provided by the recent experiments of Greiner et al. [Nature (London) 415, 39 (2002)] who studied the response of a Mott insulator of ultracold atoms in an optical lattice to a strong potential gradient. In a previous work, it had been argued that the resonant response observed at a critical potential gradient could be understood by proximity to an Ising quantum critical point describing the onset of density wave order. Here we obtain numerical results on the evolution of the density wave order as the potential gradient is scanned across the quantum critical point. This is supplemented by studies of the integrable quantum Ising spin chain in a transverse field, where we obtain exact results for the evolution of the Ising order correlations under a time-dependent transverse field. We also study the evolution of transverse superfluid order in the three-dimensional case. In all cases, the order parameter is best enhanced in the vicinity of the quantum critical point
Dynamical Response near Quantum Critical Points.
Lucas, Andrew; Gazit, Snir; Podolsky, Daniel; Witczak-Krempa, William
2017-02-03
We study high-frequency response functions, notably the optical conductivity, in the vicinity of quantum critical points (QCPs) by allowing for both detuning from the critical coupling and finite temperature. We consider general dimensions and dynamical exponents. This leads to a unified understanding of sum rules. In systems with emergent Lorentz invariance, powerful methods from quantum field theory allow us to fix the high-frequency response in terms of universal coefficients. We test our predictions analytically in the large-N O(N) model and using the gauge-gravity duality and numerically via quantum Monte Carlo simulations on a lattice model hosting the interacting superfluid-insulator QCP. In superfluid phases, interacting Goldstone bosons qualitatively change the high-frequency optical conductivity and the corresponding sum rule.
Static and Dynamic Criticality: Are They Different?
International Nuclear Information System (INIS)
Cullen, D E; Clouse, C J; Procassini, R; Little, R C
2003-01-01
Let us start by stating that this paper does not contain anything new. It only contains material that has been known for decades, but which is periodically forgotten. As such this paper is intended merely to refresh people's memories. We will also mention that this paper is an example of the occasional discrepancy between textbook methodologies and real world applications, in the sense that the conclusions reached here contradict what it says in most textbooks, i.e., most textbooks incorrectly interpret the methods presented here, particularly with respect to the use of importance sampling to maintain population control. This paper is not intended as a general tutorial on criticality calculations. It is intended only to clarify the accuracy of various methods for solving criticality problems, such as a true time dependent dynamic calculation, versus an alpha or K static calculation. In particular, we address the long standing controversy between users of the TART code [1] with the dynamic method, and users of the MCNP code [2] with the alpha static method. In this paper we will prove which methods are accurate and inaccurate
International Nuclear Information System (INIS)
Chen Sen; Wu Yican; Jin Ming; Chen Zhibin; Bai Yunqing; Zhao Zhumin
2014-01-01
Accelerator Driven Sub-critical System (ADS) has particular neutronics behaviors compared with the critical system. Prompt jump approximation point reactor kinetics equations taken external source into account have been deduced using an approach of prompt jump approximation. And the relationship between injection reactivity and power ampliation has been achieved. In addition, based on the RELAP5 code the prolong development of point reactor kinetics code used into assessing sub-critical system have been promoted. Different sub-criticality (k eff = 0.90, 0.95, 0.97, 0.98 and 0.99) have been assessed in preliminary design of a type of natural circulation cooling sub-critical reactor under conditions of reactivity injection +1 β in one second. It shows that the external source prompt transient approximation method has an accurate solution after injecting reactivity around short time and has a capacity to solve the dynamic equation, and the sub-critical system has an inner stability while the deeper sub-criticality the less impact on the sub-critical system. (authors)
Dynamical critical phenomena in driven-dissipative systems.
Sieberer, L M; Huber, S D; Altman, E; Diehl, S
2013-05-10
We explore the nature of the Bose condensation transition in driven open quantum systems, such as exciton-polariton condensates. Using a functional renormalization group approach formulated in the Keldysh framework, we characterize the dynamical critical behavior that governs decoherence and an effective thermalization of the low frequency dynamics. We identify a critical exponent special to the driven system, showing that it defines a new dynamical universality class. Hence critical points in driven systems lie beyond the standard classification of equilibrium dynamical phase transitions. We show how the new critical exponent can be probed in experiments with driven cold atomic systems and exciton-polariton condensates.
Dynamical effects and the critical behavior of random-field systems (invited)
International Nuclear Information System (INIS)
Shapir, Y.
1985-01-01
A variety of phenomena is observed experimentally in random-field (RF) systems realized by the application of an external field to diluted antiferromagnets. At low temperatures, infinitely long hysteretic effects are manifested by the history dependence of the final states: long-range order is observed if the field is applied after cooling, while domain states are reached when field cooled. While no indications for critical fluctuations are detected in 2-D systems, scaling behavior, for both the correlation length and the specific heat, is observed in 3-D systems over an intermediate range of temperatures. The related critical properties seem to be well described by the corresponding ones in the 2-D pure Ising model. The renormalization-group approach, which yields for the equilibrium critical exponents their values of the pure model in d-2 dimensions, is reviewed. A generalization of the dimensional-reduction approach, which accounts self-consistently for renormalized responses of the RF system, is presented. The dynamical effects are implicitly incorporated through the variation in the critical response between the local and the global regimes, associated with short- and long-time scales, respectively. In both regimes the lower critical dimension is found to be d = 2 in accordance with stability arguments. The short-time critical behavior indicates a dimensional reduction by one for the 3-D thermal exponents, in agreement with the experimental results
Dynamical effects and the critical behavior of random-field systems
International Nuclear Information System (INIS)
Shapir, Y.
1985-01-01
A variety of phenomena is observed experimentally in random-field (RF) systems realized by the application of an external field to diluted antiferromagnets. At low temperatures, infinitely long hysteretic effects are manifested by the history dependence of the final states: long-range order is observed if the field is applied after cooling, while domain states are reached when field cooled. While no indications for critical fluctuations are detected in 2-D systems, scaling behavior, for both the correlation length and the specific heat, is observed in 3-D systems over an intermediate range of temperatures. The related critical properties seem to be well described by the corresponding ones in the 2-D pure Ising model. The renormalization-group approach, which yields for the equilibrium critical exponents their values of the pure model in d-2 dimensions, is reviewed. A generalization of the dimensional-reduction approach, which accounts self-consistently for renormalized responses of the RF system, is presented. The dynamical effects are implicitly incorporated through the variation in the critical response between the local and the global regimes, associated with short- and long-time scales, respectively. In both regimes the lower critical dimension is found to be d = 2 in accordance with stability arguments. The short-time critical behavior indicates a dimensional reduction by one for the 3-D thermal exponents, in agreement with the experimental results. 37 references
Inferring interdependencies from short time series
Indian Academy of Sciences (India)
Abstract. Complex networks provide an invaluable framework for the study of interlinked dynamical systems. In many cases, such networks are constructed from observed time series by first estimating the ...... does not quantify causal relations (unlike IOTA, or .... Africa_map_regions.svg, which is under public domain.
Dynamical analysis of critical assembly CC-1
International Nuclear Information System (INIS)
Aleman Fernandez, J.R.
1990-01-01
The computer code CC-1, elaborated for the analysis of transients in Critical Assemblies is described. The results by the program are compared with the ones presented in the Safety Report for the Critical Assembly of ''La Quebrada'' Nuclear Research Centre (CIN). 7 refs
Design spectra development considering short time histories
International Nuclear Information System (INIS)
Weiner, E.O.
1983-01-01
The need for generation of seismic acceleration histories to prescribed response spectra arises several ways in structural dynamics. For example, one way of obtaining floor spectra is to generate a history from a foundation spectra and then solve for the floor motion from which a floor spectrum can be obtained. Two separate programs, MODQKE and MDOF, were written to provide a capability of obtaining equipment spectra from design spectra. MODQKE generates or modifies acceleration histories to conform with design spectra pertaining to, say, a foundation. MDOF is a simple linear modal superposition program that solves for equipment support histories using the design spectra conforming histories as input. Equipment spectra, then, are obtained from the support histories using MODQKE
Dynamics of quantum discord in a quantum critical environment
International Nuclear Information System (INIS)
Xi Zhengjun; Li Yongming; Lu Xiaoming; Sun Zhe
2011-01-01
We study the dynamics of quantum discord (QD) of two qubits independently coupled to an Ising spin chain in a transverse field, which exhibits a quantum phase transition. For this model, we drive the corresponding Kraus operators, obtain the analytic results of QD and compare the dynamics of QD with the dynamics of relative entropy of entanglement nearby the critical point. It is shown that the impact of the quantum criticality environment on QD can be concentrated in a very narrow region nearby the critical point, so it supplies an efficient way to detect the critical points. In the vicinity of the critical point, the evolution of QD is shown to be more complicated than that of entanglement. Furthermore, we find that separable states can also be used to reflect the quantum criticality of the environment.
Short time ahead wind power production forecast
International Nuclear Information System (INIS)
Sapronova, Alla; Meissner, Catherine; Mana, Matteo
2016-01-01
An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast. (paper)
Short time ahead wind power production forecast
Sapronova, Alla; Meissner, Catherine; Mana, Matteo
2016-09-01
An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast.
Dynamic Hazards In Critical Infrastructure Of State
Directory of Open Access Journals (Sweden)
Ostrowska Teresa
2015-06-01
Full Text Available The authors are interested in some aspects of a development project entitled “The methodology of risk assessment for the purposes of crisis management system RP (ID 193751”. The project funded by the National Research and Development Centre under the Competition 3/2012 (security and defense. As part of the project the following items were reviewed and analyzed: materials related to the Government Security Centre, already completed and available products of the project ID 193751, and literature relating to, among other things, crisis management, critical infrastructure, business continuity, security, and threats. The basic emphasis of the article is focused on the resource-critical infrastructure interpretation of the state, whereby the state is perceived as a complex administrative structure in which, on the basis of external and internal interactions of resources, the risk of threats measurement is done.
Zhai, Liang-Jun; Wang, Huai-Yu; Yin, Shuai
2018-04-01
The conventional Kibble-Zurek scaling describes the scaling behavior in the driven dynamics across a single critical region. In this paper, we study the driven dynamics across an overlapping critical region, in which a critical region (Region A) is overlaid by another critical region (Region B). We develop a hybridized Kibble-Zurek scaling (HKZS) to characterize the scaling behavior in the driven process. According to the HKZS, the driven dynamics in the overlapping region can be described by the critical theories for both Region A and Region B simultaneously. This results in a constraint on the scaling function in the overlapping critical region. We take the quantum Ising chain in an imaginary longitudinal field as an example. In this model, the critical region of the Yang-Lee edge singularity and the critical region of the ferromagnetic-paramagnetic phase transition overlap with each other. We numerically confirm the HKZS by simulating the driven dynamics in this overlapping critical region. The HKZSs in other models are also discussed.
Long and short time quantum dynamics III. Transients,
Czech Academy of Sciences Publication Activity Database
Špička, Václav; Velický, Bedřich; Kalvová, Anděla
2005-01-01
Roč. 29, - (2005), s. 196-212 ISSN 1386-9477 R&D Projects: GA ČR(CZ) GA202/04/0585; GA AV ČR(CZ) IAA1010404 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : non-equilibrium * Green functions * quantum transport equations * initial conditions Subject RIV: BE - Theoretical Physics Impact factor: 0.946, year: 2005
Slow dynamics at critical points: the field-theoretical perspective
International Nuclear Information System (INIS)
Gambassi, Andrea
2006-01-01
The dynamics at a critical point provides a simple instance of slow collective evolution, characterised by aging phenomena and by a violation of the fluctuation-dissipation relation even for long times. By virtue of the universality in critical phenomena it is possible to provide quantitative predictions for some aspects of these behaviours by field-theoretical methods. We review some of the theoretical results that have been obtained in recent years for the relevant (universal) quantities, such as the fluctuation-dissipation ratio, associated with the non-equilibrium critical dynamics
Critical quench dynamics in confined systems.
Collura, Mario; Karevski, Dragi
2010-05-21
We analyze the coherent quantum evolution of a many-particle system after slowly sweeping a power-law confining potential. The amplitude of the confining potential is varied in time along a power-law ramp such that the many-particle system finally reaches or crosses a critical point. Under this protocol we derive general scaling laws for the density of excitations created during the nonadiabatic sweep of the confining potential. It is found that the mean excitation density follows an algebraic law as a function of the sweeping rate with an exponent that depends on the space-time properties of the potential. We confirm our scaling laws by first order adiabatic calculation and exact results on the Ising quantum chain with a varying transverse field.
Nonequilibrium Physics at Short Time Scales: Formation of Correlations
International Nuclear Information System (INIS)
Peliti, L
2005-01-01
It is a happy situation when similar concepts and theoretical techniques can be applied to widely different physical systems because of a deep similarity in the situations being studied. The book illustrates this well; it focuses on the description of correlations in quantum systems out of equilibrium at very short time scales, prompted by experiments with short laser pulses in semiconductors, and in complex reactions in heavy nuclei. In both cases the experiments are characterized by nonlinear dynamics and by strong correlations out of equilibrium. In some systems there are also important finite-size effects. The book comprises several independent contributions of moderate length, and I sometimes felt that a more intensive effort in cross-coordination of the different contributions could have been of help. It is divided almost equally between theory and experiment. In the theoretical part, there is a thorough discussion both of the kinematic aspects (description of correlations) and the dynamical ones (evaluation of correlations). The experimental part is naturally divided according to the nature of the system: the interaction of pulsed lasers with matter on the one hand, and the correlations in finite-size systems (nanoparticles and nuclei) on the other. There is also a discussion on the dynamics of superconductors, a subject currently of great interest. Although an effort has been made to keep each contribution self-contained, I must admit that reading level is uneven. However, there are a number of thorough and stimulating contributions that make this book a useful introduction to the topic at the level of graduate students or researchers acquainted with quantum statistical mechanics. (book review)
Self-regulated dynamical criticality in human ECoG
Directory of Open Access Journals (Sweden)
Guillermo eSolovey
2012-07-01
Full Text Available Mounting experimental and theoretical results indicate that neural systems are poised near a critical state. In human subjects, however, most evidence comes from functional MRI studies, an indirect measurement of neuronal activity with poor temporal resolution. Electrocorticography (ECoG provides a unique window into human brain activity: each electrode records, with high temporal resolution, the activity resulting from the sum of the local field potentials of sim 10^5 neurons. We show that the human brain ECoG recordings display features of self-regulated dynamical criticality: dynamical modes of activation drift around the critical stability threshold, moving in and out of the unstable region and equilibrating the global dynamical state at a very fast time scale. Moreover, the analysis also reveals differences between the resting state and a motor task, associated with increased stability of a fraction of the dynamical modes.
Data collapse and critical dynamics in neuronal avalanche data
Butler, Thomas; Friedman, Nir; Dahmen, Karin; Beggs, John; Deville, Lee; Ito, Shinya
2012-02-01
The tasks of information processing, computation, and response to stimuli require neural computation to be remarkably flexible and diverse. To optimally satisfy the demands of neural computation, neuronal networks have been hypothesized to operate near a non-equilibrium critical point. In spite of their importance for neural dynamics, experimental evidence for critical dynamics has been primarily limited to power law statistics that can also emerge from non-critical mechanisms. By tracking the firing of large numbers of synaptically connected cortical neurons and comparing the resulting data to the predictions of critical phenomena, we show that cortical tissues in vitro can function near criticality. Among the most striking predictions of critical dynamics is that the mean temporal profiles of avalanches of widely varying durations are quantitatively described by a single universal scaling function (data collapse). We show for the first time that this prediction is confirmed in neuronal networks. We also show that the data have three additional features predicted by critical phenomena: approximate power law distributions of avalanche sizes and durations, samples in subcritical and supercritical phases, and scaling laws between anomalous exponents.
Ultra-short time sciences. From the atto-second to the peta-watts
International Nuclear Information System (INIS)
2000-01-01
This book presents the recent advances in the scientific and technical domains linked with ultra-short time physics. It deals first with the conceptual and technological aspects of ultra-intense and ultra-brief lasers. Then, it describes the different domains of research (atoms, molecules and aggregates; gaseous phase dynamics using the pump-probe technique; femto-chemistry in dense phase; condensed matter; plasma physics; consistent control; aerosols; functional femto-biology) and the different domains of application (medical diagnosis; ophthalmology; telecommunications; technological and industrial developments). A last part is devoted to the teaching of ultra-short time sciences. (J.S.)
Decision time horizon for music genre classification using short time features
DEFF Research Database (Denmark)
Ahrendt, Peter; Meng, Anders; Larsen, Jan
2004-01-01
In this paper music genre classification has been explored with special emphasis on the decision time horizon and ranking of tapped-delay-line short-time features. Late information fusion as e.g. majority voting is compared with techniques of early information fusion such as dynamic PCA (DPCA......). The most frequently suggested features in the literature were employed including mel-frequency cepstral coefficients (MFCC), linear prediction coefficients (LPC), zero-crossing rate (ZCR), and MPEG-7 features. To rank the importance of the short time features consensus sensitivity analysis is applied...
Short-time quantum propagator and Bohmian trajectories
de Gosson, Maurice; Hiley, Basil
2013-12-01
We begin by giving correct expressions for the short-time action following the work Makri-Miller. We use these estimates to derive an accurate expression modulo Δt2 for the quantum propagator and we show that the quantum potential is negligible modulo Δt2 for a point source, thus justifying an unfortunately largely ignored observation of Holland made twenty years ago. We finally prove that this implies that the quantum motion is classical for very short times.
Short-time quantum propagator and Bohmian trajectories
International Nuclear Information System (INIS)
Gosson, Maurice de; Hiley, Basil
2013-01-01
We begin by giving correct expressions for the short-time action following the work Makri–Miller. We use these estimates to derive an accurate expression modulo Δt 2 for the quantum propagator and we show that the quantum potential is negligible modulo Δt 2 for a point source, thus justifying an unfortunately largely ignored observation of Holland made twenty years ago. We finally prove that this implies that the quantum motion is classical for very short times.
Universal Critical Dynamics in High Resolution Neuronal Avalanche Data
Friedman, Nir; Ito, Shinya; Brinkman, Braden A. W.; Shimono, Masanori; DeVille, R. E. Lee; Dahmen, Karin A.; Beggs, John M.; Butler, Thomas C.
2012-05-01
The tasks of neural computation are remarkably diverse. To function optimally, neuronal networks have been hypothesized to operate near a nonequilibrium critical point. However, experimental evidence for critical dynamics has been inconclusive. Here, we show that the dynamics of cultured cortical networks are critical. We analyze neuronal network data collected at the individual neuron level using the framework of nonequilibrium phase transitions. Among the most striking predictions confirmed is that the mean temporal profiles of avalanches of widely varying durations are quantitatively described by a single universal scaling function. We also show that the data have three additional features predicted by critical phenomena: approximate power law distributions of avalanche sizes and durations, samples in subcritical and supercritical phases, and scaling laws between anomalous exponents.
Quantum critical dynamics for a prototype class of insulating antiferromagnets
Wu, Jianda; Yang, Wang; Wu, Congjun; Si, Qimiao
2018-06-01
Quantum criticality is a fundamental organizing principle for studying strongly correlated systems. Nevertheless, understanding quantum critical dynamics at nonzero temperatures is a major challenge of condensed-matter physics due to the intricate interplay between quantum and thermal fluctuations. The recent experiments with the quantum spin dimer material TlCuCl3 provide an unprecedented opportunity to test the theories of quantum criticality. We investigate the nonzero-temperature quantum critical spin dynamics by employing an effective O (N ) field theory. The on-shell mass and the damping rate of quantum critical spin excitations as functions of temperature are calculated based on the renormalized coupling strength and are in excellent agreement with experiment observations. Their T lnT dependence is predicted to be dominant at very low temperatures, which will be tested in future experiments. Our work provides confidence that quantum criticality as a theoretical framework, which is being considered in so many different contexts of condensed-matter physics and beyond, is indeed grounded in materials and experiments accurately. It is also expected to motivate further experimental investigations on the applicability of the field theory to related quantum critical systems.
Entanglement dynamics in critical random quantum Ising chain with perturbations
Energy Technology Data Exchange (ETDEWEB)
Huang, Yichen, E-mail: ychuang@caltech.edu
2017-05-15
We simulate the entanglement dynamics in a critical random quantum Ising chain with generic perturbations using the time-evolving block decimation algorithm. Starting from a product state, we observe super-logarithmic growth of entanglement entropy with time. The numerical result is consistent with the analytical prediction of Vosk and Altman using a real-space renormalization group technique. - Highlights: • We study the dynamical quantum phase transition between many-body localized phases. • We simulate the dynamics of a very long random spin chain with matrix product states. • We observe numerically super-logarithmic growth of entanglement entropy with time.
Short-time quantum propagator and Bohmian trajectories
Energy Technology Data Exchange (ETDEWEB)
Gosson, Maurice de, E-mail: maurice.degosson@gmail.com [Universität Wien, Fakultät für Mathematik, NuHAG, Wien 1090 (Austria); Hiley, Basil [University of London, Birkbeck College, Theoretical Physics Unit, London WC1E 7HX (United Kingdom)
2013-12-06
We begin by giving correct expressions for the short-time action following the work Makri–Miller. We use these estimates to derive an accurate expression modulo Δt{sup 2} for the quantum propagator and we show that the quantum potential is negligible modulo Δt{sup 2} for a point source, thus justifying an unfortunately largely ignored observation of Holland made twenty years ago. We finally prove that this implies that the quantum motion is classical for very short times.
Improving Music Genre Classification by Short-Time Feature Integration
DEFF Research Database (Denmark)
Meng, Anders; Ahrendt, Peter; Larsen, Jan
2005-01-01
Many different short-time features, using time windows in the size of 10-30 ms, have been proposed for music segmentation, retrieval and genre classification. However, often the available time frame of the music to make the actual decision or comparison (the decision time horizon) is in the range...... of seconds instead of milliseconds. The problem of making new features on the larger time scale from the short-time features (feature integration) has only received little attention. This paper investigates different methods for feature integration and late information fusion for music genre classification...
Anomalous quantum critical spin dynamics in YFe2Al10
Huang, K.; Tan, C.; Zhang, J.; Ding, Z.; MacLaughlin, D. E.; Bernal, O. O.; Ho, P.-C.; Baines, C.; Wu, L. S.; Aronson, M. C.; Shu, L.
2018-04-01
We report results of a muon spin relaxation (μ SR ) study of YFe2Al10 , a quasi-two-dimensional (2D) nearly ferromagnetic metal in which unconventional quantum critical behavior is observed. No static Fe2 + magnetism, with or without long-range order, is found down to 19 mK. The dynamic muon spin relaxation rate λ exhibits power-law divergences in temperature and magnetic field, the latter for fields that are too weak to affect the electronic spin dynamics directly. We attribute this to the proportionality of λ (ωμ,T ) to the dynamic structure factor S (ωμ,T ) , where ωμ≈105-107s-1 is the muon Zeeman frequency. These results suggest critical divergences of S (ωμ,T ) in both temperature and frequency. Power-law scaling and a 2D dissipative quantum XY model both yield forms for S (ω ,T ) that agree with neutron scattering data (ω ≈1012s-1 ). Extrapolation to μ SR frequencies agrees semiquantitatively with the observed temperature dependence of λ (ωμ,T ) , but predicts frequency independence for ωμ≪T , in extreme disagreement with experiment. We conclude that the quantum critical spin dynamics of YFe2Al10 is not well understood at low frequencies.
Optimum short-time polynomial regression for signal analysis
Indian Academy of Sciences (India)
A Sreenivasa Murthy
the Proceedings of European Signal Processing Conference. (EUSIPCO) 2008. ... In a seminal paper, Savitzky and Golay [4] showed that short-time polynomial modeling is ...... We next consider a linearly frequency-modulated chirp with an exponentially .... 1 http://www.physionet.org/physiotools/matlab/ECGwaveGen/.
Quantum Critical Point revisited by the Dynamical Mean Field Theory
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei
Dynamical mean field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low energy kink and the high energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high energy antiferromagnetic paramagnons. We use the frequency dependent four-point correlation function of spin operators to calculate the momentum dependent correction to the electron self energy. Our results reveal a substantial difference with the calculations based on the Spin-Fermion model which indicates that the frequency dependence of the the quasiparitcle-paramagnon vertices is an important factor. The authors are supported by Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant DE-FOA-0001276.
Quantum critical point revisited by dynamical mean-field theory
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.
2017-03-01
Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. We use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. By comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.
Quantum critical point revisited by dynamical mean-field theory
International Nuclear Information System (INIS)
Xu, Wenhu; Kotliar, Gabriel; Rutgers University, Piscataway, NJ; Tsvelik, Alexei M.
2017-01-01
Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.
The complex dynamics of wishful thinking: the critical positivity ratio.
Brown, Nicholas J L; Sokal, Alan D; Friedman, Harris L
2013-12-01
We examine critically the claims made by Fredrickson and Losada (2005) concerning the construct known as the "positivity ratio." We find no theoretical or empirical justification for the use of differential equations drawn from fluid dynamics, a subfield of physics, to describe changes in human emotions over time; furthermore, we demonstrate that the purported application of these equations contains numerous fundamental conceptual and mathematical errors. The lack of relevance of these equations and their incorrect application lead us to conclude that Fredrickson and Losada's claim to have demonstrated the existence of a critical minimum positivity ratio of 2.9013 is entirely unfounded. More generally, we urge future researchers to exercise caution in the use of advanced mathematical tools, such as nonlinear dynamics, and in particular to verify that the elementary conditions for their valid application have been met. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Critical dynamics of an interacting magnetic nanoparticle system
DEFF Research Database (Denmark)
Hansen, Mikkel Fougt; Jonsson, P.E.; Nordblad, P.
2002-01-01
Effects of dipole-dipole interactions on the magnetic relaxation have been investigated for three Fe-C nanoparticle samples with volume concentrations of 0.06, 5 and 17 vol%. While both the 5 and 17 vol% samples exhibit collective behaviour due to dipolar interactions, only the 17 vol% sample dis...... displays critical behaviour close to its transition temperature. The behaviour of the 5 vol% sample can be attributed to a mixture of collective and single-particle dynamics....
Network Randomization and Dynamic Defense for Critical Infrastructure Systems
Energy Technology Data Exchange (ETDEWEB)
Chavez, Adrian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Mitchell Tyler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamlet, Jason [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stout, William M.S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Erik [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-04-01
Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and development to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.
Short time propagation of a singular wave function: Some surprising results
Marchewka, A.; Granot, E.; Schuss, Z.
2007-08-01
The Schrödinger evolution of an initially singular wave function was investigated. First it was shown that a wide range of physical problems can be described by initially singular wave function. Then it was demonstrated that outside the support of the initial wave function the time evolution is governed to leading order by the values of the wave function and its derivatives at the singular points. Short-time universality appears where it depends only on a single parameter—the value at the singular point (not even on its derivatives). It was also demonstrated that the short-time evolution in the presence of an absorptive potential is different than in the presence of a nonabsorptive one. Therefore, this dynamics can be harnessed to the determination whether a potential is absorptive or not simply by measuring only the transmitted particles density.
Nonequilibrium dynamic critical scaling of the quantum Ising chain.
Kolodrubetz, Michael; Clark, Bryan K; Huse, David A
2012-07-06
We solve for the time-dependent finite-size scaling functions of the one-dimensional transverse-field Ising chain during a linear-in-time ramp of the field through the quantum critical point. We then simulate Mott-insulating bosons in a tilted potential, an experimentally studied system in the same equilibrium universality class, and demonstrate that universality holds for the dynamics as well. We find qualitatively athermal features of the scaling functions, such as negative spin correlations, and we show that they should be robustly observable within present cold atom experiments.
Critical bifurcation surfaces of 3D discrete dynamics
Directory of Open Access Journals (Sweden)
Michael Sonis
2000-01-01
Full Text Available This paper deals with the analytical representation of bifurcations of each 3D discrete dynamics depending on the set of bifurcation parameters. The procedure of bifurcation analysis proposed in this paper represents the 3D elaboration and specification of the general algorithm of the n-dimensional linear bifurcation analysis proposed by the author earlier. It is proven that 3D domain of asymptotic stability (attraction of the fixed point for a given 3D discrete dynamics is bounded by three critical bifurcation surfaces: the divergence, flip and flutter surfaces. The analytical construction of these surfaces is achieved with the help of classical Routh–Hurvitz conditions of asymptotic stability. As an application the adjustment process proposed by T. Puu for the Cournot oligopoly model is considered in detail.
Phase dynamics of low critical current density YBCO Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Massarotti, D., E-mail: dmassarotti@na.infn.it [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, 80126 Napoli (Italy); Stornaiuolo, D. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); Rotoli, G. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy); Carillo, F. [Nest, Scuola Normale Superiore, Piazza San Silvestro 12, 56126 Pisa (Italy); Galletti, L. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, 80126 Napoli (Italy); Longobardi, L. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy); American Physical Society, 1 Research Road, Ridge, NY 11961 (United States); Beltram, F. [Nest, Scuola Normale Superiore, Piazza San Silvestro 12, 56126 Pisa (Italy); Tafuri, F. [CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, 80126 Napoli (Italy); Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy)
2014-08-15
Highlights: • We study the phase dynamics of YBaCuO Josephson junctions using various tools. • We derive information on the dissipation in a wide range of transport parameters. • Dissipation in such devices can be described by a frequency dependent damping model. • The use of different substrates allows us to tune the shell circuit. - Abstract: High critical temperature superconductors (HTS) based devices can have impact in the study of the phase dynamics of Josephson junctions (JJs) thanks to the wide range of junction parameters they offer and to their unconventional properties. Measurements of current–voltage characteristics and of switching current distributions constitute a direct way to classify different regimes of the phase dynamics and of the transport, also in nontrivial case of the moderately damped regime (MDR). MDR is going to be more and more common in JJs with advances in nanopatterning superconductors and synthesizing novel hybrid systems. Distinctive signatures of macroscopic quantum tunneling and of thermal activation in presence of different tunable levels of dissipation have been detected in YBCO grain boundary JJs. Experimental data are supported by Monte Carlo simulations of the phase dynamics, in a wide range of temperatures and dissipation levels. This allows us to quantify dissipation in the MDR and partially reconstruct a phase diagram as guideline for a wide range of moderately damped systems.
Short-time perturbation theory and nonrelativistic duality
International Nuclear Information System (INIS)
Whitenton, J.B.; Durand, B.; Durand, L.
1983-01-01
We give a simple proof of the nonrelativistic duality relation 2 sigma/sub bound/>roughly-equal 2 sigma/sub free/> for appropriate energy averages of the cross sections for e + e - →(qq-bar bound states) and e + e - →(free qq-bar pair), and calculate the corrections to the relation by relating W 2 sigma to the Fourier transform of the Feynman propagation function and developing a short-time perturbation series for that function. We illustrate our results in detail for simple power-law potentials and potentials which involve combinations of powers
Directional short-time Fourier transform of distributions
Directory of Open Access Journals (Sweden)
Katerina Hadzi-Velkova Saneva
2016-04-01
Full Text Available Abstract In this paper we consider the directional short-time Fourier transform (DSTFT that was introduced and investigated in (Giv in J. Math. Anal. Appl. 399:100-107, 2013. We analyze the DSTFT and its transpose on test function spaces S ( R n $\\mathcal {S}(\\mathbb {R}^{n}$ and S ( Y 2 n $\\mathcal {S}(\\mathbb {Y}^{2n}$ , respectively, and prove the continuity theorems on these spaces. Then the obtained results are used to extend the DSTFT to spaces of distributions.
The case of escape probability as linear in short time
Marchewka, A.; Schuss, Z.
2018-02-01
We derive rigorously the short-time escape probability of a quantum particle from its compactly supported initial state, which has a discontinuous derivative at the boundary of the support. We show that this probability is linear in time, which seems to be a new result. The novelty of our calculation is the inclusion of the boundary layer of the propagated wave function formed outside the initial support. This result has applications to the decay law of the particle, to the Zeno behaviour, quantum absorption, time of arrival, quantum measurements, and more.
General Critical Properties of the Dynamics of Scientific Discovery
Energy Technology Data Exchange (ETDEWEB)
Bettencourt, L. M. A. (LANL); Kaiser, D. I. (MIT)
2011-05-31
Scientific fields are difficult to define and compare, yet there is a general sense that they undergo similar stages of development. From this point of view it becomes important to determine if these superficial similarities can be translated into a general framework that would quantify the general advent and subsequent dynamics of scientific ideas. Such a framework would have important practical applications of allowing us to compare fields that superficially may appear different, in terms of their subject matter, research techniques, typical collaboration size, etc. Particularh' important in a field's history is the moment at which conceptual and technical unification allows widespread exchange of ideas and collaboration, at which point networks of collaboration show the analog of a percolation phenomenon, developing a giant connected component containing most authors. Here we investigate the generality of this topological transition in the collaboration structure of scientific fields as they grow and become denser. We develop a general theoretical framework in which each scientific field is an instantiation of the same large-scale topological critical phenomenon. We consider whether the evidence from a variety of specific fields is consistent with this picture, and estimate critical exponents associated with the transition. We then discuss the generality of the phenomenon and to what extent we may expect other scientific fields — including very large ones — to follow the same dynamics.
Evaluation of scaling invariance embedded in short time series.
Directory of Open Access Journals (Sweden)
Xue Pan
Full Text Available Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2. Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03 and sharp confidential interval (standard deviation ≤0.05. Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.
Evaluation of scaling invariance embedded in short time series.
Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping
2014-01-01
Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.
Extracting biologically significant patterns from short time series gene expression data
Directory of Open Access Journals (Sweden)
McGinnis Thomas
2009-08-01
Full Text Available Abstract Background Time series gene expression data analysis is used widely to study the dynamics of various cell processes. Most of the time series data available today consist of few time points only, thus making the application of standard clustering techniques difficult. Results We developed two new algorithms that are capable of extracting biological patterns from short time point series gene expression data. The two algorithms, ASTRO and MiMeSR, are inspired by the rank order preserving framework and the minimum mean squared residue approach, respectively. However, ASTRO and MiMeSR differ from previous approaches in that they take advantage of the relatively few number of time points in order to reduce the problem from NP-hard to linear. Tested on well-defined short time expression data, we found that our approaches are robust to noise, as well as to random patterns, and that they can correctly detect the temporal expression profile of relevant functional categories. Evaluation of our methods was performed using Gene Ontology (GO annotations and chromatin immunoprecipitation (ChIP-chip data. Conclusion Our approaches generally outperform both standard clustering algorithms and algorithms designed specifically for clustering of short time series gene expression data. Both algorithms are available at http://www.benoslab.pitt.edu/astro/.
Sanlı, Ceyda; Saitoh, Kuniyasu; Luding, Stefan; van der Meer, Devaraj
2014-09-01
When a densely packed monolayer of macroscopic spheres floats on chaotic capillary Faraday waves, a coexistence of large scale convective motion and caging dynamics typical for glassy systems is observed. We subtract the convective mean flow using a coarse graining (homogenization) method and reveal subdiffusion for the caging time scales followed by a diffusive regime at later times. We apply the methods developed to study dynamic heterogeneity and show that the typical time and length scales of the fluctuations due to rearrangements of observed particle groups significantly increase when the system approaches its largest experimentally accessible packing concentration. To connect the system to the dynamic criticality literature, we fit power laws to our results. The resultant critical exponents are consistent with those found in densely packed suspensions of colloids.
Static and Dynamic Verification of Critical Software for Space Applications
Moreira, F.; Maia, R.; Costa, D.; Duro, N.; Rodríguez-Dapena, P.; Hjortnaes, K.
Space technology is no longer used only for much specialised research activities or for sophisticated manned space missions. Modern society relies more and more on space technology and applications for every day activities. Worldwide telecommunications, Earth observation, navigation and remote sensing are only a few examples of space applications on which we rely daily. The European driven global navigation system Galileo and its associated applications, e.g. air traffic management, vessel and car navigation, will significantly expand the already stringent safety requirements for space based applications Apart from their usefulness and practical applications, every single piece of onboard software deployed into the space represents an enormous investment. With a long lifetime operation and being extremely difficult to maintain and upgrade, at least when comparing with "mainstream" software development, the importance of ensuring their correctness before deployment is immense. Verification &Validation techniques and technologies have a key role in ensuring that the onboard software is correct and error free, or at least free from errors that can potentially lead to catastrophic failures. Many RAMS techniques including both static criticality analysis and dynamic verification techniques have been used as a means to verify and validate critical software and to ensure its correctness. But, traditionally, these have been isolated applied. One of the main reasons is the immaturity of this field in what concerns to its application to the increasing software product(s) within space systems. This paper presents an innovative way of combining both static and dynamic techniques exploiting their synergy and complementarity for software fault removal. The methodology proposed is based on the combination of Software FMEA and FTA with Fault-injection techniques. The case study herein described is implemented with support from two tools: The SoftCare tool for the SFMEA and SFTA
Short-time existence of solutions for mean-field games with congestion
Gomes, Diogo A.
2015-11-20
We consider time-dependent mean-field games with congestion that are given by a Hamilton–Jacobi equation coupled with a Fokker–Planck equation. These models are motivated by crowd dynamics in which agents have difficulty moving in high-density areas. The congestion effects make the Hamilton–Jacobi equation singular. The uniqueness of solutions for this problem is well understood; however, the existence of classical solutions was only known in very special cases, stationary problems with quadratic Hamiltonians and some time-dependent explicit examples. Here, we demonstrate the short-time existence of C∞ solutions for sub-quadratic Hamiltonians.
Identification of the structure parameters using short-time non-stationary stochastic excitation
Jarczewska, Kamila; Koszela, Piotr; Śniady, PaweŁ; Korzec, Aleksandra
2011-07-01
In this paper, we propose an approach to the flexural stiffness or eigenvalue frequency identification of a linear structure using a non-stationary stochastic excitation process. The idea of the proposed approach lies within time domain input-output methods. The proposed method is based on transforming the dynamical problem into a static one by integrating the input and the output signals. The output signal is the structure reaction, i.e. structure displacements due to the short-time, irregular load of random type. The systems with single and multiple degrees of freedom, as well as continuous systems are considered.
Quality of Standard Reference Materials for Short Time Activation Analysis
International Nuclear Information System (INIS)
Ismail, S.S.; Oberleitner, W.
2003-01-01
Some environmental reference materials (CFA-1633 b, IAEA-SL-1, SARM-1,BCR-176, Coal-1635, IAEA-SL-3, BCR-146, and SRAM-5) were analysed by short-time activation analysis. The results show that these materials can be classified in three groups, according to their activities after irradiation. The obtained results were compared in order to create a quality index for determination of short-lived nuclides at high count rates. It was found that Cfta is not a suitable standard for determining very short-lived nuclides (half-lives<1 min) because the activity it produces is 15-fold higher than that SL-3. Biological reference materials, such as SRM-1571, SRM-1573, SRM-1575, SRM-1577, IAEA-392, and IAEA-393, were also investigated by a higher counting efficiency system. The quality of this system and its well-type detector for investigating short-lived nuclides was discussed
Short-time action electric generators to power physical devices
International Nuclear Information System (INIS)
Glebov, I.A.; Kasharskij, Eh.G.; Rutberg, F.G.; Khutoretskij, G.M.
1982-01-01
Requirements to be met by power-supply sources of the native electrophysical facilities have been analyzed and trends in designing foreign electric machine units of short-time action have been considered. Specifications of a generator, manufactured in the form of synchronous bipolar turbogenerator with an all-forged rotor with indirect air cooling of the rotor and stator windings are presented. Front parts of the stator winding are additionally fixed using glass-textolite rings, brackets and gaskets. A flywheel, manufactured in the form of all-forged steel cylinder is joined directly with the generator rotor by means of a half-coupling. An acceleration asynchronous engine with a phase rotor of 4 MW nominal capacity is located on the opposite side of the flywheel. The generator peak power is 242 MVxA; power factor = 0.9; energy transferred to the load 5per 1 pulse =00 MJ; the flywheel weight 81 t
Mechanistic models for cancer development after short time radiation exposure
International Nuclear Information System (INIS)
Kottbauer, M. M.
1997-12-01
In this work two biological based models were developed. First the single-hit model for solid tumors (SHM-S) and second the single-hit model for leukemia (SHM-L). These models are a further development of the Armitage-Doll model for the special case of a short time radiation exposure. The basis of the models is the multistage process of carcinogeneses. The single-hit models provide simultaneously the age-dependent cancer-rate of spontaneous and radiation induced tumors as well as the dose-effect relationships at any age after exposure. The SHM-S leads to a biological based dose-effect relationship, which is similar to the relative risk model suggested by the ICRP 60. The SHM-S describes the increased mortality rate of the bomb survivors more accurate than the relative risk model. The SHM-L results in an additive dose-effect relationship. It is shown that only small differences in the derivation of the two models lead to the two dose-effect relationships. Beside the radiation exposure the new models consider the decrease of the cancer mortality rate at higher ages (age>75) which can be traced back mainly to three causes: competitive causes of death, reduction of cell proliferation and reduction of risk groups. The single-hit models also consider children cancer, the different rates of incidence and mortality, influence of the immune system and the cell-killing effect. (author)
Short-time home coming project in evacuation zone
International Nuclear Information System (INIS)
Tatsuzaki, Hideo
2011-01-01
Accident at Fukushima Daiichi Nuclear Power Plants (NPPs) forced neighboring residents to evacuate, and evacuation zone (20 km radius from NPPs) was defined as highly contaminated and designated as no-entry zones. Residents had been obliged to live a refugee life for a longer period than expected. Short-time home coming project was initiated according to their requests. They came to the meeting place called transfer place (20 - 30 km radius from NPPs), wore protective clothing and personal dosimeter with having drinking water and came home in evacuation zone with staffs by bus. Their healthcare management professionals were fully prepared for emergency. After collecting necessary articles at home within two hours, they returned to the meeting place by bus for screening and dressing, and went back to refuge house. If screening data were greater than 13 kcpm using GM counters, partial body decontamination had been conducted by wiping and if greater than 100 kcpm, whole body decontamination was requested but not conducted. Dose rate of residents and staffs was controlled less than 1 mSv, which was alarm level of personal dosimeter. Stable iodine was prepared but actually not used. (T. Tanaka)
The short time Fourier transform and local signals
Okumura, Shuhei
In this thesis, I examine the theoretical properties of the short time discrete Fourier transform (STFT). The STFT is obtained by applying the Fourier transform by a fixed-sized, moving window to input series. We move the window by one time point at a time, so we have overlapping windows. I present several theoretical properties of the STFT, applied to various types of complex-valued, univariate time series inputs, and their outputs in closed forms. In particular, just like the discrete Fourier transform, the STFT's modulus time series takes large positive values when the input is a periodic signal. One main point is that a white noise time series input results in the STFT output being a complex-valued stationary time series and we can derive the time and time-frequency dependency structure such as the cross-covariance functions. Our primary focus is the detection of local periodic signals. I present a method to detect local signals by computing the probability that the squared modulus STFT time series has consecutive large values exceeding some threshold after one exceeding observation following one observation less than the threshold. We discuss a method to reduce the computation of such probabilities by the Box-Cox transformation and the delta method, and show that it works well in comparison to the Monte Carlo simulation method.
Application of short-time activation analysis in the sciences
International Nuclear Information System (INIS)
Grass, F.
1991-01-01
Short-time activation analysis has proved to be a valuable tool in nearly all fields of science. To take full advantage of this technique, it is favorable to use a fast transfer system and a high resolution high rate gamma-spectroscopy system for short lived gamma-emitters and a Cherenkov detector for the determination of hard beta-emitters. It is then possible to utilize sub-minute nuclides Li-8 (740 ms), B-12 (20 ms), F-20 (11.1 s), Y-89m (16 s), and Pb-207m (800 ms) for the determination of these elements. Besides these sub-minute nuclides which constitute the only possibility for neutron activation analysis of these elements there are a number of other elements which form longer lived nuclides on short irradiation. The analysis of the halogenides F, Cl, Br, I in waste water of a sewage incineration plant can be achieved with a single 20 s irradiation and two consecutive measurement of 20 and 600 s using Cl-38m, F-20, Br-79m as well as the longer lived Cl-38, Br-80, I-128
Analysis of construction dynamic plan using fuzzy critical path method
Directory of Open Access Journals (Sweden)
Kurij Kazimir V.
2014-01-01
Full Text Available Critical Path Method (CPM technique has become widely recognized as valuable tool for the planning and scheduling large construction projects. The aim of this paper is to present an analytical method for finding the Critical Path in the precedence network diagram where the duration of each activity is represented by a trapezoidal fuzzy number. This Fuzzy Critical Path Method (FCPM uses a defuzzification formula for trapezoidal fuzzy number and applies it on the total float (slack time for each activity in the fuzzy precedence network to find the critical path. The method presented in this paper is very effective in determining the critical activities and finding the critical paths.
Research on resistance characteristics of YBCO tape under short-time DC large current impact
Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen
2017-06-01
Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.
Rigorous lower bound on the dynamic critical exponent of some multilevel Swendsen-Wang algorithms
International Nuclear Information System (INIS)
Li, X.; Sokal, A.D.
1991-01-01
We prove the rigorous lower bound z exp ≥α/ν for the dynamic critical exponent of a broad class of multilevel (or ''multigrid'') variants of the Swendsen-Wang algorithm. This proves that such algorithms do suffer from critical slowing down. We conjecture that such algorithms in fact lie in the same dynamic universality class as the stanard Swendsen-Wang algorithm
Job quality of short-time workers and perception and support from their managers
坂爪, 洋美
2017-01-01
The purpose of this study was to clarify the relationship between the characteristics of job quality that short-time workers occupied and the managers’ perception and support whose member has used short-time working hour system. A total of 559 first-line managers who has a member using short-time working hour system completed a web-based survey assessing job quality of short-time workers , the risk of using short-timeworking hour system, career perspective of short-time workers, and the suppo...
On the Option Effects of Short-Time Work Arrangements
Huisman, Kuno; Thijssen, J.J.J.
2018-01-01
We analyse the short term work (STW) regulations that several OECD countries introduced after the 2007 financial crisis. We view these measures as a collection of real options and study the dynamic effect of STW on the endogenous liquidation decision of the firm. While STW delays a firm’s
Dynamic Diversity: Toward a Contextual Understanding of Critical Mass
Garces, Liliana M.; Jayakumar, Uma M.
2014-01-01
Through an analysis of relevant social science evidence, this article provides a deeper understanding of critical mass, a concept that has become central in litigation efforts related to affirmative action admissions policies that seek to further the educational benefits of diversity. We demonstrate that the concept of critical mass requires an…
Sensitivity Analysis of the Critical Speed in Railway Vehicle Dynamics
DEFF Research Database (Denmark)
Bigoni, Daniele; True, Hans; Engsig-Karup, Allan Peter
2013-01-01
-axle Cooperrider bogie, in order to study the sensitivity of the critical speed with respect to suspension parameters. The importance of a certain suspension component is expressed by the variance in critical speed that is ascribable to it. This proves to be useful in the identification of parameters for which...
The use of Matlab for colour fuzzy representation of multichannel EEG short time spectra.
Bigan, C; Strungaru, R
1998-01-01
During the last years, a lot of EEG research efforts was directed to intelligent methods for automatic analysis of data from multichannel EEG recordings. However, all the applications reported were focused on specific single tasks like detection of one specific "event" in the EEG signal: spikes, sleep spindles, epileptic seizures, K complexes, alpha or other rhythms or even artefacts. The aim of this paper is to present a complex system being able to perform a representation of the dynamic changes in frequency components of each EEG channel. This representation uses colours as a powerful means to show the only one frequency range chosen from the shortest epoch of signal able to be processed with the conventional "Short Time Fast Fourier Transform" (S.T.F.F.T.) method.
DEFF Research Database (Denmark)
Barletta, Andrea; Nicolato, Elisa; Pagliarani, Stefano
error bounds for VIX futures, options and implied volatilities. In particular, we derive exact asymptotic results for VIX implied volatilities, and their sensitivities, in the joint limit of short time-to-maturity and small log-moneyness. The obtained expansions are explicit, based on elementary...... approximations of equity (SPX) options. However, the generalizations needed to cover the case of VIX options are by no means straightforward as the dynamics of the underlying VIX futures are not explicitly known. To illustrate the accuracy of our technique, we provide numerical implementations for a selection...... functions and they neatly uncover how the VIX skew depends on the specific choice of the volatility and the vol-of-vol processes. Our results are based on perturbation techniques applied to the infinitesimal generator of the underlying process. This methodology has been previously adopted to derive...
Critical Dynamics : The Expansion of the Master Equation Including a Critical Point
Dekker, H.
1980-01-01
In this thesis it is shown how to solve the master equation for a Markov process including a critical point by means of successive approximations in terms of a small parameter. A critical point occurs if, by adjusting an externally controlled quantity, the system shows a transition from normal
Reactor Dynamics Experiments with a Sub-Critical Assembly
International Nuclear Information System (INIS)
Miley, G.H.; Yang, Y.; Wu, L.; Momota, H.
2004-01-01
A resurgence in use of nuclear power is now underway worldwide. However due to the shutdown of many university research reactors , student laboratories must rely more heavily on use of sub-critical assemblies. Here a driven sub-critical is described that uses a cylindrical Inertial Electrostatic Confinement (IEC) device to provide a fusion neutron source. The small IEC neutron source would be inserted in a fuel element position, with its power input controlled externally at a control panel. This feature opens the way to use of the critical assembly for a number of transient experiments such as sub-critical pulsing and neutron wave propagation. That in turn adds important new insights and excitement for the student teaching laboratory
International Nuclear Information System (INIS)
Schikorr, W.M.
2001-01-01
The neutron kinetic and the reactor dynamic behavior of Accelerator Driven Systems (ADS) is significantly different from those of conventional power reactor systems currently in use for the production of power. It is the objective of this study to examine and to demonstrate the intrinsic differences of the kinetic and dynamic behavior of accelerator driven systems to typical plant transient initiators in comparison to the known, kinetic and dynamic behavior of critical thermal and fast reactor systems. It will be shown that in sub-critical assemblies, changes in reactivity or in the external neutron source strength lead to an asymptotic power level essentially described by the instantaneous power change (i.e. prompt jump). Shutdown of ADS operating at high levels of sub-criticality, (i.e. k eff ∼0.99), without the support of reactivity control systems (such as control or safety rods), may be problematic in case the ability of cooling of the core should be impaired (i.e. loss of coolant flow). In addition, the dynamic behavior of sub-critical systems to typical plant transients such as protected or unprotected loss of flow (LOF) or heat sink (LOH) transients are not necessarily substantially different from the plant dynamic behavior of critical systems if the reactivity feedback coefficients of the ADS design are unfavorable. As expected, the state of sub-criticality and the temperature feedback coefficients, such as Doppler and coolant temperature coefficient, play dominant roles in determining the course and direction of plant transients. Should the combination of these safety coefficients be very unfavorable, not much additional margin in safety may be gained by making a critical system only sub-critical (i.e. k eff ∼0.95). A careful optimization procedure between the selected operating level of sub-criticality, the safety reactivity coefficients and the possible need for additional reactivity control systems seems, therefore, advisable during the early
Nonlinear Dynamics and Nucleation Kinetics in Near-Critical Liquids
Patashinski, Alexander Z.; Ratner, Mark A.; Pines, Vladimir
1996-01-01
The objective of our study is to model the nonlinear behavior of a near-critical liquid following a rapid change of the temperature and/or other thermodynamic parameters (pressure, external electric or gravitational field). The thermodynamic critical point is manifested by large, strongly correlated fluctuations of the order parameter (particle density in liquid-gas systems, concentration in binary solutions) in the critical range of scales. The largest critical length scale is the correlation radius r(sub c). According to the scaling theory, r(sub c) increases as r(sub c) = r(sub 0)epsilon(exp -alpha) when the nondimensional distance epsilon = (T - T(sub c))/T(sub c) to the critical point decreases. The normal gravity alters the nature of correlated long-range fluctuations when one reaches epsilon approximately equal to 10(exp -5), and correspondingly the relaxation time, tau(r(sub c)), is approximately equal to 10(exp -3) seconds; this time is short when compared to the typical experimental time. Close to the critical point, a rapid, relatively small temperature change may perturb the thermodynamic equilibrium on many scales. The critical fluctuations have a hierarchical structure, and the relaxation involves many length and time scales. Above the critical point, in the one-phase region, we consider the relaxation of the liquid following a sudden temperature change that simultaneously violates the equilibrium on many scales. Below T(sub c), a non-equilibrium state may include a distribution of small scale phase droplets; we consider the relaxation of such a droplet following a temperature change that has made the phase of the matrix stable.
Blume, Steffen O P; Sansavini, Giovanni
2017-12-01
Complex dynamical systems face abrupt transitions into unstable and catastrophic regimes. These critical transitions are triggered by gradual modifications in stressors, which push the dynamical system towards unstable regimes. Bifurcation analysis can characterize such critical thresholds, beyond which systems become unstable. Moreover, the stochasticity of the external stressors causes small-scale fluctuations in the system response. In some systems, the decomposition of these signal fluctuations into precursor signals can reveal early warning signs prior to the critical transition. Here, we present a dynamical analysis of a power system subjected to an increasing load level and small-scale stochastic load perturbations. We show that the auto- and cross-correlations of bus voltage magnitudes increase, leading up to a Hopf bifurcation point, and further grow until the system collapses. This evidences a gradual transition into a state of "critical coupling," which is complementary to the established concept of "critical slowing down." Furthermore, we analyze the effects of the type of load perturbation and load characteristics on early warning signs and find that gradient changes in the autocorrelation provide early warning signs of the imminent critical transition under white-noise but not for auto-correlated load perturbations. Furthermore, the cross-correlation between all voltage magnitude pairs generally increases prior to and beyond the Hopf bifurcation point, indicating "critical coupling," but cannot provide early warning indications. Finally, we show that the established early warning indicators are oblivious to limit-induced bifurcations and, in the case of the power system model considered here, only react to an approaching Hopf bifurcation.
Toward Control of Universal Scaling in Critical Dynamics
2016-01-27
program that aims to synergistically combine two powerful and very successful theories for non-linear stochastic dynamics of cooperative multi...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER Uwe Tauber Uwe C. T? uber , Michel Pleimling, Daniel J. Stilwell 611102 c. THIS PAGE The public reporting burden...to synergistically combine two powerful and very successful theories for non-linear stochastic dynamics of cooperative multi-component systems, namely
Critical Dynamics of Burst Instabilities in the Portevin-Le Chatelier Effect
International Nuclear Information System (INIS)
D'Anna, Gianfranco; Nori, Franco
2000-01-01
We investigate the Portevin-Le Chatelier effect (PLC), by compressing Al-Mg alloys in a very large deformation range, and interpret the results from the viewpoint of phase transitions and critical phenomena. The system undergoes two dynamical phase transitions between intermittent (or ''jerky'') and ''laminar'' plastic dynamic phases. Near these two dynamic critical points, the order parameter 1/τ of the PLC effect exhibits large fluctuations, and ''critical slowing down'' (i.e., the number τ of bursts, or plastic instabilities, per unit time slows down considerably)
Spin dynamics in Tb studied by critical neutron scattering
DEFF Research Database (Denmark)
Dietrich, O. W.; Als-Nielsen, Jens Aage
1971-01-01
The inelasticity of the critical neutron scattering in Tb was measured at and above the Neel temperature. In the hydrodynamic region the line width Gamma (q=0, kappa 1)=C kappa z1, with z=1.4+or-0.1 and c=4.3+or-0.3 meVAAz. This result deviates from the conventional theory, which predicts...
Dynamics and Control of Distillation Columns - A Critical Survey
Directory of Open Access Journals (Sweden)
Sigurd Skogestad
1997-07-01
Full Text Available Distillation column dynamics and control have been viewed by many as a very mature or even dead field. However, as is discussed in this paper significant new results have appeared over the last 5-10 years. These results include multiple steady states and instability in simple columns with ideal thermodynamics (which was believed to be impossible, the understanding of the difference between various control configurations and the systematic transformation between these, the feasibility of using the distillate-bottom structure, for control (which was believed to be impossible, the importance of flow dynamics for control studies, the fundamental problems in identifying models from open-loops responses, the use of simple regression estimators to estimate composition from temperatures, and an improved general understanding of the dynamic behavior of distillation columns which includes a better understanding of the fundamental difference between internal and external flow, simple formulas for estimating the dominant time constant, and a derivation of the linearizing effect of logarithmic transformations. These issues apply to all columns, even for ideal mixtures and simple columns with only two products. In addition, there have been significant advances for cases with complex thermodynamics and complex column configurations. These include the behavior and control of azeotropic distillation columns, and the possible complex dynamics of nonideal mixtures and of interlinked columns. However, both for the simple and more complex cases there are still a number of areas where further research is needed.
Kawasaki dynamics with two types of particles : critical droplets
Hollander, den W.Th.F.; Nardi, F.R.; Troiani, A.
2012-01-01
This is the third in a series of three papers in which we study a two-dimensional lattice gas consisting of two types of particles subject to Kawasaki dynamics at low temperature in a large finite box with an open boundary. Each pair of particles occupying neighboring sites has a negative binding
Kawasaki dynamics with two types of particles : critical droplets
Hollander, den W.Th.F.; Nardi, F.R.; Troiani, A.
2012-01-01
This is the third in a series of three papers in which we study a two-dimensional lattice gas consisting of two types of particles subject to Kawasaki dynamics at low temperature in a large ¿nite box with an open boundary. Each pair of particles occupying neighboring sites has a negative binding
Short time series analysis of Didymosphenia geminata blooming in the Oreti River, New Zealand
Garcia, T.; Kilroy, C.; Larned, S.; Packman, A. I.; Kumar, P.
2010-12-01
The mat-forming diatom Didymosphenia geminata was introduced to New Zealand in 2004, and subsequently spread to many rivers on the south island. D geminata mats are exceptionally dense and thick. Extensive blooms of this introduced organism have substantially modified the benthic environment in many New Zealand rivers, but the factors that contribute to D. geminata blooming are not well understood. We synthesized a sequence of observations of D. geminata areal coverage and thickness to examine physical and chemical controls on the growth and persistence of D germinata. We analyzed the best available time series on the distribution of this organism in New Zealand, observations in the Oreti River every 15 days spanning April 2006 to May 2007. During this period, mean D. geminata coverage of the river bed was ~52% and the mean mat thickness was ~6 mm. Relationships between time-series observations of D. geminata and 13 different physical and chemical variables were analyzed using linear and nonlinear methods. Areal cover and thickness of D geminata mats were found to be influenced by both slow and fast dynamic processes. The spread of the organism, in terms of % cover, was highly correlated with conductivity, ammonium, nitrate, dissolved oxygen, and total nitrogen with short time lags (fast dynamics). Moreover, water clarity, cloud cover, and flow were highly correlated with % cover with long time lags, indicating that these conditions exert long-term control on D. geminata growth. Areal coverage and thickness were found to be highly correlated, but the variables associated with slow and fast dynamics of these two measures were not identical. The variables found to be highly correlated with D. germinata thickness and represented fast dynamics were temperature, dissolved oxygen, conductivity, nitrate, and total nitrogen. Additionally, the variables influencing the slow dynamics of D. germinata thickness were flow, water clarity, turbidity and total phosphorous.
The Dynamics of Agile Practices for Safety-Critical Software Development
DEFF Research Database (Denmark)
Nielsen, Peter Axel; Tordrup Heeager, Lise
2017-01-01
This short paper reports from a case study of the agile development of safety-critical software. It utilizes a framework of dynamic relationships between agile practices with the purpose of demonstrating the utility of the framework to understand a case in its context, and it shows significant...... dynamics. The study is concluded by pointing at which further research on the framework is required to use the framework in managing the agile development of safety-critical software....
Critical properties of Sudden Quench Dynamics in the anisotropic XY Model
Guo, Hongli; Liu, Zhao; Fan, Heng; Chen, Shu
2010-01-01
We study the zero temperature quantum dynamical critical behavior of the anisotropic XY chain under a sudden quench in a transverse field. We demonstrate theoretically that both quench magnetic susceptibility and two-particle quench correlation can be used to describe the dynamical quantum phase transition (QPT) properties. Either the quench magnetic susceptibility or the derivative of correlation functions as a function of initial magnetic field $a$ exhibits a divergence at the critical poin...
SABIL, SYAHRIANA
2015-01-01
2015 SYAHRIANA SABIL (I 111 11 273). Pasteurisasi High Temperature Short Time (HTST) Susu terhadap Listeria monocytogenes pada Penyimpanan Refrigerator. Dibimbing oleh RATMAWATI MALAKA dan FARIDA NUR YULIATI. Pasteurisasi High Temperature Short Time (HTST) merupakan proses pemanasan susu di bawah titik didih yang diharapkan dapat membunuh Listeria monocytogenes (L. monocytogenes) karena bersifat patogen dan mengakibatkan listeriosis yang merupakan penyakit zoonosis. Tu...
Peak load-impulse characterization of critical pulse loads in structural dynamics
International Nuclear Information System (INIS)
Abrahamson, G.R.; Lindberg, H.E.
1975-01-01
In presenting the characterization scheme, some general features are described first. A detailed analysis is given for the rigid-plastic system of one degree of freedom to illustrate the calculation of critical load curves in terms of peak load and impulse. This is followed by the presentation of critical load curves for uniformly loaded rigid-plastic beams and plates and for dynamic buckling of cylindrical shells under uniform lateral loads. The peak load-impulse characterization of critical pulse loads is compared with the dynamic load factor characterization, and some aspects of the history of the peak load-pulse scheme are presented. (orig./HP) [de
Sumner, Isaiah; Iyengar, Srinivasan S
2007-10-18
We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.
Voltage Imaging of Waking Mouse Cortex Reveals Emergence of Critical Neuronal Dynamics
Scott, Gregory; Fagerholm, Erik D.; Mutoh, Hiroki; Leech, Robert; Sharp, David J.; Shew, Woodrow L.
2014-01-01
Complex cognitive processes require neuronal activity to be coordinated across multiple scales, ranging from local microcircuits to cortex-wide networks. However, multiscale cortical dynamics are not well understood because few experimental approaches have provided sufficient support for hypotheses involving multiscale interactions. To address these limitations, we used, in experiments involving mice, genetically encoded voltage indicator imaging, which measures cortex-wide electrical activity at high spatiotemporal resolution. Here we show that, as mice recovered from anesthesia, scale-invariant spatiotemporal patterns of neuronal activity gradually emerge. We show for the first time that this scale-invariant activity spans four orders of magnitude in awake mice. In contrast, we found that the cortical dynamics of anesthetized mice were not scale invariant. Our results bridge empirical evidence from disparate scales and support theoretical predictions that the awake cortex operates in a dynamical regime known as criticality. The criticality hypothesis predicts that small-scale cortical dynamics are governed by the same principles as those governing larger-scale dynamics. Importantly, these scale-invariant principles also optimize certain aspects of information processing. Our results suggest that during the emergence from anesthesia, criticality arises as information processing demands increase. We expect that, as measurement tools advance toward larger scales and greater resolution, the multiscale framework offered by criticality will continue to provide quantitative predictions and insight on how neurons, microcircuits, and large-scale networks are dynamically coordinated in the brain. PMID:25505314
Determination of rail wear and short-time wear measurements of rails applying radioisotopes
International Nuclear Information System (INIS)
Grohmann, H.D.
1981-01-01
An energetic model has been developed for calculating rail wear. Short-time wear tests on rails after surface activation and following activity measurements showed a good agreement with the calculated values
Park, Jae Sung; Shekar, Ashwin; Graham, Michael D.
2018-01-01
The dynamics of the turbulent near-wall region is known to be dominated by coherent structures. These near-wall coherent structures are observed to burst in a very intermittent fashion, exporting turbulent kinetic energy to the rest of the flow. In addition, they are closely related to invariant solutions known as exact coherent states (ECS), some of which display nonlinear critical layer dynamics (motions that are highly localized around the surface on which the streamwise velocity matches the wave speed of ECS). The present work aims to investigate temporal coherence in minimal channel flow relevant to turbulent bursting and critical layer dynamics and its connection to the instability of ECS. It is seen that the minimal channel turbulence displays frequencies very close to those displayed by an ECS family recently identified in the channel flow geometry. The frequencies of these ECS are determined by critical layer structures and thus might be described as "critical layer frequencies." While the bursting frequency is predominant near the wall, the ECS frequencies (critical layer frequencies) become predominant over the bursting frequency at larger distances from the wall, and increasingly so as Reynolds number increases. Turbulent bursts are classified into strong and relatively weak classes with respect to an intermittent approach to a lower branch ECS. This temporally intermittent approach is closely related to an intermittent low drag event, called hibernating turbulence, found in minimal and large domains. The relationship between the strong burst and the instability of the lower branch ECS is further discussed in state space. The state-space dynamics of strong bursts is very similar to that of the unstable manifolds of the lower branch ECS. In particular, strong bursting processes are always preceded by hibernation events. This precursor dynamics to strong turbulence may aid in development of more effective control schemes by a way of anticipating dynamics
Adamides, E. D.; Papachristos, G.; Pomonis, N.
2012-01-01
Purpose – The purpose of this paper is to show how a critical realist paradigmatic stance and its associated research methodology can contribute to supply‐chain research by providing explanations for specific supply‐chain‐ and logistics‐related dynamic phenomena. / Design/methodology/approach – Initially, the case for a critical realist research paradigm is made, and then a retroductive pluralistic research methodology is used for demonstrating its application. Starting from an observation in...
The magnetic flux dynamics in the critical state of one-dimensional discrete superconductor
International Nuclear Information System (INIS)
Ginzburg, S.L.; Nakin, A.V.; Savitskaya, N.E.
2006-01-01
We give a theoretical description of avalanche-like dynamics of magnetic flux in the critical state of discrete superconductors using a one-dimensional model of a multijunction SQUID. We show that the system under consideration demonstrates the self-organized criticality. The avalanches of vortices manifest themselves as jumps of the total magnetic flux in the sample. The sizes of these jumps have a power-law distribution. We argue that similarities in the behavior of discrete and usual type-II superconductors allows to extend our results for description of avalanche-like dynamics in type-II superconductors with strong pinning
Directory of Open Access Journals (Sweden)
V. A. Anischenko
2011-01-01
Full Text Available The paper shows that failure to take into account variable ratio of short-time emergency overloading of turbo-generators (synchronous compensators that can lead to underestimation of overloading capacity or impermissible insulation over-heating.A method has been developed for determination of permissible duration of short-time emergency over-loading that takes into account changes of over-loading ratio in case of a failure.
International Nuclear Information System (INIS)
Roelich, Katy; Dawson, David A.; Purnell, Phil; Knoeri, Christof; Revell, Ruairi; Busch, Jonathan; Steinberger, Julia K.
2014-01-01
Highlights: • We present a method to analyse material criticality of infrastructure transitions. • Criticality is defined as the potential for, and exposure to, supply disruption. • Our method is dynamic reducing the probability of lock-in to at-risk technologies. • We show that supply disruption potential is reducing but exposure is increasing. - Abstract: Decarbonisation of existing infrastructure systems requires a dynamic roll-out of technology at an unprecedented scale. The potential disruption in supply of critical materials could endanger such a transition to low-carbon infrastructure and, by extension, compromise energy security more broadly because low carbon technologies are reliant on these materials in a way that fossil-fuelled energy infrastructure is not. Criticality is currently defined as the combination of the potential for supply disruption and the exposure of a system of interest to that disruption. We build on this definition and develop a dynamic approach to quantifying criticality, which monitors the change in criticality during the transition towards a low-carbon infrastructure goal. This allows us to assess the relative risk of different technology pathways to reach a particular goal and reduce the probability of being ‘locked in’ to currently attractive but potentially future-critical technologies. To demonstrate, we apply our method to criticality of the proposed UK electricity system transition, with a focus on neodymium. We anticipate that the supply disruption potential of neodymium will decrease by almost 30% by 2050; however, our results show the criticality of low carbon electricity production increases ninefold over this period, as a result of increasing exposure to neodymium-reliant technologies
Firm Size, a Self-Organized Critical Phenomenon: Evidence from the Dynamical Systems Theory
Chandra, Akhilesh
This research draws upon a recent innovation in the dynamical systems literature called the theory of self -organized criticality (SOC) (Bak, Tang, and Wiesenfeld 1988) to develop a computational model of a firm's size by relating its internal and the external sub-systems. As a holistic paradigm, the theory of SOC implies that a firm as a composite system of many degrees of freedom naturally evolves to a critical state in which a minor event starts a chain reaction that can affect either a part or the system as a whole. Thus, the global features of a firm cannot be understood by analyzing its individual parts separately. The causal framework builds upon a constant capital resource to support a volume of production at the existing level of efficiency. The critical size is defined as the production level at which the average product of a firm's factors of production attains its maximum value. The non -linearity is inferred by a change in the nature of relations at the border of criticality, between size and the two performance variables, viz., the operating efficiency and the financial efficiency. The effect of breaching the critical size is examined on the stock price reactions. Consistent with the theory of SOC, it is hypothesized that the temporal response of a firm breaching the level of critical size should behave as a flicker noise (1/f) process. The flicker noise is characterized by correlations extended over a wide range of time scales, indicating some sort of cooperative effect among a firm's degrees of freedom. It is further hypothesized that a firm's size evolves to a spatial structure with scale-invariant, self-similar (fractal) properties. The system is said to be self-organized inasmuch as it naturally evolves to the state of criticality without any detailed specifications of the initial conditions. In this respect, the critical state is an attractor of the firm's dynamics. Another set of hypotheses examines the relations between the size and the
Molecular dynamics simulation of a binary mixture near the lower critical point
Energy Technology Data Exchange (ETDEWEB)
Pousaneh, Faezeh; Edholm, Olle, E-mail: oed@kth.se [Theoretical Biological Physics, Department of Theoretical Physics, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm (Sweden); Maciołek, Anna [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Max-Planck-Institut für Intelligente Systeme, Heisenbergstrasse 3, D-70569 Stuttgart (Germany)
2016-07-07
2,6-lutidine molecules mix with water at high and low temperatures but in a wide intermediate temperature range a 2,6-lutidine/water mixture exhibits a miscibility gap. We constructed and validated an atomistic model for 2,6-lutidine and performed molecular dynamics simulations of 2,6-lutidine/water mixture at different temperatures. We determined the part of demixing curve with the lower critical point. The lower critical point extracted from our data is located close to the experimental one. The estimates for critical exponents obtained from our simulations are in a good agreement with the values corresponding to the 3D Ising universality class.
Gauge dependence of the critical dynamics at the superconducting phase transition
Directory of Open Access Journals (Sweden)
M.Dudka
2007-01-01
Full Text Available The critical dynamics of superconductors in the charged regime is reconsidered within field-theory. For the dynamics, the Ginzburg-Landau model with complex order parameter coupled to the gauge field suggested earlier [Lannert et al. Phys. Rev. Lett. 92, 097004 (2004] is used. Assuming relaxational dynamics for both quantities, the renormalization group functions within one loop approximation are recalculated for different choices of the gauge. A gauge independent result for the divergence of the melectric conductivity is obtained only at the weak scaling fixed point unstable in one loop order where the timescales of the order parameter and the gauge field are different.
International Nuclear Information System (INIS)
Volchenkov, D.
2009-01-01
Stochastic counterparts of nonlinear dynamics are studied by means of nonperturbative functional methods developed in the framework of quantum field theory (QFT). In particular, we discuss fully developed turbulence, including leading corrections on possible compressibility of fluids, transport through porous media, theory of waterspouts and tsunami waves, stochastic magnetohydrodynamics, turbulent transport in crossed fields, self-organized criticality, and dynamics of accelerated wrinkled flame fronts advancing in a wide canal. This report would be of interest to the broad auditorium of physicists and applied mathematicians, with a background in nonperturbative QFT methods or nonlinear dynamical systems, having an interest in both methodological developments and interdisciplinary applications. (author)
Energy Technology Data Exchange (ETDEWEB)
Volchenkov, D. [Bielefeld Univ., Center of Excellence Cognitive Interaction Technology (CITEC) (Germany)
2009-03-15
Stochastic counterparts of nonlinear dynamics are studied by means of nonperturbative functional methods developed in the framework of quantum field theory (QFT). In particular, we discuss fully developed turbulence, including leading corrections on possible compressibility of fluids, transport through porous media, theory of waterspouts and tsunami waves, stochastic magnetohydrodynamics, turbulent transport in crossed fields, self-organized criticality, and dynamics of accelerated wrinkled flame fronts advancing in a wide canal. This report would be of interest to the broad auditorium of physicists and applied mathematicians, with a background in nonperturbative QFT methods or nonlinear dynamical systems, having an interest in both methodological developments and interdisciplinary applications. (author)
Energy Technology Data Exchange (ETDEWEB)
Moravek, I; Lach, J [Department of Manufacturing Systems, Slovak Technical University Namestie Slobody 17 812 31 Bratislava (Slovakia); Takac, P [Institute of Zoology, SAV, Bratislava (Slovakia)
2012-07-15
Tsetse flies feed only on vertebrate blood, but the collection and processing of blood is expensive, it must be stored at -20{sup o}C requiring costly storage rooms and reliable electricity, and it must be irradiated to reduce bacterial contamination. This is tolerable for small colonies, but as colony size increases to service large- scale programmes, the supply and processing of blood becomes critical. Blood is normally collected from cattle at slaughter. This process is necessarily not aseptic, and large-scale collection is only possible where the animals are suspended for bleeding. One alternative to blood decontamination is using the High Temperature Short time Pasteurization (HTST) method. The food processing industry uses pasteurization to reduce bacterial load in a wide range of products. Our previous results indicated that for the control of the blood pasteurization process, to reach satisfactory bacteriological purity and at the same time to prevent the blood from coagulating, it is important to study temperature and time and also some other parameters that could predict blood coagulation. Crucial for blood coagulation is to study blood viscosity. Classical heat exchangers are not suitable for blood pasteurization. In such equipment the blood coagulation depends on temperature and time. Besides the relatively low temperatures, blood is coagulating with cumulative time until total shutdown of blood flow. After a series of experiments we found a solution using microwave systems. To verify the microwave heating concept, we built an experimental workstation. First we verified the accuracy of the applicator design from the aspect of output adaptation to the power source. Also we installed measuring equipment. This system complies with the requirements of quick heating with sufficiently high heat accumulation. By utilizing standard components for the base of the microwave generator, it is possible to markedly reduce the final price of the equipment. (author)
A non-critical string approach to black holes, time and quantum dynamics
Ellis, John R.; Nanopoulos, Dimitri V.
1994-01-01
We review our approach to time and quantum dynamics based on non-critical string theory, developing its relationship to previous work on non-equilibrium quantum statistical mechanics and the microscopic arrow of time. We exhibit specific non-factorizing contributions to the {\
Euler Strut: A Mechanical Analogy for Dynamics in the Vicinity of a Critical Point
Bobnar, Jaka; Susman, Katarina; Parsegian, V. Adrian; Rand, Peter R.; Cepic, Mojca; Podgornik, Rudolf
2011-01-01
An anchored elastic filament (Euler strut) under an external point load applied to its free end is a simple model for a second-order phase transition. In the static case, a load greater than the critical load causes a Euler buckling instability, leading to a change in the filament's shape. The analysis of filament dynamics with an external point…
Critical dynamics a field theory approach to equilibrium and non-equilibrium scaling behavior
Täuber, Uwe C
2014-01-01
Introducing a unified framework for describing and understanding complex interacting systems common in physics, chemistry, biology, ecology, and the social sciences, this comprehensive overview of dynamic critical phenomena covers the description of systems at thermal equilibrium, quantum systems, and non-equilibrium systems. Powerful mathematical techniques for dealing with complex dynamic systems are carefully introduced, including field-theoretic tools and the perturbative dynamical renormalization group approach, rapidly building up a mathematical toolbox of relevant skills. Heuristic and qualitative arguments outlining the essential theory behind each type of system are introduced at the start of each chapter, alongside real-world numerical and experimental data, firmly linking new mathematical techniques to their practical applications. Each chapter is supported by carefully tailored problems for solution, and comprehensive suggestions for further reading, making this an excellent introduction to critic...
Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems
International Nuclear Information System (INIS)
Mottola, E.; Bhattacharya, T.; Cooper, F.
1998-01-01
This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys
Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems
Energy Technology Data Exchange (ETDEWEB)
Mottola, E.; Bhattacharya, T.; Cooper, F. [and others
1998-12-31
This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys.
Optimal system size for complex dynamics in random neural networks near criticality
Energy Technology Data Exchange (ETDEWEB)
Wainrib, Gilles, E-mail: wainrib@math.univ-paris13.fr [Laboratoire Analyse Géométrie et Applications, Université Paris XIII, Villetaneuse (France); García del Molino, Luis Carlos, E-mail: garciadelmolino@ijm.univ-paris-diderot.fr [Institute Jacques Monod, Université Paris VII, Paris (France)
2013-12-15
In this article, we consider a model of dynamical agents coupled through a random connectivity matrix, as introduced by Sompolinsky et al. [Phys. Rev. Lett. 61(3), 259–262 (1988)] in the context of random neural networks. When system size is infinite, it is known that increasing the disorder parameter induces a phase transition leading to chaotic dynamics. We observe and investigate here a novel phenomenon in the sub-critical regime for finite size systems: the probability of observing complex dynamics is maximal for an intermediate system size when the disorder is close enough to criticality. We give a more general explanation of this type of system size resonance in the framework of extreme values theory for eigenvalues of random matrices.
Optimal system size for complex dynamics in random neural networks near criticality
International Nuclear Information System (INIS)
Wainrib, Gilles; García del Molino, Luis Carlos
2013-01-01
In this article, we consider a model of dynamical agents coupled through a random connectivity matrix, as introduced by Sompolinsky et al. [Phys. Rev. Lett. 61(3), 259–262 (1988)] in the context of random neural networks. When system size is infinite, it is known that increasing the disorder parameter induces a phase transition leading to chaotic dynamics. We observe and investigate here a novel phenomenon in the sub-critical regime for finite size systems: the probability of observing complex dynamics is maximal for an intermediate system size when the disorder is close enough to criticality. We give a more general explanation of this type of system size resonance in the framework of extreme values theory for eigenvalues of random matrices
Non-linear quantum critical dynamics and fluctuation-dissipation ratios far from equilibrium
Energy Technology Data Exchange (ETDEWEB)
Zamani, Farzaneh [Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden (Germany); Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Ribeiro, Pedro [CeFEMA, Instituto Superior Tcnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Russian Quantum Center, Novaya Street 100 A, Skolkovo, Moscow Area, 143025 (Russian Federation); Kirchner, Stefan, E-mail: stefan.kirchner@correlated-matter.com [Center for Correlated Matter, Zhejiang University, Hangzhou, Zhejiang 310058 (China)
2016-02-15
Non-thermal correlations of strongly correlated electron systems and the far-from-equilibrium properties of phases of condensed matter have become a topical research area. Here, an overview of the non-linear dynamics found near continuous zero-temperature phase transitions within the context of effective temperatures is presented. In particular, we focus on models of critical Kondo destruction. Such a quantum critical state, where Kondo screening is destroyed in a critical fashion, is realized in a number of rare earth intermetallics. This raises the possibility of experimentally testing for the existence of fluctuation-dissipation relations far from equilibrium in terms of effective temperatures. Finally, we present an analysis of a non-interacting, critical reference system, the pseudogap resonant level model, in terms of effective temperatures and contrast these results with those obtained near interacting quantum critical points. - Highlights: • Critical Kondo destruction explains the unusual properties of quantum critical heavy fermion compounds. • We review the concept of effective temperatures in models of critical Kondo destruction. • We compare effective temperatures found near non-interacting and fully interacting fixed points. • A comparison with non-interacting quantum impurity models is presented.
A short-time scale colloidal system reveals early bacterial adhesion dynamics.
Directory of Open Access Journals (Sweden)
Christophe Beloin
2008-07-01
Full Text Available The development of bacteria on abiotic surfaces has important public health and sanitary consequences. However, despite several decades of study of bacterial adhesion to inert surfaces, the biophysical mechanisms governing this process remain poorly understood, due, in particular, to the lack of methodologies covering the appropriate time scale. Using micrometric colloidal surface particles and flow cytometry analysis, we developed a rapid multiparametric approach to studying early events in adhesion of the bacterium Escherichia coli. This approach simultaneously describes the kinetics and amplitude of early steps in adhesion, changes in physicochemical surface properties within the first few seconds of adhesion, and the self-association state of attached and free-floating cells. Examination of the role of three well-characterized E. coli surface adhesion factors upon attachment to colloidal surfaces--curli fimbriae, F-conjugative pilus, and Ag43 adhesin--showed clear-cut differences in the very initial phases of surface colonization for cell-bearing surface structures, all known to promote biofilm development. Our multiparametric analysis revealed a correlation in the adhesion phase with cell-to-cell aggregation properties and demonstrated that this phenomenon amplified surface colonization once initial cell-surface attachment was achieved. Monitoring of real-time physico-chemical particle surface properties showed that surface-active molecules of bacterial origin quickly modified surface properties, providing new insight into the intricate relations connecting abiotic surface physicochemical properties and bacterial adhesion. Hence, the biophysical analytical method described here provides a new and relevant approach to quantitatively and kinetically investigating bacterial adhesion and biofilm development.
Antipersistent dynamics in short time scale variability of self-potential signals
Cuomo, V.; Lanfredi, M.; Lapenna, V.; Macchiato, M.; Ragosta, M.; Telesca, L.
2000-01-01
Time scale properties of self-potential signals are investigated through the analysis of the second order structure function (variogram), a powerful tool to investigate the spatial and temporal variability of observational data. In this work we analyse two sequences of self-potential values measured by means of a geophysical monitoring array located in a seismically active area of Southern Italy. The range of scales investigated goes from a few minutes to several days. It is shown that signal...
Long and short time quantum dynamics: I. Between Green's functions and transport equations
Czech Academy of Sciences Publication Activity Database
Špička, Václav; Velický, Bedřich; Kalvová, Anděla
2005-01-01
Roč. 29, - (2005), s. 154-174 ISSN 1386-9477 R&D Projects: GA ČR(CZ) GA202/04/0585; GA AV ČR(CZ) IAA1010404 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : non-equilibrium * Green functions * quantum transport * density functional the ory Subject RIV: BE - The oretical Physics Impact factor: 0.946, year: 2005
Sanli, Ceyda; Saitoh, K.; Luding, Stefan; van der Meer, Roger M.
2014-01-01
When a densely packed monolayer of macroscopic spheres floats on chaotic capillary Faraday waves, a coexistence of large scale convective motion and caging dynamics typical for glassy systems is observed. We subtract the convective mean flow using a coarse graining (homogenization) method and reveal
Coherent inflationary dynamics for Bose-Einstein condensates crossing a quantum critical point
Feng, Lei; Clark, Logan W.; Gaj, Anita; Chin, Cheng
2018-03-01
Quantum phase transitions, transitions between many-body ground states, are of extensive interest in research ranging from condensed-matter physics to cosmology1-4. Key features of the phase transitions include a stage with rapidly growing new order, called inflation in cosmology5, followed by the formation of topological defects6-8. How inflation is initiated and evolves into topological defects remains a hot topic of debate. Ultracold atomic gas offers a pristine and tunable platform to investigate quantum critical dynamics9-21. We report the observation of coherent inflationary dynamics across a quantum critical point in driven Bose-Einstein condensates. The inflation manifests in the exponential growth of density waves and populations in well-resolved momentum states. After the inflation stage, extended coherent dynamics is evident in both real and momentum space. We present an intuitive description of the quantum critical dynamics in our system and demonstrate the essential role of phase fluctuations in the formation of topological defects.
msiDBN: A Method of Identifying Critical Proteins in Dynamic PPI Networks
Directory of Open Access Journals (Sweden)
Yuan Zhang
2014-01-01
Full Text Available Dynamics of protein-protein interactions (PPIs reveals the recondite principles of biological processes inside a cell. Shown in a wealth of study, just a small group of proteins, rather than the majority, play more essential roles at crucial points of biological processes. This present work focuses on identifying these critical proteins exhibiting dramatic structural changes in dynamic PPI networks. First, a comprehensive way of modeling the dynamic PPIs is presented which simultaneously analyzes the activity of proteins and assembles the dynamic coregulation correlation between proteins at each time point. Second, a novel method is proposed, named msiDBN, which models a common representation of multiple PPI networks using a deep belief network framework and analyzes the reconstruction errors and the variabilities across the time courses in the biological process. Experiments were implemented on data of yeast cell cycles. We evaluated our network construction method by comparing the functional representations of the derived networks with two other traditional construction methods. The ranking results of critical proteins in msiDBN were compared with the results from the baseline methods. The results of comparison showed that msiDBN had better reconstruction rate and identified more proteins of critical value to yeast cell cycle process.
Pasqualini, D.; Witkowski, M.
2005-12-01
The Critical Infrastructure Protection / Decision Support System (CIP/DSS) project, supported by the Science and Technology Office, has been developing a risk-informed Decision Support System that provides insights for making critical infrastructure protection decisions. The system considers seventeen different Department of Homeland Security defined Critical Infrastructures (potable water system, telecommunications, public health, economics, etc.) and their primary interdependencies. These infrastructures have been modeling in one model called CIP/DSS Metropolitan Model. The modeling approach used is a system dynamics modeling approach. System dynamics modeling combines control theory and the nonlinear dynamics theory, which is defined by a set of coupled differential equations, which seeks to explain how the structure of a given system determines its behavior. In this poster we present a system dynamics model for one of the seventeen critical infrastructures, a generic metropolitan potable water system (MPWS). Three are the goals: 1) to gain a better understanding of the MPWS infrastructure; 2) to identify improvements that would help protect MPWS; and 3) to understand the consequences, interdependencies, and impacts, when perturbations occur to the system. The model represents raw water sources, the metropolitan water treatment process, storage of treated water, damage and repair to the MPWS, distribution of water, and end user demand, but does not explicitly represent the detailed network topology of an actual MPWS. The MPWS model is dependent upon inputs from the metropolitan population, energy, telecommunication, public health, and transportation models as well as the national water and transportation models. We present modeling results and sensitivity analysis indicating critical choke points, negative and positive feedback loops in the system. A general scenario is also analyzed where the potable water system responds to a generic disruption.
Dynamic Recrystallization Behavior and Critical Conditions of SiCp/A1-Cu Composite
Directory of Open Access Journals (Sweden)
HAO Shiming
2017-08-01
Full Text Available Using the Gleeble-1500D simulator, the high temperature plastic deformation behavior of 40%SiCP/Al-Cu composite were investigated at 350-500℃ with the strain rate of 0.01-10 s-1. The stress-strain curves were obtained during the tests. The critical conditions of dynamic recrystallization for onset of DRX during deformation of 40%SiCP/Al-Cu composite was obtained by computation of the strain hardening rate (θ from initial stress-strain data and introduction of the inflection point criterion of ln θ-ε curves and the minimum value criterion of (-∂(ln θ/∂ε-ε curves. The results indicate that the softening mechanism of the dynamic recrystallization is a feature of high-temperature flow stress strain curves of the composites, and the peak stress increases with the decrease of deformation temperature or the increase of strain rate. The inflection point in the ln θ-ε curve appears, and the minimum value of the (-∂(ln θ/∂ε-ε curve is presented when the critical state is attained for this composite. The critical strain decreases with the decrease of strain rate and the increase of deformation temperature. There is linear relationship between critical strain and peak strain, i.e. εc=0.528εp. The predicting model of critical strain is described by the function of εc=4.58×10-3Z0.09. Electron microscopic analysis show that the dynamic recrystallization occurs when the strain is 0.06 (T=400℃, ε=10 s-1, and the dynamic recrystallization grains fully grow up when the strain is 0.2.
Short-time, high-dosage penicillin infusion therapy of syphilis
DEFF Research Database (Denmark)
Lomholt, Hans; Poulsen, Asmus; Brandrup, Flemming
2003-01-01
The optimal dosage and duration of penicillin treatment for the various stages of syphilis are not known. We present data on 20 patients with syphilis (primary, secondary or latent) treated with high-dose, short-time penicillin infusion therapy. Patients were given 10 MIU of penicillin G intraven......The optimal dosage and duration of penicillin treatment for the various stages of syphilis are not known. We present data on 20 patients with syphilis (primary, secondary or latent) treated with high-dose, short-time penicillin infusion therapy. Patients were given 10 MIU of penicillin G...
Critical current densities and vortex dynamics in FeTexSe1-x single crystals
International Nuclear Information System (INIS)
Taen, T.; Tsuchiya, Y.; Nakajima, Y.; Tamegai, T.
2010-01-01
The critical current density and the normalized relaxation rate are reported in FeTe 0.59 Se 0.41 single crystal. Critical current density is of order of 10 5 A/cm 2 , which is comparable to that in Co-doped BaFe 2 As 2 . In low temperature and low field region, the vortex dynamics of this system is well defined by the collective creep theory, which is quite similar to Co-doped BaFe 2 As 2 reported before. We also discuss the origin of the anomaly in the field dependence of the relaxation rate.
Kwasniok, Frank
2013-11-01
A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.
Dynamical simulation of a linear sigma model near the critical point
Energy Technology Data Exchange (ETDEWEB)
Wesp, Christian; Meistrenko, Alex; Greiner, Carsten [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt, Max-von-Laue-Strasse 1, D-60438 Frankfurt (Germany); Hees, Hendrik van [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, D-60438 Frankfurt (Germany)
2014-07-01
The intention of this study is the search for signatures of the chiral phase transition. To investigate the impact of fluctuations, e.g. of the baryon number, on the transition or a critical point, the linear sigma model is treated in a dynamical 3+1D numerical simulation. Chiral fields are approximated as classical fields, quarks are described by quasi particles in a Vlasov equation. Additional dynamic is implemented by quark-quark and quark-sigma-field interaction. For a consistent description of field-particle interactions, a new Monte-Carlo-Langevin-like formalism has been developed and is discussed.
Simulation Based Exploration of Critical Zone Dynamics in Intensively Managed Landscapes
Kumar, P.
2017-12-01
The advent of high-resolution measurements of topographic and (vertical) vegetation features using areal LiDAR are enabling us to resolve micro-scale ( 1m) landscape structural characteristics over large areas. Availability of hyperspectral measurements is further augmenting these LiDAR data by enabling the biogeochemical characterization of vegetation and soils at unprecedented spatial resolutions ( 1-10m). Such data have opened up novel opportunities for modeling Critical Zone processes and exploring questions that were not possible before. We show how an integrated 3-D model at 1m grid resolution can enable us to resolve micro-topographic and ecological dynamics and their control on hydrologic and biogeochemical processes over large areas. We address the computational challenge of such detailed modeling by exploiting hybrid CPU and GPU computing technologies. We show results of moisture, biogeochemical, and vegetation dynamics from studies in the Critical Zone Observatory for Intensively managed Landscapes (IMLCZO) in the Midwestern United States.
A power law of order 1/4 for critical mean field Swendsen-Wang dynamics
Long, Yun; Ning, Weiyang; Peres, Yuval
2014-01-01
The Swendsen-Wang dynamics is a Markov chain widely used by physicists to sample from the Boltzmann-Gibbs distribution of the Ising model. Cooper, Dyer, Frieze and Rue proved that on the complete graph K_n the mixing time of the chain is at most O(\\sqrt{n}) for all non-critical temperatures. In this paper the authors show that the mixing time is \\Theta(1) in high temperatures, \\Theta(\\log n) in low temperatures and \\Theta(n^{1/4}) at criticality. They also provide an upper bound of O(\\log n) for Swendsen-Wang dynamics for the q-state ferromagnetic Potts model on any tree of n vertices.
Biberger, Thomas; Ewert, Stephan D
2017-08-01
The generalized power spectrum model [GPSM; Biberger and Ewert (2016). J. Acoust. Soc. Am. 140, 1023-1038], combining the "classical" concept of the power-spectrum model (PSM) and the envelope power spectrum-model (EPSM), was demonstrated to account for several psychoacoustic and speech intelligibility (SI) experiments. The PSM path of the model uses long-time power signal-to-noise ratios (SNRs), while the EPSM path uses short-time envelope power SNRs. A systematic comparison of existing SI models for several spectro-temporal manipulations of speech maskers and gender combinations of target and masker speakers [Schubotz et al. (2016). J. Acoust. Soc. Am. 140, 524-540] showed the importance of short-time power features. Conversely, Jørgensen et al. [(2013). J. Acoust. Soc. Am. 134, 436-446] demonstrated a higher predictive power of short-time envelope power SNRs than power SNRs using reverberation and spectral subtraction. Here the GPSM was extended to utilize short-time power SNRs and was shown to account for all psychoacoustic and SI data of the three mentioned studies. The best processing strategy was to exclusively use either power or envelope-power SNRs, depending on the experimental task. By analyzing both domains, the suggested model might provide a useful tool for clarifying the contribution of amplitude modulation masking and energetic masking.
Eulerian short-time statistics of turbulent flow at large Reynolds number
Brouwers, J.J.H.
2004-01-01
An asymptotic analysis is presented of the short-time behavior of second-order temporal velocity structure functions and Eulerian acceleration correlations in a frame that moves with the local mean velocity of the turbulent flow field. Expressions in closed-form are derived which cover the viscous
A short-time fading study of Al2O3:C
International Nuclear Information System (INIS)
Nascimento, L.F.; Vanhavere, F.; Silva, E.H.; Deene, Y. De
2015-01-01
This paper studies the short-time fading from Al 2 O 3 :C by measuring optically stimulated luminescence (OSL) signals (Total OSL: T OSL , and Peak OSL: P OSL ) from droplets and Luxel™ pellets. The influence of various bleaching regimes (blue, green and white) and light power is compared. The fading effect is the decay of the OSL signal in the dark at room temperature. Al 2 O 3 :C detectors were submitted to various bleaching regimes, irradiated with a reference dose and read out after different time spans. Investigations were carried out using 2 mm size droplet detectors, made of thin Al 2 O 3 :C powder mixed with a photocured polymer. Tests were compared to Luxel™-type detectors (Landauer Inc.). Short-time post-irradiation fading is present in OSL results (T OSL and P OSL ) droplets for time spans up to 200 s. The effect of short-time fading can be lowered/removed when treating the detectors with high-power and/or long time bleaching regimes; this result was observed in both T OSL and P OSL from droplets and Luxel™. - Highlights: • Droplet composed of thin powder of Al 2 O 3 :C was prepared using a photo-curable polymer. • Powder grain sizes ranged from 5 μm to 35 μm. • Short-time fading was measured for irradiated samples. • Various bleaching regimes and light power was tested. • Droplets were compared to a commercially dosimeter, Luxel™
Wang, Qian; Qin, Pinquan; Wang, Wen-ge
2015-10-01
Based on an analysis of Feynman's path integral formulation of the propagator, a relative criterion is proposed for validity of a semiclassical approach to the dynamics near critical points in a class of systems undergoing quantum phase transitions. It is given by an effective Planck constant, in the relative sense that a smaller effective Planck constant implies better performance of the semiclassical approach. Numerical tests of this relative criterion are given in the XY model and in the Dicke model.
Analysis of critical neutron- scattering data from iron and dynamical scaling theory
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage
1970-01-01
Experimental three- axis spectrometer data of critical neutron- scattering data from Fe are reanalyzed and compared with the recent theoretical prediction by P. Resibois and C. Piette. The reason why the spin- diffusion parameter did not obey the prediction of dynamical scaling theory is indicated....... Double- axis spectrometer data have previously been interpreted in terms of a non- Lorentzian susceptibility. It is shown that with proper corrections for the inelasticity of the scattering the data are consistent with a Lorentzian form of susceptibility....
Dynamic critical phenomena in two-dimensional fully frustrated Coulomb gas model with disorder
International Nuclear Information System (INIS)
Zhang Wei; Luo Mengbo
2008-01-01
The dynamic critical phenomena near depinning transition in two-dimensional fully frustrated square lattice Coulomb gas model with disorders was studied using Monte Carlo technique. The ground state of the model system with disorder σ=0.3 is a disordered state. The dependence of charge current density J on electric field E was investigated at low temperatures. The nonlinear J-E behavior near critical depinning field can be described by a scaling function proposed for three-dimensional flux line system [M.B. Luo, X. Hu, Phys. Rev. Lett. 98 (2007) 267002]. We evaluated critical exponents and found an Arrhenius creep motion for field region E c /2 c . The scaling law of the depinning transition is also obtained from the scaling function
Directory of Open Access Journals (Sweden)
PAPAJ Ján
2013-05-01
Full Text Available Disconnected mobile ad-hoc networks (MANET are very important areas of the research. In this article, the performance analysis of the enhanced dynamic source routing protocol (OPP_DSR is introduced. This modification enables the routing process in the case when there are no connections to other mobile nodes. It also will enable the routing mechanisms when the routes, selected by routing mechanisms, are disconnected for some time. Disconnection can be for a short time and standard routing protocol DSR cannot reflect on this situation.The main idea is based on opportunistic forwarding where the nodes not only forward data but it's stored in the cache during long time. The network parameters throughput, routing load and are analysed.
International Nuclear Information System (INIS)
Yin, T.; Tyas, A.; Plekhov, O.; Terekhina, A.; Susmel, L.
2015-01-01
Highlights: • The proposed method is successful in estimating dynamic strength of metals. • The critical distance varies as the loading/strain/displacement rate increases. • The reference strength varies as the loading/strain/displacement rate increases. • This method is recommended to be used with safety factors larger than 1.25. - Abstract: In the present study the linear-elastic Theory of Critical Distances (TCD) is reformulated to make it suitable for predicting the strength of notched metallic materials subjected to dynamic loading. The accuracy and reliability of the proposed reformulation of the TCD was checked against a number of experimental results generated by testing, under different loading/strain rates, notched cylindrical samples of aluminium alloy 6063-T5, titanium alloy Ti–6Al–4V, aluminium alloy AlMg6, and an AlMn alloy. To further validate the proposed design method also different data sets taken from the literature were considered. Such an extensive validation exercise allowed us to prove that the proposed reformulation of the TCD is successful in predicting the dynamic strength of notched metallic materials, this approach proving to be capable of estimates falling within an error interval of ±20%. Such a high level of accuracy is certainly remarkable, especially in light of the fact that it was reached without the need for explicitly modelling the stress vs. strain dynamic behaviour of the investigated ductile metals
The dynamics of marginality and self-organized criticality as a paradigm for turbulent transport
International Nuclear Information System (INIS)
Newman, D.E.; Carreras, B.A.; Diamond, P.H.; Hahm, T.S.
1995-01-01
A general paradigm, based on the concept of self-organized criticality (SOC), for turbulent transport in magnetically confined plasmas has been recently suggested as an explanation for some of the apparent discrepancies between most theoretical models of turbulent transport and experimental observations of the transport in magnetically confined plasmas. This model describes the dynamics of the transport without relying on the underlying local fluctuation mechanisms. Computations based on a cellular automata realization of such a model have found that noise driven SOC systems can maintain average profiles that are linearly stable (submarginal) and yet are able to sustain active transport dynamics. It is also found that the dominant scales in the transport dynamics in the absence of sheared flow are system scales rather than the underlying local fluctuation scales. The addition of sheared flow into the dynamics leads to a large reduction of the system-scale transport events and a commensurate increase in the fluctuation-scale transport events needed to maintain the constant flux. The dynamics of these models and the potential ramifications for transport studies are discussed
SACS2: Dynamic and Formal Safety Analysis Method for Complex Safety Critical System
International Nuclear Information System (INIS)
Koh, Kwang Yong; Seong, Poong Hyun
2009-01-01
Fault tree analysis (FTA) is one of the most widely used safety analysis technique in the development of safety critical systems. However, over the years, several drawbacks of the conventional FTA have become apparent. One major drawback is that conventional FTA uses only static gates and hence can not capture dynamic behaviors of the complex system precisely. Although several attempts such as dynamic fault tree (DFT), PANDORA, formal fault tree (FFT) and so on, have been made to overcome this problem, they can not still do absolute or actual time modeling because they adapt relative time concept and can capture only sequential behaviors of the system. Second drawback of conventional FTA is its lack of rigorous semantics. Because it is informal in nature, safety analysis results heavily depend on an analyst's ability and are error-prone. Finally reasoning process which is to check whether basic events really cause top events is done manually and hence very labor-intensive and timeconsuming for the complex systems. In this paper, we propose a new safety analysis method for complex safety critical system in qualitative manner. We introduce several temporal gates based on timed computational tree logic (TCTL) which can represent quantitative notion of time. Then, we translate the information of the fault trees into UPPAAL query language and the reasoning process is automatically done by UPPAAL which is the model checker for time critical system
Computation of the Short-Time Linear Canonical Transform with Dual Window
Directory of Open Access Journals (Sweden)
Lei Huang
2017-01-01
Full Text Available The short-time linear canonical transform (STLCT, which maps the time domain signal into the joint time and frequency domain, has recently attracted some attention in the area of signal processing. However, its applications are still limited due to the fact that selection of coefficients of the short-time linear canonical series (STLCS is not unique, because time and frequency elementary functions (together known as basis function of STLCS do not constitute an orthogonal basis. To solve this problem, this paper investigates a dual window solution. First, the nonorthogonal problem that suffered from original window is fulfilled by orthogonal condition with dual window. Then based on the obtained condition, a dual window computation approach of the GT is extended to the STLCS. In addition, simulations verify the validity of the proposed condition and solutions. Furthermore, some possible applied directions are discussed.
Rotor-System Log-Decrement Identification Using Short-Time Fourier-Transform Filter
Li, Qihang; Wang, Weimin; Chen, Lifang; Sun, Dan
2015-01-01
With the increase of the centrifugal compressor capability, such as large scale LNG and CO2 reinjection, the stability margin evaluation is crucial to assure the compressor work in the designed operating conditions in field. Improving the precision of parameter identification of stability is essential and necessary as well. Based on the time-varying characteristics of response vibration during the sine-swept process, a short-time Fourier transform (STFT) filter was introduced to increase the ...
Energy Technology Data Exchange (ETDEWEB)
Bartosch, T. [Erlanger-Nuernberg Univ., Erlanger (Germany). Lehrstul fuer Nachrichtentechnik I; Seidl, D. [Seismologisches Zentralobservatorium Graefenberg, Erlanegen (Greece). Bundesanstalt fuer Geiwissenschaften und Rohstoffe
1999-06-01
Among a variety of spectrogram methods short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were selected to analyse transients in non-stationary signals. Depending on the properties of the tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli (Italy).
Difference-based clustering of short time-course microarray data with replicates
Directory of Open Access Journals (Sweden)
Kim Jihoon
2007-07-01
Full Text Available Abstract Background There are some limitations associated with conventional clustering methods for short time-course gene expression data. The current algorithms require prior domain knowledge and do not incorporate information from replicates. Moreover, the results are not always easy to interpret biologically. Results We propose a novel algorithm for identifying a subset of genes sharing a significant temporal expression pattern when replicates are used. Our algorithm requires no prior knowledge, instead relying on an observed statistic which is based on the first and second order differences between adjacent time-points. Here, a pattern is predefined as the sequence of symbols indicating direction and the rate of change between time-points, and each gene is assigned to a cluster whose members share a similar pattern. We evaluated the performance of our algorithm to those of K-means, Self-Organizing Map and the Short Time-series Expression Miner methods. Conclusions Assessments using simulated and real data show that our method outperformed aforementioned algorithms. Our approach is an appropriate solution for clustering short time-course microarray data with replicates.
Dimension reduction of frequency-based direct Granger causality measures on short time series.
Siggiridou, Elsa; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris
2017-09-01
The mainstream in the estimation of effective brain connectivity relies on Granger causality measures in the frequency domain. If the measure is meant to capture direct causal effects accounting for the presence of other observed variables, as in multi-channel electroencephalograms (EEG), typically the fit of a vector autoregressive (VAR) model on the multivariate time series is required. For short time series of many variables, the estimation of VAR may not be stable requiring dimension reduction resulting in restricted or sparse VAR models. The restricted VAR obtained by the modified backward-in-time selection method (mBTS) is adapted to the generalized partial directed coherence (GPDC), termed restricted GPDC (RGPDC). Dimension reduction on other frequency based measures, such the direct directed transfer function (dDTF), is straightforward. First, a simulation study using linear stochastic multivariate systems is conducted and RGPDC is favorably compared to GPDC on short time series in terms of sensitivity and specificity. Then the two measures are tested for their ability to detect changes in brain connectivity during an epileptiform discharge (ED) from multi-channel scalp EEG. It is shown that RGPDC identifies better than GPDC the connectivity structure of the simulated systems, as well as changes in the brain connectivity, and is less dependent on the free parameter of VAR order. The proposed dimension reduction in frequency measures based on VAR constitutes an appropriate strategy to estimate reliably brain networks within short-time windows. Copyright © 2017 Elsevier B.V. All rights reserved.
A novel critical infrastructure resilience assessment approach using dynamic Bayesian networks
Cai, Baoping; Xie, Min; Liu, Yonghong; Liu, Yiliu; Ji, Renjie; Feng, Qiang
2017-10-01
The word resilience originally originates from the Latin word "resiliere", which means to "bounce back". The concept has been used in various fields, such as ecology, economics, psychology, and society, with different definitions. In the field of critical infrastructure, although some resilience metrics are proposed, they are totally different from each other, which are determined by the performances of the objects of evaluation. Here we bridge the gap by developing a universal critical infrastructure resilience metric from the perspective of reliability engineering. A dynamic Bayesian networks-based assessment approach is proposed to calculate the resilience value. A series, parallel and voting system is used to demonstrate the application of the developed resilience metric and assessment approach.
Classical dynamics of the Abelian Higgs model from the critical point and beyond
Directory of Open Access Journals (Sweden)
G.C. Katsimiga
2015-09-01
Full Text Available We present two different families of solutions of the U(1-Higgs model in a (1+1 dimensional setting leading to a localization of the gauge field. First we consider a uniform background (the usual vacuum, which corresponds to the fully higgsed-superconducting phase. Then we study the case of a non-uniform background in the form of a domain wall which could be relevantly close to the critical point of the associated spontaneous symmetry breaking. For both cases we obtain approximate analytical nodeless and nodal solutions for the gauge field resulting as bound states of an effective Pöschl–Teller potential created by the scalar field. The two scenaria differ only in the scale of the characteristic localization length. Numerical simulations confirm the validity of the obtained analytical solutions. Additionally we demonstrate how a kink may be used as a mediator driving the dynamics from the critical point and beyond.
Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V
2013-09-05
Micelle formation in surfactant solutions is a self-assembly process governed by complex interplay of solvent-mediated interactions between hydrophilic and hydrophobic groups, which are commonly called heads and tails. However, the head-tail repulsion is not the only factor affecting the micelle formation. For the first time, we present a systematic study of the effect of chain rigidity on critical micelle concentration and micelle size, which is performed with the dissipative particle dynamics simulation method. Rigidity of the coarse-grained surfactant molecule was controlled by the harmonic bonds set between the second-neighbor beads. Compared to flexible molecules with the nearest-neighbor bonds being the only type of bonded interactions, rigid molecules exhibited a lower critical micelle concentration and formed larger and better-defined micelles. By varying the strength of head-tail repulsion and the chain rigidity, we constructed two-dimensional diagrams presenting how the critical micelle concentration and aggregation number depend on these parameters. We found that the solutions of flexible and rigid molecules that exhibited approximately the same critical micelle concentration could differ substantially in the micelle size and shape depending on the chain rigidity. With the increase of surfactant concentration, primary micelles of more rigid molecules were found less keen to agglomeration and formation of nonspherical aggregates characteristic of flexible molecules.
Critical Domain Problem for the Reaction–Telegraph Equation Model of Population Dynamics
Directory of Open Access Journals (Sweden)
Weam Alharbi
2018-04-01
Full Text Available A telegraph equation is believed to be an appropriate model of population dynamics as it accounts for the directional persistence of individual animal movement. Being motivated by the problem of habitat fragmentation, which is known to be a major threat to biodiversity that causes species extinction worldwide, we consider the reaction–telegraph equation (i.e., telegraph equation combined with the population growth on a bounded domain with the goal to establish the conditions of species survival. We first show analytically that, in the case of linear growth, the expression for the domain’s critical size coincides with the critical size of the corresponding reaction–diffusion model. We then consider two biologically relevant cases of nonlinear growth, i.e., the logistic growth and the growth with a strong Allee effect. Using extensive numerical simulations, we show that in both cases the critical domain size of the reaction–telegraph equation is larger than the critical domain size of the reaction–diffusion equation. Finally, we discuss possible modifications of the model in order to enhance the positivity of its solutions.
Nonuniversal critical behaviour in a model for charge density wave dynamics
International Nuclear Information System (INIS)
Ritala, R.K.; Hertz, J.A.
1986-02-01
We have studied short range fluctuations around the infinite-range model of charge density wave (CDW) dynamics. We find that the inhomogeneity of the local field, which is neglected in the infinite-range approximation has a dramatic effect on the transition. In the Bethe approximation the critical behaviour is nonuniversal. In particular, the current exponent is ζ = 3/2 log(z-1)/[log(z)]+log(1+f/J)], where z is the number of neighbors, f the pinning strength, and J the elastic coupling. (orig.)
Dynamical scaling and critical scattering in pure and disordered ferromagnets probed by NSE
Energy Technology Data Exchange (ETDEWEB)
Alba, M. [LLB, CEA-CNRS UMR12, CEA-Saclay, 91191 Gif/Yvette Cedex (France)]. E-mail: michel.alba@cea.fr; Pouget, S. [DRFMC/SPSMS, CEN-Grenoble, 17 rue des Martyrs, 38054 Grenoble (France); Fouquet, P. [ILL, 6 rue Jules Horowitz, 38042 Grenoble (France); Farago, B. [ILL, 6 rue Jules Horowitz, 38042 Grenoble (France); Pappas, C. [Hahn-Meitner Institut, Glienickerstr. 100, 14109 Berlin (Germany)
2007-07-15
We have studied the 3D Heisenberg ferromagnetic model system CdCr{sub 2} {sub x} In{sub 2-2} {sub x} S{sub 4} in the ferromagnetic and reentrant phases as a function of temperature and momentum transfer using neutron spin echo (NSE) spectroscopy. The results from the pure sample CdCr{sub 2}S{sub 4} are in excellent agreement with the predictions of the renormalization group theory. In the presence of disorder, we see the evolution from a simple critical ferromagnetic scattering with single fast relaxation times to a more complex slow dynamics characteristic of spin glasses.
A critical oscillation constant as a variable of time scales for half-linear dynamic equations
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
2010-01-01
Roč. 60, č. 2 (2010), s. 237-256 ISSN 0139-9918 R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : dynamic equation * time scale * half-linear equation * (non)oscillation criteria * Hille-Nehari criteria * Kneser criteria * critical constant * oscillation constant * Hardy inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0009-7
Finite-temperature spin dynamics in a perturbed quantum critical Ising chain with an E₈ symmetry.
Wu, Jianda; Kormos, Márton; Si, Qimiao
2014-12-12
A spectrum exhibiting E₈ symmetry is expected to arise when a small longitudinal field is introduced in the transverse-field Ising chain at its quantum critical point. Evidence for this spectrum has recently come from neutron scattering measurements in cobalt niobate, a quasi-one-dimensional Ising ferromagnet. Unlike its zero-temperature counterpart, the finite-temperature dynamics of the model has not yet been determined. We study the dynamical spin structure factor of the model at low frequencies and nonzero temperatures, using the form factor method. Its frequency dependence is singular, but differs from the diffusion form. The temperature dependence of the nuclear magnetic resonance (NMR) relaxation rate has an activated form, whose prefactor we also determine. We propose NMR experiments as a means to further test the applicability of the E₈ description for CoNb₂O₆.
Signals for the QCD phase transition and critical point in a Langevin dynamical model
International Nuclear Information System (INIS)
Herold, Christoph; Bleicher, Marcus; Yan, Yu-Peng
2013-01-01
The search for the critical point is one of the central issues that will be investigated in the upcoming FAIR project. For a profound theoretical understanding of the expected signals we go beyond thermodynamic studies and present a fully dynamical model for the chiral and deconfinement phase transition in heavy ion collisions. The corresponding order parameters are propagated by Langevin equations of motions on a thermal background provided by a fluid dynamically expanding plasma of quarks. By that we are able to describe nonequilibrium effects occurring during the rapid expansion of a hot fireball. For an evolution through the phase transition the formation of a supercooled phase and its subsequent decay crucially influence the trajectories in the phase diagram and lead to a significant reheating of the quark medium at highest baryon densities. Furthermore, we find inhomogeneous structures with high density domains along the first order transition line within single events.
Dynamic data-driven integrated flare model based on self-organized criticality
Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M. K.
2013-05-01
Context. We interpret solar flares as events originating in active regions that have reached the self-organized critical state. We describe them with a dynamic integrated flare model whose initial conditions and driving mechanism are derived from observations. Aims: We investigate whether well-known scaling laws observed in the distribution functions of characteristic flare parameters are reproduced after the self-organized critical state has been reached. Methods: To investigate whether the distribution functions of total energy, peak energy, and event duration follow the expected scaling laws, we first applied the previously reported static cellular automaton model to a time series of seven solar vector magnetograms of the NOAA active region 8210 recorded by the Imaging Vector Magnetograph on May 1 1998 between 18:59 UT and 23:16 UT until the self-organized critical state was reached. We then evolved the magnetic field between these processed snapshots through spline interpolation, mimicking a natural driver in our dynamic model. We identified magnetic discontinuities that exceeded a threshold in the Laplacian of the magnetic field after each interpolation step. These discontinuities were relaxed in local diffusion events, implemented in the form of cellular automaton evolution rules. Subsequent interpolation and relaxation steps covered all transitions until the end of the processed magnetograms' sequence. We additionally advanced each magnetic configuration that has reached the self-organized critical state (SOC configuration) by the static model until 50 more flares were triggered, applied the dynamic model again to the new sequence, and repeated the same process sufficiently often to generate adequate statistics. Physical requirements, such as the divergence-free condition for the magnetic field, were approximately imposed. Results: We obtain robust power laws in the distribution functions of the modeled flaring events with scaling indices that agree well
Estimating return periods of extreme values from relatively short time series of winds
Jonasson, Kristjan; Agustsson, Halfdan; Rognvaldsson, Olafur; Arfeuille, Gilles
2013-04-01
An important factor for determining the prospect of individual wind farm sites is the frequency of extreme winds at hub height. Here, extreme winds are defined as the value of the highest 10 minutes averaged wind speed with a 50 year return period, i.e. annual exceeding probability of 2% (Rodrigo, 2010). A frequently applied method to estimate winds in the lowest few hundred meters above ground is to extrapolate observed 10-meter winds logarithmically to higher altitudes. Recent study by Drechsel et al. (2012) showed however that this methodology is not as accurate as interpolating simulated results from the global ECMWF numerical weather prediction (NWP) model to the desired height. Observations of persistent low level jets near Colima in SW-Mexico also show that the logarithmic approach can give highly inaccurate results for some regions (Arfeuille et al., 2012). To address these shortcomings of limited, and/or poorly representative, observations and extrapolations of winds one can use NWP models to dynamically scale down relatively coarse resolution atmospheric analysis. In the case of limited computing resources one has typically to make a compromise between spatial resolution and the duration of the simulated period, both of which can limit the quality of the wind farm siting. A common method to estimate maximum winds is to fit an extreme value distribution (e.g. Gumbel, gev or Pareto) to the maximum values of each year of available data, or the tail of these values. If data are only available for a short period, e.g. 10 or 15 years, then this will give a rather inaccurate estimate. It is possible to deal with this problem by utilizing monthly or weekly maxima, but this introduces new problems: seasonal variation, autocorrelation of neighboring values, and increased discrepancy between data and fitted distribution. We introduce a new method to estimate return periods of extreme values of winds at hub height from relatively short time series of winds, simulated
Quantum critical matter. Quantum phase transitions with multiple dynamics and Weyl superconductors
International Nuclear Information System (INIS)
Meng, Tobias
2012-01-01
In this PhD thesis, the physics of quantum critical matter and exotic quantum state close to quantum phase transitions is investigated. We will focus on three different examples that highlight some of the interesting phenomena related to quantum phase transitions. Firstly, we discuss the physics of quantum phase transitions in quantum wires as a function of an external gate voltage when new subbands are activated. We find that at these transitions, strong correlations lead to the formation of an impenetrable gas of polarons, and identify criteria for possible instabilities in the spin- and charge sectors of the model. Our analysis is based on the combination of exact resummations, renormalization group techniques and Luttinger liquid approaches. Secondly, we turn to the physics of multiple divergent time scales close to a quantum critical point. Using an appropriately generalized renormalization group approach, we identify that the presence of multiple dynamics at a quantum phase transition can lead to the emergence of new critical scaling exponents and thus to the breakdown of the usual scaling schemes. We calculate the critical behavior of various thermodynamic properties and detail how unusual physics can arise. It is hoped that these results might be helpful for the interpretation of experimental scaling puzzles close to quantum critical points. Thirdly, we turn to the physics of topological transitions, and more precisely the physics of Weyl superconductors. The latter are the superconducting variant of the topologically non-trivial Weyl semimetals, and emerge at the quantum phase transition between a topological superconductor and a normal insulator upon perturbing the transition with a time reversal symmetry breaking perturbation, such as magnetism. We characterize the topological properties of Weyl superconductors and establish a topological phase diagram for a particular realization in heterostructures. We discuss the physics of vortices in Weyl
Computational multi-fluid dynamics predictions of critical heat flux in boiling flow
International Nuclear Information System (INIS)
Mimouni, S.; Baudry, C.; Guingo, M.; Lavieville, J.; Merigoux, N.; Mechitoua, N.
2016-01-01
Highlights: • A new mechanistic model dedicated to DNB has been implemented in the Neptune_CFD code. • The model has been validated against 150 tests. • Neptune_CFD code is a CFD tool dedicated to boiling flows. - Abstract: Extensive efforts have been made in the last five decades to evaluate the boiling heat transfer coefficient and the critical heat flux in particular. Boiling crisis remains a major limiting phenomenon for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems. As a consequence, models dedicated to boiling flows have being improved. For example, Reynolds Stress Transport Model, polydispersion and two-phase flow wall law have been recently implemented. In a previous work, we have evaluated computational fluid dynamics results against single-phase liquid water tests equipped with a mixing vane and against two-phase boiling cases. The objective of this paper is to propose a new mechanistic model in a computational multi-fluid dynamics tool leading to wall temperature excursion and onset of boiling crisis. Critical heat flux is calculated against 150 tests and the mean relative error between calculations and experimental values is equal to 8.3%. The model tested covers a large physics scope in terms of mass flux, pressure, quality and channel diameter. Water and R12 refrigerant fluid are considered. Furthermore, it was found that the sensitivity to the grid refinement was acceptable.
Computational multi-fluid dynamics predictions of critical heat flux in boiling flow
Energy Technology Data Exchange (ETDEWEB)
Mimouni, S., E-mail: stephane.mimouni@edf.fr; Baudry, C.; Guingo, M.; Lavieville, J.; Merigoux, N.; Mechitoua, N.
2016-04-01
Highlights: • A new mechanistic model dedicated to DNB has been implemented in the Neptune-CFD code. • The model has been validated against 150 tests. • Neptune-CFD code is a CFD tool dedicated to boiling flows. - Abstract: Extensive efforts have been made in the last five decades to evaluate the boiling heat transfer coefficient and the critical heat flux in particular. Boiling crisis remains a major limiting phenomenon for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems. As a consequence, models dedicated to boiling flows have being improved. For example, Reynolds Stress Transport Model, polydispersion and two-phase flow wall law have been recently implemented. In a previous work, we have evaluated computational fluid dynamics results against single-phase liquid water tests equipped with a mixing vane and against two-phase boiling cases. The objective of this paper is to propose a new mechanistic model in a computational multi-fluid dynamics tool leading to wall temperature excursion and onset of boiling crisis. Critical heat flux is calculated against 150 tests and the mean relative error between calculations and experimental values is equal to 8.3%. The model tested covers a large physics scope in terms of mass flux, pressure, quality and channel diameter. Water and R12 refrigerant fluid are considered. Furthermore, it was found that the sensitivity to the grid refinement was acceptable.
Analytical description of critical dynamics for two-dimensional dissipative nonlinear maps
International Nuclear Information System (INIS)
Méndez-Bermúdez, J.A.; Oliveira, Juliano A. de; Leonel, Edson D.
2016-01-01
The critical dynamics near the transition from unlimited to limited action diffusion for two families of well known dissipative nonlinear maps, namely the dissipative standard and dissipative discontinuous maps, is characterized by the use of an analytical approach. The approach is applied to explicitly obtain the average squared action as a function of the (discrete) time and the parameters controlling nonlinearity and dissipation. This allows to obtain a set of critical exponents so far obtained numerically in the literature. The theoretical predictions are verified by extensive numerical simulations. We conclude that all possible dynamical cases, independently on the map parameter values and initial conditions, collapse into the universal exponential decay of the properly normalized average squared action as a function of a normalized time. The formalism developed here can be extended to many other different types of mappings therefore making the methodology generic and robust. - Highlights: • We analytically approach scaling properties of a family of two-dimensional dissipative nonlinear maps. • We derive universal scaling functions that were obtained before only approximately. • We predict the unexpected condition where diffusion and dissipation compensate each other exactly. • We find a new universal scaling function that embraces all possible dissipative behaviors.
International Nuclear Information System (INIS)
Knoeri, Christof; Wäger, Patrick A.; Stamp, Anna; Althaus, Hans-Joerg; Weil, Marcel
2013-01-01
Emerging technologies such as information and communication-, photovoltaic- or battery technologies are expected to increase significantly the demand for scarce metals in the near future. The recently developed methods to evaluate the criticality of mineral raw materials typically provide a ‘snapshot’ of the criticality of a certain material at one point in time by using static indicators both for supply risk and for the impacts of supply restrictions. While allowing for insights into the mechanisms behind the criticality of raw materials, these methods cannot account for dynamic changes in products and/or activities over time. In this paper we propose a conceptual framework intended to overcome these limitations by including the dynamic interactions between different possible demand and supply configurations. The framework integrates an agent-based behaviour model, where demand emerges from individual agent decisions and interaction, into a dynamic material flow model, representing the materials' stocks and flows. Within the framework, the environmental implications of substitution decisions are evaluated by applying life-cycle assessment methodology. The approach makes a first step towards a dynamic criticality assessment and will enhance the understanding of industrial substitution decisions and environmental implications related to critical metals. We discuss the potential and limitation of such an approach in contrast to state-of-the-art methods and how it might lead to criticality assessments tailored to the specific circumstances of single industrial sectors or individual companies. - Highlights: ► Current criticality assessment methods provide a ‘snapshot’ at one point in time. ► They do not account for dynamic interactions between demand and supply. ► We propose a conceptual framework to overcomes these limitations. ► The framework integrates an agent-based behaviour model with a dynamic material flow model. ► The approach proposed makes
Kozma, Robert; Freeman, Walter J
2017-01-01
Measurements of local field potentials over the cortical surface and the scalp of animals and human subjects reveal intermittent bursts of beta and gamma oscillations. During the bursts, narrow-band metastable amplitude modulation (AM) patters emerge for a fraction of a second and ultimately dissolve to the broad-band random background activity. The burst process depends on previously learnt conditioned stimuli (CS), thus different AM patterns may emerge in response to different CS. This observation leads to our cinematic theory of cognition when perception happens in discrete steps manifested in the sequence of AM patterns. Our article summarizes findings in the past decades on experimental evidence of cinematic theory of cognition and relevant mathematical models. We treat cortices as dissipative systems that self-organize themselves near a critical level of activity that is a non-equilibrium metastable state. Criticality is arguably a key aspect of brains in their rapid adaptation, reconfiguration, high storage capacity, and sensitive response to external stimuli. Self-organized criticality (SOC) became an important concept to describe neural systems. We argue that transitions from one AM pattern to the other require the concept of phase transitions, extending beyond the dynamics described by SOC. We employ random graph theory (RGT) and percolation dynamics as fundamental mathematical approaches to model fluctuations in the cortical tissue. Our results indicate that perceptions are formed through a phase transition from a disorganized (high entropy) to a well-organized (low entropy) state, which explains the swiftness of the emergence of the perceptual experience in response to learned stimuli.
Directory of Open Access Journals (Sweden)
Adnan naji jameel
2016-03-01
Full Text Available In this paper, the effect of wear in the fluid film journal bearings on the dynamic stability of rotor bearing system has been studied depending on the development of new analytical equations for motion, instability threshold speed and steady state harmonic response for rotor with offset disc supported by worn journal bearings. Finite element method had been used for modeling the rotor bearing system. The analytical model is verified by comparing its results with that obtained numerically for a rotor supported on the short bearings. The analytical and numerical results showed good agreement with about 8.5% percentage error in the value of critical speed and about 3.5% percentage error in the value of harmonic response. The results obtained show that the wear in journal bearing decrease the instability threshold speed by 2.5% for wear depth 0.02 mm and 12.5% for wear depth 0.04 mm as well as decrease critical speed by 4.2% and steady state harmonic response amplitude by 4.3% for wear depth 0.02 mm and decrease the critical speed by 7.1% and steady state harmonic response amplitude by 13.9% for wear depth 0.04 mm.
International Nuclear Information System (INIS)
Antonov, N V; Kapustin, A S
2012-01-01
Critical behaviour of the dynamical Potts model, subjected to vivid turbulent mixing, is studied by means of the renormalization group. The advecting velocity field is modelled by Kraichnan’s rapid-change ensemble: Gaussian statistics with a given pair correlator 〈vv〉∝δ(t − t′) k −d−ξ , where k is the wave number, d is the dimension of space and 0 < ξ < 2 is an arbitrary exponent. The system exhibits different types of infrared scaling behaviour, associated with four infrared attractors of the renormalization group equations. In addition to the known asymptotic regimes (equilibrium Potts model and passive scalar field), the existence of a new, strongly non-equilibrium type of critical behaviour (universality class) is established, where the self-interaction of the order parameter and the turbulent mixing are equally important. The corresponding critical dimensions and the regions of stability for all the regimes are calculated in the leading order of the double expansion in ξ and ε = 6 − d. Special attention is paid to the effects of compressibility of the fluid, because they lead to interesting crossover phenomena. (paper)
Non-critical string theory formulation of microtubule dynamics and quantum aspects of brain function
Mavromatos, Nikolaos E
1995-01-01
Microtubule (MT) networks, subneural paracrystalline cytosceletal structures, seem to play a fundamental role in the neurons. We cast here the complicated MT dynamics in the form of a 1+1-dimensional non-critical string theory, thus enabling us to provide a consistent quantum treatment of MTs, including enviromental {\\em friction} effects. We suggest, thus, that the MTs are the microsites, in the brain, for the emergence of stable, macroscopic quantum coherent states, identifiable with the {\\em preconscious states}. Quantum space-time effects, as described by non-critical string theory, trigger then an {\\em organized collapse} of the coherent states down to a specific or {\\em conscious state}. The whole process we estimate to take {\\cal O}(1\\,{\\rm sec}), in excellent agreement with a plethora of experimental/observational findings. The {\\em microscopic arrow of time}, endemic in non-critical string theory, and apparent here in the self-collapse process, provides a satisfactory and simple resolution to the age...
Tresser, Shachar; Dolev, Amit; Bucher, Izhak
2018-02-01
High-speed machinery is often designed to pass several "critical speeds", where vibration levels can be very high. To reduce vibrations, rotors usually undergo a mass balancing process, where the machine is rotated at its full speed range, during which the dynamic response near critical speeds can be measured. High sensitivity, which is required for a successful balancing process, is achieved near the critical speeds, where a single deflection mode shape becomes dominant, and is excited by the projection of the imbalance on it. The requirement to rotate the machine at high speeds is an obstacle in many cases, where it is impossible to perform measurements at high speeds, due to harsh conditions such as high temperatures and inaccessibility (e.g., jet engines). This paper proposes a novel balancing method of flexible rotors, which does not require the machine to be rotated at high speeds. With this method, the rotor is spun at low speeds, while subjecting it to a set of externally controlled forces. The external forces comprise a set of tuned, response dependent, parametric excitations, and nonlinear stiffness terms. The parametric excitation can isolate any desired mode, while keeping the response directly linked to the imbalance. A software controlled nonlinear stiffness term limits the response, hence preventing the rotor to become unstable. These forces warrant sufficient sensitivity required to detect the projection of the imbalance on any desired mode without rotating the machine at high speeds. Analytical, numerical and experimental results are shown to validate and demonstrate the method.
Study of surfaces and surface layers on high temperature materials after short-time thermal loads
International Nuclear Information System (INIS)
Bolt, H.; Hoven, H.; Koizlik, K.; Linke, J.; Nickel, H.; Wallura, E.
1985-11-01
Being part of the plasma-wall interaction during TOKAMAK operation, erosion- and redeposition processes of First Wall materials substantially influence plasma parameters as well as the properties of the First Wall. An important redeposition process of eroded material is the formation of thin films by atomic condensation. Examinations of First Wall components after TOKAMAK operation lead to the assumption that these thin metallic films tend to agglomerate to small particles under subsequent heat load. In laboratory experiments it is shown that thin metallic films on various substrates can agglomerate under short time high heat fluxes and also under longer lasting lower thermal loads, thus verifying the ''agglomeration hypothesis''. (orig.) [de
A Statistical and Spectral Model for Representing Noisy Sounds with Short-Time Sinusoids
Directory of Open Access Journals (Sweden)
Myriam Desainte-Catherine
2005-07-01
Full Text Available We propose an original model for noise analysis, transformation, and synthesis: the CNSS model. Noisy sounds are represented with short-time sinusoids whose frequencies and phases are random variables. This spectral and statistical model represents information about the spectral density of frequencies. This perceptually relevant property is modeled by three mathematical parameters that define the distribution of the frequencies. This model also represents the spectral envelope. The mathematical parameters are defined and the analysis algorithms to extract these parameters from sounds are introduced. Then algorithms for generating sounds from the parameters of the model are presented. Applications of this model include tools for composers, psychoacoustic experiments, and pedagogy.
DEFF Research Database (Denmark)
Heidemann Andersen, Asger; de Haan, Jan Mark; Tan, Zheng-Hua
performance measures: root-mean-squared-error, Pearson correlation, and Kendall rank correlation. The results show substantially improved performance when fitting and evaluating on the same dataset. However, this advantage does not necessarily subsist when fitting and evaluating on different datasets. When...... with a filter bank, 2) envelopes are extracted from each band, 3) the temporal correlation between clean and degraded envelopes is computed in short time segments, and 4) the correlation is averaged across time and frequency bands to obtain the final output. An unusual choice in the design of the STOI measure...
Directory of Open Access Journals (Sweden)
D. Seidl
1999-06-01
Full Text Available Among a variety of spectrogram methods Short-Time Fourier Transform (STFT and Continuous Wavelet Transform (CWT were selected to analyse transients in non-stationary tremor signals. Depending on the properties of the tremor signal a more suitable representation of the signal is gained by CWT. Three selected broadband tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli.
Towards the Verification of Safety-critical Autonomous Systems in Dynamic Environments
Directory of Open Access Journals (Sweden)
Adina Aniculaesei
2016-12-01
Full Text Available There is an increasing necessity to deploy autonomous systems in highly heterogeneous, dynamic environments, e.g. service robots in hospitals or autonomous cars on highways. Due to the uncertainty in these environments, the verification results obtained with respect to the system and environment models at design-time might not be transferable to the system behavior at run time. For autonomous systems operating in dynamic environments, safety of motion and collision avoidance are critical requirements. With regard to these requirements, Macek et al. [6] define the passive safety property, which requires that no collision can occur while the autonomous system is moving. To verify this property, we adopt a two phase process which combines static verification methods, used at design time, with dynamic ones, used at run time. In the design phase, we exploit UPPAAL to formalize the autonomous system and its environment as timed automata and the safety property as TCTL formula and to verify the correctness of these models with respect to this property. For the runtime phase, we build a monitor to check whether the assumptions made at design time are also correct at run time. If the current system observations of the environment do not correspond to the initial system assumptions, the monitor sends feedback to the system and the system enters a passive safe state.
The Ramifications of Meddling with Systems Governed by Self-organized Critical Dynamics
Carreras, B. A.; Newman, D. E.; Dobson, I.
2002-12-01
Complex natural, well as man-made, systems often exhibit characteristics similar to those seen in self-organized critical (SOC) systems. The concept of self-organized criticality brings together ideas of self-organization of nonlinear dynamical systems with the often-observed near critical behavior of many natural phenomena. These phenomena exhibit self-similarities over extended ranges of spatial and temporal scales. In those systems, scale lengths may be described by fractal geometry and time scales that lead to 1/f-like power spectra. Natural applications include modeling the motion of tectonics plates, forest fires, magnetospheric dynamics, spin glass systems, and turbulent transport. In man-made systems, applications have included traffic dynamics, power and communications networks, and financial markets among many others. Simple cellular automata models such as the running sandpile model have been very useful in reproducing the complexity and characteristics of these systems. One characteristic property of the SOC systems is that they relax through what we call events. These events can happen over all scales of the system. Examples of these events are: earthquakes in the case of plate tectonic; fires in forest evolution extinction in the co evolution of biological species; and blackouts in power transmission systems. In a time-averaged sense, these systems are subcritical (that is, they lie in an average state that should not trigger any events) and the relaxation events happen intermittently. The time spent in a subcritical state relative to the time of the events varies from one system to another. For instance, the chance of finding a forest on fire is very low with the frequency of fires being on the order of one fire every few years and with many of these fires small and inconsequential. Very large fires happen over time periods of decades or even centuries. However, because of their consequences, these large but infrequent events are the important ones
Adaptive synchrosqueezing based on a quilted short-time Fourier transform
Berrian, Alexander; Saito, Naoki
2017-08-01
In recent years, the synchrosqueezing transform (SST) has gained popularity as a method for the analysis of signals that can be broken down into multiple components determined by instantaneous amplitudes and phases. One such version of SST, based on the short-time Fourier transform (STFT), enables the sharpening of instantaneous frequency (IF) information derived from the STFT, as well as the separation of amplitude-phase components corresponding to distinct IF curves. However, this SST is limited by the time-frequency resolution of the underlying window function, and may not resolve signals exhibiting diverse time-frequency behaviors with sufficient accuracy. In this work, we develop a framework for an SST based on a "quilted" short-time Fourier transform (SST-QSTFT), which allows adaptation to signal behavior in separate time-frequency regions through the use of multiple windows. This motivates us to introduce a discrete reassignment frequency formula based on a finite difference of the phase spectrum, ensuring computational accuracy for a wider variety of windows. We develop a theoretical framework for the SST-QSTFT in both the continuous and the discrete settings, and describe an algorithm for the automatic selection of optimal windows depending on the region of interest. Using synthetic data, we demonstrate the superior numerical performance of SST-QSTFT relative to other SST methods in a noisy context. Finally, we apply SST-QSTFT to audio recordings of animal calls to demonstrate the potential of our method for the analysis of real bioacoustic signals.
FREQUENCY COMPONENT EXTRACTION OF HEARTBEAT CUES WITH SHORT TIME FOURIER TRANSFORM (STFT
Directory of Open Access Journals (Sweden)
Sumarna Sumarna
2017-01-01
Electro-acoustic human heartbeat detector have been made with the main parts : (a stetoscope (piece chest, (b mic condenser, (c transistor amplifier, and (d cues analysis program with MATLAB. The frequency components that contained in heartbeat. cues have also been extracted with Short Time Fourier Transform (STFT from 9 volunteers. The results of the analysis showed that heart rate appeared in every cue frequency spectrum with their harmony. The steps of the research were including detector instrument design, test and instrument repair, cues heartbeat recording with Sound Forge 10 program and stored in wav file ; cues breaking at the start and the end, and extraction/cues analysis using MATLAB. The MATLAB program included filter (bandpass filter with bandwidth between 0.01 – 110 Hz, cues breaking with hamming window and every part was calculated using Fourier Transform (STFT mechanism and the result were shown in frequency spectrum graph. Keywords: frequency components extraction, heartbeat cues, Short Time Fourier Transform
Equivalence between short-time biphasic and incompressible elastic material responses.
Ateshian, Gerard A; Ellis, Benjamin J; Weiss, Jeffrey A
2007-06-01
Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response deltatelasticity tensor, and K is the hydraulic permeability tensor of the solid matrix. Certain notes of caution are provided with regard to implementation issues, particularly when finite element formulations of incompressible elasticity employ an uncoupled strain energy function consisting of additive deviatoric and volumetric components.
Critical ionisation velocity and the dynamics of a coaxial plasma gun
International Nuclear Information System (INIS)
Raadu, M.A.
1978-01-01
The dynamics of an ionising wave in a coaxial plasma gun with an azimuthal bias magnetic field is analysed in a theoretical model. Only the radial dependence is treated and instead of including a treatment of the energy balance two separate physical assumptions are made. In the first case it is assumed that the total internal electric field is given by the critical ionisation velocity condition and in the second that the ionisation rate is constant. For consistency wall sheaths are assumed to match the internal plasma potential to that of the walls. On the basis of momentum and particle balance the radial dependence of the electron density, current density, electric field and drift velocity are found. An electron source is required at the cathode and the relative contribution from ionisation within the plasma is deduced. The assumption that there are no ion sources at the electrodes leads to a restriction on the possible values of the axial electric field. (author)
Inhomogeneous quasi-adiabatic driving of quantum critical dynamics in weakly disordered spin chains
International Nuclear Information System (INIS)
Rams, Marek M; Mohseni, Masoud; Campo, Adolfo del
2016-01-01
We introduce an inhomogeneous protocol to drive a weakly disordered quantum spin chain quasi-adiabatically across a quantum phase transition and minimize the residual energy of the final state. The number of spins that simultaneously reach the critical point is controlled by the length scale in which the magnetic field is modulated, introducing an effective size that favors adiabatic dynamics. The dependence of the residual energy on this length scale and the velocity at which the magnetic field sweeps out the chain is shown to be nonmonotonic. We determine the conditions for an optimal suppression of the residual energy of the final state and show that inhomogeneous driving can outperform conventional adiabatic schemes based on homogeneous control fields by several orders of magnitude. (paper)
A Dynamic Hydrology-Critical Zone Framework for Rainfall-triggered Landslide Hazard Prediction
Dialynas, Y. G.; Foufoula-Georgiou, E.; Dietrich, W. E.; Bras, R. L.
2017-12-01
Watershed-scale coupled hydrologic-stability models are still in their early stages, and are characterized by important limitations: (a) either they assume steady-state or quasi-dynamic watershed hydrology, or (b) they simulate landslide occurrence based on a simple one-dimensional stability criterion. Here we develop a three-dimensional landslide prediction framework, based on a coupled hydrologic-slope stability model and incorporation of the influence of deep critical zone processes (i.e., flow through weathered bedrock and exfiltration to the colluvium) for more accurate prediction of the timing, location, and extent of landslides. Specifically, a watershed-scale slope stability model that systematically accounts for the contribution of driving and resisting forces in three-dimensional hillslope segments was coupled with a spatially-explicit and physically-based hydrologic model. The landslide prediction framework considers critical zone processes and structure, and explicitly accounts for the spatial heterogeneity of surface and subsurface properties that control slope stability, including soil and weathered bedrock hydrological and mechanical characteristics, vegetation, and slope morphology. To test performance, the model was applied in landslide-prone sites in the US, the hydrology of which has been extensively studied. Results showed that both rainfall infiltration in the soil and groundwater exfiltration exert a strong control on the timing and magnitude of landslide occurrence. We demonstrate the extent to which three-dimensional slope destabilizing factors, which are modulated by dynamic hydrologic conditions in the soil-bedrock column, control landslide initiation at the watershed scale.
International Nuclear Information System (INIS)
Roger Lew; Brian P. Dyre; Steffen Werner; Jeffrey C. Joe; Brian Wotring; Tuan Tran
2008-01-01
The development of real-time predictors of mental workload is critical for the practical application of augmented cognition to human-machine systems. This paper explores a novel method based on a short-time Fourier transform (STFT) for analyzing galvanic skin conductance (SC) and pupillometry time-series data to extract estimates of mental workload with temporal bandwidth high-enough to be useful for augmented cognition applications. We tested the method in the context of a process control task based on the DURESS simulation developed by Vincente and Pawlak (1994; ported to Java by Cosentino, and Ross, 1999). SC, pupil dilation, blink rate, and visual scanning patterns were measured for four participants actively engaged in controlling the simulation. Fault events were introduced that required participants to diagnose errors and make control adjustments to keep the simulator operating within a target range. We were interested in whether the STFT of these measures would produce visible effects of the increase in mental workload and stress associated with these events. Graphical exploratory data analysis of the STFT showed visible increases in the power spectrum across a range of frequencies directly following fault events. We believe this approach shows potential as a relatively unobtrusive, low-cost, high bandwidth measure of mental workload that could be particularly useful for the application of augmented cognition to human-machine systems
Energy Technology Data Exchange (ETDEWEB)
Roger Lew; Brian P. Dyre; Steffen Werner; Jeffrey C. Joe; Brian Wotring; Tuan Tran
2008-09-01
The development of real-time predictors of mental workload is critical for the practical application of augmented cognition to human-machine systems. This paper explores a novel method based on a short-time Fourier transform (STFT) for analyzing galvanic skin conductance (SC) and pupillometry time-series data to extract estimates of mental workload with temporal bandwidth high-enough to be useful for augmented cognition applications. We tested the method in the context of a process control task based on the DURESS simulation developed by Vincente and Pawlak (1994; ported to Java by Cosentino,& Ross, 1999). SC, pupil dilation, blink rate, and visual scanning patterns were measured for four participants actively engaged in controlling the simulation. Fault events were introduced that required participants to diagnose errors and make control adjustments to keep the simulator operating within a target range. We were interested in whether the STFT of these measures would produce visible effects of the increase in mental workload and stress associated with these events. Graphical exploratory data analysis of the STFT showed visible increases in the power spectrum across a range of frequencies directly following fault events. We believe this approach shows potential as a relatively unobtrusive, low-cost, high bandwidth measure of mental workload that could be particularly useful for the application of augmented cognition to human-machine systems.
Knoeri, Christof; Wäger, Patrick A; Stamp, Anna; Althaus, Hans-Joerg; Weil, Marcel
2013-09-01
Emerging technologies such as information and communication-, photovoltaic- or battery technologies are expected to increase significantly the demand for scarce metals in the near future. The recently developed methods to evaluate the criticality of mineral raw materials typically provide a 'snapshot' of the criticality of a certain material at one point in time by using static indicators both for supply risk and for the impacts of supply restrictions. While allowing for insights into the mechanisms behind the criticality of raw materials, these methods cannot account for dynamic changes in products and/or activities over time. In this paper we propose a conceptual framework intended to overcome these limitations by including the dynamic interactions between different possible demand and supply configurations. The framework integrates an agent-based behaviour model, where demand emerges from individual agent decisions and interaction, into a dynamic material flow model, representing the materials' stocks and flows. Within the framework, the environmental implications of substitution decisions are evaluated by applying life-cycle assessment methodology. The approach makes a first step towards a dynamic criticality assessment and will enhance the understanding of industrial substitution decisions and environmental implications related to critical metals. We discuss the potential and limitation of such an approach in contrast to state-of-the-art methods and how it might lead to criticality assessments tailored to the specific circumstances of single industrial sectors or individual companies. Copyright © 2013 Elsevier B.V. All rights reserved.
Quench dynamics near a quantum critical point: Application to the sine-Gordon model
International Nuclear Information System (INIS)
De Grandi, C.; Polkovnikov, A.; Gritsev, V.
2010-01-01
We discuss the quench dynamics near a quantum critical point focusing on the sine-Gordon model as a primary example. We suggest a unified approach to sudden and slow quenches, where the tuning parameter λ(t) changes in time as λ(t)∼υt r , based on the adiabatic expansion of the excitation probability in powers of υ. We show that the universal scaling of the excitation probability can be understood through the singularity of the generalized adiabatic susceptibility χ 2r+2 (λ), which for sudden quenches (r=0) reduces to the fidelity susceptibility. In turn this class of susceptibilities is expressed through the moments of the connected correlation function of the quench operator. We analyze the excitations created after a sudden quench of the cosine potential using a combined approach of form-factors expansion and conformal perturbation theory for the low-energy and high-energy sector, respectively. We find the general scaling laws for the probability of exciting the system, the density of excited quasiparticles, the entropy and the heat generated after the quench. In the two limits where the sine-Gordon model maps to hard-core bosons and free massive fermions we provide the exact solutions for the quench dynamics and discuss the finite temperature generalizations.
Short-time scale coupling between thermohaline and meteorological forcing in the Ría de Pontevedra
Directory of Open Access Journals (Sweden)
Paula C. Pardo
2001-07-01
Full Text Available Two cruises were performed in May-June and October-November 1997 in the Ría de Pontevedra under strong downwelling conditions. Temperature and salinity data were recorded in short sampling periods to describe the changes in thermohaline property distribution in a short time scale. In order to obtain the residual fluxes in the Ría, a bi-dimensional non-stationary salt and thermal-energy weight averaged box-model was applied. Outputs from this kinematic model were compared with Upwelling Index, river flow and density gradient, resulting in a good multiple correlation, which proves the strong coupling between thermohaline properties and meteorological variability. Ekman forcing affects the whole area but mainly controls the dynamics of outer zones. The intensity of its effect on the circulation pattern within the Ría depends on the grade of stratification of the water bodies. River flow is more relevant in inner parts. According to estimated spatially averaged velocities, water residence time is lower than two weeks in outer parts of the Ría, and decreases toward the inner zones.
New solutions for the short-time analysis of geothermal vertical boreholes
Energy Technology Data Exchange (ETDEWEB)
Lamarche, Louis; Beauchamp, Benoit [Ecole de Technologie Supereure, 1100 Notre-Dame Ouest, Montreal (Canada)
2007-04-15
Many models, either numerical or analytical, have been proposed to analyse the thermal response of vertical heat exchangers that are used in ground coupled heat pump systems (GCHP). In both approaches, most of the models are valid after few hours of operation since they neglect the heat capacity of the borehole. This is valid for design purposes, where the time of interest is in the order of months and years. Recently, the short time response of vertical boreholes became a subject of interest. In this paper, we present a new analytical approach to treat this problem. It solves the exact solution for concentric cylinders and is a good approximation for the familiar U-tube configuration. (author)
International Nuclear Information System (INIS)
Ando, S; Nara, T; Kurihara, T
2014-01-01
Spatial filtering velocimetry was proposed in 1963 by Ator as a velocity-sensing technique for aerial camera-control systems. The total intensity of a moving surface is observed through a set of parallel-slit reticles, resulting in a narrow-band temporal signal whose frequency is directly proportional to the image velocity. However, even despite its historical importance and inherent technical advantages, the mathematical formulation of this technique is only valid when infinite-length observation in both space and time is possible, which causes significant errors in most applications where a small receptive window and high resolution in both axes are desired. In this study, we apply a novel mathematical technique, the weighted integral method, to solve this problem, and obtain exact sensing schemes and algorithms for finite (arbitrarily small but non-zero) size reticles and short-time estimation. Practical considerations for utilizing these schemes are also explored both theoretically and experimentally. (paper)
Gastón, Martín; Fernández-Peruchena, Carlos; Körnich, Heiner; Landelius, Tomas
2017-06-01
The present work describes the first approach of a new procedure to forecast Direct Normal Irradiance (DNI): the #hashtdim that treats to combine ground information and Numerical Weather Predictions. The system is centered in generate predictions for the very short time. It combines the outputs from the Numerical Weather Prediction Model HARMONIE with an adaptive methodology based on Machine Learning. The DNI predictions are generated with 15-minute and hourly temporal resolutions and presents 3-hourly updates. Each update offers forecasts to the next 12 hours, the first nine hours are generated with 15-minute temporal resolution meanwhile the last three hours present hourly temporal resolution. The system is proved over a Spanish emplacement with BSRN operative station in south of Spain (PSA station). The #hashtdim has been implemented in the framework of the Direct Normal Irradiance Nowcasting methods for optimized operation of concentrating solar technologies (DNICast) project, under the European Union's Seventh Programme for research, technological development and demonstration framework.
Micro-Doppler Ambiguity Resolution Based on Short-Time Compressed Sensing
Directory of Open Access Journals (Sweden)
Jing-bo Zhuang
2015-01-01
Full Text Available When using a long range radar (LRR to track a target with micromotion, the micro-Doppler embodied in the radar echoes may suffer from ambiguity problem. In this paper, we propose a novel method based on compressed sensing (CS to solve micro-Doppler ambiguity. According to the RIP requirement, a sparse probing pulse train with its transmitting time random is designed. After matched filtering, the slow-time echo signals of the micromotion target can be viewed as randomly sparse sampling of Doppler spectrum. Select several successive pulses to form a short-time window and the CS sensing matrix can be built according to the time stamps of these pulses. Then performing Orthogonal Matching Pursuit (OMP, the unambiguous micro-Doppler spectrum can be obtained. The proposed algorithm is verified using the echo signals generated according to the theoretical model and the signals with micro-Doppler signature produced using the commercial electromagnetic simulation software FEKO.
Short-time beta grain growth kinetics for a conventional titanium alloy
International Nuclear Information System (INIS)
Semiatin, S.L.; Sukonnik, I.M.
1996-01-01
The kinetics of beta grain growth during short-time, supertransus heat treatment of Ti-5Al-4V were determined using a salt-pot technique. The finite-time, subtransus temperature transient during salt-pot heating was quantified through measurements of the heat transfer coefficient characterizing conduction across the salt-titanium interface and a simple heat conduction analysis which incorporated this heat transfer coefficient. Grain size versus time data adjusted to account for the subtransus temperature transient were successfully fit to the parabolic grain growth law d n - d 0 n = kt exp(-Q/RT) using an exponent n equal to 2.0. Comparison of the present results to rapid, continuous heat treatment data in the literature for a similar titanium alloy revealed a number of semi-quantitative similarities
Generic short-time propagation of sharp-boundaries wave packets
Granot, E.; Marchewka, A.
2005-11-01
A general solution to the "shutter" problem is presented. The propagation of an arbitrary initially bounded wave function is investigated, and the general solution for any such function is formulated. It is shown that the exact solution can be written as an expression that depends only on the values of the function (and its derivatives) at the boundaries. In particular, it is shown that at short times (t << 2mx2/hbar, where x is the distance to the boundaries) the wave function propagation depends only on the wave function's values (or its derivatives) at the boundaries of the region. Finally, we generalize these findings to a non-singular wave function (i.e., for wave packets with finite-width boundaries) and suggest an experimental verification.
Toward an improved understanding of the role of transpiration in critical zone dynamics
Mitra, B.; Papuga, S. A.
2012-12-01
Evapotranspiration (ET) is an important component of the total water balance across any ecosystem. In subalpine mixed-conifer ecosystems, transpiration (T) often dominates the total water flux and therefore improved understanding of T is critical for accurate assessment of catchment water balance and for understanding of the processes that governs the complex dynamics across critical zone (CZ). The interaction between T and plant vegetation not only modulates soil water balance but also influences water transit time and hydrochemical flux - key factors in our understanding of how the CZ evolves and responds. Unlike an eddy covariance system which provides only an integrated ET flux from an ecosystem, a sap flow system can provide an estimate of the T flux from the ecosystem. By isolating T, the ecohydrological drivers of this major water loss from the CZ can be identified. Still, the species composition of mixed-conifer ecosystems vary and the drivers of T associated with each species are expected to be different. Therefore, accurate quantification of T from a mixed-conifer requires knowledge of the unique transpiration dynamics of each of the tree species. Here, we installed a sap flow system within two mixed-conifer study sites of the Jemez River Basin - Santa Catalina Mountains Critical Zone Observatory (JRB - SCM CZO). At both sites, we identified the dominant tree species and installed sap flow sensors on healthy representatives for each of those species. At the JRB CZO site, sap sensors were installed in fir (4) and spruce (4) trees; at the SCM CZO site, sap sensors were installed at white fir (4) and maple (4) and one dead tree. Meteorological data as well as soil temperature (Ts) and soil moisture (θ) at multiple depths were also collected from each of the two sites. Preliminary analysis of two years of sap flux rate at JRB - SCM CZO shows that the environmental drivers of fir, spruce, and maple are different and also vary throughout the year. For JRB fir
A characterization of persistence at short times in the WFC3/IR detector
Gennaro, M.; Bajaj, V.; Long, K.
2018-05-01
Persistence in the WFC3/IR detector appears to decay as a power law as a function of time elapsed since the end of a stimulus. In this report we study departures from the power law at times shorter than a few hundreds seconds after the stimulus. In order to have better short-time cadence, we use the Multiaccum (.ima) files, which trace the accumulated charge in the pixels as function of time, rather than the final pipeline products (.flt files), which instead report the electron rate estimated via a linear fit to the accumulated charge vs. time relation. We note that at short times after the stimulus, the absolute change in persistence is the strongest, thus a linear fit to the accumulated signal (the .flt values) can be a poor representation of the strongly varying persistence signal. The already observed power-law decay of the persistence signal, still holds at shorter times, with typical values of the power law index, gamma in [-0.8,-1] for stimuli that saturate the WFC3 pixels. To a good degree of approximation, a single power law is a good fit to the persistence signal decay from 100 to 5000 seconds. We also detect a tapering-off in the power-law decay at increasingly shorter times. This change in behavior is of the order of Delta Gamma 0.02 - 0.05 when comparing power-law fits performed to the persistence signal from 0 up to 250 seconds and from 0 up to 4000 seconds after the stimulus, indicating that persistence decays slightly more rapidly as time progresses. Our results may suggest that for even shorter times, not probed by our study, the WFC3 persistence signal might deviate from a single power-law model.
Tchagang, Alain B; Phan, Sieu; Famili, Fazel; Shearer, Heather; Fobert, Pierre; Huang, Yi; Zou, Jitao; Huang, Daiqing; Cutler, Adrian; Liu, Ziying; Pan, Youlian
2012-04-04
Nowadays, it is possible to collect expression levels of a set of genes from a set of biological samples during a series of time points. Such data have three dimensions: gene-sample-time (GST). Thus they are called 3D microarray gene expression data. To take advantage of the 3D data collected, and to fully understand the biological knowledge hidden in the GST data, novel subspace clustering algorithms have to be developed to effectively address the biological problem in the corresponding space. We developed a subspace clustering algorithm called Order Preserving Triclustering (OPTricluster), for 3D short time-series data mining. OPTricluster is able to identify 3D clusters with coherent evolution from a given 3D dataset using a combinatorial approach on the sample dimension, and the order preserving (OP) concept on the time dimension. The fusion of the two methodologies allows one to study similarities and differences between samples in terms of their temporal expression profile. OPTricluster has been successfully applied to four case studies: immune response in mice infected by malaria (Plasmodium chabaudi), systemic acquired resistance in Arabidopsis thaliana, similarities and differences between inner and outer cotyledon in Brassica napus during seed development, and to Brassica napus whole seed development. These studies showed that OPTricluster is robust to noise and is able to detect the similarities and differences between biological samples. Our analysis showed that OPTricluster generally outperforms other well known clustering algorithms such as the TRICLUSTER, gTRICLUSTER and K-means; it is robust to noise and can effectively mine the biological knowledge hidden in the 3D short time-series gene expression data.
Directory of Open Access Journals (Sweden)
Annussek Tobias
2012-09-01
Full Text Available Abstract Introduction Due to increasing use of disease modifying antirheumatic drugs (DMARDs as first line therapy in rheumatic diseases, dental and maxillofacial practitioner should be aware of drug related adverse events. Especially effects on bone-metabolism and its cells are discussed controversially. Therefore we investigate the in vitro effect of short time administration of low dose methotrexate (MTX on osteoblasts as essential part of bone remodelling cells. Methods Primary bovine osteoblasts (OBs were incubated with various concentrations of MTX, related to tissue concentrations, over a period of fourteen days by using a previously established standard protocol. The effect on cell proliferation as well as mitochondrial activity was assessed by using 3-(4, 5-dimethylthiazol-2-yl 2, 5-diphenyltetrazolium bromide (MTT assay, imaging and counting of living cells. Additionally, immunostaining of extracellular matrix proteins was used to survey osteogenic differentiation. Results All methods indicate a strong inhibition of osteoblast`s proliferation by short time administration of low dose MTX within therapeutically relevant concentrations of 1 to 1000nM, without affecting cell differentiation of middle-stage differentiated OBs in general. More over a significant decrease of cell numbers and mitochondrial activity was found at these MTX concentrations. The most sensitive method seems to be the MTT-assay. MTX-concentration of 0,01nM and concentrations below had no inhibitory effects anymore. Conclusion Even low dose methotrexate acts as a potent inhibitor of osteoblast’s proliferation and mitochondrial metabolism in vitro, without affecting main differentiation of pre-differentiated osteoblasts. These results suggest possible negative effects of DMARDs concerning bone healing and for example osseointegration of dental implants. Especially the specifics of the jaw bone with its high vascularisation and physiological high tissue metabolism
Lifescience Database Archive (English)
Full Text Available 17890055 IRAK1: a critical signaling mediator of innate immunity. Gottipati S, Rao ...IRAK1: a critical signaling mediator of innate immunity. PubmedID 17890055 Title IRAK1: a critical signaling mediator
Directory of Open Access Journals (Sweden)
Muhammad Murtadha Othman
2017-06-01
Full Text Available With the advent of advanced technology in smart grid, the implementation of renewable energy in a stressed and complicated power system operation, aggravated by a competitive electricity market and critical system contingencies, this will inflict higher probabilities of the occurrence of a severe dynamic power system blackout. This paper presents the proposed stochastic event tree technique used to assess the sustainability against the occurrence of dynamic power system blackout emanating from implication of critical system contingencies such as the rapid increase in total loading condition and sensitive initial transmission line tripping. An extensive analysis of dynamic power system blackout has been carried out in a case study of the following power systems: IEEE RTS-79 and IEEE RTS-96. The findings have shown that the total loading conditions and sensitive transmission lines need to be given full attention by the utility to prevent the occurrence of dynamic power system blackout.
Effect of colored noise on the critical dynamics of the Time-Dependent Landau-Ginzburg Model A
International Nuclear Information System (INIS)
Korutcheva, E.; Rubia, J. de la
1999-08-01
By using the dynamical renormalization-group method, we show that the introduction of an additive colored noise with weak long-range correlations in the Time-Dependent Landau-Ginzburg Model A, does not give perturbative corrections for the dynamical critical exponent at least up to order O(ε 2 ). This result differs for a system with random quenched impurities, where a similar type of impurity correlation leads to corrections even of order O(ε). (author)
Dynamic Critical Rainfall-Based Flash Flood Early Warning and Forecasting for Medium-Small Rivers
Liu, Z.; Yang, D.; Hu, J.
2012-04-01
China is extremely frequent food disasters hit countries, annual flood season flash floods triggered by rainfall, mudslides, landslides have caused heavy casualties and property losses, not only serious threaten the lives of the masses, but the majority of seriously restricting the mountain hill areas of economic and social development and the people become rich, of building a moderately prosperous society goals. In the next few years, China will focus on prevention and control area in the flash flood disasters initially built "for the surveillance, communications, forecasting, early warning and other non-engineering measure based, non-engineering measures and the combinations of engineering measures," the mitigation system. The latest progresses on global torrential flood early warning and forecasting techniques are reviewed in this paper, and then an early warning and forecasting approach is proposed on the basis of a distributed hydrological model according to dynamic critical rainfall index. This approach has been applied in Suichuanjiang River basin in Jiangxi province, which is expected to provide valuable reference for building a national flash flood early warning and forecasting system as well as control of such flooding.
Dynamical susceptibility near a long-wavelength critical point with a nonconserved order parameter
Klein, Avraham; Lederer, Samuel; Chowdhury, Debanjan; Berg, Erez; Chubukov, Andrey
2018-04-01
We study the dynamic response of a two-dimensional system of itinerant fermions in the vicinity of a uniform (Q =0 ) Ising nematic quantum critical point of d - wave symmetry. The nematic order parameter is not a conserved quantity, and this permits a nonzero value of the fermionic polarization in the d - wave channel even for vanishing momentum and finite frequency: Π (q =0 ,Ωm)≠0 . For weak coupling between the fermions and the nematic order parameter (i.e., the coupling is small compared to the Fermi energy), we perturbatively compute Π (q =0 ,Ωm)≠0 over a parametrically broad range of frequencies where the fermionic self-energy Σ (ω ) is irrelevant, and use Eliashberg theory to compute Π (q =0 ,Ωm) in the non-Fermi-liquid regime at smaller frequencies, where Σ (ω )>ω . We find that Π (q =0 ,Ω ) is a constant, plus a frequency-dependent correction that goes as |Ω | at high frequencies, crossing over to |Ω| 1 /3 at lower frequencies. The |Ω| 1 /3 scaling holds also in a non-Fermi-liquid regime. The nonvanishing of Π (q =0 ,Ω ) gives rise to additional structure in the imaginary part of the nematic susceptibility χ″(q ,Ω ) at Ω >vFq , in marked contrast to the behavior of the susceptibility for a conserved order parameter. This additional structure may be detected in Raman scattering experiments in the d - wave geometry.
Critical insight into the influence of the potential energy surface on fission dynamics
International Nuclear Information System (INIS)
Mazurek, K.; Schmitt, C.; Wieleczko, J. P.; Ademard, G.; Nadtochy, P. N.
2011-01-01
The present work is dedicated to a careful investigation of the influence of the potential energy surface on the fission process. The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential throughout the deformation space of interest in fission is observed to noticeably differ within these two approaches, due to the treatment of curvature effects. When utilized in the dynamical calculation as the driving potential, the FRLDM and LSD models yield similar results in the heavy-mass region, whereas the predictions can be strongly dependent on the Potential Energy Surface (PES) for medium-mass nuclei. In particular, the mass, charge, and total kinetic energy distributions of the fission fragments are found to be narrower with the LSD prescription. The influence of critical model parameters on our findings is carefully investigated. The present study sheds light on the experimental conditions and signatures well suited for constraining the parametrization of the macroscopic potential. Its implication regarding the interpretation of available experimental data is briefly discussed.
Critical current density, vortex dynamics, and phase diagram of single-crystal FeSe
Sun, Yue; Pyon, Sunseng; Tamegai, Tsuyoshi; Kobayashi, Ryo; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada
2015-10-01
We present a comprehensive study of the vortex pinning and dynamics in a high-quality FeSe single crystal which is free from doping-introduced inhomogeneities and charged quasiparticle scattering because of its innate superconductivity. The critical current density Jc is found to be almost isotropic and reaches a value of ˜3 ×104 A /cm2 at 2 K (self-field) for both H ∥c and a b . The normalized magnetic relaxation rate S (=∣d ln M /d ln t ∣ ) shows a temperature-insensitive plateau behavior in the intermediate temperature range with a relatively high creep rate (S ˜ 0.02 under zero field), which is interpreted in the framework of the collective creep theory. A crossover from the elastic to plastic creep is observed, while the fishtail effect is absent for both H ∥c and a b . Based on this observation, the origin of the fishtail effect is also discussed. Combining the results of Jc and S , the vortex motion in the FeSe single crystal is found to be dominated by sparse, strong pointlike pinning from nanometer-sized defects or imperfections. The weak collective pinning is also observed and proved in the form of large bundles. Besides, the vortex phase diagram of FeSe is also constructed and discussed.
Evolution of dynamic susceptibility in molecular glass formers-a critical assessment
International Nuclear Information System (INIS)
Brodin, A; Gainaru, C; Porokhonskyy, V; Roessler, E A
2007-01-01
Dielectric, depolarized light scattering (LS) and optical Kerr effect (OKE) data are critically discussed in an attempt to achieve a common interpretation of the evolution of dynamic susceptibility in molecular glass formers at temperatures down to the glass transition T g . The so-called intermediate power-law, observed in OKE data below a certain temperature T x , is identified with the excess wing, long since known from dielectric spectroscopy, with a temperature-independent exponent. This is in contrast with several recent analyses that concluded a considerable temperature dependence of spectral shapes. We introduce a new approach to disentangle α-peak and excess wing contributions in the dielectric spectra, which allows for frequency-temperature superposition (FTS) of the α-process at all temperatures above T g . From the LS spectra we conclude, in particular, that FTS holds even at temperatures well above the melting point, i.e. in normal equilibrium liquids. Attempting to correlate the fragility and stretching, our conclusions are opposite to those made previously. Specifically, we observe that a high fragility is associated with a less stretched relaxation function
Thermal sterilization of heat-sensitive products using high-temperature short-time sterilization.
Mann, A; Kiefer, M; Leuenberger, H
2001-03-01
High-temperature short-time (HTST) sterilization with a continuous-flow sterilizer, developed for this study, was evaluated. The evaluation was performed with respect to (a) the chemical degradation of two heat-sensitive drugs in HTST range (140-160 degrees C) and (b) the microbiological effect of HTST sterilization. Degradation kinetics of two heat-sensitive drugs showed that a high peak temperature sterilization process resulted in less chemical degradation for the same microbiological effect than a low peak temperature process. Both drugs investigated could be sterilized with acceptable degradation at HTST conditions. For the evaluation of the microbiological effect, Bacillus stearothermophilus ATCC 7953 spores were used as indicator bacteria. Indicator spore kinetics (D(T), z value, k, and E(a)), were determined in the HTST range. A comparison between the Bigelow model (z value concept) and the Arrhenius model, used to describe the temperature coefficient of the microbial inactivation, demonstrated that the Bigelow model is more accurate in prediction of D(T) values in the HTST range. The temperature coefficient decreased with increasing temperature. The influence of Ca(2+) ions and pH value on the heat resistance of the indicator spores, which is known under typical sterilization conditions, did not change under HTST conditions.
Flow characteristics of a pilot-scale high temperature, short time pasteurizer.
Tomasula, P M; Kozempel, M F
2004-09-01
In this study, we present a method for determining the fastest moving particle (FMP) and residence time distribution (RTD) in a pilot-scale high temperature, short time (HTST) pasteurizer to ensure that laboratory or pilot-scale HTST apparatus meets the Pasteurized Milk Ordinance standards for pasteurization of milk and can be used for obtaining thermal inactivation data. The overall dimensions of the plate in the pasteurizer were 75 x 115 mm, with a thickness of 0.5 mm and effective diameter of 3.0 mm. The pasteurizer was equipped with nominal 21.5- and 52.2-s hold tubes, and flow capacity was variable from 0 to 20 L/h. Tracer studies were used to determine FMP times and RTD data to establish flow characteristics. Using brine milk as tracer, the FMP time for the short holding section was 18.6 s and for the long holding section was 36 s at 72 degrees C, compared with the nominal times of 21.5 and 52.2 s, respectively. The RTD study indicates that the short hold section was 45% back mixed and 55% plug flow for whole milk at 72 degrees C. The long hold section was 91% plug and 9% back mixed for whole milk at 72 degrees C. This study demonstrates that continuous laboratory and pilot-scale pasteurizers may be used to study inactivation of microorganisms only if the flow conditions in the holding tube are established for comparison with commercial HTST systems.
Murphy, Marie; Quesada, Guillermo Miro; Chen, Dayue
2011-11-01
Viral contamination of mammalian cell cultures in GMP manufacturing facility represents a serious safety threat to biopharmaceutical industry. Such adverse events usually require facility shutdown for cleaning/decontamination, and thus result in significant loss of production and/or delay of product development. High temperature short time (HTST) treatment of culture media has been considered as an effective method to protect GMP facilities from viral contaminations. Log reduction factor (LRF) has been commonly used to measure the effectiveness of HTST treatment for viral inactivation. However, in order to prevent viral contaminations, HTST treatment must inactivate all infectious viruses (100%) in the medium batch since a single virus is sufficient to cause contamination. Therefore, LRF may not be the most appropriate indicator for measuring the effectiveness of HTST in preventing viral contaminations. We report here the use of the probability to achieve complete (100%) virus inactivation to assess the effectiveness of HTST treatment. By using mouse minute virus (MMV) as a model virus, we have demonstrated that the effectiveness of HTST treatment highly depends upon the level of viral contaminants in addition to treatment temperature and duration. We believe that the statistical method described in this report can provide more accurate information about the power and potential limitation of technologies such as HTST in our shared quest to mitigate the risk of viral contamination in manufacturing facilities. Copyright © 2011 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Motor Fault Diagnosis Based on Short-time Fourier Transform and Convolutional Neural Network
Wang, Li-Hua; Zhao, Xiao-Ping; Wu, Jia-Xin; Xie, Yang-Yang; Zhang, Yong-Hong
2017-11-01
With the rapid development of mechanical equipment, the mechanical health monitoring field has entered the era of big data. However, the method of manual feature extraction has the disadvantages of low efficiency and poor accuracy, when handling big data. In this study, the research object was the asynchronous motor in the drivetrain diagnostics simulator system. The vibration signals of different fault motors were collected. The raw signal was pretreated using short time Fourier transform (STFT) to obtain the corresponding time-frequency map. Then, the feature of the time-frequency map was adaptively extracted by using a convolutional neural network (CNN). The effects of the pretreatment method, and the hyper parameters of network diagnostic accuracy, were investigated experimentally. The experimental results showed that the influence of the preprocessing method is small, and that the batch-size is the main factor affecting accuracy and training efficiency. By investigating feature visualization, it was shown that, in the case of big data, the extracted CNN features can represent complex mapping relationships between signal and health status, and can also overcome the prior knowledge and engineering experience requirement for feature extraction, which is used by traditional diagnosis methods. This paper proposes a new method, based on STFT and CNN, which can complete motor fault diagnosis tasks more intelligently and accurately.
Short-time regularity assessment of fibrillatory waves from the surface ECG in atrial fibrillation
International Nuclear Information System (INIS)
Alcaraz, Raúl; Martínez, Arturo; Hornero, Fernando; Rieta, José J
2012-01-01
This paper proposes the first non-invasive method for direct and short-time regularity quantification of atrial fibrillatory (f) waves from the surface ECG in atrial fibrillation (AF). Regularity is estimated by computing individual morphological variations among f waves, which are delineated and extracted from the atrial activity (AA) signal, making use of an adaptive signed correlation index. The algorithm was tested on real AF surface recordings in order to discriminate atrial signals with different organization degrees, providing a notably higher global accuracy (90.3%) than the two non-invasive AF organization estimates defined to date: the dominant atrial frequency (70.5%) and sample entropy (76.1%). Furthermore, due to its ability to assess AA regularity wave to wave, the proposed method is also able to pursue AF organization time course more precisely than the aforementioned indices. As a consequence, this work opens a new perspective in the non-invasive analysis of AF, such as the individualized study of each f wave, that could improve the understanding of AF mechanisms and become useful for its clinical treatment. (paper)
Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel
Directory of Open Access Journals (Sweden)
Josip Brnic
2016-04-01
Full Text Available The correct choice of a material in the process of structural design is the most important task. This study deals with determining and analyzing the mechanical properties of the material, and the material resistance to short-time creep and fatigue. The material under consideration in this investigation is austenitic stainless steel X6CrNiTi18-10. The results presenting ultimate tensile strength and 0.2 offset yield strength at room and elevated temperatures are displayed in the form of engineering stress-strain diagrams. Besides, the creep behavior of the steel is presented in the form of creep curves. The material is consequently considered to be creep resistant at temperatures of 400 °C and 500 °C when subjected to a stress which is less than 0.9 of the yield strength at the mentioned temperatures. Even when the applied stress at a temperature of 600 °C is less than 0.5 of the yield strength, the steel may be considered as resistant to creep. Cyclic tensile fatigue tests were carried out at stress ratio R = 0.25 using a servo-pulser machine and the results were recorded. The analysis shows that the stress level of 434.33 MPa can be adopted as a fatigue limit. The impact energy was also determined and the fracture toughness assessed.
Polynomial Phase Estimation Based on Adaptive Short-Time Fourier Transform.
Jing, Fulong; Zhang, Chunjie; Si, Weijian; Wang, Yu; Jiao, Shuhong
2018-02-13
Polynomial phase signals (PPSs) have numerous applications in many fields including radar, sonar, geophysics, and radio communication systems. Therefore, estimation of PPS coefficients is very important. In this paper, a novel approach for PPS parameters estimation based on adaptive short-time Fourier transform (ASTFT), called the PPS-ASTFT estimator, is proposed. Using the PPS-ASTFT estimator, both one-dimensional and multi-dimensional searches and error propagation problems, which widely exist in PPSs field, are avoided. In the proposed algorithm, the instantaneous frequency (IF) is estimated by S-transform (ST), which can preserve information on signal phase and provide a variable resolution similar to the wavelet transform (WT). The width of the ASTFT analysis window is equal to the local stationary length, which is measured by the instantaneous frequency gradient (IFG). The IFG is calculated by the principal component analysis (PCA), which is robust to the noise. Moreover, to improve estimation accuracy, a refinement strategy is presented to estimate signal parameters. Since the PPS-ASTFT avoids parameter search, the proposed algorithm can be computed in a reasonable amount of time. The estimation performance, computational cost, and implementation of the PPS-ASTFT are also analyzed. The conducted numerical simulations support our theoretical results and demonstrate an excellent statistical performance of the proposed algorithm.
Multifractals embedded in short time series: An unbiased estimation of probability moment
Qiu, Lu; Yang, Tianguang; Yin, Yanhua; Gu, Changgui; Yang, Huijie
2016-12-01
An exact estimation of probability moments is the base for several essential concepts, such as the multifractals, the Tsallis entropy, and the transfer entropy. By means of approximation theory we propose a new method called factorial-moment-based estimation of probability moments. Theoretical prediction and computational results show that it can provide us an unbiased estimation of the probability moments of continuous order. Calculations on probability redistribution model verify that it can extract exactly multifractal behaviors from several hundred recordings. Its powerfulness in monitoring evolution of scaling behaviors is exemplified by two empirical cases, i.e., the gait time series for fast, normal, and slow trials of a healthy volunteer, and the closing price series for Shanghai stock market. By using short time series with several hundred lengths, a comparison with the well-established tools displays significant advantages of its performance over the other methods. The factorial-moment-based estimation can evaluate correctly the scaling behaviors in a scale range about three generations wider than the multifractal detrended fluctuation analysis and the basic estimation. The estimation of partition function given by the wavelet transform modulus maxima has unacceptable fluctuations. Besides the scaling invariance focused in the present paper, the proposed factorial moment of continuous order can find its various uses, such as finding nonextensive behaviors of a complex system and reconstructing the causality relationship network between elements of a complex system.
Rotor-System Log-Decrement Identification Using Short-Time Fourier-Transform Filter
Directory of Open Access Journals (Sweden)
Qihang Li
2015-01-01
Full Text Available With the increase of the centrifugal compressor capability, such as large scale LNG and CO2 reinjection, the stability margin evaluation is crucial to assure the compressor work in the designed operating conditions in field. Improving the precision of parameter identification of stability is essential and necessary as well. Based on the time-varying characteristics of response vibration during the sine-swept process, a short-time Fourier transform (STFT filter was introduced to increase the signal-noise ratio and improve the accuracy of the estimated stability parameters. A finite element model was established to simulate the sine-swept process, and the simulated vibration signals were used to study the filtering effect and demonstrate the feasibility to identify the stability parameters by using Multiple-Input and Multiple-Output system identification method that combines the prediction error method and instrumental variable method. Simulation results show that the identification method with STFT filter improves the estimated accuracy much well and makes the curves of frequency response function clearer. Experiment was carried out on a test rig as well, which indicates the identification method is feasible in stability identification, and the results of experiment indicate that STFT filter works very well.
Directory of Open Access Journals (Sweden)
MA Luo-ning
2016-07-01
Full Text Available In order to investigate the corrosion performance on intersecting and longitudinal surfaces of unoxidized and oxidized directionally solidified superalloys, Ni-base directionally solidified superalloy DZ125 and Co-base directionally solidified superalloy DZ40M were selected. Oxidation behavior on both alloys with different orientations was investigated at 1050℃ at different times, simulating the oxidation process of vanes or blades in service; subsequent electrochemical performance in 3.5%NaCl aqueous solution was studied on two orientations of unoxidized and oxidized alloys, simulating the corrosion process of superalloy during downtime. The results show that grain boundaries and sub-boundaries of directionally solidified superalloys are susceptible to corrosion and thus longitudinal surface with lower area fraction of grain boundaries has higher corrosion resistance. Compared to intersecting surface of alloys, the structure of grain boundaries of longitudinal surface is less conducive to diffusion and thus the oxidation rate on longitudinal surface is lower. Formation of oxide layers on alloys after short-time oxidation provides protective effect and enhances the corrosion resistance.
Improvement of the Original Isolation Procedure for Hormone Studies in Short-Time Culture
Directory of Open Access Journals (Sweden)
Mukadder Atmaca
2005-01-01
Full Text Available Earlier studies indicated that hormone responsiveness of cells and metabolic activity was lost during various of experimental procedure. In the light of this observation, I aimed to investigate to obtain optimal conditions for short time cultured hepatocytes and also to determine the type of test can be used to evaluate suitablity of hepatocytes for hormones studies. During the isolation period 50 IU/ml and 100 IU/ml collagenase were used. Adrenaline (10-6M was used to measure sensitivity of hepatocytes to hormones and glycogenolsis was measured at the end of 2hr incubation period. Adrenaline significantly increased gylcogenolysis (Control: 0.16±0.01 mg/2hr; Adrenaline: 0.30±0.01 mg/2hr only when the 50 IU/ml collagenase was used and the viability of the cells were over 95%. Viability tests were applied to hepatocytes that obtained by using 50 IU collagenase. Cellular glutathione, methylthiazoltetrazolium reduction, lactatedehdrogenase leakage, ATP level measured to determine viability following the attachment and incubation period. No differences were observed at the end of each period.Altogether, the present study indicated that membrane integrity and metabolic function of the hepatocytes can be improved by modifying slightly the original procedure of Reese and Byard.
Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel.
Brnic, Josip; Turkalj, Goran; Canadija, Marko; Lanc, Domagoj; Krscanski, Sanjin; Brcic, Marino; Li, Qiang; Niu, Jitai
2016-04-20
The correct choice of a material in the process of structural design is the most important task. This study deals with determining and analyzing the mechanical properties of the material, and the material resistance to short-time creep and fatigue. The material under consideration in this investigation is austenitic stainless steel X6CrNiTi18-10. The results presenting ultimate tensile strength and 0.2 offset yield strength at room and elevated temperatures are displayed in the form of engineering stress-strain diagrams. Besides, the creep behavior of the steel is presented in the form of creep curves. The material is consequently considered to be creep resistant at temperatures of 400 °C and 500 °C when subjected to a stress which is less than 0.9 of the yield strength at the mentioned temperatures. Even when the applied stress at a temperature of 600 °C is less than 0.5 of the yield strength, the steel may be considered as resistant to creep. Cyclic tensile fatigue tests were carried out at stress ratio R = 0.25 using a servo-pulser machine and the results were recorded. The analysis shows that the stress level of 434.33 MPa can be adopted as a fatigue limit. The impact energy was also determined and the fracture toughness assessed.
International Nuclear Information System (INIS)
Starke, Peter; Wu, Haoran; Boller, Christian
2015-01-01
Fatigue of engineering structures is an issue from an engineering design point. The lifetime of materials being subject to repeated mechanical loads is limited. Different examples of failures and fateful air accidents have caused significant cost and claims to the operators as well as manufacturers in excess of fatalities. Criticality of failure increases with increasing age and the uncertainty of operational loads applied. In such a case a reassessment of a structural materials' condition is in big need should damage tolerance criteria still be met, being the essential ground rule for aeronautical structural design. It is therefore the challenging aim to use a metallic material's microstructure characterizing non-destructive testing (NDT) parameter or a combination of those as a parameter to be scanned over a defined surface of the component considered to more realistically characterize the damage condition and to use this information twofold: (a) to more precisely assess the structural component's residual life and (b) to feed the information recorded back into a specific database belonging to an approach named PHYBAL. The physically based fatigue life evaluation method (PHYBAL) is a short-time procedure for the evaluation of fatigue data based on a small number of fatigue tests performed on un-notched specimens only. This method significantly reduces the effort for experimentation in terms of time and cost by around 90 % and inhibits remarkable scientific as well as economic advantages. The paper highlights the high capability of PHYBAL as well as the suitability for assessing the residual life of aeronautical components also with respect to the application of this approach in the light of structural health monitoring issues.
Žunkovič, Bojan; Heyl, Markus; Knap, Michael; Silva, Alessandro
2018-03-01
We theoretically study the dynamics of a transverse-field Ising chain with power-law decaying interactions characterized by an exponent α , which can be experimentally realized in ion traps. We focus on two classes of emergent dynamical critical phenomena following a quantum quench from a ferromagnetic initial state: The first one manifests in the time-averaged order parameter, which vanishes at a critical transverse field. We argue that such a transition occurs only for long-range interactions α ≤2 . The second class corresponds to the emergence of time-periodic singularities in the return probability to the ground-state manifold which is obtained for all values of α and agrees with the order parameter transition for α ≤2 . We characterize how the two classes of nonequilibrium criticality correspond to each other and give a physical interpretation based on the symmetry of the time-evolved quantum states.
Lima, J. P. De; Gonçalves, L. L.
The critical dynamics of the isotropic XY-model on the one-dimensional superlattice is considered in the framework of the position space renormalization group theory. The decimation transformation is introduced by considering the equations of motion of the operators associated to the excitations of the system, and it corresponds to an extension of the procedure introduced by Stinchcombe and dos Santos (J. Phys. A18, L597 (1985)) for the homogeneous lattice. The dispersion relation is obtained exactly and the static and dynamic scaling forms are explicitly determined. The dynamic critical exponent is also obtained and it is shown that it is identical to the one of the XY-model on the homogeneous chain.
Mutoru, J W; Smith, W; O'Hern, C S; Firoozabadi, A
2013-01-14
Understanding the transport properties of molecular fluids in the critical region is important for a number of industrial and natural systems. In the literature, there are conflicting reports on the behavior of the self diffusion coefficient D(s) in the critical region of single-component molecular systems. For example, D(s) could decrease to zero, reach a maximum, or remain unchanged and finite at the critical point. Moreover, there is no molecular-scale understanding of the behavior of diffusion coefficients in molecular fluids in the critical regime. We perform extensive molecular dynamics simulations in the critical region of single-component fluids composed of medium-chain n-alkanes-n-pentane, n-decane, and n-dodecane-that interact via anisotropic united-atom potentials. For each system, we calculate D(s), and average molecular cluster sizes κ(cl) and numbers N(cl) at various cluster lifetimes τ, as a function of density ρ in the range 0.2ρ(c) ≤ ρ ≤ 2.0ρ(c) at the critical temperature T(c). We find that D(s) decreases with increasing ρ but remains finite at the critical point. Moreover, for any given τ critical point.
International Nuclear Information System (INIS)
Belyazid, Salim; Kurz, Dani; Braun, Sabine; Sverdrup, Harald; Rihm, Beat; Hettelingh, Jean-Paul
2011-01-01
A dynamic model of forest ecosystems was used to investigate the effects of climate change, atmospheric deposition and harvest intensity on 48 forest sites in Sweden (n = 16) and Switzerland (n = 32). The model was used to investigate the feasibility of deriving critical loads for nitrogen (N) deposition based on changes in plant community composition. The simulations show that climate and atmospheric deposition have comparably important effects on N mobilization in the soil, as climate triggers the release of organically bound nitrogen stored in the soil during the elevated deposition period. Climate has the most important effect on plant community composition, underlining the fact that this cannot be ignored in future simulations of vegetation dynamics. Harvest intensity has comparatively little effect on the plant community in the long term, while it may be detrimental in the short term following cutting. This study shows: that critical loads of N deposition can be estimated using the plant community as an indicator; that future climatic changes must be taken into account; and that the definition of the reference deposition is critical for the outcome of this estimate. - Research highlights: → Plant community changes can be used to estimate critical loads of nitrogen. → Climate change is decisive for future changes of geochemistry and plant communities. → Climate change cannot be ignored in estimates of critical loads. → The model ForSAFE-Veg was successfully used to set critical loads of nitrogen. - Plant community composition can be used in dynamic modelling to estimate critical loads of nitrogen deposition, provided the appropriate reference deposition, future climate and target plant communities are defined.
Lifescience Database Archive (English)
Full Text Available 17959357 Toll like receptors and autoimmunity: a critical appraisal. Papadimitraki ...ml) Show Toll like receptors and autoimmunity: a critical appraisal. PubmedID 17959357 Title Toll like receptors and auto
On Equivalence between Critical Probabilities of Dynamic Gossip Protocol and Static Site Percolation
Ishikawa, Tetsuya; Hayakawa, Tomohisa
The relationship between the critical probability of gossip protocol on the square lattice and the critical probability of site percolation on the square lattice is discussed. Specifically, these two critical probabilities are analytically shown to be equal to each other. Furthermore, we present a way of evaluating the critical probability of site percolation by approximating the saturation of gossip protocol. Finally, we provide numerical results which support the theoretical analysis.
Short-Time Structural Stability of Compressible Vortex Sheets with Surface Tension
Stevens, Ben
2016-11-01
Assume we start with an initial vortex-sheet configuration which consists of two inviscid fluids with density bounded below flowing smoothly past each other, where a strictly positive fixed coefficient of surface tension produces a surface tension force across the common interface, balanced by the pressure jump. We model the fluids by the compressible Euler equations in three space dimensions with a very general equation of state relating the pressure, entropy and density such that the sound speed is positive. We prove that, for a short time, there exists a unique solution of the equations with the same structure. The mathematical approach consists of introducing a carefully chosen artificial viscosity-type regularisation which allows one to linearise the system so as to obtain a collection of transport equations for the entropy, pressure and curl together with a parabolic-type equation for the velocity which becomes fairly standard after rotating the velocity according to the interface normal. We prove a high order energy estimate for the non-linear equations that is independent of the artificial viscosity parameter which allows us to send it to zero. This approach loosely follows that introduced by Shkoller et al. in the setting of a compressible liquid-vacuum interface. Although already considered by Coutand et al. [10] and Lindblad [17], we also make some brief comments on the case of a compressible liquid-vacuum interface, which is obtained from the vortex sheets problem by replacing one of the fluids by vacuum, where it is possible to obtain a structural stability result even without surface tension.
Dynamic modeling of the tradeoff between productivity and safety in critical engineering systems
International Nuclear Information System (INIS)
Cowing, Michelle M.; Elisabeth Pate-Cornell, M.; Glynn, Peter W.
2004-01-01
Short-term tradeoffs between productivity and safety often exist in the operation of critical facilities such as nuclear power plants, offshore oil platforms, or simply individual cars. For example, interruption of operations for maintenance on demand can decrease short-term productivity but may be needed to ensure safety. Operations are interrupted for several reasons: scheduled maintenance, maintenance on demand, response to warnings, subsystem failure, or a catastrophic accident. The choice of operational procedures (e.g. timing and extent of scheduled maintenance) generally affects the probabilities of both production interruptions and catastrophic failures. In this paper, we present and illustrate a dynamic probabilistic model designed to describe the long-term evolution of such a system through the different phases of operation, shutdown, and possibly accident. The model's parameters represent explicitly the effects of different components' performance on the system's safety and reliability through an engineering probabilistic risk assessment (PRA). In addition to PRA, a Markov model is used to track the evolution of the system and its components through different performance phases. The model parameters are then linked to different operations strategies, to allow computation of the effects of each management strategy on the system's long-term productivity and safety. Decision analysis is then used to support the management of the short-term trade-offs between productivity and safety in order to maximize long-term performance. The value function is that of plant managers, within the constraints set by local utility commissions and national (e.g. energy) agencies. This model is illustrated by the case of outages (planned and unplanned) in nuclear power plants to show how it can be used to guide policy decisions regarding outage frequency and plant lifetime, and more specifically, the choice of a reactor tripping policy as a function of the state of the
International Nuclear Information System (INIS)
Werner, Gerhard
2013-01-01
The topic of this paper will be addressed in three stages: I will first review currently prominent theoretical conceptualizations of the neurobiology of consciousness and, where appropriate, identify ill-advised and flawed notions in theoretical neuroscience that may impede viewing consciousness as a phenomenon in the physics of brain. In this context, I will also introduce relevant facts that tend not to receive adequate attention in much of the current consciousness discourse. Next, I will review the evidence that accrued in the last decade that identifies the resting brain as being in a state of criticality. In the framework of state phase dynamics of statistical physics, this observational evidence also entails that the resting brain is poised at the brink of a second order phase transition. On this basis, I will in the third stage propose applying the framework of the Renormalization Group to viewing consciousness as a phenomenon in statistical physics. In physics, concepts of phase space transitions and the Renormalization Group are powerful tools for interpreting phenomena involving many scales of length and time in complex systems. The significance of these concepts lies in their accounting for the emergence of different levels of new collective behaviors in complex systems, each level with its distinct macroscopic physics, organization, and laws, as a new pattern of reality. In this framework, I propose to view subjectivity as the symbolic description of the physical brain state of consciousness that emerges as one of the levels of phase transitions of the brain-body-environment system, along the trajectory of Renormalization Group Transformations
Poverty alleviation strategies in eastern China lead to critical ecological dynamics.
Zhang, Ke; Dearing, John A; Dawson, Terence P; Dong, Xuhui; Yang, Xiangdong; Zhang, Weiguo
2015-02-15
Poverty alleviation linked to agricultural intensification has been achieved in many regions but there is often only limited understanding of the impacts on ecological dynamics. A central need is to observe long term changes in regulating and supporting services as the basis for assessing the likelihood of sustainable agriculture or ecological collapse. We show how the analyses of 55 time-series of social, economic and ecological conditions can provide an evolutionary perspective for the modern Lower Yangtze River Basin region since the 1950s with powerful insights about the sustainability of modern ecosystem services. Increasing trends in provisioning ecosystem services within the region over the past 60 years reflect economic growth and successful poverty alleviation but are paralleled by steep losses in a range of regulating ecosystem services mainly since the 1980s. Increasing connectedness across the social and ecological domains after 1985 points to a greater uniformity in the drivers of the rural economy. Regime shifts and heightened levels of variability since the 1970s in local ecosystem services indicate progressive loss of resilience across the region. Of special concern are water quality services that have already passed critical transitions in several areas. Viewed collectively, our results suggest that the regional social-ecological system passed a tipping point in the late 1970s and is now in a transient phase heading towards a new steady state. However, the long-term relationship between economic growth and ecological degradation shows no sign of decoupling as demanded by the need to reverse an unsustainable trajectory. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Li, Cai; Lowe, Robert; Ziemke, Tom
2014-01-01
In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modeling objective is split into two: baseline motion modeling and dynamics adaptation. Baseline motion modeling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a "reshaping" function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the baseline motion) and dynamic motor primitives (DMPs, a model with universal "reshaping" functions). In this article, we use this architecture with the actor-critic algorithms for finding a good "reshaping" function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: (1) learning to crawl on a humanoid and, (2) learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient) are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion.
Directory of Open Access Journals (Sweden)
Cai eLi
2014-10-01
Full Text Available In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modelling objective is split into two: baseline motion modelling and dynamics adaptation. Baseline motion modelling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a ``reshaping function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the the baseline motion and dynamic motor primitives (DMPs, a model with universal ``reshaping functions. In this article, we use this architecture with the actor-critic algorithms for finding a good ``reshaping function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: 1 learning to crawl on a humanoid and, 2 learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion.
Variational data assimilation for the optimized ozone initial state and the short-time forecasting
Directory of Open Access Journals (Sweden)
S.-Y. Park
2016-03-01
Full Text Available In this study, we apply the four-dimensional variational (4D-Var data assimilation to optimize initial ozone state and to improve the predictability of air quality. The numerical modeling systems used for simulations of atmospheric condition and chemical formation are the Weather Research and Forecasting (WRF model and the Community Multiscale Air Quality (CMAQ model. The study area covers the capital region of South Korea, where the surface measurement sites are relatively evenly distributed. The 4D-Var code previously developed for the CMAQ model is modified to consider background error in matrix form, and various numerical tests are conducted. The results are evaluated with an idealized covariance function for the appropriateness of the modified codes. The background error is then constructed using the NMC method with long-term modeling results, and the characteristics of the spatial correlation scale related to local circulation are analyzed. The background error is applied in the 4D-Var research, and a surface observational assimilation is conducted to optimize the initial concentration of ozone. The statistical results for the 12 h assimilation periods and the 120 observatory sites show a 49.4 % decrease in the root mean squared error (RMSE, and a 59.9 % increase in the index of agreement (IOA. The temporal variation of spatial distribution of the analysis increments indicates that the optimized initial state of ozone concentration is transported to inland areas by the clockwise-rotating local circulation during the assimilation windows. To investigate the predictability of ozone concentration after the assimilation window, a short-time forecasting is carried out. The ratios of the RMSE (root mean squared error with assimilation versus that without assimilation are 8 and 13 % for the +24 and +12 h, respectively. Such a significant improvement in the forecast accuracy is obtained solely by using the optimized initial state. The potential
Directory of Open Access Journals (Sweden)
Umid Karli
2007-12-01
Full Text Available The aim of this study was to investigate the effects of Ramadan fasting on anaerobic power and capacity and the removal rate of lactate after short time high intensity exercise in power athletes. Ten male elite power athletes (2 wrestlers, 7 sprinters and 1 thrower, aged 20-24 yr, mean age 22.30 ± 1.25 yr participated in this study. The subjects were tested three times [3 days before the beginning of Ramadan (Pre-RF, the last 3 days of Ramadan (End-RF and the last 3 days of the 4th week after the end of Ramadan (After-RF]. Anaerobic power and capacity were measured by using the Wingate Anaerobic Test (WAnT at Pre-RF, End-RF and After- RF. Capillary blood samples for lactate analyses and heart rate recordings were taken at rest, immediately after WAnT and throughout the recovery period. Repeated measures of ANOVA indicated that there were no significant changes in body weight, body mass index, fat free mass, percentage of body fat, daily sleeping time and daily caloric intake associated with Ramadan fasting. No significant changes were found in total body water either, but urinary density measured at End-RF was significantly higher than After-RF. Similarity among peak HR and peak LA values at Pre-RF, End- RF and After-RF demonstrated that cardiovascular and metabolic stress caused by WAnT was not affected by Ramadan fasting. In addition, no influence of Ramadan fasting on anaerobic power and capacity and removal rate of LA from blood following high intensity exercise was observed. The results of this study revealed that if strength-power training is performed regularly and daily food intake, body fluid balance and daily sleeping time are maintained as before Ramadan, Ramadan fasting will not have adverse effects on body composition, anaerobic power and capacity, and LA metabolism during and after high intensity exercise in power athletes
Baumuratova, Tatiana; Dobre, Simona; Bastogne, Thierry; Sauter, Thomas
2013-01-01
Systems with bifurcations may experience abrupt irreversible and often unwanted shifts in their performance, called critical transitions. For many systems like climate, economy, ecosystems it is highly desirable to identify indicators serving as early warnings of such regime shifts. Several statistical measures were recently proposed as early warnings of critical transitions including increased variance, autocorrelation and skewness of experimental or model-generated data. The lack of automatized tool for model-based prediction of critical transitions led to designing DyGloSA – a MATLAB toolbox for dynamical global parameter sensitivity analysis (GPSA) of ordinary differential equations models. We suggest that the switch in dynamics of parameter sensitivities revealed by our toolbox is an early warning that a system is approaching a critical transition. We illustrate the efficiency of our toolbox by analyzing several models with bifurcations and predicting the time periods when systems can still avoid going to a critical transition by manipulating certain parameter values, which is not detectable with the existing SA techniques. DyGloSA is based on the SBToolbox2 and contains functions, which compute dynamically the global sensitivity indices of the system by applying four main GPSA methods: eFAST, Sobol's ANOVA, PRCC and WALS. It includes parallelized versions of the functions enabling significant reduction of the computational time (up to 12 times). DyGloSA is freely available as a set of MATLAB scripts at http://bio.uni.lu/systems_biology/software/dyglosa. It requires installation of MATLAB (versions R2008b or later) and the Systems Biology Toolbox2 available at www.sbtoolbox2.org. DyGloSA can be run on Windows and Linux systems, -32 and -64 bits. PMID:24367574
Baumuratova, Tatiana; Dobre, Simona; Bastogne, Thierry; Sauter, Thomas
2013-01-01
Systems with bifurcations may experience abrupt irreversible and often unwanted shifts in their performance, called critical transitions. For many systems like climate, economy, ecosystems it is highly desirable to identify indicators serving as early warnings of such regime shifts. Several statistical measures were recently proposed as early warnings of critical transitions including increased variance, autocorrelation and skewness of experimental or model-generated data. The lack of automatized tool for model-based prediction of critical transitions led to designing DyGloSA - a MATLAB toolbox for dynamical global parameter sensitivity analysis (GPSA) of ordinary differential equations models. We suggest that the switch in dynamics of parameter sensitivities revealed by our toolbox is an early warning that a system is approaching a critical transition. We illustrate the efficiency of our toolbox by analyzing several models with bifurcations and predicting the time periods when systems can still avoid going to a critical transition by manipulating certain parameter values, which is not detectable with the existing SA techniques. DyGloSA is based on the SBToolbox2 and contains functions, which compute dynamically the global sensitivity indices of the system by applying four main GPSA methods: eFAST, Sobol's ANOVA, PRCC and WALS. It includes parallelized versions of the functions enabling significant reduction of the computational time (up to 12 times). DyGloSA is freely available as a set of MATLAB scripts at http://bio.uni.lu/systems_biology/software/dyglosa. It requires installation of MATLAB (versions R2008b or later) and the Systems Biology Toolbox2 available at www.sbtoolbox2.org. DyGloSA can be run on Windows and Linux systems, -32 and -64 bits.
International Nuclear Information System (INIS)
Eisfeld, F.
1987-01-01
The knowledge about the penetration of diesel injection jets, particularly about the flow within the short behind the nozzle, and the arising of droplets from an injection jet is very limited. Experimental investigations are required to describe the process of penetration and spreading of the jet. The research method requires high speed cinematography and short time holography. Problems in the investigation method are described
Criticality of Parasitic Disease Transmission in a Diffusive Population
International Nuclear Information System (INIS)
He Minhua; Zhang Duanming; Yin Yanping; Chen Zhiyuan; Pan Guijun
2008-01-01
Through using the methods of finite-size effect and short time dynamic scaling, we study the critical behavior of parasitic disease spreading process in a diffusive population mediated by a static vector environment. Through comprehensive analysis of parasitic disease spreading we find that this model presents a dynamical phase transition from disease-free state to endemic state with a finite population density. We determine the critical population density, above which the system reaches an epidemic spreading stationary state. We also perform a scaling analysis to determine the order parameter and critical relaxation exponents. The results show that the model does not belong to the usual directed percolation universality class and is compatible with the class of directed percolation with diffusive and conserved fields
Directory of Open Access Journals (Sweden)
Clodualdo Aranas
2018-05-01
Full Text Available The double differentiation method overestimates the critical stress associated with the initiation of dynamic transformation (DT because significant amounts of the dynamic phase must be present in order for its effect on the work hardening rate to be detectable. In this work, an alternative method (referred to here as the free energy method is presented based on the thermodynamic condition that the driving force is equal to the total energy obstacle during the exact moment of transformation. The driving force is defined as the difference between the DT critical stress (measured in the single-phase austenite region and the yield stress of the fresh ferrite that takes its place. On the other hand, the energy obstacle consists of the free energy difference between austenite and ferrite, and the work of shear accommodation and dilatation associated with the phase transformation. Here, the DT critical stresses in a C-Mn steel were calculated using the free energy method at temperatures ranging from 870 °C to 1070 °C. The results show that the calculated critical stress using the present approach appears to be more accurate than the values measured by the double differentiation method.
Short-time existence of solutions for mean-field games with congestion
Gomes, Diogo A.; Voskanyan, Vardan K.
2015-01-01
We consider time-dependent mean-field games with congestion that are given by a Hamilton–Jacobi equation coupled with a Fokker–Planck equation. These models are motivated by crowd dynamics in which agents have difficulty moving in high-density areas
Czech Academy of Sciences Publication Activity Database
Gruber, Jan
2011-01-01
Roč. 56, č. 2 (2011), s. 185-205 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20570509 Keywords : correlation dimension * time-embeddings * chaos Subject RIV: BL - Plasma and Gas Discharge Physics
Trophic dynamics and fishery potentials of the Indian Occean - critical assessment
Digital Repository Service at National Institute of Oceanography (India)
Dalal, S.G.; Parulekar, A.H.
A critical review of the status of the Indian Ocean marine fisheries reveals that the presently exploited annual catch is less than one third of the projected potentials as estimated from the biological productivity and exploratory fishery survey...
Online Identification of a Mechanical System in the Frequency Domain with Short-Time DFT
Directory of Open Access Journals (Sweden)
Niko Nevaranta
2015-07-01
Full Text Available A proper system identification method is of great importance in the process of acquiring an analytical model that adequately represents the characteristics of the monitored system. While the use of different time-domain online identification techniques has been widely recognized as a powerful approach for system diagnostics, the frequency domain identification techniques have primarily been considered for offline commissioning purposes. This paper addresses issues in the online frequency domain identification of a flexible two-mass mechanical system with varying dynamics, and a particular attention is paid to detect the changes in the system dynamics. An online identification method is presented that is based on a recursive Kalman filter configured to perform like a discrete Fourier transform (DFT at a selected set of frequencies. The experimental online identification results are compared with the corresponding values obtained from the offline-identified frequency responses. The results show an acceptable agreement and demonstrate the feasibility of the proposed identification method.
Energy Technology Data Exchange (ETDEWEB)
Park, Miok [Korea Institute for Advanced Study, Seoul (Korea, Republic of); Park, Jiwon; Oh, Jae-Hyuk [Hanyang University, Department of Physics, Seoul (Korea, Republic of)
2017-11-15
Einstein-scalar-U(2) gauge field theory is considered in a spacetime characterized by α and z, which are the hyperscaling violation factor and the dynamical critical exponent, respectively. We consider a dual fluid system of such a gravity theory characterized by temperature T and chemical potential μ. It turns out that there is a superfluid phase transition where a vector order parameter appears which breaks SO(3) global rotation symmetry of the dual fluid system when the chemical potential becomes a certain critical value. To study this system for arbitrary z and α, we first apply Sturm-Liouville theory and estimate the upper bounds of the critical values of the chemical potential. We also employ a numerical method in the ranges of 1 ≤ z ≤ 4 and 0 ≤ α ≤ 4 to check if the Sturm-Liouville method correctly estimates the critical values of the chemical potential. It turns out that the two methods are agreed within 10 percent error ranges. Finally, we compute free energy density of the dual fluid by using its gravity dual and check if the system shows phase transition at the critical values of the chemical potential μ{sub c} for the given parameter region of α and z. Interestingly, it is observed that the anisotropic phase is more favored than the isotropic phase for relatively small values of z and α. However, for large values of z and α, the anisotropic phase is not favored. (orig.)
International Nuclear Information System (INIS)
Ma Yuan; He Zhilong; Peng Xueyuan; Xing Ziwen
2012-01-01
The self-acting valve has a significant influence on the efficiency and reliability of the reciprocating compressor. In the trans-critical CO 2 cycle, the large density and high pressure difference across the valve cause serious bending and impact stresses in the valve, offering great challenges for successful valve design. Experimental investigation of the valve dynamics is required in order to design a self-acting valve with a high efficiency and long life span for the trans-critical CO 2 compressor. A semi-hermetic reciprocating compressor was developed for application in CO 2 refrigeration, and a test system was incorporated into the compressor performance test rig, with a focus on investigating the dynamics of the discharge valves. With the experimental results, the movement of the valve was discussed in detail for the trans-critical CO 2 compressor, allowing for the study of the thermodynamic performance of the compressor. While varying design parameters such as pressure ratio, valve lift, spring stiffness and compressor speed, the movement of the discharge valve in the reciprocating CO 2 compressor was measured in order to investigate the major factors that influence the valve dynamics. The average valve speed increased from 0.71 m/s to 0.81 m/s as the discharge pressure changed from 7.8 MPa to 12 MPa. The experimental methods and results discussed in this paper could provide useful information for both valve testing and the optimization of their reliability in trans-critical CO 2 compressors.
Directory of Open Access Journals (Sweden)
Simon Glöser-Chahoud
2016-12-01
Full Text Available Due to mounting concerns about the security of raw material supplies, numerous studies dealing with the quantification of supply risks and material criticality at the national level have been carried out in previous years. Regarding these studies, most approaches are indicator based static screening methods analyzing large numbers of raw materials and identifying those which are most critical for an economy. The majority of these screening methods quantify supply risks and vulnerabilities for one base year without taking into account temporal changes. Dynamic approaches for specific raw materials analyzing affected value chains in detail have been introduced recently; however, these studies do not intend to provide a screening of larger numbers of commodities. In this paper, we present a simple dynamic screening approach to assess raw material criticality at the country level building upon methods from innovation economics. The indicators applied in this study are only based on broadly available production and trade data, which makes this approach relatively easy to apply. We test our methodology on the example of Germany and Japan—two economies with highly specialized industries and low domestic raw material deposits, and, hence, high import dependency. The results are comparable to those of previously conducted multi indicator based static screening methods. However, they provide additional insight into temporal developments over the previous decade.
Virkar, Yogesh S.; Shew, Woodrow L.; Restrepo, Juan G.; Ott, Edward
2016-10-01
Learning and memory are acquired through long-lasting changes in synapses. In the simplest models, such synaptic potentiation typically leads to runaway excitation, but in reality there must exist processes that robustly preserve overall stability of the neural system dynamics. How is this accomplished? Various approaches to this basic question have been considered. Here we propose a particularly compelling and natural mechanism for preserving stability of learning neural systems. This mechanism is based on the global processes by which metabolic resources are distributed to the neurons by glial cells. Specifically, we introduce and study a model composed of two interacting networks: a model neural network interconnected by synapses that undergo spike-timing-dependent plasticity; and a model glial network interconnected by gap junctions that diffusively transport metabolic resources among the glia and, ultimately, to neural synapses where they are consumed. Our main result is that the biophysical constraints imposed by diffusive transport of metabolic resources through the glial network can prevent runaway growth of synaptic strength, both during ongoing activity and during learning. Our findings suggest a previously unappreciated role for glial transport of metabolites in the feedback control stabilization of neural network dynamics during learning.
Effect of parameter calculation in direct estimation of the Lyapunov exponent in short time series
Directory of Open Access Journals (Sweden)
A. M. López Jiménez
2002-01-01
Full Text Available The literature about non-linear dynamics offers a few recommendations, which sometimes are divergent, about the criteria to be used in order to select the optimal calculus parameters in the estimation of Lyapunov exponents by direct methods. These few recommendations are circumscribed to the analysis of chaotic systems. We have found no recommendation for the estimation of λ starting from the time series of classic systems. The reason for this is the interest in distinguishing variability due to a chaotic behavior of determinist dynamic systems of variability caused by white noise or linear stochastic processes, and less in the identification of non-linear terms from the analysis of time series. In this study we have centered in the dependence of the Lyapunov exponent, obtained by means of direct estimation, of the initial distance and the time evolution. We have used generated series of chaotic systems and generated series of classic systems with varying complexity. To generate the series we have used the logistic map.
Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review.
Anderson, Devon E; Johnstone, Brian
2017-01-01
Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ , dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different
Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review
Directory of Open Access Journals (Sweden)
Devon E. Anderson
2017-12-01
Full Text Available Articular cartilage functions to transmit and translate loads. In a classical structure–function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ, dynamic mechanical loading has been hypothesized to induce the structure–function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells
Wroblewska, Katarzyna; Kucinska, Małgorzata; Murias, Marek; Lulek, Janina
2015-09-01
The aim of our study was to examine the irritation potential of new eye drops containing 2% choline salicylate (CS) as an active pharmaceutical ingredient (API) and various polymers increasing eye drop viscosity (hydroxyethylcellulose, hydroxypropyl methylcellulose, methylcellulose, polyvinyl alcohol, polyvinylpyrrolidone). The standard method for assessing the potential of irritating substances has been the Draize rabbit eye test. However the European Centre for Validation of Alternative Methods and the Coordinating Committee for Validation of Alternative Methods recommend, short time exposure (STE) in vitro tests as an alternative method for assessing eye irritation. The eye irritation potential was determined using cytotoxicity test methods for rabbit corneal cell line (SIRC) after 5 min exposure. The viability of cells was determined using two cytotoxicity assays: MTT and Neutral Red Uptake. According to the irritation rankings for the short time exposure test, all tested eye drops are classified as non-irritating (cell viability >70%).
Hou, Limin; Xu, Li
2018-02-01
Short-time processing was employed to manipulate the amplitude, bandwidth, and temporal fine structure (TFS) in sentences. Fifty-two native-English-speaking, normal-hearing listeners participated in four sentence-recognition experiments. Results showed that recovered envelope (E) played an important role in speech recognition when the bandwidth was > 1 equivalent rectangular bandwidth. Removing TFS drastically reduced sentence recognition. Preserving TFS greatly improved sentence recognition when amplitude information was available at a rate ≥ 10 Hz (i.e., time segment ≤ 100 ms). Therefore, the short-time TFS facilitates speech perception together with the recovered E and works with the coarse amplitude cues to provide useful information for speech recognition.
High-Temperature Short-Time Pasteurization System for Donor Milk in a Human Milk Bank Setting
Diana Escuder-Vieco; Irene Espinosa-Martos; Juan M. Rodríguez; Nieves Corzo; Antonia Montilla; Pablo Siegfried; Carmen R. Pallás-Alonso; Carmen R. Pallás-Alonso; Leónides Fernández
2018-01-01
Donor milk is the best alternative for the feeding of preterm newborns when mother's own milk is unavailable. For safety reasons, it is usually pasteurized by the Holder method (62.5°C for 30 min). Holder pasteurization results in a microbiological safe product but impairs the activity of many biologically active compounds such as immunoglobulins, enzymes, cytokines, growth factors, hormones or oxidative stress markers. High-temperature short-time (HTST) pasteurization has been proposed as an...
Hadi A; Widjanarko SB; Kusnadi J
2016-01-01
The development of milk processing technology has grown excessively, and it contains advantage and disadvantage. This study used mixed between PEF (Pulsed Electric Field) and High Temperature Short Time (HTST) to produce milk processed product which is effective and efficient in killing milk microorganism without changing its color, scent, and nutrient content of processed product, therefore producing commercial sterile milk product in accord with milk Indonesian National Standard (SNI). The ...
Farmer, Kevin; Meisel, Steven I.; Seltzer, Joe; Kane, Kathleen
2013-01-01
The Mock Trial is an experiential exercise adapted from a law school process that encourages students to think critically about theories, topics, and the practice of management in an innovative classroom experience. Playing the role of attorneys and witnesses, learners ask questions and challenge assumptions by playing roles in a trial with…
International Nuclear Information System (INIS)
Haapanen, P.; Korhonen, J.
1995-01-01
The safety assessment of programmable automation systems can not totally be based on conventional probabilistic methods because of the difficulties in quantification of the reliability of the software as well as the hardware. Additional means shall therefore be used to gain more confidence on the system dependability. One central confidence building measure is the independent dynamic testing of the completed system. An automated test harness is needed to run the required large amount of test cases in a restricted time span. The prototype dynamic testing harness for programmable digital systems developed at the Technical Research Centre of Finland (VTT) is described in the presentation. (12 refs., 2 figs., 2 tabs.)
International Nuclear Information System (INIS)
Haapanen, P.; Korhonen, J.
1995-01-01
The safety assessment of programmable automation systems cannot be totally be based on conventional probabilistic methods because of the difficulties in quantification of the reliability of the software as well as the hardware. Additional means shall therefore be used to gain more confidence on the system dependability. One central confidence building measure is the independent dynamic testing of the completed system. An automated test harness is needed to run the required large amount of test cases in a restricted time span. This paper describes a prototype dynamic testing harness for programmable digital systems developed at VTT. (author). 12 refs, 2 figs, 2 tabs
Kim, Minjin; Kim, Gi-Hwan; Oh, Kyoung Suk; Jo, Yimhyun; Yoon, Hyun; Kim, Ka-Hyun; Lee, Heon; Kim, Jin Young; Kim, Dong Suk
2017-06-27
Organic-inorganic hybrid metal halide perovskite solar cells (PSCs) are attracting tremendous research interest due to their high solar-to-electric power conversion efficiency with a high possibility of cost-effective fabrication and certified power conversion efficiency now exceeding 22%. Although many effective methods for their application have been developed over the past decade, their practical transition to large-size devices has been restricted by difficulties in achieving high performance. Here we report on the development of a simple and cost-effective production method with high-temperature and short-time annealing processing to obtain uniform, smooth, and large-size grain domains of perovskite films over large areas. With high-temperature short-time annealing at 400 °C for 4 s, the perovskite film with an average domain size of 1 μm was obtained, which resulted in fast solvent evaporation. Solar cells fabricated using this processing technique had a maximum power conversion efficiency exceeding 20% over a 0.1 cm 2 active area and 18% over a 1 cm 2 active area. We believe our approach will enable the realization of highly efficient large-area PCSs for practical development with a very simple and short-time procedure. This simple method should lead the field toward the fabrication of uniform large-scale perovskite films, which are necessary for the production of high-efficiency solar cells that may also be applicable to several other material systems for more widespread practical deployment.
Catchment organisation, free energy dynamics and network control on critical zone water flows
Zehe, E.; Ehret, U.; Kleidon, A.; Jackisch, C.; Scherer, U.; Blume, T.
2012-04-01
as that these flow structures organize and dominate flows of water, dissolved matter and sediments during rainfall driven conditions at various scales: - Surface connected vertical flow structures of anecic worm burrows or soil cracks organize and dominated vertical flows at the plot scale - this is usually referred to as preferential flow; - Rill networks at the soil surface organise and dominate hillslope scale overland flow response and sediment yields; - Subsurface pipe networks at the bedrock interface organize and dominate hillslope scale lateral subsurface water and tracer flows; - The river net organizes and dominates flows of water, dissolved matter and sediments to the catchment outlet and finally across continental gradients to the sea. Fundamental progress with respect to the parameterization of hydrological models, subscale flow networks and to understand the adaptation of hydro-geo ecosystems to change could be achieved by discovering principles that govern the organization of catchments flow networks in particular at least during steady state conditions. This insight has inspired various scientists to suggest principles for organization of ecosystems, landscapes and flow networks; as Bejans constructural law, Minimum Energy Expenditure , Maximum Entropy Production. In line with these studies we suggest that a thermodynamic/energetic treatment of the catchment is might be a key for understanding the underlying principles that govern organisation of flow and transport. Our approach is to employ a) physically based hydrological model that address at least all the relevant hydrological processes in the critical zone in a coupled way, behavioural representations of the observed organisation of flow structures and textural elements, that are consistent with observations in two well investigated research catchments and have been tested against distributed observations of soil moisture and catchment scale discharge; to simulate the full concert of hydrological
McDowell, J J; Calvin, Olivia L; Hackett, Ryan; Klapes, Bryan
2017-07-01
Two competing predictions of matching theory and an evolutionary theory of behavior dynamics, and one additional prediction of the evolutionary theory, were tested in a critical experiment in which human participants worked on concurrent schedules for money (Dallery et al., 2005). The three predictions concerned the descriptive adequacy of matching theory equations, and of equations describing emergent equilibria of the evolutionary theory. Tests of the predictions falsified matching theory and supported the evolutionary theory. Copyright © 2017 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Alina Żogała
2014-01-01
Originality/value: This paper presents state of art in the field of coal gasification modeling using kinetic and computational fluid dynamics approach. The paper also presents own comparative analysis (concerned with mathematical formulation, input data and parameters, basic assumptions, obtained results etc. of the most important models of underground coal gasification.
Dynamic behavior of HTSC opening switch models controlled by short over-critical current pulses
International Nuclear Information System (INIS)
Agafonov, A.V.; Krastelev, E.G.; Voronin, V.S.
1999-01-01
We present results of experimental research of dynamical properties of thin films of YBa 2 Cu 3 O 7 HTSC-switch models under action of short overcritical current pulses to test this method of control of fast high-power opening switches for accelerator applications
International Nuclear Information System (INIS)
Cristescu, C.P.; Mereu, B.; Stan, Cristina; Agop, M.
2009-01-01
Experimental investigations and theoretical analysis on the dynamics of a metal-oxide semiconductor heterostructure used as nonlinear capacity in a series RLC electric circuit are presented. A harmonic voltage perturbation can induce various nonlinear behaviours, particularly evolution to chaos by period doubling and torus destabilization. In this work we focus on the change in dynamics induced by a sinusoidal driving with constant frequency and variable amplitude. Theoretical treatment based on the microscopic mechanisms involved led us to a dynamic system with a piecewise behaviour. Consequently, a model consisting of a nonlinear oscillator described by a piecewise second order ordinary differential equation is proposed. This kind of treatment is required by the asymmetry in the behaviour of the metal-oxide semiconductor with respect to the polarization of the perturbing voltage. The dynamics of the theoretical model is in good agreement with the experimental results. A connection with El Naschie's E-infinity space-time is established based on the interpretation of our experimental results as evidence of the importance of the golden mean criticality in the microscopic world.
Renormalization and Central limit theorem for critical dynamical systems with weak external noise
Diaz-Espinosa, O
2006-01-01
We study of the effect of weak noise on critical one dimensional maps; that is, maps with a renormalization theory. We establish a one dimensional central limit theorem for weak noises and obtain Berry--Esseen estimates for the rate of this convergence. We analyze in detail maps at the accumulation of period doubling and critical circle maps with golden mean rotation number. Using renormalization group methods, we derive scaling relations for several features of the effective noise after long times. We use these scaling relations to show that the central limit theorem for weak noise holds in both examples. We note that, for the results presented here, it is essential that the maps have parabolic behavior. They are false for hyperbolic orbits.
Intermittency at critical transitions and aging dynamics at the onset of ...
Indian Academy of Sciences (India)
cO Indian Academy of Sciences. Vol. ... Pf. 1. Introduction. Ever since the proposition, in 1988, by Tsallis [1,2] of a ... namics associated with critical attractors in prototypical nonlinear one-dimensional maps ... Here we review briefly the specific .... power-law decay of the form τ−1/1−q with q = 1−ln 2/(ζ −1) ln α(ζ), where α(ζ) is.
Critical current and flux dynamics in Ag-doped FeSe superconductor
Galluzzi, A.; Polichetti, M.; Buchkov, K.; Nazarova, E.; Mancusi, D.; Pace, S.
2017-02-01
The measurements of DC magnetization as a function of the temperature M(T), magnetic field M(H), and time M(t) have been performed in order to compare the superconducting and pinning properties of an undoped FeSe0.94 sample and a silver doped FeSe0.94 + 6 wt% Ag sample. The M(T) curves indicate an improvement of the superconducting critical temperature and a reduction of the non-superconducting phase Fe7Se8 due to the silver doping. This is confirmed by the field and temperature dependent critical current density Jc(H,T) extracted from the superconducting hysteresis loops at different temperatures within the Bean critical state model. Moreover, the combined analysis of the Jc(T) and of the pinning force Fp(H/Hirr) indicate that the pinning mechanisms in both samples can be described in the framework of the collective pinning theory. The U*(T, J) curves show a pinning crossover from an elastic creep regime of intermediate size flux bundles, for low temperatures, to a plastic creep regime at higher temperatures for both the samples. Finally, the vortex hopping attempt time has been evaluated for both samples and the results are comparable with the values reported in the literature for high Tc materials.
Adsorption Of Surfactants At the Water-Oil Interface By Short-Time Diffusion
Cortes-Estrada, Aldo; Ibarra-Bracamontes, Laura; Aguilar-Corona, Alicia; Viramontes-Gamboa, Gonzalo
2017-11-01
Surface tension is an important parameter for different industrial processes. The addition of surfactants can modify the interfacial tension between two fluids. As the surfactant molecules reach and are adsorbed at a fluid interface, the surface tension or interfacial tension is reduced until the interface is saturated. Dynamic Interfacial tension measurements were carried out using an optical tensiometer by the Pendant Drop technique at a room temperature of 25 °C for a period of 250 sec. A drop of surfactant solution was deposited and allowed to diffuse into a water-oil interface, and then the adsorption rate at the interface was calculated. Sodium Dodecyl Sulfate (SDS) was used as the surfactant, hexane and dodecane were tested as the oil phase. A linear decay in the interfacial tension was observed for the lower initial concentrations of the order of 0.0001 to 0.01 mM, and an exponential decay was observed for initial concentrations of the order of 0.1 to 1 mM. This study was supported by the Mexican Council of Science and Technology (CONACyT) and by the Scientific Research Coordination of the University of Michoacan in Mexico.
Critical analysis of partial discharge dynamics in air filled spherical voids
Callender, G.; Golosnoy, I. O.; Rapisarda, P.; Lewin, P. L.
2018-03-01
In this paper partial discharge (PD) is investigated inside a spherical air filled void at atmospheric pressure using a drift diffusion model. Discharge dynamics consisted of an electron avalanche transitioning into positive streamer, in agreement with earlier work on dielectric barrier discharges. Different model configurations were utilised to test many of the concepts employed in semi-analytical PD activity models, which use simplistic descriptions of the discharge dynamics. The results showed that many of these concepts may be erroneous, with significant discrepancies between the canonical reasoning and the simulation results. For example, the residual electric field, the electric field after a discharge, is significantly lower than the estimates used by classical PD activity models in the literature.
International Nuclear Information System (INIS)
Kim, J.-T.
1998-01-01
The effect of columnar defects on the critical dynamics of superconducting Tl 2 Ba 2 CaCu 2 O 8 (Tl-2212) film has been investigated. The Tl-2212 film was irradiated at 0 C by 1.3 GeV U-ions along the normal of the film surface. The dose of 6.0 x 10 10 ions/cm 2 of the U-ion irradiation corresponds to a matching field of 1.2 T. The in-plane longitudinal resistivity of the irradiated Tl-2212 has been measured as a function of magnetic field H and temperature T. The extracted fluctuation part of the conductivity σ xx (T, H) of the unirradiated sample exhibits 3D-XY scaling behavior that reveals dynamic critical exponent z = 1.8 ± 0.1 and static critical exponent v ∼ 1.338. The results indicate that the weak interlayer coupling along the c-axis of Tl-2212 significantly influences static critical exponent v and does not change dynamical critical exponent. After the irradiation, the fluctuation conductivities are enhanced by the strong pinnings and do not exhibit the same 3D-XY scaling behavior as for the unirradiated Tl-2212. Particularly at the low magnetic field values near the matching field of 1.2 T, the fluctuation conductivities show a clear deviation from the critical dynamics, suggesting that the pinning effect on the critical dynamics is significant
3D Discrete Dislocation Dynamics: Influence of Segment Mobility on Critical Shear Stress
Czech Academy of Sciences Publication Activity Database
Záležák, Tomáš; Dlouhý, Antonín
2015-01-01
Roč. 128, č. 4 (2015), s. 654-656 ISSN 0587-4246. [ISPMA 13 - International Symposium on Physics of Materials /13./. Praha, 31.08.2014-04.09.2014] R&D Projects: GA MŠk(CZ) EE2.3.20.0214; GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 Keywords : metal matrix composites * discrete dislocation dynamics * high temperature creep Subject RIV: JG - Metallurgy Impact factor: 0.525, year: 2015
Dynamical criticality during induction of anesthesia in human ECoG recordings
Directory of Open Access Journals (Sweden)
Leandro M. Alonso
2014-03-01
Full Text Available In this work we analyze electro-corticography (ECoG recordings in human sub- jects as they are anesthetized. We hypothesize that the decrease in responsiveness that defines anesthesia induction is concomitant with the stabilization of neuronal dynamics. To test this hypothesis, we performed a moving vector autoregressive analysis and quantified stability of neuronal dynamics using eigenmode decompo- sition of the autoregressive matrices, independently fitted to short sliding temporal windows. Consistent with the hypothesis we show that while the subject is awake, many modes of oscillations of neuronal activity are found at the edge of instabil- ity, but as the subject becomes anesthetized the fitted dynamics becomes more damped. Analysis of eigenmode distributions in the awake and anesthetized brain revealed statistically significant stabilization not present in surrogate data. Sta- bility analysis thus offer a novel way of quantifying changes in neuronal activity that characterize loss of consciousness induced by general anesthetics. Specifically, our analysis suggests that the effect of the anesthetic procedure is to damp out high frequency activity while still allowing for low frequency modes to perform a function.
Diaz-Espinosa, O
2006-01-01
We study the effect of noise on one--dimensional critical dynamical systems (that is, maps with a renormalization theory). We consider in detail two examples of such dynamical systems: unimodal maps of the interval at the accumulation of period--doubling and smooth homeomorphisms of the circle with a critical point and with golden mean rotation number. We show that, if we scale the space and the time, several properties of the noise (the cumulants or Wick--ordered moments) satisfy some scaling relations. A consequence of the scaling relations is that a version of the central limit theorem holds. Irrespective of the shape of the initial noise, if the bare noise is weak enough, the effective noise becomes close to Gaussian in several senses that we can make precise. We notice that the conclusions are false for maps with positive Lyapunov exponents. The method of analysis is close in spirit to the study of scaling limits in renormalization theory. We also perform several numerical experiments that confirm the ri...
Directory of Open Access Journals (Sweden)
Nathan F. Bendik
2016-03-01
Full Text Available Critical habitat for many species is often limited to occupied localities. For rare and cryptic species, or those lacking sufficient data, occupied habitats may go unrecognized, potentially hindering species recovery. Proposed critical habitat for the aquatic Jollyville Plateau salamander (Eurycea tonkawae and two sister species were delineated based on the assumption that surface habitat is restricted to springs and excludes intervening stream reaches. To test this assumption, we performed two studies to understand aspects of individual, population, and metapopulation ecology of E. tonkawae. First, we examined movement and population demographics using capture-recapture along a spring-influenced stream reach. We then extended our investigation of stream habitat use with a study of occupancy and habitat dynamics in multiple headwater streams. Indications of extensive stream channel use based on capture-recapture results included frequent movements of >15 m, and high juvenile abundance downstream of the spring. Initial occupancy of E. tonkawae was associated with shallow depths, maidenhair fern presence and low temperature variation (indicative of groundwater influence, although many occupied sites were far from known springs. Additionally, previously dry sites were three times more likely to be colonized than wet sites. Our results indicate extensive use of stream habitats, including intermittent ones, by E. tonkawae. These areas may be important for maintaining population connectivity or even as primary habitat patches. Restricting critical habitat to occupied sites will result in a mismatch with actual habitat use, particularly when assumptions of habitat use are untested, thus limiting the potential for recovery.
Critical properties of the SIS model dynamics on the Apollonian network
International Nuclear Information System (INIS)
Da Silva, L F; Costa Filho, R N; Cunha, A R; Macedo-Filho, A; Serva, M; Fulco, U L; Albuquerque, E L
2013-01-01
We present an analysis of the classical SIS (susceptible–infected–susceptible) model on the Apollonian network which is scale free and displays the small word effect. Numerical simulations show a continuous absorbing-state phase transition at a finite critical value λ c of the control parameter λ. Since the coordination number k of the vertices of the Apollonian network is cumulatively distributed according to a power-law P(k) ∝ 1/k η−1 , with exponent η ≃ 2.585, finite size effects are large and the infinite network limit cannot be reached in practice. Consequently, our study requires the application of finite size scaling theory, allowing us to characterize the transition by a set of critical exponents β/ν ⊥ , γ/ν ⊥ , ν ⊥ , β. We found that the phase transition belongs to the mean-field directed percolation universality class in regular lattices but, very peculiarly, is associated with a short-range distribution whose power-law distribution of k is defined by an exponent η larger than 3. (paper)
Energy Technology Data Exchange (ETDEWEB)
Kim, Seongil; Choi, Sangmin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)
2017-05-15
The dynamics of a water-steam system in a once-through boiler was simulated based on the physics-based modeling approach, representing the system in response to large load change or scale disturbance simulations. The modeling considered the mass, energy conservation, and momentum equation in the water pipe and the focus was limited to the sub-critical pressure region. An evaporator tube modeling was validated against the reference data. A simplified boiler system consisting of economizer, evaporator, and superheater was constructed to match a 500 MW power boiler. The dynamic response of the system following a disturbance was discussed along with the quantitative response characteristics. The dynamic response of the boiler system was further evaluated by checking the case of an off-design point operation of the feedwater-to-fuel supply ratio. The results re-emphasized the significance of controlling the feedwater-to-fuel supply ratio and additional design requirements of the water-steam separator and spray attemperator.
International Nuclear Information System (INIS)
Kim, Seongil; Choi, Sangmin
2017-01-01
The dynamics of a water-steam system in a once-through boiler was simulated based on the physics-based modeling approach, representing the system in response to large load change or scale disturbance simulations. The modeling considered the mass, energy conservation, and momentum equation in the water pipe and the focus was limited to the sub-critical pressure region. An evaporator tube modeling was validated against the reference data. A simplified boiler system consisting of economizer, evaporator, and superheater was constructed to match a 500 MW power boiler. The dynamic response of the system following a disturbance was discussed along with the quantitative response characteristics. The dynamic response of the boiler system was further evaluated by checking the case of an off-design point operation of the feedwater-to-fuel supply ratio. The results re-emphasized the significance of controlling the feedwater-to-fuel supply ratio and additional design requirements of the water-steam separator and spray attemperator.
Terpstra, Fokke G; Rechtman, David J; Lee, Martin L; Hoeij, Klaske Van; Berg, Hijlkeline; Van Engelenberg, Frank A C; Van't Wout, Angelica B
2007-03-01
In the United States, concerns over the transmission of infectious diseases have led to donor human milk generally being subjected to pasteurization prior to distribution and use. The standard method used by North American milk banks is Holder pasteurization (63 degrees C for 30 minutes). The authors undertook an experiment to validate the effects of a high-temperature short-time (HTST) pasteurization process (72 degrees C for 16 seconds) on the bioburden of human milk. It was concluded that HTST is effective in the elimination of bacteria as well as of certain important pathogenic viruses.
Fetal short time variation during labor: a non-invasive alternative to fetal scalp pH measurements?
Schiermeier, Sven; Reinhard, Joscha; Hatzmann, Hendrike; Zimmermann, Ralf C.; Westhof, Gregor
2009-01-01
Objective: To determine whether short time variation (STV) of fetal heart beat correlates with scalp pH measurements during labor. Patients and methods: From 1279 deliveries, 197 women had at least one fetal scalp pH measurement. Using the CTG-Player®, STVs were calculated from the electronically saved cardiotocography (CTG) traces and related to the fetal scalp pH measurements. Results: There was no correlation between STV and fetal scalp pH measurements (r=−0.0592). Conclusions: Fetal ST...
Energy Technology Data Exchange (ETDEWEB)
Diel, F.; Neidhart, B.; Opree, W.
1981-08-01
The direct action of sensitizing occupational chemicals (formaldehyde, phenol, phenylhydrazine, p-aminophenol) on rat mast cells was investigated by determination of histamine using HPLC separation and fluorimetric detection. It turned out that dispersed mast cells from immunized and non-immunized Wistar-rats are more sensitive than small-cut lung tissue slices. Passive cutaneous anaphylaxis was negative after a fortnight sensitizing experiment with the here described occupational chemicals. Short-time tests with rat mast cells reflect anaphylactoid response and are suitable for the screening of sensitizing chemicals.
Plasma dynamics near critical density inferred from direct measurements of laser hole boring
Gong, Chao; Tochitsky, Sergei Ya.; Fiuza, Frederico; Pigeon, Jeremy J.; Joshi, Chan
2016-06-01
We have used multiframe picosecond optical interferometry to make direct measurements of the hole boring velocity, vHB, of the density cavity pushed forward by a train of C O2 laser pulses in a near critical density helium plasma. As the pulse train intensity rises, the increasing radiation pressure of each pulse pushes the density cavity forward and the plasma electrons are strongly heated. After the peak laser intensity, the plasma pressure exerted by the heated electrons strongly impedes the hole boring process and the vHB falls rapidly as the laser pulse intensity falls at the back of the laser pulse train. A heuristic theory is presented that allows the estimation of the plasma electron temperature from the measurements of the hole boring velocity. The measured values of vHB, and the estimated values of the heated electron temperature as a function of laser intensity are in reasonable agreement with those obtained from two-dimensional numerical simulations.
Lacouture, Jean-Christoph; Johnson, Paul A; Cohen-Tenoudji, Frederic
2003-03-01
The monitoring of both linear and nonlinear elastic properties of a high performance concrete during curing is presented by application of compressional and shear waves. To follow the linear elastic behavior, both compressional and shear waves are used in wide band pulse echo mode. Through the value of the complex reflection coefficient between the cell material (Lucite) and the concrete within the cell, the elastic moduli are calculated. Simultaneously, the transmission of a continuous compressional sine wave at progressively increasing drive levels permits us to calculate the nonlinear properties by extracting the harmonics amplitudes of the signal. Information regarding the chemical evolution of the concrete based upon the reaction of hydration of cement is obtained by monitoring the temperature inside the sample. These different types of measurements are linked together to interpret the critical behavior.
Energy Technology Data Exchange (ETDEWEB)
Wang, Hesheng [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Xu, Lifei; He, Tao [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China)
2015-10-15
Highlights: • Vision-based online vibration estimation method for a flexible arm is proposed. • The vibration signal is obtained by image processing in unknown environments. • Vibration parameters are estimated by short-time Fourier transformation. - Abstract: The vibration should be suppressed if it happens during the motion of a flexible robot or under the influence of external disturbance caused by its structural features and material properties, because the vibration may affect the positioning accuracy and image quality. In Tokamak environment, we need to get the real-time vibration information on vibration suppression of robotic arm, however, some sensors are not allowed in the extreme Tokamak environment. This paper proposed a vision-based method for online vibration estimation of a flexible manipulator, which is achieved by utilizing the environment image information from the end-effector camera to estimate its vibration. Short-time Fourier Transformation with adaptive window length method is used to estimate vibration parameters of non-stationary vibration signals. Experiments with one-link flexible manipulator equipped with camera are carried out to validate the feasibility of this method in this paper.
International Nuclear Information System (INIS)
Wang, Hesheng; Chen, Weidong; Xu, Lifei; He, Tao
2015-01-01
Highlights: • Vision-based online vibration estimation method for a flexible arm is proposed. • The vibration signal is obtained by image processing in unknown environments. • Vibration parameters are estimated by short-time Fourier transformation. - Abstract: The vibration should be suppressed if it happens during the motion of a flexible robot or under the influence of external disturbance caused by its structural features and material properties, because the vibration may affect the positioning accuracy and image quality. In Tokamak environment, we need to get the real-time vibration information on vibration suppression of robotic arm, however, some sensors are not allowed in the extreme Tokamak environment. This paper proposed a vision-based method for online vibration estimation of a flexible manipulator, which is achieved by utilizing the environment image information from the end-effector camera to estimate its vibration. Short-time Fourier Transformation with adaptive window length method is used to estimate vibration parameters of non-stationary vibration signals. Experiments with one-link flexible manipulator equipped with camera are carried out to validate the feasibility of this method in this paper.
Energy Technology Data Exchange (ETDEWEB)
Gauger, Thomas [Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (DE). Inst. fuer Agraroekologie (FAL-AOE); Stuttgart Univ. (Germany). Inst. fuer Navigation; Haenel, Hans-Dieter; Roesemann, Claus [Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (DE). Inst. fuer Agraroekologie (FAL-AOE); Nagel, Hans-Dieter; Becker, Rolf; Kraft, Philipp; Schlutow, Angela; Schuetze, Gudrun; Weigelt-Kirchner, Regine [OeKO-DATA Gesellschaft fuer Oekosystemanalyse und Umweltdatenmanagement mbH, Strausberg (Germany); Anshelm, Frank [Geotechnik Suedwest Frey Marx GbR, Bietigheim-Bissingen (Germany)
2008-09-15
The report on the implementation of the UNECE convention on long-range transboundary air pollution Pt.2 covers the following issues: The tasks of the NFC (National Focal Center) Germany including the ICP (international cooperative program) modeling and mapping and the expert panel for heavy metals. Results of the work for the multi-component protocol cover the initial data for the calculation of the critical loads following the mass balance method, critical loads for acid deposition, critical loads for nitrogen input, critical load violations (sulfur, nitrogen). The results of work for the heavy metal protocol cover methodology development and recommendations for ICO modeling and mapping in accordance with international development, contributions of the expert group/ task force on heavy metals (WGSR), data sets on the critical loads for lead, cadmium and mercury, and critical load violations (Pb, Cd, Hg). The results of work on the inclusion of biodiversity (BERN) cover data compilation, acquisition and integration concerning ecosystems, model validation and verification and the possible interpretation frame following the coupling with dynamic modeling. The future development and utilization of dynamic modeling covers model comparison, applicability, the preparation of a national data set and preparations concerning the interface to the BERN model.
Critical dynamics in the evolution of stochastic strategies for the iterated prisoner's dilemma.
Directory of Open Access Journals (Sweden)
Dimitris Iliopoulos
2010-10-01
Full Text Available The observed cooperation on the level of genes, cells, tissues, and individuals has been the object of intense study by evolutionary biologists, mainly because cooperation often flourishes in biological systems in apparent contradiction to the selfish goal of survival inherent in Darwinian evolution. In order to resolve this paradox, evolutionary game theory has focused on the Prisoner's Dilemma (PD, which incorporates the essence of this conflict. Here, we encode strategies for the iterated Prisoner's Dilemma (IPD in terms of conditional probabilities that represent the response of decision pathways given previous plays. We find that if these stochastic strategies are encoded as genes that undergo Darwinian evolution, the environmental conditions that the strategies are adapting to determine the fixed point of the evolutionary trajectory, which could be either cooperation or defection. A transition between cooperative and defective attractors occurs as a function of different parameters such as mutation rate, replacement rate, and memory, all of which affect a player's ability to predict an opponent's behavior. These results imply that in populations of players that can use previous decisions to plan future ones, cooperation depends critically on whether the players can rely on facing the same strategies that they have adapted to. Defection, on the other hand, is the optimal adaptive response in environments that change so quickly that the information gathered from previous plays cannot usefully be integrated for a response.
A CRITICAL AND COMPARATIVE ANALYSIS OF THE INDUSTRIAL CORPORATIONS IN THEIR EVOLUTIONARY DYNAMIC
Directory of Open Access Journals (Sweden)
GHERGHEL Sabina
2017-05-01
Full Text Available Since the 2000s, a series of mergers and acquisitions of brand at industrial corporations’ level has been observed in the global industry landscape, and an even more pronounced dynamism was manifested in Europe. The wave of mergers and acquisitions continues nowadays, when the concentration of the dominant "actors" on the industrial stage is followed by a similar process of creating enterprises able to compete with the first ones, either by the size of production or financial strength, or by innovativeness and introduction of new and competitive products. The existence of the Common Market and the EU on our continent has contributed enormously to the process of restructuring the "old" Europe. In the first phase of the European construction, the stage where national markets were still dominant, but there could be noticed a serious growth of competition, in Europe there has been produced a huge wave of mergers, for many surprising. Once with the consolidation of the European Community, a new phase begins, in which enterprises begin to adopt "continental" strategies and policies, reasoning according to the logic of a market area. Through international mergers means, is implemented a strategy that adapts the minimization of costs and simultaneously an insurance policy against a future possible currency devaluation. Today we are witnessing the third stage, with rules that tend quickly towards a complete unification and a single currency. The agreements between the European enterprises can be considered favorable because they often lead to high levels of efficiency without decreasing elements that make them competitive.
Choe, J. I.
2016-04-01
A series mathematical model has been developed for the prediction of flow stress and microstructure evolution during the hot deformation of metals such as copper or austenitic steels with low stacking fault energies, involving features of both diffusional flow and dislocation motion. As the strain rate increases, multiple peaks on the stress-strain curve decrease. At a high strain rate, the stress rises to a single peak, while dynamic recrystallization causes an oscillatory behavior. At a low strain rate (when there is sufficient time for the recrystallizing grains to grow before they become saturated with high dislocation density with an increase in strain rate), the difference in stored stress between recrystallizing and old grains diminishes, resulting in reduced driving force for grain growth and rendering smaller grains in the alloy. The final average grain size at the steady stage (large strain) increases with a decrease in the strain rate. During large strain deformation, grain size reduction accompanying dislocation creep might be balanced by the grain growth at the border delimiting the ranges of realization (field boundary) of the dislocation-creep and diffusion-creep mechanisms.
Directory of Open Access Journals (Sweden)
Remzi YILDIRIM
1998-01-01
Full Text Available In this study, dynamic stability analysis of semiconductor laser diodes with external optical feedback has been realized. In the analysis the frequency response of the transfer function of laser diode H jw( , the transfer m function of laser diode with external optical feedback TF jw( , and optical feedback transfer function m K jw( obtained from small signal equations has been m accomplished using Nyquist stability analysis in complex domain. The effect of optical feedback on the stability of the system has been introduced and to bring the laser diode to stable condition the working critical boundary range of dampig frequency and reflection power constant (R has been determined. In the study the reflection power has been taken as ( .
Directory of Open Access Journals (Sweden)
Anastasios Papaioannou
2017-09-01
Full Text Available Due to the increasing prevalence of diabetes, finding therapeutic analogues for insulin has become an urgent issue. While many experimental studies have been performed towards this end, they have limited scope to examine all aspects of the effect of a mutation. Computational studies can help to overcome these limitations, however, relatively few studies that focus on insulin analogues have been performed to date. Here, we present a comprehensive computational study of insulin analogues—three mutant insulins that have been identified with hyperinsulinemia and three mutations on the critical B26 residue that exhibit similar binding affinity to the insulin receptor—using molecular dynamics simulations with the aim of predicting how mutations of insulin affect its activity, dynamics, energetics and conformations. The time evolution of the conformers is studied in long simulations. The probability density function and potential of mean force calculations are performed on each insulin analogue to unravel the effect of mutations on the dynamics and energetics of insulin activation. Our conformational study can decrypt the key features and molecular mechanisms that are responsible for an enhanced or reduced activity of an insulin analogue. We find two key results: 1 hyperinsulinemia may be due to the drastically reduced activity (and binding affinity of the mutant insulins. 2 Y26BS and Y26BE are promising therapeutic candidates for insulin as they are more active than WT-insulin. The analysis in this work can be readily applied to any set of mutations on insulin to guide development of more effective therapeutic analogues.
Energy Technology Data Exchange (ETDEWEB)
Brazovskii, Serguei, E-mail: brazov@lptms.u-psud.fr [LPTMS, UMR8626, CNRS & University Paris-Sud, Bat. 100, Orsay F-91405 (France); International Institute of Physics, 59078-400 Natal, Rio Grande do Norte (Brazil); Monceau, Pierre [CNRS & University Grenoble Alpes, Institute NEEL, F-38042 Grenoble (France); Nad, Felix Ya.
2015-03-01
The quasi one-dimensional organic conductor (TMTTF){sub 2}AsF{sub 6} shows the charge ordering transition at T{sub CO}=101 K to a state of the ferroelectric Mott insulator which is still well conducting. We present and interpret the experimental data on the gigantic dielectric response in the vicinity of T{sub CO}, concentrating on the frequency dependence of the inverse 1/ε of the complex permittivity ε=ε′+iε′′. Surprisingly for a ferroelectric, we could closely approach the 2nd order phase transition and to deeply reach the critical dynamics of the polarization. We could analyze the critical slowing-down when approaching T{sub CO} from both sides and to extract the anomalous power law for the frequency dependence of the order parameter viscosity. Moreover, below T{sub CO} we could extract a sharp absorption feature coming from a motion of domain walls which shows up at a frequency well below the relaxation rate.
Hartsough, P. C.; Malazian, A.; Meadows, M. W.; Roudneva, K.; Storch, J.; Bales, R. C.; Hopmans, J. W.
2010-12-01
As part of an effort to understand the root-water-nutrient interactions in the multi-dimensional soil/vegetation system surrounding large trees, in August 2008 we instrumented a mature white fir (Abies concolor) and the surrounding soil to better define the water balance in a single tree. In July 2010, we instrumented a second tree, a Ponderosa pine (Pinus ponderosa) in shallower soils on a drier, exposed slope. The trees are located in a mixed-conifer forest at an elevation of 2000m in the Southern Sierra Critical Zone Observatory. The deployment of more than 250 sensors to measure temperature, volumetric water content, matric potential, and snow depth surrounding the two trees complements sap-flow measurements in the trunk and stem-water-potential measurements in the canopy to capture the seasonal cycles of soil wetting and drying. We show here the results of a multi-year deployment of soil moisture sensors as critical integrators of hydrologic/ biotic interaction in a forested catchment. Sensor networks such as deployed here are a valuable tool in closing the water budget in dynamic forested catchments. While the exchange of energy, water and carbon is continuous, the pertinent fluxes are strongly heterogeneous in both space and time. Thus, the prediction of the behavior of the system across multiple scales constitutes a major challenge.
Tiwari, Shivendra N.; Padhi, Radhakant
2018-01-01
Following the philosophy of adaptive optimal control, a neural network-based state feedback optimal control synthesis approach is presented in this paper. First, accounting for a nominal system model, a single network adaptive critic (SNAC) based multi-layered neural network (called as NN1) is synthesised offline. However, another linear-in-weight neural network (called as NN2) is trained online and augmented to NN1 in such a manner that their combined output represent the desired optimal costate for the actual plant. To do this, the nominal model needs to be updated online to adapt to the actual plant, which is done by synthesising yet another linear-in-weight neural network (called as NN3) online. Training of NN3 is done by utilising the error information between the nominal and actual states and carrying out the necessary Lyapunov stability analysis using a Sobolev norm based Lyapunov function. This helps in training NN2 successfully to capture the required optimal relationship. The overall architecture is named as 'Dynamically Re-optimised single network adaptive critic (DR-SNAC)'. Numerical results for two motivating illustrative problems are presented, including comparison studies with closed form solution for one problem, which clearly demonstrate the effectiveness and benefit of the proposed approach.
Floris, Patrick; Curtin, Sean; Kaisermayer, Christian; Lindeberg, Anna; Bones, Jonathan
2018-07-01
The compatibility of CHO cell culture medium formulations with all stages of the bioprocess must be evaluated through small-scale studies prior to scale-up for commercial manufacturing operations. Here, we describe the development of a bespoke small-scale device for assessing the compatibility of culture media with a widely implemented upstream viral clearance strategy, high-temperature short-time (HTST) treatment. The thermal stability of undefined medium formulations supplemented with soy hydrolysates was evaluated upon variations in critical HTST processing parameters, namely, holding times and temperatures. Prolonged holding times of 43 s at temperatures of 110 °C did not adversely impact medium quality while significant degradation was observed upon treatment at elevated temperatures (200 °C) for shorter time periods (11 s). The performance of the device was benchmarked against a commercially available mini-pilot HTST system upon treatment of identical formulations on both platforms. Processed medium samples were analyzed by untargeted LC-MS/MS for compositional profiling followed by chemometric evaluation, which confirmed the observed degradation effects caused by elevated holding temperatures but revealed comparable performance of our developed device with the commercial mini-pilot setup. The developed device can assist medium optimization activities by reducing volume requirements relative to commercially available mini-pilot instrumentation and by facilitating fast throughput evaluation of heat-induced effects on multiple medium lots.
Directory of Open Access Journals (Sweden)
M. Macchiato
2001-06-01
Full Text Available Self-potential time series are investigated to characterise self-potential time scales. The data analysed were recorded in stations located in two active seismic areas of the Mediterranean region, the Southern Apennine chain (Giuliano and Crete Island (Heraklion, where in past and recent years many destructive seismic events have taken place. The seismological and geological settings, combined with a low level of cultural noise, allow us to consider these areas ideal outdoor laboratories to study the time dynamics of geophysical parameters of electrical nature. At the same time, the different seismological features of such areas make an inter-comparison between the geoelectrical variability observed at the two sites interesting. Fractal analysis tools, able to detect scale laws and quantify persistence features, are used to better understand the background variability properties of the self-potential signals. As results from our analysis, antipersistence seems to be a ubiquitous feature on short time scales (minutes regardless of environmental conditions. On such scales, the accumulation of random fluctuations is not particularly efficient and significant variations mostly occur as sudden jumps.
Grant, I R; Ball, H J; Rowe, M T
1998-02-01
The efficacy of high-temperature, short-time (HTST) pasteurization (72 degrees C/15 s) when low numbers (HTST pasteurization using laboratory pasteurizing units. Ten bovine strains of Myco. paratuberculosis were tested in triplicate. Culture in BACTEC Middlebrook 12B radiometric medium detected acid-fast survivors in 14.8% and 10% of HTST-pasteurized milk samples at the 10(3) and 10(2) cfu ml-1 inoculum levels, respectively, whereas conventional culture on Herrold's egg yolk medium containing mycobactin J detected acid-fast survivors in only 3.7% and 6.7% of the same milk samples. IS900-based PCR confirmed that these acid-fast survivors were Myco. paratuberculosis. No viable Myco. paratuberculosis were isolated from HTST-pasteurized milk initially containing either 10 cfu ml-1 or 10 cfu 50 ml-1.
International Nuclear Information System (INIS)
Giri, Dilip Kumar; Gupta, P S
2003-01-01
The concept of fourth-order squeezing of the electromagnetic field is investigated in the fundamental mode in spontaneous and stimulated four- and six-wave mixing processes under the short-time approximation based on a fully quantum mechanical approach. The coupled Heisenberg equations of motion involving real and imaginary parts of the quadrature operators are established. The possibility of obtaining fourth-order squeezing is studied. The dependence of fourth-order squeezing on the number of photons is also investigated. It is shown that fourth-order squeezing, which is a higher-order squeezing, allows a much larger fractional noise reduction than lower-order squeezing. It is shown that squeezing is greater in a stimulated process than the corresponding squeezing in spontaneous interaction. The conditions for obtaining maximum and minimum squeezing are obtained. We have also established the non-classical nature of squeezed radiation using the Glauber-Sudarshan representation
Pohlscheidt, Michael; Charaniya, Salim; Kulenovic, Fikret; Corrales, Mahalia; Shiratori, Masaru; Bourret, Justin; Meier, Steven; Fallon, Eric; Kiss, Robert
2014-04-01
The production of therapeutic proteins by mammalian cell culture is complex and sets high requirements for process, facility, and equipment design, as well as rigorous regulatory and quality standards. One particular point of concern and significant risk to supply chain is the susceptibility to contamination such as bacteria, fungi, mycoplasma, and viruses. Several technologies have been developed to create barriers for these agents to enter the process, e.g. filtration, UV inactivation, and temperature inactivation. However, if not implemented during development of the manufacturing process, these types of process changes can have significant impact on process performance if not managed appropriately. This article describes the implementation of the high-temperature short-time (HTST) treatment of cell culture media as an additional safety barrier against adventitious agents during the transfer of a large-scale commercial cell culture manufacturing process. The necessary steps and experiments, as well as subsequent results during qualification runs and routine manufacturing, are shown.
International Nuclear Information System (INIS)
Strobel, G.
1981-10-01
In a magnetically insulated diode, collision-free electrons return to the cathode and no electron current is present at the anode. Electron transport to the anode is studied in this paper. Steady-state space-charge-limited flow is assumed initially. Breakdown of ion flow occurs when static neutral atoms at the anode undergo charge exchange, which results in neutral atoms drifting across the diode. These are subsequently ionized by reflexing ions producing electrons trapped in Larmor orbits throughout the diode. These electrons drift to the anode via ionization and inelastic collisions with other neutral atoms. Model calculations compare the effects of foil and mesh cathodes. Steady-state space-charge-limited ion current densities are calculated. The neutral atom density at the cathode is determined as a function of time. The shorting time of the diode is scaled versus the electrode separation d, the diode potential V 0 , the magnetic field, and the initial concentration of static neutron atoms
Nizarul, O.; Hermana, M.; Bashir, Y.; Ghosh, D. P.
2016-02-01
In delineating complex subsurface geological feature, broad band of frequencies are needed to unveil the often hidden features of hydrocarbon basin such as thin bedding. The ability to resolve thin geological horizon on seismic data is recognized to be a fundamental importance for hydrocarbon exploration, seismic interpretation and reserve prediction. For thin bedding, high frequency content is needed to enable tuning, which can be done by applying the band width extension technique. This paper shows an application of Short Time Fourier Transform Half Cepstrum (STFTHC) method, a frequency bandwidth expansion technique for non-stationary seismic signal in increasing the temporal resolution to uncover thin beds and improve characterization of the basin. A wedge model and synthetic seismic data is used to quantify the algorithm as well as real data from Sarawak basin were used to show the effectiveness of this method in enhancing the resolution.
Fetal short time variation during labor: a non-invasive alternative to fetal scalp pH measurements?
Schiermeier, Sven; Reinhard, Joscha; Hatzmann, Hendrike; Zimmermann, Ralf C; Westhof, Gregor
2009-01-01
To determine whether short time variation (STV) of fetal heart beat correlates with scalp pH measurements during labor. From 1279 deliveries, 197 women had at least one fetal scalp pH measurement. Using the CTG-Player, STVs were calculated from the electronically saved cardiotocography (CTG) traces and related to the fetal scalp pH measurements. There was no correlation between STV and fetal scalp pH measurements (r=-0.0592). Fetal STV is an important parameter with high sensitivity for antenatal fetal acidosis. This study shows that STV calculations do not correlate with fetal scalp pH measurements during labor, hence are not helpful in identifying fetal acidosis.
Lu, Jing; Liu, Jin-Bo; Sheng, Rong; Liu, Yi; Chen, An-Lei; Wei, Wen-Xue
2014-10-01
In order to investigate the impact of drying process on greenhouse gas emissions and denitrifying microorganisms in paddy soil, wetting-drying process was simulated in laboratory conditions. N2O flux, redox potential (Eh) were monitored and narG- and nosZ-containing denitrifiers abundances were determined by real-time PCR. N2O emission was significantly increased only 4 h after drying process began, and it was more than 6 times of continuous flooding (CF) at 24 h. In addition, narG and nosZ gene abundances were increased rapidly with the drying process, and N2O emission flux was significantly correlated with narG gene abundance (P driving microorganisms which caused the N2O emission in the short-time drought process in paddy soil.
International Nuclear Information System (INIS)
Bizarro, Joao P.S.; Figueiredo, Antonio C.A.
2008-01-01
Performing a time-frequency (t-f) analysis on actual magnetic pick-up coil data from the JET tokamak, a comparison is presented between the spectrogram and the Wigner and Choi-Williams distributions. Whereas the former, which stems from the short-time Fourier transform and has been the work-horse for t-f signal processing, implies an unavoidable trade-off between time and frequency resolutions, the latter two belong to a later generation of distributions that yield better, if not optimal joint t-f localization. Topics addressed include signal representation in the t-f plane, frequency identification and evolution, instantaneous-frequency estimation, and amplitude tracking
Dafflon, B.; Leger, E.; Peterson, J.; Falco, N.; Wainwright, H. M.; Wu, Y.; Tran, A. P.; Brodie, E.; Williams, K. H.; Versteeg, R.; Hubbard, S. S.
2017-12-01
Improving understanding and modelling of terrestrial systems requires advances in measuring and quantifying interactions among subsurface, land surface and vegetation processes over relevant spatiotemporal scales. Such advances are important to quantify natural and managed ecosystem behaviors, as well as to predict how watershed systems respond to increasingly frequent hydrological perturbations, such as droughts, floods and early snowmelt. Our study focuses on the joint use of UAV-based multi-spectral aerial imaging, ground-based geophysical tomographic monitoring (incl., electrical and electromagnetic imaging) and point-scale sensing (soil moisture sensors and soil sampling) to quantify interactions between above and below ground compartments of the East River Watershed in the Upper Colorado River Basin. We evaluate linkages between physical properties (incl. soil composition, soil electrical conductivity, soil water content), metrics extracted from digital surface and terrain elevation models (incl., slope, wetness index) and vegetation properties (incl., greenness, plant type) in a 500 x 500 m hillslope-floodplain subsystem of the watershed. Data integration and analysis is supported by numerical approaches that simulate the control of soil and geomorphic characteristic on hydrological processes. Results provide an unprecedented window into critical zone interactions, revealing significant below- and above-ground co-dynamics. Baseline geophysical datasets provide lithological structure along the hillslope, which includes a surface soil horizon, underlain by a saprolite layer and the fractured Mancos shale. Time-lapse geophysical data show very different moisture dynamics in various compartments and locations during the winter and growing season. Integration with aerial imaging reveals a significant linkage between plant growth and the subsurface wetness, soil characteristics and the topographic gradient. The obtained information about the organization and
Polimeni, Giuseppe; Susin, Cristiano; Wikesjö, Ulf M E
2009-03-01
The nature and characteristics of the newly formed periodontium obtained following regenerative procedures remain a matter of controversy. The objective of this study was to evaluate the regenerative potential of the periodontal attachment and healing dynamics as observed from the spatial distribution of newly formed cementum, periodontal ligament (PDL) and alveolar bone following optimal circumstances for wound healing/regeneration in a discriminating animal model. Critical-size, 6-mm, supra-alveolar, periodontal defects were surgically created in six young adult Beagle dogs. Space-providing ePTFE devices with 300-microm laser-drilled pores were implanted to support wound stability and space provision in one jaw quadrant/animal. Treatments were alternated between left and right jaw quadrants in subsequent animals. The gingival flaps were advanced to submerge the defect sites for primary intention healing. Histometric analysis followed an 8-week healing interval. Healing was uneventful in all animals. The histometric analysis showed that cementum regeneration (2.99 +/- 0.22 mm) was significantly greater than PDL (2.54 +/- 0.18 mm, p=0.03) and bone regeneration (2.46 +/- 0.26 mm, p=0.03). The wound area showed significant positive non-linear effect on cementum (log beta=1.25, palveolar bone virtually regenerate in parallel under optimal circumstances for periodontal wound healing/regeneration. Moreover, space provision positively influences the extent of periodontal regeneration.
Finite-size effects in the short-time height distribution of the Kardar-Parisi-Zhang equation
Smith, Naftali R.; Meerson, Baruch; Sasorov, Pavel
2018-02-01
We use the optimal fluctuation method to evaluate the short-time probability distribution P(H, L, t) of height at a single point, H=h(x=0, t) , of the evolving Kardar-Parisi-Zhang (KPZ) interface h(x, t) on a ring of length 2L. The process starts from a flat interface. At short times typical (small) height fluctuations are unaffected by the KPZ nonlinearity and belong to the Edwards-Wilkinson universality class. The nonlinearity, however, strongly affects the (asymmetric) tails of P(H) . At large L/\\sqrt{t} the faster-decaying tail has a double structure: it is L-independent, -\\lnP˜≤ft\\vert H\\right\\vert 5/2/t1/2 , at intermediately large \\vert H\\vert , and L-dependent, -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , at very large \\vert H\\vert . The transition between these two regimes is sharp and, in the large L/\\sqrt{t} limit, behaves as a fractional-order phase transition. The transition point H=Hc+ depends on L/\\sqrt{t} . At small L/\\sqrt{t} , the double structure of the faster tail disappears, and only the very large-H tail, -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , is observed. The slower-decaying tail does not show any L-dependence at large L/\\sqrt{t} , where it coincides with the slower tail of the GOE Tracy-Widom distribution. At small L/\\sqrt{t} this tail also has a double structure. The transition between the two regimes occurs at a value of height H=Hc- which depends on L/\\sqrt{t} . At L/\\sqrt{t} \\to 0 the transition behaves as a mean-field-like second-order phase transition. At \\vert H\\vert c-\\vert the slower tail behaves as -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , whereas at \\vert H\\vert >\\vert H_c-\\vert it coincides with the slower tail of the GOE Tracy-Widom distribution.
Xia, Siqing; Zhou, Yun; Eustance, Everett; Zhang, Zhiqiang
2017-10-18
Cocoamidopropyl betaine (CAPB), which is a biodegradable ampholytic surfactant, has recently been found to dramatically enhance the aerobic digestion of waste activated sludge (WAS) in short-time aerobic digestion (STAD) systems. Therefore, it is important to understand the mechanisms in which CAPB enhances WAS aerobic digestion performance. Results showed that CAPB could dramatically enhance the solubilization of soluble proteins (PN), polysaccharides (PS), nucleic acids (NA) and humic-like substances (HS) in the STAD system within the initial 2 h. Then PN, PS and NA gradually decreased, while HS showed only minor decease. In addition, CAPB increased the proportion of low MW fractions (biodegradable. Specific oxygen uptake rates and dehydrogenase enzyme activity results indicated that CAPB markedly improved the aerobic microorganism activities. Microbial community analyses and principle coordinate analyses (PCoA) revealed that CAPB increased the proportion of some functional microorganisms, including Proteobacteria, Planctomycetales, Acinetobacter, Pseudomonas and Aeromonas. The changes driven by CAPB could explain the enhanced performance of the STAD system for WAS aerobic treatment.
Huang, Hsiao-Wen; Chen, Bang-Yuan; Wang, Chung-Yi
2018-05-01
This study validated high hydrostatic pressure processing (HPP) for achieving greater than 5-log reductions of Escherichia coli O157:H7 in carambola juice and determined shelf life of processed juice stored at 4 °C. Carambola juice processed at 600 MPa for 150 s was identified capable of achieving greater than 5.15-log reductions of E. coli O157:H7, and the quality was compared with that of high temperature short time (HTST)-pasteurized juice at 110 °C for 8.6 s. Aerobic, psychrotrophic, E. coli /coliform, and yeasts and moulds in the juice were reduced by HPP or HTST to levels below the minimum detection limit (HTST juices. However, HTST treatment significantly changed the color of juice, while no significant difference was observed between the control and HPP samples. HPP and HTST treatments reduced the total soluble solids in the juice, but maintained higher sucrose, glucose, fructose, and total sugar contents than untreated juice. The total phenolic and ascorbic acid contents were higher in juice treated with HPP than untreated and HTST juice, but there was no significant difference in the flavonoid content. Aroma score analysis showed that HPP had no effect on aroma, maintaining the highest score during cold storage. The results of this study suggest that appropriate HPP conditions can achieve the same microbial safety as HTST, while maintaining the quality and extending the shelf life of carambola juice.
Directory of Open Access Journals (Sweden)
K. Hofsetz
2005-06-01
Full Text Available The effect of the high temperature and short time (HTST drying stage was combined with an air drying process to produce crispness in bananas. The fruit was dehydrated in an air drier for five minutes at 70°C and then immediately set at a HTST stage (130, 140, 150°C and 9, 12, 15 minutes and then at 70°C until water activity (a w was around 0.300. Crispness was evaluated as a function of water activity, using sensory and texture analyses. Drying kinetics was evaluated using the empirical Lewis model. Crispy banana was obtained at 140°C-12min and 150°C-15min in the HTST stage, with a w = 0.345 and a w = 0.363, respectively. Analysis of the k parameter (Lewis model suggests that the initial moisture content of the samples effects this parameter, overcoming the HTST effect. Results showed a relationship between sensory crispness, instrumental texture and the HTST stage.
Jung, Jae Hee; Lee, Jung Eun; Lee, Chang Ho; Kim, Sang Soo; Lee, Byung Uk
2009-01-01
Airborne fungi, termed fungal bioaerosols, have received attention due to the association with public health problems and the effects on living organisms in nature. There are growing concerns that fungal bioaerosols are relevant to the occurrence of allergies, opportunistic diseases in hospitals, and outbreaks of plant diseases. The search for ways of preventing and curing the harmful effects of fungal bioaerosols has created a high demand for the study and development of an efficient method of controlling bioaerosols. However, almost all modern microbiological studies and theories have focused on microorganisms in liquid and solid phases. We investigated the thermal heating effects on fungal bioaerosols in a continuous-flow environment. Although the thermal heating process has long been a traditional method of controlling microorganisms, the effect of a continuous high-temperature, short-time (HTST) process on airborne microorganisms has not been quantitatively investigated in terms of various aerosol properties. Our experimental results show that the geometric mean diameter of the tested fungal bioaerosols decreased when they were exposed to increases in the surrounding temperature. The HTST process produced a significant decline in the (1→3)-β-d-glucan concentration of fungal bioaerosols. More than 99% of the Aspergillus versicolor and Cladosporium cladosporioides bioaerosols lost their culturability in about 0.2 s when the surrounding temperature exceeded 350°C and 400°C, respectively. The instantaneous exposure to high temperature significantly changed the surface morphology of the fungal bioaerosols. PMID:19201954
Klotz, Daniel; Joellenbeck, Mirjam; Winkler, Karl; Kunze, Mirjam; Huzly, Daniela; Hentschel, Roland
2017-05-01
Milk banks are advised to use Holder pasteurisation to inactivate the cytomegalovirus, but the process adversely affects the bioactive properties of human breastmilk. This study explored the antibacterial efficacy of an alternative high-temperature short-time (HTST) treatment of human breastmilk and its effect on marker proteins, compared with the Holder method. Breastmilk samples were obtained from 27 mothers with infants in a German neonatal intensive care unit. The samples were either heated to 62°C for five seconds using HTST or processed using Holder pasteurisation, at 63 ± 0.5°C for 30 minutes. Immunoglobulin A, lactoferrin, lysozyme, alkaline phosphatase and bile salt-stimulated lipase concentrations and bacterial colony-forming units/mL were measured before and after heating. HTST-treated samples retained higher rates of immunoglobulin A (95% versus 83%), alkaline phosphatase (6% versus 0%) and bile salt-stimulated lipase (0.8% versus 0.4%) than Holder pasteurisation samples (all p HTST treatment protocol retained some of the bioactive properties of human breastmilk and appeared to have similar antibacterial efficacy to Holder pasteurisation. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Jung, Jae Hee; Lee, Jung Eun; Lee, Chang Ho; Kim, Sang Soo; Lee, Byung Uk
2009-05-01
Airborne fungi, termed fungal bioaerosols, have received attention due to the association with public health problems and the effects on living organisms in nature. There are growing concerns that fungal bioaerosols are relevant to the occurrence of allergies, opportunistic diseases in hospitals, and outbreaks of plant diseases. The search for ways of preventing and curing the harmful effects of fungal bioaerosols has created a high demand for the study and development of an efficient method of controlling bioaerosols. However, almost all modern microbiological studies and theories have focused on microorganisms in liquid and solid phases. We investigated the thermal heating effects on fungal bioaerosols in a continuous-flow environment. Although the thermal heating process has long been a traditional method of controlling microorganisms, the effect of a continuous high-temperature, short-time (HTST) process on airborne microorganisms has not been quantitatively investigated in terms of various aerosol properties. Our experimental results show that the geometric mean diameter of the tested fungal bioaerosols decreased when they were exposed to increases in the surrounding temperature. The HTST process produced a significant decline in the (1-->3)-beta-d-glucan concentration of fungal bioaerosols. More than 99% of the Aspergillus versicolor and Cladosporium cladosporioides bioaerosols lost their culturability in about 0.2 s when the surrounding temperature exceeded 350 degrees C and 400 degrees C, respectively. The instantaneous exposure to high temperature significantly changed the surface morphology of the fungal bioaerosols.
Energy Technology Data Exchange (ETDEWEB)
Marzouk, Youssef; Fast P. (Lawrence Livermore National Laboratory, Livermore, CA); Kraus, M. (Peterson AFB, CO); Ray, J. P.
2006-01-01
Terrorist attacks using an aerosolized pathogen preparation have gained credibility as a national security concern after the anthrax attacks of 2001. The ability to characterize such attacks, i.e., to estimate the number of people infected, the time of infection, and the average dose received, is important when planning a medical response. We address this question of characterization by formulating a Bayesian inverse problem predicated on a short time-series of diagnosed patients exhibiting symptoms. To be of relevance to response planning, we limit ourselves to 3-5 days of data. In tests performed with anthrax as the pathogen, we find that these data are usually sufficient, especially if the model of the outbreak used in the inverse problem is an accurate one. In some cases the scarcity of data may initially support outbreak characterizations at odds with the true one, but with sufficient data the correct inferences are recovered; in other words, the inverse problem posed and its solution methodology are consistent. We also explore the effect of model error-situations for which the model used in the inverse problem is only a partially accurate representation of the outbreak; here, the model predictions and the observations differ by more than a random noise. We find that while there is a consistent discrepancy between the inferred and the true characterizations, they are also close enough to be of relevance when planning a response.
Floris, Patrick; McGillicuddy, Nicola; Albrecht, Simone; Morrissey, Brian; Kaisermayer, Christian; Lindeberg, Anna; Bones, Jonathan
2017-09-19
An untargeted LC-MS/MS platform was implemented for monitoring variations in CHO cell culture media upon exposure to high temperature short time (HTST) treatment, a commonly used viral clearance upstream strategy. Chemically defined (CD) and hydrolysate-supplemented media formulations were not visibly altered by the treatment. The absence of solute precipitation effects during media treatment and very modest shifts in pH values observed indicated sufficient compatibility of the formulations evaluated with the HTST-processing conditions. Unsupervised chemometric analysis of LC-MS/MS data, however, revealed clear separation of HTST-treated samples from untreated counterparts as observed from analysis of principal components and hierarchical clustering sample grouping. An increased presence of Maillard products in HTST-treated formulations contributed to the observed differences which included organic acids, observed particularly in chemically defined formulations, and furans, pyridines, pyrazines, and pyrrolidines which were determined in hydrolysate-supplemented formulations. The presence of Maillard products in media did not affect cell culture performance with similar growth and viability profiles observed for CHO-K1 and CHO-DP12 cells when cultured using both HTST-treated and untreated media formulations.
International Nuclear Information System (INIS)
Busolo, F.; Conventi, L.; Grigolon, M.; Palu, G.
1991-01-01
Kinetics of [3H]-uridine uptake by murine peritoneal macrophages (pM phi) is early altered after exposure to a variety of stimuli. Alterations caused by Candida albicans, lipopolysaccharide (LPS) and recombinant interferon-gamma (rIFN-gamma) were similar in SAVO, C57BL/6, C3H/HeN and C3H/HeJ mice, and were not correlated with an activation process as shown by the amount of tumor necrosis factor-alpha (TNF-alpha) being released. Short-time exposure to all stimuli resulted in an increased nucleoside uptake by SAVO pM phi, suggesting that the tumoricidal function of this cell either depends from the type of stimulus or the time when the specific interaction with the cell receptor is taking place. Experiments with priming and triggering signals confirmed the above findings, indicating that the increase or the decrease of nucleoside uptake into the cell depends essentially on the chemical nature of the priming stimulus. The triggering stimulus, on the other hand, is only able to amplify the primary response
Directory of Open Access Journals (Sweden)
Quanwu Li
2016-01-01
Full Text Available High reliability is required for the permanent magnet brushless DC motor (PM-BLDCM in an electrical pump of hypersonic vehicle. The PM-BLDCM is a short-time duty motor with high-power-density. Since thermal equilibrium is not reached for the PM-BLDCM, the temperature distribution is not uniform and there is a risk of local overheating. The winding is a main heat source and its insulation is thermally sensitive, so reducing the winding temperature rise is the key to the improvement of the reliability. In order to reduce the winding temperature rise, an electromagnetic-thermal integrated design optimization method is proposed. The method is based on electromagnetic analysis and thermal transient analysis. The requirements and constraints of electromagnetic and thermal design are considered in this method. The split ratio and the maximum flux density in stator lamination, which are highly relevant to the windings temperature rise, are optimized analytically. The analytical results are verified by finite element analysis (FEA and experiments. The maximum error between the analytical and the FEA results is 4%. The errors between the analytical and measured windings temperature rise are less than 8%. It can be proved that the method can obtain the optimal design accurately to reduce the winding temperature rise.
Quilez-Badia, Gemma; McCollin, Tracy; Josefsen, Kjell D; Vourdachas, Anthony; Gill, Margaret E; Mesbahi, Ehsan; Frid, Chris L J
2008-01-01
A ballast water short-time high temperature heat treatment technique was applied on board a car-carrier during a voyage from Egypt to Belgium. Ballast water from three tanks was subjected for a few seconds to temperatures ranging from 55 degrees C to 80 degrees C. The water was heated using the vessel's heat exchanger steam and a second heat exchanger was used to pre-heat and cool down the water. The treatment was effective at causing mortality of bacteria, phytoplankton and zooplankton. The International Maritime Organization (IMO) standard was not agreed before this study was carried out, but comparing our results gives a broad indication that the IMO standard would have been met in some of the tests for the zooplankton, in all the tests for the phytoplankton; and probably on most occasions for the bacteria. Passing the water through the pump increased the kill rate but increasing the temperature above 55 degrees C did not improve the heat treatment's efficacy.
Hayashi, Kazuhiko; Abo, Takayuki; Nukada, Yuko; Sakaguchi, Hitoshi
2013-05-01
The Short Time Exposure (STE) test is a simple and easy-to-perform in vitro eye irritation test, that uses the viability of SIRC cells (a rabbit corneal cell line) treated for five minutes as the endpoint. In this study, our goal was to define the applicability domain of the STE test, based on the results obtained with a set of 113 substances. To achieve this goal, chemicals were selected to represent both different chemical classes and different chemical properties, as well as to cover, in a balanced manner, the categories of eye irritation potential according to the Globally Harmonised System (GHS). Accuracy analysis indicated that the rates of false negatives for organic/inorganic salts (75.0%), hydrocarbons (33.3%) and alcohols (23.5%) were high. Many of the false negative results were for solid substances. It is noteworthy that no surfactant resulted in a false negative result in the STE test. Further examination of the physical property data and performance showed a significant improvement in the predictive accuracy, when substances with vapour pressures over 6kPa were excluded from the analyses. Our results indicate that several substances - i.e. certain solids such as salts, alcohols, hydrocarbons, and volatile substances with a vapour pressure over 6kPa - do not fall within the applicability domain of the STE test. Overall, we are encouraged by the performance and improved accuracy of the STE test. 2013 FRAME.
Energy Technology Data Exchange (ETDEWEB)
Sapora, O; Loverock, P S; Fielden, E M [Institute of Cancer Research, Sutton (UK). Surrey Branch
1976-10-01
A rapid mixing lysis technique has been used to study the effects of irradiation at different temperatures on two strains of E.coli K12, one lacking in the polymerase I activity (W3110), and the other carrying a ligase temperature-sensitive mutation (DY179), which had full ligase activity at 30/sup 0/C and none at 46/sup 0/C. The results provided direct evidence for the absence of any ligase-dependent repair of SSB at short times. The addition of 5 x 10/sup -3/M cysteine to heat-treated W3110 cells before irradiation in anoxic conditions practically removed the increase in yield of SSB per single strand genome shown by the heat-treated cells; the response was very close to that of normal cells in anoxia. The important contribution of sulphydryl compounds to the anoxic radio-biological response is thereby demonstrated. The basic difference in damage obtained by irradiation under oxic or anoxic conditions is due not to preferential enzymic (ligase) repair but to differences in radiation chemical events.
Morgan, Ann
2017-01-01
Critical reflection underpins socially just and inclusive practices that are distinguishing features of democratic learning communities. Critical reflection supports educators' interrogation of the underlying assumptions, intentions, values and beliefs that shape their worldview and sociocultural standpoint. Dominant sociocultural norms…
Directory of Open Access Journals (Sweden)
M. Sprenger
2017-07-01
Full Text Available Understanding the influence of vegetation on water storage and flux in the upper soil is crucial in assessing the consequences of climate and land use change. We sampled the upper 20 cm of podzolic soils at 5 cm intervals in four sites differing in their vegetation (Scots Pine (Pinus sylvestris and heather (Calluna sp. and Erica Sp and aspect. The sites were located within the Bruntland Burn long-term experimental catchment in the Scottish Highlands, a low energy, wet environment. Sampling took place on 11 occasions between September 2015 and September 2016 to capture seasonal variability in isotope dynamics. The pore waters of soil samples were analyzed for their isotopic composition (δ2H and δ18O with the direct-equilibration method. Our results show that the soil waters in the top soil are, despite the low potential evaporation rates in such northern latitudes, kinetically fractionated compared to the precipitation input throughout the year. This fractionation signal decreases within the upper 15 cm resulting in the top 5 cm being isotopically differentiated to the soil at 15–20 cm soil depth. There are significant differences in the fractionation signal between soils beneath heather and soils beneath Scots pine, with the latter being more pronounced. But again, this difference diminishes within the upper 15 cm of soil. The enrichment in heavy isotopes in the topsoil follows a seasonal hysteresis pattern, indicating a lag time between the fractionation signal in the soil and the increase/decrease of soil evaporation in spring/autumn. Based on the kinetic enrichment of the soil water isotopes, we estimated the soil evaporation losses to be about 5 and 10 % of the infiltrating water for soils beneath heather and Scots pine, respectively. The high sampling frequency in time (monthly and depth (5 cm intervals revealed high temporal and spatial variability of the isotopic composition of soil waters, which can be critical
Bastola, S.; Bras, R. L.
2017-12-01
Feedbacks between vegetation and the soil nutrient cycle are important in ecosystems where nitrogen limits plant growth, and consequently influences the carbon balance in the plant-soil system. However, many biosphere models do not include such feedbacks, because interactions between carbon and the nitrogen cycle can be complex, and remain poorly understood. In this study we coupled a nitrogen cycle model with an eco-hydrological model by using the concept of carbon cost economics. This concept accounts for different "costs" to the plant of acquiring nitrogen via different pathways. This study builds on tRIBS-VEGGIE, a spatially explicit hydrological model coupled with a model of photosynthesis, stomatal resistance, and energy balance, by combining it with a model of nitrogen recycling. Driven by climate and spatially explicit data of soils, vegetation and topography, the model (referred to as tRIBS-VEGGIE-CN) simulates the dynamics of carbon and nitrogen in the soil-plant system; the dynamics of vegetation; and different components of the hydrological cycle. The tRIBS-VEGGIE-CN is applied in a humid tropical watershed at the Luquillo Critical Zone Observatory (LCZO). The region is characterized by high availability and cycling of nitrogen, high soil respiration rates, and large carbon stocks.We drive the model under contemporary CO2 and hydro-climatic forcing and compare results to a simulation under doubling CO2 and a range of future climate scenarios. The results with parameterization of nitrogen limitation based on carbon cost economics show that the carbon cost of the acquisition of nitrogen is 14% of the net primary productivity (NPP) and the N uptake cost for different pathways vary over a large range depending on leaf nitrogen content, turnover rates of carbon in soil and nitrogen cycling processes. Moreover, the N fertilization simulation experiment shows that the application of N fertilizer does not significantly change the simulated NPP. Furthermore, an
International Nuclear Information System (INIS)
Baranya, Sandor; Jozsa, Janos; Goda, Laszlo; Rakoczi, Laszlo
2008-01-01
Detailed hydrodynamic survey of two critical river reaches has been performed from hydro- and sediment dynamics points of view, in order to explore the main features, moreover, provide calibration and verification data to related 3D flow and sediment transport modelling. Special attention has been paid to compare moving and fix boat measurement modes for estimating various flow and large-scale bed form features, resulting in recommendations e.g. on the time period needed in stationary mode operation to obtain sufficiently stabilized average velocity profiles and related parameter estimations. As to the study reaches, the first comprises a 5 km long sandy-gravel bed reach of river Danube located in Central-Hungary, presenting problems for navigation. As a conventional remedy, groyne fields have been implemented to make and maintain the reach sufficiently deep, navigable even in low flow periods. As is usually the case, these works resulted in rather complex flow characteristics and related bed topography at places. The second site is another 5 km long reach of river Danube, close to the southern border to Serbia. There the river presents navigational problems similar to the previously mentioned reach, however, having entirely sand bed conditions, abundant in a variety of dunes, especially in the shallower parts. In both study reaches ADCP measurements were done with around 2.5 Hz sampling frequency both in moving boat operation mode providing overall, though locally moderately representative picture, and in fixed boat mode at a considerable number of selected verticals with 10 minutes long measuring time.
Tomasula, P M; Kozempel, M F; Konstance, R P; Gregg, D; Boettcher, S; Baxt, B; Rodriguez, L L
2007-07-01
Previous studies of laboratory simulation of high temperature, short time pasteurization (HTST) to eliminate foot-and-mouth disease virus (FMDV) in milk have shown that the virus is not completely inactivated at the legal pasteurization minimum (71.7 degrees C/15 s) but is inactivated in a flow apparatus at 148 degrees C with holding times of 2 to 3 s. It was the intent of this study to determine whether HTST pasteurization conducted in a continuous-flow pasteurizer that simulates commercial operation would enhance FMDV inactivation in milk. Cows were inoculated in the mammary gland with the field strain of FMDV (01/UK). Infected raw whole milk and 2% milk were then pasteurized using an Arm-field pilot-scale, continuous-flow HTST pasteurizer equipped with a plate-and-frame heat exchanger and a holding tube. The milk samples, containing FMDV at levels of up to 10(4) plaque-forming units/mL, were pasteurized at temperatures ranging from 72 to 95 degrees C at holding times of either 18.6 or 36 s. Pasteurization decreased virus infectivity by 4 log10 to undetectable levels in tissue culture. However, residual infectivity was still detectable for selected pasteurized milk samples, as shown by intramuscular and intradermal inoculation of milk into naïve steers. Although HTST pasteurization did not completely inactivate viral infectivity in whole and 2% milk, possibly because a fraction of the virus was protected by the milk fat and the casein proteins, it greatly reduced the risk of natural transmission of FMDV by milk.
Ranieri, M L; Huck, J R; Sonnen, M; Barbano, D M; Boor, K J
2009-10-01
The grade A Pasteurized Milk Ordinance specifies minimum processing conditions of 72 degrees C for at least 15 s for high temperature, short time (HTST) pasteurized milk products. Currently, many US milk-processing plants exceed these minimum requirements for fluid milk products. To test the effect of pasteurization temperatures on bacterial numbers in HTST pasteurized milk, 2% fat raw milk was heated to 60 degrees C, homogenized, and treated for 25 s at 1 of 4 different temperatures (72.9, 77.2, 79.9, or 85.2 degrees C) and then held at 6 degrees C for 21 d. Aerobic plate counts were monitored in pasteurized milk samples at d 1, 7, 14, and 21 postprocessing. Bacterial numbers in milk processed at 72.9 degrees C were lower than in milk processed at 85.2 degrees C on each sampling day, indicating that HTST fluid milk-processing temperatures significantly affected bacterial numbers in fluid milk. To assess the microbial ecology of the different milk samples during refrigerated storage, a total of 490 psychrotolerant endospore-forming bacteria were identified using DNA sequence-based subtyping methods. Regardless of processing temperature, >85% of the isolates characterized at d 0, 1, and 7 postprocessing were of the genus Bacillus, whereas more than 92% of isolates characterized at d 14 and 21 postprocessing were of the genus Paenibacillus, indicating that the predominant genera present in HTST-processed milk shifted from Bacillus spp. to Paenibacillus spp. during refrigerated storage. In summary, 1) HTST processing temperatures affected bacterial numbers in refrigerated milk, with higher bacterial numbers in milk processed at higher temperatures; 2) no significant association was observed between genus isolated and pasteurization temperature, suggesting that the genera were not differentially affected by the different processing temperatures; and 3) although typically present at low numbers in raw milk, Paenibacillus spp. are capable of growing to numbers that can
Short time-scale optical variability properties of the largest AGN sample observed with Kepler/K2
Aranzana, E.; Körding, E.; Uttley, P.; Scaringi, S.; Bloemen, S.
2018-05-01
We present the first short time-scale (˜hours to days) optical variability study of a large sample of active galactic nuclei (AGNs) observed with the Kepler/K2 mission. The sample contains 252 AGN observed over four campaigns with ˜30 min cadence selected from the Million Quasar Catalogue with R magnitude <19. We performed time series analysis to determine their variability properties by means of the power spectral densities (PSDs) and applied Monte Carlo techniques to find the best model parameters that fit the observed power spectra. A power-law model is sufficient to describe all the PSDs of our sample. A variety of power-law slopes were found indicating that there is not a universal slope for all AGNs. We find that the rest-frame amplitude variability in the frequency range of 6 × 10-6-10-4 Hz varies from 1to10 per cent with an average of 1.7 per cent. We explore correlations between the variability amplitude and key parameters of the AGN, finding a significant correlation of rest-frame short-term variability amplitude with redshift. We attribute this effect to the known `bluer when brighter' variability of quasars combined with the fixed bandpass of Kepler data. This study also enables us to distinguish between Seyferts and blazars and confirm AGN candidates. For our study, we have compared results obtained from light curves extracted using different aperture sizes and with and without detrending. We find that limited detrending of the optimal photometric precision light curve is the best approach, although some systematic effects still remain present.
A novel peak detection approach with chemical noise removal using short-time FFT for prOTOF MS data.
Zhang, Shuqin; Wang, Honghui; Zhou, Xiaobo; Hoehn, Gerard T; DeGraba, Thomas J; Gonzales, Denise A; Suffredini, Anthony F; Ching, Wai-Ki; Ng, Michael K; Wong, Stephen T C
2009-08-01
Peak detection is a pivotal first step in biomarker discovery from MS data and can significantly influence the results of downstream data analysis steps. We developed a novel automatic peak detection method for prOTOF MS data, which does not require a priori knowledge of protein masses. Random noise is removed by an undecimated wavelet transform and chemical noise is attenuated by an adaptive short-time discrete Fourier transform. Isotopic peaks corresponding to a single protein are combined by extracting an envelope over them. Depending on the S/N, the desired peaks in each individual spectrum are detected and those with the highest intensity among their peak clusters are recorded. The common peaks among all the spectra are identified by choosing an appropriate cut-off threshold in the complete linkage hierarchical clustering. To remove the 1 Da shifting of the peaks, the peak corresponding to the same protein is determined as the detected peak with the largest number among its neighborhood. We validated this method using a data set of serial peptide and protein calibration standards. Compared with MoverZ program, our new method detects more peaks and significantly enhances S/N of the peak after the chemical noise removal. We then successfully applied this method to a data set from prOTOF MS spectra of albumin and albumin-bound proteins from serum samples of 59 patients with carotid artery disease compared to vascular disease-free patients to detect peaks with S/N> or =2. Our method is easily implemented and is highly effective to define peaks that will be used for disease classification or to highlight potential biomarkers.
Energy Technology Data Exchange (ETDEWEB)
Wang, C.; Wang, W. H.; Bai, H. Y., E-mail: hybai@aphy.iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Sun, B. A. [Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon (Hong Kong)
2016-02-07
We study serrated flow dynamics during brittle-to-ductile transition induced by tuning the sample aspect ratio in a Zr-based metallic glass. The statistical analysis reveals that the serrated flow dynamics transforms from a chaotic state characterized by Gaussian-distribution serrations corresponding to stick-slip motion of randomly generated and uncorrelated single shear band and brittle behavior, into a self-organized critical state featured by intermittent scale-free distribution of shear avalanches corresponding to a collective motion of multiple shear bands and ductile behavior. The correlation found between serrated flow dynamics and plastic deformation might shed light on the plastic deformation dynamic and mechanism in metallic glasses.
Mitra, Aditi
2012-12-28
A renormalization group approach is used to show that a one-dimensional system of bosons subject to a lattice quench exhibits a finite-time dynamical phase transition where an order parameter within a light cone increases as a nonanalytic function of time after a critical time. Such a transition is also found for a simultaneous lattice and interaction quench where the effective scaling dimension of the lattice becomes time dependent, crucially affecting the time evolution of the system. Explicit results are presented for the time evolution of the boson interaction parameter and the order parameter for the dynamical transition as well as for more general quenches.
High-Temperature Short-Time Pasteurization System for Donor Milk in a Human Milk Bank Setting
Directory of Open Access Journals (Sweden)
Diana Escuder-Vieco
2018-05-01
Full Text Available Donor milk is the best alternative for the feeding of preterm newborns when mother's own milk is unavailable. For safety reasons, it is usually pasteurized by the Holder method (62.5°C for 30 min. Holder pasteurization results in a microbiological safe product but impairs the activity of many biologically active compounds such as immunoglobulins, enzymes, cytokines, growth factors, hormones or oxidative stress markers. High-temperature short-time (HTST pasteurization has been proposed as an alternative for a better preservation of some of the biological components of human milk although, at present, there is no equipment available to perform this treatment under the current conditions of a human milk bank. In this work, the specific needs of a human milk bank setting were considered to design an HTST equipment for the continuous and adaptable (time-temperature combination processing of donor milk. Microbiological quality, activity of indicator enzymes and indices for thermal damage of milk were evaluated before and after HTST treatment of 14 batches of donor milk using different temperature and time combinations and compared to the results obtained after Holder pasteurization. The HTST system has accurate and simple operation, allows the pasteurization of variable amounts of donor milk and reduces processing time and labor force. HTST processing at 72°C for, at least, 10 s efficiently destroyed all vegetative forms of microorganisms present initially in raw donor milk although sporulated Bacillus sp. survived this treatment. Alkaline phosphatase was completely destroyed after HTST processing at 72 and 75°C, but γ-glutamil transpeptidase showed higher thermoresistance. Furosine concentrations in HTST-treated donor milk were lower than after Holder pasteurization and lactulose content for HTST-treated donor milk was below the detection limit of analytical method (10 mg/L. In conclusion, processing of donor milk at 72°C for at least 10 s in
High-Temperature Short-Time Pasteurization System for Donor Milk in a Human Milk Bank Setting.
Escuder-Vieco, Diana; Espinosa-Martos, Irene; Rodríguez, Juan M; Corzo, Nieves; Montilla, Antonia; Siegfried, Pablo; Pallás-Alonso, Carmen R; Fernández, Leónides
2018-01-01
Donor milk is the best alternative for the feeding of preterm newborns when mother's own milk is unavailable. For safety reasons, it is usually pasteurized by the Holder method (62.5°C for 30 min). Holder pasteurization results in a microbiological safe product but impairs the activity of many biologically active compounds such as immunoglobulins, enzymes, cytokines, growth factors, hormones or oxidative stress markers. High-temperature short-time (HTST) pasteurization has been proposed as an alternative for a better preservation of some of the biological components of human milk although, at present, there is no equipment available to perform this treatment under the current conditions of a human milk bank. In this work, the specific needs of a human milk bank setting were considered to design an HTST equipment for the continuous and adaptable (time-temperature combination) processing of donor milk. Microbiological quality, activity of indicator enzymes and indices for thermal damage of milk were evaluated before and after HTST treatment of 14 batches of donor milk using different temperature and time combinations and compared to the results obtained after Holder pasteurization. The HTST system has accurate and simple operation, allows the pasteurization of variable amounts of donor milk and reduces processing time and labor force. HTST processing at 72°C for, at least, 10 s efficiently destroyed all vegetative forms of microorganisms present initially in raw donor milk although sporulated Bacillus sp. survived this treatment. Alkaline phosphatase was completely destroyed after HTST processing at 72 and 75°C, but γ-glutamil transpeptidase showed higher thermoresistance. Furosine concentrations in HTST-treated donor milk were lower than after Holder pasteurization and lactulose content for HTST-treated donor milk was below the detection limit of analytical method (10 mg/L). In conclusion, processing of donor milk at 72°C for at least 10 s in this HTST system
Jo, Y; Benoist, D M; Barbano, D M; Drake, M A
2018-05-01
Typical high-temperature, short-time (HTST) pasteurization encompasses a lower heat treatment and shorter refrigerated shelf life compared with ultra-pasteurization (UP) achieved by direct steam injection (DSI-UP) or indirect heat (IND-UP). A greater understanding of the effect of different heat treatments on flavor and flavor chemistry of milk is required to characterize, understand, and identify the sources of flavors. The objective of this study was to determine the differences in the flavor and volatile compound profiles of milk subjected to HTST, DSI-UP, or IND-UP using sensory and instrumental techniques. Raw skim and raw standardized 2% fat milks (50 L each) were processed in triplicate and pasteurized at 78°C for 15 s (HTST) or 140°C for 2.3 s by DSI-UP or IND-UP. Milks were cooled and stored at 4°C, then analyzed at d 0, 3, 7, and 14. Sensory attributes were determined using a trained panel, and aroma active compounds were evaluated by solid-phase micro-extraction or stir bar sorptive extraction followed by gas chromatography-mass spectrometry, gas chromatography-olfactometry, and gas chromatography-triple quad mass spectrometry. The UP milks had distinct cooked and sulfur flavors compared with HTST milks. The HTST milks had less diversity in aroma active compounds compared with UP milks. Flavor intensity of all milks decreased by d 14 of storage. Aroma active compound profiles were affected by heat treatment and storage time in both skim and 2% milk. High-impact aroma active compounds were hydrogen sulfide, dimethyl trisulfide, and methional in DSI-UP and 2 and 3-methylbutanal, furfural, 2-heptanone, 2-acetyl-1-pyrroline, 2-aminoacetophenone, benzaldehyde, and dimethyl sulfide in IND-UP. These results provide a foundation knowledge of the effect of heat treatments on flavor development and differences in sensory quality of UP milks. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sun, Shuping; Jiang, Zhongwei; Wang, Haibin; Fang, Yu
2014-05-01
This paper proposes a novel automatic method for the moment segmentation and peak detection analysis of heart sound (HS) pattern, with special attention to the characteristics of the envelopes of HS and considering the properties of the Hilbert transform (HT). The moment segmentation and peak location are accomplished in two steps. First, by applying the Viola integral waveform method in the time domain, the envelope (E(T)) of the HS signal is obtained with an emphasis on the first heart sound (S1) and the second heart sound (S2). Then, based on the characteristics of the E(T) and the properties of the HT of the convex and concave functions, a novel method, the short-time modified Hilbert transform (STMHT), is proposed to automatically locate the moment segmentation and peak points for the HS by the zero crossing points of the STMHT. A fast algorithm for calculating the STMHT of E(T) can be expressed by multiplying the E(T) by an equivalent window (W(E)). According to the range of heart beats and based on the numerical experiments and the important parameters of the STMHT, a moving window width of N=1s is validated for locating the moment segmentation and peak points for HS. The proposed moment segmentation and peak location procedure method is validated by sounds from Michigan HS database and sounds from clinical heart diseases, such as a ventricular septal defect (VSD), an aortic septal defect (ASD), Tetralogy of Fallot (TOF), rheumatic heart disease (RHD), and so on. As a result, for the sounds where S2 can be separated from S1, the average accuracies achieved for the peak of S1 (AP₁), the peak of S2 (AP₂), the moment segmentation points from S1 to S2 (AT₁₂) and the cardiac cycle (ACC) are 98.53%, 98.31% and 98.36% and 97.37%, respectively. For the sounds where S1 cannot be separated from S2, the average accuracies achieved for the peak of S1 and S2 (AP₁₂) and the cardiac cycle ACC are 100% and 96.69%. Copyright © 2014 Elsevier Ireland Ltd. All
High-Temperature Short-Time Pasteurization System for Donor Milk in a Human Milk Bank Setting
Escuder-Vieco, Diana; Espinosa-Martos, Irene; Rodríguez, Juan M.; Corzo, Nieves; Montilla, Antonia; Siegfried, Pablo; Pallás-Alonso, Carmen R.; Fernández, Leónides
2018-01-01
Donor milk is the best alternative for the feeding of preterm newborns when mother's own milk is unavailable. For safety reasons, it is usually pasteurized by the Holder method (62.5°C for 30 min). Holder pasteurization results in a microbiological safe product but impairs the activity of many biologically active compounds such as immunoglobulins, enzymes, cytokines, growth factors, hormones or oxidative stress markers. High-temperature short-time (HTST) pasteurization has been proposed as an alternative for a better preservation of some of the biological components of human milk although, at present, there is no equipment available to perform this treatment under the current conditions of a human milk bank. In this work, the specific needs of a human milk bank setting were considered to design an HTST equipment for the continuous and adaptable (time-temperature combination) processing of donor milk. Microbiological quality, activity of indicator enzymes and indices for thermal damage of milk were evaluated before and after HTST treatment of 14 batches of donor milk using different temperature and time combinations and compared to the results obtained after Holder pasteurization. The HTST system has accurate and simple operation, allows the pasteurization of variable amounts of donor milk and reduces processing time and labor force. HTST processing at 72°C for, at least, 10 s efficiently destroyed all vegetative forms of microorganisms present initially in raw donor milk although sporulated Bacillus sp. survived this treatment. Alkaline phosphatase was completely destroyed after HTST processing at 72 and 75°C, but γ-glutamil transpeptidase showed higher thermoresistance. Furosine concentrations in HTST-treated donor milk were lower than after Holder pasteurization and lactulose content for HTST-treated donor milk was below the detection limit of analytical method (10 mg/L). In conclusion, processing of donor milk at 72°C for at least 10 s in this HTST system
International Nuclear Information System (INIS)
Longelin, St.
2004-04-01
Super-critical fluids are largely used in industrial sectors. However the knowledge of the physical phenomena in which they are involved stays insufficient because of their particular properties. A new model of adjusting molecular structures is proposed, this model has been validated through neutron scattering experiments with high momentum transfer on C 2 D 6 . The experimental representation of the critical universal function for C 2 D 6 and CO 2 has been obtained through the neutron echo spin and by relying on structure measurements made through neutron elastic scattering at small angles. Raman spectroscopy and molecular dynamics simulation have been used to feature structure and dynamics. Scattering as well as microscopic molecular density fluctuations have been analysed
Intermittency and dynamical Lee-Yang zeros of open quantum systems.
Hickey, James M; Flindt, Christian; Garrahan, Juan P
2014-12-01
We use high-order cumulants to investigate the Lee-Yang zeros of generating functions of dynamical observables in open quantum systems. At long times the generating functions take on a large-deviation form with singularities of the associated cumulant generating functions-or dynamical free energies-signifying phase transitions in the ensemble of dynamical trajectories. We consider a driven three-level system as well as the dissipative Ising model. Both systems exhibit dynamical intermittency in the statistics of quantum jumps. From the short-time behavior of the dynamical Lee-Yang zeros, we identify critical values of the counting field which we attribute to the observed intermittency and dynamical phase coexistence. Furthermore, for the dissipative Ising model we construct a trajectory phase diagram and estimate the value of the transverse field where the stationary state changes from being ferromagnetic (inactive) to paramagnetic (active).
DEFF Research Database (Denmark)
Carvalho, Alberto; Caserotti, Paolo; Carvalho, C.
2014-01-01
The purpose of this study was to examine the effect of an 8-week concentric (CON) versus eccentric (ECC) isokinetic training program on the electromyography (EMG) signal amplitude of vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF). Also, the isometric (ISO) and dynamic maximum...
Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Laurino, Marco; Piarulli, Andrea; Gemignani, Angelo
2015-09-01
Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-excitation spreading. Other features, directly associated to second-order phase transitions, are: (i) scale-free-network topology of functional connectivity, stemming from suprathreshold pairwise correlations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature; (ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctuations in the order parameters, detectable in human brain via spatially distributed phase or amplitude changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG recordings, including presleep wakefulness and all phases of sleep, where different levels of mentation and consciousness are present. We show that while critical avalanching is unchanged, at least qualitatively, intermittency and functional connectivity, present during conscious phases (wakefulness and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory for fragmentation-induced intermittency breakdown and suggest that the main difference between conscious and unconscious states resides in the backwards causation, namely on the constraints that the emerging properties at large scale induce to the lower scales. In particular, while in conscious states this backwards causation induces a critical slowing down, preserving spatiotemporal correlations, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are highly arousing.
Spin dynamics in the high-field phase of quantum-critical S =1/2 TlCuCl sub 3
Rueegg, C; Furrer, A; Krämer, K; Güdel, H U; Vorderwisch, P; Mutka, H
2002-01-01
An external magnetic field suppresses the spin-energy gap in singlet ground state S=1/2 TlCuCl sub 3. The system becomes quantum-critical at H sub c approx 5.7 T, where the energy of the lowest Zeeman-split triplet excitation crosses the nonmagnetic ground state. Antiferromagnetic ordering is reported above H sub c , which underlines the three-dimensional nature of the observed quantum phase transition. The intrinsic parameters of S=1/2 TlCuCl sub 3 allow us to access the critical region microscopically by neutron scattering. A substantial study of the spin dynamics in the high-field phase of TlCuCl sub 3 at T=1.5 K up to H=12 T was performed for the first time. The results possibly indicate two dynamical regimes, which can be understood within characteristically renormalized triplet modes and a low-lying dynamics of potentially collective origin. (orig.)
PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery.
Cao, K; Liu, Y; Olkhov, A A; Siracusa, V; Iordanskii, A L
2018-02-01
Fibers of poly(L-lactic acid) (PLLA)/polyhydroxybutyrate (PHB) with different concentrations of the drug dipyridamole (DPD) were prepared using solvent-free melt electrospinning to obtain a polymeric drug delivery system. The electrospun fibers were morphologically, structurally, thermally, and dynamically characterized. Crazes that resemble lotus root crevices were interestingly observed in the 7:3 PLLA/PHB fibers with 1% DPD. The crystallinity of PLLA slightly decreased as PHB was incorporated, and the addition of DPD significantly reduced the melting temperature of the composite. The interactions between PLLA and PHB mainly occurred at a proportion of 7:3, and drug encapsulation in the fibers was verified. The kinetic profiles of drug release demonstrated the predominant multiple patterns involving a diffusional stage in the short-term mode of release and kinetic process related to the hydrolysis of the biopolymers. Furthermore, the dynamic behavior of the polymer molecules was evaluated based on the segmental mobility using probe electron spin resonance spectroscopy. The segmental mobility in the amorphous fraction of PLLA decreased with increasing PLLA content. The 9:1 PLLA/PHB system was more resistant to polymer hydrolysis than to the 7:3 system and the rate of diffusion transport was approximately two times higher for the 7:3 PLLA/PHB fibers than for the 9:1 PLLA/PHB fibers.
Ng, Tony T.
The mammalian cortex is a highly structured network of densely packed neurons that interact strongly with each other in very specific ways. Loosely speaking, neurons are cells that fire clicks at each other as a means of communication. Common sites of communication, known as synapses, are enabled by transmitter molecules released from presynaptic sender cells, which bind to receptors on postsynaptic receiver cells. There are two major classes of neurons - excitatory ones that prompt their downstream neighbors to fire spikes through depolarization, and inhibitory ones that suppress spike activity of their postsynaptic partners via hyperpolarization. Depolarization and hyperpolarization make membrane potential of a cell more positive and more negative, respectively. A sufficiently depolarized neuron fires a spike, which technically is called an action potential. In this thesis, we focus on the interplay between three of the cortex's most ubiquitous features and examine some of the consequences that their interactions have on cortical dynamics. One of the features, widespread projections between clusters of excitatory neurons, is topological. The two remaining features, homeostasis and balance between the amount of excitatory and inhibitory activity are dynamical. Here, homeostasis refers to the regulatory mechanism of individual cells or collections of cells that maintains constant levels of spike activity over time. Simply by varying the average homeostatic firing rate in clusters of excitatory neurons or by tuning the common homoeostatic rate of individual inhibitory neurons, we show via simulation that cluster-based activity bursts can exhibit critical dynamics and display power-law distributions with exponents that are consistent with those found in in vivo experiments of awake animals. Criticality is an idea that originated in statistical physics. At the critical point, activity levels of sites across an entire system, such as those of different cortical regions
DEFF Research Database (Denmark)
Dupont, Jeanette; Jensen, Helle A; Jensen, Benny V
2007-01-01
A phase I trial of short-time oxaliplatin (E), capecitabine (X) and epirubicin (E) for patients with metastatic gastric cancer was initiated to establish the recommended dose for further therapy with short-time EXE. Patients received out-patient therapy with a fixed dose of epirubicin 50 mg/m2 day......-8), median survival was 9.2 months and median TTP was 7.5 months. A combination of epirubicin 50 mg/m2 day 1, capecitabine 1,000 mg/m2 continuously and oxaliplatin 130 mg/m2 day 1 each 3 weeks is an easily administered and well tolerated out-patient regimen for patients with non-resectable gastric cancer....
International Nuclear Information System (INIS)
Masunov, Artem E.; Atlanov, Arseniy Alekseyevich; Vasu, Subith S.
2016-01-01
Oxy-fuel combustion process is expected to drastically increase the energy efficiency and enable easy carbon sequestration. In this technology the combustion products (carbon dioxide and water) are used to control the temperature and nitrogen is excluded from the combustion chamber, so that nitrogen oxide pollutants do not form. Therefore, in oxycombustion the carbon dioxide and water are present in large concentrations in their transcritical state, and may play an important role in kinetics. The computational chemistry methods may assist in understanding these effects, and Molecular Dynamics with ReaxFF force field seem to be a suitable tool for such a study. Here we investigate applicability of the ReaxFF to describe the critical phenomena in carbon dioxide and water and find that several nonbonding parameters need adjustment. We report the new parameter set, capable to reproduce the critical temperatures and pressures. Furthermore, the critical isotherms of CO 2 /H 2 O binary mixtures are computationally studied here for the first time and their critical parameters are reported.
Specker, Christopher D.; Ellis, Joel M.; Baird, James K.
2007-06-01
The binary liquid mixture of triethylamine+water has a lower consolute point at a critical composition of 32.27mass% triethylamine. Starting at a temperature within the one-phase region, the electrical conductivity of a sample of this mixture was measured and found to increase smoothly with increasing temperature before falling sharply at 291.24K (18.09°C). Since opalescence was visible at this temperature, it was identified with the critical solution temperature of the binary mixture. A solution of 90 μL of benzyl bromide dissolved in 90mL of 32.27mass% triethylamine+water was prepared, and the resulting Menschutkin reaction between benzyl bromide and triethylamine was allowed to come to equilibrium. The electrical conductivity of this equilibrium mixture was measured in the one-phase region and was found to increase smoothly with increasing temperature before rising sharply at 291.55K (18.40°C). This temperature was identified as the critical temperature of the ternary. The rate of approach of the ternary mixture to chemical equilibrium was also measured and shown to be governed by a first-order rate law. The temperature dependence of the rate coefficient followed the Arrhenius equation up to a temperature of about 290.74K (17.59°C). Above this temperature, the rate coefficient fell by as much as 22% below the value predicted by extrapolation of the Arrhenius equation. This suppression in the rate reaction in the vicinity of the critical temperature can be interpreted as evidence for the existence of critical slowing down.
International Nuclear Information System (INIS)
Dafang, Wu; Yuewu, Wang; Bing, Pan; Meng, Mu; Lin, Zhu
2012-01-01
Highlights: ► Ultimate strength at transient heating is critical to security design of missiles. ► We measure the ultimate strength of alloy 2017 subjected to transient heating. ► Experimental results at transient heating are lacking in strength design handbook. ► Ultimate strength of alloy 2017 experimented is much higher than handbook value. ► The results provide a new method for optimal design of high-speed flight vehicles. -- Abstract: Alloy 2017 (Al–Cu–Mg) is a hard aluminium alloy strengthened by heat treatment. Because of its higher strength, finer weldability and ductility, hard aluminium alloy 2017 has been widely used in the field of aeronautics and astronautics. However, the ultimate strength and other characteristic mechanical parameters of aluminium alloy 2017 in a transient heating environment are still unclear, as these key mechanical parameters are lacking in the existing strength design handbook. The experimental characterisation of these critical parameters of aluminium alloy 2017 is undoubtedly meaningful for reliably estimating life span of and improving safety in designing high-speed flight vehicles. In this paper, the high-temperature ultimate strength, loading time and other mechanical properties of hard aluminium alloy 2017 under different transient heating temperatures and loading conditions are investigated by combining a transient aerodynamic heating simulation system and a material testing machine. The experimental results reveal that the ultimate strength and loading capability of aluminium alloy 2017 subjected to transient thermal heating are much higher than those tested in a long-time stable high-temperature environment. The research of this work not only provides a substantial basis for the loading capability improvement and optimal design of aerospace materials and structures subject to transient heating but also presents a new research direction with a practical application value.
Directory of Open Access Journals (Sweden)
S. P. Arunachalam
2018-01-01
Full Text Available Analysis of biomedical signals can yield invaluable information for prognosis, diagnosis, therapy evaluation, risk assessment, and disease prevention which is often recorded as short time series data that challenges existing complexity classification algorithms such as Shannon entropy (SE and other techniques. The purpose of this study was to improve previously developed multiscale entropy (MSE technique by incorporating nearest-neighbor moving-average kernel, which can be used for analysis of nonlinear and non-stationary short time series physiological data. The approach was tested for robustness with respect to noise analysis using simulated sinusoidal and ECG waveforms. Feasibility of MSE to discriminate between normal sinus rhythm (NSR and atrial fibrillation (AF was tested on a single-lead ECG. In addition, the MSE algorithm was applied to identify pivot points of rotors that were induced in ex vivo isolated rabbit hearts. The improved MSE technique robustly estimated the complexity of the signal compared to that of SE with various noises, discriminated NSR and AF on single-lead ECG, and precisely identified the pivot points of ex vivo rotors by providing better contrast between the rotor core and the peripheral region. The improved MSE technique can provide efficient complexity analysis of variety of nonlinear and nonstationary short-time biomedical signals.
Nelson, Mark; Allen, John P.
As space exploration and eventually habitation achieves longer durations, successfully managing group dynamics of small, physically isolated groups will become vital. The paper summarizes important underlying research and conceptual theory and how these manifested in a well-documented example: the closure experiments of Biosphere 2. Key research breakthroughs in discerning the operation of small human groups comes from the pioneering work of W.R. Bion. He discovered two competing modalities of behavior. The first is the “task-oriented” or work group governed by shared acceptance of goals, reality-thinking in relation to time, resources and rational, and intelligent management of challenges presented. The opposing, usually unconscious, modality is what Bion called the “basic-assumption” group and alternates between three “group animal” groups: dependency/kill the leader; fight/flight and pairing. If not dealt with, these dynamics work to undermine and defeat the conscious task group’s goal achievement. The paper discusses crew training and selection, various approaches to structuring the work and hierarchy of the group, the importance of contact with a larger population through electronic communication and dealing with the “us-them” syndrome frequently observed between crew and Mission Control. The experience of the first two year closure of Biosphere 2 is drawn on in new ways to illustrate vicissitudes and management of group dynamics especially as both the inside team of biospherians and key members of Mission Control had training in working with group dynamics. Insights from that experience may help mission planning so that future groups in space cope successfully with inherent group dynamics challenges that arise.
Directory of Open Access Journals (Sweden)
Jing Huang
2018-05-01
Full Text Available With ever increasing demand for electricity and the huge potential of renewable energy, an increasing number of renewable-energy sources are being used to generate electricity. However, due to the intermittency of renewable-energy generation, many researchers try to overcome the variable nature of renewable energy. A hybrid renewable-energy system is one possible way to introduce smoothing of the supply. Many hybrid renewable-energy studies focus on system optimization and management. This paper mainly researches the performance prediction accuracy of a hybrid solar and wind system. Through a mixed autoregressive and dynamical system model, we test the predictability of the hybrid system and compare it with individual solar and wind series forecasting. After error analysis, the predictability of the hybrid system shows a better performance than solar or wind for Adelaide global solar radiation and Starfish Hill wind farm data. The prediction errors were reduced by 13% to more than 30% according to various error analyses. This result indicates an advantage of the hybrid solar and wind system compared to solar and wind systems taken individually.
Energy Technology Data Exchange (ETDEWEB)
Zhang Yu, E-mail: yuzhang@xmu.edu.cn [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Sprecher, Alicia J. [Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States); Zhao Zongxi [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Jiang, Jack J. [Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States)
2011-09-15
Highlights: > The VWK method effectively detects the nonlinearity of a discrete map. > The method describes the chaotic time series of a biomechanical vocal fold model. > Nonlinearity in laryngeal pathology is detected from short and noisy time series. - Abstract: In this paper, we apply the Volterra-Wiener-Korenberg (VWK) model method to detect nonlinearity in disordered voice productions. The VWK method effectively describes the nonlinearity of a third-order nonlinear map. It allows for the analysis of short and noisy data sets. The extracted VWK model parameters show an agreement with the original nonlinear map parameters. Furthermore, the VWK mode method is applied to successfully assess the nonlinearity of a biomechanical voice production model simulating irregular vibratory dynamics of vocal folds with a unilateral vocal polyp. Finally, we show the clinical applicability of this nonlinear detection method to analyze the electroglottographic data generated by 14 patients with vocal nodules or polyps. The VWK model method shows potential in describing the nonlinearity inherent in disordered voice productions from short and noisy time series that are common in the clinical setting.
International Nuclear Information System (INIS)
Zhang Yu; Sprecher, Alicia J.; Zhao Zongxi; Jiang, Jack J.
2011-01-01
Highlights: → The VWK method effectively detects the nonlinearity of a discrete map. → The method describes the chaotic time series of a biomechanical vocal fold model. → Nonlinearity in laryngeal pathology is detected from short and noisy time series. - Abstract: In this paper, we apply the Volterra-Wiener-Korenberg (VWK) model method to detect nonlinearity in disordered voice productions. The VWK method effectively describes the nonlinearity of a third-order nonlinear map. It allows for the analysis of short and noisy data sets. The extracted VWK model parameters show an agreement with the original nonlinear map parameters. Furthermore, the VWK mode method is applied to successfully assess the nonlinearity of a biomechanical voice production model simulating irregular vibratory dynamics of vocal folds with a unilateral vocal polyp. Finally, we show the clinical applicability of this nonlinear detection method to analyze the electroglottographic data generated by 14 patients with vocal nodules or polyps. The VWK model method shows potential in describing the nonlinearity inherent in disordered voice productions from short and noisy time series that are common in the clinical setting.
Fokkelman, Michiel; Balcıoğlu, Hayri E.; Klip, Janna E.; Yan, Kuan; Verbeek, Fons J.; Danen, Erik H. J.; van de Water, Bob
2016-01-01
Cancer cells migrate from the primary tumour into surrounding tissue in order to form metastasis. Cell migration is a highly complex process, which requires continuous remodelling and re-organization of the cytoskeleton and cell-matrix adhesions. Here, we aimed to identify genes controlling aspects of tumour cell migration, including the dynamic organization of cell-matrix adhesions and cellular traction forces. In a siRNA screen targeting most cell adhesion-related genes we identified 200+ genes that regulate size and/or dynamics of cell-matrix adhesions in MCF7 breast cancer cells. In a subsequent secondary screen, the 64 most effective genes were evaluated for growth factor-induced cell migration and validated by tertiary RNAi pool deconvolution experiments. Four validated hits showed significantly enlarged adhesions accompanied by reduced cell migration upon siRNA-mediated knockdown. Furthermore, loss of PPP1R12B, HIPK3 or RAC2 caused cells to exert higher traction forces, as determined by traction force microscopy with elastomeric micropillar post arrays, and led to considerably reduced force turnover. Altogether, we identified genes that co-regulate cell-matrix adhesion dynamics and traction force turnover, thereby modulating overall motility behaviour. PMID:27531518
Czech Academy of Sciences Publication Activity Database
Janeček, Ivan; Naar, P.; Stachoň, M.; Gadéa, F. X.; Kalus, R.
2017-01-01
Roč. 19, č. 4 (2017), s. 2778-2790 ISSN 1463-9076 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : atom ic clusters * molecular physics * computer simulations Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Atom ic, molecular and chemical physics (physics of atom s and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 4.123, year: 2016 http://pubs.rsc.org/en/content/articlelanding/2017/cp/c6cp07479k#!divAbstract
Czech Academy of Sciences Publication Activity Database
Janeček, Ivan; Naar, P.; Stachoň, M.; Gadéa, F. X.; Kalus, R.
2017-01-01
Roč. 19, č. 4 (2017), s. 2778-2790 ISSN 1463-9076 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : atomic clusters * molecular physics * computer simulations Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 4.123, year: 2016 http://pubs.rsc.org/en/content/articlelanding/2017/cp/c6cp07479k#!divAbstract
Directory of Open Access Journals (Sweden)
Yakovenko Larisa Aleksandrovna
2014-06-01
Full Text Available The article studies the functioning of stylistically marked verbal lexis in the infinitive form in literary critical articles of Russian publicists of the middle and second half of the 19th century. The critical texts of that period are characterized by the use of different functional, stylistic and expressive emotional coloring verbal lexemes. The author reveals the lexical content of infinitive forms, determines the markedness character (functional and stylistic, or expressive and emotional. The article presents the dynamics of using infinitive forms which shows that in the texts of 19th century they are used to express critics' attitude to fiction works, litetrary images, and this attitude is determined by publicists' ideas about the ways of reality depiction. It is revealed that in the second half of 19th century this form reflects the urge to evaluate the social maturity and fiction skills of a writer, and that serves to increasing number of stylistically marked lexemes in the texts of that period.
Hsu, Chi-Lin; Chou, Chih-Hsuan; Huang, Shih-Chuan; Lin, Chia-Yi; Lin, Meng-Ying; Tung, Chun-Che; Lin, Chun-Yen; Lai, Ivan Pochou; Zou, Yan-Fang; Youngson, Neil A; Lin, Shau-Ping; Yang, Chang-Hao; Chen, Shih-Kuo; Gau, Susan Shur-Fen; Huang, Hsien-Sung
2018-03-15
Visual system development is light-experience dependent, which strongly implicates epigenetic mechanisms in light-regulated maturation. Among many epigenetic processes, genomic imprinting is an epigenetic mechanism through which monoallelic gene expression occurs in a parent-of-origin-specific manner. It is unknown if genomic imprinting contributes to visual system development. We profiled the transcriptome and imprintome during critical periods of mouse visual system development under normal- and dark-rearing conditions using B6/CAST F1 hybrid mice. We identified experience-regulated, isoform-specific and brain-region-specific imprinted genes. We also found imprinted microRNAs were predominantly clustered into the Dlk1-Dio3 imprinted locus with light experience affecting some imprinted miRNA expression. Our findings provide the first comprehensive analysis of light-experience regulation of the transcriptome and imprintome during critical periods of visual system development. Our results may contribute to therapeutic strategies for visual impairments and circadian rhythm disorders resulting from a dysfunctional imprintome.
Bun, M.J.G.; Sarafidis, V.
2013-01-01
This Chapter reviews the recent literature on dynamic panel data models with a short time span and a large cross-section. Throughout the discussion we considerlinear models with additional endogenous covariates. First we give a broad overview of available inference methods placing emphasis on GMM.
Trostyansky, S. N.; Kalach, A. V.; Lavlinsky, V. V.; Lankin, O. V.
2018-03-01
Based on the analysis of the dynamic model of panel data by region, including fire statistics for surveillance sites and statistics of a set of regional socio-economic indicators, as well as the time of rapid response of the state fire service to fires, the probability of fires in the surveillance sites and the risk of human death in The result of such fires from the values of the corresponding indicators for the previous year, a set of regional social-economics factors, as well as regional indicators time rapid response of the state fire service in the fire. The results obtained are consistent with the results of the application to the fire risks of the model of a rational offender. Estimation of the economic equivalent of human life from data on surveillance objects for Russia, calculated on the basis of the analysis of the presented dynamic model of fire risks, correctly agrees with the known literary data. The results obtained on the basis of the econometric approach to fire risks allow us to forecast fire risks at the supervisory sites in the regions of Russia and to develop management solutions to minimize such risks.
Energy Technology Data Exchange (ETDEWEB)
Preece, D.S.; Weatherby, J.R.; Attaway, S.W.; Swegle, J.W.; Matalucci, R.V.
1998-06-01
Coupled blast-structural computational simulations using supercomputer capabilities will significantly advance the understanding of how complex structures respond under dynamic loads caused by explosives and earthquakes, an understanding with application to the surety of both federal and nonfederal buildings. Simulation of the effects of explosives on structures is a challenge because the explosive response can best be simulated using Eulerian computational techniques and structural behavior is best modeled using Lagrangian methods. Due to the different methodologies of the two computational techniques and code architecture requirements, they are usually implemented in different computer programs. Explosive and structure modeling in two different codes make it difficult or next to impossible to do coupled explosive/structure interaction simulations. Sandia National Laboratories has developed two techniques for solving this problem. The first is called Smoothed Particle Hydrodynamics (SPH), a relatively new gridless method comparable to Eulerian, that is especially suited for treating liquids and gases such as those produced by an explosive. The SPH capability has been fully implemented into the transient dynamics finite element (Lagrangian) codes PRONTO-2D and -3D. A PRONTO-3D/SPH simulation of the effect of a blast on a protective-wall barrier is presented in this paper. The second technique employed at Sandia National Laboratories uses a relatively new code called ALEGRA which is an ALE (Arbitrary Lagrangian-Eulerian) wave code with specific emphasis on large deformation and shock propagation. ALEGRA is capable of solving many shock-wave physics problems but it is especially suited for modeling problems involving the interaction of decoupled explosives with structures.
Energy Technology Data Exchange (ETDEWEB)
Wang, Han, E-mail: wang-han@iapcm.ac.cn [CAEP Software Center for High Performance Numerical Simulation, Huayuan Road 6, 100088 Beijing, China and Zuse Institute Berlin (ZIB), Berlin (Germany); Nakamura, Haruki [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Fukuda, Ikuo, E-mail: ifukuda@protein.osaka-u.ac.jp [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
2016-03-21
We performed extensive and strict tests for the reliability of the zero-multipole (summation) method (ZMM), which is a method for estimating the electrostatic interactions among charged particles in a classical physical system, by investigating a set of various physical quantities. This set covers a broad range of water properties, including the thermodynamic properties (pressure, excess chemical potential, constant volume/pressure heat capacity, isothermal compressibility, and thermal expansion coefficient), dielectric properties (dielectric constant and Kirkwood-G factor), dynamical properties (diffusion constant and viscosity), and the structural property (radial distribution function). We selected a bulk water system, the most important solvent, and applied the widely used TIP3P model to this test. In result, the ZMM works well for almost all cases, compared with the smooth particle mesh Ewald (SPME) method that was carefully optimized. In particular, at cut-off radius of 1.2 nm, the recommended choices of ZMM parameters for the TIP3P system are α ≤ 1 nm{sup −1} for the splitting parameter and l = 2 or l = 3 for the order of the multipole moment. We discussed the origin of the deviations of the ZMM and found that they are intimately related to the deviations of the equilibrated densities between the ZMM and SPME, while the magnitude of the density deviations is very small.
Kosik, Kyle B; Gribble, Phillip A
2018-01-01
Clinical Scenario: Dorsiflexion range of motion is an important factor in the performance of the Star Excursion Balance Test (SEBT). While patients with chronic ankle instability (CAI) commonly experience decreased reach distances on the SEBT, ankle joint mobilization has been suggested to be an effective therapeutic intervention for targeting dorsiflexion range of motion. What is the evidence to support ankle joint mobilization for improving performance on the SEBT in patients with CAI? Summary of Key Findings: The literature was searched for articles examining the effects of ankle joint mobilization on scores of the SEBT. A total of 3 peer-reviewed articles were retrieved, 2 prospective individual cohort studies and 1 randomized controlled trial. Only 2 articles demonstrated favorable results following 6 sessions of ankle joint mobilization. Clinical Bottom Line: Despite the mixed results, the majority of the available evidence suggests that ankle joint mobilization improves dynamic postural control. Strength of Recommendation: In accordance with the Centre of Evidence Based Medicine, the inconsistent results and the limited high-quality studies indicate that there is level C evidence to support the use of ankle joint mobilization to improve performance on the SEBT in patients with CAI.
Wang, Han; Nakamura, Haruki; Fukuda, Ikuo
2016-03-21
We performed extensive and strict tests for the reliability of the zero-multipole (summation) method (ZMM), which is a method for estimating the electrostatic interactions among charged particles in a classical physical system, by investigating a set of various physical quantities. This set covers a broad range of water properties, including the thermodynamic properties (pressure, excess chemical potential, constant volume/pressure heat capacity, isothermal compressibility, and thermal expansion coefficient), dielectric properties (dielectric constant and Kirkwood-G factor), dynamical properties (diffusion constant and viscosity), and the structural property (radial distribution function). We selected a bulk water system, the most important solvent, and applied the widely used TIP3P model to this test. In result, the ZMM works well for almost all cases, compared with the smooth particle mesh Ewald (SPME) method that was carefully optimized. In particular, at cut-off radius of 1.2 nm, the recommended choices of ZMM parameters for the TIP3P system are α ≤ 1 nm(-1) for the splitting parameter and l = 2 or l = 3 for the order of the multipole moment. We discussed the origin of the deviations of the ZMM and found that they are intimately related to the deviations of the equilibrated densities between the ZMM and SPME, while the magnitude of the density deviations is very small.
Energy Technology Data Exchange (ETDEWEB)
Boon, F
2000-11-01
As part of a sectoral study for the Association of the Dutch Vegetable and Fruit Processing Industry (VIGEF) a project started on the Factory 2005 concept. Options to improve the product quality of canned vegetables and fruit are investigated. One of the options is to reduce the heat during the sterilization process by applying the HTST method (high-temperature-short-time). Two processes are compared: the Gierschner process and the Stork Steripart process. [Dutch] Binnen de VIGEF (Vereniging van de Nederlandse Groenten- en Fruitverwerkende Industrie) is een project gestart in samenwerking met TNO dat zich richt op de fabriek 2005. Onderzoek wordt gedaan naar de mogelijkheden om de productkwaliteit van geconserveerde groenten en fruit te verbeteren. Het richt zich o.a. op de mogelijkheden om de hitte-intensiteit tijdens de sterilisatie te verlagen door te steriliseren volgens de HTST methode (high-temperature-short-time). Motivatie voor de ontwikkeling van HTST processen is primair kwaliteitsverbetering met gelijke microbiele veiligheid (t.o.v. het conventionele proces). Er worden 2 processen vergeleken: het Gierschner proces en het Stork Steripart proces.
International Nuclear Information System (INIS)
Ren Changliang; Hofmann, Holger F.
2011-01-01
To fully utilize the energy-time degree of freedom of photons for optical quantum-information processes, it is necessary to control and characterize the temporal quantum states of the photons at extremely short time scales. For measurements of the temporal coherence of the quantum states beyond the time resolution of available detectors, two-photon interference with a photon in a short-time reference pulse may be a viable alternative. In this paper, we derive the temporal measurement operators for the bunching statistics of a single-photon input state with a photon from a weak coherent reference pulse. It is shown that the effects of the pulse shape of the reference pulse can be expressed in terms of a spectral filter selecting the bandwidth within which the measurement can be treated as an ideal projection on eigenstates of time. For full quantum tomography, temporal coherence can be determined by using superpositions of reference pulses at two different times. Moreover, energy-time entanglement can be evaluated based on the two-by-two entanglement observed in the coherences between pairs of detection times.
DEFF Research Database (Denmark)
Kjellberg, Caspar Mølholt; Meredith, David
2014-01-01
. Since the comments are not input sequentially, with regard to position, but in arbitrary order, this list must be sorted by copy/pasting the rows into place—an error-prone and time-consuming process. Scholars who produce critical editions typically use off-the-shelf music notation software......The best text method is commonly applied among music scholars engaged in producing critical editions. In this method, a comment list is compiled, consisting of variant readings and editorial emendations. This list is maintained by inserting the comments into a document as the changes are made......, consisting of a Sibelius plug-in, a cross-platform application, called CriticalEd, and a REST-based solution, which handles data storage/retrieval. A prototype has been tested at the Danish Centre for Music Publication, and the results suggest that the system could greatly improve the efficiency...
Goodman, Lawrence E
2001-01-01
Beginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.
Controlling the quantum rotational dynamics of a driven planar rotor ...
Indian Academy of Sciences (India)
Archana Shukla
†Dedicated to the memory of late Professor Charusita Chakravarty. To a large extent the ..... study the long time quantum dynamics using only the one cycle propagator. .... distributions, including the short time rotational rain- bow features and ...
International Nuclear Information System (INIS)
Yamashita, Shozo; Yamamoto, Haruki; Hiko, Shigeaki; Horita, Akihiro; Yokoyama, Kunihiko; Onoguchi, Masahisa; Nakajima, Kenichi
2014-01-01
Deep-inspiration breath-hold (DIBH) positron emission tomography (PET)/CT with short-time acquisition and respiratory-gated (RG) PET/CT are performed for pulmonary lesions to reduce the respiratory motion artifacts, and to obtain more accurate standardized uptake value (SUV). DIBH PET/CT demonstrates significant advantages in terms of rapid examination, good quality of CT images and low radiation exposure. On the other hand, the image quality of DIBH PET is generally inferior to that of RG PET because of short-time acquisition resulting in poor signal-to-noise ratio. In this study, RG PET has been regarded as a gold standard, and its detectability between DIBH and RG PET studies was compared using each of the most optimal reconstruction parameters. In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were determined. In the clinical study, 19 cases were examined using each of the most optimal reconstruction parameters. In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were different. Reconstruction parameters of DIBH PET could be obtained by reducing the number of subsets for those of RG PET in the state of fixing the number of iterations. In the clinical study, high correlation in the maximum SUV was observed between DIBH and RG PET studies. The clinical result was consistent with that of the phantom study surrounded by air since most of the lesions were located in the low pulmonary radioactivity. DIBH PET/CT may be the most practical method which can be the first choice to reduce respiratory motion artifacts if the detectability of DIBH PET is equivalent with that of RG PET. Although DIBH PET may have limitations in suboptimal signal-to-noise ratio, most of the lesions surrounded by low background radioactivity could provide nearly equivalent image quality between DIBH and RG PET studies when each of the most optimal reconstruction parameters was used. (author)
Salimi, Nima; Loh, Kar Hoe; Kaur Dhillon, Sarinder; Chong, Ving Ching
2016-01-01
Background. Fish species may be identified based on their unique otolith shape or contour. Several pattern recognition methods have been proposed to classify fish species through morphological features of the otolith contours. However, there has been no fully-automated species identification model with the accuracy higher than 80%. The purpose of the current study is to develop a fully-automated model, based on the otolith contours, to identify the fish species with the high classification accuracy. Methods. Images of the right sagittal otoliths of 14 fish species from three families namely Sciaenidae, Ariidae, and Engraulidae were used to develop the proposed identification model. Short-time Fourier transform (STFT) was used, for the first time in the area of otolith shape analysis, to extract important features of the otolith contours. Discriminant Analysis (DA), as a classification technique, was used to train and test the model based on the extracted features. Results. Performance of the model was demonstrated using species from three families separately, as well as all species combined. Overall classification accuracy of the model was greater than 90% for all cases. In addition, effects of STFT variables on the performance of the identification model were explored in this study. Conclusions. Short-time Fourier transform could determine important features of the otolith outlines. The fully-automated model proposed in this study (STFT-DA) could predict species of an unknown specimen with acceptable identification accuracy. The model codes can be accessed at http://mybiodiversityontologies.um.edu.my/Otolith/ and https://peerj.com/preprints/1517/. The current model has flexibility to be used for more species and families in future studies.
Cao, Xiaolin; Stimpfl, Gregory; Wen, Zai-Qing; Frank, Gregory; Hunter, Glenn
2013-01-01
High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the biopharmaceutical manufacturing industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating and pumping the media continuously through the preset high-temperature holding tubes to achieve a specified period of time at a specific temperature. Recently, during the evaluation and implementation of HTST method in multiple Amgen, Inc. manufacturing facilities, media precipitates were observed in the tests of HTST treatments. The media precipitates may have adverse consequences such as clogging the HTST system, altering operating conditions and compromising the efficacy of viral deactivation, and ultimately affecting the media composition and cell growth. In this study, we report the identification of the composition of media precipitates from multiple media HTST runs using combined microspectroscopic methods including Raman, Fourier transform infrared spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The major composition in the precipitates was determined to be metal phosphates, including calcium phosphate, magnesium phosphate, and iron (III) phosphate. Based on the composition, stoichiometry, and root-cause study of media precipitations, methods were implemented for the mitigation and prevention of the occurrence of the media precipitation. Viral contamination in cell culture media is an important issue in the biopharmaceutical manufacturing industry and may have serious consequences on product quality, efficacy, and safety. High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating at preset conditions. This
Directory of Open Access Journals (Sweden)
Fengky Adie Perdana
2017-02-01
Full Text Available Learning media is one of the most components in the teaching and learning process. This research was conducted to design and develop the electronic modules combining science process skills and dynamics motion content for increasing critical thinking skills and improve student learning motivation for senior high school. The Methods used in this research is Research and Development (R&D. Model research and development using a research 4D Thiagarajan model. Physics module was developed using science process skills approach: observing, formulating the problem, formulating a hypothesis, identify variables, conduct experiments, analyse the data, summarise and communicate. The results showed that: 1 the electronics module has been developed by integrating the science process skills for enhancing critical thinking skills and student motivation. 2 Electronic Module Physics-based science process skills meet the criteria very well, judging from the results of validation content, validation media, validation of peer education and practitioners, with an average value of 3.80 is greater than the minimum eligibility 3.78. 3 effectiveness the modules of science process skills got N-gain value obtained from a large trial in grade samples of 0.67 and 0.59 in the control group were categorised as moderate. 4 Implementation of electronic modules Physics-based science process skills is considered an effective to enhance the students' motivation. Statistical analysis showed a significance value of 0.027 is lower than the significance level α = 0.05, this means that there are significant differences between learning motivation grade sample and the control class. As a result of analysis data obtained from the research, it was seen that the students' motivation that uses Physics module based science process skills better than conventional learning.
Critical sizes and critical characteristics of nanoclusters, nanostructures and nanomaterials
International Nuclear Information System (INIS)
Suzdalev, I.P.
2005-01-01
Full text: Critical sizes and characteristics of nanoclusters and nanostructures are introduced as the parameters of nanosystems and nanomaterials. The next critical characteristics are considered: atomic and electronic 'magic number', critical size of cluster nucleation, critical size of melting-freezing of cluster, critical size of quantum (laser) radiation, critical sizes for the single electron conductivity, critical energy and magnetic field for the magnetic tunneling, critical cluster sizes for the giant magnetic resistance, critical size of the first order magnetic phase transition. The critical characteristics are estimated by thermodynamic approaches, by Moessbauer spectroscopy, AFM, heat capacity, SQUID magnetometry and other technique, The influence of cluster-cluster interactions, cluster-matrix interactions and cluster defects on cluster atomic dynamics, cluster melting, cluster critical sizes, Curie or Neel points and the character of magnetic phase transitions were investigated. The applications of critical size and critical characteristic parameters for the nanomaterial characterization are considered
Fluctuation dynamics near the quantum critical point in the S=1/2 Ising chain CoNb{sub 2}O{sub 6}
Energy Technology Data Exchange (ETDEWEB)
Harms, Steffen; Engelmayer, Johannes; Lorenz, Thomas; Hemberger, Joachim [II. Physikalisches Institut, Koeln Univ. (Germany)
2016-07-01
CoNb{sub 2}O{sub 6} is a model system for quantum phase transitions in magnetic field. Its structure consists of layers of CoO{sub 6} octahedrons separated by non-magnetic NbO{sub 6} layers. The edge-sharing oxygen octahedrons link the Co{sup 2+} spins via Co-O-Co superexchange and form 1D ferromagnetic zigzag chains along the orthorhombic c axis. Crystal field effects lead to an easy-axis anisotropy of the Co{sup 2+} moments in the ac plane and to an effective spin-1/2 chain system. The 1D spin system can be described by the Ising model. At T=0 K a transverse magnetic field can induce a quantum phase transition from a long range ferromagnetic state into a quantum paramagnetic state. Employing measurements of the complex AC-susceptibility in the frequency range 10 MHz < ν < 5 GHz for temperatures down to 50 mK we investigate the slowing down of the magnetic fluctuation dynamics in the vicinity of the critical field at μ{sub 0}H=5.25 T.
Sun, Min; Li, Zhi; Gui, Jian-Fang
2010-10-01
Spindlin (Spin) was thought as a maternal-effect factor associated with meiotic spindle. Its role for the oocyte-to-embryo transition was suggested in mouse, but its direct evidence for the function had been not obtained in other vertebrates. In this study, we used the CagSpin-specific antibody to investigate CagSpin expression pattern and distribution during oogenesis of gibel carp (Carassius auratus gibelio). First, the oocyte-specific expression pattern and dynamic distribution was revealed in nucleoli, nucleoplasm, and spindle from primary oocytes to mature eggs by immunofluorescence localization. In primary oocytes and growth stage oocytes, CagSpin accumulates in nucleoli in increasing numbers along with the oocyte growth, and its disassembly occurs in vitellogenic oocytes, which implicates that CagSpin may be a major component of a large number of nucleoli in fish growth oocytes. Then, co-localization of CagSpin and β-tubulin was revealed in meiotic spindle of mature egg, indicating that CagSpin is one spindle-associated factor. Moreover, microinjection of CagSpin-specific antibody into the fertilized eggs blocked the first cleavage, and found that the CagSpin depletion resulted in spindle assembly disturbance. Thereby, our study provided the first direct evidence for the critical oocyte-to-embryo transition function of Spin in vertebrates, and confirmed that Spin is one important maternal-effect factor that participates in oocyte growth, oocyte maturation, and oocyte-to-embryo transition.
Pang, Jinbo; Deng, Lingfei; Wang, Gangyi
2017-01-01
Although frequent fluctuations in domestic hog prices seriously affect the stability and robustness of the hog supply chain, hog futures (an effective hedging instrument) have not been listed in China. To better understand hog futures market hedging, it is important to study the steady state of intersubjective bidding. This paper uses evolutionary game theory to construct a game model between hedgers and speculators in the hog futures market, and replicator dynamic equations are then used to obtain the steady state between the two trading entities. The results show that the steady state is one in which hedgers adopt a "buy" strategy and speculators adopt a "do not speculate" strategy, but this type of extreme steady state is not easily realized. Thus, to explore the rational proportion of hedgers and speculators in the evolutionary stabilization strategy, bidding processes were simulated using weekly average hog prices from 2006 to 2015, such that the conditions under which hedgers and speculators achieve a steady state could be analyzed. This task was performed to achieve the stability critical point, and we show that only when the value of λ is satisfied and the conditions of hog futures price changes and futures price are satisfied can hedgers and speculators achieve a rational proportion and a stable hog futures market. This market can thus provide a valuable reference for the development of the Chinese hog futures market and the formulation and guidance of relevant departmental policies.
Stabel, J R; Hurd, S; Calvente, L; Rosenbusch, R F
2004-07-01
The 2002 NAHM's Dairy Survey indicated that 87.2% of dairy farms in the United States feed waste milk to their neonatal calves. Although cost-effective, this practice can lead to increased calf morbidity and mortality due to ingestion of pathogenic agents. In an effort to reduce the risk of infection, dairy producers are implementing on-farm pasteurization of the waste milk as a control procedure before feeding the milk to calves. In the present study, the efficacy of a commercial high-temperature, short-time (HTST) on-farm pasteurizer unit to destroy Mycobacterium paratuberculosis, Salmonella enterica spp., and Mycoplasma spp. in raw milk was evaluated. Replicate experiments were run for 3 isolates of M. paratuberculosis, 3 serovars of Salmonella (derby, dublin, typhimurium); and 4 species of Mycoplasma (bovis, californicum, canadense, serogroup 7) at 2 different levels of experimental inoculation. In addition, HTST pasteurization experiments were performed on colostrum experimentally inoculated with M. paratuberculosis. After culture of the pasteurized milk samples, no viable M. paratuberculosis, Salmonella, or Mycoplasma were recovered, regardless of species, strain, or isolate. Pasteurization of colostrum was also effective in the destruction of M. paratuberculosis but resulted in an average 25% reduction in colostral immunoglobulin. These results suggest that HTST pasteurization is effective in generating a safer product to feed to young calves.
Directory of Open Access Journals (Sweden)
Miriane de Oliveira
Full Text Available The present study aimed to examine the effects of thyroid hormone (TH, more precisely triiodothyronine (T3, on the modulation of leptin mRNA expression and the involvement of the phosphatidyl inositol 3 kinase (PI3K signaling pathway in adipocytes, 3T3-L1, cell culture. We examined the involvement of this pathway in mediating TH effects by treating 3T3-L1 adipocytes with physiological (P=10nM or supraphysiological (SI=100 nM T3 dose during one hour (short time, in the absence or the presence of PI3K inhibitor (LY294002. The absence of any treatment was considered the control group (C. RT-qPCR was used for mRNA expression analyzes. For data analyzes ANOVA complemented with Tukey's test was used at 5% significance. T3 increased leptin mRNA expression in P (2.26 ± 0.36, p 0.001. These results demonstrate that the activation of the PI3K signaling pathway has a role in TH-mediated direct and indirect leptin gene expression in 3T3-L1 adipocytes.
Directory of Open Access Journals (Sweden)
Nicklas Heine Staunstrup
2017-12-01
Full Text Available Background: Epigenetic epidemiology has proven an important research discipline in the delineation of diseases of complex etiology. The approach, in such studies, is often to use bio-banked clinical material, however, many such samples were collected for purposes other than epigenetic studies and, thus, potentially not processed and stored appropriately. The Danish National Birth Cohort (DNBC includes more than 100,000 peripheral and umbilical cord blood samples shipped from maternity wards by ordinary mail in EDTA tubes. While this and other similar cohorts hold great promises for DNA methylation studies the potential systematic changes prompted by storage at ambient temperatures have never been assessed on a genome-wide level. Methods and Results: In this study, matched EDTA whole blood samples were stored up to three days at room temperature prior to DNA extraction and methylated DNA immunoprecipitation coupled with deep sequencing (MeDIP-seq. We established that the quality of the MeDIP-seq libraries was high and comparable across samples; and that the methylation profiles did not change systematically during the short-time storage at room temperature. Conclusion: The global DNA methylation profile is stable in whole blood samples stored for up to three days at room temperature in EDTA tubes making genome-wide methylation studies on such material feasible.
International Nuclear Information System (INIS)
Meyer, L W; Schoenherr, R; Hockauf, M
2010-01-01
Since fully-dense ultrafine or nanocrystalline bulk materials can be processed, there has been an increasing scientific interest in several plastic deformation (SPD) procedures, particularly in the last decade. Especially the equal-channel angular pressing (ECAP) has widely been investigated due to its ability of producing billets sufficiently large for industrial applications in functional or structural components. The significant strength increase based on grain refinement is typically accompanied by a significant decrease in ductility and toughness. Within this work, a new methodology was applied for combining ECAP with a subsequent high-temperature short-time aging for the 6063 aluminium alloy. An increase in strength, ductility as well as impact toughness regarding its coarse grained counterparts was reached. More precisely, ultimate tensile strength, elongation to failure and impact toughness were increased by 46%, 21% and 40% respectively. This was observed after only one run of ECAP at room temperature in a solid-solution treated condition and an aging at 170 0 C for 18 minutes. The regular aging time for maximum strength at 170 0 C is around 6 hours. Longer exposure times lead to recrystallisation and, as for regular aging, it leads to overaging, both causing a decrease of properties. The work demonstrates a strategy for an efficient processing of commercial Al-Mg-Si alloys with outstanding mechanical properties.
Yu, Yifei; Luo, Linqing; Li, Bo; Guo, Linfeng; Yan, Jize; Soga, Kenichi
2015-10-01
The measured distance error caused by double peaks in the BOTDRs (Brillouin optical time domain reflectometers) system is a kind of Brillouin scattering spectrum (BSS) deformation, discussed and simulated for the first time in the paper, to the best of the authors' knowledge. Double peak, as a kind of Brillouin spectrum deformation, is important in the enhancement of spatial resolution, measurement accuracy, and crack detection. Due to the variances of the peak powers of the BSS along the fiber, the measured starting point of a step-shape frequency transition region is shifted and results in distance errors. Zero-padded short-time-Fourier-transform (STFT) can restore the transition-induced double peaks in the asymmetric and deformed BSS, thus offering more accurate and quicker measurements than the conventional Lorentz-fitting method. The recovering method based on the double-peak detection and corresponding BSS deformation can be applied to calculate the real starting point, which can improve the distance accuracy of the STFT-based BOTDR system.
International Nuclear Information System (INIS)
Balazs, N.L.
1979-01-01
It is pointed out that in semiclassical dynamics one is encouraged to study the evolution of those curves in phase space which classically represent ensembles corresponding to wave functions. It is shown that the fixed points generate new time scales so that for times longer than the critical times, quantum dynamics will profoundly differ from classical dynamics. (P.L.)
International Nuclear Information System (INIS)
Ventura-Lima, Juliane; Fattorini, Daniele; Regoli, Francesco; Monserrat, Jose M.
2009-01-01
Differences in the toxicological and metabolic pathway of inorganic arsenic compounds are largely unknown for aquatic species. In the present study the effects of short-time and acute exposure to As III and As V were investigated in gills and liver of the common carp, Cyprinus carpio (Cyprinidae), measuring accumulation and chemical speciation of arsenic, and the activity of glutathione-S-transferase omega (GST Ω), the rate limiting enzyme in biotransformation of inorganic arsenic. Oxidative biomarkers included antioxidant defenses (total glutathione-S-transferases, glutathione reductase, glutathione, and glucose-6-phosphate dehydrogenase), total scavenging capacity toward peroxyl radicals, reactive oxygen species (ROS) measurement and lipid peroxidation products. A marked accumulation of arsenic was observed only in gills of carps exposed to 1000 ppb As V . Also in gills, antioxidant responses were mostly modulated through a significant induction of glucose-6-phosphate dehydrogenase activity which probably contributed to reduce ROS formation; however this increase was not sufficient to prevent lipid peroxidation. No changes in metal content were measured in liver of exposed carps, characterized by lower activity of GST Ω compared to gills. On the other hand, glutathione metabolism was more sensitive in liver tissue, where a significant inhibition of glutathione reductase was concomitant with increased levels of glutathione and higher total antioxidant capacity toward peroxyl radicals, thus preventing lipid peroxidation and ROS production. The overall results of this study indicated that exposure of C. carpio to As III and As V can induce different responses in gills and liver of this aquatic organism. - Common carp (Cyprinus carpio) presented marked differences between gills and liver after arsenic exposure in terms of antioxidant responses and also in biotransformation.
Narita, Kazuto; Ishii, Yuuki; Vo, Phuc Thi Hong; Nakagawa, Fumiko; Ogata, Shinichi; Yamashita, Kunihiko; Kojima, Hajime; Itagaki, Hiroshi
2018-01-01
Recently, animal testing has been affected by increasing ethical, social, and political concerns regarding animal welfare. Several in vitro safety tests for evaluating skin sensitization, such as the human cell line activation test (h-CLAT), have been proposed. However, similar to other tests, the h-CLAT has produced false-negative results, including in tests for acid anhydride and water-insoluble chemicals. In a previous study, we demonstrated that the cause of false-negative results from phthalic anhydride was hydrolysis by an aqueous vehicle, with IL-8 release from THP-1 cells, and that short-time exposure to liquid paraffin (LP) dispersion medium could reduce false-negative results from acid anhydrides. In the present study, we modified the h-CLAT by applying this exposure method. We found that the modified h-CLAT is a promising method for reducing false-negative results obtained from acid anhydrides and chemicals with octanol-water partition coefficients (LogK ow ) greater than 3.5. Based on the outcomes from the present study, a combination of the original and the modified h-CLAT is suggested for reducing false-negative results. Notably, the combination method provided a sensitivity of 95% (overall chemicals) or 93% (chemicals with LogK ow > 2.0), and an accuracy of 88% (overall chemicals) or 81% (chemicals with LogK ow > 2.0). We found that the combined method is a promising evaluation scheme for reducing false-negative results seen in existing in vitro skin-sensitization tests. In the future, we expect a combination of original and modified h-CLAT to be applied in a newly developed in vitro test for evaluating skin sensitization.
Behera, G; Sutar, P P; Aditya, S
2017-11-01
The commercially available dry turmeric powder at 10.34% d.b. moisture content was decontaminated using microwaves at high power density for short time. To avoid the loss of moisture from turmeric due to high microwave power, the drying kinetics were modelled and considered during optimization of microwave decontamination process. The effect of microwave power density (10, 33.5 and 57 W g -1 ), exposure time (10, 20 and 30 s) and thickness of turmeric layer (1, 2 and 3 mm) on total plate, total yeast and mold (YMC) counts, color change (∆E), average final temperature of the product (T af ), water activity (a w ), Page model rate constant (k) and total moisture loss (ML) was studied. The perturbation analysis was carried out for all variables. It was found that to achieve more than one log reduction in yeast and mold count, a substantial reduction in moisture content takes place leading to the reduced output. The microwave power density significantly affected the YMC, T af and a w of turmeric powder. But the thickness of sample and microwave exposure time showed effect only on T af , a w and ML. The colour of turmeric and Page model rate constant were not significantly changed during the process as anticipated. The numerical optimization was done at 57.00 W g -1 power density, 1.64 mm thickness of sample layer and 30 s exposure time. It resulted into 1.6 × 10 7 CFU g -1 YMC, 82.71 °C T af , 0.383 a w and 8.41% (d.b.) final moisture content.
Energy Technology Data Exchange (ETDEWEB)
Ventura-Lima, Juliane [Instituto de Ciencias Biologicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS (Brazil); Programa de Pos-Graduacao em Ciencias Fisiologicas - Fisiologia Animal Comparada (FURG), Rio Grande, RS (Brazil); Fattorini, Daniele; Regoli, Francesco [Istituto di Biologia e Genetica, Universita Politecnica delle Marche, 60100, Ancona (Italy); Monserrat, Jose M., E-mail: josemmonserrat@pesquisador.cnpq.b [Instituto de Ciencias Biologicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS (Brazil); Programa de Pos-Graduacao em Ciencias Fisiologicas - Fisiologia Animal Comparada (FURG), Rio Grande, RS (Brazil)
2009-12-15
Differences in the toxicological and metabolic pathway of inorganic arsenic compounds are largely unknown for aquatic species. In the present study the effects of short-time and acute exposure to As{sup III} and As{sup V} were investigated in gills and liver of the common carp, Cyprinus carpio (Cyprinidae), measuring accumulation and chemical speciation of arsenic, and the activity of glutathione-S-transferase omega (GST OMEGA), the rate limiting enzyme in biotransformation of inorganic arsenic. Oxidative biomarkers included antioxidant defenses (total glutathione-S-transferases, glutathione reductase, glutathione, and glucose-6-phosphate dehydrogenase), total scavenging capacity toward peroxyl radicals, reactive oxygen species (ROS) measurement and lipid peroxidation products. A marked accumulation of arsenic was observed only in gills of carps exposed to 1000 ppb As{sup V}. Also in gills, antioxidant responses were mostly modulated through a significant induction of glucose-6-phosphate dehydrogenase activity which probably contributed to reduce ROS formation; however this increase was not sufficient to prevent lipid peroxidation. No changes in metal content were measured in liver of exposed carps, characterized by lower activity of GST OMEGA compared to gills. On the other hand, glutathione metabolism was more sensitive in liver tissue, where a significant inhibition of glutathione reductase was concomitant with increased levels of glutathione and higher total antioxidant capacity toward peroxyl radicals, thus preventing lipid peroxidation and ROS production. The overall results of this study indicated that exposure of C. carpio to As{sup III} and As{sup V} can induce different responses in gills and liver of this aquatic organism. - Common carp (Cyprinus carpio) presented marked differences between gills and liver after arsenic exposure in terms of antioxidant responses and also in biotransformation.
Institute of Scientific and Technical Information of China (English)
E.M.E. ZAYED
2004-01-01
The asymptotic expansion of the heat kernel Θ(t)(∞∑=(i=0))exp (-λi) where({λi}∞i=1) Are the eigen-values of negative Laplacian( -△n=-n∑k=1(θ/θxk)2)in Rn(n=2 or 3) is studied for short-time t for a general bounded domainθΩwith a smooth boundary θΩ.In this paper, we consider the case of a finite number of the Dirichlet conditions φ=0 on Γi (i = J +1,….,J)and the Neumann conditions and (θφ/θ vi) = 0 on Γi (i = J+1,…,k) and the Robin condition (θφ/θ vi+γi) θ=(I=k+1,… m) where γi are piecewise smooth positive impedancem(θφ=mUi=1Γi. )We construct the required asymptotics in the form of a power series over t. The senior coe.cients inthis series are speci.ed as functionals of the geometric shape of the domain Ω.This result is applied to calculatethe one-particle partition function of a "special ideal gas", i.e., the set of non-interacting particles set up in abox with Dirichlet, Neumann and Robin boundary conditions for the appropriate wave function. Calculationof the thermodynamic quantities for the ideal gas such as the internal energy, pressure and speci.c heat revealsthat these quantities alone are incapable of distinguishing between two di.erent shapes of the domain. Thisconclusion seems to be intuitively clear because it is based on a limited information given by a one-particlepartition function; nevertheless, its formal theoretical motivation is of some interest.
Thinking Critically about Critical Thinking
Mulnix, Jennifer Wilson
2012-01-01
As a philosophy professor, one of my central goals is to teach students to think critically. However, one difficulty with determining whether critical thinking can be taught, or even measured, is that there is widespread disagreement over what critical thinking actually is. Here, I reflect on several conceptions of critical thinking, subjecting…
Xu, Sa; Labuza, Theodore P.; Diez-Gonzalez, Francisco
2008-01-01
The milk supply is considered a primary route for a bioterrorism attack with Bacillus anthracis spores because typical high-temperature short-time (HTST) pasteurization conditions cannot inactivate spores. In the event of intentional contamination, an effective method to inactivate the spores in milk under HTST processing conditions is needed. This study was undertaken to identify combinations and concentrations of biocides that can inactivate B. anthracis spores at temperatures in the HTST range in less than 1 min. Hydrogen peroxide (HP), sodium hypochlorite (SH), and peroxyacetic acid (PA) were evaluated for their efficacy in inactivating spores of strains 7702, ANR-1, and 9131 in milk at 72, 80, and 85°C using a sealed capillary tube technique. Strains ANR-1 and 9131 were more resistant to all of the biocide treatments than strain 7702. Addition of 1,260 ppm SH to milk reduced the number of viable spores of each strain by 6 log CFU/ml in less than 90 and 60 s at 72 and 80°C, respectively. After neutralization, 1,260 ppm SH reduced the time necessary to inactivate 6 log CFU/ml (TTI6-log) at 80°C to less than 20 s. Treatment of milk with 7,000 ppm HP resulted in a similar level of inactivation in 60 s. Combined treatment with 1,260 ppm SH and 1,800 ppm HP inactivated spores of all strains in less than 20 s at 80°C. Mixing 15 ppm PA with milk containing 1,260 ppm SH resulted in TTI6-log of 25 and 12 s at 72 and 80°C, respectively. TTI6-log of less than 20 s were also achieved at 80°C by using two combinations of biocides: 250 ppm SH, 700 ppm HP, and 150 ppm PA; and 420 ppm SH (pH 7), 1,100 ppm HP, and 15 ppm PA. These results indicated that different combinations of biocides could consistently result in 6-log reductions in the number of B. anthracis spores in less than 1 min at temperatures in the HTST range. This information could be useful for developing more effective thermal treatment strategies which could be used in HTST milk plants to process
Xu, Sa; Labuza, Theodore P; Diez-Gonzalez, Francisco
2008-06-01
The milk supply is considered a primary route for a bioterrorism attack with Bacillus anthracis spores because typical high-temperature short-time (HTST) pasteurization conditions cannot inactivate spores. In the event of intentional contamination, an effective method to inactivate the spores in milk under HTST processing conditions is needed. This study was undertaken to identify combinations and concentrations of biocides that can inactivate B. anthracis spores at temperatures in the HTST range in less than 1 min. Hydrogen peroxide (HP), sodium hypochlorite (SH), and peroxyacetic acid (PA) were evaluated for their efficacy in inactivating spores of strains 7702, ANR-1, and 9131 in milk at 72, 80, and 85 degrees C using a sealed capillary tube technique. Strains ANR-1 and 9131 were more resistant to all of the biocide treatments than strain 7702. Addition of 1,260 ppm SH to milk reduced the number of viable spores of each strain by 6 log CFU/ml in less than 90 and 60 s at 72 and 80 degrees C, respectively. After neutralization, 1,260 ppm SH reduced the time necessary to inactivate 6 log CFU/ml (TTI6-log) at 80 degrees C to less than 20 s. Treatment of milk with 7,000 ppm HP resulted in a similar level of inactivation in 60 s. Combined treatment with 1,260 ppm SH and 1,800 ppm HP inactivated spores of all strains in less than 20 s at 80 degrees C. Mixing 15 ppm PA with milk containing 1,260 ppm SH resulted in TTI6-log of 25 and 12 s at 72 and 80 degrees C, respectively. TTI6-log of less than 20 s were also achieved at 80 degrees C by using two combinations of biocides: 250 ppm SH, 700 ppm HP, and 150 ppm PA; and 420 ppm SH (pH 7), 1,100 ppm HP, and 15 ppm PA. These results indicated that different combinations of biocides could consistently result in 6-log reductions in the number of B. anthracis spores in less than 1 min at temperatures in the HTST range. This information could be useful for developing more effective thermal treatment strategies which could be
Myer, Phillip R; Parker, Kyle R; Kanach, Andrew T; Zhu, Tengliang; Morgan, Mark T; Applegate, Bruce M
2016-01-01
Pasteurization has long been the standard method to extend the shelf-life of dairy products, as well as a means to reduce microbial load and the risk of food-borne pathogens. However, the process has limitations, which include cost effectiveness, high energy input, and reduction of product quality/organoleptic characteristics. In an effort to reduce these limitations and extend shelf-life, this study examined a novel low temperature, short time (LTST) method in which dispersed milk in the form of droplets was treated with low heat/pressure variation over a short treatment time, in conjunction with pasteurization. Lactobacillus fermentum and Pseudomonas fluorescens Migula were exposed to conventional pasteurization treatments with and without LTST. Using these organisms, the LTST addition was able to reduce microbial load below detection limits; 1.0 × 10(1) cfu/mL, from approximately 1.2 × 10(8) and 1.0 × 10(7) cfu/mL for L. fermentum and P. fluorescens Migula, respectively. In addition, the shelf-life of the treated, raw, and uninoculated product was prolonged from 14 to 35 days, compared with standard pasteurization, to as long as 63 days with the LTST amendment. Sensory analysis of samples also demonstrated equal or greater preference for LTST + pasteurization treated milk when compared to pasteurization alone (α = 0.05). Conventional pasteurization was effective at reducing the above mentioned microorganisms by as much as 5.0 log10 cfu/mL. However, LTST was able to achieve 7.0-8.0 log10 cfu/mL reduction of the same microorganisms. In addition, BActerial Rapid Detection using Optical scattering Technology detected and identified microorganisms isolated both pre- and post-treatment, of which the only organisms surviving LTST were Bacillus spp. Increased lethality, improved shelf-life, and equal or better organoleptic characteristics without increased energy consumption demonstrate the effectiveness of the incorporation of LTST. The improved
Huerta-García, Elizabeth; Márquez-Ramírez, Sandra Gissela; Ramos-Godinez, María Del Pilar; López-Saavedra, Alejandro; Herrera, Luis Alonso; Parra, Alberto; Alfaro-Moreno, Ernesto; Gómez, Erika Olivia; López-Marure, Rebeca
2015-12-01
Many nanoparticles (NPs) have toxic effects on multiple cell lines. This toxicity is assumed to be related to their accumulation within cells. However, the process of internalization of NPs has not yet been fully characterized. In this study, the cellular uptake, accumulation, and localization of titanium dioxide nanoparticles (TiO2 NPs) in rat (C6) and human (U373) glial cells were analyzed using time-lapse microscopy (TLM) and transmission electron microscopy (TEM). Cytochalasin D (Cyt-D) was used to evaluate whether the internalization process depends of actin reorganization. To determine whether the NP uptake is mediated by phagocytosis or macropinocytosis, nitroblue tetrazolium (NBT) reduction was measured and the 5-(N-ethyl-N-isopropyl)-amiloride was used. Expression of proteins involved with endocytosis and exocytosis such as caveolin-1 (Cav-1) and cysteine string proteins (CSPs) was also determined using flow cytometry. TiO2 NPs were taken up by both cell types, were bound to cellular membranes and were internalized at very short times after exposure (C6, 30 min; U373, 2h). During the uptake process, the formation of pseudopodia and intracellular vesicles was observed, indicating that this process was mediated by endocytosis. No specific localization of TiO2 NPs into particular organelles was found: in contrast, they were primarily localized into large vesicles in the cytoplasm. Internalization of TiO2 NPs was strongly inhibited by Cyt-D in both cells and by amiloride in U373 cells; besides, the observed endocytosis was not associated with NBT reduction in either cell type, indicating that macropinocytosis is the main process of internalization in U373 cells. In addition, increases in the expression of Cav-1 protein and CSPs were observed. In conclusion, glial cells are able to internalize TiO2 NPs by a constitutive endocytic mechanism which may be associated with their strong cytotoxic effect in these cells; therefore, TiO2 NPs internalization and their
Critical care helps people with life-threatening injuries and illnesses. It might treat problems such as complications from surgery, ... attention by a team of specially-trained health care providers. Critical care usually takes place in an ...
International Nuclear Information System (INIS)
Nabiałek, A; Wiśniewski, A; Chabanenko, V V; Vasiliev, S V; Tsvetkov, T V; Pérez-Rodríguez, F
2012-01-01
We studied the critical state stability of a large cubic sample of single-crystalline La 1.85 Sr 0.15 CuO 4 for different sample orientations with respect to the external magnetic field as well as the dynamics of the flux jumps. It is shown that thermomagnetic avalanches develop under dynamic conditions, which are characterized by the magnetic diffusivity being significantly lower than the thermal case. In this case, the critical state stability depends strongly on the cooling conditions. We compared predictions from the isothermal model and from the model for a weakly cooled sample with experimental results. In both models, the field of the first flux jump decreases with increase of the sweep rate of the external magnetic field. We also investigated the influence of the external magnetic field on the dynamics of the following stages of the thermomagnetic avalanche. It is shown that the dynamics of the flux jumps is correlated with the magnetic diffusivity, which is proportional to the flux flow resistivity. (paper)
Discerning Thermodynamic Basis of Self-Organization in Critical Zone Structure and Function
Richardson, M.; Kumar, P.
2017-12-01
Self-organization characterizes the spontaneous emergence of order. Self-organization in the Critical Zone, the region of Earth's skin from below the groundwater table to the top of the vegetation canopy, involves the interaction of biotic and abiotic processes occurring through a hierarchy of temporal and spatial scales. The self-organization is sustained through input of energy and material in an open system framework, and the resulting formations are called dissipative structures. Why do these local states of organization form and how are they thermodynamically favorable? We hypothesize that structure formation is linked to energy conversion and matter throughput rates across driving gradients. Furthermore, we predict that structures in the Critical Zone evolve based on local availability of nutrients, water, and energy. By considering ecosystems as open thermodynamic systems, we model and study the throughput signatures on short times scales to determine origins and characteristics of ecosystem structure. This diagnostic approach allows us to use fluxes of matter and energy to understand the thermodynamic drivers of the system. By classifying the fluxes and dynamics in a system, we can identify patterns to determine the thermodynamic drivers for organized states. Additionally, studying the partitioning of nutrients, water, and energy throughout ecosystems through dissipative structures will help identify reasons for structure shapes and how these shapes impact major Critical Zone functions.
How Critical Is Critical Thinking?
Shaw, Ryan D.
2014-01-01
Recent educational discourse is full of references to the value of critical thinking as a 21st-century skill. In music education, critical thinking has been discussed in relation to problem solving and music listening, and some researchers suggest that training in critical thinking can improve students' responses to music. But what exactly is…
Lifescience Database Archive (English)
Full Text Available and nucleotide oligomerisation domain inthe regulation of health and disease. Pu...bmedID 17535871 Title Critical role of toll-like receptors and nucleotide oligomerisation domain inthe regulation of health...17535871 Critical role of toll-like receptors and nucleotide oligomerisation domain inthe regulation of heal...th and disease. Mitchell JA, Paul-Clark MJ, Clarke GW, McMaster SK, Cartwright N. J
Directory of Open Access Journals (Sweden)
Pippin Barr
2016-11-01
Full Text Available Games can serve a critical function in many different ways, from serious games about real world subjects to self-reflexive commentaries on the nature of games themselves. In this essay we discuss critical possibilities stemming from the area of critical design, and more specifically Carl DiSalvo’s adversarial design and its concept of reconfiguring the remainder. To illustrate such an approach, we present the design and outcomes of two games, Jostle Bastard and Jostle Parent. We show how the games specifically engage with two previous games, Hotline Miami and Octodad: Dadliest Catch, reconfiguring elements of those games to create interactive critical experiences and extensions of the source material. Through the presentation of specific design concerns and decisions, we provide a grounded illustration of a particular critical function of videogames and hope to highlight this form as another valuable approach in the larger area of videogame criticism.
Simon, Jane
2010-01-01
This essay considers how written language frames visual objects. Drawing on Michel Foucault’s response to Raymond Roussel’s obsessive description, the essay proposes a model of criticism where description might press up against its objects. This critical closeness is then mapped across the conceptual art practice and art criticism of Ian Burn. Burn attends to the differences between seeing and reading, and considers the conditions which frame how we look at images, including how w...
International Nuclear Information System (INIS)
Alsaed, A.
2004-01-01
The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality
NVU dynamics. II. Comparing to four other dynamics
DEFF Research Database (Denmark)
Ingebrigtsen, Trond; Toxværd, Søren; Schrøder, Thomas
2011-01-01
-potential-energy hypersurface. Here, simulations of NVU dynamics are compared to results for four other dynamics, both deterministic and stochastic. First, NVU dynamics is compared to the standard energy-conserving Newtonian NVE dynamics by simulations of the Kob-Andersen binary Lennard-Jones liquid, its WCA version (i.......e., with cut-off's at the pair potential minima), and the Lennard-Jones Gaussian liquid. We find identical results for all quantities probed: radial distribution functions, incoherent intermediate scattering functions, and mean-square displacement as function of time. Arguments are presented...... on the constant-potential-energy hypersurface, and to Nos-Hoover NVT dynamics. If time is scaled for the two stochastic dynamics to make single-particle diffusion constants identical to that of NVE dynamics, the simulations show that all five dynamics are equivalent at low temperatures except at short times....
Xue, You-Lin; Wang, Hao; Riedy, Michael; Roberts, Brittany-Lee; Sun, Yuna; Song, Yong-Bo; Jones, Gary W; Masison, Daniel C; Song, Youtao
2018-05-01
Genetic screens using Saccharomyces cerevisiae have identified an array of Hsp40 (Ydj1p) J-domain mutants that are impaired in the ability to cure the yeast [URE3] prion through disrupting functional interactions with Hsp70. However, biochemical analysis of some of these Hsp40 J-domain mutants has so far failed to provide major insight into the specific functional changes in Hsp40-Hsp70 interactions. To explore the detailed structural and dynamic properties of the Hsp40 J-domain, 20 ns molecular dynamic simulations of 4 mutants (D9A, D36A, A30T, and F45S) and wild-type J-domain were performed, followed by Hsp70 docking simulations. Results demonstrated that although the Hsp70 interaction mechanism of the mutants may vary, the major structural change was targeted to the critical HPD motif of the J-domain. Our computational analysis fits well with previous yeast genetics studies regarding highlighting the importance of J-domain function in prion propagation. During the molecular dynamics simulations several important residues were identified and predicted to play an essential role in J-domain structure. Among these residues, Y26 and F45 were confirmed, using both in silico and in vivo methods, as being critical for Ydj1p function.
DEFF Research Database (Denmark)
Rosenbaum, Ralph K.; Olsen, Stig Irving
2018-01-01
Manipulation and mistakes in LCA studies are as old as the tool itself, and so is its critical review. Besides preventing misuse and unsupported claims, critical review may also help identifying mistakes and more justifiable assumptions as well as generally improve the quality of a study. It thus...... supports the robustness of an LCA and increases trust in its results and conclusions. The focus of this chapter is on understanding what a critical review is, how the international standards define it, what its main elements are, and what reviewer qualifications are required. It is not the objective...... of this chapter to learn how to conduct a critical review, neither from a reviewer nor from a practitioner perspective. The foundation of this chapter and the basis for any critical review of LCA studies are the International Standards ISO 14040:2006, ISO 14044:2006 and ISO TS 14071:2014....
Directory of Open Access Journals (Sweden)
Dhimas Nur Setyawan
2017-05-01
Full Text Available The purpose of this study was to determine the effectiveness of using a scientific based physics module to improve high school students' critical thinking skills. This study is a quasi experimental study which uses two classes taken at random experiment consists of one class and the control class. Class experiments using the scientific study using scientific-based modules and classroom experiments using books that have been owned by students. Experimental class numbered 25 students and control class numbered 28 students. The research was conducted in the first half (one Academic Year 2016/2017. The method used is the test method with a pretest-posttest design. Data were analyzed with quantitative and qualitative methods. Data were analyzed using a pretest form of the homogeneity test to find out that the experimental class and controls used homogeneous. Posttest results were analyzed using normality test to determine the normally distributed data, N-gain to determine the increase critical thinking skills, as well as test two parties not bound to determine whether or not there is a difference in the increase in critical thinking skills. Conclusions and recommendations are the use of scientifically-based modules effectively improve the ability to think critically and use physics-based scientific modules should be adjusted to the prevailing syllabus and curriculum so that learning can take place properly.
Ngobese, Nomali Ziphorah; Workneh, Tilahun Seyoum; Siwela, Muthulisi
2017-01-01
Processing conditions are an important determinant of French fry quality. However, the effect of low-temperature long-time (LTLT) and high-temperature short-time (HTST) blanching and frying treatments has not been investigated in many cultivars. The current study investigates the effect of the sequential application of these treatments on French fries processed from six Irish potato cultivars (Fianna, Innovator, Mondial, Navigator, Panamera and Savanna). Blanching was effected at 75 °C for 10...
African Journals Online (AJOL)
both formal and informal) in culture and social theory. CRITICAL ARTS aims to challenge and ... Book Review: Brian McNair, An Introduction to Political Communication (3rd edition), London: Routledge, 2003, ISBN 0415307082, 272pp. Phil Joffe ...
Directory of Open Access Journals (Sweden)
Jane Simon
2010-09-01
Full Text Available This essay considers how written language frames visual objects. Drawing on Michel Foucault’s response to Raymond Roussel’s obsessive description, the essay proposes a model of criticism where description might press up against its objects. This critical closeness is then mapped across the conceptual art practice and art criticism of Ian Burn. Burn attends to the differences between seeing and reading, and considers the conditions which frame how we look at images, including how we look at, and through words. The essay goes on to consider Meaghan Morris’s writing on Lynn Silverman’s photographs. Both Morris and Burn offer an alternative to a parasitic model of criticism and enact a patient way of looking across and through visual landscapes.
Directory of Open Access Journals (Sweden)
Simon, Jane
2010-01-01
Full Text Available This essay considers how written language frames visual objects. Drawing on Michel Foucault’s response to Raymond Roussel’s obsessive description, the essay proposes a model of criticism where description might press up against its objects. This critical closeness is then mapped across the conceptual art practice and art criticism of Ian Burn. Burn attends to the differences between seeing and reading, and considers the conditions which frame how we look at images, including how we look at, and through words. The essay goes on to consider Meaghan Morris’s writing on Lynn Silverman’s photographs. Both Morris and Burn offer an alternative to a parasitic model of criticism and enact a patient way of looking across and through visual landscapes.
International Nuclear Information System (INIS)
Walker, G.
1983-01-01
When a sufficient quantity of fissile material is brought together a self-sustaining neutron chain reaction will be started in it and will continue until some change occurs in the fissile material to stop the chain reaction. The quantity of fissile material required is the 'Critical Mass'. This is not a fixed quantity even for a given type of fissile material but varies between quite wide limits depending on a number of factors. In a nuclear reactor the critical mass of fissile material is assembled under well-defined condition to produce a controllable chain reaction. The same materials have to be handled outside the reactor in all stages of fuel element manufacture, storage, transport and irradiated fuel reprocessing. At any stage it is possible (at least in principle) to assemble a critical mass and thus initiate an accidental and uncontrollable chain reaction. Avoiding this is what criticality safety is all about. A system is just critical when the rate of production of neutrons balances the rate of loss either by escape or by absorption. The factors affecting criticality are, therefore, those which effect neutron production and loss. The principal ones are:- type of nuclide and enrichment (or isotopic composition), moderation, reflection, concentration (density), shape and interaction. Each factor is considered in detail. (author)
Dynamics of nonstationary dipole vortices
DEFF Research Database (Denmark)
Hesthaven, J.S.; Lynov, Jens-Peter; Nycander, J.
1993-01-01
The dynamics of tilted dipole vortices in the equivalent barotropic vorticity (or Hasegawa-Mima) equation is studied. A recent theory is compared with numerical simulations and found to describe the short time behavior of dipole vortices well. In the long time limit the dipoles are found to eithe...... disintegrate or relax toward a steady eastward propagating dipole vortex. This relaxation is a consequence of nonviscous enstrophy loss by the dipole vortex....
Coexistence in neutral theories: interplay of criticality and mild local preferences
International Nuclear Information System (INIS)
Borile, Claudio; Molina-Garcia, Daniel; Muñoz, Miguel A; Maritan, Amos
2015-01-01
Neutral theories have played a crucial and revolutionary role in fields such as population genetics and biogeography. These theories are critical by definition, in the sense that the overall growth rate of each single allele/species/type vanishes. Thus each species in a neutral model sits at the edge between invasion and extinction, allowing for the coexistence of symmetric/neutral types. However, in finite systems, mono-dominated states are ineluctably reached in relatively short times owing to demographic fluctuations, thus leaving us with an unsatisfactory framework to rationalize empirically-observed long-term coexistence. Here, we scrutinize the effect of heterogeneity in quasi-neutral theories, in which there can be a local mild preference for some of the competing species at some sites, even if the overall species symmetry is maintained. As we show here, mild biases at a small fraction of locations suffice to induce overall robust and durable species coexistence, even in regions arbitrarily far apart from the biased locations. This result stems from the long-range nature of the underlying critical bulk dynamics and has a number of implications, for example, in conservation ecology as it suggests that constructing local specific ‘sanctuaries’ for different competing species can result in global enhancement of biodiversity, even in regions arbitrarily distant from the protected refuges. (paper)
Furthering critical institutionalism
Directory of Open Access Journals (Sweden)
Frances Dalton Cleaver
2015-03-01
Full Text Available This special issue furthers the study of natural resource management from a critical institutional perspective. Critical institutionalism (CI is a contemporary body of thought that explores how institutions dynamically mediate relationships between people, natural resources and society. It focuses on the complexity of institutions entwined in everyday social life, their historical formation, the interplay between formal and informal, traditional and modern arrangements, and the power relations that animate them. In such perspectives a social justice lens is often used to scrutinise the outcomes of institutional processes. We argue here that critical institutional approaches have potentially much to offer commons scholarship, particularly through the explanatory power of the concept of bricolage for better understanding institutional change. Critical institutional approaches, gathering momentum over the past 15 years or so, have excited considerable interest but the insights generated from different disciplinary perspectives remain insufficiently synthesised. Analyses emphasising complexity can be relatively illegible to policy-makers, a fact which lessens their reach. This special issue therefore aims to synthesise critical institutional ideas and so to lay the foundation for moving beyond the emergent stage to make meaningful academic and policy impact. In bringing together papers here we define and synthesise key themes of critical institutionalism, outline the concept of institutional bricolage and identity some key challenges facing this school of thought.
Zhou, Dan; Peng, Tangjian; Zhou, Hongbo; Liu, Xueduan; Gu, Guohua; Chen, Miao; Qiu, Guanzhou; Zeng, Weimin
2015-07-01
Sulfate adenylyltransferase gene and 4Fe-4S ferredoxin gene are the key genes related to sulfur and iron oxidations during bioleaching system, respectively. In order to better understand the bioleaching and microorganism synergistic mechanism in chalcopyrite bioleaching by mixed culture of moderate thermophiles, expressions of the two energy metabolism genes and community dynamics of free and attached microorganisms were investigated. Specific primers were designed for real-time quantitative PCR to study the expression of these genes. Real-time PCR results showed that sulfate adenylyltransferase gene was more highly expressed in Sulfobacillus thermosulfidooxidans than that in Acidithiobacillus caldus, and expression of 4Fe-4S ferredoxin gene was higher in Ferroplasma thermophilum than that in S. thermosulfidooxidans and Leptospirillum ferriphilum. The results indicated that in the bioleaching system of chalcopyrite concentrate, sulfur and iron oxidations were mainly performed by S. thermosulfidooxidans and F. thermophilum, respectively. The community dynamics results revealed that S. thermosulfidooxidans took up the largest proportion during the whole period, followed by F. thermophilum, A. caldus, and L. ferriphilum. The CCA analysis showed that 4Fe-4S ferredoxin gene expression was mainly affected (positively correlated) by high pH and elevated concentration of ferrous ion, while no factor was observed to prominently influence the expression of sulfate adenylyltransferase gene.
Energy Technology Data Exchange (ETDEWEB)
Korayem, Moharam Habibnejad, E-mail: hkorayem@iust.ac.ir; Saraie, Maniya B.; Saraee, Mahdieh B.
2017-04-15
exerts the smallest force on a biological nanoparticle. Therefore, the rectangular cantilever is a more suitable geometry for preventing the exertion of excessive force and the possible damage of such nanoparticle. - Highlights: • The stiffness for three types of rectangular, V-shape and dagger cantilevers have been computed. • The values of cantilever deflections by applying a force on the three types of cantilevers have been obtained. • The dagger shape cantilever requires the highest amounts of critical force and time in 3D manipulation. • Maximum and minimum amounts of critical forces for nanoparticle are applied by conical and cylindrical probe tips. • By increasing the distance of the probe tip from the cantilever end, the critical force for nanoparticle movement, increases.
International Nuclear Information System (INIS)
Korayem, Moharam Habibnejad; Saraie, Maniya B.; Saraee, Mahdieh B.
2017-01-01
smallest force on a biological nanoparticle. Therefore, the rectangular cantilever is a more suitable geometry for preventing the exertion of excessive force and the possible damage of such nanoparticle. - Highlights: • The stiffness for three types of rectangular, V-shape and dagger cantilevers have been computed. • The values of cantilever deflections by applying a force on the three types of cantilevers have been obtained. • The dagger shape cantilever requires the highest amounts of critical force and time in 3D manipulation. • Maximum and minimum amounts of critical forces for nanoparticle are applied by conical and cylindrical probe tips. • By increasing the distance of the probe tip from the cantilever end, the critical force for nanoparticle movement, increases.
DEFF Research Database (Denmark)
Svegaard, Robin Sebastian Kaszmarczyk
2015-01-01
This article will introduce and take a look at a specific subset of the fan created remix videos known as vids, namely those that deal with feminist based critique of media. Through examples, it will show how fans construct and present their critique, and finally broach the topic of the critical ...
Critical reading and critical thinking Critical reading and critical thinking
Directory of Open Access Journals (Sweden)
Loni Kreis Taglieber
2008-04-01
Full Text Available The purpose of this paper is to provide, for L1 and L2 reading and writing teachers, a brief overview of the literature about critical reading and higher level thinking skills. The teaching of these skills is still neglected in some language classes in Brazil, be it in L1 or in L2 classes. Thus, this paper may also serve as a resource guide for L1 and/or L2 reading and writing teachers who want to incorporate critical reading and thinking into their classes. In modern society, even in everyday life people frequently need to deal with complicated public and political issues, make decisions, and solve problems. In order to do this efficiently and effectively, citizens must be able to evaluate critically what they see, hear, and read. Also, with the huge amount of printed material available in all areas in this age of “information explosion” it is easy to feel overwhelmed. But often the information piled up on people’s desks and in their minds is of no use due to the enormous amount of it. The purpose of this paper is to provide, for L1 and L2 reading and writing teachers, a brief overview of the literature about critical reading and higher level thinking skills. The teaching of these skills is still neglected in some language classes in Brazil, be it in L1 or in L2 classes. Thus, this paper may also serve as a resource guide for L1 and/or L2 reading and writing teachers who want to incorporate critical reading and thinking into their classes. In modern society, even in everyday life people frequently need to deal with complicated public and political issues, make decisions, and solve problems. In order to do this efficiently and effectively, citizens must be able to evaluate critically what they see, hear, and read. Also, with the huge amount of printed material available in all areas in this age of “information explosion” it is easy to feel overwhelmed. But often the information piled up on people’s desks and in their minds is of
Directory of Open Access Journals (Sweden)
Elisa Alòs
2008-01-01
Full Text Available We obtain a Hull and White type formula for a general jump-diffusion stochastic volatility model, where the involved stochastic volatility process is correlated not only with the Brownian motion driving the asset price but also with the asset price jumps. Towards this end, we establish an anticipative Itô's formula, using Malliavin calculus techniques for Lévy processes on the canonical space. As an application, we show that the dependence of the volatility process on the asset price jumps has no effect on the short-time behavior of the at-the-money implied volatility skew.
International Nuclear Information System (INIS)
Canavese, Susana I.
2000-01-01
A criticality accident occurred at 10:35 on September 30, 1999. It occurred in a precipitation tank in a Conversion Test Building at the JCO Tokai Works site in Tokaimura (Tokai Village) in the Ibaraki Prefecture of Japan. STA provisionally rated this accident a 4 on the seven-level, logarithmic International Nuclear Event Scale (INES). The September 30, 1999 criticality accident at the JCO Tokai Works Site in Tokaimura, Japan in described in preliminary, technical detail. Information is based on preliminary presentations to technical groups by Japanese scientists and spokespersons, translations by technical and non-technical persons of technical web postings by various nuclear authorities, and English-language non-technical reports from various news media and nuclear-interest groups. (author)
International Nuclear Information System (INIS)
Stirling, W.G.; Perry, S.C.
1996-01-01
We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO 3 is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs
Directory of Open Access Journals (Sweden)
Natalia Brzezina
2016-09-01
Full Text Available In a world of growing complexity and uncertainty, food systems must be resilient, i.e., able to deliver sustainable and equitable food and nutrition security in the face of multiple shocks and stresses. The resilience of the European food system that relies mostly on conventional agriculture is a matter of genuine concern and a new approach is called for. Does then organic farming have the potential to reduce vulnerabilities and improve the resilience of the European food system to shocks and stresses? In this paper, we use system dynamics structural thinking tools to identify the vulnerabilities of the conventional food system that result from both its internal structure as well as its exposure to external disturbances. Further, we evaluate whether organic farming can reduce the vulnerabilities. We argue here that organic farming has some potential to bring resilience to the European food system, but it has to be carefully designed and implemented to overcome the contradictions between the dominant socio-economic organization of food production and the ability to enact all organic farming’s principles—health, ecology, fairness and care—on a broader scale.
Trnecková, Lenka; Rotllant, David; Klenerová, Vera; Hynie, Sixtus; Armario, Antonio
2007-02-01
Stress-induced expression of immediate early genes (IEGs) appears to be transient even if the exposure to the stressor persists. However, there are some exceptions which suggest that particular characteristics of stressors can affect the dynamics of IEG expression. We studied in selected telencephalic, diencephalic and brainstem regions the mRNA levels of two clearly distinct IEGs (c-fos and arc) during prolonged exposure to a severe stressor such as immobilization (IMO) and after releasing the rats from the situation. Although regional differences were observed with the two IEGs, overall, c-fos mRNA levels progressively declined over the course of 4 h of continuous exposure to IMO, whereas arc mRNA levels were maintained at high levels in the brain regions that express this gene under stress (telencephalon). Levels of CRF hnRNA in the hypothalamus paraventricular nucleus only slightly declined during prolonged exposure to IMO. Surprisingly, termination of exposure to IMO did not modify CRF gene expression in the paraventricular nucleus or the pattern of IEGs expression, with the exception of c-fos in the lateral septum. Thus, putative signals associated to the termination of exposure to IMO were unable to modify either IEG expression in most brain areas or CRF gene expression in the paraventricular nucleus.
Zeng, Cui J Tracy; Kim, Hye-Ryun; Vargas Arispuro, Irasema; Kim, Jung-Mi; Huang, An-Chi; Liu, Bo
2014-11-01
Cytoplasmic microtubules (MTs) serve as a rate-limiting factor for hyphal tip growth in the filamentous fungus Aspergillus nidulans. We hypothesized that this function depended on the MT plus end-tracking proteins (+TIPs) including the EB1 family protein EBA that decorated the MT plus ends undergoing polymerization. The ebAΔ mutation reduced colony growth and the mutant hyphae appeared in an undulating pattern instead of exhibiting unidirectional growth in the control. These phenotypes were enhanced by a mutation in another +TIP gene clipA. EBA was required for plus end-tracking of CLIPA, the Kinesin-7 motor KipA, and the XMAP215 homologue AlpA. In addition, cytoplasmic dynein also depended on EBA to track on most polymerizing MT plus ends, but not for its conspicuous appearance at the MT ends near the hyphal apex. The loss of EBA reduced the number of cytoplasmic MTs and prolonged dwelling times for MTs after reaching the hyphal apex. Finally, we found that colonies were formed in the absence of EBA, CLIPA, and NUDA together, suggesting that they were dispensable for fundamental functions of MTs. This study provided a comprehensive delineation of the relationship among different +TIPs and their contributions to MT dynamics and unidirectional hyphal expansion in filamentous fungi. © 2014 John Wiley & Sons Ltd.
International Nuclear Information System (INIS)
2003-01-01
Leaders and experts from the petroleum and natural gas industry outlined some of the recent changes that have taken place in the North America gas and electricity industry. The relationship between pipeline and storage capacity was discussed with reference to how the connection affects prices at North American storage hubs. The topics of discussion ranged from the challenges associated with declines in capacity and market dynamics, to how gas marketability will be affected by the slowdown in pipeline development in North America. The investment community offered advice on long-run value creation in natural gas. The current state of development of Arctic gas was highlighted along with a review of how growth in liquefied natural gas (LNG) is changing the role of gas infrastructure in North America. It was noted that although markets will work to balance supply and demand, there is a need for new sources of North American supply to meet growing long-term demand. The fall-off in U.S. domestic natural gas supplies combined with low storage levels has created a supply crisis. The conference featured 19 presentations, of which 4 have been indexed separately for inclusion in this database. refs., tabs., figs
International Nuclear Information System (INIS)
Buchet, Philippe
1999-01-01
Nuclear reactions at the Fermi energy range provide a mean of studying nuclei interaction mechanisms, energy dissipation process and deexcitation phenomena. Heavy ion collisions offer an additional window to on the 'nuclear liquid' phase diagram, in particular its 'critical zone'. We study all these points by analysing the 36 18 Ar + 58 28 Ni and the 129 54 Xe + nat 50 Sn reactions, measured with the 4π INDRA detector. We study light particles production properties from 32 MeV/u to 95 MeV/u. Inclusive measurements show that increasing the incident energies leads to a linear increase of the maximum number of Z = 1 and Z = 2 particles, whereas that of Z ≥ 3 increases weakly. The transverse energy of the Z = 1 and Z = 2 corresponds to a constant fraction of the available energy, whereas this of Z ≥ 3 decreases between 30 MeV/u and 50 MeV/u, and then converges. The same trends appear in the 129 54 Xe + nat 50 Sn reactions, between 25 MeV/u and 50 MeV/u. The incident energy is mostly goes into producing more and more light particles. In addition, a more precise study of the reactions, selecting them according to the charge of the detected quasi-projectile residue (QPR). Whatever the incident energy is, the charge of the QPR is associated to the same mean impact parameter, and the production cross sections of QPR of a given charge also superimpose. These observations suggest a geometrical production mechanism of the QP. The transverse mean energy at a fixed parallel velocity reveals another emission source (MR) at an intermediate velocity between the remnants of the projectile (QP) and of the target (QT). The fit of two thermal surface emission (QP and QT) and one thermal volume emission (MR) on dσ/dν z and (E-perpendicular)(ν z ) establishes that the temperature of the QP depends essentially on the impact parameter, not on the incident energy, whereas the apparent temperature of MR increases strongly with the available energy. The MR source
Toward Superconducting Critical Current by Design.
Sadovskyy, Ivan A; Jia, Ying; Leroux, Maxime; Kwon, Jihwan; Hu, Hefei; Fang, Lei; Chaparro, Carlos; Zhu, Shaofei; Welp, Ulrich; Zuo, Jian-Min; Zhang, Yifei; Nakasaki, Ryusuke; Selvamanickam, Venkat; Crabtree, George W; Koshelev, Alexei E; Glatz, Andreas; Kwok, Wai-Kwong
2016-06-01
A new critical-current-by-design paradigm is presented. It aims at predicting the optimal defect landscape in superconductors for targeted applications by elucidating the vortex dynamics responsible for the bulk critical current. To this end, critical current measurements on commercial high-temperature superconductors are combined with large-scale time-dependent Ginzburg-Landau simulations of vortex dynamics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guha, Abhijit; Nayek, Subhajit
2017-10-01
A compulsory element of all textbooks on natural convection has been a detailed similarity analysis for laminar natural convection on a heated semi-infinite vertical plate and a routinely used boundary condition for such analysis is u = 0 at x = 0. The same boundary condition continues to be assumed in related theoretical analyses, even in recent publications. The present work examines the consequence of this long-held assumption, which appears to have never been questioned in the literature, on the fluid dynamics and heat transfer characteristics. The assessment has been made here by solving the Navier-Stokes equations numerically with two boundary conditions—one with constrained velocity at x = 0 to mimic the similarity analysis and the other with no such constraints simulating the case of a heated vertical plate in an infinite expanse of the quiescent fluid medium. It is found that the fluid flow field given by the similarity theory is drastically different from that given by the computational fluid dynamics (CFD) simulations with unconstrained velocity. This also reflects on the Nusselt number, the prediction of the CFD simulations with unconstrained velocity being quite close to the experimentally measured values at all Grashof and Prandtl numbers (this is the first time theoretically computed values of the average Nusselt number N u ¯ are found to be so close to the experimental values). The difference of the Nusselt number (Δ N u ¯ ) predicted by the similarity theory and that by the CFD simulations (as well as the measured values), both computed with a high degree of precision, can be very significant, particularly at low Grashof numbers and at Prandtl numbers far removed from unity. Computations show that within the range of investigations (104 ≤ GrL ≤ 108, 0.01 ≤ Pr ≤ 100), the maximum value of Δ N u ¯ may be of the order 50%. Thus, for quantitative predictions, the available theory (i.e., similarity analysis) can be rather inadequate. With
AUTHOR|(CDS)2070299
2017-01-01
Critical Mass is a cycling event typically held on the last Friday of every month; its purpose is not usually formalized beyond the direct action of meeting at a set location and time and traveling as a group through city or town streets on bikes. The event originated in 1992 in San Francisco; by the end of 2003, the event was being held in over 300 cities around the world. At CERN it is held once a year in conjunction with the national Swiss campaing "Bike to work".
Hahm, W. J.; Wang, J.; Druhan, J. L.; Rempe, D.; Dietrich, W. E.
2017-12-01
Stream solute concentration-discharge (C-Q) relationships integrate catchment-scale hydrologic and geochemical processes, potentially yielding valuable information about runoff generation and weathering mechanisms. However, recent compilations have established that chemostasis—the condition where solute concentrations are invariant across large ranges of runoff—is observed in watersheds of diverse lithology, climate, and topography, suggesting an equifinality of the C-Q relationship independent of hydrologic process. Here we explore C-Q signals in contrasting catchments of the Eel River Critical Zone (CZ) Observatory in the Northern California Coast Ranges, where, unlike most watersheds where chemostasis has been observed, hillslope hydrologic processes are well characterized via years of intensive hydrologic monitoring. Our two catchments in the Franciscan Complex have radically different runoff generation mechanisms arising from differences in CZ structure: at Elder Creek (Coastal Belt), rain passes vertically as unsaturated flow through soil, saprolite, and a thick weathered rock zone before perching as groundwater on fresh bedrock and flowing laterally through fractures to generate streamflow, resulting in nearly chemostatic major cation behavior (power law C-Q slopes (B) ≈ 0 to -0.1). At Dry Creek (Central Belt), the thin (2 to 3 m) hydrologically active CZ completely saturates in most storm events, generating saturation overland flow across the landscape. New data from Dry Creek reveal log-log C-Q relationships for major cations that exhibit negative curvature, indicating a trend towards increasing dilution at higher flow rates and a possible C-Q signature of overland flow. High geomorphic channel drainage density (16.9 km/km2) results in short flow paths and, presumably, short water hillslope residence times at high runoff when overland flow dominates (> 50 mm d-1). Surprisingly, even at these high runoff rates, pure dilution does not occur (high
Critical Transition in Critical Zone of Intensively Managed Landscapes
Kumar, P.
2017-12-01
Intensification of industrial agriculture has resulted in severe unintended global impacts, including degradation of arable land and eutrophication of receiving water bodies. Modern agricultural practices rely on significant direct and indirect human energy inputs, which have created imbalances between increased rates of biogeochemical processes related to production and background rates of natural processes. These imbalances have cascaded through the deep inter-dependencies between carbon, soil, water, nutrient and ecological processes, resulting in a critical transition of the Critical Zone and creating emergent dynamics and evolutionary trajectories. Understanding of these novel organization and function of the Critical Zone is vital for developing sustainable agricultural practices.
Design spectra development considering short time histories
International Nuclear Information System (INIS)
Weiner, E.O.
1983-01-01
Two separate programs, MODQKE and MDOF, were written to provide a capability of obtaining equipment spectra from design spectra. MODQKE generates or modifies acceleration histories to conform with design spectra pertaining to, say, a foundation. MDOF is a simple linear modal superposition program that solves for equipment support histories using the design spectra conforming histories as input. Equipment spectra, then, are obtained from the support histories using MODQKE. MODQKE was written to modify or provide new histories with special attention paid to short seismic records. A technique from the open literature was borrowed to generate an initial history that approximates a given response spectrum. Further refinement is done with smoothing cycles in which several correction signals are added to the history in a way that produces a least squares fit between actual and prescribed spectra. Provision is made for history shaping, a baseline correction, and final scaling. MODQKE performance has been demonstrated with seven examples having zero to ten percent damping ratios, and 2.5 seconds to 20 seconds durations and a variety of target spectra. The examples show the program is inexpensive to use. MDOF is a simple modal superposition program. It has no eigensolver, and the user supplies mode shapes, frequencies, and participation factors as input. Floor spectra can be generated from design spectra by using a history from MODQKE that conforms to the design spectrum as input to MDOF. Floor motions from MDOF can be fed back to MODQKE without modification to obtain the floor spectra. A simple example is given to show how equipment mass effects can be incorporated into the MDOF solution. Any transient solution capability can be used to replace MDOF. For example, a direct transient approach may be desirable if both the equipment and floor structures are to be included in the model with different damping fractions. (orig./HP)
Phonemes as short time cognitive components
DEFF Research Database (Denmark)
Feng, Ling; Hansen, Lars Kai
2006-01-01
are the smallest contrastive unit in the sound system of a language. Generalizable components were found deriving from phonemes based on homomorphic filtering features with basic time scale (20 msec). We sparsified the features based on energy as a preprocessing means to eliminate the intrinsic noise. Independent...
DEFF Research Database (Denmark)
Nielsen, Sandro
2018-01-01
Dictionary criticism is part of the lexicographical universe and reviewing of electronic and printed dictionaries is not an exercise in linguistics or in subject fields but an exercise in lexicography. It does not follow from this that dictionary reviews should not be based on a linguistic approach......, but that the linguistic approach is only one of several approaches to dictionary reviewing. Similarly, the linguistic and factual competences of reviewers should not be relegated to an insignificant position in the review process. Moreover, reviewers should define the object of their reviews, the dictionary, as a complex...... information tool with several components and in terms of significant lexicographical features: lexicographical functions, data and structures. This emphasises the fact that dictionaries are much more than mere vessels of linguistic categories, namely lexicographical tools that have been developed to fulfil...
Directory of Open Access Journals (Sweden)
Grazyna Wójcik
2008-04-01
Full Text Available To date, there has been little research examining whether short-time changes of external environmental conditions exert any effects on immune responses. The activation of metabolic changes, release of hormones responsive for immunomodulation and the action of interleukins play an important role in interaction with hormones of an anterior pituitary gland in the proestrous phase of the reproductive cycle. The aim of our study was to determine the effects of a short-time change of ambient temperature (30 minutes on interleukin-6 (IL-6 and corticosterone plasma concentration of female rats in the proestrous phase of the reproductive cycle. The climatic chamber with automatically adjustable and monitored internal environmental parameters (temperature, oxygenation, humidity was used during the experiment. The estimation of the vaginal lavage using a microscope was done to determine the estrous cycle. On the day of the experiment, animals were divided into 2 groups: the control group (ambient temperature 21 degrees C +/- 1 degrees C; normoxia 21% O2 and the test group (ambient temperature 10 degrees C +/- 1 degrees C; normoxia 21% O2 stayed in the climatic chamber for 30 minutes. The blood samples were collected before the experiment and after 30, 60, 90, 150 and 210 minutes from the beginning of the experiment. The concentrations of IL-6 and corticosterone were measured in blood plasma samples using ELISA method. There was a significant elevation of IL-6 levels after staying in 10 degrees C during the first 150 minutes from the beginning of the experiment, with the highest value occurring after 60 minutes (426.6 pg/ml; SE - 146.1 with comparison to the value at first sampling (108.5 pg/ml; SE - 29.5; p<0.05 and with comparison to the control group at the same time from the beginning of the experiment (87.6 pg/ml; SE - 2.3; p<0.05. The changed level of corticosterone in the test group in comparison to control group was observed but the differences were
Christopher Reichstein; Ralf-Christian Härting; Martina Häußler
2017-01-01
With a continuously increasing speed of information exchange on the World Wide Web, retailers in the E-Commerce sector are faced with immense possibilities regarding different online purchase processes like dynamic price settings. By use of Dynamic Pricing, retailers are able to set short time price changes in order to optimize producer surplus. The empirical research illustrates the basics of Dynamic Pricing and identifies six influencing factors of Dynamic Pricing. The results of a structur...
Directory of Open Access Journals (Sweden)
Debra Lewis
2013-05-01
Full Text Available Relative equilibria of Lagrangian and Hamiltonian systems with symmetry are critical points of appropriate scalar functions parametrized by the Lie algebra (or its dual of the symmetry group. Setting aside the structures – symplectic, Poisson, or variational – generating dynamical systems from such functions highlights the common features of their construction and analysis, and supports the construction of analogous functions in non-Hamiltonian settings. If the symmetry group is nonabelian, the functions are invariant only with respect to the isotropy subgroup of the given parameter value. Replacing the parametrized family of functions with a single function on the product manifold and extending the action using the (coadjoint action on the algebra or its dual yields a fully invariant function. An invariant map can be used to reverse the usual perspective: rather than selecting a parametrized family of functions and finding their critical points, conditions under which functions will be critical on specific orbits, typically distinguished by isotropy class, can be derived. This strategy is illustrated using several well-known mechanical systems – the Lagrange top, the double spherical pendulum, the free rigid body, and the Riemann ellipsoids – and generalizations of these systems.
Chen, Ming-Wen; Li, Lin-Yan; Guo, Hui-Min
2017-08-28
The dynamics of nucleation and growth of a particle affected by anisotropic surface tension in the ternary alloy melt is studied. The uniformly valid asymptotic solution for temperature field, concentration field, and interface evolution of nucleation and particle growth is obtained by means of the multiple variable expansion method. The asymptotic solution reveals the critical radius of nucleation in the ternary alloy melt and an inward melting mechanism of the particle induced by the anisotropic effect of surface tension. The critical radius of nucleation is dependent on isotropic surface tension, temperature undercooling, and constitutional undercooling in the ternary alloy melt, and the solute diffusion melt decreases the critical radius of nucleation. Immediately after a nucleus forms in the initial stage of solidification, the anisotropic effect of surface tension makes some parts of its interface grow inward while some parts grow outward. Until the inward melting attains a certain distance (which is defined as "the melting depth"), these parts of interface start to grow outward with other parts. The interface of the particle evolves into an ear-like deformation, whose inner diameter may be less than two times the critical radius of nucleation within a short time in the initial stage of solidification. The solute diffusion in the ternary alloy melt decreases the effect of anisotropic surface tension on the interface deformation.
Advanced data assimilation in strongly nonlinear dynamical systems
Miller, Robert N.; Ghil, Michael; Gauthiez, Francois
1994-01-01
Advanced data assimilation methods are applied to simple but highly nonlinear problems. The dynamical systems studied here are the stochastically forced double well and the Lorenz model. In both systems, linear approximation of the dynamics about the critical points near which regime transitions occur is not always sufficient to track their occurrence or nonoccurrence. Straightforward application of the extended Kalman filter yields mixed results. The ability of the extended Kalman filter to track transitions of the double-well system from one stable critical point to the other depends on the frequency and accuracy of the observations relative to the mean-square amplitude of the stochastic forcing. The ability of the filter to track the chaotic trajectories of the Lorenz model is limited to short times, as is the ability of strong-constraint variational methods. Examples are given to illustrate the difficulties involved, and qualitative explanations for these difficulties are provided. Three generalizations of the extended Kalman filter are described. The first is based on inspection of the innovation sequence, that is, the successive differences between observations and forecasts; it works very well for the double-well problem. The second, an extension to fourth-order moments, yields excellent results for the Lorenz model but will be unwieldy when applied to models with high-dimensional state spaces. A third, more practical method--based on an empirical statistical model derived from a Monte Carlo simulation--is formulated, and shown to work very well. Weak-constraint methods can be made to perform satisfactorily in the context of these simple models, but such methods do not seem to generalize easily to practical models of the atmosphere and ocean. In particular, it is shown that the equations derived in the weak variational formulation are difficult to solve conveniently for large systems.
Giusti, Fabrice; Popot, Jean-Luc; Tribet, Christophe
2012-07-17
Amphipols (APols) are short amphiphilic polymers designed to handle membrane proteins (MPs) in aqueous solutions as an alternative to small surfactants (detergents). APols adsorb onto the transmembrane, hydrophobic surface of MPs, forming small, water-soluble complexes, in which the protein is biochemically stabilized. At variance with MP/detergent complexes, MP/APol ones remain stable even at extreme dilutions. Pure APol solutions self-associate into well-defined micelle-like globules comprising a few APol molecules, a rather unusual behavior for amphiphilic polymers, which typically form ill-defined assemblies. The best characterized APol to date, A8-35, is a random copolymer of acrylic acid, isopropylacrylamide, and octylacrylamide. In the present work, the concentration threshold for self-association of A8-35 in salty buffer (NaCl 100 mM, Tris/HCl 20 mM, pH 8.0) has been studied by Förster resonance energy transfer (FRET) measurements and tensiometry. In a 1:1 mol/mol mixture of APols grafted with either rhodamine or 7-nitro-1,2,3-benzoxadiazole, the FRET signal as a function of A8-35 concentration is essentially zero below a threshold concentration of 0.002 g·L(-1) and increases linearly with concentration above this threshold. This indicates that assembly takes place in a narrow concentration interval around 0.002 g·L(-1). Surface tension measurements decreases regularly with concentration until a threshold of ca. 0.004 g·L(-1), beyond which it reaches a plateau at ca. 30 mN·m(-1). Within experimental uncertainties, the two techniques thus yield a comparable estimate of the critical self-assembly concentration. The kinetics of variation of the surface tension was analyzed by dynamic surface tension measurements in the time window 10 ms-100 s. The rate of surface tension decrease was similar in solutions of A8-35 and of the anionic surfactant sodium dodecylsulfate when both compounds were at a similar molar concentration of n-alkyl moieties. Overall, the
Toward a Critical Peace Education for Sustainability
Brantmeier, Edward J.
2013-01-01
This article proposes the need for peace education as a field to embrace critical power analysis of place in efforts toward social and environmental sustainability. Rather than status quo reproduction, a critical peace education for sustainability should both elucidate and transform the power dynamics inherent in structural violence and cultural…
Ngobese, Nomali Ziphorah; Workneh, Tilahun Seyoum; Siwela, Muthulisi
2017-02-01
Processing conditions are an important determinant of French fry quality. However, the effect of low-temperature long-time (LTLT) and high-temperature short-time (HTST) blanching and frying treatments has not been investigated in many cultivars. The current study investigates the effect of the sequential application of these treatments on French fries processed from six Irish potato cultivars (Fianna, Innovator, Mondial, Navigator, Panamera and Savanna). Blanching was effected at 75 °C for 10 min or 85 °C for 5 min and frying was effected at 160 °C for 2 min or 180 °C for 1 min. These treatments resulted in significant differences in the quality of the fries across the cultivars. The blanching treatments had a greater impact on the French fry quality than the frying treatments. LTLT blanching resulted in lower oil (12-13% fresh mass basis [fmb]), and higher protein (3.5-4.3% fmb) and mineral content in the French fries processed from Innovator, compared to HTST blanching. This was accompanied by a crispier crust, which required a greater puncture force (1.2-2.1 N) for penetration. Blanching with the LTLT treatment before HTST frying resulted in French fries that were the most acceptable to consumers and these were from Fianna, Innovator and Mondial. The current study demonstrates that the effect of French fry processing conditions is cultivar-dependent.
Toward superconducting critical current by design
Sadovskyy, I. A.; Jia, Y.; Leroux, M.; Kwon, J.; Hu, H.; Fang, L.; Chaparro, C.; Zhu, S.; Welp, U.; Zuo, J. -M.; Zhang, Y.; Nakasaki, R.; Selvamanickam, V.; Crabtree, G. W.; Koshelev, A. E.
2015-01-01
We present the new paradigm of critical current by design. Analogous to materials by design, it aims at predicting the optimal defect landscape in a superconductor for targeted applications by elucidating the vortex dynamics responsible for the bulk critical current. To highlight this approach, we demonstrate the synergistic combination of critical current measurements on commercial high-temperature superconductors containing self-assembled and irradiation tailored correlated defects by using...
Nuclear data for criticality safety
International Nuclear Information System (INIS)
Westfall, R.M.
1994-01-01
A brief overview is presented on emerging requirements for new criticality safety analyses arising from applications involving nuclear waste management, facility remediation, and the storage of nuclear weapons components. A derivation of criticality analyses from the specifications of national consensus standards is given. These analyses, both static and dynamic, define the needs for nuclear data. Integral data, used primarily for analytical validation, and differential data, used in performing the analyses, are listed, along with desirable margins of uncertainty. Examples are given of needs for additional data to address systems having intermediate neutron energy spectra and/or containing nuclides of intermediate mass number
Critical fatigue behaviour in brittle glasses
Indian Academy of Sciences (India)
Unknown
Abstract. The dynamic fatigue fracture behaviour in different glasses under various sub-threshold loading conditions are analysed here employing an anomalous diffusion model. Critical dynamical behaviour in the time-to-fracture and the growth of the micro-crack sizes, similar to that observed in such materials in the case.
de Arcangelis, L.; Lombardi, F.; Herrmann, H. J.
2014-03-01
Spontaneous brain activity has been recently characterized by avalanche dynamics with critical features for systems in vitro and in vivo. In this contribution we present a review of experimental results on neuronal avalanches in cortex slices, together with numerical results from a neuronal model implementing several physiological properties of living neurons. Numerical data reproduce experimental results for avalanche statistics. The temporal organization of avalanches can be characterized by the distribution of waiting times between successive avalanches. Experimental measurements exhibit a non-monotonic behaviour, not usually found in other natural processes. Numerical simulations provide evidence that this behaviour is a consequence of the alternation between states of high and low activity, leading to a balance between excitation and inhibition controlled by a single parameter. During these periods both the single neuron state and the network excitability level, keeping memory of past activity, are tuned by homoeostatic mechanisms. Interestingly, the same homoeostatic balance is detected for neuronal activity at the scale of the whole brain. We finally review the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules and the learning dynamics exhibits universal features as a function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.
International Nuclear Information System (INIS)
De Arcangelis, L; Lombardi, F; Herrmann, H J
2014-01-01
Spontaneous brain activity has been recently characterized by avalanche dynamics with critical features for systems in vitro and in vivo. In this contribution we present a review of experimental results on neuronal avalanches in cortex slices, together with numerical results from a neuronal model implementing several physiological properties of living neurons. Numerical data reproduce experimental results for avalanche statistics. The temporal organization of avalanches can be characterized by the distribution of waiting times between successive avalanches. Experimental measurements exhibit a non-monotonic behaviour, not usually found in other natural processes. Numerical simulations provide evidence that this behaviour is a consequence of the alternation between states of high and low activity, leading to a balance between excitation and inhibition controlled by a single parameter. During these periods both the single neuron state and the network excitability level, keeping memory of past activity, are tuned by homoeostatic mechanisms. Interestingly, the same homoeostatic balance is detected for neuronal activity at the scale of the whole brain. We finally review the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules and the learning dynamics exhibits universal features as a function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow. (paper)
Harper, Nigel M; Getty, Kelly J K; Schmidt, Karen A; Nutsch, Abbey L; Linton, Richard H
2011-03-01
The U.S. Food and Drug Administration's Bacteriological Analytical Manual recommends two enumeration methods for Bacillus cereus: (i) standard plate count method with mannitol-egg yolk-polymyxin (MYP) agar and (ii) a most-probable-number (MPN) method with tryptic soy broth (TSB) supplemented with 0.1% polymyxin sulfate. This study compared the effectiveness of MYP and MPN methods for detecting and enumerating B. cereus in raw and high-temperature, short-time pasteurized skim (0.5%), 2%, and whole (3.5%) bovine milk stored at 4°C for 96 h. Each milk sample was inoculated with B. cereus EZ-Spores and sampled at 0, 48, and 96 h after inoculation. There were no differences (P > 0.05) in B. cereus populations among sampling times for all milk types, so data were pooled to obtain overall mean values for each treatment. The overall B. cereus population mean of pooled sampling times for the MPN method (2.59 log CFU/ml) was greater (P milk samples ranged from 2.36 to 3.46 and 2.66 to 3.58 log CFU/ml for inoculated milk treatments for the MYP plate count and MPN methods, respectively, which is below the level necessary for toxin production. The MPN method recovered more B. cereus, which makes it useful for validation research. However, the MYP plate count method for enumeration of B. cereus also had advantages, including its ease of use and faster time to results (2 versus 5 days for MPN).
Fast-forward of quantum adiabatic dynamics in electro-magnetic field
Masuda, Shumpei; Nakamura, Katsuhiro
2010-01-01
We show a method to accelerate quantum adiabatic dynamics of wavefunctions under electro-magnetic field by developing the previous theory (Masuda & Nakamura 2008 and 2010). Firstly we investigate the orbital dynamics of a charged particle. We derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states except for the spatially uniform phase such as the adiabatic phase in any desired short time. Fast-forward of adiabatic squeezing and tran...
NCIS: a nuclear criticality information system
International Nuclear Information System (INIS)
Koponen, B.L.; Hampel, V.E.
1984-01-01
The NCIS is one of the developments carried out to meet the requirements in the field of criticality safety information. Its primary goal is to enhance nuclear criticality safety by dissemination of data, standards, and training material. This paper presents the ''NCIS'' progess since 1950: computer-searching, database management, nuclear critical experiments bibliography. American Nuclear Society transactions criticality safety publications compilation, edition of a personnel directory representing over 140 organizations located in 16 countries and showing a wide range of specialists involved in the field of nuclear criticality safety. The NCIS uses the information management and communication resources of TIS (Technology Information System): automated access procedures; creation of program-dependent information systems; communications. The NCIS is still in a growing, formative stage; it has concentrated first on collecting and organizing the nuclear criticality literature; nuclear critical data, calculational tools, standards, and training materials will follow. Finally the planned and contemplated resources are dealt with: expansion of bibliographic compilations; news database; fundamental criticality safety reference; criticality benchmarck database; user community; training resources; related resources; criticality accident database; dynamic databook; dynamic textbook; expert knowledge system; and, extraction of intelligence
Criticality assessment of LLRWDF closure
International Nuclear Information System (INIS)
Sarrack, A.G.; Weber, J.H.; Woody, N.D.
1992-01-01
During the operation of the Low Level Radioactive Waste Disposal Facility (LLRWDF), large amounts (greater than 100 kg) of enriched uranium (EU) were buried. This EU came primarily from the closing and decontamination of the Naval Fuels Facility in the time period from 1987--1989. Waste Management Operations (WMO) procedures were used to keep the EU boxes separated to prevent possible criticality during normal operation. Closure of the LLRWDF is currently being planned, and waste stabilization by Dynamic Compaction (DC) is proposed. Dynamic compaction will crush the containers in the LLRWDF and result in changes in their geometry. Research of the LLRWDF operations and record keeping practices have shown that the EU contents of trenches are known, but details of the arrangement of the contents cannot be proven. Reviews of the trench contents, combined with analysis of potential critical configurations, revealed that some portions of the LLRWDF can be expected to be free of criticality concerns while other sections have credible probabilities for the assembly of a critical mass, even in the uncompacted configuration. This will have an impact on the closure options and which trenches can be compacted
Energy Technology Data Exchange (ETDEWEB)
De Brion, Sophie
1991-10-04
This research thesis reports the application of the vibrating blade technique to the study of high critical temperature superconductors, first for the anelastic properties, and then for vortices dynamics. As far as the study of anelastic properties is concerned, the author reports the measurement of dissipation and of Young modulus, between 4 K and 300 K and at about 1 khz, in YbaCuO ceramics with various oxygen content. A detailed study of the tetragonal phase reveals the existence of a single relaxation process, the magnitude of which depends on the compound oxygen content and on its thermal treatment. In the second part, the author reports the measurement, under magnetic field and within a temperature range lower than the superconducting critical temperature, of a YbaCuO crystal with two different oxygen concentrations. At low temperature, the author studies the contribution of vortices trapped in an irreversible state. At high temperature, this contribution disappears and thus defines an irreversibility line beyond which vortices are in a reversible regime. This line is studied for different magnetic field orientations with respect to CuO planes. It is interpreted in terms of de-trapping thermally activated by vortices [French] La technique de la lame vibrante a ete appliquee a l'etude des supraconducteurs a haute temperature critique, pour leurs proprietes anelastiques d'abord, pour la dynamique des vortex ensuite. Dans la gamme de temperature 4 K - 300 K, nous avons mesure la dissipation et le module d'Young, a une frequence de 1 kHz environ, dans des ceramiques YBaCuO (phase 123) de differentes teneurs en oxygene (variant de O{sub 6} a O{sub 7}). Nous avons observe plusieurs pics de dissipation. Une etude detaillee de la phase tetragonale (de O{sub 6} a O{sub 6,4}) a mis en evidence un seul processus de relaxation, active thermiquement avec une energie de 0,1 eV et dont l'ampleur depend de la teneur en oxygene du compose et de son traitement thermique. Cette
Critical constraints on chiral hierarchies
International Nuclear Information System (INIS)
Chivukula, R.S.; Golden, M.; Simmons, E.H.
1993-01-01
Critical dynamics constrains models of dynamical electroweak symmetry breaking in which the scale of high-energy physics is far above 1 TeV. A big hierarchy requires the high-energy theory to have a second-order chiral phase transition, near which the theory is described by a low-energy effective Lagrangian with composite ''Higgs'' scalars. As scalar theories with more than one Φ 4 coupling can have a Coleman-Weinberg instability and a first-order transition, such dynamical EWSB models cannot always support a large hierarchy. If the large-N c Nambu--Jona-Lasinio model is a good approximation to the top-condensate and strong extended technicolor models, they will not produce acceptable EWSB
The QCD Critical Point and Related Observables
Energy Technology Data Exchange (ETDEWEB)
Nahrgang, Marlene
2016-12-15
The search for the critical point of QCD in heavy-ion collision experiments has sparked enormous interest with the completion of phase I of the RHIC beam energy scan. Here, I review the basics of the thermodynamics of the QCD phase transition and its implications for experimental multiplicity fluctuations in heavy-ion collisions. Several sources of noncritical fluctuations impact the observables and need to be understood in addition to the critical phenomena. Recent progress has been made in dynamical modeling of critical fluctuations, which ultimately is indispensable to understand potential signals of the QCD critical point in heavy-ion collision.
CRITICAL INFRASTRUCTURE PROTECTION WITHIN THE EUROPEAN UNION
Directory of Open Access Journals (Sweden)
Vasile N. POPA
2013-01-01
Full Text Available The new dynamics and intensity of the risks and threats posed to societal functioning and citizens’ security have acquired new meanings. Consequently, an integrated approach to the concept of ”critical infrastructure” is necessary. The critical nature of some of the basic characteristics of the critical infrastructures has made them acquire new meanings within the national/transnational strategic planning. Moreover, the complexity and importance of critical infrastructure protection for social stability have generated the correlaton of the strategies developed by states and organizations.
Nuclear criticality safety guide
International Nuclear Information System (INIS)
Pruvost, N.L.; Paxton, H.C.
1996-09-01
This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators
Nuclear criticality safety guide
Energy Technology Data Exchange (ETDEWEB)
Pruvost, N.L.; Paxton, H.C. [eds.
1996-09-01
This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.
Dynamic stability under sudden loads
International Nuclear Information System (INIS)
Simitses, G.J.
1998-01-01
The concept of dynamic stability of elastic structures subjected to sudden (step) loads is discussed. The various criteria and related methodologies for estimating critical conditions are presented with the emphasis on their similarities and differences. These are demonstrated by employing a simple mechanical model. Several structural configurations are analyzed, for demonstration purposes, with the intention of comparing critical dynamic loads to critical static loads. These configurations include shallow arches and shallow spherical caps, two bar frames, and imperfect cylindrical shells of metallic as well as laminated composite construction. In the demonstration examples, the effect of static pre loading on the dynamic critical load is presented
Hanson, A L; Metzger, L E
2010-02-01
The objective of this study was to determine the effect of increased vitamin D fortification (250 IU/serving) of high-temperature, short-time (HTST)-processed 2% fat milk, UHT-processed 2% fat chocolate milk, and low-fat strawberry yogurt on the sensory characteristics and stability of vitamin D during processing and storage. Three replicates of HTST pasteurized 2% fat milk, UHT pasteurized 2% fat chocolate milk, and low-fat strawberry yogurt were manufactured. Each of the 3 replicates for all products contained a control (no vitamin D fortification), a treatment group with 100 IU vitamin D/serving (current level of vitamin D fortification), and a treatment group with 250 IU vitamin D/serving. A cold-water dispersible vitamin D(3) concentrate was used for all fortifications. The HTST-processed 2% fat milk was stored for 21 d, with vitamin D analysis done before processing and on d 0, 14, and 21. Sensory analysis was conducted on d 14. The UHT-processed 2% fat chocolate milk was stored for 60 d, with vitamin D analysis done before processing and on d 0, 40, and 60. Sensory analysis was conducted on d 40. Low-fat strawberry yogurt was stored for 42 d, with vitamin D analysis done before processing, and on d 0, 28, and 42. Sensory analysis was conducted on d 28. Vitamin D levels in the fortified products were found to be similar to the target levels of fortification (100 and 250 IU vitamin D per serving) for all products, indicating no loss of vitamin D during processing. Vitamin D was also found to be stable over the shelf life of each product. Increasing the fortification of vitamin D from 100 to 250 IU/serving did not result in a change in the sensory characteristics of HTST-processed 2% fat milk, UHT-processed 2% fat chocolate milk, or low-fat strawberry yogurt. These results indicate that it is feasible to increase vitamin D fortification from 100 to 250 IU per serving in these products. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc
Paudel, S.; Elmtiri, M.; Kling, W.L.; Corre, le O.; Lacarriere, B.
2014-01-01
This paper presents the building heating demand prediction model with occupancy profile and operational heating power level characteristics in short time horizon (a couple of days) using artificial neural network. In addition, novel pseudo dynamic transitional model is introduced, which consider
Dynamics of ballistically injected latex particles in living human endothelial cells
Li, Y.; Vanapalli Veera, V.S.A.R.; Vanapalli, Srinivas; Duits, Michael H.G.
2009-01-01
We studied the dynamics of ballistically injected latex particles (BIP) inside endothelial cells, using video particle tracking to measure the mean squared displacement (MSD) as a function of lag time. The MSD shows a plateau at short times and a linear behavior at longer times, indicating that the
Dynamical constraints on phase transitions
International Nuclear Information System (INIS)
Morawetz, K.
2000-01-01
The numerical solutions of nonlocal and local Boltzmann kinetic equations for the simulation of central heavy ion reactions are parameterized in terms of time dependent thermodynamical variables in the Fermi liquid sense. This allows to discuss dynamical trajectories in phase space. The nonequilibrium state is characterized by non-isobaric, non-isochoric etc conditions, called iso-nothing conditions. Therefore a combination of thermodynamical observables is constructed which allows to locate instabilities and points of possible phase transition in a dynamical sense. We find two different mechanisms of instability, a short time surface - dominated instability and later a spinodal - dominated volume instability. The latter one occurs only if the incident energies are not exceeding much the Fermi energy and might be attributed to spinodal decomposition. Oppositely the fast surface explosion occurs far outside the spinodal and pertains also in the cases where the system develops too fast for suffering the spinodal decomposition and where the system approaches equilibrium outside the spinodal. (author)
Prevention of criticality accidents
International Nuclear Information System (INIS)
Canavese, S.I.
1982-01-01
These notes used in the postgraduate course on Radiological Protection and Nuclear Safety discuss macro-and microscopic nuclear constants for fissile materials systems. Critical systems: their definition; criteria to analyze the critical state; determination of the critical size; analysis of practical problems about prevention of criticality. Safety of isolated units and of sets of units. Application of standards. Conception of facilities from the criticality control view point. (author) [es
Critical flux determination by flux-stepping
DEFF Research Database (Denmark)
Beier, Søren; Jonsson, Gunnar Eigil
2010-01-01
In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step...... length, step height, and.flux start level. Filtrating 8 kg/m(3) yeast cell suspensions by a vibrating 0.45 x 10(-6) m pore size microfiltration hollow fiber module, critical fluxes from 5.6 x 10(-6) to 1.2 x 10(-5) m/s have been measured using various step lengths from 300 to 1200 seconds. Thus......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...
Universal Postquench Prethermalization at a Quantum Critical Point
Gagel, Pia; Orth, Peter P.; Schmalian, Jörg
2014-11-01
We consider an open system near a quantum critical point that is suddenly moved towards the critical point. The bath-dominated diffusive nonequilibrium dynamics after the quench is shown to follow scaling behavior, governed by a critical exponent that emerges in addition to the known equilibrium critical exponents. We determine this exponent and show that it describes universal prethermalized coarsening dynamics of the order parameter in an intermediate time regime. Implications of this quantum critical prethermalization are: (i) a power law rise of order and correlations after an initial collapse of the equilibrium state and (ii) a crossover to thermalization that occurs arbitrarily late for sufficiently shallow quenches.
Quantum criticality and black holes
International Nuclear Information System (INIS)
Sachdev, Subir; Mueller, Markus
2009-01-01
Many condensed matter experiments explore the finite temperature dynamics of systems near quantum critical points. Often, there are no well-defined quasiparticle excitations, and so quantum kinetic equations do not describe the transport properties completely. The theory shows that the transport coefficients are not proportional to a mean free scattering time (as is the case in the Boltzmann theory of quasiparticles), but are completely determined by the absolute temperature and by equilibrium thermodynamic observables. Recently, explicit solutions of this quantum critical dynamics have become possible via the anti-de Sitter/conformal field theory duality discovered in string theory. This shows that the quantum critical theory provides a holographic description of the quantum theory of black holes in a negatively curved anti-de Sitter space, and relates its transport coefficients to properties of the Hawking radiation from the black hole. We review how insights from this connection have led to new results for experimental systems: (i) the vicinity of the superfluid-insulator transition in the presence of an applied magnetic field, and its possible application to measurements of the Nernst effect in the cuprates, (ii) the magnetohydrodynamics of the plasma of Dirac electrons in graphene and the prediction of a hydrodynamic cyclotron resonance.
Criticality meets learning: Criticality signatures in a self-organizing recurrent neural network.
Del Papa, Bruno; Priesemann, Viola; Triesch, Jochen
2017-01-01
Many experiments have suggested that the brain operates close to a critical state, based on signatures of criticality such as power-law distributed neuronal avalanches. In neural network models, criticality is a dynamical state that maximizes information processing capacities, e.g. sensitivity to input, dynamical range and storage capacity, which makes it a favorable candidate state for brain function. Although models that self-organize towards a critical state have been proposed, the relation between criticality signatures and learning is still unclear. Here, we investigate signatures of criticality in a self-organizing recurrent neural network (SORN). Investigating criticality in the SORN is of particular interest because it has not been developed to show criticality. Instead, the SORN has been shown to exhibit spatio-temporal pattern learning through a combination of neural plasticity mechanisms and it reproduces a number of biological findings on neural variability and the statistics and fluctuations of synaptic efficacies. We show that, after a transient, the SORN spontaneously self-organizes into a dynamical state that shows criticality signatures comparable to those found in experiments. The plasticity mechanisms are necessary to attain that dynamical state, but not to maintain it. Furthermore, onset of external input transiently changes the slope of the avalanche distributions - matching recent experimental findings. Interestingly, the membrane noise level necessary for the occurrence of the criticality signatures reduces the model's performance in simple learning tasks. Overall, our work shows that the biologically inspired plasticity and homeostasis mechanisms responsible for the SORN's spatio-temporal learning abilities can give rise to criticality signatures in its activity when driven by random input, but these break down under the structured input of short repeating sequences.
Criticality safety studies at VTT Energy
International Nuclear Information System (INIS)
Roine, T.; Anttila, M.
1995-01-01
At VTT Energy a compact reactor physics calculation system is applied in many kind of problems. Generation of group constants for static and dynamic core calculations, flux and dose rate calculations as well as criticality safety studies are performed basically with the same codes. In the presentation a short overview of the wide variety of criticality safety problems analyzed at VTT Energy is given. The calculation system with some illustrative examples is also described. (12 refs., 1 tab.)
Critical Transitions in Social Network Activity
DEFF Research Database (Denmark)
Kuehn, Christian; Martens, Erik Andreas; Romero, Daniel M
2014-01-01
A large variety of complex systems in ecology, climate science, biomedicine and engineering have been observed to exhibit tipping points, where the dynamical state of the system abruptly changes. For example, such critical transitions may result in the sudden change of ecological environments...... a priori known events are preceded by variance and autocorrelation growth. Our findings thus clearly establish the necessary starting point to further investigate the relationship between abstract mathematical theory and various classes of critical transitions in social networks....
Climate change – a critical emerging issue
CSIR Research Space (South Africa)
Archer van Garderen, Emma RM
2010-01-01
Full Text Available amount of what are termed 'greenhouse gases', including carbon dioxide (CO2) (the best known); but also water vapour and methane (amongst others). Without the presence of greenhouse gases in the atmosphere, the planet would be unable to sustain life... critical emerging issue 1 Climate Change ? a critical emerging issue 1. Introduction We inhabit a dynamic and changing planet, and a changing climate is, clearly, nothing new. In fact, the earth has undergone significant climatic change...
Critical thinking: Not all that critical
Directory of Open Access Journals (Sweden)
Bruce Dietrick Price
2016-09-01
Full Text Available Critical Thinking basically says to be suspicious of everything, except the fad known as Critical Thinking. It is perhaps best understood as a new and watered-down version of an earlier fad called Deconstruction. That was just a fancy word for debunking. After you strip away all the high-minded rhetoric, Critical Thinking is typically used to tell students that they should not trust conventional wisdom, tradition, religion, parents, and all that irrelevant, old-fashioned stuff. Critical Thinking, somewhat surprisingly, also turns out to be highly contemptuous of facts and knowledge. The formulation in public schools goes like this: children must learn how to think, not what to think. WHAT is, of course, all the academic content and scholarly knowledge that schools used to teach.
Critical Phenomena in Gravitational Collapse
Directory of Open Access Journals (Sweden)
Gundlach Carsten
1999-01-01
Full Text Available As first discovered by Choptuik, the black hole threshold in the space of initial data for general relativity shows both surprising structure and surprising simplicity. Universality, power-law scaling of the black hole mass, and scale echoing have given rise to the term 'critical phenomena'. They are explained by the existence of exact solutions which are attractors within the black hole threshold, that is, attractors of codimension one in phase space, and which are typically self-similar. This review gives an introduction to the phenomena, tries to summarize the essential features of what is happening, and then presents extensions and applications of this basic scenario. Critical phenomena are of interest particularly for creating surprising structure from simple equations, and for the light they throw on cosmic censorship and the generic dynamics of general relativity.
Critical/non-critical system methodology report
International Nuclear Information System (INIS)
1989-01-01
The method used to determine how the waste Isolation Pilot Plant (WIPP) facilities/systems were classified as critical or non-critical to the receipt of CH waste is described within this report. All WIPP critical facilities/systems are listed in the Operational Readiness Review Dictionary. Using the Final Safety Analysis Report (FSAR) as a guide to define the boundaries of the facilities/systems, a direct correlation of the ORR Dictionary to the FSAR can be obtained. The critical facilities/systems are those which are directly related to or have a critical support role in the receipt of CH waste. The facility/systems must meet one of the following requirements to be considered critical: (a) confinement or measure of the release of radioactive materials; (b) continued receipt and/or storage of transuranic waste (TRU) without an interruption greater than one month according to the shipping plan schedule; (c) the environmental and occupational safety of personnel meets the established site programs; and (d) the physical security of the WIPP facilities
California Condor Critical Habitat
California Natural Resource Agency — These Data identify (in general) the areas where critical habitat for the California Condor occur. Critical habitat for the species consists of the following 10...
Surgical Critical Care Initiative
Federal Laboratory Consortium — The Surgical Critical Care Initiative (SC2i) is a USU research program established in October 2013 to develop, translate, and validate biology-driven critical care....
... often uphold the patient's wishes. The critical care nurse becomes an important part of decision-making with the patient, the family and the care team. A registered nurse (RN) who is certified in critical care is ...
Krabbe, Erik C. W.; van Laar, Jan Albert
This paper attempts to systematically characterize critical reactions in argumentative discourse, such as objections, critical questions, rebuttals, refutations, counterarguments, and fallacy charges, in order to contribute to the dialogical approach to argumentation. We shall make use of four
Tanner, Stephen L.
1986-01-01
Argues that students should exercise criticism in the classroom, but this criticism should not take the form of mere training in technical skills, indoctrination into a particular conceptual system, or theoretical speculation ungrounded in reality. (SRT)
Árnason, Vilhjálmur
2015-04-01
This article deals with the question as to what makes bioethics a critical discipline. It considers different senses of criticism and evaluates their strengths and weaknesses. A primary method in bioethics as a philosophical discipline is critical thinking, which implies critical evaluation of concepts, positions, and arguments. It is argued that the type of analytical criticism that restricts its critical role to critical thinking of this type often suffers from other intellectual flaws. Three examples are taken to demonstrate this: premature criticism, uncritical self-understanding of theoretical assumptions, and narrow framing of bioethical issues. Such flaws can lead both to unfair treatment of authors and to uncritical discussion of topics. In this context, the article makes use of Häyry's analysis of different rationalities in bioethical approaches and argues for the need to recognize the importance of communicative rationality for critical bioethics. A radically different critical approach in bioethics, rooted in social theory, focuses on analyses of power relations neglected in mainstream critical thinking. It is argued that, although this kind of criticism provides an important alternative in bioethics, it suffers from other shortcomings that are rooted in a lack of normative dimensions. In order to complement these approaches and counter their shortcomings, there is a need for a bioethics enlightened by critical hermeneutics. Such hermeneutic bioethics is aware of its own assumptions, places the issues in a wide context, and reflects critically on the power relations that stand in the way of understanding them. Moreover, such an approach is dialogical, which provides both a critical exercise of speech and a normative dimension implied in the free exchange of reasons and arguments. This discussion is framed by Hedgecoe's argument that critical bioethics needs four elements: to be empirically rooted, theory challenging, reflexive, and politely skeptical.
Rexhepi, Jevdet; Torres, Carlos Alberto
2011-01-01
This paper discusses Critical Theory, a model of theorizing in the field of the political sociology of education. We argue for a "reimagined" Critical Theory to herald an empowering, liberatory education that fosters curiosity and critical thinking, and a means for successful bottom-up, top-down political engagement. We present arguments…
Foundations for Critical Thinking
Bers, Trudy; Chun, Marc; Daly, William T.; Harrington, Christine; Tobolowsky, Barbara F.
2015-01-01
"Foundations for Critical Thinking" explores the landscape of critical-thinking skill development and pedagogy through foundational chapters and institutional case studies involving a range of students in diverse settings. By establishing a link between active learning and improved critical thinking, this resource encourages all higher…
Piergiovanni, Polly R.
2014-01-01
A college education is expected to improve students' critical thinking skills. Keeping students active in class--through writing activities and class discussion--has been shown to help students think critically. In this article, creative hands-on activities, which are common in engineering courses, are shown to improve students' critical thinking…
International critical perspectives
Sambrook, S.A.; Poell, R.F.
2014-01-01
The Problem Critical perspectives on human resource development (HRD) have emerged, across Europe and America, hailed as the future of the field. However, we note the paucity of critical perspectives globally, the problematic dominance of critical HRD activities in Western sites of theory and
Bound eigenstate dynamics under a sudden shift of the well's wall
Granot, Er'El; Marchewka, Avi
2010-03-01
We investigate the dynamics of the eigenstate of an infinite well under an abrupt shift of the well’s wall. It is shown that when the shift is small compared to the initial well’s dimensions, the short-time behavior changes from the well-known t3/2 behavior to t1/2. It is also shown that the complete dynamical picture converges to a universal function, which has fractal structure with dimensionality D=1.25.
Bound eigenstate dynamics under a sudden shift of the well's wall
International Nuclear Information System (INIS)
Granot, Er'el; Marchewka, Avi
2010-01-01
We investigate the dynamics of the eigenstate of an infinite well under an abrupt shift of the well's wall. It is shown that when the shift is small compared to the initial well's dimensions, the short-time behavior changes from the well-known t 3/2 behavior to t 1/2 . It is also shown that the complete dynamical picture converges to a universal function, which has fractal structure with dimensionality D=1.25.
Critical behavior of ferromagnetic Ising thin films
International Nuclear Information System (INIS)
Cossio, P.; Mazo-Zuluaga, J.; Restrepo, J.
2006-01-01
In the present work, we study the magnetic properties and critical behavior of simple cubic ferromagnetic thin films. We simulate LxLxd films with semifree boundary conditions on the basis of the Monte Carlo method and the Ising model with nearest neighbor interactions. A Metropolis dynamics was implemented to carry out the energy minimization process. For different film thickness, in the nanometer range, we compute the temperature dependence of the magnetization, the magnetic susceptibility and the fourth order Binder's cumulant. Bulk and surface contributions of these quantities are computed in a differentiated fashion. Additionally, according to finite size scaling theory, we estimate the critical exponents for the correlation length, magnetic susceptibility, and magnetization. Results reveal a strong dependence of critical temperature and critical exponents on the film thickness. The obtained critical exponents are finally compared to those reported in literature for thin films
A dynamical study on extrasolar comets
Loibnegger, B.; Dvorak, R.
2017-09-01
Since the detection of absorption features in spectra of beta Pictoris varying on short time scales it is known that comets exist in other stellar systems. We investigate the dynamics of comets in two differently build systems (HD 10180 and HIP 14810). The outcomes of the scattering process, as there are collisions with the planets, captures and ejections from the systems are analysed statistically. Collisions and close encounters with the planets are investigated in more detail in order to conclude about transport of water and organic material. We will also investigate the possibility of detection of comets in other planetary systems.
Transportable criticality alarm system
International Nuclear Information System (INIS)
Clem, W.E.
1988-09-01
The Transportable Criticality Alarm System was developed at the Hanford Site in 1982 to comply with the requirements of US Department of Energy Order DOE 5480.1, 12/18/80, and ANSI/ANS-8.3- 1979. The portable unit that it replaced failed to comply with the new requirements in that it did not provide the necessary warning of malfunctions, nor did it provide the Hanford Site standard criticality alarm signal. Modern technology allowed the Transportable Criticality Alarm System to comply with the criticality requirements cited and to incorporate other features that make it more usable, maintainable, and reliable. The Transportable Criticality Alarm System (TCAS) provides temporary criticality coverage in manned areas where the facility criticality alarm system is not operable. This gamma radiation-sensitive system has been in use for the past 6 yr at the Hanford Site. 2 refs., 4 figs., 1 tab
International Nuclear Information System (INIS)
Heinicke, W.; Krug, H.; Thomas, W.; Weber, W.; Gmal, B.
1985-12-01
The GRS Criticality Handbook is intended as a source of information on criticality problems for the persons concerned in industry, authorities, or research laboratories. It is to serve as a guide allowing quick and appropriate evaluation of criticality problems during design or erection of nuclear installations. This present issue replaces the one published in 1979, presenting revised and new data in a modified construction, but within the framework of the proven basic structure of the Handbook. Some fundamental knowledge is required of criticality problems and the relevant terms and definitions of nuclear safety, in order to fully deploy the information given. Part 1 of the Handbook therefore first introduces terminology and definitions, followed by experimental methods and calculation models for criticality calculations. The next chapters deal with the function and efficiency of neutron reflectors and neutron absorbers, measuring methods for criticality monitoring, organisational safety measures, and criticality accidents and their subsequent analysis. (orig./HP) [de
From Critical Theory to Critical Hermeneutics
Directory of Open Access Journals (Sweden)
Øjvind Larsen
2014-06-01
Full Text Available From their beginning in the 1930s, critical theory and the Frankfurt school had their focus on a critique of disturbed social relations in western society dominated by totalitarian political regimes like Stalinism, Fascism, Nazism, and by capitalism as an oppressive and destructive economic system and culture. Now, 80 years later, this has all become history and thus it is time to leave the concept of critical theory behind us, and instead bring the concept of critique to a broader theoretical framework like hermeneutics. This allows the possibility of retaining the theoretical intentions of the old Frankfurt school and at the same time there will be no boundaries by specific dominant theoretical perspectives. In this paper, such a framework for a critical hermeneutics is discussed on the basis of Weber’s, Gadamer’s, and Habermas’ theories on hermeneutics within the social sciences.