WorldWideScience

Sample records for short-term drought stress

  1. Quantitative Phosphoproteomic Analysis Provides Insight into the Response to Short-Term Drought Stress in Ammopiptanthus mongolicus Roots

    Directory of Open Access Journals (Sweden)

    Huigai Sun

    2017-10-01

    Full Text Available Drought is one of the major abiotic stresses that negatively affects plant growth and development. Ammopiptanthus mongolicus is an ecologically important shrub in the mid-Asia desert region and used as a model for abiotic tolerance research in trees. Protein phosphorylation participates in the regulation of various biological processes, however, phosphorylation events associated with drought stress signaling and response in plants is still limited. Here, we conducted a quantitative phosphoproteomic analysis of the response of A. mongolicus roots to short-term drought stress. Data are available via the iProx database with project ID IPX0000971000. In total, 7841 phosphorylation sites were found from the 2019 identified phosphopeptides, corresponding to 1060 phosphoproteins. Drought stress results in significant changes in the abundance of 103 phosphopeptides, corresponding to 90 differentially-phosphorylated phosphoproteins (DPPs. Motif-x analysis identified two motifs, including [pSP] and [RXXpS], from these DPPs. Functional enrichment and protein-protein interaction analysis showed that the DPPs were mainly involved in signal transduction and transcriptional regulation, osmotic adjustment, stress response and defense, RNA splicing and transport, protein synthesis, folding and degradation, and epigenetic regulation. These drought-corresponsive phosphoproteins, and the related signaling and metabolic pathways probably play important roles in drought stress signaling and response in A. mongolicus roots. Our results provide new information for understanding the molecular mechanism of the abiotic stress response in plants at the posttranslational level.

  2. Does short-term potassium fertilization improve recovery from drought stress in laurel?

    Science.gov (United States)

    Oddo, Elisabetta; Inzerillo, Simone; Grisafi, Francesca; Sajeva, Maurizio; Salleo, Sebastiano; Nardini, Andrea

    2014-08-01

    Xylem hydraulic conductance varies in response to changes in sap solute content, and in particular of potassium (K(+)) ion concentration. This phenomenon, known as the 'ionic effect', is enhanced in embolized stems, where it can compensate for cavitation-induced loss of hydraulic conductance. Previous studies have shown that in well-watered laurel plants (Laurus nobilis L.), potassium concentration of the xylem sap and plant hydraulic conductance increased 24 h after fertilization with KCl. The aim of this work was to test whether water-stressed laurel plants, grown under low potassium availability, could recover earlier from stress when irrigated with a KCl solution instead of potassium-free water. Two-year-old potted laurel seedlings were subjected to water stress by suspending irrigation until leaf conductance to water vapour (g(L)) dropped to ∼30% of its initial value and leaf water potential (ψ(L)) reached the turgor loss point (ψ(TLP)). Plants were then irrigated either with water or with 25 mM KCl and monitored for water status, gas exchange and plant hydraulics recovery at 3, 6 and 24 h after irrigation. No significant differences were found between the two experimental groups in terms of ψ(L), g(L), plant transpiration, plant hydraulic conductance or leaf-specific shoot hydraulic conductivity. Analysis of xylem sap potassium concentration showed that there were no significant differences between treatments, and potassium levels were similar to those of potassium-starved but well-watered plants. In conclusion, potassium uptake from the soil solution and/or potassium release to the xylem appeared to be impaired in water-stressed plants, at least up to 24 h after relief from water stress, so that fertilization after the onset of stress did not result in any short-term advantage for recovery from drought. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Short-term droughts forecast using Markov chain model in Victoria, Australia

    Science.gov (United States)

    Rahmat, Siti Nazahiyah; Jayasuriya, Niranjali; Bhuiyan, Muhammed A.

    2017-07-01

    A comprehensive risk management strategy for dealing with drought should include both short-term and long-term planning. The objective of this paper is to present an early warning method to forecast drought using the Standardised Precipitation Index (SPI) and a non-homogeneous Markov chain model. A model such as this is useful for short-term planning. The developed method has been used to forecast droughts at a number of meteorological monitoring stations that have been regionalised into six (6) homogenous clusters with similar drought characteristics based on SPI. The non-homogeneous Markov chain model was used to estimate drought probabilities and drought predictions up to 3 months ahead. The drought severity classes defined using the SPI were computed at a 12-month time scale. The drought probabilities and the predictions were computed for six clusters that depict similar drought characteristics in Victoria, Australia. Overall, the drought severity class predicted was quite similar for all the clusters, with the non-drought class probabilities ranging from 49 to 57 %. For all clusters, the near normal class had a probability of occurrence varying from 27 to 38 %. For the more moderate and severe classes, the probabilities ranged from 2 to 13 % and 3 to 1 %, respectively. The developed model predicted drought situations 1 month ahead reasonably well. However, 2 and 3 months ahead predictions should be used with caution until the models are developed further.

  4. Forest Growth Responses to Drought at Short- and Long-Term Scales in Spain: Squeezing the Stress Memory from Tree Rings

    Directory of Open Access Journals (Sweden)

    J. Julio Camarero

    2018-02-01

    Full Text Available Drought-triggered declines in forest productivity and associated die-off events have increased considerably due to climate warming in the last decades. There is an increasing interest in quantifying the resilience capacity of forests against climate warming and drought to uncover how different stands and tree species will resist and recover after more frequent and intense droughts. Trees form annual growth rings that represent an accurate record of how forest growth responded to past droughts. Here we use dendrochronology to quantify the radial growth of different forests subjected to contrasting climatic conditions in Spain during the last half century. Particularly, we considered four climatically contrasting areas where dominant forests showed clear signs of drought-induced dieback. Studied forests included wet sites dominated by silver fir (Abies alba in the Pyrenees and beech (Fagus sylvatica stands in northern Spain, and drought-prone sites dominated by Scots pine (Pinus sylvestris in eastern Spain and black pine (Pinus nigra in the semi-arid south-eastern Spain. We quantified the growth reduction caused by different droughts and assessed the short-and long-term resilience capacity of declining vs. non-declining trees in each forest. In all cases, drought induced a marked growth reduction regardless tree vigor. However, the capacity to recover after drought (resilience at short- and long-term scales varied greatly between declining and non-declining individuals. In the case of beech and silver fir, non-declining individuals presented greater growth rates and capacity to recover after drought than declining individuals. For Scots pine, the resilience to drought was found to be lower in recent years regardless the tree vigor, but the growth reduction caused by successive droughts was more pronounced in declining than in non-declining individuals. In the black pine forest an extreme drought induced a marked growth reduction in declining

  5. Drought analysis and short-term forecast in the Aison River Basin (Greece

    Directory of Open Access Journals (Sweden)

    S. Kavalieratou

    2012-05-01

    Full Text Available A combined regional drought analysis and forecast is elaborated and applied to the Aison River Basin (Greece. The historical frequency, duration and severity were estimated using the standardized precipitation index (SPI computed on variable time scales, while short-term drought forecast was investigated by means of 3-D loglinear models. A quasi-association model with homogenous diagonal effect was proposed to fit the observed frequencies of class transitions of the SPI values computed on the 12-month time scale. Then, an adapted submodel was selected for each data set through the backward elimination method. The analysis and forecast of the drought class transition probabilities were based on the odds of the expected frequencies, estimated by these submodels, and the respective confidence intervals of these odds. The parsimonious forecast models fitted adequately the observed data. Results gave a comprehensive insight on drought behavior, highlighting a dominant drought period (1988–1991 with extreme drought events and revealing, in most cases, smooth drought class transitions. The proposed approach can be an efficient tool in regional water resources management and short-term drought warning, especially in irrigated districts.

  6. Development and application of a short- /long-term composited drought index in the upper Huaihe River basin, China

    Directory of Open Access Journals (Sweden)

    M. Yu

    2015-06-01

    Full Text Available Accurate and reliable drought monitoring is of primary importance for drought mitigation and reduction of social-ecological vulnerability. The aim of the paper was to propose a short-term/long-term composited drought index (CDI which could be widely used for drought monitoring and early warning in China. In the study, the upper Huaihe River basin above the Xixian gauge station, which has been hit by severe droughts frequently in recent decades, was selected as the case study site. The short-term CDI was developed by the Principle Component Analysis of the self-calibrating Palmer Drought Severity Index (sc-PDSI, the 1- and 3-month Standardized Precipitation Evapotranspiration Index (SPEI, Z Index (ZIND, the Soil Moisture Index (SMI with the long-term CDI being formulated by use of the self-calibrating Palmer Hydrology Drought Index (sc-PHDI, the 6-, 12-, 18- and 24-month SPEI, the Standardized Streamflow Index (SSI, the SMI. The sc-PDSI, the PHDI, the ZIND, the SPEI on a monthly time scale were calculated based on the monthly air temperature and precipitation, and the monthly SMI and SSI were computed based on the simulated soil moisture and runoff by the distributed Xinanjiang model. The thresholds of the short-term/long-term CDI were determined according to frequency statistics of different drought indices. Finally, the feasibility of the two CDIs was investigated against the scPDSI, the SPEI and the historical drought records. The results revealed that the short-term/long-term CDI could capture the onset, severity, persistence of drought events very well with the former being better at identifying the dynamic evolution of drought condition while the latter better at judging the changing trend of drought over a long time period.

  7. Long-term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species.

    Science.gov (United States)

    Zhou, Shuang-Xi; Medlyn, Belinda E; Prentice, Iain Colin

    2016-01-01

    Experimental drought is well documented to induce a decline in photosynthetic capacity. However, if given time to acclimate to low water availability, the photosynthetic responses of plants to low soil moisture content may differ from those found in short-term experiments. This study aims to test whether plants acclimate to long-term water stress by modifying the functional relationships between photosynthetic traits and water stress, and whether species of contrasting habitat differ in their degree of acclimation. Three Eucalyptus taxa from xeric and riparian habitats were compared with regard to their gas exchange responses under short- and long-term drought. Photosynthetic parameters were measured after 2 and 4 months of watering treatments, namely field capacity or partial drought. At 4 months, all plants were watered to field capacity, then watering was stopped. Further measurements were made during the subsequent 'drying-down', continuing until stomata were closed. Two months of partial drought consistently reduced assimilation rate, stomatal sensitivity parameters (g1), apparent maximum Rubisco activity (V'(cmax)) and maximum electron transport rate (J'(max)). Eucalyptus occidentalis from the xeric habitat showed the smallest decline in V'(cmax) and J'(max); however, after 4 months, V'(cmax) and J'(max) had recovered. Species differed in their degree of V'(cmax) acclimation. Eucalyptus occidentalis showed significant acclimation of the pre-dawn leaf water potential at which the V'(cmax) and 'true' V(cmax) (accounting for mesophyll conductance) declined most steeply during drying-down. The findings indicate carbon loss under prolonged drought could be over-estimated without accounting for acclimation. In particular, (1) species from contrasting habitats differed in the magnitude of V'(cmax) reduction in short-term drought; (2) long-term drought allowed the possibility of acclimation, such that V'(cmax) reduction was mitigated; (3) xeric species showed a

  8. Dissecting rice polyamine metabolism under controlled long-term drought stress.

    Directory of Open Access Journals (Sweden)

    Phuc Thi Do

    Full Text Available A selection of 21 rice cultivars (Oryza sativa L. ssp. indica and japonica was characterized under moderate long-term drought stress by comprehensive physiological analyses and determination of the contents of polyamines and selected metabolites directly related to polyamine metabolism. To investigate the potential regulation of polyamine biosynthesis at the transcriptional level, the expression of 21 genes encoding enzymes involved in these pathways were analyzed by qRT-PCR. Analysis of the genomic loci revealed that 11 of these genes were located in drought-related QTL regions, in agreement with a proposed role of polyamine metabolism in rice drought tolerance. The cultivars differed widely in their drought tolerance and parameters such as biomass and photosynthetic quantum yield were significantly affected by drought treatment. Under optimal irrigation free putrescine was the predominant polyamine followed by free spermidine and spermine. When exposed to drought putrescine levels decreased markedly and spermine became predominant in all cultivars. There were no correlations between polyamine contents and drought tolerance. GC-MS analysis revealed drought-induced changes of the levels of ornithine/arginine (substrate, substrates of polyamine synthesis, proline, product of a competing pathway and GABA, a potential degradation product. Gene expression analysis indicated that ADC-dependent polyamine biosynthesis responded much more strongly to drought than the ODC-dependent pathway. Nevertheless the fold change in transcript abundance of ODC1 under drought stress was linearly correlated with the drought tolerance of the cultivars. Combining metabolite and gene expression data, we propose a model of the coordinate adjustment of polyamine biosynthesis for the accumulation of spermine under drought conditions.

  9. Drought analysis and short-term forecast in the Aison River Basin (Greece)

    OpenAIRE

    Kavalieratou, S.; Karpouzos, D. K.; Babajimopoulos, C.

    2012-01-01

    A combined regional drought analysis and forecast is elaborated and applied to the Aison River Basin (Greece). The historical frequency, duration and severity were estimated using the standardized precipitation index (SPI) computed on variable time scales, while short-term drought forecast was investigated by means of 3-D loglinear models. A quasi-association model with homogenous diagonal effect was proposed to fit the observed frequencies of class transitions of the SPI values computed on t...

  10. Transcriptome Profiling of Watermelon Root in Response to Short-Term Osmotic Stress.

    Science.gov (United States)

    Yang, Yongchao; Mo, Yanling; Yang, Xiaozheng; Zhang, Haifei; Wang, Yongqi; Li, Hao; Wei, Chunhua; Zhang, Xian

    2016-01-01

    Osmotic stress adversely affects the growth, fruit quality and yield of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Increasing the tolerance of watermelon to osmotic stress caused by factors such as high salt and water deficit is an effective way to improve crop survival in osmotic stress environments. Roots are important organs in water absorption and are involved in the initial response to osmosis stress; however, few studies have examined the underlying mechanism of tolerance to osmotic stress in watermelon roots. For better understanding of this mechanism, the inbred watermelon accession M08, which exhibits relatively high tolerance to water deficits, was treated with 20% polyethylene glycol (PEG) 6000. The root samples were harvested at 6 h after PEG treatment and untreated samples were used as controls. Transcriptome analyses were carried out by Illumina RNA sequencing. A total of 5246 differentially expressed genes were identified. Gene ontology enrichment and biochemical pathway analyses of these 5246 genes showed that short-term osmotic stress affected osmotic adjustment, signal transduction, hormone responses, cell division, cell cycle and ribosome, and M08 may repress root growth to adapt osmotic stress. The results of this study describe the watermelon root transcriptome under osmotic stress and propose new insight into watermelon root responses to osmotic stress at the transcriptome level. Accordingly, these results allow us to better understand the molecular mechanisms of watermelon in response to drought stress and will facilitate watermelon breeding projects to improve drought tolerance.

  11. [Effects of short-term elevated CO2 concentration and drought stress on the rhizosphere effects of soil carbon, nitrogen and microbes of Bothriochloa ischaemum.

    Science.gov (United States)

    Xiao, Lie; Liu, Guo Bin; Li, Peng; Xue, Sha

    2017-10-01

    A water control pot experiment was conducted in climate controlled chambers to study soil carbon, nitrogen and microbial community structure and their rhizosphere effects in the rhizosphere and non rhizosphere soil of Bothriochloa ischaemum at elevated CO2 concentrations (800 μmol·mol -1 ) under three water regimes, i.e., well watered (75%-80% of field capacity, FC), moderate drought stress (55%-60% of FC), and severe drought stress (35%-40% of FC). The results showed that elevated CO2 concentration and drought stress did not have significant impacts on the content of soil organic carbon, total nitrogen or dissolved organic carbon (DOC) in the rhizosphere and bulk soils or their rhizosphere effects. Elevated CO2 concentration significantly decreased dissolved organic nitrogen (DON) content in the rhizosphere soil under moderate drought stress, increased DOC/DON, and significantly increased the negative rhizosphere effect of DON and positive rhizosphere effect of DOC/DON. Drought stress and elevated CO2 concentration did not have significant impacts on the rhizosphere effect of total and bacterial phospholipid fatty acids (PLFA). Drought stress under elevated CO2 concentration significantly increased the G + /G - PLFA in the rhizosphere soil and decreased the G + /G - PLFA in the bulk soil, so its rhizosphere effect significantly increased, indicating that the soil microbial community changed from chemoautotroph microbes to heterotrophic microbes.

  12. Bacterial mediated amelioration of drought stress in drought tolerant ...

    African Journals Online (AJOL)

    Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice ( Oryza sativa L.) ... and IR-64 (drought sensitive) cultivars of rice (Oryza sativa L.) under different level of drought stress. ... from 32 Countries:.

  13. Effects of stress on heart rate complexity--a comparison between short-term and chronic stress.

    Science.gov (United States)

    Schubert, C; Lambertz, M; Nelesen, R A; Bardwell, W; Choi, J-B; Dimsdale, J E

    2009-03-01

    This study examined chronic and short-term stress effects on heart rate variability (HRV), comparing time, frequency and phase domain (complexity) measures in 50 healthy adults. The hassles frequency subscale of the combined hassles and uplifts scale (CHUS) was used to measure chronic stress. Short-term stressor reactivity was assessed with a speech task. HRV measures were determined via surface electrocardiogram (ECG). Because respiration rate decreased during the speech task (pshort-term stress decreased HR D2 (calculated via the pointwise correlation dimension PD2) (pshort-term stress. Partial correlation adjusting for respiration rate showed that HR D2 was associated with chronic stress (r=-.35, p=.019). Differential effects of chronic and short-term stress were observed on several HRV measures. HR D2 decreased under both stress conditions reflecting lowered functionality of the cardiac pacemaker. The results confirm the importance of complexity metrics in modern stress research on HRV.

  14. Passive adaptation to stress in adulthood after short-term social instability stress during adolescence in mice.

    Science.gov (United States)

    de Lima, A P N; Massoco, C O

    2017-05-01

    This study reports that short-term social instability stress (SIS) in adolescence increases passive-coping in adulthood in male mice. Short-term SIS decreased the latency of immobility and increased the frequency and time of immobility in tail suspension test. These findings support the hypothesis that adolescent stress can induce a passive adaptation to stress in adulthood, even if it is a short period of stress.

  15. Physiological and molecular analysis of the interaction between aluminium toxicity and drought stress in common bean (Phaseolus vulgaris)

    Science.gov (United States)

    Yang, Zhong-Bao; Eticha, Dejene; Albacete, Alfonso; Rao, Idupulapati Madhusudana; Roitsch, Thomas; Horst, Walter Johannes

    2012-01-01

    Aluminium (Al) toxicity and drought are two major factors limiting common bean (Phaseolus vulgaris) production in the tropics. Short-term effects of Al toxicity and drought stress on root growth in acid, Al-toxic soil were studied, with special emphasis on Al–drought interaction in the root apex. Root elongation was inhibited by both Al and drought. Combined stresses resulted in a more severe inhibition of root elongation than either stress alone. This result was different from the alleviation of Al toxicity by osmotic stress (–0.60 MPa polyethylene glycol) in hydroponics. However, drought reduced the impact of Al on the root tip, as indicated by the reduction of Al-induced callose formation and MATE expression. Combined Al and drought stress enhanced up-regulation of ACCO expression and synthesis of zeatin riboside, reduced drought-enhanced abscisic acid (ABA) concentration, and expression of NCED involved in ABA biosynthesis and the transcription factors bZIP and MYB, thus affecting the regulation of ABA-dependent genes (SUS, PvLEA18, KS-DHN, and LTP) in root tips. The results provide circumstantial evidence that in soil, drought alleviates Al injury, but Al renders the root apex more drought-sensitive, particularly by impacting the gene regulatory network involved in ABA signal transduction and cross-talk with other phytohormones necessary for maintaining root growth under drought. PMID:22371077

  16. Towards Improved Understanding of Drought and Drought Impacts from Long Term Earth Observation Records

    Science.gov (United States)

    Champagne, C.; Wang, S.; Liu, J.; Hadwen, T. A.

    2017-12-01

    Drought is a complex natural disaster, which often emerges slowly, but can occur at various time scales and have impacts that are not well understood. Long term observations of drought intensity and frequency are often quantified from precipitation and temperature based indices or modelled estimates of soil water storage. The maturity of satellite based observations has created the potential to enhance the understanding of drought and drought impacts, particularly in regions where traditional data sets are limited by remoteness or inaccessibility, and where drought processes are not well-quantified by models. Long term global satellite data records now provide observations of key hydrological variables, including evaporation modelled from thermal sensors, soil moisture from microwave sensors, ground water from gravity sensors and vegetation condition that can be modelled from optical sensors. This study examined trends in drought frequency, intensity and duration over diverse ecoregions in Canada, including agricultural, grassland, forested and wetland areas. Trends in drought were obtained from the Canadian Drought Monitor as well as meteorological based indices from weather stations, and evaluated against satellite derived information on evaporative stress (Anderson et al. 2011), soil moisture (Champagne et al. 2015), terrestrial water storage (Wang and Li 2016) and vegetation condition (Davidson et al. 2009). Data sets were evaluated to determine differences in how different sensors characterize the hydrology and impacts of drought events from 2003 to 2016. Preliminary results show how different hydrological observations can provide unique information that can tie causes of drought (water shortages resulting from precipitation, lack of moisture storage or evaporative stress) to impacts (vegetation condition) that hold the potential to improve the understanding and classification of drought events.

  17. The Transcriptomic Responses of Pinus massoniana to Drought Stress

    Directory of Open Access Journals (Sweden)

    Mingfeng Du

    2018-06-01

    Full Text Available Masson pine (Pinus massoniana is a major fast-growing timber species planted in southern China, a region of seasonal drought. Using a drought-tolerance genotype of Masson pine, we conducted large-scale transcriptome sequencing using Illumina technology. This work aimed to evaluate the transcriptomic responses of Masson pine to different levels of drought stress. First, 3397, 1695 and 1550 unigenes with differential expression were identified by comparing plants subjected to light, moderate or severe drought with control plants. Second, several gene ontology (GO categories (oxidation-reduction and metabolism and Kyoto Encyclopedia of Genes and Genomes (KEGG pathways (plant hormone signal transduction and metabolic pathways were enriched, indicating that the expression levels of some genes in these enriched GO terms and pathways were altered under drought stress. Third, several transcription factors (TFs associated with circadian rhythms (HY5 and LHY, signal transduction (ERF, and defense responses (WRKY were identified, and these TFs may play key roles in adapting to drought stress. Drought also caused significant changes in the expression of certain functional genes linked to osmotic adjustment (P5CS, abscisic acid (ABA responses (NCED, PYL, PP2C and SnRK, and reactive oxygen species (ROS scavenging (GPX, GST and GSR. These transcriptomic results provide insight into the molecular mechanisms of drought stress adaptation in Masson pine.

  18. Evaluating Yield and Drought Stress Indices under End Season Drought Stress in Promising Genotypes of Barley

    Directory of Open Access Journals (Sweden)

    H. Tajalli

    2012-08-01

    Full Text Available To study the effects of end season drought stress on yield, yield components and drought stress indices in barley, a split plot experiment arranged in randomized complete block design with three replications was conducted at the Agricultural Research Center of Birjand in 2008-2009 crop years. Drought stress, in 2 levels, consists of control (complete irrigation and stopping irrigation at the 50% of heading stage, and 20 promising genotypes of barley were the treatments of the experiment. Results revealed that stopping irrigation lead to declining of 14.64 and 8.12 percent of seed and forage yields against control condition, respectively. Using stress susceptibility index (SSI indicated that genotypes 2, 3, 7, 9, 10 and 15; using STI and GMP indices, genotypes 5, 8, 18 and 20 using MP, genotypes 8, 18 and 20, and TOL, genotypes 2, 3, 7, 9, and 10, were the most drought tolerant genotypes. Correlation between seed yield and stress evaluation indices showed that MP, GMP and STI are the best indices to be used in selection and introducing drought tolerant genotypes of barley. Considering all indices, and given that the best genotypes are those with high yield under normal condition and minimum yield reduction under drought stress, No. 18 and 20 could be introduced as the most tolerant barley genotypes to drought.

  19. Effects of stress on heart rate complexity—A comparison between short-term and chronic stress

    OpenAIRE

    Schubert, C.; Lambertz, M.; Nelesen, R.A.; Bardwell, W.; Choi, J.-B.; Dimsdale, J.E.

    2008-01-01

    This study examined chronic and short-term stress effects on heart rate variability (HRV), comparing time, frequency and phase domain (complexity) measures in 50 healthy adults. The hassles frequency subscale of the combined hassles and uplifts scale (CHUS) was used to measure chronic stress. Short-term stressor reactivity was assessed with a speech task. HRV measures were determined via surface electrocardiogram (ECG). Because respiration rate decreased during the speech task (p < .001), thi...

  20. Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum.

    Directory of Open Access Journals (Sweden)

    Hui Liu

    Full Text Available To determine the proteomic-level responses of drought tolerant wild wheat (Triticum boeoticum, physiological and comparative proteomic analyses were conducted using the roots and the leaves of control and short term drought-stressed plants. Drought stress was imposed by transferring hydroponically grown seedlings at the 3-leaf stage into 1/2 Hoagland solution containing 20% PEG-6000 for 48 h. Root and leaf samples were separately collected at 0 (control, 24, and 48 h of drought treatment for analysis. Physiological analysis indicated that abscisic acid (ABA level was greatly increased in the drought-treated plants, but the increase was greater and more rapid in the leaves than in the roots. The net photosynthetic rate of the wild wheat leaves was significantly decreased under short-term drought stress. The deleterious effects of drought on the studied traits mainly targeted photosynthesis. Comparative proteomic analysis identified 98 and 85 differently changed protein spots (DEPs (corresponding to 87 and 80 unique proteins, respectively in the leaves and the roots, respectively, with only 6 mutual unique proteins in the both organs. An impressive 86% of the DEPs were implicated in detoxification and defense, carbon metabolism, amino acid and nitrogen metabolism, proteins metabolism, chaperones, transcription and translation, photosynthesis, nucleotide metabolism, and signal transduction. Further analysis revealed some mutual and tissue-specific responses to short-term drought in the leaves and the roots. The differences of drought-response between the roots and the leaves mainly included that signal sensing and transduction-associated proteins were greatly up-regulated in the roots. Photosynthesis and carbon fixation ability were decreased in the leaves. Glycolysis was down-regulated but PPP pathway enhanced in the roots, resulting in occurrence of complex changes in energy metabolism and establishment of a new homeostasis. Protein metabolism

  1. Proteomic studies of drought stress response in Fabaceae

    Directory of Open Access Journals (Sweden)

    Tanja ZADRAŽNIK

    2015-11-01

    Full Text Available Drought stress is a serious threat to crop production that influences plant growth and development and subsequently causes reduced quantity and quality of the yield. Plant stress induces changes in cell metabolism, which includes differential expression of proteins. Proteomics offer a powerful approach to analyse proteins involved in drought stress response of plants. Analyses of changes in protein abundance of legumes under drought stress are very important, as legumes play an important role in human and animal diet and are often exposed to drought. The presented results of proteomic studies of selected legumes enable better understanding of molecular mechanisms of drought stress response. The study of drought stress response of plants with proteomic approach may contribute to the development of potential drought-response markers and to the development of drought-tolerant cultivars of different legume crop species.

  2. Contrasting Changes Caused by Drought and Submergence Stresses in Bermudagrass (Cynodon dactylon)

    Science.gov (United States)

    Ye, Tiantian; Shi, Haitao; Wang, Yanping; Chan, Zhulong

    2015-01-01

    In this study, we investigated the mechanisms by which bermudagrass withstands the drought and submergence stresses through physiological, proteomic and metabolomic approaches. The results showed that significant physiological changes were observed after drought treatment, while only slight changes after submergence treatment, including compatible solute contents, ROS levels and antioxidant enzyme activities. Proteomics results showed that 81 proteins regulated by drought or submergence treatment were identified by MALDI-TOF-MS. Among them, 76 proteins were modulated by drought stress with 46 increased abundance and 30 decreased abundance. Forty-five showed abundance changes after submergence treatment with 10 increased and 35 decreased. Pathway enrichment analysis revealed that pathways of amino acid metabolism and mitochondrial electron transport/ATP synthesis were only enriched by drought treatment, while other pathways including photosynthesis, biodegradation of xenobiotics, oxidative pentose phosphate, glycolysis and redox were commonly over-represented after both drought and submergence treatments. Metabolomic analysis indicated that most of the metabolites were up-regulated by drought stress, while 34 of 40 metabolites contents exhibited down-regulation or no significant changes when exposed to submergence stress, including sugars and sugar alcohols. These data indicated that drought stress extensively promoted photosynthesis and redox metabolisms while submergence stress caused declined metabolisms and dormancy in Cynodon dactylon. Taken together, the quiescence strategy with retarded growth might allow bermudagrass to be adaptive to long-term submerged environment, while activation of photosynthesis and redox, and accumulation of compatible solutes and molecular chaperones increased bermudagrass tolerance to drought stress. PMID:26617615

  3. Polyamine biosynthesis in rice cultivars under salt stress and comparison with observations under drought stress

    Directory of Open Access Journals (Sweden)

    Phuc Thi Do

    2014-05-01

    Full Text Available Soil salinity affects a large proportion of rural area and limits agricultural productivity. To investigate differential adaptation to soil salinity, we studied salt tolerance of 18 varieties of Oryza sativa using a hydroponic culture system. Based on visual inspection and photosynthetic parameters, cultivars were classified according to their tolerance level. Additionally, biomass parameters were correlated with salt tolerance. Polyamines have frequently been demonstrated to be involved in plant stress responses and therefore soluble leaf polyamines were measured. Under salinity, putrescine (Put content was unchanged or increased in tolerant, while dropped in sensitive cultivars. Spermidine (Spd content was unchanged at lower NaCl concentrations in all, while reduced at 100 mM NaCl in sensitive cultivars. Spermine (Spm content was increased in all cultivars. A comparison with data from 21 cultivars under long-term, moderate drought stress revealed an increase of Spm under both stress conditions. While Spm became the most prominent polyamine under drought, levels of all three polyamines were relatively similar under salt stress. Put levels were reduced under both, drought and salt stress, while changes in Spd were different under drought (decrease or salt (unchanged conditions. Regulation of polyamine metabolism at the transcript level during exposure to salinity was studied for genes encoding enzymes involved in the biosynthesis of polyamines and compared to expression under drought stress. Based on expression profiles, investigated genes were divided into generally stress-induced genes (ADC2, SPD/SPM2, SPD/SPM3, one generally stress-repressed gene (ADC1, constitutively expressed genes (CPA1, CPA2, CPA4, SAMDC1, SPD/SPM1, specifically drought-induced genes (SAMDC2, AIH, one specifically drought-repressed gene (CPA3 and one specifically salt-stress repressed gene (SAMDC4, revealing both overlapping and specific stress responses under these

  4. Short-term stress enhances cellular immunity and increases early resistance to squamous cell carcinoma.

    Science.gov (United States)

    Dhabhar, Firdaus S; Saul, Alison N; Daugherty, Christine; Holmes, Tyson H; Bouley, Donna M; Oberyszyn, Tatiana M

    2010-01-01

    In contrast to chronic/long-term stress that suppresses/dysregulates immune function, an acute/short-term fight-or-flight stress response experienced during immune activation can enhance innate and adaptive immunity. Moderate ultraviolet-B (UV) exposure provides a non-invasive system for studying the naturalistic emergence, progression and regression of squamous cell carcinoma (SCC). Because SCC is an immunoresponsive cancer, we hypothesized that short-term stress experienced before UV exposure would enhance protective immunity and increase resistance to SCC. Control and short-term stress groups were treated identically except that the short-term stress group was restrained (2.5h) before each of nine UV-exposure sessions (minimum erythemal dose, 3-times/week) during weeks 4-6 of the 10-week UV exposure protocol. Tumors were measured weekly, and tissue collected at weeks 7, 20, and 32. Chemokine and cytokine gene expression was quantified by real-time PCR, and CD4+ and CD8+ T cells by flow cytometry and immunohistochemistry. Compared to controls, the short-term stress group showed greater cutaneous T-cell attracting chemokine (CTACK)/CCL27, RANTES, IL-12, and IFN-gamma gene expression at weeks 7, 20, and 32, higher skin infiltrating T cell numbers (weeks 7 and 20), lower tumor incidence (weeks 11-20) and fewer tumors (weeks 11-26). These results suggest that activation of short-term stress physiology increased chemokine expression and T cell trafficking and/or function during/following UV exposure, and enhanced Type 1 cytokine-driven cell-mediated immunity that is crucial for resistance to SCC. Therefore, the physiological fight-or-flight stress response and its adjuvant-like immuno-enhancing effects, may provide a novel and important mechanism for enhancing immune system mediated tumor-detection/elimination that merits further investigation.

  5. Natural recovery and leaf water potential after fire influenced by salvage logging and induced drought stress

    Directory of Open Access Journals (Sweden)

    D. Moya

    2013-01-01

    Full Text Available Salvage logging is one of the most common emergency actions in the short-term management after a fire. Several studies have been carried out and some obtained positive results which incite to carry it out but other, found negative effects on seedling establishment and regeneration. In addition, climatic changes will have large impacts on vegetation productivity and resilience since the regional models for south-eastern Spain predicts a rainfall decrease of about 20% and temperature increase of 4.5 ºC. Our aim was to determine how short-term forest management and induced drought affect the ecosystem recovery in Aleppo pine stands naturally recovered after a fire.In summer 2009, a mid-high severity fire burned 968 ha of Aleppo pine (Pinus halepensis Mill. forest in south-eastern Spain. Six months later, a salvage logging was carried out. The Aleppo pine recruitment was negligible. During summer 2010, twelve square plots (2m x 2m were set in the three scenarios: control, salvaged and drought induced. The surface cover and soil water availability for three dominant understory species were recorded in four field campaigns: Spring-2010, Fall-2010, Spring-2011 and Fall-2011.The season, management and the target species showed significant differences in growing and water stress. In general, Esparto grass showed lower water stress, mainly in Fall, a higher increase of total coverage. Both effects were showing their highest values in non-salvaged areas and no drought. Changes in leaf water potential and soil water content after the drought season influence the survival and development of individuals.Our results indicate that soil water content and ecosystem response can be modified by short-term silvicultural treatments. Therefore, management after fire could cause opposite effects to those initially foreseen, since they depend on fire severity, and type of ecosystem management response. So, their application must be evaluated and assessed before

  6. SHORT-TERM STRESS ENHANCES CELLULAR IMMUNITY AND INCREASES EARLY RESISTANCE TO SQUAMOUS CELL CARCINOMA

    OpenAIRE

    Dhabhar, Firdaus S.; Saul, Alison N.; Daugherty, Christine; Holmes, Tyson H.; Bouley, Donna M.; Oberyszyn, Tatiana M.

    2009-01-01

    In contrast to chronic/long-term stress that suppresses/dysregulates immune function, an acute/short-term fight-or-flight stress response experienced during immune activation can enhance innate and adaptive immunity. Moderate ultraviolet-B (UV) exposure provides a non-invasive system for studying the naturalistic emergence, progression and regression of squamous cell carcinoma (SCC). Because SCC is an immunoresponsive cancer, we hypothesized that short-term stress experienced before UV exposu...

  7. Different adaptation strategies of two citrus scion/rootstock combinations in response to drought stress.

    Science.gov (United States)

    Dutra de Souza, Joadson; de Andrade Silva, Edson Mario; Coelho Filho, Mauricio Antônio; Morillon, Raphaël; Bonatto, Diego; Micheli, Fabienne; da Silva Gesteira, Abelmon

    2017-01-01

    Scion/rootstock interaction is important for plant development and for breeding programs. In this context, polyploid rootstocks presented several advantages, mainly in relation to biotic and abiotic stresses. Here we analyzed the response to drought of two different scion/rootstock combinations presenting different polyploidy: the diploid (2x) and autotetraploid (4x) Rangpur lime (Citrus limonia, Osbeck) rootstocks grafted with 2x Valencia Delta sweet orange (Citrus sinensis) scions, named V/2xRL and V/4xRL, respectively. Based on previous gene expression data, we developed an interactomic approach to identify proteins involved in V/2xRL and V/4xRL response to drought. A main interactomic network containing 3,830 nodes and 97,652 edges was built from V/2xRL and V/4xRL data. Exclusive proteins of the V/2xRL and V/4xRL networks (2,056 and 1,001, respectively), as well as common to both networks (773) were identified. Functional clusters were obtained and two models of drought stress response for the V/2xRL and V/4xRL genotypes were designed. Even if the V/2xRL plant implement some tolerance mechanisms, the global plant response to drought was rapid and quickly exhaustive resulting in a general tendency to dehydration avoidance, which presented some advantage in short and strong drought stress conditions, but which, in long terms, does not allow the plant survival. At the contrary, the V/4xRL plants presented a response which strong impacts on development but that present some advantages in case of prolonged drought. Finally, some specific proteins, which presented high centrality on interactomic analysis were identified as good candidates for subsequent functional analysis of citrus genes related to drought response, as well as be good markers of one or another physiological mechanism implemented by the plants.

  8. Comparative proteomic analyses reveal the proteome response to short-term drought in Italian ryegrass (Lolium multiflorum.

    Directory of Open Access Journals (Sweden)

    Ling Pan

    Full Text Available Drought is a major abiotic stress that impairs growth and productivity of Italian ryegrass. Comparative analysis of drought responsive proteins will provide insight into molecular mechanism in Lolium multiflorum drought tolerance. Using the iTRAQ-based approach, proteomic changes in tolerant and susceptible lines were examined in response to drought condition. A total of 950 differentially accumulated proteins was found to be involved in carbohydrate metabolism, amino acid metabolism, biosynthesis of secondary metabolites, and signal transduction pathway, such as β-D-xylosidase, β-D-glucan glucohydrolase, glycerate dehydrogenase, Cobalamin-independent methionine synthase, glutamine synthetase 1a, Farnesyl pyrophosphate synthase, diacylglycerol, and inositol 1, 4, 5-trisphosphate, which might contributed to enhance drought tolerance or adaption in Lolium multiflorum. Interestingly, the two specific metabolic pathways, arachidonic acid and inositol phosphate metabolism including differentially accumulated proteins, were observed only in the tolerant lines. Cysteine protease cathepsin B, Cysteine proteinase, lipid transfer protein and Aquaporin were observed as drought-regulated proteins participating in hydrolysis and transmembrane transport. The activities of phospholipid hydroperoxide glutathione peroxidase, peroxiredoxin, dehydroascorbate reductase, peroxisomal ascorbate peroxidase and monodehydroascorbate reductase associated with alleviating the accumulation of reactive oxygen species in stress inducing environments. Our results showed that drought-responsive proteins were closely related to metabolic processes including signal transduction, antioxidant defenses, hydrolysis, and transmembrane transport.

  9. Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars.

    Science.gov (United States)

    Abid, Muhammad; Tian, Zhongwei; Ata-Ul-Karim, Syed Tahir; Liu, Yang; Cui, Yakun; Zahoor, Rizwan; Jiang, Dong; Dai, Tingbo

    2016-09-01

    Wheat crop endures a considerable penalty of yield reduction to escape the drought events during post-anthesis period. Drought priming under a pre-drought stress can enhance the crop potential to tolerate the subsequent drought stress by triggering a faster and stronger defense mechanism. Towards these understandings, a set of controlled moderate drought stress at 55-60% field capacity (FC) was developed to prime the plants of two wheat cultivars namely Luhan-7 (drought tolerant) and Yangmai-16 (drought sensitive) during tillering (Feekes 2 stage) and jointing (Feekes 6 stage), respectively. The comparative response of primed and non-primed plants, cultivars and priming stages was evaluated by applying a subsequent severe drought stress at 7 days after anthesis. The results showed that primed plants of both cultivars showed higher potential to tolerate the post-anthesis drought stress through improved leaf water potential, more chlorophyll, and ribulose-1, 5-bisphosphate carboxylase/oxygenase contents, enhanced photosynthesis, better photoprotection and efficient enzymatic antioxidant system leading to less yield reductions. The primed plants of Luhan-7 showed higher capability to adapt the drought stress events than Yangmai-16. The positive effects of drought priming to sustain higher grain yield were pronounced in plants primed at tillering than those primed at jointing. In consequence, upregulated functioning of photosynthetic apparatus and efficient enzymatic antioxidant activities in primed plants indicated their superior potential to alleviate a subsequently occurring drought stress, which contributed to lower yield reductions than non-primed plants. However, genotypic and priming stages differences in response to drought stress also contributed to affect the capability of primed plants to tolerate the post-anthesis drought stress conditions in wheat. Copyright © 2016. Published by Elsevier Masson SAS.

  10. Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections

    Directory of Open Access Journals (Sweden)

    B. Orlowsky

    2013-05-01

    Full Text Available Recent years have seen a number of severe droughts in different regions around the world, causing agricultural and economic losses, famines and migration. Despite their devastating consequences, the Standardised Precipitation Index (SPI of these events lies within the general range of observation-based SPI time series and simulations from the 5th phase of the Coupled Model Intercomparison Project (CMIP5. In terms of magnitude, regional trends of SPI over the last decades remain mostly inconclusive in observation-based datasets and CMIP5 simulations, but Soil Moisture Anomalies (SMAs in CMIP5 simulations hint at increased drought in a few regions (e.g., the Mediterranean, Central America/Mexico, the Amazon, North-East Brazil and South Africa. Also for the future, projections of changes in the magnitude of meteorological (SPI and soil moisture (SMA drought in CMIP5 display large spreads over all time frames, generally impeding trend detection. However, projections of changes in the frequencies of future drought events display more robust signal-to-noise ratios, with detectable trends towards more frequent drought before the end of the 21st century in the Mediterranean, South Africa and Central America/Mexico. Other present-day hot spots are projected to become less drought-prone, or display non-significant changes in drought occurrence. A separation of different sources of uncertainty in projections of meteorological and soil moisture drought reveals that for the near term, internal climate variability is the dominant source, while the formulation of Global Climate Models (GCMs generally becomes the dominant source of spread by the end of the 21st century, especially for soil moisture drought. In comparison, the uncertainty from Green-House Gas (GHG concentrations scenarios is negligible for most regions. These findings stand in contrast to respective analyses for a heat wave index, for which GHG concentrations scenarios constitute the main source

  11. Remote sensing of drought and salinity stressed turfgrass

    Science.gov (United States)

    Ikemura, Yoshiaki

    The ability to detect early signs of stress in turfgrass stands using a rapid, inexpensive, and nondestructive method would be a valuable management tool. Studies were conducted to determine if digital image analysis and spectroradiometric readings obtained from drought- and salinity-stressed turfgrasses accurately reflected the varying degrees of stress and correlated strongly with visual ratings, relative water content (RWC) and leaf osmolality, standard methods for measuring stress in plants. Greenhouse drought and salinity experiments were conducted on hybrid bluegrass [Poa arachnifera (Torn.) x pratensis (L.)] cv. Reveille and bermudagrass [Cynodon dactylon (L.)] cv. Princess 77. Increasing drought and salinity stress led to decreased RWC, increased leaf osmolality, and decreased visual ratings for both species. Percent green cover and hue values obtained from digital image analysis, and Normalized Difference Vegetation Index (NDVI), calculated from spectroradiometric readings, were moderately to highly correlated with visual ratings, RWC, and leaf osmolality. Similarly, in a field validation study conducted on hybrid bluegrass, spectral reflectance ratios were moderately to highly correlated with visual ratings. In addition, percent green cover obtained from digital image analysis was strongly correlated with most of the spectral ratios, particularly the ratio of fluorescence peaks (r = -0.88 to -0.99), modified triangular vegetation index (MTVI) (r = 0.82 to 0.98), and NDVI (r = 0.84 to 0.99), suggesting that spectral reflectance and digital image analysis are equally effective at detecting changes in color brought on by stress. The two methods differed in their ability to distinguish between drought salinity stress. Hue values obtained from digital image analysis responded differently to increasing drought stress than to increasing salinity stress. Whereas the onset of drought stress was reflected by increased hue values followed by a decrease in values as

  12. Experimental drought induces short-term changes in soil functionality and microbial community structure after fire in a Mediterranean shrubland

    Science.gov (United States)

    Hinojosa, M. B.; Parra, A.; Laudicina, V. A.; Moreno, J. M.

    2014-10-01

    Fire is a major ecosystem driver, causing significant changes in soil nutrients and microbial community structure and functionality. Post-fire soil dynamics can vary depending on rainfall patterns, although variations in response to drought are poorly known. This is particularly important in areas with poor soils and limited rainfall, like arid and semiarid ones. Furthermore, climate change projections in many such areas anticipate reduced precipitation and longer drought, together with an increase in fire severity. The effects of experimental drought and fire were studied on soils in a Mediterranean Cistus-Erica shrubland in Central Spain. A replicated (n = 4) field experiment was carried out in which four levels of rainfall pattern were implemented by means of a rain-out shelters and irrigation system. The treatments were: environmental control (natural rainfall), historical control (long-term average rainfall, 2 months drought), moderate drought (25% reduction of historical control, 5 months drought) and severe drought (45% reduction, 7 months drought). After one growing season, the plots were burned with high fire intensity, except a set of unburned plots that served as control. Soils were collected seasonally during one year and variables related to soil nutrient availability and microbial community structure and functionality were studied. Burned soils increased nutrient availability (P, N, K) with respect to unburned ones, but drought reduced such an increase in P, while it further increased N and K. Such changes in available soil nutrients were short-lived. Drought caused a further decrease of enzyme activities, carbon mineralization rate and microbial biomass. Fire decreased the relative abundance of fungi and actinomycetes. However, fire and drought caused a further reduction in fungi, with bacteria becoming relatively more abundant. Arguably, increasing drought and fires due to climate change will likely shift soil recovery after fire.

  13. Physiology and proteomics of drought stress acclimation in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Fulda, S; Mikkat, S; Stegmann, H; Horn, R

    2011-07-01

    An easy and manageable in vitro screening system for drought tolerance of sunflower seedlings based on MS media supplemented with polyethylene glycol 6000 was evaluated. Morphological and physiological parameters were compared between control (-0.05 MPa) and drought-stressed (-0.6 MPa) seedlings of Helianthus annuus L. cv. Peredovick. There was a significant growth deficit in drought-stressed plants compared to control plants in terms of hypocotyl length, and shoot and root fresh mass. Shoot growth was more restricted than root growth, resulting in an increased root/shoot ratio of drought-stressed plants. Accumulation of osmolytes such as inositol (65-fold), glucose (58-fold), proline (55-fold), fructose (11-fold) and sucrose (eightfold), in leaves of drought-stressed plants could be demonstrated by gas-liquid chromatography. Soluble protein patterns of leaves were analysed with two-dimensional gel electrophoresis (2D-PAGE) and MALDI-TOF mass spectrometry. A set of 46 protein spots allowed identification of 19 marker proteins. Quantitative changes in protein expression of drought-stressed versus control plants were detected. In leaves of drought-stressed sunflower seedlings six proteins were significantly up-regulated more than twofold: a putative caffeoyl-CoA 3-O-methyltransferase (4.5-fold), a fructokinase 3 (3.3-fold), a vegetative storage protein (2.5-fold), a glycine-rich RNA binding protein (2.2-fold), a CuZn-superoxide dismutase (2.1-fold) and an unknown low molecular weight protein (2.3-fold). These proteins represent general stress proteins induced under drought conditions or proteins contributing to basic carbon metabolism. The up-regulated proteins are interesting candidates for further physiological and molecular investigations regarding drought tolerance in sunflower. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Carbon and Nitrogen dynamics in deciduous and broad leaf trees under drought stress

    Science.gov (United States)

    Joseph, Jobin; Schaub, Marcus; Arend, Matthias; Saurer, Matthias; siegwolf, Rolf; Weiler, Markus; Gessler, Arthur

    2017-04-01

    , we labelled the soil with 15N nitrate by injecting nitrate solution into the soil without strongly changing the water content for investigating nitrogen uptake and distribution along different compartments of the plant soil continuum. We observed a distinct difference in the carbon and nitrogen dynamics and allocation pattern between broad leaf and conifer seedlings. Broad leaf species showed a lower reduction of CO2 assimilation under drought and still allocated significant amounts of the new assimilates to the roots. Especially in maple and oak the belowground transfer of assimilates was kept at high levels even under severe drought stress, while there was a reduction in assimilation transport in beech. Instead, only small amounts of 13C labelled new assimilates arrived in the roots of conifers in the drought treatments. In the deciduous species 15N taken up the roots was more intensively allocated to aboveground tissues compared to conifers under control conditions, which retained the largest amounts within the fine roots. 15N uptake was reduced in the drought treatments in all species assessed. There was, however, no clear relation of this reduction to changes in 13C allocation to the roots. We thus cannot conclude that the reduction of nitrogen uptake is due to reduced transport of new assimilates belowground. We thus need to assume that carbon storage is sufficient to provide energy and carbon for nitrogen uptake and assimilation at least over the short-term. During longer drought periods, however, depletion of carbon stores might adversely affect the nutrient uptake and balance of trees.

  15. Stress steroid levels and the short-term impact of routine dehorning ...

    African Journals Online (AJOL)

    Routine dehorning procedures resulted in a short-term stress response expressed by a significant increase in fGCM levels 48 h post-dehorning, with stress steroid levels returning to pre-dehorning concentrations 72 h after the procedure. Keywords: faecal glucocorticoid metabolites, non-invasive hormone monitoring, ...

  16. [Physiological responses of mycorrhizal Pinus massoniana seedlings to drought stress and drought resistance evaluation].

    Science.gov (United States)

    Wang, Yi; Ding, Gui-jie

    2013-03-01

    A greenhouse pot experiment was conducted to study the effects of inoculating Pisolithus tinctorius, Cenococcum geophilum, Cantharellus cibarius, and Suillus luteus on the physiological characteristics of Pinus massoniana seedlings under the conditions of drought stress and re-watering, with the drought resistance of the mycorrhizal seedlings evaluated. Under drought stress, the MDA content and membrane' s relative permeability of P. massoniana seedlings increased, but these two indices in the inoculated (mycorrhizal) seedlings were significantly lower than these in the un-inoculated (control) seedlings. After re-watering, the MDA content and membrane's relative permeability of mycorrhizal seedlings had a rapid decrease, as compared with the control. In the first 21 days of drought stress, the production rate of superoxide radical of the seedlings increased, and the SOD, POD and NR activities of mycorrhizal seedlings increased significantly. With the extending of drought stress, the seedlings after re-watering had different recovery ability. Under the re-watering after 14 days drought stress, the SOD, POD and NR activities recovered. The drought resistance of the mycorrhizal seedlings was in the order of Suillus luteus 1 > Suillus luteus 7 > Cantharellus cibarius > Cenococcum geophilum > Pisolithus tinctorius. The SOD and MDA activities had a greater correlation with the mycorrhizal seedlings drought resistance, being able to be used as the indicators to evaluate the drought resistance of mycorrhizal seedlings.

  17. Influence of soil drought stress on photosynthesis, carbohydrates ...

    African Journals Online (AJOL)

    USER

    2010-08-16

    Aug 16, 2010 ... and the ability of plant to adapt to drought stress. (Bulbotko, 1973; Atkinson et ... drought stress. In general, little is known about the effects of soil drought ..... fluorescence, water relations, and leaf abscisic acid. Plant Physiol.

  18. Alleviation of Drought Stress by Nitrogen Application in Brassica campestris ssp. Chinensis L.

    Directory of Open Access Journals (Sweden)

    Xin Xiong

    2018-05-01

    Full Text Available To assess the influence of drought stress on the growth and nitrogen nutrition status of pakchoi (Brassica campestris ssp. Chinensis L. at different nitrogen (N levels, the changes in N accumulation and enzyme activities involved in N assimilation were investigated. The drought was induced by adding polyethylene glycol (PEG under hydroponic culture conditions. Pakchoi seedlings were exposed to a modified nutrient solution with different nitrogen concentration (N1, N2, and N3 represent 2, 9 and 18 mM NaNO3, respectively and osmotic potential (W1, W2 and W3 represent 0, 60 and 120 g·L−1 PEG 6000 in a full factorial, replicated randomized block design. A short time (seven days of drought stress caused a significant decline in plant water content, transpiration rate, shoot biomass and shoot nitrogen concentration. Increasing N availability considerably alleviate drought stress by increasing the content of total free amino acids in the roots, promoting the acceleration of root biomass accumulation, and improving the activities of nitrate reductase (NR; EC 1.7.1.1 and glutamine synthetase (GS; EC 6.3.1.2 which would reduce moisture limitations. The results suggested that pakchoi supplied with relative higher N had better growth performance under drought stress.

  19. Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress.

    Science.gov (United States)

    Mohammadi, Payam Pour; Moieni, Ahmad; Komatsu, Setsuko

    2012-11-01

    Rapeseed (Brassica napus L.), which is the third leading source of vegetable oil, is sensitive to drought stress during the early vegetative growth stage. To investigate the initial response of rapeseed to drought stress, changes in the protein expression profiles of drought-sensitive (RGS-003) and drought-tolerant lines (SLM-003), and their F1 hybrid, were analyzed using a proteomics approach. Seven-day-old rapeseed seedlings were treated with drought stress by restricting water for 7 days, and proteins were extracted from roots and separated by two-dimensional polyacrylamide gel electrophoresis. In the sensitive rapeseed line, 35 protein spots were differentially expressed under drought stress, and proteins related to metabolism, energy, disease/defense, and transport were decreased. In the tolerant line, 32 protein spots were differentially expressed under drought stress, and proteins involved in metabolism, disease/defense, and transport were increased, while energy-related proteins were decreased. Six protein spots in F1 hybrid were common among expressed proteins in the drought-sensitive and -tolerant lines. Notably, tubulin beta-2 and heat shock protein 70 were decreased in the drought-sensitive line and hybrid F1 plants, while jasmonate-inducible protein and 20S proteasome subunit PAF1 were increased in the F1 hybrids and drought-tolerant line. These results indicate that (1) V-type H(+) ATPase, plasma-membrane associated cation-binding protein, HSP 90, and elongation factor EF-2 have a role in the drought tolerance of rapeseed; (2) The decreased levels of heat shock protein 70 and tubulin beta-2 in the drought-sensitive and hybrid F1 lines might explain the reduced growth of these lines in drought conditions.

  20. Drought priming effects on alleviating later damages of heat and drought stress in different wheat cultivars

    DEFF Research Database (Denmark)

    Mendanha, Thayna; Hyldgaard, Benita; Ottosen, Carl-Otto

    The ongoing change is climate; in particular the increase of drought and heat waves episodes are a major challenge in the prospect of food safety. Under many field conditions, plants are usually exposed to mild intermittent stress episodes rather than a terminal stress event. Previous, but limited...... studies suggest that plants subjected to early stress (primed) can be more resistant to future stress exposure than those not stressed during seedling stage. In our experiment we aimed to test if repeated mild drought stresses could improve heat and drought tolerance during anthesis heat and drought...... stresses in wheat cultivars. Two wheat cultivars, Gladius and Paragon, were grown in a fully controlled gravimetric platform and subjected to either no stress (control) or two (P) drought cycles during seedling stage, at three and five complete developed leaves. Each cycle consisted of withholding water...

  1. Different adaptation strategies of two citrus scion/rootstock combinations in response to drought stress.

    Directory of Open Access Journals (Sweden)

    Joadson Dutra de Souza

    Full Text Available Scion/rootstock interaction is important for plant development and for breeding programs. In this context, polyploid rootstocks presented several advantages, mainly in relation to biotic and abiotic stresses. Here we analyzed the response to drought of two different scion/rootstock combinations presenting different polyploidy: the diploid (2x and autotetraploid (4x Rangpur lime (Citrus limonia, Osbeck rootstocks grafted with 2x Valencia Delta sweet orange (Citrus sinensis scions, named V/2xRL and V/4xRL, respectively. Based on previous gene expression data, we developed an interactomic approach to identify proteins involved in V/2xRL and V/4xRL response to drought. A main interactomic network containing 3,830 nodes and 97,652 edges was built from V/2xRL and V/4xRL data. Exclusive proteins of the V/2xRL and V/4xRL networks (2,056 and 1,001, respectively, as well as common to both networks (773 were identified. Functional clusters were obtained and two models of drought stress response for the V/2xRL and V/4xRL genotypes were designed. Even if the V/2xRL plant implement some tolerance mechanisms, the global plant response to drought was rapid and quickly exhaustive resulting in a general tendency to dehydration avoidance, which presented some advantage in short and strong drought stress conditions, but which, in long terms, does not allow the plant survival. At the contrary, the V/4xRL plants presented a response which strong impacts on development but that present some advantages in case of prolonged drought. Finally, some specific proteins, which presented high centrality on interactomic analysis were identified as good candidates for subsequent functional analysis of citrus genes related to drought response, as well as be good markers of one or another physiological mechanism implemented by the plants.

  2. Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes

    Science.gov (United States)

    Zipper, Samuel C.; Qiu, Jiangxiao; Kucharik, Christopher J.

    2016-09-01

    Maximizing agricultural production on existing cropland is one pillar of meeting future global food security needs. To close crop yield gaps, it is critical to understand how climate extremes such as drought impact yield. Here, we use gridded, daily meteorological data and county-level annual yield data to quantify meteorological drought sensitivity of US maize and soybean production from 1958 to 2007. Meteorological drought negatively affects crop yield over most US crop-producing areas, and yield is most sensitive to short-term (1-3 month) droughts during critical development periods from July to August. While meteorological drought is associated with 13% of overall yield variability, substantial spatial variability in drought effects and sensitivity exists, with central and southeastern US becoming increasingly sensitive to drought over time. Our study illustrates fine-scale spatiotemporal patterns of drought effects, highlighting where variability in crop production is most strongly associated with drought, and suggests that management strategies that buffer against short-term water stress may be most effective at sustaining long-term crop productivity.

  3. Comparative Physiological and Molecular Analyses of Two Contrasting Flue-Cured Tobacco Genotypes under Progressive Drought Stress

    Directory of Open Access Journals (Sweden)

    Xinhong Su

    2017-05-01

    Full Text Available Drought is a major environmental factor that limits crop growth and productivity. Flue-cured tobacco (Nicotiana tabacum is one of the most important commercial crops worldwide and its productivity is vulnerable to drought. However, comparative analyses of physiological, biochemical and gene expression changes in flue-cured tobacco varieties differing in drought tolerance under long-term drought stress are scarce. In this study, drought stress responses of two flue-cured tobacco varieties, LJ851 and JX6007, were comparatively studied at the physiological and transcriptional levels. After exposing to progressive drought stress, the drought-tolerant LJ851 showed less growth inhibition and chlorophyll reduction than the drought-sensitive JX6007. Moreover, higher antioxidant enzyme activities and lower levels of H2O2, Malondialdehyde (MDA, and electrolyte leakage after drought stress were found in LJ851 when compared with JX6007. Further analysis showed that LJ851 plants had much less reductions than the JX6007 in the net photosynthesis rate and stomatal conductance during drought stress; indicating that LJ851 had better photosynthetic performance than JX6007 during drought. In addition, transcriptional expression analysis revealed that LJ851 exhibited significantly increased transcripts of several categories of drought-responsive genes in leaves and roots under drought conditions. Together, these results indicated that LJ851 was more drought-tolerant than JX6007 as evidenced by better photosynthetic performance, more powerful antioxidant system, and higher expression of stress defense genes during drought stress. This study will be valuable for the development of novel flue-cured tobacco varieties with improved drought tolerance by exploitation of natural genetic variations in the future.

  4. Groundwater quality surrounding Lake Texoma during short-term drought conditions

    International Nuclear Information System (INIS)

    Kampbell, Donald H.; An, Youn-Joo; Jewell, Ken P.; Masoner, Jason R.

    2003-01-01

    Stressors such as nitrates and total salts in ground water could potentially become a health or environmental problem during drought conditions. - Water quality data from 55 monitoring wells during drought conditions surrounding Lake Texoma, located on the border of Oklahoma and Texas, was compared to assess the influence of drought on groundwater quality. During the drought month of October, water table levels were three feet (0.9 m) lower compared with several months earlier under predrought climate conditions. Detection frequencies of nitrate (> 0.1 mg/l), orthophosphates (> 0.1 mg/l), chlorides (> MCL), and sulfates (> MCL) all increased during drought. Orthophosphate level was higher during drought. Largest increases in concentration were nitrate under both agriculture lands and in septic tank areas. An increase in ammonium-nitrogen was only detected in the septic tank area. The study showed that stressors such as nitrate and total salts could potentially become a health or environmental problem during drought

  5. Short-term pre- and post-operative stress prolongs incision-induced pain hypersensitivity without changing basal pain perception.

    Science.gov (United States)

    Cao, Jing; Wang, Po-Kai; Tiwari, Vinod; Liang, Lingli; Lutz, Brianna Marie; Shieh, Kun-Ruey; Zang, Wei-Dong; Kaufman, Andrew G; Bekker, Alex; Gao, Xiao-Qun; Tao, Yuan-Xiang

    2015-12-02

    Chronic stress has been reported to increase basal pain sensitivity and/or exacerbate existing persistent pain. However, most surgical patients have normal physiological and psychological health status such as normal pain perception before surgery although they do experience short-term stress during pre- and post-operative periods. Whether or not this short-term stress affects persistent postsurgical pain is unclear. In this study, we showed that pre- or post-surgical exposure to immobilization 6 h daily for three consecutive days did not change basal responses to mechanical, thermal, or cold stimuli or peak levels of incision-induced hypersensitivity to these stimuli; however, immobilization did prolong the duration of incision-induced hypersensitivity in both male and female rats. These phenomena were also observed in post-surgical exposure to forced swimming 25 min daily for 3 consecutive days. Short-term stress induced by immobilization was demonstrated by an elevation in the level of serum corticosterone, an increase in swim immobility, and a decrease in sucrose consumption. Blocking this short-term stress via intrathecal administration of a selective glucocorticoid receptor antagonist, RU38486, or bilateral adrenalectomy significantly attenuated the prolongation of incision-induced hypersensitivity to mechanical, thermal, and cold stimuli. Our results indicate that short-term stress during the pre- or post-operative period delays postoperative pain recovery although it does not affect basal pain perception. Prevention of short-term stress may facilitate patients' recovery from postoperative pain.

  6. Characterization of proteins in soybean roots under flooding and drought stresses.

    Science.gov (United States)

    Oh, MyeongWon; Komatsu, Setsuko

    2015-01-30

    Flooding and drought affect soybean growth because soybean is a stress-sensitive crop. In 2-day-old plants exposed to 2-day flooding or drought, the fresh weight of roots was markedly suppressed, although the root morphology clearly differed between two conditions. To understand the response mechanisms of soybean to flooding and drought stresses, a gel-free proteomic technique was used. A total of 97 and 48 proteins were significantly changed in response to flooding and drought stresses, respectively. Proteins involved in protein synthesis were decreased by flooding stress and increased by drought. Glycolysis-related proteins were increased in roots by both flooding and drought stresses. Fermentation, stress, and cell wall-related proteins were increased in response to flooding stress, whereas cell organization and redox-related proteins were increased under drought stress. Among the identified proteins, three S-adenosylmethionine synthetases were commonly decreased and increased in response to flooding and drought stresses, respectively. The mRNA expression levels of S-adenosylmethionine synthetase genes displayed a similar tendency to the changes in protein abundance. These results suggest that S-adenosylmethionine synthetase is involved in the regulation of stress response because it was changed in response to flooding and drought stresses. This study reported on the response mechanisms of soybean to flooding and drought stresses using the gel-free proteomic technique. Proteins involved in protein synthesis were decreased by flooding stress and increased by drought. Glycolysis-related proteins were increased in roots by both flooding and drought stresses. Fermentation, stress, and cell wall-related proteins were increased in response to flooding stress, whereas cell organization and redox-related proteins were increased under drought stress. Among the identified proteins, three S-adenosylmethionine synthetases were commonly decreased and increased in response to

  7. Proteomic responses of drought-tolerant and drought-sensitive cotton varieties to drought stress.

    Science.gov (United States)

    Zhang, Haiyan; Ni, Zhiyong; Chen, Quanjia; Guo, Zhongjun; Gao, Wenwei; Su, Xiujuan; Qu, Yanying

    2016-06-01

    Drought, one of the most widespread factors reducing agricultural crop productivity, affects biological processes such as development, architecture, flowering and senescence. Although protein analysis techniques and genome sequencing have made facilitated the proteomic study of cotton, information on genetic differences associated with proteomic changes in response to drought between different cotton genotypes is lacking. To determine the effects of drought stress on cotton seedlings, we used two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry to comparatively analyze proteome of drought-responsive proteins during the seedling stage in two cotton (Gossypium hirsutum L.) cultivars, drought-tolerant KK1543 and drought-sensitive Xinluzao26. A total of 110 protein spots were detected on 2-DE maps, of which 56 were identified by MALDI-TOF and MALDI-TOF/TOF mass spectrometry. The identified proteins were mainly associated with metabolism (46.4 %), antioxidants (14.2 %), and transport and cellular structure (23.2 %). Some key proteins had significantly different expression patterns between the two genotypes. In particular, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, UDP-D-glucose pyrophosphorylase and ascorbate peroxidase were up-regulated in KK1543 compared with Xinluzao26. Under drought stress conditions, the vacuolar H(+)-ATPase catalytic subunit, a 14-3-3g protein, translation initiation factor 5A and pathogenesis-related protein 10 were up-regulated in KK1543, whereas ribosomal protein S12, actin, cytosolic copper/zinc superoxide dismutase, protein disulfide isomerase, S-adenosylmethionine synthase and cysteine synthase were down-regulated in Xinluzao26. This work represents the first characterization of proteomic changes that occur in response to drought in roots of cotton plants. These differentially expressed proteins may be related to

  8. Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress.

    Science.gov (United States)

    Guo, Yuqiong; Zhao, Shanshan; Zhu, Chen; Chang, Xiaojun; Yue, Chuan; Wang, Zhong; Lin, Yuling; Lai, Zhongxiong

    2017-11-21

    Drought stress is one of the major natural challenges in the main tea-producing regions of China. The tea plant (Camellia sinensis) is a traditional beverage plant whose growth status directly affects tea quality. Recent studies have revealed that microRNAs (miRNAs) play key functions in plant growth and development. Although some miRNAs have been identified in C. sinensis, little is known about their roles in the drought stress response of tea plants. Physiological characterization of Camellia sinensis 'Tieguanyin' under drought stress showed that the malondialdehyde concentration and electrical conductivity of leaves of drought-stressed plants increased when the chlorophyll concentration decreased under severe drought stress. We sequenced four small-RNA (sRNA) libraries constructed from leaves of plants subjected to four different treatments, normal water supply (CK); mild drought stress (T1); moderate drought stress (T2) and severe drought stress (T3). A total of 299 known mature miRNA sequences and 46 novel miRNAs were identified. Gene Ontology enrichment analysis revealed that most of the differentially expressed-miRNA target genes were related to regulation of transcription. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the most highly enriched pathways under drought stress were D-alanine metabolism, sulfur metabolism, and mineral absorption pathways. Real-time quantitative PCR (qPCR) was used to validate the expression patterns of 21 miRNAs (2 up-regulated and 19 down-regulated under drought stress). The observed co-regulation of the miR166 family and their targets ATHB-14-like and ATHB-15-like indicate the presence of negative feedback regulation in miRNA pathways. Analyses of drought-responsive miRNAs in tea plants showed that most of differentially expressed-miRNA target genes were related to regulation of transcription. The results of study revealed that the expressions of phase-specific miRNAs vary with morphological, physiological, and

  9. Evolution of Morphological and Physiological Response of Agropyron spp. toDrought Stress

    Directory of Open Access Journals (Sweden)

    mahdi yaghoobi

    2017-12-01

    Full Text Available Introduction: Lack of water resources is one of the most problems ofincreasing urban green spaces. Over the last threedecades, turfgrass and lawn researches have put significant effort into developing and evaluating turf species that have good drought resistance. As water conservation becomes an important issue, considerable interest is increasing in identifying grasses that require less water. Plants with good drought resistance are those that are able to survive stress by means of drought avoidance, drought tolerance at leaf water potentials, or both. The efficient use of water is made possible by understanding the effects of irrigation water on crop development and yield. Drought affects the visual quality, growth rate and evapotranspiration. Researchers reported that turfgrass subjected to drought conditions for short periods could sustain a fairly good appearance by irrigation about half of its consumptive use whenever soil moisture level falls to near permanent wilting point. Drought stress caused decrease in RWC and visual quality of many grass cultivars. In drought conditions resistance grass showed increase in proline content on their leaves. Therefore the use of native grasses with high-strength instead of grass imported with low-resistance is one way to increase green space and reduce costs. The purpose of this study was comparednative grasses with commercial grass cultivars. Materials and Methods: This study was to evaluate the yield and resistance of native grasses to drought stress in 2014. This experiment was conducted in Khorasan Agricultural Research Center. NativeAgropyron grass species includedAgropyronelangatum, A. desertrum, A. cristatum and commercial cultivarwassuper sport and third level of stress, including severe stress (45% FC, moderate stress (65% FC and control (85% field capacity were experimental treatments. Plants were cultured in PVC containers measuring 9 cm in diameter and 60 cm deep under greenhouse condition

  10. Drought priming at vegetative growth stage enhances nitrogen-use efficiency under post-anthesis drought and heat stress in wheat

    DEFF Research Database (Denmark)

    Liu, S.; Li, Xiangnan; Larsen, Dorthe Horn

    2017-01-01

    reached ca. −0.9 MPa) at the 5th-leaf stage for 11 days, and leaf water relations and gas exchange rates, grain yield and yield components, and agronomic nitrogen-use efficiency (ANUE) of the primed and non-primed plants under post-anthesis drought and heat stress were investigated. Compared with the non......To study the effects of early drought priming at 5th-leaf stage on grain yield and nitrogen-use efficiency in wheat (Triticum aestivum L.) under post-anthesis drought and heat stress, wheat plants were first exposed to moderate drought stress (drought priming; that is, the leaf water potential......-primed plants, the drought-primed plants possessed higher leaf water potential and chlorophyll content, and consequently a higher photosynthetic rate during post-anthesis drought and heat stress. Drought priming also resulted in higher grain yield and ANUE in wheat under post-anthesis drought and heat stress...

  11. Plasticity in leaf-level water relations of tropical rainforest trees in response to experimental drought.

    Science.gov (United States)

    Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Christoffersen, Bradley; Nardini, Andrea; Mencuccini, Maurizio

    2016-07-01

    The tropics are predicted to become warmer and drier, and understanding the sensitivity of tree species to drought is important for characterizing the risk to forests of climate change. This study makes use of a long-term drought experiment in the Amazon rainforest to evaluate the role of leaf-level water relations, leaf anatomy and their plasticity in response to drought in six tree genera. The variables (osmotic potential at full turgor, turgor loss point, capacitance, elastic modulus, relative water content and saturated water content) were compared between seasons and between plots (control and through-fall exclusion) enabling a comparison between short- and long-term plasticity in traits. Leaf anatomical traits were correlated with water relation parameters to determine whether water relations differed among tissues. The key findings were: osmotic adjustment occurred in response to the long-term drought treatment; species resistant to drought stress showed less osmotic adjustment than drought-sensitive species; and water relation traits were correlated with tissue properties, especially the thickness of the abaxial epidermis and the spongy mesophyll. These findings demonstrate that cell-level water relation traits can acclimate to long-term water stress, and highlight the limitations of extrapolating the results of short-term studies to temporal scales associated with climate change. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Comparison of short term mortality in ischemic stroke patients with or without stress hyperglycemia

    International Nuclear Information System (INIS)

    Raja, W; Zaidi, S.B.H.; Waheed, S.; Khan, M.

    2016-01-01

    Objective: To compare short term mortality in non-diabetic ischemic stroke patients with or without stress hyperglycemia. Study Design: Cohort study. Place and Duration of Study: This study was carried out at Neurology Department of Military Hospital, Rawalpindi from Jan 2010 to Jul 2012 for a total duration of six months. Material and Methods: Non-diabetic ischemic stroke patients were included in the study and they were divided in two groups. Each group had 75 patients. Group 'I' (Normoglycemic or control group) had normal blood glucose level while group 'II' (Hyperglycaemic or cohort) had hyperglycaemia on presentation or over next 72 hours. Prognosis in terms of patient either being dead or alive was determined within or at 4 weeks of admission in both groups. Data were entered and analysed using Statistical Package for Social Sciences SPSS version 10. Descriptive statistics were calculated for both qualitative and quantitative variables. For comparison of short term mortality in hyperglycaemic and normoglycemic stroke patients, chi-square test was applied. p-value <0.05 was considered statistically significant. Results: Short term mortality was higher in cohort (hyperglycemic) group as compared to control (normoglycemic) group (34.7 percent vs. 14.7 percent). Relative risk was 2.36. The groups had a statistically significant difference in the short term mortality within four weeks with a Chi-Square 'p' value of 0.004 (p=0.004). Conclusion: Short term mortality in non-diabetic ischemic stroke patients with stress hyperglycemia is higher than those patients who do not have stress hyperglycemia. (author)

  13. California's Drought - Stress test for the future

    Science.gov (United States)

    Lund, J. R.

    2014-12-01

    The current California drought is in its third dry years, with this year being the third driest years in a 106-year record. This drought occurs at a time when urban, agricultural, and environmental water demands have never been greater. This drought has revealed the importance of more quantitative evaluation and methods for water assessment and management. All areas of water and environmental management are likely to become increasingly stressed, and have essentially drought-like conditions, in the future, as California's urban, agricultural, and environmental demands continue to expand and as the climate changes. In the historical past, droughts have pre-viewed stresses developing in the future and helped focus policy-makers, the public, and stakeholders on preparing for these developing future conditions. Multi-decade water management strategies are often galvinized by drought. Irrigation was galvanized by California droughts in the 1800s, reservoir systems by the 1928-32 drought, urban water conservation by the 1976-77 drought, and water markets by the 1988-92 drought. With each drought, demands for tighter accounting, rights, and management have increased. This talk reviews the prospects and challenges for increased development and use of water data and systems analysis in the service of human and environmental water demands in California's highly decentralized water management system, and the prospects if these challenges are not more successfully addressed.

  14. Effect of Short- and Long-Term Play Therapy Services on Teacher-Child Relationship Stress

    Science.gov (United States)

    Ray, Dee C.; Henson, Robin K.; Schottelkorb, April A.; Brown, April Garofano; Muro, Joel

    2008-01-01

    The purpose of the present study was to explore the effect of both short- and long term Child-Centered Play Therapy on teacher-student relationship stress. Teachers identified 58 students exhibiting emotional and behavioral difficulties who were randomly assigned to one of two treatment groups. Students in the short-term intensive play therapy…

  15. Mapping of QTLs for Germination Characteristics under Non-stress and Drought Stress in Rice

    Directory of Open Access Journals (Sweden)

    Zahra MARDANI

    2013-11-01

    Full Text Available Identification of genetic factors controlling traits associated with seed germination under drought stress conditions, leads to identification and development of drought tolerant varieties. Present study by using a population of F2:4 derived from a cross between a drought tolerant variety, Gharib (indica and a drought sensitive variety, Sepidroud (indica, is to identify and compare QTLs associated with germination traits under drought stress and non-stress conditions. Through QTL analysis, using composite interval mapping, regarding traits such as germination rate (GR, germination percentage (GP, radicle length (RL, plumule length (PL, coleorhiza length (COL and coleoptile length (CL, totally 13 QTLs were detected under pole drought stress (−8 MPa poly ethylene glycol 6000 and 9 QTLs under non-stress conditions. Of the QTLs identified under non-stress conditions, QTLs associated with COL (qCOL-5 and GR (qGR-1 explained 21.28% and 19.73% of the total phenotypic variations, respectively. Under drought stress conditions, QTLs associated with COL (qCOL-3 and PL (qPL-5 explained 18.34% and 18.22% of the total phenotypic variations, respectively. A few drought-tolerance-related QTLs identified in previous studies are near the QTLs detected in this study, and several QTLs in this study are novel alleles. The major QTLs like qGR-1, qGP-4, qRL-12 and qCL-4 identified in both conditions for traits GR, GP, RL and CL, respectively, should be considered as the important and stable trait-controlling QTLs in rice seed germination. Those major or minor QTLs could be used to significantly improve drought tolerance by marker-assisted selection in rice.

  16. Redox proteomics and physiological responses in Cistus albidus shrubs subjected to long-term summer drought followed by recovery.

    Science.gov (United States)

    Brossa, Ricard; Pintó-Marijuan, Marta; Francisco, Rita; López-Carbonell, Marta; Chaves, Maria Manuela; Alegre, Leonor

    2015-04-01

    The interaction between enzymatic and non-enzymatic antioxidants, endogenous levels of ABA and ABA-GE, the rapid recuperation of photosynthetic proteins under re-watering as well the high level of antioxidant proteins in previously drought-stressed plants under re-watering conditions, will contribute to drought resistance in plants subjected to a long-term drought stress under Mediterranean field conditions. This work provides an overview of the mechanisms of Cistus albidus acclimation to long-term summer drought followed by re-watering in Mediterranean field conditions. To better understand the molecular mechanisms of drought resistance in these plants, a proteomic study using 2-DE and MALDI-TOF/TOF MS/MS was performed on leaves from these shrubs. The analysis identified 57 differentially expressed proteins in water-stressed plants when contrasted to well watered. Water-stressed plants showed an increase, both qualitatively and quantitatively, in HSPs, and downregulation of photosynthesis and carbon metabolism enzymes. Under drought conditions, there was considerable upregulation of enzymes related to redox homeostasis, DHA reductase, Glyoxalase, SOD and isoflavone reductase. However, upregulation of catalase was not observed until after re-watering was carried out. Drought treatment caused an enhancement in antioxidant defense responses that can be modulated by ABA, and its catabolites, ABA-GE, as well as JA. Furthermore, quantification of protein carbonylation was shown to be a useful marker of the relationship between water and oxidative stress, and showed that there was only moderate oxidative stress in C. albidus plants subjected to water stress. After re-watering plants recovered although the levels of ABA-GE and antioxidant enzymes still remain higher than in well-watered plants. We expect that our results will provide new data on summer acclimation to drought stress in Mediterranean shrubs.

  17. Effects of drought stress on morphological traits in chickpea (Cicer arientinum L. genotypes in greenhouse

    Directory of Open Access Journals (Sweden)

    ali masoomi

    2009-06-01

    Full Text Available This research was conducted in a research greenhouse at the College of Agriculture in Ferdowsi University of Mashhad to investigate the impact of five drought levels (-0.3, -3, -6, -9 and -12 bar on physiological and morphological characteristics of nine chickpea genotypes including MCC101, MCC174, MCC276, MCC477, MCC327, MCC476, JAM, Karaj12-60-31and ILC482. The experiment used 5×9 factorial laid out in randomized complete design with 4 replications. The genotypes were exposed to drought stress 10 days after emergence. Some traits were measured during growth season (including plant height, leaf number, flower and pod number, length and number of lateral branch that all of them shown significant differences in the first stage of stress between genotypes and then the effects of drought were appeared. In majority of genotypes reduction in the flowering and podding time were observed. Flower number is a favor parameter in the assessment of drought tolerance genotypes. Most measured traits imposed significant differences in all levels of drought stress, genotypes and interaction of them at the end of growth season. The highest amount of all measured parameters were observed in the field capacity (-0.3 bar. Among the levels of water potential tested -3 and -6 bar were the best treatment for evaluating drought stress of chickpea genotypes. Pod and seed weight did not form in heavy drought stress. Among genotypes tested ILC482, MCC276 and MCC 477 were the best genotypes in terms of responsing to drought stress.

  18. The dtudy of physiological and biochemical responses of Agrostis stolonifera and Festuca arundinacea Schreb. under drought stress

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Alibiglouei

    2014-12-01

    Full Text Available Drought stress is a main limiting factor of turfgrass growth in arid and semi-arid regions. Therefore, in this study, the physiological and biochemical changes in two turfgrass species Agrostis stolonifera and Festuca arundinacea schreb during drought stress (70-75 centibar in a 40-day period and recovery were investigated. Control plants during drought stress were regularly irrigated at soil field capacity (20-25 centibar. The results showed that leaf relative water content and leaf chlorophyll content with long-term stress decreased. Electrolyte leakage and proline during drought stress significantly increased and in recovery stage, the level of electrolyte leakage and proline reached to the control. The activity of peroxidase and superoxide dismutase in two turfgrass significantly increased after 30 days and then significantly reduced. In F. arundinacea schreb the activity of ascorbat peroxidase after 20 days significantly increased and then significantly reduced. Also, in F. arundinacea schreb species the activity of catalase increased during drought stress and in recovery stage the activity of catalase reduced. In studied species during drought stress and recovery stage, the activity of ascorbat peroxidase and catalase significantly increased compared to the control. These results suggested that the resistant species F. arundinacea schreb, under drought stress had a low level of electrolyte leakage, higher level of relative water content and chlorophyll destruction was less than A. stolonifera.

  19. Physiological and metabolomic analysis of Punica granatum (L.) under drought stress.

    Science.gov (United States)

    Catola, Stefano; Marino, Giovanni; Emiliani, Giovanni; Huseynova, Taravat; Musayev, Mirza; Akparov, Zeynal; Maserti, Bianca Elena

    2016-02-01

    Punica granatum has a noticeable adaptation to drought stress. The levels of the green leaf volatile trans-2-hexenal increased in response to drought stress suggesting a possible role of this compound in drought stress response in pomegranate. Punica granatum (L.) is a highly valued fruit crop for its health-promoting effects and it is mainly cultivated in semi-arid areas. Thus, understanding the response mechanisms to drought stress is of great importance. In the present research, a metabolomics analysis was performed to evaluate the effects of drought stress on volatile organic compounds extracted from the leaves of pomegranate plants grown under water shortage conditions. The time course experiment (7 days of water deprivation and 24-h recovery) consisted of three treatments (control, drought stress, and rehydration of drought-stressed plants). Plant weights were recorded and control plants were irrigated daily at pot capacity to provide the lost water. Fraction of transpirable soil water has been evaluated as indicator of soil water availability in stressed plants. The levels of proline, hydrogen peroxide and lipid peroxidation as well as of the photosynthetic parameters such as photosynthesis rate (A), stomatal conductance (g s), photosynthetic efficiency of photosystem II, and photochemical quenching were monitored after the imposition of drought stress and recovery as markers of plant stress. Constitutive carbon volatile components were analyzed in the leaf of control and drought-stressed leaves using Head Space Solid Phase Micro Extraction sampling coupled with Gas Chromatography Mass Spectrometry. A total of 12 volatile compounds were found in pomegranate leaf profiles, mainly aldehydes, alcohols, and organic acids. Among them, the trans-2-hexenal showed a significant increase in water-stressed and recovered leaves respect to the well-watered ones. These data evidence a possible role of the oxylipin pathway in the response to water stress in pomegranate

  20. Response of Different Genotypes of Faba Bean Plant to Drought Stress

    Directory of Open Access Journals (Sweden)

    Manzer H. Siddiqui

    2015-05-01

    Full Text Available Drought stress is one of the major abiotic stresses that are a threat to crop production worldwide. Drought stress impairs the plants growth and yield. Therefore, the aim of the present experiment was to select the tolerant genotype/s on the basis of moprpho-physiological and biochemical characteristics of 10 Vicia faba genotypes (Zafar 1, Zafar 2, Shebam, Makamora, Espan, Giza Blanka, Giza 3, C4, C5 and G853 under drought stress. We studied the effect of different levels of drought stress i.e., (i normal irrigation (ii mild stress (iii moderate stress, and (iv severe stress on plant height (PH plant−1, fresh weight (FW and dry weight (DW plant−1, area leaf−1, leaf relative water content (RWC, proline (Pro content, total chlorophyll (Total Chl content, electrolyte leakage (EL, malondialdehyde (MDA, hydrogen peroxide (H2O2 content, and activities of catalase (CAT, peroxidase (POD and superoxide dismutase (SOD of genotypes of faba bean. Drought stress reduced all growth parameters and Total Chl content of all genotypes. However, the deteriorating effect of drought stress on the growth performance of genotypes “C5” and “Zafar 1” were relatively low due to its better antioxidant enzymes activities (CAT, POD and SOD, and accumulation of Pro and Total Chl, and leaf RWC. In the study, genotype “C5” and “Zafar 1” were found to be relatively tolerant to drought stress and genotypes “G853” and “C4” were sensitive to drought stress.

  1. The short-term stress response - Mother nature's mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity.

    Science.gov (United States)

    Dhabhar, Firdaus S

    2018-03-26

    Our group has proposed that in contrast to chronic stress that can have harmful effects, the short-term (fight-or-flight) stress response (lasting for minutes to hours) is nature's fundamental survival mechanism that enhances protection and performance under conditions involving threat/challenge/opportunity. Short-term stress enhances innate/primary, adaptive/secondary, vaccine-induced, and anti-tumor immune responses, and post-surgical recovery. Mechanisms and mediators include stress hormones, dendritic cell, neutrophil, macrophage, and lymphocyte trafficking/function and local/systemic chemokine and cytokine production. Short-term stress may also enhance mental/cognitive and physical performance through effects on brain, musculo-skeletal, and cardiovascular function, reappraisal of threat/anxiety, and training-induced stress-optimization. Therefore, short-term stress psychology/physiology could be harnessed to enhance immuno-protection, as well as mental and physical performance. This review aims to provide a conceptual framework and targets for further investigation of mechanisms and conditions under which the protective/adaptive aspects of short-term stress/exercise can be optimized/harnessed, and for developing pharmacological/biobehavioral interventions to enhance health/healing, and mental/cognitive/physical performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Short-term pre- and post-operative stress prolongs incision-induced pain hypersensitivity without changing basal pain perception

    OpenAIRE

    Cao, Jing; Wang, Po-Kai; Tiwari, Vinod; Liang, Lingli; Lutz, Brianna Marie; Shieh, Kun-Ruey; Zang, Wei-Dong; Kaufman, Andrew G.; Bekker, Alex; Gao, Xiao-Qun; Tao, Yuan-Xiang

    2015-01-01

    Background Chronic stress has been reported to increase basal pain sensitivity and/or exacerbate existing persistent pain. However, most surgical patients have normal physiological and psychological health status such as normal pain perception before surgery although they do experience short-term stress during pre- and post-operative periods. Whether or not this short-term stress affects persistent postsurgical pain is unclear. Results In this study, we showed that pre- or post-surgical expos...

  3. Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean

    International Nuclear Information System (INIS)

    Hamayun, M.; Khan, A.L.; Ahmad, N.; Lee, In-Jung; Khan, S.A.; Shinwari, Z.K.

    2010-01-01

    Drought stress is a major abiotic constraint limiting crop production world wide. In current study, we investigated the adverse effects of drought stress on growth, yield and endogenous phytohormones of soybean. Polyethylene glycol (PEG) solutions of elevated strength (8% and 16%) were used for drought stress induction. Drought stress period span for two weeks each at pre and post flowering growth stage. It was observed that soybean growth and yield attributes significantly reduced under drought stress at both pre and post flowering period, while maximum reduction was caused by PEG (16%) applied at pre flowering time. The endogenous bioactive GA/sub 1/ and GA/sub 4/ content decreased under elevated drought stress. On the other hand, jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA) content increased under drought stress. On the basis of current study, we concluded that application of earlier drought stress severely reduced growth and yield attributes of soybean when compared to its later application. Furthermore, increases in the endogenous contents of JA, SA and ABA in response to drought stress demonstrate the involvement of these hormones in drought stress resistance. (author)

  4. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined

    DEFF Research Database (Denmark)

    Zhou, Rong; Yu, Xiaqing; Ottosen, Carl-Otto

    2017-01-01

    and relative water content of all cultivars significantly decreased under drought and combined stress as compared to control. The net photosynthesis and starch content were significantly lower under drought and combined stress than control in the three cultivars. Stomata and pore length of the three cultivars......BACKGROUND: Abiotic stresses due to environmental factors could adversely affect the growth and development of crops. Among the abiotic stresses, drought and heat stress are two critical threats to crop growth and sustainable agriculture worldwide. Considering global climate change, incidence...... of combined drought and heat stress is likely to increase. The aim of this study was to shed light on plant growth performance and leaf physiology of three tomatoes cultivars ('Arvento', 'LA1994' and 'LA2093') under control, drought, heat and combined stress. RESULTS: Shoot fresh and dry weight, leaf area...

  5. Biochar Ameliorate Drought and Salt Stress in Plants

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib

    Biochar is a charcoal-like material obtained by heating any organic waste (crop residue, vegetable/ animal waste etc.) at high temperature through process of pyrolysis. It is produced with an intention to improve soil fertility, enhance crop productivity and mitigate greenhouse gas emission....... Drought and salinity are the two most crucial abiotic stresses that limit crops production worldwide. In this PhD project, it was hypothesized that biochar could be used to effectively mitigate drought and salinity stresses in crop plants due to its putative physiochemical properties. The overall...... objectives of the present PhD project were to reveal the mechanisms by which biochar addition mitigates negative effect of drought and salinity stress on plants and to test the efficacy of biochar when applied in combination with already existing drought (like DI and PRD) and salt management (inoculation...

  6. Physiological and photosynthetic response of quinoa to drought stress

    Directory of Open Access Journals (Sweden)

    Rachid Fghire

    2015-06-01

    Full Text Available Water shortage is a critical problem touching plant growth and yield in semi-arid areas, for instance the Mediterranean región. For this reason was studied the physiological basis of drought tolerance of a new, drought tolerant crop quinoa (Chenopodium quinoa Willd. tested in Morocco in two successive seasons, subject to four irrigation treatments (100, 50, and 33%ETc, and rainfed. The chlorophyll a fluorescence transients were analyzed by the JIP-test to transíate stress-induced damage in these transients to changes in biophysical parameter's allowing quantification of the energy flow through the photosynthetic apparatus. Drought stress induced a significant decrease in the maximum quantum yield of primary photochemistry (Φpo = Fv/Fm, and the quantum yield of electron transport (Φeo. The amount of active Photosystem II (PSII reaction centers (RC per excited cross section (RC/CS also decreased when exposed to the highest drought stress. The effective antenna size of active RCs (ABS/RC increased and the effective dissipation per active reaction centers (DIo/RC increased by increasing drought stress during the growth season in comparison to the control. However the performance index (PI, was a very sensitive indicator of the physiological status of plants. Leaf area index, leaf water potential and stomatal conductance decreased as the drought increased. These results indicate that, in quinoa leaf, JIP-test can be used as a sensitive method for measuring drought stress effects.

  7. Spatiotemporal variation of long-term drought propensity through reliability-resilience-vulnerability based Drought Management Index

    Science.gov (United States)

    Chanda, Kironmala; Maity, Rajib; Sharma, Ashish; Mehrotra, Rajeshwar

    2014-10-01

    This paper characterizes the long-term, spatiotemporal variation of drought propensity through a newly proposed, namely Drought Management Index (DMI), and explores its predictability in order to assess the future drought propensity and adapt drought management policies for a location. The DMI was developed using the reliability-resilience-vulnerability (RRV) rationale commonly used in water resources systems analysis, under the assumption that depletion of soil moisture across a vertical soil column is equivalent to the operation of a water supply reservoir, and that drought should be managed not simply using a measure of system reliability, but should also take into account the readiness of the system to bounce back from drought to a normal state. Considering India as a test bed, 5 year long monthly gridded (0.5° Lat × 0.5° Lon) soil moisture data are used to compute the RRV at each grid location falling within the study domain. The Permanent Wilting Point (PWP) is used as the threshold, indicative of transition into water stress. The association between resilience and vulnerability is then characterized through their joint probability distribution ascertained using Plackett copula models for four broad soil types across India. The joint cumulative distribution functions (CDF) of resilience and vulnerability form the basis for estimating the DMI as a five-yearly time series at each grid location assessed. The status of DMI over the past 50 years indicate that drought propensity is consistently low toward northern and north eastern parts of India but higher in the western part of peninsular India. Based on the observed past behavior of DMI series on a climatological time scale, a DMI prediction model comprising deterministic and stochastic components is developed. The predictability of DMI for a lead time of 5 years is found to vary across India, with a Pearson correlation coefficient between observed and predicted DMI above 0.6 over most of the study area

  8. Bioactive compounds in potatoes: Accumulation under drought stress conditions

    Directory of Open Access Journals (Sweden)

    Christina B. Wegener

    2015-03-01

    Full Text Available Background: Potato (Solanum tuberosum is a valuable source of bioactive compounds. Besides starch, crude fibre, amino acids (AAS, vitamins and minerals, the tubers contain diverse phenolic compounds. These phenolics and AAS confer anti-oxidant protection against reactiveoxygen species, tissue damage, and diseases like atherosclerosis, renal failure, diabetes mellitus,and cancer. Climate change and drought stress may become a major risk for crop production worldwide, resulting in reduced access for those who depend on the nutritional value of this staple crop. Objective: The aim of this study is to determine the effect of drought stress on water, lipid soluble antioxidants, anthocyanins (Ac, soluble phenols, proteins, free AAS, peroxidase (POD and lipid acyl hydrolase activity (LAH in tuber tissue. Methods: The study was carried out on three potato genotypes comprising one yellow-fleshed cultivar and two purple breeding clones. The plants were grown in pots (from April to September in a glasshouse with sufficient water supply and under drought stress conditions. After harvest, the tubers of both variants were analysed for antioxidants measured as ascorbic acid (ACE and Trolox equivalent (TXE using a photo-chemiluminescent method. Amounts of anthocyanins (Ac, soluble phenols, proteins, as well as POD and LAH activities were analysed using a UV photometer. Finally, free AAS were measured by HPLC. Results: The results revealed that drought stress significantly reduces tuber yield, but has no significant effect on antioxidants, Ac, soluble phenols and POD. Drought stress significantly increased the levels of soluble protein (P < 0.0001 and LAH (P < 0.001. Also, total amounts of free AAS were higher in the drought stressed tubers (+34.2%, on average than in the tubers grown with a sufficient water supply. Above all, proline was elevated due to drought stress.

  9. (EAHB-AAA) cultivars to drought stress

    African Journals Online (AJOL)

    Banana (Musa spp.) yields are estimated at 5-30 t ha-1yr-1, lower than the potential 60 t ha-1yr-1, with the cause being drought stress. Much evidence among stakeholders shows little understanding about banana cultivar sensitivity, escape and avoidance mechanisms to drought due to un-attempted measures of retaining ...

  10. Transcriptomic Identification of Drought-Related Genes and SSR Markers in Sudan Grass Based on RNA-Seq

    Directory of Open Access Journals (Sweden)

    Yongqun Zhu

    2017-05-01

    Full Text Available Sudan grass (Sorghum sudanense is an annual warm-season gramineous forage grass that is widely used as pasture, hay, and silage. However, drought stress severely impacts its yield, and there is limited information about the mechanisms of drought tolerance in Sudan grass. In this study, we used next-generation sequencing to identify differentially expressed genes (DEGs in the Sudan grass variety Wulate No.1, and we developed simple sequence repeat (SSR markers associated with drought stress. From 852,543,826 raw reads, nearly 816,854,366 clean reads were identified and used for analysis. A total of 80,686 unigenes were obtained via de novo assembly of the clean reads including 45,065 unigenes (55.9% that were identified as coding sequences (CDSs. According to Gene Ontology analysis, 31,444 unigenes were annotated, 11,778 unigenes were identified to 25 categories in the clusters of orthologous groups of proteins (KOG classification, and 11,223 unigenes were assigned to 280 Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. Additionally, there were 2,329 DEGs under a short-term of 25% polyethylene glycol (PEG treatment, while 5,101 DEGs were identified under the long-term of 25% PEG treatment. DEGs were enriched in pathways of carbon fixation in photosynthetic organisms and plant hormone signal transduction which played a leading role in short-term of drought stress. However, DEGs were mainly enriched in pathway of plant hormone signal transduction that played an important role under long-term of drought stress. To increase accuracy, we excluded all the DEGs of all controls, specifically, five DEGs that were associated with high PEG concentrations were found through RNA-Seq. All five genes were up-regulated under drought stress, but the functions of the genes remain unclear. In addition, we identified 17,548 SSRs obtained from 80,686 unigenes. The newly identified drought tolerance DEGs will contribute to transgenic breeding efforts, while

  11. Divergent short- and long-term effects of acute stress in object recognition memory are mediated by endogenous opioid system activation.

    Science.gov (United States)

    Nava-Mesa, Mauricio O; Lamprea, Marisol R; Múnera, Alejandro

    2013-11-01

    Acute stress induces short-term object recognition memory impairment and elicits endogenous opioid system activation. The aim of this study was thus to evaluate whether opiate system activation mediates the acute stress-induced object recognition memory changes. Adult male Wistar rats were trained in an object recognition task designed to test both short- and long-term memory. Subjects were randomly assigned to receive an intraperitoneal injection of saline, 1 mg/kg naltrexone or 3 mg/kg naltrexone, four and a half hours before the sample trial. Five minutes after the injection, half the subjects were submitted to movement restraint during four hours while the other half remained in their home cages. Non-stressed subjects receiving saline (control) performed adequately during the short-term memory test, while stressed subjects receiving saline displayed impaired performance. Naltrexone prevented such deleterious effect, in spite of the fact that it had no intrinsic effect on short-term object recognition memory. Stressed subjects receiving saline and non-stressed subjects receiving naltrexone performed adequately during the long-term memory test; however, control subjects as well as stressed subjects receiving a high dose of naltrexone performed poorly. Control subjects' dissociated performance during both memory tests suggests that the short-term memory test induced a retroactive interference effect mediated through light opioid system activation; such effect was prevented either by low dose naltrexone administration or by strongly activating the opioid system through acute stress. Both short-term memory retrieval impairment and long-term memory improvement observed in stressed subjects may have been mediated through strong opioid system activation, since they were prevented by high dose naltrexone administration. Therefore, the activation of the opioid system plays a dual modulating role in object recognition memory. Copyright © 2013 Elsevier Inc. All rights

  12. Perceived stress and anhedonia predict short-and long-term weight change, respectively, in healthy adults.

    Science.gov (United States)

    Ibrahim, Mostafa; Thearle, Marie S; Krakoff, Jonathan; Gluck, Marci E

    2016-04-01

    Perceived stress; emotional eating; anhedonia; depression and dietary restraint, hunger, and disinhibition have been studied as risk factors for obesity. However, the majority of studies have been cross-sectional and the directionality of these relationships remains unclear. In this longitudinal study, we assess their impact on future weight change. Psychological predictors of weight change in short- (6month) and long-term (>1year) periods were studied in 65 lean and obese individuals in two cohorts. Subjects participated in studies of food intake and metabolism that did not include any type of medication or weight loss interventions. They completed psychological questionnaires at baseline and weight change was monitored at follow-up visits. At six months, perceived stress predicted weight gain (r(2)=0.23, P=0.02). There was a significant interaction (r(2)=.38, P=0.009) between perceived stress and positive emotional eating, such that higher scores in both predicted greater weight gain, while those with low stress but high emotional eating scores lost weight. For long-term, higher anhedonia scores predicted weight gain (r(2)=0.24, P=0.04). Depression moderated these effects such that higher scores in both predicted weight gain but higher depression and lower anhedonia scores predicted weight loss. There are different behavioral determinants for short- and long-term weight change. Targeting perceived stress may help with short-term weight loss while depression and anhedonia may be better targets for long-term weight regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Geopathic stress zones: short-term effects on work performance and well-being?

    Science.gov (United States)

    Augner, Christoph; Hacker, Gerhard W; Jekel, Ilse

    2010-06-01

    The aim of the study was to evaluate whether two different locations in the same room as tested by dowsers ("geopathic stress zone" [GSZ] versus "more neutral zone" [NZ]) would show significant short-term effects on work performance and well-being. It was also tested whether a device reported to "neutralize" GSZ would influence results obtained with the specific setup used in this study. This was a blinded, randomized, short-term laboratory experiment using a within-subject design. The study was conducted in the laboratory of the Research Institute for Frontier Questions of Medicine and Biotechnology at Salzburg Federal Hospital. The subjects were 26 persons, aged 20-57. Participants had to accomplish reaction tasks during three different conditions: GSZ, NZ, and GSZ with a device reported to "neutralize" GSZ. These conditions were counterbalanced into six different sequences and randomized to the subjects. At the end of each condition, a standardized well-being questionnaire had to be completed. Dependent variables were reactive stress tolerance (reaction time, timely right answers, right answers, false answers, left out) and well-being (described by six adjectives). No location-dependent effects on performance during reactive stress tolerance test were seen. For well-being, analysis of variance revealed a trend (p = 0.07) and showed significantly poorer well-being during the GSZ condition compared to NZ (p = 0.01). This study shows that well-being can be location dependent and that this might be caused by a so-called GSZ. However, in our short-term experiment, factors of work performance tested remained unaffected.

  14. Study on osmoprotectant rhizobacteria to improve mung bean growth under drought stress

    Science.gov (United States)

    Maryani, Y.; Sudadi; Dewi, W. S.; Yunus, A.

    2018-03-01

    Climate change leads to irregular rainwater availability for crops and thus enhances drought stress. Furthermore, nowadays we face climate disadvantages such as long dry season, short rainy season and high air temperature caused by climate change. This research aimed at studying the ability of osmoprotectant rhizobacteria isolates to support mung bean growth under drought stress. The rhizobacteria were isolated from mung bean’s rhizosphere. The results showed that isolates of strain Al24-k and Ver5-k produced glycine betaine 9.6306 mg g‑1 cell, 1.7667 x 107 CFU g‑1 soil and 11.4870 mg g”1 cell, 1.9667 x 107 CFU g‑1 soil. The isolated rhizobacteria from mung bean’s rhizosphere under field capacity of soil moisture produced glycine betaine 6.8000 mg g‑1 cell, 1.2556 x 107 CFU g‑1 soil. Under 75% field capacity of soil moisture, isolates produced glycine betaine of 6.4059 mg g‑1 cell, 1.3111 x 107 CFU g‑1 soil, while under 50% from field capacity, the isolates produced glycine betaine of 7.4108 mg g‑1 cell, 1.6667 x 107 CFU g‑1 soil. The osmoprotectant rhizobacteria improved the resilience of mung bean to drought stress.

  15. Short-term and long-term effects of transient exogenous cortisol manipulation on oxidative stress in juvenile brown trout

    DEFF Research Database (Denmark)

    Birnie-Gauvin, Kim; Peiman, Kathryn S.; Larsen, Martin Hage

    2017-01-01

    available for physiological functions like defence against oxidative stress. Using brown trout (Salmo trutta), we evaluated the short-term (2 weeks) and long-term (4 months over winter) effects of exogenous cortisol manipulations (versus relevant shams and controls) on the oxidative status of wild juveniles...

  16. Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Vignjevic, Marija; Liu, Fulai

    2015-01-01

    Plants of spring wheat (Triticum aestivum L. cv. Vinjett) were exposed to moderate water deficit at the vegetative growth stages six-leaf and/or stem elongation to investigate drought priming effects on tolerance to drought and heat stress events occurring during the grain filling stage. Compared......Plants of spring wheat (Triticum aestivum L. cv. Vinjett) were exposed to moderate water deficit at the vegetative growth stages six-leaf and/or stem elongation to investigate drought priming effects on tolerance to drought and heat stress events occurring during the grain filling stage...... of abscisic acid in primed plants under drought stress could contribute to higher grain yield compared to the non-primed plants. Taken together, the results indicate that drought priming during vegetative stages improved tolerance to both drought and heat stress events occurring during grain filling in wheat....

  17. Evaluation of common bean (Phaseolus vulgaris L. genotypes for drought stress adaptation in Ethiopia

    Directory of Open Access Journals (Sweden)

    Kwabena Darkwa

    2016-10-01

    Full Text Available Drought stress linked with climate change is one of the major constraints faced by common bean farmers in Africa and elsewhere. Mitigating this constraint requires the selection of resilient varieties that withstand drought threats to common bean production. This study assessed the drought response of 64 small red-seeded genotypes of common bean grown in a lattice design replicated twice under contrasting moisture regimes, terminal drought stress and non-stress, in Ethiopia during the dry season from November 2014 to March 2015. Multiple plant traits associated with drought were assessed for their contribution to drought adaptation of the genotypes. Drought stress determined by a drought intensity index was moderate (0.3. All the assessed traits showed significantly different genotypic responses under drought stress and non-stress conditions. Eleven genotypes significantly (P ≤ 0.05 outperformed the drought check cultivar under both drought stress and non-stress conditions in seed yielding potential. Seed yield showed positive and significant correlations with chlorophyll meter reading, vertical root pulling resistance force, number of pods per plant, and seeds per pod under both soil moisture regimes, indicating their potential use in selection of genotypes yielding well under drought stress and non-stress conditions. Clustering analysis using Mahalanobis distance grouped the genotypes into four groups showing high and significant inter-cluster distance, suggesting that hybridization between drought-adapted parents from the groups will provide the maximum genetic recombination for drought tolerance in subsequent generations.

  18. Genome-wide transcriptional reprogramming under drought stress

    KAUST Repository

    Chen, Hao

    2012-01-01

    Soil water deficit is one of the major factors limiting plant productivity. Plants cope with this adverse environmental condition by coordinating the up- or downregulation of an array of stress responsive genes. Reprogramming the expression of these genes leads to rebalanced development and growth that are in concert with the reduced water availability and that ultimately confer enhanced stress tolerance. Currently, several techniques have been employed to monitor genome-wide transcriptional reprogramming under drought stress. The results from these high throughput studies indicate that drought stress-induced transcriptional reprogramming is dynamic, has temporal and spatial specificity, and is coupled with the circadian clock and phytohormone signaling pathways. © 2012 Springer-Verlag Berlin Heidelberg. All rights are reserved.

  19. Drought Stress and Its Impact on Protein in Three Species of Vitex

    Directory of Open Access Journals (Sweden)

    John A. De Britto

    2011-09-01

    Full Text Available Drought is one of the most important natural phenomenon which affects on plant growth. When drought stress is imposed different molecular and biochemical responses took place in the plants. The protein profile of three species of Vitex (Vitex trifolia L., Vitex altissima L. and Vitex negundo L. under normally irrigated condition and severe drought plants was analyzed through SDS-PAGE. Drought stress significantly affects proteins in plants when compared the normal conditioned plants. Several new protein bands were identified in the stressed plants. It seems that Vitex species can be adapted to drought stress conditions. Hence it was concluded that number of new proteins were synthesized in stressed plants for their adaptation in the stressed conditions. These proteins could be used as markers in identifying the stressed plants.

  20. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress.

    Science.gov (United States)

    Mutava, Raymond N; Prince, Silvas Jebakumar K; Syed, Naeem Hasan; Song, Li; Valliyodan, Babu; Chen, Wei; Nguyen, Henry T

    2015-01-01

    Many sources of drought and flooding tolerance have been identified in soybean, however underlying molecular and physiological mechanisms are poorly understood. Therefore, it is important to illuminate different plant responses to these abiotic stresses and understand the mechanisms that confer tolerance. Towards this goal we used four contrasting soybean (Glycine max) genotypes (PI 567690--drought tolerant, Pana--drought susceptible, PI 408105A--flooding tolerant, S99-2281--flooding susceptible) grown under greenhouse conditions and compared genotypic responses to drought and flooding at the physiological, biochemical, and cellular level. We also quantified these variations and tried to infer their role in drought and flooding tolerance in soybean. Our results revealed that different mechanisms contribute to reduction in net photosynthesis under drought and flooding stress. Under drought stress, ABA and stomatal conductance are responsible for reduced photosynthetic rate; while under flooding stress, accumulation of starch granules played a major role. Drought tolerant genotypes PI 567690 and PI 408105A had higher plastoglobule numbers than the susceptible Pana and S99-2281. Drought stress increased the number and size of plastoglobules in most of the genotypes pointing to a possible role in stress tolerance. Interestingly, there were seven fibrillin proteins localized within the plastoglobules that were up-regulated in the drought and flooding tolerant genotypes PI 567690 and PI 408105A, respectively, but down-regulated in the drought susceptible genotype Pana. These results suggest a potential role of Fibrillin proteins, FBN1a, 1b and 7a in soybean response to drought and flooding stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat

    OpenAIRE

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2014-01-01

    Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress cond...

  2. Short term response of a peatland to warming and drought - climate manipulation experiment in W Poland

    Science.gov (United States)

    Juszczak, Radosław; Chojnicki, Bogdan; Urbaniak, Marek; Leśny, Jacek; Silvennoinen, Hanna; Lamentowicz, Mariusz; Basińska, Anna; Gąbka, Maciej; Stróżecki, Marcin; Samson, Mateusz; Łuców, Dominika; Józefczyk, Damian; Hoffmann, Mathias; Olejnik, Janusz

    2016-04-01

    conditions led to increases in NDVI and LAI, whilst the site exposed to only drought exhibited the lowest LAI. Warming shifted the vegetation species composition by promoting vascular plants (mainly Carex rostrata and C. limosa), which result also correlates positively with nutrient (Ptot, Mn, F, Na, Zn) availability in the peat water. Here, we report short-term responses to increased temperature and diminished precipitation, showing that the combination of these to stressors leads to very different scenario than their individual impacts. Our results further emphasize the need for long term records from field manipulation site on peatland response to climate changes. The Research was co-founded by the Polish National Centre for Research and Development within the Polish-Norwegian Research Programme within the WETMAN project (Central European Wetland Ecosystem Feedbacks to Changing Climate - Field Scale Manipulation, Project ID: 203258, contract No. Pol-Nor/203258/31/2013 (www.wetman.pl). References Fenner N., Freeman Ch. (2011). Nature Geoscience, 4, 895-900 Hoffmann M., et al. (2015). Agricultural and Forest Meteorology, 200, 30-45 Kimball BA. (2005). Global Change Biology, 11, 2041-2056

  3. Impacts of short-term heatwaves on sun-induced chlorophyll fluorescence(SiF) in temperate tree species

    Science.gov (United States)

    Wang, F.; Gu, L.; Guha, A.; Han, J.; Warren, J.

    2017-12-01

    The current projections for global climate change forecast an increase in the intensity and frequency of extreme climatic events, such as droughts and short-term heat waves. Understanding the effects of short-term heat wave on photosynthesis process is of critical importance to predict global impacts of extreme weather event on vegetation. The diurnal and seasonal characteristics of SIF emitted from natural vegetation, e.g., forest and crop, have been studied at the ecosystem-scale, regional-scale and global-scale. However, the detailed response of SIF from different plant species under extremely weather event, especially short-term heat wave, have not been reported. The purpose of this study was to study the response of solar-induced chlorophyll fluorescence, gas exchange and continuous fluorescence at leaf scale for different temperate tree species. The short-term heatwave experiment was conducted using plant growth chamber (CMP6050, Conviron Inc., Canada). We developed an advanced spectral fitting method to obtain the plant SIF in the plant growth chamber. We compared SIF variation among different wavelength and chlorophyll difference among four temperate tree species. The diurnal variation of SIF signals at leaf-scales for temperate tree species are different under heat stress. The SIF response at leaf-scales and their difference for four temperate tree species are different during a cycle of short-term heatwave stress. We infer that SIF be used as a measure of heat tolerance for temperate tree species.

  4. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants.

    Science.gov (United States)

    Todaka, Daisuke; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-01-01

    Advances have been made in the development of drought-tolerant transgenic plants, including cereals. Rice, one of the most important cereals, is considered to be a critical target for improving drought tolerance, as present-day rice cultivation requires large quantities of water and as drought-tolerant rice plants should be able to grow in small amounts of water. Numerous transgenic rice plants showing enhanced drought tolerance have been developed to date. Such genetically engineered plants have generally been developed using genes encoding proteins that control drought regulatory networks. These proteins include transcription factors, protein kinases, receptor-like kinases, enzymes related to osmoprotectant or plant hormone synthesis, and other regulatory or functional proteins. Of the drought-tolerant transgenic rice plants described in this review, approximately one-third show decreased plant height under non-stressed conditions or in response to abscisic acid treatment. In cereal crops, plant height is a very important agronomic trait directly affecting yield, although the improvement of lodging resistance should also be taken into consideration. Understanding the regulatory mechanisms of plant growth reduction under drought stress conditions holds promise for developing transgenic plants that produce high yields under drought stress conditions. Plant growth rates are reduced more rapidly than photosynthetic activity under drought conditions, implying that plants actively reduce growth in response to drought stress. In this review, we summarize studies on molecular regulatory networks involved in response to drought stress. In a separate section, we highlight progress in the development of transgenic drought-tolerant rice plants, with special attention paid to field trial investigations.

  5. Effects of salt-drought stress on growth and physiobiochemical characteristics of Tamarix chinensis seedlings.

    Science.gov (United States)

    Liu, Junhua; Xia, Jiangbao; Fang, Yanming; Li, Tian; Liu, Jingtao

    2014-01-01

    The present study was designed to clarify the effects of salinity and water intercross stresses on the growth and physiobiochemical characteristics of Tamarix chinensis seedlings by pots culture under the artificial simulated conditions. The growth, activities of SOD, POD, and contents of MDA and osmotic adjusting substances of three years old seedlings of T. chinensis were studied under different salt-drought intercross stress. Results showed that the influence of salt stress on growth was greater than drought stress, the oxidation resistance of SOD and POD weakened gradually with salt and drought stresses intensified, and the content of MDA was higher under severe drought and mild and moderate salt stresses. The proline contents increased with the stress intensified but only significantly higher than control under the intercross stresses of severe salt-severe drought. It implied that T. chinensis could improve its stress resistance by adjusted self-growth and physiobiochemical characteristics, and the intercross compatibility of T. chinensis to salt and drought stresses can enhance the salt resistance under appropriate drought stress, but the dominant factors influencing the physiological biochemical characteristics of T. chinensis were various with the changing of salt-drought intercross stresses gradients.

  6. Effects of Salt-Drought Stress on Growth and Physiobiochemical Characteristics of Tamarix chinensis Seedlings

    Directory of Open Access Journals (Sweden)

    Junhua Liu

    2014-01-01

    Full Text Available The present study was designed to clarify the effects of salinity and water intercross stresses on the growth and physiobiochemical characteristics of Tamarix chinensis seedlings by pots culture under the artificial simulated conditions. The growth, activities of SOD, POD, and contents of MDA and osmotic adjusting substances of three years old seedlings of T. chinensis were studied under different salt-drought intercross stress. Results showed that the influence of salt stress on growth was greater than drought stress, the oxidation resistance of SOD and POD weakened gradually with salt and drought stresses intensified, and the content of MDA was higher under severe drought and mild and moderate salt stresses. The proline contents increased with the stress intensified but only significantly higher than control under the intercross stresses of severe salt-severe drought. It implied that T. chinensis could improve its stress resistance by adjusted self-growth and physiobiochemical characteristics, and the intercross compatibility of T. chinensis to salt and drought stresses can enhance the salt resistance under appropriate drought stress, but the dominant factors influencing the physiological biochemical characteristics of T. chinensis were various with the changing of salt-drought intercross stresses gradients.

  7. Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance.

    Directory of Open Access Journals (Sweden)

    Xiaoguo Zheng

    Full Text Available Adverse environmental conditions have large impacts on plant growth and crop production. One of the crucial mechanisms that plants use in variable and stressful natural environments is gene expression modulation through epigenetic modification. In this study, two rice varieties with different drought resistance levels were cultivated under drought stress from tilling stage to seed filling stage for six successive generations. The variations in DNA methylation of the original generation (G0 and the sixth generation (G6 of these two varieties in normal condition (CK and under drought stress (DT at seedling stage were assessed by using Methylation Sensitive Amplification Polymorphism (MSAP method. The results revealed that drought stress had a cumulative effect on the DNA methylation pattern of both varieties, but these two varieties had different responses to drought stress in DNA methylation. The DNA methylation levels of II-32B (sensitive and Huhan-3 (resistant were around 39% and 32%, respectively. Genome-wide DNA methylation variations among generations or treatments accounted for around 13.1% of total MSAP loci in II-32B, but was only approximately 1.3% in Huhan-3. In II-32B, 27.6% of total differentially methylated loci (DML were directly induced by drought stress and 3.2% of total DML stably transmitted their changed DNA methylation status to the next generation. In Huhan-3, the numbers were 48.8% and 29.8%, respectively. Therefore, entrainment had greater effect on Huhan-3 than on II-32B. Sequence analysis revealed that the DML were widely distributed on all 12 rice chromosomes and that it mainly occurred on the gene's promoter and exon region. Some genes with DML respond to environmental stresses. The inheritance of epigenetic variations induced by drought stress may provide a new way to develop drought resistant rice varieties.

  8. Germination Characteristics of Marshmallow (Althea officinalis L. as Influenced by Drought and Salinity Stress

    Directory of Open Access Journals (Sweden)

    R Yazdani Biuki

    2012-07-01

    Full Text Available Drought and salinity are two important environmental stresses limiting the crop production. In order to study the influence of drought and salinity stresses on germination characteristics of Marshmallow plant seeds, two separate experiments were conducted based on completely randomized design with four replications in controlled conditions. Drought stress levels were 0, -2, -4, -6 and -8 bar in the first experiment and salinity stress levels were 0, -2, -4, -6, -8 and -10 bar in the second experiment which were accomplished using PEG 6000 and sodium chloride, respectively. The results indicated a decrease in germination rate and percentage, as well as in lengths and fresh and dry weights of both plumules and radicles, as the osmotic potential was reduced in both experiments. Marshmallow seeds showed an overall higher tolerance against salinity stress compared to drought stress, with germination occurring at as low osmotic potentials as -10 bars in salinity treatments, while only until -8 bar drought stress. In osmotic potentials of -2 and -4 bar the decrease in germination percentage was more sever in the salinity stress compared to drought stress; whereas in higher levels of stress (-6 and -8 bar drought stress brought about a higher decrease in germination percentage than did the salinity stress; illustrated by the percentage of germination decrease at -6 bar, i.e. 63% for drought and 80% for salinity treatments. At the treatments of higher potential (-2, -4 and -6 bar the decrease in radicle length was greater in response to salinity than to drought stress, but the length of plumule was more influenced by drought stress and also showed the highest sensitivity to drought, among all measured characteristics.

  9. Screening for Osmotic Stress Responses in Rice Varieties under Drought Condition

    Directory of Open Access Journals (Sweden)

    Simon Swapna

    2017-09-01

    Full Text Available Drought is the major abiotic stress factor that limits rice production worldwide. To evaluate the osmotic stress responses in rice varieties under drought condition, a total of 42 high-yielding rice varieties were collected from various research stations of Kerala Agricultural University in India. The experimental setup comprises of initial hydroponic treatments at different osmotic potentials, artificially induced by desired strengths of polyethylene glycol (PEG6000, and followed by the pot planted experiments in the rain-out-zone. The activities of antioxidant enzymes, relative water content, cell membrane stability, photosynthetic pigments, proline content, along with plant growth parameters of the varieties under drought condition were evaluated. Moreover, the standard scores of these rice varieties were assessed under stress and recovery conditions based on the scoring scale of the Standard Evaluation System for rice. Among the 42 rice varieties, we identified 2 rice varieties, Swarnaprabha and Kattamodan, with less leaf rolling, better drought recovery ability as well as relative water content, increased membrane stability index, osmolyte accumulation, and antioxidant enzyme activities pointed towards their degree of tolerance to drought stress. The positive adaptive responses of these rice varieties towards drought stress can be used in the genetic improvement of rice drought resistance breeding program.

  10. Magnetic resonance imaging of plants: plant water status and drought stress response

    NARCIS (Netherlands)

    Weerd-Meulenkamp, van der L.

    2002-01-01

    This Thesis presents an approach for the study of plant water balance during drought stress, using a combination of in vivo NMR experiments and computer simulations. The ultimate aim is the interpretation of the NMR parameters in terms of physiologically relevant characteristics, such as

  11. Heat and drought stresses in crops and approaches for their mitigation

    Science.gov (United States)

    Lamaoui, Mouna; Jemo, Martin; Datla, Raju; Bekkaoui, Faouzi

    2018-02-01

    Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavourable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.

  12. Heat and Drought Stresses in Crops and Approaches for Their Mitigation

    Directory of Open Access Journals (Sweden)

    Mouna Lamaoui

    2018-02-01

    Full Text Available Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.

  13. Short-term salt stress in Brassica rapa seedlings causes alterations in auxin metabolism

    Czech Academy of Sciences Publication Activity Database

    Pavlović, I.; Pěnčík, Aleš; Novák, Ondřej; Vujčić, V.; Radić Brkanac, S.; Lepeduš, H.; Strnad, Miroslav; Salopek-Sondi, B.

    2018-01-01

    Roč. 125, APR (2018), s. 74-84 ISSN 0981-9428 R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA17-06613S Institutional support: RVO:61389030 Keywords : Auxin metabolism * Brassica rapa ssp. pekinensis * Growth inhibition * Principal component analysis * Reactive oxygen species * Short-term salinity stress * Stress hormones Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 2.724, year: 2016

  14. Influence of PEG induced drought stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars

    Directory of Open Access Journals (Sweden)

    F.A. Hellal

    2018-06-01

    Full Text Available In order to investigate the effects of drought stress on germination components of barley cultivars, a laboratory experiment was conducted in a factorial randomized complete design with four replications. The controlled experiment included ten of Egyptian barley cultivars namely; (Giza 123, 124, 125, 126, 127, 129, 130, 134, 135 and 2000 as first factor. The second factor included 4 levels of drought stress inducer by applying 0, 5, 10 and 20% of polyethylene glycol-6000 (PEG which is equivalent to four osmotic potential levels including −0.001, −0.27, −0.54 and −1.09 MPa, respectively. The results showed that, the highest reduction was related to the drought level of 20% PEG among the barley cultivars. The best cultivars in terms of germination traits were Giza 134, Giza 127, and Giza 126 this indicate their tolerance to drought stress and Giza 130, 135, 2000 cultivars was moderately tolerance and remaining is less tolerance. The protein band 27 kDa and 78 kDa showed high intensity after stress in almost all cultivars. Those two protein bands their exciting was very clear in treated barley leaf tissue. It could be related to dehydrine and oxygen evolving enhancer protein 2 (OEE2 which involved in drought stress tolerance response. Cultivars Giza 127, 130 and 134 showed highest tolerance response under drought stress. The antioxidant enzymes PAGE pattern of Peroxidase (POX, Sodium dismutase (SOD and Ascorbate peroxidase (APX for Barley cultivars under drought stress revealed a high activities for Giza 126, 127, 134, 136 and 2000 under −0.5 MPa osmotic stress by PEG in most of their isoforms. Based on similarity coefficient values the highest values were 1.0 with 100% similarly between tolerant cultivars Giza 130 and Giza 127. Similarly between the susceptible cultivars 125 and Giza 129 was 60%.These data confirmed by the growth parameters which we ranked as tolerant to drought stress. Keywords: Barley, Drought stress, Seed germination

  15. Quercitol and osmotic adaptation of field-grown Eucalyptus under seasonal drought stress.

    Science.gov (United States)

    Arndt, Stefan K; Livesley, Stephen J; Merchant, Andrew; Bleby, Timothy M; Grierson, Pauline F

    2008-07-01

    This study investigated the role of quercitol in osmotic adjustment in field-grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi-arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO(2)assimilation rates and stomatal conductances. In contrast, woodland trees had relatively fewer leaves and suffered less drought stress. Plantation trees under drought stress engaged in osmotic adjustment, but woodland trees did not. Quercitol made a significant contribution to osmotic adjustment in drought-stressed trees (25% of total solutes), and substantially more quercitol was measured in the leaves of plantation trees (5% dry matter) than in the leaves of woodland trees (2% dry matter). We found no evidence that quercitol was used as a carbon storage compound while starch reserves were depleted under drought stress. Differences in stomatal conductance, biomass allocation and quercitol production clearly indicate that E. astringens is both morphologically and physiologically 'plastic' in response to growth environment, and that osmotic adjustment is only one part of a complex strategy employed by this species to tolerate drought.

  16. Trends in Snag Populations in Drought-Stressed Mixed-Conifer and Ponderosa Pine Forests (1997–2007

    Directory of Open Access Journals (Sweden)

    Joseph L. Ganey

    2012-01-01

    Full Text Available Snags provide important biological legacies, resources for numerous species of native wildlife, and contribute to decay dynamics and ecological processes in forested ecosystems. We monitored trends in snag populations from 1997 to 2007 in drought-stressed mixed-conifer and ponderosa pine (Pinus ponderosa Dougl. ex Laws forests, northern Arizona. Median snag density increased by 75 and 90% in mixed-conifer and ponderosa pine forests, respectively, over this time period. Increased snag density was driven primarily by a large pulse in drought-mediated tree mortality from 2002 to 2007, following a smaller pulse from 1997 to 2002. Decay-class composition and size-class composition of snag populations changed in both forest types, and species composition changed in mixed-conifer forest. Increases in snag abundance may benefit some species of native wildlife in the short-term by providing increased foraging and nesting resources, but these increases may be unsustainable in the long term. Observed changes in snag recruitment and fall rates during the study illustrate the difficulty involved in modeling dynamics of those populations in an era of climate change and changing land management practices.

  17. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold and heat

    Directory of Open Access Journals (Sweden)

    Kazuo eNakashima

    2014-05-01

    Full Text Available Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs are master regulators of gene expression. ABRE-binding protein (AREB and ABRE-binding factor (ABF TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein (DREB TFs and NAC TFs are also involved in stress responses including drought, heat and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these transcription factors in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  18. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat.

    Science.gov (United States)

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2014-01-01

    Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  19. Physiological and Biochemical Responses in Two Ornamental Shrubs to Drought Stress.

    Science.gov (United States)

    Toscano, Stefania; Farieri, Elisa; Ferrante, Antonio; Romano, Daniela

    2016-01-01

    Drought stress is one of the most important abiotic stress limiting the plant survival and growth in the Mediterranean environment. In this work, two species typically grown in Mediterranean areas with different drought responses were used. Two shrubs, with slow (Photinia × fraseri Dress 'Red Robin') or fast (Eugenia uniflora L. 'Etna Fire') adaptation ability to drought, were subjected to three water regimes: well-watered (WW), moderate (MD), and severe (SD) drought stress conditions for 30 days. Net photosynthetic rate, stomatal conductance, maximum quantum efficiency of PSII photochemistry (Fv/Fm), relative water content (RWC), chlorophyll content, proline, malondialdehyde (MDA), and antioxidant enzyme activities (superoxide dismutase, catalase, and peroxidase) were measured. Results showed that RWC and proline were higher in Eugenia than in Photinia, demonstrating the greater tolerance of the latter to the water stress. The drought stress levels applied did not compromise photosynthetic efficiency through stomatal regulation, while a reduction of Fv/Fm ratio was observed at the end of the experimental period. MDA significantly increased after 30 days in both species. The antioxidant enzyme activities showed different responses to water stress conditions. In both species, the water stress scores showed positive, while proline content showed negative correlations with all physiological parameters.

  20. A Novel Non-coding RNA Regulates Drought Stress Tolerance in Arabidopsis thaliana

    KAUST Repository

    Albesher, Nour H.

    2014-05-01

    Drought (soil water deficit) as a major adverse environmental condition can result in serious reduction in plant growth and crop production. Plants respond and adapt to drought stresses by triggering various signalling pathways leading to physiological, metabolic and developmental changes that may ultimately contribute to enhanced tolerance to the stress. Here, a novel non-coding RNA (ncRNA) involved in plant drought stress tolerance was identified. We showed that increasing the expression of this ncRNA led to enhanced sensitivity during seed germination and seedling growth to the phytohormone abscisic acid. The mutant seedlings are also more sensitive to osmotic stress inhibition of lateral root growth. Consistently, seedlings with enhanced expression of this ncRNA exhibited reduced transiprational water loss and were more drought-tolerant than the wild type. Future analyses of the mechanism for its role in drought tolerance may help us to understand how plant drought tolerance could be further regulated by this novel ncRNA.

  1. Organ-specific proteomics of soybean seedlings under flooding and drought stresses.

    Science.gov (United States)

    Wang, Xin; Khodadadi, Ehsaneh; Fakheri, Baratali; Komatsu, Setsuko

    2017-06-06

    Organ-specific analyses enrich the understanding of plant growth and development under abiotic stresses. To elucidate the cellular responses in soybean seedlings exposed to flooding and drought stresses, organ-specific analysis was performed using a gel-free/label-free proteomic technique. Physiological analysis indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were markedly increased in leaf and root of plants treated with 6days of flooding and drought stresses, respectively. Proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominately affected in leaf, hypocotyl, and root in response to flooding and drought. Notably, the tricarboxylic acid cycle was suppressed in leaf and root under both stresses. Moreover, 17 proteins, including beta-glucosidase 31 and beta-amylase 5, were identified in soybean seedlings under both stresses. The protein abundances of beta-glucosidase 31 and beta-amylase 5 were increased in leaf and root under both stresses. Additionally, the gene expression of beta-amylase 5 was upregulated in leaf exposed to the flooding and drought, and the expression level was highly correlated with the protein abundance. These results suggest that beta-amylase 5 may be involved in carbohydrate mobilization to provide energy to the leaf of soybean seedlings exposed to flooding and drought. This study examined the effects of flooding and drought on soybean seedlings in different organs using a gel-free/label-free proteomic approach. Physiological responses indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were increased in leaf and root of soybean seedlings exposed to flooding and drought for 6days. Functional analysis of acquired protein profiles exhibited that proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominated affected in leaf, hypocotyl, and root

  2. Short-term modern life-like stress exacerbates Aβ-pathology and synapse loss in 3xTg-AD mice.

    Science.gov (United States)

    Baglietto-Vargas, David; Chen, Yuncai; Suh, Dongjin; Ager, Rahasson R; Rodriguez-Ortiz, Carlos J; Medeiros, Rodrigo; Myczek, Kristoffer; Green, Kim N; Baram, Tallie Z; LaFerla, Frank M

    2015-09-01

    Alzheimer's disease (AD) is a progressive neurological disorder that impairs memory and other cognitive functions in the elderly. The social and financial impacts of AD are overwhelming and are escalating exponentially as a result of population aging. Therefore, identifying AD-related risk factors and the development of more efficacious therapeutic approaches are critical to cure this neurological disorder. Current epidemiological evidence indicates that life experiences, including chronic stress, are a risk for AD. However, it is unknown if short-term stress, lasting for hours, influences the onset or progression of AD. Here, we determined the effect of short-term, multi-modal 'modern life-like' stress on AD pathogenesis and synaptic plasticity in mice bearing three AD mutations (the 3xTg-AD mouse model). We found that combined emotional and physical stress lasting 5 h severely impaired memory in wild-type mice and tended to impact it in already low-performing 3xTg-AD mice. This stress reduced the number of synapse-bearing dendritic spines in 3xTg-AD mice and increased Aβ levels by augmenting AβPP processing. Thus, short-term stress simulating modern-life conditions may exacerbate cognitive deficits in preclinical AD by accelerating amyloid pathology and reducing synapse numbers. Epidemiological evidence indicates that life experiences, including chronic stress, are a risk for Alzheimer disease (AD). However, it is unknown if short stress in the range of hours influences the onset or progression of AD. Here, we determined the effect of short, multi-modal 'modern-lifelike'stress on AD pathogenesis and synaptic plasticity in mice bearing three AD mutations (the 3xTg-AD mouse model). We found that combined emotional and physical stress lasting 5 h severely impaired memory in wild-type mice and tended to impact it in already low-performing 3xTg-AD mice. This stress reduced the number of synapse-bearing dendritic spines in 3xTg-AD mice and increased Aβ levels by

  3. EFFECT OF DROUGHT STRESS ON EARLY GROWTH OF ...

    African Journals Online (AJOL)

    Ridwan

    ABSTRACT. Drought and high temperatures are said to have triggered increased tree mortality and could be linked to the menace of climate change. This research therefore investigated the effect of drought stress on early growth of Adansonia digitata where seedlings were exposed to different watering frequencies (Once ...

  4. Effects of drought stress condition on the yield of spring wheat ...

    African Journals Online (AJOL)

    Effects of drought stress condition on the yield of spring wheat ( Triticum aestivum ) lines. ... Drought stress tolerance is seen in almost all plants but its extent varies from species to species and even within species. ... from 32 Countries:.

  5. TRANSCRIPTOMIC CHANGES DRIVE PHYSIOLOGICAL RESPONSES TO PROGRESSIVE DROUGHT STRESS AND REHYDRATION IN TOMATO

    Directory of Open Access Journals (Sweden)

    Paolo eIovieno

    2016-03-01

    Full Text Available Tomato is a major crop in the Mediterranean basin, where the cultivation in the open field is often vulnerable to drought. In order to adapt and survive to naturally occurring cycles of drought stress and recovery, plants employ a coordinated array of physiological, biochemical and molecular responses. Transcriptomic studies on tomato responses to drought and subsequent recovery are few in number. As the search for novel traits to improve the genetic tolerance to drought increases, a better understanding of these responses is required. To address this need we designed a study in which we induced two cycles of prolonged drought stress and a single recovery by rewatering in tomato. In order to dissect the complexity of plant responses to drought, we analyzed the physiological responses (stomatal conductance, CO2 assimilation and chlorophyll fluorescence, abscisic acid (ABA and proline contents. In addition to the physiological and metabolite assays, we generated transcriptomes for multiple points during the stress and recovery cycles. Cluster analysis of differentially expressed genes between the conditions has revealed potential novel components in stress response. The observed reduction in leaf gas exchanges and efficiency of the photosystem PSII was concomitant with a general down-regulation of genes belonging to the photosynthesis, light harvesting and photosystem I and II category induced by drought stress. Gene ontology (GO categories such as cell proliferation and cell cycle were also significantly enriched in the down-regulated fraction of genes upon drought stress, which may contribute to explain the observed growth reduction. Several histone variants were also repressed during drought stress, indicating that chromatin associated processes are also affected by drought. As expected, ABA accumulated after prolonged water deficit, driving the observed enrichment of stress related GOs in the up-regulated gene fractions, which included

  6. Soil microbial communities buffer physiological responses to drought stress in three hardwood species.

    Science.gov (United States)

    Kannenberg, Steven A; Phillips, Richard P

    2017-03-01

    Trees possess myriad adaptations for coping with drought stress, but the extent to which their drought responses are influenced by interactions with soil microbes is poorly understood. To explore the role of microbes in mediating tree responses to drought stress, we exposed saplings of three species (Acer saccharum, Liriodendron tulipifera, and Quercus alba) to a four week experimental drought in mesocosms. Half of the pots were inoculated with a live soil slurry (i.e., a microbial inoculum derived from soils beneath the canopies of mature A. saccharum, L. tulipifera or Q. alba stands), while the other half of the pots received a sterile soil slurry. Soil microbes ameliorated drought stress in L. tulipifera by minimizing reductions in leaf water potential and by reducing photosynthetic declines. In A. saccharum, soil microbes reduced drought stress by lessening declines in leaf water potential, though these changes did not buffer the trees from declining photosynthetic rates. In Q. alba, soil microbes had no effects on leaf physiological parameters during drought stress. In all species, microbes had no significant effects on dynamic C allocation during drought stress, suggesting that microbial effects on plant physiology were unrelated to source-sink dynamics. Collectively, our results suggest that soil microbes have the potential to alter key parameters that are used to diagnose drought sensitivity (i.e., isohydry or anisohydry). To the extent that our results reflect dynamics occurring in forests, a revised perspective on plant hydraulic strategies that considers root-microbe interactions may lead to improved predictions of forest vulnerability to drought.

  7. Effects of Drought and Salinity Stresses on Germination Characteristics of Dodder (Cuscuta campestris

    Directory of Open Access Journals (Sweden)

    A Ghanbari

    2012-10-01

    Full Text Available In order to study the germination characteristics of dodder (Cuscuta campestris under drought and salinity stress conditions, two laboratory's experiment were conducted. Experiments were conducted in completely randomized design with 4 replications. The treatments, for salinity and drought stress were six potential levels (0,-3, -6, -9, -12 and -15 bar of NaCl and five potential levels (0, -3, -6, -9 and -12 bar of PEG 6000 respectively. Results showed that increasing drought and salinity stress significantly germination rate and germination percentage, plumule and radicle length, plumule of Dodder and its radicle fresh weight decreased. However ratio of radicle to plumule and root to shoot were increased (P≤0.01. It seems that among the characters, plumule length is more sensitive to drought and salinity stresses. In addition, germination of dodder was tolernt to drought stress more than salinity stresses.

  8. Tackling Drought Stress: RECEPTOR-LIKE KINASES Present New Approaches

    Science.gov (United States)

    Marshall, Alex; Aalen, Reidunn B.; Audenaert, Dominique; Beeckman, Tom; Broadley, Martin R.; Butenko, Melinka A.; Caño-Delgado, Ana I.; de Vries, Sacco; Dresselhaus, Thomas; Felix, Georg; Graham, Neil S.; Foulkes, John; Granier, Christine; Greb, Thomas; Grossniklaus, Ueli; Hammond, John P.; Heidstra, Renze; Hodgman, Charlie; Hothorn, Michael; Inzé, Dirk; Østergaard, Lars; Russinova, Eugenia; Simon, Rüdiger; Skirycz, Aleksandra; Stahl, Yvonne; Zipfel, Cyril; De Smet, Ive

    2012-01-01

    Global climate change and a growing population require tackling the reduction in arable land and improving biomass production and seed yield per area under varying conditions. One of these conditions is suboptimal water availability. Here, we review some of the classical approaches to dealing with plant response to drought stress and we evaluate how research on RECEPTOR-LIKE KINASES (RLKs) can contribute to improving plant performance under drought stress. RLKs are considered as key regulators of plant architecture and growth behavior, but they also function in defense and stress responses. The available literature and analyses of available transcript profiling data indeed suggest that RLKs can play an important role in optimizing plant responses to drought stress. In addition, RLK pathways are ideal targets for nontransgenic approaches, such as synthetic molecules, providing a novel strategy to manipulate their activity and supporting translational studies from model species, such as Arabidopsis thaliana, to economically useful crops. PMID:22693282

  9. Evaluation of Drought response in Some Rice Mutant Lines Using Stress Tolerance Indices

    Directory of Open Access Journals (Sweden)

    H Aminpanah

    2018-05-01

    Full Text Available Introduction Drought is a major problem that limits the adoption of high-yielding rice varieties in drought-prone rainfed rice environments. To improve crop productivity, it is necessary to understand the mechanism of plant responses to drought conditions with the ultimate goal of improving crop performance in the vast areas of the world where rainfall is limiting or unreliable. Safaei Chaeikar et al. (2008 reported that MP, GMP, HM and STI indices, which showed the highest correlation with grain yield under both optimal and stress conditions, can be used as the best indices to introduce drought-tolerant genotypes in rice breeding programs. They also were introduced Nemat, Sepidrood, IR64, IR50 and Bejar genotypes as tolerant varieties. The present study was conducted to determine how drought affects grain yield in rice mutant lines and also to test this hypothesis in order to identify the most suitable indices/genotypes. Materials and Methods A field trial was conducted at Iranian Rice Research Centers in North of Iran, Rasht (latitude 37◦28', longitude 49◦28'E and altitude 7m below the sea level, during the 2014-2015 growing season. The seeds were sown in a nursery on the 10 May and 25 day old seedlings were transplanted to the field. Two separately experiment was carried out under reproductive stage drought stress and controlled conditions based on randomized complete block design with three replications, in four-row plots of three m length. Transplanting was done using 1 seedling per hill; at hill spacing of 25 cm × 25 cm. 18 rice genotypes were consisted 14 M5 mutant lines and their four parental cultivars. Results and Discussion Analysis of variance indicated significant effects of drought stress, genotype and interaction effects of two factors on grain yield, plant height, flag leaf area, tiller number and grain fertility percentage. Drought stress at reproductive stage caused reduction in grain yield (59.47%, grain fertility

  10. Potential of elite maize composites for drought tolerance in stress ...

    African Journals Online (AJOL)

    1999-12-11

    Dec 11, 1999 ... Effects due to environment (E), genotype (G) and G x E interaction were highly significant (P<0.01) for grain yield, 50% silk emergence, plant height, lodging, ears per plant, and ear rating in both environments (drought and non-drought stressed). In the stress environment, grain yields of the varieties ranged ...

  11. Genetic analysis of drought stress response in Arabidopsis thaliana and Brassica rapa

    NARCIS (Netherlands)

    El-Soda, M.

    2013-01-01

    Drought is the major abiotic stress affecting plant growth and limiting crop productivity worldwide. Plants have evolved three adaptive strategies, drought escape, drought avoidance and drought tolerance, to cope with drought. Knowledge on how Quantitative Trait Loci (QTL), or genes underlying

  12. Transcription factors and plant response to drought stress: Current understanding and future directions

    Directory of Open Access Journals (Sweden)

    Rohit Joshi

    2016-07-01

    Full Text Available Increasing vulnerability of plants to a variety of stresses such as drought, salt and extreme temperatures poses a global threat to sustained growth and productivity of major crops. Of these stresses, drought represents a considerable threat to plant growth and development. In view of this, developing staple food cultivars with improved drought tolerance emerges as the most sustainable solution towards improving crop productivity in a scenario of climate change. In parallel, unraveling the genetic architecture and the targeted identification of molecular networks using modern OMICS analyses, that can underpin drought tolerance mechanisms, is urgently required. Importantly, integrated studies intending to elucidate complex mechanisms can bridge the gap existing in our current knowledge about drought stress tolerance in plants. It is now well established that drought tolerance is regulated by several genes, including transcription factors (TFs that enable plants to withstand unfavorable conditions, and these remain potential genomic candidates for their wide application in crop breeding. These TFs represent the key molecular switches orchestrating the regulation of plant developmental processes in response to a variety of stresses. The current review aims to offer a deeper understanding of TFs engaged in regulating plant’s response under drought stress and to devise potential strategies to improve plant tolerance against drought.

  13. Compensation processes of Aleppo pine (Pinus halepensis Mill.) to ozone exposure and drought stress

    International Nuclear Information System (INIS)

    Inclan, R.; Gimeno, B.S.; Dizengremel, P.; Sanchez, M.

    2005-01-01

    A long-term experiment was performed to study the effects of O 3 and drought-stress (DS) on Aleppo pine seedlings (Pinus halepensis Mill.) exposed in open-top chambers. Ozone reduced gas exchange rates, ribulose-1,5-biphosphate carboxylase/oxygenase activity (Rubisco), aboveground C and needle N concentrations and C/N ratio and Ca concentrations of the twigs under 3 mm (twigs Pd ), C/N ratio, twigs<3 Ca, plant growth, aerial biomass and increased N, twigs with a diameter above 3 mm P and Mg concentrations. The combined exposure to both stresses increased N concentrations of twigs<3 and roots and aboveground biomass K content and decreased root C, maximum daily assimilation rate and instantaneous water use efficiency. The sensitivity of Aleppo pine to both stresses is determined by plant internal resource allocation and compensation mechanisms to cope with stress. - Ozone and drought stress induce the activation of similar processes related to C and N metabolism

  14. De Novo Sequencing and Comparative Analysis of Schima superba Seedlings to Explore the Response to Drought Stress.

    Directory of Open Access Journals (Sweden)

    Bao-Cai Han

    Full Text Available Schima superba is an important dominant species in subtropical evergreen broadleaved forests of China, and plays a vital role in community structure and dynamics. However, the survival rate of its seedlings in the field is low, and water shortage could be a factor that limits its regeneration. In order to better understand the response of its seedlings to drought stress on a functional genomics scale, RNA-seq technology was utilized in this study to perform a large-scale transcriptome sequencing of the S. superba seedlings under drought stress. More than 320 million clean reads were generated and 72218 unique transcripts were obtained through de novo assembly. These unigenes were further annotated by blasting with different public databases and a total of 53300 unique transcripts were annotated. A total of 31586 simple sequence repeat (SSR loci were presented. Through gene expression profiling analysis between drought treatment and control, 11038 genes were found to be significantly enriched in drought-stressed seedlings. Based on these differentially expressed genes (DEGs, Gene Ontology (GO terms enrichment and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG enrichment analysis indicated that drought stress caused a number of changes in the types of sugars, enzymes, secondary mechanisms, and light responses, and induced some potential physical protection mechanisms. In addition, the expression patterns of 18 transcripts induced by drought, as determined by quantitative real-time PCR, were consistent with their transcript abundance changes, as identified by RNA-seq. This transcriptome study provides a rapid method for understanding the response of S. superba seedlings to drought stress and provides a number of gene sequences available for further functional genomics studies.

  15. Maternal separation modulates short-term behavioral and physiological indices of the stress response.

    Science.gov (United States)

    Litvin, Yoav; Tovote, Philip; Pentkowski, Nathan S; Zeyda, Thomas; King, Lanikea B; Vasconcellos, Amy J; Dunlap, Christopher; Spiess, Joachim; Blanchard, D Caroline; Blanchard, Robert J

    2010-07-01

    Early-life stress produces an anxiogenic profile in adulthood, presumably by activating the otherwise quiescent hypothalamic-pituitary-adrenal (HPA) axis during the vulnerable 'stress hyporesponsive period'. While the long-term effects of such early-life manipulations have been extensively characterized, little is known of the short-term effects. Here, we compared the short-term effects of two durations of maternal separation stress and one unseparated group (US) on behavioral and physiological indices of the stress response in rat pups. Separations included 3h on each of 12days, from postnatal day (PND) 2 to 13 (MS2-13) and 3days of daily, 6-h separation from PND11-13 (MS11-13). On PND14 (Experiment 1), both MS2-13 and MS11-13 produced marked reductions in freezing toward an adult male conspecific along with reduced levels of glucocorticoid type 2 (GR) and CRF type-1 (CRF(1)) receptor mRNA in the hippocampus. Group MS2-13 but not MS11-13 produced deficits in stressor-induced corticosterone secretion, accompanied by reductions in body weight. Our results suggest that GR and/or CRF(1) levels, not solely the magnitude of corticosterone secretion, may be involved in the modulation of freezing. In a second experiment, we aimed to extend these findings by testing male and female separated and unseparated pups' unconditioned defensive behaviors to cat odor on PND26, and subsequent cue+context conditioning and extinction throughout postnatal days 27-32. Our results show that maternal separation produced reductions in unconditioned freezing on PND26, with MS2-13 showing stronger deficits than MS11-13. However, separation did not affect any other defensive behaviors. Furthermore, separated rats failed to show conditioned freezing, although they did avoid the no-odor block conditioned cue. There were no sex differences other than weight. We suggest that maternal separation may have produced these changes by disrupting normal development of hippocampal regions involved in

  16. Characterizing drought stress and trait influence on maize yield under current and future conditions.

    Science.gov (United States)

    Harrison, Matthew T; Tardieu, François; Dong, Zhanshan; Messina, Carlos D; Hammer, Graeme L

    2014-03-01

    Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for

  17. Morphological characteristic of purple long yard bean cultivars and their tolerance to drought stress

    Directory of Open Access Journals (Sweden)

    M W Lestari

    2015-01-01

    Full Text Available The cultivation of purple long yard bean which tolerance to drought stress and have high productivity can improve farming in arid area. The purpose of this study was to evaluate the mechanism of the tolerance purple long yard beans to drought stress based on morphologic characters, to get the hypothesis method of tolerance and to obtain tolerance cultivars to the drought stress. Eight cultivars of purple long yard beans, i.e. UBPHU1-41, UBPHU1-130, UBPU3-153, UBPU1-202, UBPU2-222, UBPU1-365, Brawijaya 4 and Bagong 2, were tested in two environmental conditions, 100% field capacity and 50% field capacity. The results showed that drought stress in purple long yard bean affected all morphological characters observed, except for root length and flowering time. Estimation of tolerance to drought stress using the Principles Component Analysis (PCA showed that the shoot fresh weight could be an indicator of purple pod bean tolerance to drought stress. However, the test using Stress Susceptibility Index (SSI was not able to classify the purple long yard bean tolerance to drought stress. The results of analysis using PCA followed by discriminant analysis and clustering dendrogram showed that the UBPU1-41, UBPU1-130, UBPU2-222, UBPU1-365, UB4 and Bagong 2 cultivars were medium cultivars that are tolerant to drought stress. Therefore, they can be planted in semiarid regions.

  18. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review.

    Science.gov (United States)

    Ali, Shafaqat; Rizwan, Muhammad; Qayyum, Muhammad Farooq; Ok, Yong Sik; Ibrahim, Muhammad; Riaz, Muhammad; Arif, Muhammad Saleem; Hafeez, Farhan; Al-Wabel, Mohammad I; Shahzad, Ahmad Naeem

    2017-05-01

    Drought and salt stress negatively affect soil fertility and plant growth. Application of biochar, carbon-rich material developed from combustion of biomass under no or limited oxygen supply, ameliorates the negative effects of drought and salt stress on plants. The biochar application increased the plant growth, biomass, and yield under either drought and/or salt stress and also increased photosynthesis, nutrient uptake, and modified gas exchange characteristics in drought and salt-stressed plants. Under drought stress, biochar increased the water holding capacity of soil and improved the physical and biological properties of soils. Under salt stress, biochar decreased Na + uptake, while increased K + uptake by plants. Biochar-mediated increase in salt tolerance of plants is primarily associated with improvement in soil properties, thus increasing plant water status, reduction of Na + uptake, increasing uptake of minerals, and regulation of stomatal conductance and phytohormones. This review highlights both the potential of biochar in alleviating drought and salt stress in plants and future prospect of the role of biochar under drought and salt stress in plants.

  19. Comparative proteomic responses of two bermudagrass (Cynodon dactylon (L). Pers.) varieties contrasting in drought stress resistance.

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Chan, Zhulong

    2014-09-01

    Drought (water-deficit) stress is a serious environmental problem in plant growth and cultivation. As one of widely cultivated warm-season turfgrass, bermudagrass (Cynodon dactylon (L). Pers.) exhibits drastic natural variation in the drought stress resistance in leaves and stems of different varieties. In this study, proteomic analysis was performed to identify drought-responsive proteins in both leaves and stems of two bermudagrass varieties contrasting in drought stress resistance, including drought sensitive variety (Yukon) and drought tolerant variety (Tifgreen). Through comparative proteomic analysis, 39 proteins with significantly changed abundance were identified, including 3 commonly increased and 2 decreased proteins by drought stress in leaves and stems of Yukon and Tifgreen varieties, 2 differentially regulated proteins in leaves and stems of two varieties after drought treatment, 23 proteins increased by drought stress in Yukon variety and constitutively expressed in Tifgreen variety, and other 3 differentially expressed proteins under control and drought stress conditions. Among them, proteins involved in photosynthesis (PS), glycolysis, N-metabolism, tricarboxylicacid (TCA) and redox pathways were largely enriched, which might be contributed to the natural variation of drought resistance between Yukon and Tifgreen varieties. These studies provide new insights to understand the molecular mechanism underlying bermudagrass response to drought stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Intervarietal variations in various oxidative stress markers and antioxidant potential of finger millet (Eleusine coracana) subjected to drought stress.

    Science.gov (United States)

    Bartwal, Arti; Pande, Anjali; Sharma, Priyadarshini; Arora, Sandeep

    2016-07-01

    Drought is a major form of abiotic stress leading to lower crop productivity. Experiment was carried out for selecting the most tolerant genotype among six different genotypes of finger millet under drought stress. Seeds of six finger millet genotypes were sown in pots and grown for 35 days. After this period, drought was induced by withholding watering for stressed plants while control plants were watered regularly for comparison. Among all six different varieties of finger millet screened (PR202, PES400, PRM6107, VL283, VL328 and VL149) under varying intensities of drought stress,PRM6107 and PR202 showed highest stress tolerance by limiting excessive accumulation of reactive oxygen species (ROS) through activation of ROS scavenging antioxidative enzymes. A 200% increase in ascorbate content was recorded in PRM6107 and PR202, while in other varieties limited increase in ascorbate content was observed. Maximum decrease in chlorophyll content was observed in VL328 (83%) while least drop was observed in VL149 (65%). Relative water content indicated that PR202 was able to retain maximum water content under stress, as it recorded least drop in relative water content (55%), contributing to its better survival under stress. In conclusion finger millet genotypes PRM6107 and PR202 possessed maximum drought tolerance potential and thus may be used for allele mining of drought tolerant genes, which can further be employed for the development of more drought stress tolerant staple crops using biotechnological approach.

  1. A Proteomics Approach to Discover Drought Tolerance Proteins in Wheat Pollen Grain at Meiosis Stage.

    Science.gov (United States)

    Fotovat, Reza; Alikhani, Mehdi; Valizadeh, Mostafa; Mirzaei, Mehdi; Salekdeh, Ghasem H

    2017-01-01

    Plants reproductive phase, when grain yield and consequently farmers' investment is most in jeopardy, is considered as the most sensitive stage to drought stress. In this study, we aimed to explore the proteomic response of wheat anther at meiosis stage in a drought tolerant, Darab, and susceptible, Shiraz, wheat genotypes. Wheat plants were exposed to drought stress at meiosis stage for four days under controlled environmental conditions. Then, anthers from both genotypes were sampled, and their proteomes were examined via quantitative proteomics analysis. Our results demonstrated that short-term stress at meiosis stage reduced plant seed-setting compared to well-watered plants. This reduction was more pronounced in the susceptible genotype, Shiraz, by 51%, compared to the drought tolerant Darab by 14.3%. Proteome analysis revealed that 60 protein spots were drought responsive, out of which 44 were identified using a mass spectrometer. We observed a dramatic up-regulation of several heat shock proteins, as well as induction of Bet v I allergen family proteins, peroxiredoxin-5, and glutathione transferase with similar abundance in both genotypes. However, the abundance of proteins such as several stress response related proteins, including glutaredoxin, proteasome subunit alpha type 5, and ribosomal proteins showed a different response to drought stress in two genotypes. The differential abundance of proteins in two genotypes may suggest mechanisms by which tolerant genotype cope with drought stress. To the best of our knowledge, this is the first proteome analysis of plant reproductive tissue response to drought stress in wheat and could broaden our insight into plant adaptation to drought stress. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Biomass production and water use efficiency in perennial grasses during and after drought stress

    DEFF Research Database (Denmark)

    Sørensen, Kirsten Kørup; Lærke, Poul Erik; Sørensen, Helle Baadsgaard

    2018-01-01

    be suitable for assessment of drought stress. There were indications of positive associations between plants carbon isotope composition and water use efficiency (WUE) as well as DM under well-watered conditions. Compared to control, drought-treated plots showed increased growth in the period after drought...... stress. Thus, the drought events did not affect total biomass production (DMtotal) of the whole growing season. During drought stress and the whole growing season, WUE was higher in drought-treated compared to control plots, so it seems possible to save water without loss of biomass. Across soil types, M......Drought is a great challenge to agricultural production, and cultivation of drought-tolerant or water use-efficient cultivars is important to ensure high biomass yields for bio-refining and bioenergy. Here, we evaluated drought tolerance of four C3 species, Dactylis glomerata cvs. Sevenop and Amba...

  3. Role of phytosterols in drought stress tolerance in rice.

    Science.gov (United States)

    Kumar, M S Sujith; Ali, Kishwar; Dahuja, Anil; Tyagi, Aruna

    2015-11-01

    Phytosterols are integral components of the membrane lipid bilayer in plants. They regulate membrane fluidity to influence its properties, functions and structure. An increase in accumulation of phytosterols namely campesterol, stigmasterol and β-sitosterol was observed in rice as seedlings matured. The levels of the major phytosterol, β-sitosterol in N22 (drought tolerant) rice seedlings was found to increase proportionately with severity of drought stress. Its levels were 145, 216, 345 and 364 μg/g FW after subjecting to water stress for 3, 6, 9 and 12 days respectively, while for IR64 (drought susceptible), levels were 137, 198, 227 and 287 μg/g FW at the same stages. Phytosterols were also found to increase with maturity as observed at 30, 50 and 75 days after planting. The activity of HMG-CoA reductase (EC 1.1.1.34) which is considered to be a key limiting enzyme in the biosynthesis of phytosterols was 0.55, 0.56, 0.78 and 0.85 μmol/min/L at 3, 6, 9 and 12 days of water stress in N22 and 0.31, 0.50, 0.54 and 0.65 μmol/min/L in case of IR64 respectively. The elevation in the levels of phytosterols as well as the activity of HMG-CoA reductase during drought stress indicates the role of phytosterols in providing tolerance to stress. Copyright © 2015. Published by Elsevier Masson SAS.

  4. Why Different Drought Indexes Show Distinct Future Drought Risk Outcomes in the U.S. Great Plains?

    Science.gov (United States)

    Feng, S.; Hayes, M. J.; Trnka, M.

    2015-12-01

    Vigorous discussions and disagreements about the future changes in drought intensity in the US Great Plains have been taking place recently within the literature. These discussions have involved widely varying estimates based on drought indices and model-based projections of the future. To investigate and understand the causes for such a disparity between these previous estimates, we analyzed 10 commonly-used drought indexes using the output from 26 state-of-the-art climate models. These drought indices were computed using potential evapotranspiration estimated by the physically-based Penman-Monteith method (PE_pm) and the empirically-based Thornthwaite method (PE_th). The results showed that the short-term drought indicators are similar to modeled surface soil moisture and show a small but consistent drying trend in the future. The long-term drought indicators and the total column soil moisture, however, are consistent in projecting more intense future drought. When normalized, the drought indices with PE_th all show unprecedented and possibly unrealistic future drying, while the drought indices with PE_pm show comparable dryness with the modeled soil moisture. Additionally, the drought indices with PE_pm are closely related to soil moisture during both the 20th and 21st Centuries. Overall, the drought indices with PE_pm, as well as the modeled total column soil moisture, suggest a widespread and very significant drying of the Great Plains region toward the end of the Century. Our results suggested that the sharp contracts about future drought risk in the Great Plains discussed in previous studies are caused by 1) comparing the projected changes in short-term droughts with that of the long-term droughts, and/or 2) computing the atmospheric evaporative demand using the empirically-based method (e.g., PE_th). Our analysis may be applied for drought projections in other regions across the globe.

  5. Short-term intense exercise training reduces stress markers and alters the transcriptional response to exercise in skeletal muscle.

    Science.gov (United States)

    Hinkley, J Matthew; Konopka, Adam R; Suer, Miranda K; Harber, Matthew P

    2017-03-01

    The purpose of this investigation was to examine the influence of short-term intense endurance training on cycling performance, along with the acute and chronic signaling responses of skeletal muscle stress and stability markers. Ten recreationally active subjects (25 ± 2 yr, 79 ± 3 kg, 47 ± 2 ml·kg -1 ·min -1 ) were studied before and after a 12-day cycling protocol to examine the effects of short-term intense (70-100% V̇o 2max ) exercise training on resting and exercise-induced regulation of molecular factors related to skeletal muscle cellular stress and protein stability. Skeletal muscle biopsies were taken at rest and 3 h following a 20-km cycle time trial on days 1 and 12 to measure mRNA expression and protein content. Training improved ( P stress. The maintenance in the myocellular environment may be due to synthesis of cytoprotective markers, along with enhanced degradation of damage proteins, as training tended ( P short-term intense training enhances protein stability, creating a cellular environment capable of resistance to exercise-induced stress, which may be favorable for adaptation. Copyright © 2017 the American Physiological Society.

  6. Global Reprogramming of Transcription in Chinese Fir (Cunninghamia lanceolata during Progressive Drought Stress and after Rewatering

    Directory of Open Access Journals (Sweden)

    Ruiyang Hu

    2015-07-01

    Full Text Available Chinese fir (Cunninghamia lanceolata, an evergreen conifer, is the most commonly grown afforestation species in southeast China due to its rapid growth and good wood qualities. To gain a better understanding of the drought-signalling pathway and the molecular metabolic reactions involved in the drought response, we performed a genome-wide transcription analysis using RNA sequence data. In this study, Chinese fir plantlets were subjected to progressively prolonged drought stress, up to 15 d, followed by rewatering under controlled environmental conditions. Based on observed morphological changes, plantlets experienced mild, moderate, or severe water stress before rehydration. Transcriptome analysis of plantlets, representing control and mild, moderate, and severe drought-stress treatments, and the rewatered plantlets, identified several thousand genes whose expression was altered in response to drought stress. Many genes whose expression was tightly coupled to the levels of drought stress were identified, suggesting involvement in Chinese fir drought adaptation responses. These genes were associated with transcription factors, signal transport, stress kinases, phytohormone signalling, and defence/stress response. The present study provides the most comprehensive transcriptome resource and the first dynamic transcriptome profiles of Chinese fir under drought stress. The drought-responsive genes identified in this study could provide further information for understanding the mechanisms of drought tolerance in Chinese fir.

  7. Role of phytohormones under induced drought stress in wheat

    International Nuclear Information System (INIS)

    Bano, A.; Yasmeen, S.

    2010-01-01

    The performance of plants (grown in pots) was studied for drought induced at critical stages of grain filling. Furthermore, the effect of abscisic acid (ABA) and benzyladenine (BA), were also studied on the physiology of plants during grain filling. Seeds of two wheat varieties cv Margalla-99 (cv1) and cv Manthar-2003 (cv2) were sown in pots. Stress treatments were imposed immediately after anthesis. Drought stress resulted in maximum decrease in IAA and GA content but proline and ABA content of leaves showed maximum increase at hard dough stage in cv1. With decrease in soil moisture content under induced drought stress, the percentage decrease in IAA and GA and increase in proline and ABA was greater in leaves and spikes of potted plants. All parameters showed greater decrease in cv2 than in cv1. Application of both ABA and BA, each at 10-6 M applied at anthesis stage, was involved in osmoregulation by the production of proline. The adverse effect of drought started at anthesis stage reaching maximum at hard dough stage. ABA was more effective at the later stages of grain filling whereas, BA was more effective at early stages. (author)

  8. Effects of Chitosan Spraying on Physiological Characteristics of Ferula flabelliloba (Apiaceae Under Drought Stress

    Directory of Open Access Journals (Sweden)

    Gh. Taheri

    2016-02-01

    Full Text Available Introduction Ferula flabelliloba Rech. F. & Aell., (Apiaceae, a perennial plant with medicinal value, is one of important soil protective grown in Binalood mountains. Decreased precipitation in the previous years caused plants subjected to drought stress condition. Drought stress limits the growth and productivity of plants more than any other environmental factors. Drought stress can alter plant light absorption and consumption processes and increases production of reactive oxygen species (ROS. ROS is responsible for lipid peroxidation and associated injury to membranes, nucleic acids, proteins and enzymes. To detoxify ROS, plants develop different types of antioxidants to reduce oxidative damage and confer drought tolerance. ROS scavengers are either non- enzymatic (ascorbate, glutathione, flavonoids, alkaloids, carotenoids and phenolic compound or enzymatic containing superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase. The activity of these antioxidants and enzymes allows short-term acclimation to temporary water deficit, but these biochemicals cannot overcome the effects of extreme or prolonged drought. Chitosan is a natural biopolymer formed by low alkaline deacetylation of chitin, an important component of the exoskeletons of crustaceans such as crab, crawfish and shrimp. Chitosan can affect plant physiology and gene expression, hence these materials can increase the plant resistant to many unfavorable environmental condition. The biological properties of chitosan have led to use it for various purposes. Chitosan has been used as plant protectant against fungi, bacteria and viruses, to improve soil fertility and to stimulate plant defense system. Thus, it seems that chitosan is a promising material for improving plant growth, especially under drought stress conditions where water deficit limits plant growth and establishment. In the present study, the effects of chitosan as foliar spraying of F. flabelliloba

  9. EXOPOLYSACCHARIDE PRODUCTION BY DROUGHT TOLERANT BACILLUS SPP. AND EFFECT ON SOIL AGGREGATION UNDER DROUGHT STRESS

    Directory of Open Access Journals (Sweden)

    Sandhya Vardharajula

    2014-08-01

    Full Text Available Exopolysaccharides (EPS of microbial origin with novel functionality, reproducible physico-chemical properties, are important class of polymeric materials. EPS are believed to protect bacterial cells from dessication, produce biofilms, thus enhancing the cells chances of bacterial colonizing special ecological niches. In rhizosphere, EPS are known to be useful to improve the moisture-holding capacity. Three Bacillus spp. strains identified by 16s rDNA sequence analysis as B. amyloliquefaciens strain HYD-B17; B. licheniformis strain HYTAPB18; B. subtilis strain RMPB44 were studied for the ability to tolerate matric stress and produce EPS under different water potentials. EPS production in all the three Bacillus spp strains increased with increasing water stress indicating correlation between drought stress tolerance and EPS production. Among the isolates, strain HYD-17 showed highest production of EPS. The exopolysaccharide composition of the three strains was further analyzed by HPLC. Drought stress influenced the ratio of sugars in EPS and glucose was found as major sugar in strains HYTAPB18 and RMPB44 whereas raffinose was major sugar found in strain HYD-B17. Inoculation of EPS producing Bacillus spp. strains in soil resulted in good soil aggregation under drought stress conditions at different incubation periods. This study shows that exposure to water stress conditions affects the composition and ratios of sugars in EPS produced by Bacillus spp. strains HYD-B17, HYTAPB18 and RMPB44 influencing abiotic stress tolerance of the microorganisms.

  10. Phenotyping of Arabidopsis Drought Stress Response Using Kinetic Chlorophyll Fluorescence and Multicolor Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Jieni Yao

    2018-05-01

    Full Text Available Plant responses to drought stress are complex due to various mechanisms of drought avoidance and tolerance to maintain growth. Traditional plant phenotyping methods are labor-intensive, time-consuming, and subjective. Plant phenotyping by integrating kinetic chlorophyll fluorescence with multicolor fluorescence imaging can acquire plant morphological, physiological, and pathological traits related to photosynthesis as well as its secondary metabolites, which will provide a new means to promote the progress of breeding for drought tolerant accessions and gain economic benefit for global agriculture production. Combination of kinetic chlorophyll fluorescence and multicolor fluorescence imaging proved to be efficient for the early detection of drought stress responses in the Arabidopsis ecotype Col-0 and one of its most affected mutants called reduced hyperosmolality-induced [Ca2+]i increase 1. Kinetic chlorophyll fluorescence curves were useful for understanding the drought tolerance mechanism of Arabidopsis. Conventional fluorescence parameters provided qualitative information related to drought stress responses in different genotypes, and the corresponding images showed spatial heterogeneities of drought stress responses within the leaf and the canopy levels. Fluorescence parameters selected by sequential forward selection presented high correlations with physiological traits but not morphological traits. The optimal fluorescence traits combined with the support vector machine resulted in good classification accuracies of 93.3 and 99.1% for classifying the control plants from the drought-stressed ones with 3 and 7 days treatments, respectively. The results demonstrated that the combination of kinetic chlorophyll fluorescence and multicolor fluorescence imaging with the machine learning technique was capable of providing comprehensive information of drought stress effects on the photosynthesis and the secondary metabolisms. It is a promising

  11. Short-Term Sleep Disturbance-Induced Stress Does not Affect Basal Pain Perception, but Does Delay Postsurgical Pain Recovery.

    Science.gov (United States)

    Wang, Po-Kai; Cao, Jing; Wang, Hongzhen; Liang, Lingli; Zhang, Jun; Lutz, Brianna Marie; Shieh, Kun-Ruey; Bekker, Alex; Tao, Yuan-Xiang

    2015-11-01

    Chronic sleep disturbance-induced stress is known to increase basal pain sensitivity. However, most surgical patients frequently report short-term sleep disturbance/deprivation during the pre- and postoperation periods and have normal pain perception presurgery. Whether this short-term sleep disturbance affects postsurgical pain is elusive. Here, we report that pre- or postexposure to rapid eye movement sleep disturbance (REMSD) for 6 hours daily for 3 consecutive days did not alter basal responses to mechanical, heat, and cold stimuli, but did delay recovery in incision-induced reductions in paw withdrawal threshold to mechanical stimulation and paw withdrawal latencies to heat and cold stimuli on the ipsilateral side of male or female rats. This short-term REMSD led to stress shown by an increase in swim immobility time, a decrease in sucrose consumption, and an increase in the level of corticosterone in serum. Blocking this stress via intrathecal RU38486 or bilateral adrenalectomy abolished REMSD-caused delay in recovery of incision-induced reductions in behavioral responses to mechanical, heat, and cold stimuli. Moreover, this short-term REMSD produced significant reductions in the levels of mu opioid receptor and kappa opioid receptor, but not Kv1.2, in the ipsilateral L4/5 spinal cord and dorsal root ganglia on day 9 after incision (but not after sham surgery). Our findings show that short-term sleep disturbance either pre- or postsurgery does not alter basal pain perception, but does exacerbate postsurgical pain hypersensitivity. The latter may be related to the reductions of mu and kappa opioid receptors in the spinal cord and dorsal root ganglia caused by REMSD plus incision. Prevention of short-term sleep disturbance may help recovery from postsurgical pain in patients. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  12. Silicon does not alleviate the adverse effects of drought stress in soybean plants

    Directory of Open Access Journals (Sweden)

    Viviane Ruppenthal

    2016-12-01

    Full Text Available Beneficial effects of silicon (Si in the plants growth under conditions of drought stress have been associated with to uptake and accumulation ability of element by different species. However, the effects of Si on soybean under water stress are still incipient and inconclusive. This study investigated the effect of Si application as a way to confer greater soybean tolerance to drought stress. The experiment was carried out in 20-L pots under greenhouse conditions. Treatments were arranged in a randomized block design in a 2 × 4 factorial: two water regimes (no stress or water stress and four Si rates (0, 50, 100 and 200 mg kg–1. Soybean plants were grown until beginning flowering (R1 growth stage with soil moisture content near at the field capacity, and then it started the differentiation of treatments under drought by the suspension of water supply. Changes in relative water content (RWC in leaf, electrolyte leakage from cells, peroxidase activity, plant nutrition and growth were measured after 7 days of drought stress and 3 days recovery. The RWC in soybean leaves decreased with Si rates in the soil. Silicon supply in soil with average content of this element, reduced dry matter production of soybean under well-irrigated conditions and caused no effect on dry matter under drought stress. The nitrogen uptake by soybean plants is reduced with the Si application under drought stress. The results indicated that the Si application stimulated the defense mechanisms of soybean plants, but was not sufficient to mitigate the negative effects of drought stress on the RWC and dry matter production.

  13. Short- and long-term behavioural, physiological and stoichiometric responses to predation risk indicate chronic stress and compensatory mechanisms.

    Science.gov (United States)

    Van Dievel, Marie; Janssens, Lizanne; Stoks, Robby

    2016-06-01

    Prey organisms are expected to use different short- and long-term responses to predation risk to avoid excessive costs. Contrasting both types of responses is important to identify chronic stress responses and possible compensatory mechanisms in order to better understand the full impact of predators on prey life history and population dynamics. Using larvae of the damselfly Enallagma cyathigerum, we contrasted the effects of short- and long-term predation risk, with special focus on consequences for body stoichiometry. Under short-term predation risk, larvae reduced growth rate, which was associated with a reduced food intake, increased metabolic rate and reduced glucose content. Under long-term predation risk, larvae showed chronic predator stress as indicated by persistent increases in metabolic rate and reduced food intake. Despite this, larvae were able to compensate for the short-term growth reduction under long-term predation risk by relying on physiological compensatory mechanisms, including reduced energy storage. Only under long-term predation risk did we observe an increase in body C:N ratio, as predicted under the general stress paradigm (GSP). Although this was caused by a predator-induced decrease in N content, there was no associated increase in C content. These stoichiometric changes could not be explained by GSP responses because, under chronic predation risk, there was no decrease in N-rich proteins or increase in C-rich fat and sugars; instead glycogen decreased. Our results highlight the importance of compensatory mechanisms and the value of explicitly integrating physiological mechanisms to obtain insights into the temporal dynamics of non-consumptive effects, including effects on body stoichiometry.

  14. Regulation and physiological role of silicon in alleviating drought stress of mango.

    Science.gov (United States)

    Helaly, Mohamed Naser; El-Hoseiny, Hanan; El-Sheery, Nabil Ibrahim; Rastogi, Anshu; Kalaji, Hazem M

    2017-09-01

    Improvement of drought stress of mango plants requires intensive research that focuses on physiological processes. In three successive seasons (2014, 2015and 2016) field experiments with four different strains of mango were subjected to two water regimes. The growth and physiological parameters of possible relevance for drought stress tolerances in mango were investigated. Yield and its components were also evaluated. The data showed that all growth and physiological parameters were increased under K 2 SiO 3 (Si) supplement and were followed by the interaction treatment (Si treatment and its combination with drought stress) compared to that of the controlled condition. Drought stress decreased the concentration of auxins (IAA), gibberellins (GA) and cytokinins (CK) in the three mango cultivars leaves, whereas, it increased the concentration of abscisic acid (ABA). On the contrary, IAA, GA, and CK (promoters) endogenous levels were improved by supplementing Si, in contrary ABA was decreased. Drought stress increased the activity of peroxidase (POX), catalase (CAT), and superoxide dismutase (SOD) in the leaves of all mango cultivars grown during three experimental seasons. However, Si supplementation reduced the levels of all these antioxidative enzymes, especially the concentration of SOD when compared to that of control leaves. Fruit quality was improved in three successive seasons when Si was applied. Our results clearly show that the increment in drought tolerance was associated with an increase in antioxidative enzyme activity, allowing mango plants to cope better with drought stress. Si possesses an efficient system for scavenging reactive oxygen species, which protects the plant against destructive oxidative reactions, thereby improving the ability of the mango trees to withstand environmental stress in arid regions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress

    Directory of Open Access Journals (Sweden)

    Moumeni Ali

    2011-12-01

    Full Text Available Abstract Background Plant roots are important organs to uptake soil water and nutrients, perceiving and transducing of soil water deficit signals to shoot. The current knowledge of drought stress transcriptomes in rice are mostly relying on comparative studies of diverse genetic background under drought. A more reliable approach is to use near-isogenic lines (NILs with a common genetic background but contrasting levels of resistance to drought stress under initial exposure to water deficit. Here, we examined two pairs of NILs in IR64 background with contrasting drought tolerance. We obtained gene expression profile in roots of rice NILs under different levels of drought stress help to identify genes and mechanisms involved in drought stress. Results Global gene expression analysis showed that about 55% of genes differentially expressed in roots of rice in response to drought stress treatments. The number of differentially expressed genes (DEGs increased in NILs as the level of water deficits, increased from mild to severe condition, suggesting that more genes were affected by increasing drought stress. Gene onthology (GO test and biological pathway analysis indicated that activated genes in the drought tolerant NILs IR77298-14-1-2-B-10 and IR77298-5-6-B-18 were mostly involved in secondary metabolism, amino acid metabolism, response to stimulus, defence response, transcription and signal transduction, and down-regulated genes were involved in photosynthesis and cell wall growth. We also observed gibberellic acid (GA and auxin crosstalk modulating lateral root formation in the tolerant NILs. Conclusions Transcriptome analysis on two pairs of NILs with a common genetic background (~97% showed distinctive differences in gene expression profiles and could be effective to unravel genes involved in drought tolerance. In comparison with the moderately tolerant NIL IR77298-5-6-B-18 and other susceptible NILs, the tolerant NIL IR77298-14-1-2-B-10 showed

  16. β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.).

    Science.gov (United States)

    Shaw, Arun K; Bhardwaj, Pardeep K; Ghosh, Supriya; Roy, Sankhajit; Saha, Suman; Sherpa, Ang R; Saha, Samir K; Hossain, Zahed

    2016-02-01

    The present study highlights the role of β-aminobutyric acid (BABA) in alleviating drought stress effects in maize (Zea mays L.). Chemical priming was imposed by pretreating 1-week-old plants with 600 μM BABA prior to applying drought stress. Specific activities of key antioxidant enzymes and metabolites (ascorbate and glutathione) levels of ascorbate-glutathione cycle were studied to unravel the priming-induced modulation of plant defense system. Furthermore, changes in endogenous ABA and JA concentrations as well as mRNA expressions of key genes involved in their respective biosynthesis pathways were monitored in BABA-primed (BABA+) and non-primed (BABA-) leaves of drought-challenged plants to better understand the mechanistic insights into the BABA-induced hormonal regulation of plant response to water-deficit stress. Accelerated stomatal closure, high relative water content, and less membrane damage were observed in BABA-primed leaves under water-deficit condition. Elevated APX and SOD activity in non-primed leaves found to be insufficient to scavenge all H2O2 and O2 (·-) resulting in oxidative burst as evident after histochemical staining with NBT and DAB. A higher proline accumulation in non-primed leaves also does not give much protection against drought stress. Increased GR activity supported with the enhanced mRNA and protein expressions might help the BABA-primed plants to maintain a high GSH pool essential for sustaining balanced redox status to counter drought-induced oxidative stress damages. Hormonal analysis suggests that in maize, BABA-potentiated drought tolerance is primarily mediated through JA-dependent pathway by the activation of antioxidant defense systems while ABA biosynthesis pathway also plays an important role in fine-tuning of drought stress response.

  17. Physiological response to drought stress in Camptotheca acuminata seedlings from two provenances

    Directory of Open Access Journals (Sweden)

    Yeqing eYing

    2015-05-01

    Full Text Available Drought stress is a key environmental factor limiting the growth and productivity of plants. The purpose of this study was to investigate the physiological responses of Camptotheca acuminata (C. acuminata to different drought stresses and compare the drought tolerance between the provenances Kunming (KM and Nanchang (NC, which are naturally distributed in different rainfall zones with annual rainfalls of 1000-1100 mm and 1600-1700 mm, respectively. We determined relative water content (RWC, chlorophyll content (Chl(a+b, net photosynthesis (Pn, gas exchange parameters, relative leakage conductivity (REC, malondialdehyde (MDA content and superoxide dismutase (SOD and peroxidase (POD activities of C. acuminata seedlings under both moderate (50% of maximum field capacity and severe drought stress (30% of maximum field capacity. As the degree of water stress increased, RWC, Chl(a+b content, Pn, stomatal conductance (Gs, transpiration rate (Tr and intercellular CO2 concentration (Ci values decreased, but water use efficiency (WUE, REC, MDA content and SOD and POD activities increased in provenances KM and NC. Under moderate and severe drought stress, provenance KM had higher RWC, Chl(a+b, Pn, WUE, SOD and POD and lower Gs, Tr, Ci and REC in leaves than provenance NC. The results indicated that provenance KM may maintain stronger drought tolerance via improvements in water-retention capacity, antioxidant enzyme activity and membrane integrity.

  18. Effects of drought stress on seed sink strength and leaf protein ...

    African Journals Online (AJOL)

    Assimilate availability and the capacity to utilise them in the reproductive structures to a large extent determine reproductive sink establishment and yield of crops under drought stress. This study was carried out to investigate the effect of drought stress imposed at early pod-fill stage on seed sink strength of common bean ...

  19. Effects of Salinity and Drought Stresses on Germination Characteristics of Milk Thistle (Silybum marianum

    Directory of Open Access Journals (Sweden)

    R. R. Yazdani Biuki

    2011-01-01

    Full Text Available Abstract In order to study the germination and seedling growth responses of Milk Thistle as a medicinal plant to salinity and drought stresses, two separate experiments were conducted based on completely randomised design with four replications. In the first experiment, the effect of drought potential levels (0, -1, -2, -3, -4, -5, -6, -7, -10, -15 and -20 bars due to using polyethilenglycol (PEG 6000 and the second trial evaluated effects of salinity potential (0, 50, 100, 150, 200, 250 and 300 ml/molar caused by NaCl were studied on germination characteristics and seedling growth. The results indicated that salinity and drought stresses showed significant effects on germination and seedling growth of milk thistle. The seeds were able to germinate in 300 ml/molar salinity potential and -20 bar drought potential conditions. The effect of both stresses on length and dry weight of seedlings were significant and with increasing salinity and drought stresses, the length and dry weight of radicles and plumules decreased. Increasing drought level, led to higher plumule length reduction compared to radicle length reduction, which shows that milk thistle plumule is more sensitive to droughtness than radicle. Dry weight of seedling at -3 bar drought potential was 50% of control plants. Keywords: PEG, Drought stress, Sodium chloride, Milk thistle

  20. Short-term psychosocial stress protects photoreceptors from damage via corticosterone-mediated activation of the AKT pathway.

    Science.gov (United States)

    Forkwa, Tembei K; Neumann, Inga D; Tamm, Ernst R; Ohlmann, Andreas; Reber, Stefan O

    2014-02-01

    Apoptotic death of photoreceptors in hereditary retinal degenerations can be prevented by neuroprotective molecules. Here, we report that adrenal glucocorticoids (GC) released during psychosocial stress protect photoreceptors from apoptosis after light damage. Psychosocial stress is known to be the main type of stressor humans are exposed to and was induced here in mice by 10h of chronic subordinate colony housing (CSC). Photoreceptor damage was generated by subsequent exposure to white light. Short-term psychosocial stress prior to illumination significantly reduced the number of apoptotic photoreceptors, an effect that was absent in adrenalectomized (ADX) mice. The neuroprotective effect was completely restored in ADX mice substituted with GC. Moreover, phosphorylation of retinal AKT increased following CSC or exogenous GC treatment, an effect that was again absent in ADX mice exposed to CSC. Finally, inhibition of AKT signaling with triciribine blocked the stress- and GC-mediated neuroprotective effects on photoreceptors. In summary, we provide evidence that 1) short-term psychosocial stress protects photoreceptors from light-induced damage and 2) the protective effect is most likely mediated by GC-induced activation of the AKT signaling pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Drought stress release increased growth rate but did not affect levels of storage carbohydrates in Scots pine trees

    Science.gov (United States)

    Schönbeck, Leonie; Gessler, Arthur; Rigling, Andreas; Schaub, Marcus; Li, Mai-He

    2017-04-01

    For trees, energy storage in the form of non-structural carbohydrates (NSCs) plays an important role for survival and growth, especially during stress events such as drought. It is hypothesized, that tree individuals that experience long-term drought stress use up larger amounts of NSCs than trees that do not experience drought. Consequently, such drought-induced depletion might lead to a decrease in tree vigor and carbon starvation, a mechanism that is subject of intensive debates in recent literature. Hence, if carbon starvation is occurring during drought, drought stress release should again increase NSC concentrations. A long-term (13 years) irrigation experiment is being conducted in the Pfyn forest, the largest Pinus sylvestris dominated forest in Switzerland, located in the dry inner-Alpine Swiss Rhone valley (average precipitation 600 mm/year, with frequent dry spells). Water addition ( 600 mm/year) is executed every year during the growing season between April and October. Tree height, stem diameter and crown transparency are being measured since 2003. In February, July and October 2015, roots, stem sapwood and needles were harvested from 30 irrigated and 30 control trees and 5 different crown transparency classes. Shoot length, needle morphology, soluble sugars, starch concentrations, needle δ13C and δ15N were measured. Shoot and stem growth were higher in irrigated trees than in control trees. Growth decreased with increasing crown transparency in both treatments. Only in July, needle starch levels were higher in irrigated trees than in control trees but there was no treatment effect for wood and root starch concentrations. Tissue starch and sugar levels were negatively correlated with crown transparency, particularly in the roots (preduced NSC is related to reduced tree vigor under drought.

  2. Investigation of drought stress in pepino (solanum muricatum ait. cv. miskl) leaves

    International Nuclear Information System (INIS)

    Duman, S.; Sivaci, A.

    2015-01-01

    In this study, the effects of drought stress on pepino seedlings (Solanum muricatum cv. Miski) under natural greenhouse conditions were examined. The control plants were watered at field capacity, and the stress group was not watered. Samples were collected on the 6th, 12th, 24th and 36th days from the leaves of S. muricatum seedlings that, were exposed to drought stress. The relative water content, the total phenolic compounds, and the malondialdehyde, total photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids), and proline contents in these samples were determined. Depending on drought stress, the relative water content, the chlorophyll a, chlorophyll b and carotenoid contents, and the total chlorophylls were found to be lower in the stress group compared with the control group. In contrast, the total phenolic compounds (24th and 36th days) and the proline (12th, 24th and 36th days) levels increased significantly compared with the control group. In addition, a significant increase in the malondialdehyde contents was obtained on the 36th day in the stress group compared with the control group. Such studies may be important for evaluation of metabolic changes in pepino under the drought stress. (author)

  3. Effect of short- and long-term heat stress on the conception risk of dairy cows under natural service and artificial insemination breeding programs.

    Science.gov (United States)

    Schüller, L-K; Burfeind, O; Heuwieser, W

    2016-04-01

    The objectives of this retrospective study were to examine the effect of heat stress on natural service and artificial insemination (AI) breeding methods. We investigated the influence of short- and long-term heat stress on the conception risk (CR) of dairy cows bred by natural service or by AI with frozen-thawed or fresh semen. In addition, the relationship between breeding method and parity was determined. Cows bred by AI with frozen-thawed semen exposed to long-term heat stress (mean temperature-humidity index ≥73 in the period 21d before breeding) were 63% less likely to get pregnant compared with cows not exposed to heat stress. Cows bred by AI with fresh semen were 80% less likely to get pregnant during periods of short-term heat stress than during periods without heat stress. Furthermore, multiparous cows bred by AI with frozen-thawed or fresh semen were 22 and 67% less likely to get pregnant, respectively, than primiparous cows. No influence of heat stress or parity was noted on the CR of cows bred by natural service. The present study indicates that the likelihood of dairy cows becoming pregnant is reduced by short- and long-term heat stress depending on the type of semen employed. In particular, CR of cows inseminated with fresh semen is negatively affected by short-term heat stress and CR of cows inseminated with frozen-thawed semen is negatively affected by long-term heat stress. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Ecophysiological Analysis of Drought and Salinity Stress Quinoa (Chenopodium Quinoa Willd.

    Directory of Open Access Journals (Sweden)

    Bosque Sanchez, H.

    2000-01-01

    Full Text Available We have studied the relative influence of drought and salinity stress, with similar soil water potentials on growth, water relations and photosynthetic rate of quinoa (Chenopodium quinoa Willd., testing at the same time certain techniques of stress physiology studies. As treatments, we have imposed two levels of salinity stress (S1 = 3852, 8 mg. V-1 NaCI and S2 = 8051.2 mg. V-1 NaCI and two of levels of drought stress with-0.159 MPa (D1 and -0, 279 MPa (D2 of soil water potentials (f^, and the control (c treatment without stress (65 % of volumetric soil water content, i. e. ¥m = -0.059 MPa. Our results of the greenhouse experiment have shown that quinoa has better relative and absolute growth rate in saline conditions, and the plant have developed adaptations mechanisms to drought through higher water use efficiency and high root/shoot ratio. The stomatal resistance and leaf water potential were higher as higher were the stress conditions. The variable chlorophyll fluoresence to maximal chlorophyll fluorescence-ratio (Fv/Fm and the fluorescence quenching analysis (photochemical : qP and non-photochemical : qN have shown the plants under drought stress are less protected against photoinhibition. Finally the use of Dynamic Diffusion Porometer has limitations for studies of plants species with salt bladders as quinoa.

  5. Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice.

    Science.gov (United States)

    Ravikumar, G; Manimaran, P; Voleti, S R; Subrahmanyam, D; Sundaram, R M; Bansal, K C; Viraktamath, B C; Balachandran, S M

    2014-06-01

    The cultivation of rice (Oryza sativa L.), a major food crop, requires ample water (30 % of the fresh water available worldwide), and its productivity is greatly affected by drought, the most significant environmental factor. Much research has focussed on identifying quantitative trait loci, stress-regulated genes and transcription factors that will contribute towards the development of climate-resilient/tolerant crop plants in general and rice in particular. The transcription factor DREB1A, identified from the model plant Arabidopsis thaliana, has been reported to enhance stress tolerance against drought stress. We developed transgenic rice plants with AtDREB1A in the background of indica rice cultivar Samba Mahsuri through Agrobacterium-mediated transformation. The AtDREB1A gene was stably inherited and expressed in T1 and T2 plants and in subsequent generations, as indicated by the results of PCR, Southern blot and RT-PCR analyses. Expression of AtDREB1A was induced by drought stress in transgenic rice lines, which were highly tolerant to severe water deficit stress in both the vegetative and reproductive stages without affecting their morphological or agronomic traits. The physiological studies revealed that the expression of AtDREB1A was associated with an increased accumulation of the osmotic substance proline, maintenance of chlorophyll, increased relative water content and decreased ion leakage under drought stress. Most of the homozygous lines were highly tolerant to drought stress and showed significantly a higher grain yield and spikelet fertility relative to the nontransgenic control plants under both stressed and unstressed conditions. The improvement in drought stress tolerance in combination with agronomic traits is very essential in high premium indica rice cultivars, such as Samba Mahsuri, so that farmers can benefit in times of seasonal droughts and water scarcity.

  6. Modeling forest mortality caused by drought stress: implications for climate change

    Science.gov (United States)

    Eric J Gustafson; Brian R. Sturtevant

    2013-01-01

    Climate change is expected to affect forest landscape dynamics in many ways, but it is possible that the most important direct impact of climate change will be drought stress. We combined data from weather stations and forest inventory plots (FIA) across the upper Great Lakes region (USA) to study the relationship between measures of drought stress and mortality for...

  7. Effect of drought stress on growth, yield and seed quality of tomato (lycopersicon esculentum L.)

    International Nuclear Information System (INIS)

    Pervez, M.A.; Ayub, C.M.

    2009-01-01

    Plant growth is seriously affected by abiotic stresses such as drought, salinity or temperature. Drought is one of the most important limiting factors for agricultural crops and vegetable production in particular all around the world. Drought stress during vegetative or early reproductive growth usually reduces yield by reducing the number of seeds, seed size and seed quality. To assess the effect of drought stress on seed yield, seed quality and growth of tomato, the experiment was conducted in green house in plastic pots at Pen-y-Fridd field station, University of Wales, Bangor, U.K. during 2003-2004. Tomato cv. Moneymaker was used as a test crop. There were four treatments i.e. early stress (when first truss has set the fruits), middle stress (when fruits in first truss were fully matured and started changing their colour), late stress (when fruits on first truss were ripened fully), whereas in control no stress was imposed. Analysis of data regarding various attributes (fruit weight and shoot dry weight per plant, number of seeds per fruit, total number of seeds and seed weight per plant and vigour of seed) showed that drought stress had non-significant effect on vigour, quality and yield of tomato seed. Plant height, number of leaves and number of fruits per plant showed significant results toward drought stress signifying drought effects on growth of tomato. (author)

  8. Dynamics of non-structural carbohydrates in three Mediterranean woody species following long-term experimental drought.

    Science.gov (United States)

    Rosas, Teresa; Galiano, Lucía; Ogaya, Romà; Peñuelas, Josep; Martínez-Vilalta, Jordi

    2013-01-01

    Stored non-structural carbohydrates (NSC) have been proposed as a key determinant of drought resistance in plants. However, the evidence for this role is controversial, as it comes mostly from observational, short-term studies. Here, we take advantage of a long-term experimental throughfall reduction to elucidate the response of NSC to increased drought 14 years after the beginning of the treatment in three Mediterranean resprouter trees (Quercus ilex L., Arbutus unedo L. and Phillyrea latifolia L.). In addition, we selected 20 Q. ilex individuals outside the experimental plots to directly assess the relationship between defoliation and NSC at the individual level. We measured the seasonal course of NSC concentrations in leaves, branches and lignotuber in late winter, late spring, summer, and autumn 2012. Total concentrations of NSC were highest in the lignotuber for all species. In the long-term drought experiment we found significant depletion in concentrations of total NSC in treatment plots only in the lignotuber of A. unedo. At the same time, A. unedo was the only species showing a significant reduction in BAI under the drought treatment during the 14 years of the experiment. By contrast, Q. ilex just reduced stem growth only during the first 4 years of treatment and P. latifolia remained unaffected over the whole study period. However, we found a clear association between the concentrations of NSC and defoliation in Q. ilex individuals sampled outside the experimental plots, with lower total concentrations of NSC and lower proportion of starch in defoliated individuals. Taken together, our results suggest that stabilizing processes, probably at the stand level, may have been operating in the long-term to mitigate any impact of drought on NSC levels, and highlight the necessity to incorporate long-term experimental studies of plant responses to drought.

  9. Dynamics of non-structural carbohydrates in three Mediterranean woody species following long-term experimental drought

    Directory of Open Access Journals (Sweden)

    Teresa eRosas

    2013-10-01

    Full Text Available Stored non-structural carbohydrates (NSC have been proposed as a key determinant of drought resistance in plants. However, the evidence for this role is controversial, as it comes mostly from observational, short-term studies. Here, we take advantage of a long-term experimental throughfall reduction to elucidate the response of NSC to increased drought 14 years after the beginning of the treatment in three Mediterranean woody species (Quercus ilex L., Arbutus unedo L. and Phillyrea latifolia L.. In addition, we selected 20 Q. ilex individuals outside the experimental plots to directly assess the relationship between defoliation and NSC at the individual level. We measured the seasonal course of NSC concentrations in leaves, branches and lignotuber in late winter, late spring, summer and autumn 2012. Total concentrations of NSC were highest in the lignotuber for all species. In the long-term drought experiment we found significant depletion in concentrations of total NSC in treatment plots only in the lignotuber of A. unedo. At the same time, A. unedo was the only species showing a significant reduction in BAI under the drought treatment during the 14 years of the experiment. By contrast, Q. ilex just reduced stem growth only during the first 4 years of treatment and P. latifolia remained unaffected over the whole study period. However, we found a clear association between the concentrations of NSC and defoliation in Q. ilex individuals sampled outside the experimental plots, with lower total concentrations of NSC and lower proportion of starch in defoliated individuals. Taken together, our results suggest that stabilizing processes, probably at the stand level, may have been operating in the long-term to mitigate any impact of drought on NSC levels, and highlight the necessity to incorporate long-term experimental studies of plant responses to drought.

  10. Physiological and molecular responses to drought in Petunia: the importance of stress severity

    Science.gov (United States)

    Kim, Jongyun

    2012-01-01

    Plant responses to drought stress vary depending on the severity of stress and the stage of drought progression. To improve the understanding of such responses, the leaf physiology, abscisic acid (ABA) concentration, and expression of genes associated with ABA metabolism and signalling were investigated in Petunia × hybrida. Plants were exposed to different specific substrate water contents (θ = 0.10, 0.20, 0.30, or 0.40 m3·m–3) to induce varying levels of drought stress. Plant responses were investigated both during the drying period (θ decreased to the θ thresholds) and while those threshold θ were maintained. Stomatal conductance (gs) and net photosynthesis (A) decreased with decreasing midday leaf water potential (Ψleaf). Leaf ABA concentration increased with decreasing midday Ψleaf and was negatively correlated with gs (r = –0.92). Despite the increase in leaf ABA concentration under drought, no significant effects on the expression of ABA biosynthesis genes were observed. However, the ABA catabolism-related gene CYP707A2 was downregulated, primarily in plants under severe drought (θ = 0.10 m3∙m–3), suggesting a decrease in ABA catabolism under severe drought. Expression of phospholipase Dα (PLDα), involved in regulating stomatal responses to ABA, was enhanced under drought during the drying phase, but there was no relationship between PLDα expression and midday Ψleaf after the θ thresholds had been reached. The results show that drought response of plants depends on the severity of drought stress and the phase of drought progression. PMID:23077204

  11. Physiological responses of somaclonal variants of triploid bermudagrass (Cynodon transvaalensis x Cynodon dactylon) to drought stress.

    Science.gov (United States)

    Lu, Shaoyun; Chen, Chuanhao; Wang, Zhongcheng; Guo, Zhenfei; Li, Haihang

    2009-03-01

    Eight somaclonal variants with enhanced drought tolerance were isolated from regenerated plants of triploid bermudagrass (Cynodon dactylon x Cynodon transvaalensis cv., TifEagle). Three of them (10-17, 89-02, 117-08) with strong drought tolerance were selected for investigations of physiological responses to drought stress. Compared to the parent control, TifEagle, the somaclonal variants had higher relative water contents and relative growth, and lower ion leakages in the greenhouse tests, while no difference in evapotranspirational water losses and soil water contents was observed between the variants and TifEagle. The variants also had less leaf firing in the field tests under drought stress. Superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities decreased gradually in responses to drought stress in all plants and exhibited negative correlations with ion leakage, indicating that the declined activities of these antioxidant enzymes were associated with drought injury in the triploid bermudagrass. However, CAT activities were significantly higher in all three variants than in TifEagle during drought stress. Two variants, 10-17 and 89-02, also had significantly higher APX activities than TifEagle before and during the first 4 days of drought treatments. These two lines also showed higher SOD activities after prolonged drought stress. Proline, total soluble sugars and sucrose were accumulated under drought stress in all plants and exhibited positive correlations with ion leakage. More proline and sugars were accumulated in TifEagle than in the variants. The results indicated that higher activities of the antioxidant enzymes in the variants during drought stress are associated with their increased drought tolerance.

  12. A systems biology analysis of long and short-term memories of osmotic stress adaptation in fungi

    Directory of Open Access Journals (Sweden)

    You Tao

    2012-05-01

    Full Text Available Abstract Background Saccharomyces cerevisiae senses hyperosmotic conditions via the HOG signaling network that activates the stress-activated protein kinase, Hog1, and modulates metabolic fluxes and gene expression to generate appropriate adaptive responses. The integral control mechanism by which Hog1 modulates glycerol production remains uncharacterized. An additional Hog1-independent mechanism retains intracellular glycerol for adaptation. Candida albicans also adapts to hyperosmolarity via a HOG signaling network. However, it remains unknown whether Hog1 exerts integral or proportional control over glycerol production in C. albicans. Results We combined modeling and experimental approaches to study osmotic stress responses in S. cerevisiae and C. albicans. We propose a simple ordinary differential equation (ODE model that highlights the integral control that Hog1 exerts over glycerol biosynthesis in these species. If integral control arises from a separation of time scales (i.e. rapid HOG activation of glycerol production capacity which decays slowly under hyperosmotic conditions, then the model predicts that glycerol production rates elevate upon adaptation to a first stress and this makes the cell adapts faster to a second hyperosmotic stress. It appears as if the cell is able to remember the stress history that is longer than the timescale of signal transduction. This is termed the long-term stress memory. Our experimental data verify this. Like S. cerevisiae, C. albicans mimimizes glycerol efflux during adaptation to hyperosmolarity. Also, transient activation of intermediate kinases in the HOG pathway results in a short-term memory in the signaling pathway. This determines the amplitude of Hog1 phosphorylation under a periodic sequence of stress and non-stressed intervals. Our model suggests that the long-term memory also affects the way a cell responds to periodic stress conditions. Hence, during osmohomeostasis, short-term memory is

  13. Transcriptome analysis of Pinus halepensis under drought stress and during recovery.

    Science.gov (United States)

    Fox, Hagar; Doron-Faigenboim, Adi; Kelly, Gilor; Bourstein, Ronny; Attia, Ziv; Zhou, Jing; Moshe, Yosef; Moshelion, Menachem; David-Schwartz, Rakefet

    2018-03-01

    Forest trees use various strategies to cope with drought stress and these strategies involve complex molecular mechanisms. Pinus halepensis Miller (Aleppo pine) is found throughout the Mediterranean basin and is one of the most drought-tolerant pine species. In order to decipher the molecular mechanisms that P. halepensis uses to withstand drought, we performed large-scale physiological and transcriptome analyses. We selected a mature tree from a semi-arid area with suboptimal growth conditions for clonal propagation through cuttings. We then used a high-throughput experimental system to continuously monitor whole-plant transpiration rates, stomatal conductance and the vapor pressure deficit. The transcriptomes of plants were examined at six physiological stages: pre-stomatal response, partial stomatal closure, minimum transpiration, post-irrigation, partial recovery and full recovery. At each stage, data from plants exposed to the drought treatment were compared with data collected from well-irrigated control plants. A drought-stressed P. halepensis transcriptome was created using paired-end RNA-seq. In total, ~6000 differentially expressed, non-redundant transcripts were identified between drought-treated and control trees. Cluster analysis has revealed stress-induced down-regulation of transcripts related to photosynthesis, reactive oxygen species (ROS)-scavenging through the ascorbic acid (AsA)-glutathione cycle, fatty acid and cell wall biosynthesis, stomatal activity, and the biosynthesis of flavonoids and terpenoids. Up-regulated processes included chlorophyll degradation, ROS-scavenging through AsA-independent thiol-mediated pathways, abscisic acid response and accumulation of heat shock proteins, thaumatin and exordium. Recovery from drought induced strong transcription of retrotransposons, especially the retrovirus-related transposon Tnt1-94. The drought-related transcriptome illustrates this species' dynamic response to drought and recovery and unravels

  14. A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs

    Directory of Open Access Journals (Sweden)

    Fan Liu

    2018-02-01

    Full Text Available Objective Heat stress (HS triggers oxidative stress and respiratory alkalosis in pigs. The objective of this experiment was to study whether a short-term supranutritional amount of dietary vitamin E (VE can mitigate oxidative stress and respiratory alkalosis in heat-stressed pigs. Methods A total of 24 pigs were given either a control diet (17 IU/kg VE or a high VE (200 IU/kg VE; HiVE diet for 14 d, then exposed to thermoneutral (TN; 20°C, 45% humidity or HS (35°C, 35% to 45% humidity, 8 h daily conditions for 7 d. Respiration rate and rectal temperature were measured three times daily during the thermal exposure. Blood gas variables and oxidative stress markers were studied in blood samples collected on d 7. Results Although HiVE diet did not affect the elevated rectal temperature or respiration rate observed during HS, it alleviated (all p<0.05 for diet×temperature the loss of blood CO2 partial pressure and bicarbonate, as well as the increase in blood pH in the heat-stressed pigs. The HS reduced (p = 0.003 plasma biological antioxidant potential (BAP and tended to increase (p = 0.067 advanced oxidized protein products (AOPP in the heat-stressed pigs, suggesting HS triggers oxidative stress. The HiVE diet did not affect plasma BAP or AOPP. Only under TN conditions the HiVE diet reduced the plasma reactive oxygen metabolites (p<0.05 for diet× temperature. Conclusion A short-term supplementation with 200 IU/kg VE partially alleviated respiratory alkalosis but did not reduce oxidative stress in heat-stressed pigs.

  15. Effect of Trinexapac-ethyl on Increased Resistance to Drought Stress in Wheatgrass (Agropyron desertorum L.

    Directory of Open Access Journals (Sweden)

    mohamad hossein sheikh mohamadi

    2017-10-01

    Full Text Available Introduction: Drought is one of the most detrimental abiotic stresses for turfgrass growth across a wide range of geographic locations. Most cool-season grass species are not well adapted to extended periods of drought, particularly during summer months. Decline in turf quality caused by drought stress is a major concern in turfgrass culture. Therefore, developing management practices for improving drought resistance of turfgrasses has become essential in arid and semi-arid regions, especially during water use restriction. One strategy to improve plant drought resistance is to promote drought avoidance by reducing water loss during drought, which may be achieved by slowing growth rate of shoots and lowering leaf area canopy to reduce demand for water. Application of growth regulators is one of the methods for increasing resistance of plants to biotic and abiotic stresses. Trinexapac-ethyl (TE is one of the most widely used PGRs in the management of cool-season and warm-season turfgrass species. TE absorbed quickly by foliage and slow cell elongation through inhibiting of converting one form of gibberellic acid (GA20 to another (GA1. Most studies conducted under non-stressed conditions found that TE application increased chlorophyll content, turf quality, turf density and reduced shoot extension rate. We hypothesized that TE may influence plant tolerance to drought stress. Limited available data─ as reported in the above referred studies─ suggest that TE application may be beneficial for plant tolerance to stresses, but the effectiveness varies with turfgrass species, dose and duration of TE treatment, and type of stress. The main aim of this research is to evaluate the effect of Trinexapac-ethyl on increased resistance to drought stress in wheatgrass. Materials and Methods: Wheatgrass (Agropyron desertorum L. was used in this study. This study was conducted in field conditions at Isfahan University of Technology, Isfahan, Iran.. Wheatgrass

  16. Evaluation of Diversity and Traits Correlation in Spring Wheat Cultivars under Drought Stress

    Directory of Open Access Journals (Sweden)

    Mohammad Reza NAGHAVI

    2015-09-01

    Full Text Available In order to study of diversity and classify agro-morphological characters under normal irrigation and drought stress in spring wheat cultivars, 20 cultivars were evaluated in the research farm of University of Tabriz, Iran. According to the results, significant correlation was found between grain yield and number of spikes per plant, number of tiller per plant, number of fertile tillers, spike length, root length, root number, root volume, root diameter and root dry weight under both conditions. Moreover, 1,000 grain weight and plant dry weight had significant positive correlation with grain yield under drought stress. Factor analysis detected four and two factors which explained 96.77% and 90.59% of the total variation in normal irrigation and drought stress conditions, respectively. In drought stress condition the first factor justified 69.52% of total variation and was identified as yield factor. The second factor explained 21.07% of total variation and represented the biomass and plant height factor. Cluster analysis was based on the four and two factors obtained. According to the amount of factors for clusters obtained under drought stress, ‘Kavir’, ‘Niknejhad’, ‘Moghan 3’, ‘Darya’ and ‘Marvdasht’ were identified as the most drought tolerant cultivars. Other cluster was comprised of ‘Bahar’, ‘Pishtaz’, ‘Bam’, ‘Sepahan’, ‘Sistan’, ‘Pars’ and ‘Sivand’ and was named as the most sensitive under drought stress. Tolerant cultivars identified within the study can be used for direct culture or as genitors in breeding programs.

  17. Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings

    Directory of Open Access Journals (Sweden)

    Daoqian eChen

    2016-01-01

    Full Text Available Non-irrigated crops in temperate climates and irrigated crops in arid climates are subjected to continuous cycles of water stress and re-watering. Thus, fast and efficient recovery from water stress may be among the key determinants of plant drought adaptation. The present study was designed to comparatively analyze the roles of drought resistance and drought recovery in drought adaptation and to investigate the physiological basis of genotypic variation in drought adaptation in maize (Zea mays seedlings. As the seedlings behavior in growth associate with yield under drought, it could partly reflect the potential of drought adaptability. Growth and physiological responses to progressive drought stress and recovery were observed in seedlings of ten maize lines. The results showed that drought adaptability is closely related to drought recovery (r = 0.714**, but not to drought resistance (r = 0.332. Drought induced decreases in leaf water content, water potential, osmotic potential, gas exchange parameters, chlorophyll content, Fv/Fm and nitrogen content, and increased H2O2 accumulation and lipid peroxidation. After recovery, most of these physiological parameters rapidly returned to normal levels. The physiological responses varied between lines. Further correlation analysis indicated that the physiological bases of drought resistance and drought recovery are definitely different, and that maintaining higher chlorophyll content (r = 0.874*** and Fv/Fm (r = 0.626* under drought stress contributes to drought recovery. Our results suggest that both drought resistance and recovery are key determinants of plant drought adaptation, and that drought recovery may play a more important role than previously thought. In addition, leaf water potential, chlorophyll content and Fv/Fm could be used as efficient reference indicators in the selection of drought-adaptive genotypes.

  18. Physiological Response of Wheat to Chemical Desiccants Used to Simulate Post-Anthesis Drought Stress

    Directory of Open Access Journals (Sweden)

    Nasrein Mohamed Kamal

    2018-04-01

    Full Text Available Post-anthesis drought stress is one of the main constraints on the production of wheat (Triticum aestivum L.. Because field screening for post-anthesis drought tolerance is difficult, effective and validated methods to simulate drought in order to identify sources of tolerance can facilitate screening of breeding materials. Chemical desiccants are widely used to simulate post-anthesis drought stress. We aimed to identify physiological traits that respond to desiccants as they do to drought. We examined the responses of ‘Norin 61’ to six treatments in a greenhouse: irrigated control, drought after anthesis, and 2% or 4% potassium chlorate (KClO3 at anthesis (A or grain filling (GF. We measured δ13C in leaves, aboveground fresh biomass, stomatal conductance, chlorophyll content, harvest index, and grain yield. Both 2% and 4% KClO3 at both A and GF simulated the effect of drought stress. Selection of drought-tolerant genotypes can be aided by chlorophyll content and δ13C measurement of leaves when 2% or 4% KClO3 is used to simulate drought.

  19. Effects of Occurrence of Drought Stress in Maternal Environment on Cardinal Temperatures and Germination Responses of Carthamus Species

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Nazari

    2018-02-01

    Full Text Available Safflower (Carthamustinctorius L. is one of the oldest domesticated crops, mainly grown as an oilseed in the arid and semiarid regions of the world. This study was conducted to investigate the Cardinal temperatures and to identify the effects of occurrence of drought stress in maternal environment on seed germination aspects of some Carthamus species according to a completely randomized design in 2014. To accomplish this, seeds of 13 genotypes from C. tinctorius, C. palaestinus, C. oxyacanthus, C. glaucus and C. lanatus were used which had been harvested from plants grown at normal and drought stress conditions. Seeds were subjected to 9 fixed temperatures (5, 10, 15, 20, 25, 30, 35, 40 and 45°C for germination in the growth chamber according to a factorial experiment. Results showed that the effects of genotype, species, temperature, pretreatment drought stress and some of their interactions were significant for certain germination characteristics at 0.05% probability level. Significant reductions occurred in the germination rate of seeds at temperatures below 10°C and above 30°C. Although there were significant differences in percent of seed germination among species, seeds harvested from drought stressed plants were not significantly different from the ones harvested from non-stressed plants in terms of cardinal temperatures. Hence, it is more likely that cardinal temperatures will not cause difficulties in the case of inter-specific breeding programs for drought tolerant safflower cultivar development.

  20. Drought stress promotes the colonization success of a herbivorous mite that manipulates plant defenses.

    Science.gov (United States)

    Ximénez-Embún, Miguel G; Glas, Joris J; Ortego, Felix; Alba, Juan M; Castañera, Pedro; Kant, Merijn R

    2017-12-01

    Climate change is expected to bring longer periods of drought and this may affect the plant's ability to resist pests. We assessed if water deficit affects the tomato russet mite (TRM; Aculops lycopersici), a key tomato-pest. TRM thrives on tomato by suppressing the plant's jamonate defenses while these defenses typically are modulated by drought stress. We observed that the TRM population grows faster and causes more damage on drought-stressed plants. To explain this observation we measured several nutrients, phytohormones, defense-gene expression and the activity of defensive proteins in plants with or without drought stress or TRM. TRM increased the levels of total protein and several free amino acids. It also promoted the SA-response and upregulated the accumulation of jasmonates but down-regulated the downstream marker genes while promoting the activity of cysteine-but not serine-protease inhibitors, polyphenol oxidase and of peroxidase (POD). Drought stress, in turn, retained the down regulation of JA-marker genes and reduced the activity of serine protease inhibitors and POD, and altered the levels of some free-amino acids. When combined, drought stress antagonized the accumulation of POD and JA by TRM and synergized accumulation of free sugars and SA. Our data show that drought stress interacts with pest-induced primary and secondary metabolic changes and promotes pest performance.

  1. Monitoring of lipoxygenase-related plant emission for early detection of drought stress in greenhouse

    NARCIS (Netherlands)

    Takayama, K.; Jansen, R.M.C.; Verstappen, F.W.A.; Bouwmeester, H.J.

    2008-01-01

    Early detection of plant stress is a key to effective plant management for crop production. Drought stress is a common abiotic stress in crop production and early detection of drought stress allows us to improve water usage effi ciency and crop quality by demandbased irrigation. This study

  2. Drought Stress Responses of Sunflower Germplasm Developed after Wide Hybridization

    Directory of Open Access Journals (Sweden)

    Roumiana Dimova Vassilevska-Ivanova

    2016-10-01

    Full Text Available Response of sunflower germplasms viz. cultivated sunflower H. annuus and two breeding lines H. annuus x T. rotundifolia and H. annuus x V. encelioides developed after wide hybridization were used for identification of drought tolerant sunflower genotypes at the seedling growth stage. Three water stress levels of zero (control, -0.4, and -0.8 MPa were developed using polyethyleneglycol-6000 (PEG-6000. Physiological and biochemical stress determining parameters such as root and shoots length, fresh weight, antioxidant enzyme activities (superoxide dismutase (SOD, catalase (CAT, guaiacol peroxidase (GPO, ascorbate peroxidase (APX and antioxidant metabolite content (total antioxidant capacity, total phenols and total flavonoids content were compared between seedlings of all three genotypes. Results revealed that sunflower genotypes have similar responses at two osmotic potentials for shoot and root length and fresh weight. The data also showed that drought stresss could induce oxidative stress, as indicated by the increase level of ascorbate peroxidase and guaiacol peroxidase at -04 MPa in H. annuus cv 1114. Although the activity of ascorbate peroxidase and guaiacol peroxidase was differentially influenced by drought, the changes of antioxidant enzyme activities such as catalase, superoxide dismutase, guaiacol peroxidase, and ascorbate peroxidase subjected to drought stress follow a similar pattern in both breeding lines, indicating that similar defense systems might be involved in the oxidative stress injury in sunflowers. Increase in content of phenols and flavonoids were detected for all three genotypes under stress, which showed that these were major antioxidant metabolites in scavenging cellular H2O2.

  3. Construction of long-term isochronous stress-strain curves by a modeling of short-term creep curves for a Grade 9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Yin, Song-Nan; Koo, Gyeong-Hoi

    2009-01-01

    This study dealt with the construction of long-term isochronous stress-strain curves (ISSC) by a modeling of short-term creep curves for a Grade 9Cr-1Mo steel (G91) which is a candidate material for structural applications in the next generation nuclear reactors as well as in fusion reactors. To do this, tensile material data used in the inelastic constitutive equations was obtained by tensile tests at 550degC. Creep curves were obtained by a series of creep tests with different stress levels of 300MPa to 220MPa at an identical controlled temperature of 550degC. On the basis of these experimental data, the creep curves were characterized by Garofalo's creep model. Three parameters of P 1 , P 2 and P 3 in Garofalo's model were properly optimized by a nonlinear least square fitting (NLSF) analysis. The stress dependency of the three parameters was found to be a linear relationship. But, the P 3 parameter representing the steady state creep rate exhibited a two slope behavior with different stress exponents at a transient stress of about 250 MPa. The long-term creep curves of the G91 steel was modeled by Garofalo's model with only a few short-term creep data. Using the modeled creep curves, the long-term isochronous curves up to 10 5 hours were successfully constructed. (author)

  4. Evaluation of drought stress tolerance in promising lines of chickpea (Cicer arietinum L. using drought resistance indices

    Directory of Open Access Journals (Sweden)

    Akbar Shabani

    2018-06-01

    Full Text Available Introduction Chickpea (Cicer arietinum L. is an annual grain legume or “pulse crop” that is 2th legume after soybean in the world and was cultivated in 60 country. Legume, spatially chickpea is the most important tolerant crop in arid and semi-arid country in western of Asia such as Iran. Chickpea can growth in poor soil and undesirable environment conditions. Drought is an important factors that influencing chickpea production and quality. As area of cultivation is in dryland conditions thus aim of researches is reach to tolerant genotypes. The objective of current study was to evaluate the genetic variation and drought resistance advanced genotypes in chickpea Materials and methods For investigation of genetic variation and drought resistance, 64 advanced genotypes were evaluated in a simple latis (LD with two replications under normal and drought stress conditions in deputy of Dryland Agricultural Research Institute of Kermanshah during 2013-2014 cropping season. Plant spacing was as plots with four rows in 4 m in length, 30 cm apart. The seed were sowed in row with 10 cm distance and the seeding rate was 33 seeds per m2 for all plots. At maturity stage after separation of border effects from each plot, grain yield was measured. Statistical analysis was performed using SAS, SPSS and STATISTICA packages. some drought resistance indices such as mean productivity (MP, geometric mean productivity (GMP, harmonic mean (HAM, stress tolerance index (STI, stress susceptibility index (SSI, yield index (YI, K1 and K2 were measured based on yield in both conditions. Also we used stress tolerance score (STS method for selection genotypes according to all indices. Results and discussion Study on correlation between Yp, Ys and drought resistance indices showed that Yp and Ys had positive and significant correlated with MP, GMP, STI, YI, HAM, K1 and K2 thus these indices were the most suitable drought tolerance criteria for screening of chickpea

  5. [Effects of Ca2+ on nitric oxide-induced adventitious rooting in cucumber under drought stress].

    Science.gov (United States)

    Li, Chun Lan; Niu, Li Juan; Hu, Lin Li; Liao, Wei Biao; Chen, Yue

    2017-11-01

    Cucumber (Cucumis sativus L. 'Xinchun 4') was used to explore the relationship between nitric oxide (NO) and calcium (Ca 2+ ) during adventitious rooting under drought stress. Rooting parameters, endogenous Ca 2+ fluorescent intensity and the antioxidant enzymes activity (SOD, CAT and APX) in cucumber explants under drought stress were investigated. The results showed that treatment with 200 μmol·L -1 CaCl 2 and 0.05% PEG significantly improved the number and length of adventitious root in cucumber explants under drought stress, while the application of Ca 2+ chelating agent (EGTA) and channel inhibitor (BAPTA/AM) significantly decreased NO-induced number and length of adventitious root under drought stress. Under drought stress, the fluorescence intensity of Ca 2+ in hypocotyls treated with NO and CaCl 2 was improved, however, the Ca 2+ fluorescence intensity in the hypocotyls treated with NO scavenger (cPTIO) was significantly lower than that in the hypocotyls treated with NO. Under drought stress, the activities of antioxidant enzymes in the cucumber explants were significantly promoted by the treatments with NO and CaCl 2 , however, Ca 2+ chelating agent and channel inhibitor significantly decreased the activity of antioxidant enzymes induced by NO. In conclusion, Ca 2+ might be involved in the process of NO-adjusted antioxidant enzymes activity during adventitious rooting under drought stress, which alleviated the negative effects of drought on the adventitious rooting and promoted the formation of adventitious roots.

  6. Short-term exposure to enriched environment rescues chronic stress-induced impaired hippocampal synaptic plasticity, anxiety, and memory deficits.

    Science.gov (United States)

    Bhagya, Venkanna Rao; Srikumar, Bettadapura N; Veena, Jayagopalan; Shankaranarayana Rao, Byrathnahalli S

    2017-08-01

    Exposure to prolonged stress results in structural and functional alterations in the hippocampus including reduced long-term potentiation (LTP), neurogenesis, spatial learning and working memory impairments, and enhanced anxiety-like behavior. On the other hand, enriched environment (EE) has beneficial effects on hippocampal structure and function, such as improved memory, increased hippocampal neurogenesis, and progressive synaptic plasticity. It is unclear whether exposure to short-term EE for 10 days can overcome restraint stress-induced cognitive deficits and impaired hippocampal plasticity. Consequently, the present study explored the beneficial effects of short-term EE on chronic stress-induced impaired LTP, working memory, and anxiety-like behavior. Male Wistar rats were subjected to chronic restraint stress (6 hr/day) over a period of 21 days, and then they were exposed to EE (6 hr/day) for 10 days. Restraint stress reduced hippocampal CA1-LTP, increased anxiety-like symptoms in elevated plus maze, and impaired working memory in T-maze task. Remarkably, EE facilitated hippocampal LTP, improved working memory performance, and completely overcame the effect of chronic stress on anxiety behavior. In conclusion, exposure to EE can bring out positive effects on synaptic plasticity in the hippocampus and thereby elicit its beneficial effects on cognitive functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars

    NARCIS (Netherlands)

    Mafakheri, A.; Siosemardeh, A.; Bahramnejad, B.; Struik, P.C.; Sohrabi, Y.

    2010-01-01

    Drought stress is one of the major abiotic stresses in agriculture worldwide. This study was carried out to investigate the effect of drought stress on proline content, chlorophyll content, photosynthesis and transpiration, stomatal conductance and yield characteristics in three varieties of

  8. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    Directory of Open Access Journals (Sweden)

    Aayudh Das

    2016-01-01

    Full Text Available Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2.

  9. Germinaton performance of selected local soybean (Glycine max (L.) Merrills) cultivars during drought stress induced by Polyethylene Glycol (PEG)

    Science.gov (United States)

    Pane, R. F.; Damanik, R. I.; Khardinata, E. H.

    2018-02-01

    Drought stress is one of the factors that can decreased growth and production, so that required a variety that has the ability to sustain cellular metabolism, and growth during the stress. This research was aimed to investigated the involvement of germination performance invitro of five local soybean cultivars, Grobogan, Kaba, Anjasmoro, Argomulyo, and Dering to drought stress induced by polyethylene glycol (PEG) 6000 (0%, 2%, 4%, and 6%). The measurable seedling traits as the day appearance of shoots and roots, total of leaves, shoot length, root length, fresh plant weight, dry plant weight, fresh root weight, and dry root weight under control as well as water stress condition were recorded. The experiment units were arranged in factorial completely randomized design with four replications. The result showed that the value for most parameters was recorded highest for Argomulyo cultivar compared with Dering cultivar which is known to be tolerant to drought. In terms of roots performance, Grobogan and Argomulyo cultivars produced the longest and heaviest of roots, while Grobogan cultivar had no significant different for root length compared with control. In conclusion, the root length and fresh weight root parameters can be used as quick criteria for drought tolerance.

  10. Function of the auxin-responsive gene TaSAUR75 under salt and drought stress

    Directory of Open Access Journals (Sweden)

    Yuan Guo

    2018-04-01

    Full Text Available Small auxin-upregulated RNAs (SAURs are genes regulated by auxin and environmental factors. In this study, we identified a SAUR gene in wheat, TaSAUR75. Under salt stress, TaSAUR75 is downregulated in wheat roots. Subcellular localization revealed that TaSAUR75 was localized in both the cytoplasm and nucleus. Overexpression of TaSAUR75 increased drought and salt tolerance in Arabidopsis. Transgenic lines showed higher root length and survival rate and higher expression of some stress-responsive genes than control plants under salt and drought stress. Less H2O2 accumulated in transgenic lines than in control plants under drought stress. Our findings reveal a positive regulatory role of the auxin-responsive gene TaSAUR75 in plant responses to drought and salt stress and provide a candidate gene for improvement of abiotic stress tolerance in crop breeding.

  11. A Nucleus-localized Long Non-Coding RNA Enhances Drought and Salt Stress Tolerance

    KAUST Repository

    Qin, Tao

    2017-09-09

    Long non-coding RNAs (lncRNAs) affect gene expression through a wide range of mechanisms and are considered as important regulators in many essential biological processes. A large number of lncRNA transcripts have been predicted or identified in plants in recent years. However, the biological functions for most of them are still unknown. In this study, we identified an Arabidopsis thaliana lncRNA, Drought induced RNA (DRIR), as a novel positive regulator of plant response to drought and salt stress. DRIR was expressed at a low level under non-stress conditions but can be significantly activated by drought and salt stress as well as by abscisic acid (ABA) treatment. We identified a T-DNA insertion mutant, drirD, which had higher expression of the DRIR gene than the wild type plants. The drirD mutant exhibits increased tolerance to drought and salt stress. Overexpressing DRIR in Arabidopsis also increased tolerance to drought and salt stress of the transgenic plants. The drirD mutant and the overexpressing seedlings are more sensitive to ABA than the wild type in stomata closure and seedling growth. Genome-wide transcriptome analysis demonstrated that the expression of a large number of genes was altered in drirD and the overexpressing plants. These include genes involved in ABA signaling, water transport and other stress-relief processes. Our study reveals a mechanism whereby DRIR regulates plant response to abiotic stress by modulating the expression of a series of genes involved in stress response.

  12. Status of Drought and Desertification in Kenya

    International Nuclear Information System (INIS)

    Mutiso, S.K

    2001-01-01

    The author defined drought in three points of view, viz: agricultural, meteorological and hydrological. All categories of drought are important in the understanding of the society's vulnerability to drought and adjustment mechanisms. Agricultural and hydrological droughts have been shown to have far greater socio-economic and political impacts to people living in the dry lands. methods of predicting drought have been highlighted. Early warning systems should be put in places at District level. Mitigation and rehabilitation of people suffering drought and attendant famine should involve both short term and long term strategies. Rain-harvesting techniques, soil and water conservation, crop water requirement and drought risk forecasting should be carried out along with other measures to combat desrtification

  13. The Effect of Synchronized Forced Running with Chronic Stress on Short, Mid and Long- term Memory in Rats.

    Science.gov (United States)

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad-Reza; Hosseini, Nasrin

    2013-03-01

    Impairment of learning and memory processes has been demonstrated by many studies using different stressors. Other reports suggested that exercise has a powerful behavioral intervention to improve cognitive function and brain health. In this research, we investigated protective effects of treadmill running on chronic stress-induced memory deficit in rats. Fifty male Wistar rats were randomly divided into five groups (n=10) as follows: Control (Co), Sham (Sh), Stress (St), Exercise (Ex) and Stress and Exercise (St & Ex) groups. Chronic restraint stress was applied by 6h/day/21days and also treadmill running at a speed 20-21m/min for 1h/day/21days. Memory function was evaluated by the passive avoidance test in different intervals (1, 7 and 21 days) after foot shock. OUR RESULTS SHOWED THAT: 1) Although exercise alone showed beneficial effects especially on short and mid-term memory (Pshort, mid and long-term memory deficit in stressed rats. 2) Short and mid-term memory deficit was significantly (PMemory deficit in synchronized exercise with stress group was nearly similar to stressed rats. 4) Helpful effects of exercise were less than harmful effects of stress when they were associated together. The data correspond to the possibility that although treadmill running alone has helpful effects on learning and memory consolidation, but when it is synchronized with stress there is no significant benefit and protective effects in improvement of memory deficit induced by chronic stress. However, it is has a better effect than no training on memory deficit in stressed rats.

  14. Characterizing gene responses to drought stress in fourwing saltbush [Atriplex canescens (Pursh.) Nutt.)

    Science.gov (United States)

    Linda S. Adair; David L. Andrews; John Cairney; Edward A. Funkhouser; Ronald J. Newton; Earl F. Aldon

    1992-01-01

    New techniques in molecular biology can be used to characterize genes whose expression is induced by drought stress. These techniques can be used to understand responses of range plants to environmental stresses at the biochemical and molecular level. For example, they can be used to characterize genes that respond to drought stress conditions in the native shrub

  15. Individual stress vulnerability is predicted by short-term memory and AMPA receptor subunit ratio in the hippocampus.

    Science.gov (United States)

    Schmidt, Mathias V; Trümbach, Dietrich; Weber, Peter; Wagner, Klaus; Scharf, Sebastian H; Liebl, Claudia; Datson, Nicole; Namendorf, Christian; Gerlach, Tamara; Kühne, Claudia; Uhr, Manfred; Deussing, Jan M; Wurst, Wolfgang; Binder, Elisabeth B; Holsboer, Florian; Müller, Marianne B

    2010-12-15

    Increased vulnerability to aversive experiences is one of the main risk factors for stress-related psychiatric disorders as major depression. However, the molecular bases of vulnerability, on the one hand, and stress resilience, on the other hand, are still not understood. Increasing clinical and preclinical evidence suggests a central involvement of the glutamatergic system in the pathogenesis of major depression. Using a mouse paradigm, modeling increased stress vulnerability and depression-like symptoms in a genetically diverse outbred strain, and we tested the hypothesis that differences in AMPA receptor function may be linked to individual variations in stress vulnerability. Vulnerable and resilient animals differed significantly in their dorsal hippocampal AMPA receptor expression and AMPA receptor binding. Treatment with an AMPA receptor potentiator during the stress exposure prevented the lasting effects of chronic social stress exposure on physiological, neuroendocrine, and behavioral parameters. In addition, spatial short-term memory, an AMPA receptor-dependent behavior, was found to be predictive of individual stress vulnerability and response to AMPA potentiator treatment. Finally, we provide evidence that genetic variations in the AMPA receptor subunit GluR1 are linked to the vulnerable phenotype. Therefore, we propose genetic variations in the AMPA receptor system to shape individual stress vulnerability. Those individual differences can be predicted by the assessment of short-term memory, thereby opening up the possibility for a specific treatment by enhancing AMPA receptor function.

  16. Drought-Stressed Tomato Plants Trigger Bottom-Up Effects on the Invasive Tetranychus evansi.

    Directory of Open Access Journals (Sweden)

    Miguel G Ximénez-Embún

    Full Text Available Climate change will bring more drought periods that will have an impact on the irrigation practices of some crops like tomato, from standard water regime to deficit irrigation. This will promote changes in plant metabolism and alter their interactions with biotic stressors. We have tested if mild or moderate drought-stressed tomato plants (simulating deficit irrigation have an effect on the biological traits of the invasive tomato red spider mite, Tetranychus evansi. Our data reveal that T evansi caused more leaf damage to drought-stressed tomato plants (≥1.5 fold for both drought scenarios. Mite performance was also enhanced, as revealed by significant increases of eggs laid (≥2 fold at 4 days post infestation (dpi, and of mobile forms (≥2 fold and 1.5 fold for moderate and mild drought, respectively at 10 dpi. The levels of several essential amino acids (histidine, isoleucine, leucine, tyrosine, valine and free sugars in tomato leaves were significantly induced by drought in combination with mites. The non-essential amino acid proline was also strongly induced, stimulating mite feeding and egg laying when added to tomato leaf disks at levels equivalent to that estimated on drought-infested tomato plants at 10 dpi. Tomato plant defense proteins were also affected by drought and/or mite infestation, but T. evansi was capable of circumventing their potential adverse effects. Altogether, our data indicate that significant increases of available free sugars and essential amino acids, jointly with their phagostimulant effect, created a favorable environment for a better T. evansi performance on drought-stressed tomato leaves. Thus, drought-stressed tomato plants, even at mild levels, may be more prone to T evansi outbreaks in a climate change scenario, which might negatively affect tomato production on area-wide scales.

  17. The role of silicon in higher plants under salinity and drought stress

    Directory of Open Access Journals (Sweden)

    Devrim Coskun

    2016-07-01

    Full Text Available Although deemed a non-essential mineral nutrient, silicon (Si is clearly beneficial to plant growth and development, particularly under stress conditions, including salinity and drought. Here, we review recent research on the physiological, biochemical, and molecular mechanisms underlying Si-induced alleviation of osmotic and ionic stresses associated with salinity and drought. We distinguish between changes observed in the apoplast (i.e. suberization, lignification, and silicification of the extracellular matrix; transpirational bypass flow of solutes and water, and those of the symplast (i.e. transmembrane transport of solutes and water; gene expression; oxidative stress; metabolism, and discuss these features in the context of Si biogeochemistry and bioavailability in agricultural soils, evaluating the prospect of using Si fertilization to increase crop yield and stress tolerance under salinity and drought conditions.

  18. Genomewide Expression and Functional Interactions of Genes under Drought Stress in Maize

    Directory of Open Access Journals (Sweden)

    Nepolean Thirunavukkarasu

    2017-01-01

    Full Text Available A genomewide transcriptome assay of two subtropical genotypes of maize was used to observe the expression of genes at seedling stage of drought stress. The number of genes expressed differentially was greater in HKI1532 (a drought tolerant genotype than in PC3 (a drought sensitive genotype, indicating primary differences at the transcriptional level in stress tolerance. The global coexpression networks of the two genotypes differed significantly with respect to the number of modules and the coexpression pattern within the modules. A total of 174 drought-responsive genes were selected from HKI1532, and their coexpression network revealed key correlations between different adaptive pathways, each cluster of the network representing a specific biological function. Transcription factors related to ABA-dependent stomatal closure, signalling, and phosphoprotein cascades work in concert to compensate for reduced photosynthesis. Under stress, water balance was maintained by coexpression of the genes involved in osmotic adjustments and transporter proteins. Metabolism was maintained by the coexpression of genes involved in cell wall modification and protein and lipid metabolism. The interaction of genes involved in crucial biological functions during stress was identified and the results will be useful in targeting important gene interactions to understand drought tolerance in greater detail.

  19. Time-dependent leaf proteome alterations of Brachypodium distachyon in response to drought stress.

    Science.gov (United States)

    Tatli, Ozge; Sogutmaz Ozdemir, Bahar; Dinler Doganay, Gizem

    2017-08-01

    For the first time, a comprehensive proteome analysis was conducted on Brachypodium leaves under drought stress. Gradual changes in response to drought stress were monitored. Drought is one of the major stress factors that dramatically affect the agricultural productivity worldwide. Improving the yield under drought is an urgent challenge in agriculture. Brachypodium distachyon is a model species for monocot plants such as wheat, barley and several potential biofuel grasses. In the current study, a comprehensive proteome analysis was conducted on Brachypodium leaves under different levels of drought application. To screen gradual changes upon drought, Brachypodium leaves subjected to drought for 4, 8 and 12 days were collected for each treatment day and relative water content of the leaves was measured for each time point. Cellular responses of Brachypodium were investigated through a proteomic approach involving two dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS). Among 497 distinct spots in Brachypodium protein repertoire, a total of 13 differentially expressed proteins (DEPs) were identified as responsive to drought by mass spectrometry and classified according to their functions using bioinformatics tools. The biological functions of DEPs included roles in photosynthesis, protein folding, antioxidant mechanism and metabolic processes, which responded differentially at each time point of drought treatment. To examine further transcriptional expression of the genes that code identified protein, quantitative real time PCR (qRT-PCR) was performed. Identified proteins will contribute to the studies involving development of drought-resistant crop species and lead to the delineation of molecular mechanisms in drought response.

  20. Screening for Osmotic Stress Responses in Rice Varieties under Drought Condition

    OpenAIRE

    Simon Swapna; Korukkanvilakath Samban Shylaraj

    2017-01-01

    Drought is the major abiotic stress factor that limits rice production worldwide. To evaluate the osmotic stress responses in rice varieties under drought condition, a total of 42 high-yielding rice varieties were collected from various research stations of Kerala Agricultural University in India. The experimental setup comprises of initial hydroponic treatments at different osmotic potentials, artificially induced by desired strengths of polyethylene glycol (PEG6000), and followed by the pot...

  1. Short-term sleep disturbance-induced stress does not affect basal pain perception, but does delay postsurgical pain recovery

    OpenAIRE

    Wang, Po-Kai; Cao, Jing; Wang, Hongzhen; Liang, Lingli; Zhang, Jun; Lutz, Brianna Marie; Shieh, Kun-Ruey; Bekker, Alex; Tao, Yuan-Xiang

    2015-01-01

    Chronic sleep disturbance-induced stress is known to increase basal pain sensitivity. However, most surgical patients frequently report short-term sleep disturbance/deprivation during pre- and post-operation periods and have normal pain perception pre-surgery. Whether this short-term sleep disturbance affects postsurgical pain is elusive. We here reported that pre- or post-exposure to rapid eye movement sleep disturbance (REMSD) 6 h daily for 3 consecutive days did not alter basal responses t...

  2. [Effects of drought stress on leaf gas exchange and chlorophyll fluorescence of Salvia miltiorrhiza].

    Science.gov (United States)

    Luo, Ming-Hua; Hu, Jin-Yao; Wu, Qing-Gui; Yang, Jing-Tian; Su, Zhi-Xian

    2010-03-01

    Taking the seedlings of Salvia miltiorrhiza cv. Sativa (SA) and S. miltiorrhiza cv. Silcestris (SI) as test materials, this paper studied the effects of drought stress on their leaf gas exchange and chlorophyll fluorescence parameters. After 15 days of drought stress, the net photosynthetic rate (P(n)) and the maximal photochemical efficiency of PS II (F(v)/F(m)) of SA were decreased by 66.42% and 10.98%, whereas those of SI were decreased by 29.32% and 5.47%, respectively, compared with the control, suggesting that drought stress had more obvious effects on the P(n) and F(v)/F(m) of SA than of SI. For SI, the reduction of P, under drought stress was mainly due to stomatal limitation; while for SA, it was mainly due to non-stomatal limitation. Drought led to a decrease of leaf stomatal conductance (G(s)), but induced the increase of water use efficiency (WUE), non-photochemical quenching coefficient (q(N)), and the ratio of photorespiration rate to net photosynthetic rate (P(r)/P(n)), resulting in the enhancement of drought resistance. The increment of WUE, q(N), and P(r)/P(n) was larger for SI than for SA, indicating that SI had a higher drought resistance capacity than SA.

  3. Influence of priming on the physiological traits of corn seed germination under drought stress

    Directory of Open Access Journals (Sweden)

    Seyyedeh Roghayyeh KHATAMI

    2015-06-01

    Full Text Available This study was performed to investigate the effect of drought stress and priming on germination of corn seeds (cultivar SC704 as a factorial experiment based on completely randomized design with three replications. Treatments were drought stress in four levels including 0,-3,-6 and -9 bar and priming as control, hydro, osmo, vitamin and hormone priming. Results showed that interaction of two factors was significant on radicle and plumule dry weight, seedling vigor and germination rate. Osmo-priming remained the radicle dry weight and seedling vigor index same to control but germination rate decreased in this treatment about 38% to control. Drought stress at any severity caused seed reservoirs were not use inefficiently. In conclusion, osmo and hormone primings were the best treatments for seed invigoration under severe drought stress.

  4. Transcriptomic Analysis of Soil-Grown Arabidopsis thaliana Roots and Shoots in Response to a Drought Stress

    Directory of Open Access Journals (Sweden)

    Sultana eRasheed

    2016-02-01

    Full Text Available Drought stress has a negative impact on crop yield. Thus, understanding the molecular mechanisms responsible for plant drought stress tolerance is essential for improving this beneficial trait in crops. In the current study, a transcriptional analysis was conducted of gene regulatory networks in roots of soil-grown Arabidopsis plants in response to a drought stress treatment. A microarray analysis of drought-stressed roots and shoots was performed at 0, 1, 3, 5, 7 and 9 days. Results indicated that the expression of many drought stress-responsive genes and abscisic acid biosynthesis-related genes was differentially regulated in roots and shoots from days 3 to 9. The expression of cellular and metabolic process-related genes was up-regulated at an earlier time-point in roots than in shoots. In this regard, the expression of genes involved in oxidative signaling, chromatin structure, and cell wall modification also increased significantly in roots compared to shoots. Moreover, the increased expression of genes involved in the transport of amino acids and other solutes; including malate, iron, and sulfur, was observed in roots during the early time points following the initiation of the drought stress. These data suggest that plants may utilize these signaling channels and metabolic adjustments as adaptive responses in the early stages of a drought stress. Collectively, the results of the present study increases our understanding of the differences pertaining to the molecular mechanisms occurring in roots versus shoots in response to a drought stress. Furthermore, these findings also aid in the selection of novel genes and promoters that can be used to potentially produce crop plants with increased drought tolerance.

  5. Field Phenotyping of Soybean Roots for Drought Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Berhanu A. Fenta

    2014-08-01

    Full Text Available Root architecture was determined together with shoot parameters under well watered and drought conditions in the field in three soybean cultivars (A5409RG, Jackson and Prima 2000. Morphology parameters were used to classify the cultivars into different root phenotypes that could be important in conferring drought tolerance traits. A5409RG is a drought-sensitive cultivar with a shallow root phenotype and a root angle of <40°. In contrast, Jackson is a drought-escaping cultivar. It has a deep rooting phenotype with a root angle of >60°. Prima 2000 is an intermediate drought-tolerant cultivar with a root angle of 40°–60°. It has an intermediate root phenotype. Prima 2000 was the best performing cultivar under drought stress, having the greatest shoot biomass and grain yield under limited water availability. It had abundant root nodules even under drought conditions. A positive correlation was observed between nodule size, above-ground biomass and seed yield under well-watered and drought conditions. These findings demonstrate that root system phenotyping using markers that are easy-to-apply under field conditions can be used to determine genotypic differences in drought tolerance in soybean. The strong association between root and nodule parameters and whole plant productivity demonstrates the potential application of simple root phenotypic markers in screening for drought tolerance in soybean.

  6. Dampening effects of long-term experimental drought on growth and mortality rates of a Holm oak forest.

    Science.gov (United States)

    Barbeta, Adrià; Ogaya, Romà; Peñuelas, Josep

    2013-10-01

    Forests respond to increasing intensities and frequencies of drought by reducing growth and with higher tree mortality rates. Little is known, however, about the long-term consequences of generally drier conditions and more frequent extreme droughts. A Holm oak forest was exposed to experimental rainfall manipulation for 13 years to study the effect of increasing drought on growth and mortality of the dominant species Quercus ilex, Phillyrea latifolia, and Arbutus unedo. The drought treatment reduced stem growth of A. unedo (-66.5%) and Q. ilex (-17.5%), whereas P. latifolia remained unaffected. Higher stem mortality rates were noticeable in Q. ilex (+42.3%), but not in the other two species. Stem growth was a function of the drought index of early spring in the three species. Stem mortality rates depended on the drought index of winter and spring for Q. ilex and in spring and summer for P. latifolia, but showed no relation to climate in A. unedo. Following a long and intense drought (2005-2006), stem growth of Q. ilex and P. latifolia increased, whereas it decreased in A. unedo. Q. ilex also enhanced its survival after this period. Furthermore, the effect of drought treatment on stem growth in Q. ilex and A. unedo was attenuated as the study progressed. These results highlight the different vulnerabilities of Mediterranean species to more frequent and intense droughts, which may lead to partial species substitution and changes in forest structure and thus in carbon uptake. The response to drought, however, changed over time. Decreased intra- and interspecific competition after extreme events with high mortality, together with probable morphological and physiological acclimation to drought during the study period, may, at least in the short term, buffer forests against drier conditions. The long-term effects of drought consequently deserve more attention, because the ecosystemic responses are unlikely to be stable over time.Nontechnical summaryIn this study, we

  7. The effect of exogenous spermidine on cucumber plant (Cucumis sativus L. growth in drought stress

    Directory of Open Access Journals (Sweden)

    Zbyszek K. Blamowski

    2013-12-01

    Full Text Available The effect of exogenous spermidine (0; 1 and 2 mmol·dm-3 on cucumber plant subjected lo seven day drought (30% f.w.c. were studied. Growth rate of plants, gas exchange, chlorophyll fluorescence, water saturation deficit in tissue (WSD. leakage electrolytes (El as well as the content of free proline were determined. The results showed that drought inhibited growth and gas exchange, decreased the potential efficiency of PSII (Fv/Fm but increased the value of WSD, EL and the level of free proline in tissue. The spermidine treatment of plants immediately before drought influenced the decrease concentration of free proline, water deficit and leakage of electrolytes but the increase of stomatal conductance (gs, intensity of photosynthesis (Pn and transpiration (E. Greater change on the course of primary photosynthetic reactions in PSII (Fv/Fm., ΦPSII, qP, qN were not detected. The autors concluded, that in drought. conditions exogenous speimidine together with proline induced by stress, contribute to increase of water content in tissue and maintenance of the enzymatic activity of cells as well as they guaIantee the integrity of cell membranes. Profitable effect of spermidine on the condition of cucumber in drought period shorted the time necessary for plants to come back to level of control treatment.

  8. Response of antioxidant system to drought stress and re-watering in Alfalfa during branching

    Science.gov (United States)

    Tina, R. R.; Shan, X. R.; Wang, Y.; Guo, S. Y.; Mao, B.; Wang, W.; Wu, H. Y.; Zhao, T. H.

    2017-11-01

    This paper aimed to reveal the response mechanism of active oxygen metabolism and antioxidant enzyme activities in Alfalfa under drought stress and re-watering, and the pot experiment was used, to explore the changes of H2O2, O2·-, electrolyte leakage conductivity and MDA, SOD, POD, CAT activity in Golden Empress (tolerant cultivar) and Sanditi (non-tolerant cultivar) under drought stress and re-watering during branching stage. Three water gradients were set up: CK (Maximum field capacity of 75%±5%), T1 (Maximum field capacity of 45%±5%), T2 (Maximum field capacity of 35%±5%) to compare, and the drought rehydration was also studied. Results: the results indicated that H2O2 content, O2·-production rate, relative conductivity and MDA content were higher than the control, and the increase extent of Golden Empress was higher than the Sanditi under drought stress and after re-watering the recovery capability of Golden Empress was also higher than the Sanditi. After 7 days of re-watering, all indexes were restored to the control level, indicating that the re-watering have compensation effect after drought. After drought stress, to weaken the damage of active oxygen Golden Empress was mainly by increasing the activity of POD and SOD, but Sanditi was mainly through the POD and CAT activity increased to effectively remove ROS. Under drought stress, active oxygen in leaves of Alfalfa increased, and thus the membrane system was damaged which lead to the increase of MDA content and relative electric conductivity. Plants play a defensive role by increasing the activity of antioxidant enzymes and scavenging reactive oxygen species. After re-watering, the stress effect was reduced, and the physiological indexes of plants were restored to the control level. In general, tolerant cultivar has stronger antioxidant properties under drought and re-watering.

  9. Effect of Drought Stress at Pre and Post-anthesis on Dry Matter Accumulation of Grains in Irrigated Winter Wheat

    Directory of Open Access Journals (Sweden)

    Sh. Elyasi

    2011-01-01

    Full Text Available Investigating assimilate contribution and grain filling pattern in winter wheat is importance under drought stress condition. This study was conducted to evaluate the relationship between drought stress on grain filling and yield of 4 cultivars including MV17 (dwarf, Alvand, Shahryar (semi-dwarf and Toos (tall. Experimental design was randomized complete block with three replications. Drought stress assigned to main plots and cultivars to sub plots. Growth curve sampling started at 7 days after anthesis with 4 days interval. In pre-anthesis drought stress Alvand produced highest yield, while it was 29.14% less than control treatment. The yield of Toos cultivar was lowest at pre-anthesis drought stress. Rate of grain filling of Toos cultivar did not change at pre-anthesis drought stress. Drought stress treatment at post-anthesis decreased rate of grain filling in all cultivars as compared to control, but it was significant only Toos c.v. In pre-anthesis drought stress grain filling duration increased in Alvand but decreased in Toos. Alvand with higher rate of grain filling produced highest grain yield (3850 kg/ha. It can be concluded that, drought stress decreases grain filling duration and rate of grain filling.

  10. Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.)

    Science.gov (United States)

    Banavath, Jayanna N.; Chakradhar, Thammineni; Pandit, Varakumar; Konduru, Sravani; Guduru, Krishna K.; Akila, Chandra S.; Podha, Sudhakar; Puli, Chandra O. R.

    2018-03-01

    Peanut is an important oilseed and food legume cultivated as a rain-fed crop in semi-arid tropics. Drought and high salinity are the major abiotic stresses limiting the peanut productivity in this region. Development of drought and salt tolerant peanut varieties with improved yield potential using biotechnological approach is highly desirable to improve the peanut productivity in marginal geographies. As abiotic stress tolerance and yield represent complex traits, engineering of regulatory genes to produce abiotic stress-resilient transgenic crops appears to be a viable approach. In the present study, we developed transgenic peanut plants expressing an Arabidopsis homeodomain-leucine zipper transcription factor (AtHDG11) under stress inducible rd29Apromoter. A stress-inducible expression of AtHDG11 in three independent homozygous transgenic peanut lines resulted in improved drought and salt tolerance through up-regulation of known stress responsive genes(LEA, HSP70, Cu/Zn SOD, APX, P5CS, NCED1, RRS5, ERF1, NAC4, MIPS, Aquaporin, TIP, ELIP ) in the stress gene network , antioxidative enzymes, free proline along with improved water use efficiency traits such as longer root system, reduced stomatal density, higher chlorophyll content, increased specific leaf area, improved photosynthetic rates and increased intrinsic instantaneous WUE. Transgenic peanut plants displayed high yield compared to non-transgenic plants under both drought and salt stress conditions. Holistically, our study demonstrates the potentiality of stress-induced expression of AtHDG11 to improve the drought, salt tolerance in peanut.

  11. Sex-related differences in photoinhibition, photo-oxidative stress and photoprotection in stinging nettle (Urtica dioica L.) exposed to drought and nutrient deficiency.

    Science.gov (United States)

    Simancas, Bárbara; Juvany, Marta; Cotado, Alba; Munné-Bosch, Sergi

    2016-03-01

    Dimorphic plant species can show distinct nutrient needs due to sex-related differences in nutrient allocation to reproductive structures, which can potentially affect their sensitivity to photoinhibition and photo-oxidative stress. Here, we investigated sex-related differences in the extent of photo-oxidative stress in male and female individuals of U. dioica exposed to a combination of severe drought and nutrient starvation. Male and female individuals of U. dioica subject to severe drought stress were exposed to various levels of nutrient availability. First, a set of plants grown under field conditions and exposed to summer drought was used to test the effects of nutrient supply (given as NPK fertilizer). Secondly, the effects of various phosphate concentrations in the nutrient solution were tested in drought-stressed potted plants. The Fv/Fm ratio (maximum efficiency of PSII photochemistry), photoprotection capacity (levels of carotenoids, including the xanthophyll cycle, and vitamins C and E), and the extent of lipid peroxidation (hydroperoxide levels) were measured. Results showed that an application of the NPK fertilizer to the soil had a positive effect on drought-stressed plants, reducing the extent of lipid peroxidation in both males and females. P deficiency led to residual photoinhibition, as indicated by significant reductions in the Fv/Fm ratio, and enhanced lipid peroxidation in females, but not in males. We conclude that (i) increased nutrient availability in the soil can alleviate photo-oxidative stress in drought-stressed U. dioica plants, and (ii) U. dioica plants show sexual secondary dimorphism in terms of photoinhibition and photo-oxidative stress, but this is only apparent when stress infringed on plants is very severe. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Drought genetics have varying influence on corn water stress under differing water availability

    Science.gov (United States)

    Irrigated corn (Zea mays L.) in the Great Plains will be increasingly grown under limited irrigation management and greater water stress. Hybrids with drought genetics may decrease the impacts of water stress on yield. The objective of this experiment was to evaluate the effect of drought genetics o...

  13. Climate and drought

    Science.gov (United States)

    McNab, Alan L.

    Drought is a complex phenomenon that can be defined from several perspectives [Wilhite and Glantz, 1987]. The common characteristic and central idea of these perspectives is the straightforward notion of a water deficit. Complexity arises because of the need to specify the part of the hydrologic cycle experiencing the deficit and the associated time period. For example, a long-term deficit in deep groundwater storage can occur simultaneously with a short-term surplus of root zone soil water.Figure 1 [Changnon, 1987] illustrates how the definitions of drought are related to specific components of the hydrologic cycle. The dashed lines indicate the delayed translation of two hypothetical precipitation deficits with respect to runoff, soil moisture, streamflow and groundwater. From this perspective, precipitation can be considered as the carrier of the drought signal, and hydrological processes are among the final indicators that reveal the presence of drought [Hare, 1987; Klemes, 1987].

  14. Seed priming and transgenerational drought memory improves tolerance against salt stress in bread wheat.

    Science.gov (United States)

    Tabassum, Tahira; Farooq, Muhammad; Ahmad, Riaz; Zohaib, Ali; Wahid, Abdul

    2017-09-01

    This study was conducted to evaluate the potential of seed priming following terminal drought on tolerance against salt stress in bread wheat. Drought was imposed in field sown wheat at reproductive stage (BBCH growth stage 49) and was maintained till physiological maturity (BBCH growth stage 83). Seeds of bread wheat, collected from crop raised under terminal drought and/or well-watered conditions, were subjected to hydropriming and osmopriming (with 1.5% CaCl 2 ) and were sown in soil-filled pots. After stand establishment, salt stress treatments viz. 10 mM NaCl (control) and 100 mM NaCl were imposed. Seed from terminal drought stressed source had less fat (5%), and more fibers (11%), proteins (22%) and total soluble phenolics (514%) than well-watered seed source. Salt stress reduced the plant growth, perturbed water relations and decreased yield. However, an increase in osmolytes accumulation (4-18%), malondialdehyde (MDA) (27-35%) and tissue Na + contents (149-332%) was observed under salt stress. The seeds collected from drought stressed crop had better tolerance against salt stress as indicated by better yield (28%), improved water relations (3-18%), osmolytes accumulation (21-33%), and less MDA (8%) and Na contents (35%) than progeny of well-watered crop. Seed priming, osmopriming in particular, further improved the tolerance against salt stress through improvement in leaf area, water relations, leaf proline, glycine betaine and grain yield while lowering MDA and Na + contents. In conclusion, changed seed composition during terminal drought and seed priming improved the salt tolerance in wheat by modulating the water relations, osmolytes accumulation and lipid peroxidation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE

    NARCIS (Netherlands)

    Fracasso, Alessandra; Trindade, Luisa M.; Amaducci, Stefano

    2016-01-01

    Background: Drought stress is the major environmental stress that affects plant growth and productivity. It triggers a wide range of responses detectable at molecular, biochemical and physiological levels. At the molecular level the response to drought stress results in the differential

  16. Morpho-physiological responses of alhagi sparsifolia shap. (leguminosae) seedlings to progressive drought stress

    International Nuclear Information System (INIS)

    Zeng, F.; Zhang, B.; Lu, Y.; Li, C.; Liu, B.; An, G.; Gao, X.

    2016-01-01

    Water is a key limiting factor influencing plant growth and development in arid ecosystem. To explore the mechanisms of the desert plant Alhagi sparsifolia seedlings to tolerate drought stress in extreme desert, an experiment was conducted from July to September in 2010 with four water treatments: 100 percent (W/sub 100/), 80 percent (W80), 60 percent (W60) and 45 percent (W/sub 45/) of water holding capacity (WHC). Plant growth, photosynthesis, nutrient content and water use efficiency (WUE) were measured. The Results showed that plant growth, branch number, biomass allocation, number of leaves and area per leaf as well as leaf area ratio with drought stress treatments (W/sub 80/, W/sub 60/ and W/sub 45/) decreased than W/sub 100/ treatment, while root/shoot ratio and specific leaf area increased gradually throughout the experimental duration. Furthermore, photosynthetic pigment content, light-saturated photosynthetic rate, and concentration of carbon and nitrogen in plant significantly decreased with increasing drought stress. The WUE at W/sub 100/ and W/sub 80/ treatments increased significantly at the beginning of drought stress treatment and then reduced with stress prolonged. In Conclusion, the desert plant A. sparsifolia can tolerate the progressive drought stress due to the strong plasticity of morphological and physiological traits. The critical level of soil WHC to limit the growth and dry mass production of A. sparsifolia seedlings in the southern fringe of the Taklimakan Desert was approximately at 45 percent. (author)

  17. Differential metabolome analysis of field-grown maize kernels in response to drought stress

    Science.gov (United States)

    Drought stress constrains maize kernel development and can exacerbate aflatoxin contamination. In order to identify drought responsive metabolites and explore pathways involved in kernel responses, a metabolomics analysis was conducted on kernels from a drought tolerant line, Lo964, and a sensitive ...

  18. Semi-High Throughput Screening for Potential Drought-tolerance in Lettuce (Lactuca sativa) Germplasm Collections.

    Science.gov (United States)

    Knepper, Caleb; Mou, Beiquan

    2015-04-17

    This protocol describes a method by which a large collection of the leafy green vegetable lettuce (Lactuca sativa L.) germplasm was screened for likely drought-tolerance traits. Fresh water availability for agricultural use is a growing concern across the United States as well as many regions of the world. Short-term drought events along with regulatory intervention in the regulation of water availability coupled with the looming threat of long-term climate shifts that may lead to reduced precipitation in many important agricultural regions has increased the need to hasten the development of crops adapted for improved water use efficiency in order to maintain or expand production in the coming years. This protocol is not meant as a step-by-step guide to identifying at either the physiological or molecular level drought-tolerance traits in lettuce, but rather is a method developed and refined through the screening of thousands of different lettuce varieties. The nature of this screen is based in part on the streamlined measurements focusing on only three water-stress indicators: leaf relative water content, wilt, and differential plant growth following drought-stress. The purpose of rapidly screening a large germplasm collection is to narrow the candidate pool to a point in which more intensive physiological, molecular, and genetic methods can be applied to identify specific drought-tolerant traits in either the lab or field. Candidates can also be directly incorporated into breeding programs as a source of drought-tolerance traits.

  19. Reduced Drought Tolerance by CRISPR/Cas9-Mediated SlMAPK3 Mutagenesis in Tomato Plants.

    Science.gov (United States)

    Wang, Liu; Chen, Lin; Li, Rui; Zhao, Ruirui; Yang, Meijing; Sheng, Jiping; Shen, Lin

    2017-10-04

    Drought stress is one of the most destructive environmental factors that affect tomato plants adversely. Mitogen-activated protein kinases (MAPKs) are important signaling molecules that respond to drought stress. In this study, SlMAPK3 was induced by drought stress, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system was utilized to generate slmapk3 mutants. Two independent T1 transgenic lines and wild-type (WT) tomato plants were used for analysis of drought tolerance. Compared with WT plants, slmapk3 mutants exhibited more severe wilting symptom, higher hydrogen peroxide content, lower antioxidant enzymes activities, and suffered more membrane damage under drought stress. Furthermore, knockout of SlMAPK3 led to up- or down-regulated expressions of drought stress-responsive genes including SlLOX, SlGST, and SlDREB. The results suggest that SlMAPK3 is involved in drought response in tomato plants by protecting cell membranes from oxidative damage and modulating transcription of stress-related genes.

  20. Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars.

    Science.gov (United States)

    Anjum, Shakeel Ahmad; Tanveer, Mohsin; Ashraf, Umair; Hussain, Saddam; Shahzad, Babar; Khan, Imran; Wang, Longchang

    2016-09-01

    Drought stress is one of the major environmental factors responsible for reduction in crop productivity. In the present study, responses of two maize cultivars (Rung Nong 35 and Dong Dan 80) were examined to explicate the growth, yield, leaf gas exchange, leaf water contents, osmolyte accumulation, membrane lipid peroxidation, and antioxidant activity under progressive drought stress. Maize cultivars were subjected to varying field capacities (FC) viz., well-watered (80 % FC) and drought-stressed (35 % FC) at 45 days after sowing. The effects of drought stress were analyzed at 5, 10, 15, 20, ad 25 days after drought stress (DAS) imposition. Under prolonged drought stress, Rung Nong 35 exhibited higher reduction in growth and yield as compared to Dong Dan 80. Maize cultivar Dong Dan 80 showed higher leaf relative water content (RWC), free proline, and total carbohydrate accumulation than Run Nong 35. Malondialdehyde (MDA) and superoxide anion were increased with prolongation of drought stress, with higher rates in cultivar Run Nong 35 than cultivar Dong Dan 80. Higher production of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and glutathione reductase (GR) resulted in improved growth and yield in Dong Dan 80. Overall, the cultivar Dong Dan 80 was better able to resist the detrimental effects of progressive drought stress as indicated by better growth and yield due to higher antioxidant enzymes, reduced lipid peroxidation, better accumulation of osmolytes, and maintenance of tissue water contents.

  1. Growth and antioxidant system under drought stress in Chickpea (Cicer arietinum L. as sustained by salicylic acid

    Directory of Open Access Journals (Sweden)

    B.K. Sarma

    2011-12-01

    Full Text Available Drought is one of the major factors limiting chickpea production in arid and semi arid regions. There is meagre information available regarding genotypic variation for drought tolerance in chickpea genotypes. Present investigation was carried out to find out the influence of salicylic acid (SA on drought tolerance in four chickpea genotypes. Reduction in relative injury was observed in plants treated with SA @1.5 mM as compared to control seedlings. Relationship between relative water content (RWC, membrane permeability (MP, ascorbic acid (AsA, proline, lipid peroxidation (LPO, hydrogen peroxide (H2O2, catalase (CAT, peroxidase (POX, superoxide dismutase (SOD, ascorbate peroxidase (APX was determined in order to find out whether these parameters can be used as selection criteria for drought tolerance in this crop. Results indicate wide variation in tolerance to drought stress amongst chickpea cultivars at both the critical stages i.e. pre- and post-anthesis. On the basis of growth and antioxidant activity better genotypes Tyson and ICC-4958 appear to be adapted to drought stress tolerance. Early drought stress (pre-anthesis drought was found to be more damaging than the late drought stress (post- anthesis drought.

  2. Short-term and long-term effects of transient exogenous cortisol manipulation on oxidative stress in juvenile brown trout.

    Science.gov (United States)

    Birnie-Gauvin, Kim; Peiman, Kathryn S; Larsen, Martin H; Aarestrup, Kim; Willmore, William G; Cooke, Steven J

    2017-05-01

    In the wild, animals are exposed to a growing number of stressors with increasing frequency and intensity, as a result of human activities and human-induced environmental change. To fully understand how wild organisms are affected by stressors, it is crucial to understand the physiology that underlies an organism's response to a stressor. Prolonged levels of elevated glucocorticoids are associated with a state of chronic stress and decreased fitness. Exogenous glucocorticoid manipulation reduces an individual's ability to forage, avoid predators and grow, thereby limiting the resources available for physiological functions like defence against oxidative stress. Using brown trout ( Salmo trutta ), we evaluated the short-term (2 weeks) and long-term (4 months over winter) effects of exogenous cortisol manipulations (versus relevant shams and controls) on the oxidative status of wild juveniles. Cortisol caused an increase in glutathione over a 2 week period and appeared to reduce glutathione over winter. Cortisol treatment did not affect oxidative stress levels or low molecular weight antioxidants. Cortisol caused a significant decrease in growth rates but did not affect predation risk. Over-winter survival in the stream was associated with low levels of oxidative stress and glutathione. Thus, oxidative stress may be a mechanism by which elevated cortisol causes negative physiological effects. © 2017. Published by The Company of Biologists Ltd.

  3. Enhancing drought tolerance in C(4) crops.

    Science.gov (United States)

    Lopes, Marta S; Araus, Jose Luis; van Heerden, Philippus D R; Foyer, Christine H

    2011-05-01

    Adaptation to abiotic stresses is a quantitative trait controlled by many different genes. Enhancing the tolerance of crop plants to abiotic stresses such as drought has therefore proved to be somewhat elusive in terms of plant breeding. While many C(4) species have significant agronomic importance, most of the research effort on improving drought tolerance has focused on maize. Ideally, drought tolerance has to be achieved without penalties in yield potential. Possibilities for success in this regard are highlighted by studies on maize hybrids performed over the last 70 years that have demonstrated that yield potential and enhanced stress tolerance are associated traits. However, while our understanding of the molecular mechanisms that enable plants to tolerate drought has increased considerably in recent years, there have been relatively few applications of DNA marker technologies in practical C(4) breeding programmes for improved stress tolerance. Moreover, until recently, targeted approaches to drought tolerance have concentrated largely on shoot parameters, particularly those associated with photosynthesis and stay green phenotypes, rather than on root traits such as soil moisture capture for transpiration, root architecture, and improvement of effective use of water. These root traits are now increasingly considered as important targets for yield improvement in C(4) plants under drought stress. Similarly, the molecular mechanisms underpinning heterosis have considerable potential for exploitation in enhancing drought stress tolerance. While current evidence points to the crucial importance of root traits in drought tolerance in C(4) plants, shoot traits may also be important in maintaining high yields during drought.

  4. Saving and Re-building Lives: Determinants of Short-term and Long-term Disaster Relief

    Directory of Open Access Journals (Sweden)

    Geethanjali SELVARETNAM

    2014-11-01

    Full Text Available We analyse both theoretically and empirically, the factors that influence the amount of humanitarian aid received by countries which are struck by natural disasters, particularly distinguishing between immediate disaster relief and long term humanitarian aid. The theoretical model is able to make predictions as well as explain some of the peculiarities in the empirical results. We show that both short and long term humanitarian aid increases with number of people killed, financial loss and level of corruption, while GDP per capita had no effect. More populated countries receive more humanitarian aid. Earthquake, tsunami and drought attract more aid.

  5. A transcriptome resource for Antarctic krill (Euphausia superba Dana) exposed to short-term stress

    KAUST Repository

    Martins, Maria Joã o F; Lago-Leston, Asuncion; Anjos, Antonio; Duarte, Carlos M.; Agusti, Susana; Serrã o, Ester A.; Pearson, Gareth A.

    2015-01-01

    Euphausia superba is a keystone species in Antarctic food webs. However, the continued decrease in stock density raises concerns over the resilience and adaptive potential of krill to withstand the current rate of environmental change. We undertook a transcriptome-scale approach (454 pyrosequencing) as a baseline for future studies addressing the physiological response of krill to short-term food shortage and natural UV-B stress. The final assembly resulted in a total of 26,415 contigs, 39.8% of which were putatively annotated. Exploratory analyses indicate an overall reduction in protein synthesis under food shortage while UV stress resulted in the activation of photo-protective mechanisms. © 2015.

  6. A transcriptome resource for Antarctic krill (Euphausia superba Dana) exposed to short-term stress

    KAUST Repository

    Martins, Maria João F

    2015-10-01

    Euphausia superba is a keystone species in Antarctic food webs. However, the continued decrease in stock density raises concerns over the resilience and adaptive potential of krill to withstand the current rate of environmental change. We undertook a transcriptome-scale approach (454 pyrosequencing) as a baseline for future studies addressing the physiological response of krill to short-term food shortage and natural UV-B stress. The final assembly resulted in a total of 26,415 contigs, 39.8% of which were putatively annotated. Exploratory analyses indicate an overall reduction in protein synthesis under food shortage while UV stress resulted in the activation of photo-protective mechanisms. © 2015.

  7. Cannabinoids ameliorate impairments induced by chronic stress to synaptic plasticity and short-term memory.

    Science.gov (United States)

    Abush, Hila; Akirav, Irit

    2013-07-01

    Repeated stress is one of the environmental factors that precipitates and exacerbates mental illnesses like depression and anxiety as well as cognitive impairments. We have previously shown that cannabinoids can prevent the effects of acute stress on learning and memory. Here we aimed to find whether chronic cannabinoid treatment would alleviate the long-term effects of exposure to chronic restraint stress on memory and plasticity as well as on behavioral and neuroendocrine measures of anxiety and depression. Late adolescent rats were exposed to chronic restraint stress for 2 weeks followed each day by systemic treatment with vehicle or with the CB1/2 receptor agonist WIN55,212-2 (1.2 mg/kg). Thirty days after the last exposure to stress, rats demonstrated impaired long-term potentiation (LTP) in the ventral subiculum-nucleus accumbens (NAc) pathway, impaired performance in the prefrontal cortex (PFC)-dependent object-recognition task and the hippocampal-dependent spatial version of this task, increased anxiety levels, and significantly reduced expression of glucocorticoid receptors (GRs) in the amygdala, hippocampus, PFC, and NAc. Chronic WIN55,212-2 administration prevented the stress-induced impairment in LTP levels and in the spatial task, with no effect on stress-induced alterations in unconditioned anxiety levels or GR levels. The CB1 antagonist AM251 (0.3 mg/kg) prevented the ameliorating effects of WIN55,212-2 on LTP and short-term memory. Hence, the beneficial effects of WIN55,212-2 on memory and plasticity are mediated by CB1 receptors and are not mediated by alterations in GR levels in the brain areas tested. Our findings suggest that cannabinoid receptor activation could represent a novel approach to the treatment of cognitive deficits that accompany a variety of stress-related neuropsychiatric disorders.

  8. Conversion of short-term to long-term memory in the novel object recognition paradigm.

    Science.gov (United States)

    Moore, Shannon J; Deshpande, Kaivalya; Stinnett, Gwen S; Seasholtz, Audrey F; Murphy, Geoffrey G

    2013-10-01

    It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Latitudinal Patterns in European Seagrass Carbon Reserves: Influence of Seasonal Fluctuations versus Short-Term Stress and Disturbance Events

    Directory of Open Access Journals (Sweden)

    Laura M. Soissons

    2018-02-01

    Full Text Available Seagrass meadows form highly productive and valuable ecosystems in the marine environment. Throughout the year, seagrass meadows are exposed to abiotic and biotic variations linked to (i seasonal fluctuations, (ii short-term stress events such as, e.g., local nutrient enrichment, and (iii small-scale disturbances such as, e.g., biomass removal by grazing. We hypothesized that short-term stress events and small-scale disturbances may affect seagrass chance for survival in temperate latitudes. To test this hypothesis we focused on seagrass carbon reserves in the form of starch stored seasonally in rhizomes, as these have been defined as a good indicator for winter survival. Twelve Zostera noltei meadows were monitored along a latitudinal gradient in Western Europe to firstly assess the seasonal change of their rhizomal starch content. Secondly, we tested the effects of nutrient enrichment and/or biomass removal on the corresponding starch content by using a short-term manipulative field experiment at a single latitude in the Netherlands. At the end of the growing season, we observed a weak but significant linear increase of starch content along the latitudinal gradient from south to north. This agrees with the contention that such reserves are essential for regrowth after winter, which is more severe in the north. In addition, we also observed a weak but significant positive relationship between starch content at the beginning of the growing season and past winter temperatures. This implies a lower regrowth potential after severe winters, due to diminished starch content at the beginning of the growing season. Short-term stress and disturbances may intensify these patterns, because our manipulative experiments show that when nutrient enrichment and biomass loss co-occurred at the end of the growing season, Z. noltei starch content declined. In temperate zones, the capacity of seagrasses to accumulate carbon reserves is expected to determine carbon

  10. Latitudinal Patterns in European Seagrass Carbon Reserves: Influence of Seasonal Fluctuations versus Short-Term Stress and Disturbance Events

    Science.gov (United States)

    Soissons, Laura M.; Haanstra, Eeke P.; van Katwijk, Marieke M.; Asmus, Ragnhild; Auby, Isabelle; Barillé, Laurent; Brun, Fernando G.; Cardoso, Patricia G.; Desroy, Nicolas; Fournier, Jerome; Ganthy, Florian; Garmendia, Joxe-Mikel; Godet, Laurent; Grilo, Tiago F.; Kadel, Petra; Ondiviela, Barbara; Peralta, Gloria; Puente, Araceli; Recio, Maria; Rigouin, Loic; Valle, Mireia; Herman, Peter M. J.; Bouma, Tjeerd J.

    2018-01-01

    Seagrass meadows form highly productive and valuable ecosystems in the marine environment. Throughout the year, seagrass meadows are exposed to abiotic and biotic variations linked to (i) seasonal fluctuations, (ii) short-term stress events such as, e.g., local nutrient enrichment, and (iii) small-scale disturbances such as, e.g., biomass removal by grazing. We hypothesized that short-term stress events and small-scale disturbances may affect seagrass chance for survival in temperate latitudes. To test this hypothesis we focused on seagrass carbon reserves in the form of starch stored seasonally in rhizomes, as these have been defined as a good indicator for winter survival. Twelve Zostera noltei meadows were monitored along a latitudinal gradient in Western Europe to firstly assess the seasonal change of their rhizomal starch content. Secondly, we tested the effects of nutrient enrichment and/or biomass removal on the corresponding starch content by using a short-term manipulative field experiment at a single latitude in the Netherlands. At the end of the growing season, we observed a weak but significant linear increase of starch content along the latitudinal gradient from south to north. This agrees with the contention that such reserves are essential for regrowth after winter, which is more severe in the north. In addition, we also observed a weak but significant positive relationship between starch content at the beginning of the growing season and past winter temperatures. This implies a lower regrowth potential after severe winters, due to diminished starch content at the beginning of the growing season. Short-term stress and disturbances may intensify these patterns, because our manipulative experiments show that when nutrient enrichment and biomass loss co-occurred at the end of the growing season, Z. noltei starch content declined. In temperate zones, the capacity of seagrasses to accumulate carbon reserves is expected to determine carbon-based regrowth

  11. Evidence-based modelling of diverse plant water use strategies on stomatal and non-stomatal components under drought

    Science.gov (United States)

    zhou, S.; Prentice, C.; Medlyn, B. E.; Sabaté, S.

    2013-12-01

    , and gm values under well-watered conditions, while sclerophylls having a lower sensitivity of g1, apparent Vcmax, and gm to drought, and tending to maintain more open stomata and higher apparent Vcmax and gm under dry conditions. Besides the genus-level consistence on contrasting response patterns between species of different hydro-climates, apparent Vcmax was found almost universally to decrease with the same extent that could be explained by the reduction in gm, implying little change in Vcmax with increasing water stress. This novel founding was confirmed with Vcmax data fitted from net CO2 assimilation rate versus chloroplastic CO2 concentration (A-Cc) curves. This experimental study on two plant genera draws firm conclusions for modeling: (1) stomatal and non-stomatal limitations to photosynthesis must both be considered for the short-term response to drought, (2) species adapted to arid climate respond very differently from others, and (3) apparent Vcmax and gm respond consistent with each other, but very differently from Vcmax, which could barely change during short-term drought.

  12. Drought occurence

    Science.gov (United States)

    John W. Coulston

    2007-01-01

    Why Is Drought Important? Drought is an important forest disturbance that occurs regularly in the Western United States and irregularly in the Eastern United States (Dale and others 2001). Moderate drought stress tends to slow plant growth while severedrought stress can also reduce photosynthesis (Kareiva and others 1993). Drought can also interact with...

  13. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding

    Directory of Open Access Journals (Sweden)

    Arindam Ghatak

    2017-06-01

    Full Text Available Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet.

  14. Physiological and biochemical responses of Hibiscus sabdariffa to drought stress in the presence of salicylic acid

    Directory of Open Access Journals (Sweden)

    Marzieh Mirshekari

    2017-08-01

    Salicylic acid (SA is one of the important signal molecules, which modulates plant responses to environmental stress. In the present work, impact of exogenous SA on some physiological and biochemical traits of Hibiscus sabdariffa in response to drought stress was studied. Hibiscus sabdariffa seedlings were exposed to six drought levels (0, -0.05, -0.1, -0.5, -0.75, and 1 MPa with two SA concentrations (0 and 500 µM in 5 days intervals up to 20 days in a factorial design. During drought stress period, the root and shoot growth, relative water content, pigments content, non-reducing sugar and starch content was significantly decreased. SA treatment cause prevention of the growth reduction and improvement of relative water content. Protein concentration was roughly unchanged during drought stress with SA, while, reducing sugars accumulates and non-reducing sugars and starch significantly decreases. The results show that exogenous SA application on leaves during drought stress can ameliorate detrimental effects of stress through reducing water loss and accumulating reducing sugars, which cause preserving turgor pressure of the cells.

  15. The shifting influence of drought and heat stress for crops in northeast Australia.

    Science.gov (United States)

    Lobell, David B; Hammer, Graeme L; Chenu, Karine; Zheng, Bangyou; McLean, Greg; Chapman, Scott C

    2015-11-01

    Characterization of drought environment types (ETs) has proven useful for breeding crops for drought-prone regions. Here, we consider how changes in climate and atmospheric carbon dioxide (CO2 ) concentrations will affect drought ET frequencies in sorghum and wheat systems of northeast Australia. We also modify APSIM (the Agricultural Production Systems Simulator) to incorporate extreme heat effects on grain number and weight, and then evaluate changes in the occurrence of heat-induced yield losses of more than 10%, as well as the co-occurrence of drought and heat. More than six million simulations spanning representative locations, soil types, management systems, and 33 climate projections led to three key findings. First, the projected frequency of drought decreased slightly for most climate projections for both sorghum and wheat, but for different reasons. In sorghum, warming exacerbated drought stresses by raising the atmospheric vapor pressure deficit and reducing transpiration efficiency (TE), but an increase in TE due to elevated CO2 more than offset these effects. In wheat, warming reduced drought stress during spring by hastening development through winter and reducing exposure to terminal drought. Elevated CO2 increased TE but also raised radiation-use efficiency and overall growth rates and water use, thereby offsetting much of the drought reduction from warming. Second, adding explicit effects of heat on grain number and grain size often switched projected yield impacts from positive to negative. Finally, although average yield losses associated with drought will remain generally higher than that for heat stress for the next half century, the relative importance of heat is steadily growing. This trend, as well as the likely high degree of genetic variability in heat tolerance, suggests that more emphasis on heat tolerance is warranted in breeding programs. At the same time, work on drought tolerance should continue with an emphasis on drought that co

  16. Evaluation of drought tolerance and yield capacity of barley (hordeum vulgare) genotypes under irrigated and water-stressed conditions

    International Nuclear Information System (INIS)

    Khokhar, M.I.; Silva, J.A.T.D

    2012-01-01

    Twelve barley genotypes developed through different selection methods were evaluated under drought and irrigated conditions. The results of a correlation matrix revealed highly significant associations between Grain Yield (Yp) and Mean Productivity (MP), Stress Tolerance Index (STI), Geometric Mean Productivity (GMP) and Yield Index (Yi) under irrigated conditions while the Mean Productivity (MP), Yield Stability Index (Yi), Stress Tolerance Index (STI), Geometric Mean Productivity (GMP) and Yield Index (Yi) had a high response under stressed condition. Based on a principal component analysis, Geometric Mean Productivity (GMP), Mean Productivity (MP) and Stress Tolerance Index (STI) were considered to be the best parameters for selection of drought-tolerant genotypes. The 2-row barley genotypes B-07023 and B-07021 performed better in yield response under drought conditions and were more stable under stress conditions. Furthermore, drought stress reduced the yield of some genotypes while others were tolerant to drought, suggesting genetic variability in this material for drought tolerance. (author)

  17. Proteome Analysis for Understanding Abiotic Stress (Salinity and Drought Tolerance in Date Palm (Phoenix dactylifera L.

    Directory of Open Access Journals (Sweden)

    Haddad A. El Rabey

    2015-01-01

    Full Text Available This study was carried out to study the proteome of date palm under salinity and drought stress conditions to possibly identify proteins involved in stress tolerance. For this purpose, three-month-old seedlings of date palm cultivar “Sagie” were subjected to drought (27.5 g/L polyethylene glycol 6000 and salinity stress conditions (16 g/L NaCl for one month. DIGE analysis of protein extracts identified 47 differentially expressed proteins in leaves of salt- and drought-treated palm seedlings. Mass spectrometric analysis identified 12 proteins; three out of them were significantly changed under both salt and drought stress, while the other nine were significantly changed only in salt-stressed plants. The levels of ATP synthase alpha and beta subunits, an unknown protein and some of RubisCO fragments were significantly changed under both salt and drought stress conditions. Changes in abundance of superoxide dismutase, chlorophyll A-B binding protein, light-harvesting complex1 protein Lhca1, RubisCO activase, phosphoglycerate kinase, chloroplast light-harvesting chlorophyll a/b-binding protein, phosphoribulokinase, transketolase, RubisCO, and some of RubisCO fragments were significant only for salt stress.

  18. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms.

    Science.gov (United States)

    Anderegg, Leander D L; HilleRisLambers, Janneke

    2016-03-01

    Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine - Pinus ponderosa) and angiosperm (trembling aspen - Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree-to-tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area-to-sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms - a result that has important implications for process-based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of

  19. Transcriptome Expression Profiling in Response to Drought Stress in Paulownia australis

    Directory of Open Access Journals (Sweden)

    Yanpeng Dong

    2014-03-01

    Full Text Available The response and adaptation to drought remains poorly understood for Paulownia australis. To investigate this issue, transcriptome profiling of four P. australis accessions (two diploid and the other two autotetraploid under water stress condition were studied using Illumina Genome Analyzer IIx analysis. The current study aimed to identify genes of P. australis metabolism pathways that might be involved in this plant’s response to water deficit. Potted seedlings were subjected to well-watered conditions and drought stress, respectively. More than 290 million raw transcript reads were assembled into 111,660 unigenes, with a mean length of 1013 bp. Clusters of orthologous groups, gene ontology and the Kyoto Encyclopedia of Genes and Genomes annotations analyses were performed on the unigenes. Many differentially expressed genes and several metabolic pathways were identified. Quantitative real-time polymerase chain reaction was used to verify the expression patterns of 14 genes. Our study identified altered gene expression in P. australis induced by drought stress and provided a comprehensive map of drought-responsive genes and pathways in this species. To our knowledge, this is the first publicly available global transcriptome study of P. australis. This study provides a valuable genetic resource for this species.

  20. A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs.

    Science.gov (United States)

    Liu, Fan; Celi, Pietro; Chauhan, Surinder Singh; Cottrell, Jeremy James; Leury, Brian Joseph; Dunshea, Frank Rowland

    2018-02-01

    Heat stress (HS) triggers oxidative stress and respiratory alkalosis in pigs. The objective of this experiment was to study whether a short-term supranutritional amount of dietary vitamin E (VE) can mitigate oxidative stress and respiratory alkalosis in heat-stressed pigs. A total of 24 pigs were given either a control diet (17 IU/kg VE) or a high VE (200 IU/kg VE; HiVE) diet for 14 d, then exposed to thermoneutral (TN; 20°C, 45% humidity) or HS (35°C, 35% to 45% humidity, 8 h daily) conditions for 7 d. Respiration rate and rectal temperature were measured three times daily during the thermal exposure. Blood gas variables and oxidative stress markers were studied in blood samples collected on d 7. Although HiVE diet did not affect the elevated rectal temperature or respiration rate observed during HS, it alleviated (all prespiratory alkalosis but did not reduce oxidative stress in heat-stressed pigs.

  1. Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance

    Directory of Open Access Journals (Sweden)

    Kristina L Ford

    2011-09-01

    Full Text Available Using a series of multiplexed experiments we studied the quantitative changes in protein abundance of three Australian bread wheat cultivars (Triticum aestivum L. in response to a drought stress. Three cultivars differing in their ability to maintain grain yield during drought, Kukri (intolerant, Excalibur (tolerant and RAC875 (tolerant, were grown in the glasshouse with cyclic drought treatment that mimicked conditions in the field. Proteins were isolated from leaves of mature plants and isobaric tags were used to follow changes in the relative protein abundance of 159 proteins. This is the first shotgun proteomics study in wheat, providing important insights into protein responses to drought as well as identifying the largest number of wheat proteins (1,299 in a single study. The changes in the three cultivars at the different time points reflected their differing physiological responses to drought, with the two drought tolerant varieties (Excalibur and RAC875 differing in their protein responses. Excalibur lacked significant changes in proteins during the initial onset of the water deficit in contrast to RAC875 that had a large number of significant changes. All three cultivars had changes consistent with an increase in oxidative stress metabolism and ROS scavenging capacity seen through increases in superoxide dismutases and catalases as well as ROS avoidance through the decreases in proteins involved in photosynthesis and the Calvin cycle.

  2. Abscisic acid, a stress hormone helps in improving water relations and yield of sunflower (helianthus annuus l.) hybrids under drought

    International Nuclear Information System (INIS)

    Hussain, S.; Saleem, M.F.; Cheema, M.A.; Ashraf, M.Y.; Haq, M.A.

    2010-01-01

    Genotypic variation in water relations under drought is an important index of studying drought tolerance of crops. Abscisic acid (ABA) application helped in mitigating drought stress by improving water relations and yield. Three sunflower hybrids viz., DK-4040 (tall stature), S-278 (medium stature) and SF-187 (short stature) were subjected to different irrigation and ABA application regimes i.e., four irrigations (25 days after sowing (DAS), at bud initiation, at flower initiation and at achene formation) and with no ABA spray, three irrigations (25 days after sowing, at flower initiation and at achene formation) and with no ABA spray, three irrigations (25 days after sowing, at flower initiation and at achene formation) and with ABA spray at bud initiation, three irrigations (25 days after sowing), at bud initiation and at achene formation) and with no ABA spray, three irrigations (25 days after sowing), at bud initiation and at achene formation) and with ABA spray at flower initiation. The experiment was laid out in randomized complete block design with split plot arrangement and had three replications. Exogenous application of ABA under drought at either stage (bud or flower initiation) was helpful in ameliorating drought stress by improving water relations and yield of sunflower hybrids; however response was better when ABA was applied under drought at bud initiation than at flower initiation stage. Sunflower hybrid DK- 4040 showed better enhancement of drought tolerance by exogenous application of ABA under drought than SF-187 and S-278 because it showed more improvement in water potential, osmotic potential, turgor pressure, relative leaf water contents and achene yield. (author)

  3. Drought-induced trans-generational tradeoff between stress tolerance and defence: consequences for range limits?

    Science.gov (United States)

    Alsdurf, Jacob D; Ripley, Tayler J; Matzner, Steven L; Siemens, David H

    2013-01-01

    Areas just across species range boundaries are often stressful, but even with ample genetic variation within and among range-margin populations, adaptation towards stress tolerance across range boundaries often does not occur. Adaptive trans-generational plasticity should allow organisms to circumvent these problems for temporary range expansion; however, range boundaries often persist. To investigate this dilemma, we drought stressed a parent generation of Boechera stricta (A.Gray) A. Löve & D. Löve, a perennial wild relative of Arabidopsis, representing genetic variation within and among several low-elevation range margin populations. Boechera stricta is restricted to higher, moister elevations in temperate regions where generalist herbivores are often less common. Previous reports indicate a negative genetic correlation (genetic tradeoff) between chemical defence allocation and abiotic stress tolerance that may prevent the simultaneous evolution of defence and drought tolerance that would be needed for range expansion. In growth chamber experiments, the genetic tradeoff became undetectable among offspring sib-families whose parents had been drought treated, suggesting that the stress-induced trans-generational plasticity may circumvent the genetic tradeoff and thus enable range expansion. However, the trans-generational effects also included a conflict between plastic responses (environmental tradeoff); offspring whose parents were drought treated were more drought tolerant, but had lower levels of glucosinolate toxins that function in defence against generalist herbivores. We suggest that either the genetic or environmental tradeoff between defence allocation and stress tolerance has the potential to contribute to range limit development in upland mustards.

  4. Does stress affect the joints? Daily stressors, stress vulnerability, immune and HPA axis activity, and short-term disease and symptom fluctuations in rheumatoid arthritis.

    Science.gov (United States)

    Evers, Andrea W M; Verhoeven, Elisabeth W M; van Middendorp, Henriët; Sweep, Fred C G J; Kraaimaat, Floris W; Donders, A Rogier T; Eijsbouts, Agnes E; van Laarhoven, Antoinette I M; de Brouwer, Sabine J M; Wirken, Lieke; Radstake, Timothy R D J; van Riel, Piet L C M

    2014-09-01

    Both stressors and stress vulnerability factors together with immune and hypothalamus-pituitary-adrenal (HPA) axis activity components have been considered to contribute to disease fluctuations of chronic inflammatory diseases, such as rheumatoid arthritis (RA). The aim of the present study was to investigate whether daily stressors and worrying as stress vulnerability factor as well as immune and HPA axis activity markers predict short-term disease activity and symptom fluctuations in patients with RA. In a prospective design, daily stressors, worrying, HPA axis (cortisol) and immune system (interleukin (IL)-1β, IL-6, IL-8, interferon (IFN)-γ, tumour necrosis factor α) markers, clinical and self-reported disease activity (disease activity score in 28 joints, RA disease activity index), and physical symptoms of pain and fatigue were monitored monthly during 6 months in 80 RA patients. Multilevel modelling indicated that daily stressors predicted increased fatigue in the next month and that worrying predicted increased self-reported disease activity, swollen joint count and pain in the next month. In addition, specific cytokines of IL-1β and IFN-γ predicted increased fatigue 1 month later. Overall, relationships remained relatively unchanged after controlling for medication use, disease duration and demographic variables. No evidence was found for immune and HPA axis activity markers as mediators of the stress-disease relationship. Daily stressors and the stress-vulnerability factor worrying predict indicators of the short-term course of RA disease activity and fatigue and pain, while specific cytokines predict short-term fluctuations of fatigue. These stress-related variables and immune markers seem to affect different aspects of disease activity or symptom fluctuations independently in RA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Effect of terminal drought stress on morpho-physiological traits of wheat genotypes

    International Nuclear Information System (INIS)

    Baloch, M.J.; Chandio, I.A.

    2016-01-01

    Development of wheat varieties with low moisture requirements and their ability to withstand moisture stress may cope-up well with the on-coming peril of drought conditions. Ten wheat genotypes including two new strains, PBGST-3, Hero, Bhittai, Marvi, Inqlab, Sarsabz, Abadgar, Kiran, Khirman and PBGST-4 were sown in split plot design with factorial arrangement in four replications at Experimental Field, Department of Plant Breeding and Genetics, Sindh Agricutlure University, Pakistan during 2012-13. The results revealed that water stress caused significant reductions in all morpho-physiological traits. The genotypes differed significantly for all the yield and physiological traits. The interaction of treatments * genotypes were also significant for all the traits except plant height, productive tillers/plant, grains/spike and harvest index, were non-significant which indicated that cultivars responded variably over the stress treatments suggesting that breeders can select the promising genotypes for both stress and non-stress environments. Among the genotypes evaluated Bhittai, Kiran-95, PBGST-3 and Sarsabz showed good performance as minimum reductions occurred under terminal stress conditions for all the traits studied. Hence, above mentioned genotypes were considered as drought tolerant group. The high positive correlations of physiological traits like chlorophyll content and relative water content with almost all yield traits indicated that these physiological traits could serve as reliable criteria for breeding drought tolerance in wheat. The negative correlations of electrolyte leakage with several important yield traits indicated that though this physiological trait has adverse effect on yield attributes, yet it could reliably be used to distinguish between drought tolerant and susceptible wheat genotypes. (author)

  6. Short- and long-term antidepressant effects of ketamine in a rat chronic unpredictable stress model.

    Science.gov (United States)

    Jiang, Yinghong; Wang, Yiqiang; Sun, Xiaoran; Lian, Bo; Sun, Hongwei; Wang, Gang; Du, Zhongde; Li, Qi; Sun, Lin

    2017-08-01

    This research was aimed to evaluate the behaviors of short- or long-term antidepressant effects of ketamine in rats exposed to chronic unpredictable stress (CUS). Ketamine, a glutamate noncompetitive NMDA receptor antagonist, regulates excitatory amino acid functions, such as anxiety disorders and major depression, and plays an important role in synaptic plasticity and learning and memory. After 42 days of CUS model, male rats received either a single injection of ketamine (10 mg/kg; day 43) or 15 daily injections (days 43-75). The influence of ketamine on behavioral reactivity was assessed 24 hr (short-term) or 7 weeks after ketamine treatment (long-term). Behavioral tests used to assess the effects of these treatments included the sucrose preference (SP), open field (OF), elevated plus maze (EPM), forced swimming (FS), and water maze (WM) to detect anxiety-like behavior (OF and EPM), forced swimming (FS), and water maze (WM). Results: Short-term ketamine administration resulted in increases of body weight gain, higher sensitivity to sucrose, augmented locomotor activity in the OF, more entries into the open arms of the EPM, along increased activity in the FS test; all responses indicative of reductions in depression/despair in anxiety-eliciting situations. No significant differences in these behaviors were obtained under conditions of long-term ketamine administration ( p  > .05). The CUS + Ketamine group showed significantly increased activity as compared with the CUS + Vehicle group for analysis of the long-term effects of ketamine (* p   .05). Taken together these findings demonstrate that a short-term administration of ketamine induced rapid antidepressant-like effects in adult male rats exposed to CUS conditions, effects that were not observed in response to the long-term treatment regime.

  7. Elevated CO(2) and drought stress effects on the chemical composition of maize plants, their ruminal fermentation and microbial diversity in vitro.

    Science.gov (United States)

    Meibaum, Birgit; Riede, Susanne; Schröder, Bernd; Manderscheid, Remy; Weigel, Hans-Joachim; Breves, Gerhard

    2012-12-01

    Climate changes are supposed to influence productivity and chemical composition of plants. In the present experiments, it was hypothesised that the incubation of plants exposed to elevated atmospheric carbon dioxide concentrations ([CO₂]) and drought stress will result in different ruminal fermentation pattern and microbial diversity compared to unaffected plants. Maize plants were grown, well-watered under ambient (380 ppm CO₂, Variant A) and elevated [CO₂] (550 ppm CO₂, Variant B). Furthermore, each CO₂ treatment was also exposed to drought stress (380 ppm and 550 ppm CO₂,Variants C and D, respectively), which received only half as much water as the well-watered plants. Plant material from these treatments was incubated in a semi-continuous in vitro fermentation experiment using the rumen simulation technique. Single strand conformation polymorphism (SSCP) analysis was conducted for Bacteria and Archaea specific profiles. The analysis of crude nutrients showed higher contents of fibre fraction in drought stress Variants C and D. Crude protein content was increased by drought stress under ambient but not under elevated [CO₂]. Fermentation of drought stress variants resulted in significantly increased pH values, decreased digestibilities of organic matter and increased ammonia-N (NH₃-N) concentrations compared with well-watered variants. Additionally, the 550 ppm CO₂ Variants B and D showed significantly lower NH₃-N concentrations than Variants A and C. The Bacteria- and Archaea-specific SSCP profiles as well as the production rates of short-chain fatty acids and their molar percentages were not affected by treatments. During the first four days of equilibration period, a decrease of molar percentage of acetate and increased molar percentages of propionate were observed for all treatments. These alterations might have been induced by adaptation of the in vitro system to the new substrate. The rumen microflora appeared to be highly adaptive and

  8. Effects of drought stress on global gene expression profile in leaf and root samples of Dongxiang wild rice (Oryza rufipogon).

    Science.gov (United States)

    Zhang, Fantao; Zhou, Yi; Zhang, Meng; Luo, Xiangdong; Xie, Jiankun

    2017-06-30

    Drought is a serious constraint to rice production throughout the world, and although Dongxiang wild rice ( Oryza rufipogon , DXWR) possesses a high degree of drought resistance, the underlying mechanisms of this trait remains unclear. In the present study, cDNA libraries were constructed from the leaf and root tissues of drought-stressed and untreated DXWR seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in drought-stress response. The results indicated that 11231 transcripts were differentially expressed in the leaves (4040 up-regulated and 7191 down-regulated) and 7025 transcripts were differentially expressed in the roots (3097 up-regulated and 3928 down-regulated). Among these differentially expressed genes (DEGs), the detection of many transcriptional factors and functional genes demonstrated that multiple regulatory pathways were involved in drought resistance. Meanwhile, the DEGs were also annotated with gene ontology (GO) terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway mapping, respectively. A set of the most interesting candidate genes was then identified by combining the DEGs with previously identified drought-resistant quantitative trait loci (QTL). The present work provides abundant genomic information for functional dissection of the drought resistance of DXWR, and findings will further help the current understanding of the biological regulatory mechanisms of drought resistance in plants and facilitate the breeding of new drought-resistant rice cultivars. © 2017 The Author(s).

  9. Evaluation of some advanced wheat lines (F7 in normal and drought stress conditions

    Directory of Open Access Journals (Sweden)

    R. Nikseresht

    2016-05-01

    Full Text Available For assessment of drought stress effects on agro characteristics of 30 lines and 6 wheat cultivars and for introducing of drought tolerant and susceptible ones one trial were established using split plot base of randomized complete block design with two replications, main plots were stress and non-stress condition and sub plots contain 30 lines and six wheat cultivars in the check trial, irrigation the farm was done with the normal regime, but in stress trial for germination of seeds and one irrigation in Isfand to the end of rooting the farm was irrigated. Within and end of growth season we measured some agronomic and morphological characters such as yield and its component, height, peduncle length, and etc. Responses of cultivars under stress and non-stress conditions were' different, for example drought stress reduced yield. In spite of this general yield reducing, we found some line, such as 2, 29, 23 had relatively high yield (in tree levels. In order to final evaluate using Factor Analysis, Principal Component, Cluster Analysis .Factor Analysis indicated that four important factors accounted for about 80.245 and 79.624 percent of the total variation among traits in normal and drought stress conditions. With cluster analysis of 36 lines and cultivar using Ward procedure based on Euclidean distance were grouped in 4 distance cluster.

  10. Comparative physiological and proteomic responses to drought stress in two poplar species originating from different altitudes.

    Science.gov (United States)

    Yang, Fan; Wang, Yong; Miao, Ling-Feng

    2010-08-01

    Cuttings of Populus kangdingensis C. Wang et Tung and Populus cathayana Rehder were examined during a single growing season in a greenhouse for comparative analysis of their physiological and proteomic responses to drought stress. The said species originate from high and low altitudes, respectively, of the eastern Himalaya. Results revealed that the adaptive responses to drought stress vary between the two poplar species. As a consequence of drought stress, the stem height increment and leaf number increment are more significantly inhibited in P. cathayana compared with P. kangdingensis. On the other hand, in response to drought stress, more significant cellular damages such as reduction in leaf relative water content and CO(2) assimilation rate, increments in the contents of malondialdehyde and hydrogen peroxide and downregulation or degradation of proteins related to photosynthesis occur in P. cathayana compared with P. kangdingensis. On the other hand, P. kangdingensis can cope better with the negative impact on the entire regulatory network. This includes more efficient increases in content of solute sugar, soluble protein and free proline and activities of antioxidant enzymes, as well as specific expressions of certain proteins related to protein processing, redox homeostasis and sugar metabolism. Morphological consequences as well as physiological and proteomic responses to drought stress between species revealed that P. kangdingensis originating from a high altitude manifest stronger drought adaptation than did P. cathayana originating from a low altitude. Functions of various proteins identified by proteomic experiment are related with physiological phenomena. Physiological and proteomic responses to drought stress in poplar may work cooperatively to establish a new cellular homeostasis, allowing poplar to develop a certain level of drought tolerance.

  11. Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems

    Science.gov (United States)

    Nahar, Kamrun; Hasanuzzaman, Mirza; Alam, Md. Mahabub; Fujita, Masayuki

    2015-01-01

    Drought is considered one of the most acute environmental stresses presently affecting agriculture. We studied the role of exogenous glutathione (GSH) in conferring drought stress tolerance in mung bean (Vigna radiata L. cv. Binamoog-1) seedlings by examining the antioxidant defence and methylglyoxal (MG) detoxification systems and physiological features. Six-day-old seedlings were exposed to drought stress (−0.7 MPa), induced by polyethylene glycol alone and in combination with GSH (1 mM) for 24 and 48 h. Drought stress decreased seedling dry weight and leaf area; resulted in oxidative stress as evidenced by histochemical detection of hydrogen peroxide (H2O2) and O2⋅− in the leaves; increased lipid peroxidation (malondialdehyde), reactive oxygen species like H2O2 content and O2⋅− generation rate and lipoxygenase activity; and increased the MG level. Drought decreased leaf succulence, leaf chlorophyll and relative water content (RWC); increased proline (Pro); decreased ascorbate (AsA); increased endogenous GSH and glutathione disulfide (GSSG) content; decreased the GSH/GSSG ratio; increased ascorbate peroxidase and glutathione S-transferase activities; and decreased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase. The activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) increased due to drought stress. In contrast to drought stress alone, exogenous GSH enhanced most of the components of the antioxidant and glyoxalase systems in drought-affected mung bean seedlings at 24 h, but GSH did not significantly affect AsA, Pro, RWC, leaf succulence and the activities of Gly I and DHAR after 48 h of stress. Thus, exogenous GSH supplementation with drought significantly enhanced the antioxidant components and successively reduced oxidative damage, and GSH up-regulated the glyoxalase system and reduced MG toxicity, which played a significant role in improving the physiological features and drought

  12. Modeling drought impact occurrence based on climatological drought indices for four European countries

    Science.gov (United States)

    Stagge, James H.; Kohn, Irene; Tallaksen, Lena M.; Stahl, Kerstin

    2014-05-01

    The relationship between atmospheric conditions and the likelihood of a significant drought impact has, in the past, been difficult to quantify, particularly in Europe where political boundaries and language have made acquiring comprehensive drought impact information difficult. As such, the majority of studies linking meteorological drought with the occurrence or severity of drought impacts have previously focused on specific regions, very detailed impact types, or both. This study describes a new methodology to link the likelihood of drought impact occurrence with climatological drought indices across different European climatic regions and impact sectors using the newly developed European Drought Impact report Inventory (EDII), a collaborative database of drought impact information (www.geo.uio.no/edc/droughtdb/). The Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI) are used as predictor variables to quantify meteorological drought severity over prior time periods (here 1, 2, 3, 6, 9, 12, and 24 months are used). The indices are derived using the gridded WATCH Forcing Datasets, covering the period 1958-2012. Analysis was performed using logistic regression to identify the climatological drought index and accumulation period, or linear combination of drought indices, that best predicts the likelihood of a documented drought impact, defined by monthly presence/absence. The analysis was carried out for a subset of four European countries (Germany, UK, Norway, Slovenia) and four of the best documented impact sectors: Public Water Supply, Agriculture and Livestock Farming, Energy and Industry, and Environmental Quality. Preliminary results show that drought impacts in these countries occur most frequently due to a combination of short-term (2-6 month) precipitation deficits and long-term (12-24 month) potential evapotranspiration anomaly, likely associated with increased temperatures. Agricultural drought impacts

  13. Does the stress response predict the ability of wild birds to adjust to short-term captivity? A study of the rock pigeon (Columbia livia).

    Science.gov (United States)

    Angelier, Frédéric; Parenteau, Charline; Trouvé, Colette; Angelier, Nicole

    2016-12-01

    Although the transfer of wild animals to captivity is crucial for conservation purposes, this process is often challenging because some species or individuals do not adjust well to captive conditions. Chronic stress has been identified as a major concern for animals held on long-term captivity. Surprisingly, the first hours or days of captivity have been relatively overlooked. However, they are certainly very stressful, because individuals are being transferred to a totally novel and confined environment. To ensure the success of conservation programmes, it appears crucial to better understand the proximate causes of interspecific and interindividual variability in the sensitivity to these first hours of captivity. In that respect, the study of stress hormones is relevant, because the hormonal stress response may help to assess whether specific individuals or species adjust, or not, to such captive conditions ('the stress response-adjustment to captivity hypothesis'). We tested this hypothesis in rock pigeons by measuring their corticosterone stress response and their ability to adjust to short-term captivity (body mass loss and circulating corticosterone levels after a day of captivity). We showed that an increased corticosterone stress response is associated with a lower ability to adjust to short-term captivity (i.e. higher body mass loss and circulating corticosterone levels). Our study suggests, therefore, that a low physiological sensitivity to stress may be beneficial for adjusting to captivity. Future studies should now explore whether the stress response can be useful to predict the ability of individuals from different populations or species to not only adjust to short-term but also long-term captivity.

  14. Deep ECGNet: An Optimal Deep Learning Framework for Monitoring Mental Stress Using Ultra Short-Term ECG Signals.

    Science.gov (United States)

    Hwang, Bosun; You, Jiwoo; Vaessen, Thomas; Myin-Germeys, Inez; Park, Cheolsoo; Zhang, Byoung-Tak

    2018-02-08

    Stress recognition using electrocardiogram (ECG) signals requires the intractable long-term heart rate variability (HRV) parameter extraction process. This study proposes a novel deep learning framework to recognize the stressful states, the Deep ECGNet, using ultra short-term raw ECG signals without any feature engineering methods. The Deep ECGNet was developed through various experiments and analysis of ECG waveforms. We proposed the optimal recurrent and convolutional neural networks architecture, and also the optimal convolution filter length (related to the P, Q, R, S, and T wave durations of ECG) and pooling length (related to the heart beat period) based on the optimization experiments and analysis on the waveform characteristics of ECG signals. The experiments were also conducted with conventional methods using HRV parameters and frequency features as a benchmark test. The data used in this study were obtained from Kwangwoon University in Korea (13 subjects, Case 1) and KU Leuven University in Belgium (9 subjects, Case 2). Experiments were designed according to various experimental protocols to elicit stressful conditions. The proposed framework to recognize stress conditions, the Deep ECGNet, outperformed the conventional approaches with the highest accuracy of 87.39% for Case 1 and 73.96% for Case 2, respectively, that is, 16.22% and 10.98% improvements compared with those of the conventional HRV method. We proposed an optimal deep learning architecture and its parameters for stress recognition, and the theoretical consideration on how to design the deep learning structure based on the periodic patterns of the raw ECG data. Experimental results in this study have proved that the proposed deep learning model, the Deep ECGNet, is an optimal structure to recognize the stress conditions using ultra short-term ECG data.

  15. Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil.

    Science.gov (United States)

    Armada, Elisabeth; Roldán, Antonio; Azcon, Rosario

    2014-02-01

    The effectiveness of autochthonous plant growth-promoting rhizobacteria was studied in Lavandula dentata and Salvia officinalis growing in a natural arid Mediterranean soil under drought conditions. These bacteria identified as Bacillus megaterium (Bm), Enterobacter sp. (E), Bacillus thuringiensis (Bt), and Bacillus sp. (Bsp). Each bacteria has different potential to meliorate water limitation and alleviating drought stress in these two plant species. B. thuringiensis promoted growth and drought avoidance in Lavandula by increasing K content, by depressing stomatal conductance, and it controlled shoot proline accumulation. This bacterial effect on increasing drought tolerance was related to the decrease of glutathione reductase (GR) and ascorbate peroxidase (APX) that resulted sensitive indexes of lower cellular oxidative damage involved in the adaptative drought response in B. thuringiensis-inoculated Lavandula plants. In contrast, in Salvia, having intrinsic lower shoot/root ratio, higher stomatal conductance and lower APX and GR activities than Lavandula, the bacterial effects on nutritional, physiological and antioxidant enzymatic systems were lower. The benefit of bacteria depended on intrinsic stress tolerance of plant involved. Lavadula demonstrated a greater benefit than Salvia to control drought stress when inoculated with B. thuringiensis. The bacterial drought tolerance assessed as survival, proline, and indolacetic acid production showed the potential of this bacteria to help plants to grow under drought conditions. B. thuringiensis may be used for Lavandula plant establishment in arid environments. Particular characteristic of the plant species as low shoot/root ratio and high stomatal conductance are important factors controlling the bacterial effectiveness improving nutritional, physiological, and metabolic plant activities.

  16. Screening of drought oxidative stress tolerance in Serbian ...

    African Journals Online (AJOL)

    This study was designed to examine and compare antioxidant and free-radical scavenging activities of leaves of six different melliferous plant species (Populus alba, Robinia pseudoacacia, Sophora japonica, Euodia hupehensis, Tilia sp., Fraxinus sp.) from Serbia in order to evaluate their drought oxidative stress tolerance.

  17. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.

    Science.gov (United States)

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-02-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  18. Short-term and long-term earthquake occurrence models for Italy: ETES, ERS and LTST

    Directory of Open Access Journals (Sweden)

    Maura Murru

    2010-11-01

    Full Text Available This study describes three earthquake occurrence models as applied to the whole Italian territory, to assess the occurrence probabilities of future (M ≥5.0 earthquakes: two as short-term (24 hour models, and one as long-term (5 and 10 years. The first model for short-term forecasts is a purely stochastic epidemic type earthquake sequence (ETES model. The second short-term model is an epidemic rate-state (ERS forecast based on a model that is physically constrained by the application to the earthquake clustering of the Dieterich rate-state constitutive law. The third forecast is based on a long-term stress transfer (LTST model that considers the perturbations of earthquake probability for interacting faults by static Coulomb stress changes. These models have been submitted to the Collaboratory for the Study of Earthquake Predictability (CSEP for forecast testing for Italy (ETH-Zurich, and they were locked down to test their validity on real data in a future setting starting from August 1, 2009.

  19. Synergistic effects of drought stress and photoperiods on phenology and secondary metabolism of Silybum marianum.

    Science.gov (United States)

    Zahir, Adnan; Abbasi, Bilal Haider; Adil, Muhammad; Anjum, Sumaira; Zia, Muhammad; Ihsan-Ul-Haq

    2014-09-01

    Silybum marianum is an important medicinal plant of the family Asteraceae, well known for its set of bioactive isomeric mixture of secondary metabolites "silymarin", primarily acting as a hepato-protective agent. Abiotic stress augments plant secondary metabolism in different plant tissues to withstand harsh environmental fluctuations. In the current study, our aim was to induce drought stress in vitro on S. marianum under the influence of different photoperiod treatments to study the effects, with respect to variations in secondary metabolic profile and plant growth and development. S. marianum was extremely vulnerable to different levels of mannitol-induced drought stress. Water deficiency inhibited root induction completely and retarded plant growth was observed; however, phytochemical analysis revealed enhanced accumulation of total phenolic content (TPC), total flavonoid content (TFC), and total protein content along with several antioxidative enzymes. Secondary metabolic content was positively regulated with increasing degree of drought stress. A dependent correlation of seed germination frequency at mild drought stress and antioxidative activities was established with 2 weeks dark + 2 weeks 16/8 h photoperiod treatment, respectively, whereas a positive correlation existed for TPC and TFC when 4 weeks 16/8 h photoperiod treatment was applied. The effects of drought stress are discussed in relation to phenology, seed germination frequency, biomass build up, antioxidative potential, and secondary metabolites accumulation.

  20. Drought stress affects plant metabolites and herbivore preference but not host location by its parasitoids

    NARCIS (Netherlands)

    Weldegergis, B.T.; Zhu, F.; Poelman, E.H.; Dicke, M.

    2015-01-01

    One of the main abiotic stresses that strongly affects plant survival and the primary cause of crop loss around the world is drought. Drought stress leads to sequential morphological, physiological, biochemical and molecular changes that can have severe effects on plant growth, development and

  1. Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts

    Science.gov (United States)

    Wertin, Timothy M.; Phillips, Susan L.; Reed, Sasha C.; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts) are critical components of arid and semi-arid ecosystems that contribute significantly to carbon (C) and nitrogen (N) fixation, water retention, soil stability, and seedling recruitment. While dry-land ecosystems face a number of environmental changes, our understanding of how biocrusts may respond to such perturbation remains notably poor. To determine the effect that elevated CO2 may have on biocrust composition, cover, and function, we measured percent soil surface cover, effective quantum yield, and pigment concentrations of naturally occurring biocrusts growing in ambient and elevated CO2 at the desert study site in Nevada, USA, from spring 2005 through spring 2007. During the experiment, a year-long drought allowed us to explore the interacting effects that elevated CO2 and water availability may have on biocrust cover and function. We found that, regardless of CO2 treatment, precipitation was the major regulator of biocrust cover. Drought reduced moss and lichen cover to near-zero in both ambient and elevated CO2 plots, suggesting that elevated CO2 did not alleviate water stress or increase C fixation to levels sufficient to mitigate drought-induced reduction in cover. In line with this result, lichen quantum yield and soil cyanobacteria pigment concentrations appeared more strongly dependent upon recent precipitation than CO2 treatment, although we did find evidence that, when hydrated, elevated CO2 increased lichen C fixation potential. Thus, an increase in atmospheric CO2 may only benefit biocrusts if overall climate patterns shift to create a wetter soil environment.

  2. Overexpression of EcbHLH57 Transcription Factor from Eleusine coracana L. in Tobacco Confers Tolerance to Salt, Oxidative and Drought Stress.

    Directory of Open Access Journals (Sweden)

    K C Babitha

    Full Text Available Basic helix-loop-helix (bHLH transcription factors constitute one of the largest families in plants and are known to be involved in various developmental processes and stress tolerance. We report the characterization of a stress responsive bHLH transcription factor from stress adapted species finger millet which is homologous to OsbHLH57 and designated as EcbHLH57. The full length sequence of EcbHLH57 consisted of 256 amino acids with a conserved bHLH domain followed by leucine repeats. In finger millet, EcbHLH57 transcripts were induced by ABA, NaCl, PEG, methyl viologen (MV treatments and drought stress. Overexpression of EcbHLH57 in tobacco significantly increased the tolerance to salinity and drought stress with improved root growth. Transgenic plants showed higher photosynthetic rate and stomatal conductance under drought stress that resulted in higher biomass. Under long-term salinity stress, the transgenic plants accumulated higher seed weight/pod and pod number. The transgenic plants were also tolerant to oxidative stress and showed less accumulation of H202 and MDA levels. The overexpression of EcbHLH57 enhanced the expression of stress responsive genes such as LEA14, rd29A, rd29B, SOD, APX, ADH1, HSP70 and also PP2C and hence improved tolerance to diverse stresses.

  3. Overexpression of CaDSR6 increases tolerance to drought and salt stresses in transgenic Arabidopsis plants.

    Science.gov (United States)

    Kim, Eun Yu; Seo, Young Sam; Park, Ki Youl; Kim, Soo Jin; Kim, Woo Taek

    2014-11-15

    The partial CaDSR6 (Capsicum annuum Drought Stress Responsive 6) cDNA was previously identified as a drought-induced gene in hot pepper root tissues. However, the cellular role of CaDSR6 with regard to drought stress tolerance was unknown. In this report, full-length CaDSR6 cDNA was isolated. The deduced CaDSR6 protein was composed of 234 amino acids and contained an approximately 30 amino acid-long Asp-rich domain in its central region. This Asp-rich domain was highly conserved in all plant DSR6 homologs identified and shared a sequence identity with the N-terminal regions of yeast p23(fyp) and human hTCTP, which contain Rab protein binding sites. Transgenic Arabidopsis plants overexpressing CaDSR6 (35S:CaDSR6-sGFP) were tolerant to high salinity, as identified by more vigorous root growth and higher levels of total chlorophyll than wild type plants. CaDSR6-overexpressors were also more tolerant to drought stress compared to wild type plants. The 35S:CaDSR6-sGFP leaves retained their water content and chlorophyll more efficiently than wild type leaves in response to dehydration stress. The expression of drought-induced marker genes, such as RD20, RD22, RD26, RD29A, RD29B, RAB18, KIN2, ABF3, and ABI5, was markedly increased in CaDSR6-overexpressing plants relative to wild type plants under both normal and drought conditions. These results suggest that overexpression of CaDSR6 is associated with increased levels of stress-induced genes, which, in turn, conferred a drought tolerant phenotype in transgenic Arabidopsis plants. Overall, our data suggest that CaDSR6 plays a positive role in the response to drought and salt stresses. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A plant microRNA regulates the adaptation of roots to drought stress

    KAUST Repository

    Chen, Hao

    2012-06-01

    Plants tend to restrict their horizontal root proliferation in response to drought stress, an adaptive response mediated by the phytohormone abscisic acid (ABA) in antagonism with auxin through unknown mechanisms. Here, we found that stress-regulated miR393-guided cleavage of the transcripts encoding two auxin receptors, TIR1 and AFB2, was required for inhibition of lateral root growth by ABA or osmotic stress. Unlike in the control plants, the lateral root growth of seedlings expressing miR393-resistant TIR1 or AFB2 was no longer inhibited by ABA or osmotic stress. Our results indicate that miR393-mediated attenuation of auxin signaling modulates root adaptation to drought stress. © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Stress-related endocrinological and psychopathological effects of short- and long-term 50Hz electromagnetic field exposure in rats.

    Science.gov (United States)

    Szemerszky, Renáta; Zelena, Dóra; Barna, István; Bárdos, György

    2010-01-15

    It is believed that different electromagnetic fields do have beneficial and harmful biological effects. The aim of the present work was to study the long-term consequences of 50 Hz electromagnetic field (ELF-EMF) exposure with special focus on the development of chronic stress and stress-induced psychopathology. Adult male Sprague-Dawley rats were exposed to ELF-EMF (50 Hz, 0.5 mT) for 5 days, 8h daily (short) or for 4-6 weeks, 24h daily (long). Anxiety was studied in elevated plus maze test, whereas depression-like behavior of the long-treated group was examined in the forced swim test. Some days after behavioral examination, the animals were decapitated among resting conditions and organ weights, blood hormone levels as well as proopiomelanocortin mRNA level from the anterior lobe of the pituitary gland were measured. Both treatments were ineffective on somatic parameters, namely none of the changes characteristic to chronic stress (body weight reduction, thymus involution and adrenal gland hypertrophy) were present. An enhanced blood glucose level was found after prolonged ELF-EMF exposure (p=0.013). The hormonal stress reaction was similar in control and short-term exposed rats, but significant proopiomelanocortin elevation (pfloating time; p=0.006) were found following long-term ELF-EMF exposure. Taken together, long and continuous exposure to relatively high intensity electromagnetic field may count as a mild stress situation and could be a factor in the development of depressive state or metabolic disturbances. Although we should stress that the average intensity of the human exposure is normally much smaller than in the present experiment.

  6. Studies on Screening of Maize (Zea mays L.) Hybrids under Drought Stress Conditions

    OpenAIRE

    Zahoor Ahmad

    2015-01-01

    Drought is one of the most serious problems posing a grave threat to cereals production including maize. Two experiments (lab and wire house) were conducted to screen out the most tolerant and most sensitive maize hybrids (7386, 6525, Hycorn, 9696, 32B33, 3672, MMRI and 31P41) under artificial imposing drought stress by PEG-6000 and under water stress applied after seedling emergence. In first experiment five water stress levels such as zero (control), -0.2 MPa, -0.4 MPa, -0.6 MPa, and -0.8 M...

  7. Drought-Tolerant Plant Growth-Promoting Rhizobacteria Associated with Foxtail Millet in a Semi-arid Agroecosystem and Their Potential in Alleviating Drought Stress

    Directory of Open Access Journals (Sweden)

    Xuguang Niu

    2018-01-01

    Full Text Available The application of plant growth promoting rhizobacteria (PGPR to agro-ecosystems is considered to have the potential for improving plant growth in extreme environments featured by water shortage. Herein, we isolated bacterial strains from foxtail millet (Setaria italica L., a drought-tolerant crop cultivated in semiarid regions in the northeast of China. Four isolates were initially selected for their ability to produce ACC deaminase as well as drought tolerance. The isolates were identified as Pseudomonas fluorescens, Enterobacter hormaechei, and Pseudomonas migulae on the basis of 16S rRNA sequence analysis. All of these drought-tolerant isolates were able to produce EPS (exopolysaccharide. Inoculation with these strains stimulated seed germination and seedling growth under drought stress. Pseudomonas fluorescens DR7 showed the highest level of ACC deaminase and EPS-producing activity. DR7 could efficiently colonize the root adhering soil, increased soil moisture, and enhance the root adhering soil/root tissue ratio. These results suggest drought tolerant PGPR from foxtail millet could enhance plant growth under drought stress conditions and serve as effective bioinoculants to sustain agricultural production in arid regions.

  8. Development-specific responses to drought stress in Aleppo pine (Pinus halepensis Mill.) seedlings.

    Science.gov (United States)

    Alexou, Maria

    2013-10-01

    Aleppo pine (Pinus halepensis Mill.) is a pioneer species, highly competitive due to exceptional resistance to drought. To investigate the stress resistance in the first and second year of development, a steady-state drought experiment was implemented. Photosynthesis (A(net)), stomatal conductance and transpiration (E) were measured on three different sampling dates together with phloem soluble sugars, amino acids and non-structural proteins. Needle ascorbic acid (AsA) and reactive oxygen species were measured to evaluate the seedlings' drought stress condition in the final sampling. Drought impaired A(net) and E by 35 and 31%, respectively, and increased AsA levels up to 10-fold, without significant impact on the phloem metabolites. Phloem sugars related to temperature fluctuations rather than soil moisture and did not relate closely to A(net) levels. Sugars and proteins decreased between the second and third sampling date by 56 and 61%, respectively, and the ratio of sugars to amino acids decreased between the first and third sampling by 81%, while A(net) and water-use efficiency (A(net)/E) decreased only in the older seedlings. Although gas exchange was higher in the older seedlings, ascorbic acid and phloem metabolites were higher in the younger seedlings. It was concluded that the drought stress responses depended significantly on developmental stage, and research on the physiology of Aleppo pine regeneration should focus more on temperature conditions and the duration of drought than its severity.

  9. Transcriptomic Analysis Reveals the Molecular Mechanisms of Drought-Stress-Induced Decreases in Camellia sinensis Leaf Quality

    Science.gov (United States)

    Wang, Weidong; Xin, Huahong; Wang, Mingle; Ma, Qingping; Wang, Le; Kaleri, Najeeb A.; Wang, Yuhua; Li, Xinghui

    2016-01-01

    The tea plant [Camellia sinensis (L.) O. Kuntze] is an important commercial crop rich in bioactive ingredients, especially catechins, caffeine, theanine and other free amino acids, which the quality of tea leaves depends on. Drought is the most important environmental stress affecting the yield and quality of this plant. In this study, the effects of drought stress on the phenotype, physiological characteristics and major bioactive ingredients accumulation of C. sinensis leaves were examined, and the results indicated that drought stress resulted in dehydration and wilt of the leaves, and significant decrease in the total polyphenols and free amino acids and increase in the total flavonoids. In addition, HPLC analysis showed that the catechins, caffeine, theanine and some free amino acids in C. sinensis leaves were significantly reduced in response to drought stress, implying that drought stress severely decreased the quality of C. sinensis leaves. Furthermore, differentially expressed genes (DEGs) related to amino acid metabolism and secondary metabolism were identified and quantified in C. sinensis leaves under drought stress using high-throughput Illumina RNA-Seq technology, especially the key regulatory genes of the catechins, caffeine, and theanine biosynthesis pathways. The expression levels of key regulatory genes were consistent with the results from the HPLC analysis, which indicate a potential molecular mechanism for the above results. Taken together, these data provide further insights into the mechanisms underlying the change in the quality of C. sinensis leaves under environmental stress, which involve changes in the accumulation of major bioactive ingredients, especially catechins, caffeine, theanine and other free amino acids. PMID:27066035

  10. Effects of drought and salt stresses on growth characteristics of euhalophyte Suaeda salsa in coastal wetlands

    Science.gov (United States)

    Jia, Jia; Huang, Chen; Bai, Junhong; Zhang, Guangliang; Zhao, Qingqing; Wen, Xiaojun

    2018-02-01

    The pot experiment was carried out in the Yellow River Delta to investigate the effects of drought and salt stresses on growth characteristics of Suaeda salsa, and to reveal the role of nitrogen (N) application in alleviation effects of drought and salt stresses on Suaeda salsa in coastal wetlands. In this study, plants were exposed to two water contents treatments (i.e., 14% and 26% water content), four salinity treatments (i.e., 2 g/kg, 4 g/kg, 6 g/kg, and 8 g/kg NaCl) and two N application treatments (i.e., 0 and 200 N mg/kg) in field conditions. Growth characteristics of Suaeda salsa were assessed as fresh weight, dry weight, height, total nitrogen (TN) and total carbon (TC). Our results showed that fresh weight, dry weight and height of Suaeda salsa promoted at lower salinity treatments but reduced at higher salinity treatments, while TN and TC contents kept stable with increasing salinity levels. Drought stress diminished the fresh weight, dry weight and height of Suaeda salsa, whereas enhanced TN contents. Under the interactive stresses of drought and salt, fresh weight and dry weight showed slight increases at lower salinity treatments, whereas decreases at higher salinity treatments. N application promoted the fresh weight, dry weight and TN contents other than the height and TC contents of Suaeda salsa. The interaction between N application and salt stress exhibited a significant influence on the fresh weight and dry weight of Suaeda salsa, whereas no significant interaction between N application and drought stress was observed. These findings of this study suggested that higher salinity, drought and the interaction of drought and higher salinity would retard the growth of Suaeda salsa, whereas N application could only mitigate the deleterious effects of salt stress on Suaeda salsa.

  11. Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.

    Science.gov (United States)

    Walker, Xanthe J; Mack, Michelle C; Johnstone, Jill F

    2015-08-01

    Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature-induced drought stress. However, variations in tree growth alone do not reveal the physiological mechanisms behind recent changes in tree growth. Examining stable carbon isotope composition of tree rings in addition to tree growth can provide a secondary line of evidence for physiological drought stress. In this study, we examined patterns of black spruce growth and carbon isotopic composition in tree rings in response to climate warming and drying in the boreal forest of interior Alaska. We examined trees at three nested scales: landscape, toposequence, and a subsample of trees within the toposequence. At each scale, we studied the potential effects of differences in microclimate and moisture availability by sampling on northern and southern aspects. We found that black spruce radial growth responded negatively to monthly metrics of temperature at all examined scales, and we examined ∆(13)C responses on a subsample of trees as representative of the wider region. The negative ∆(13)C responses to temperature reveal that black spruce trees are experiencing moisture stress on both northern and southern aspects. Contrary to our expectations, ∆(13)C from trees on the northern aspect exhibited the strongest drought signal. Our results highlight the prominence of drought stress in the boreal forest of interior Alaska. We conclude that if temperatures continue to warm, we can expect drought-induced productivity declines across large regions of the boreal forest, even for trees located in cool and moist landscape positions. © 2015 John Wiley & Sons Ltd.

  12. Screening of marigold (Tagetes erecta L. cultivars for drought stress based on vegetative and physiological characteristics

    Directory of Open Access Journals (Sweden)

    Adnan Younis

    2018-05-01

    Full Text Available Drought tolerance is an important genotypic character to be exploited for the plant cultivar selection under water deficit conditions. In the recent study, we examined the response of two marigold cultivars (Inca and Bonanza under different regimes of drought stress. The aim was to determine the best performing cultivar under water/drought stress. Three irrigation treatments include; 4 days (T1, 6 days (T2 and 8 days (T3 in comparison to control 1 day (T0 interval were imposed. Response characters under study were morphological, physiological and anatomical. Complete Randomized Design (CRD with four replications in two factorial arrangements was followed for experiment layout. The results revealed that increasing water stress adversely affect plant height, in both cultivars. Both cultivars showed a decreasing trend to the number of flowers under water stress. Total chlorophyll contents including a, b were also showed reduction under prolonged drought treatment in both cultivars from (2.7 mg g-1 FW to (1 mg g-1 FW. Overall, the performance of cultivar (cv. Inca was satisfactory under water stress regimes. These results are helpful for selecting drought tolerant marigold cultivars in water scarce areas.   

  13. Rapid increase in log populations in drought-stressed mixed-conifer and ponderosa pine forests in northern Arizona

    Science.gov (United States)

    Joseph L. Ganey; Scott C. Vojta

    2012-01-01

    Down logs provide important ecosystem services in forests and affect surface fuel loads and fire behavior. Amounts and kinds of logs are influenced by factors such as forest type, disturbance regime, forest man-agement, and climate. To quantify potential short-term changes in log populations during a recent global- climate-change type drought, we sampled logs in mixed-...

  14. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics.

    Science.gov (United States)

    Per, Tasir S; Khan, Nafees A; Reddy, Palakolanu Sudhakar; Masood, Asim; Hasanuzzaman, Mirza; Khan, M Iqbal R; Anjum, Naser A

    2017-06-01

    Major abiotic stress factors such as salt and drought adversely affect important physiological processes and biochemical mechanisms and cause severe loss in crop productivity worldwide. Plants develop various strategies to stand healthy against these stress factors. The accumulation of proline (Pro) is one of the striking metabolic responses of plants to salt and drought stress. Pro biosynthesis and signalling contribute to the redox balance of cell under normal and stressful conditions. However, literature is meager on the sustainable strategies potentially fit for modulating Pro biosynthesis and production in stressed plants. Considering the recent literature, this paper in its first part overviews Pro biosynthesis and transport in plants and also briefly highlights the significance of Pro in plant responses to salt and drought stress. Secondly, this paper discusses mechanisms underlying the regulation of Pro metabolism in salt and drought-exposed plant via phytohormones, mineral nutrients and transgenic approaches. The outcome of the studies may give new opportunities in modulating Pro metabolism for improving plant tolerance to salt and drought stress and benefit sustainable agriculture. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Tolerance of Mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions.

    Science.gov (United States)

    Abbaspour, H; Saeidi-Sar, S; Afshari, H; Abdel-Wahhab, M A

    2012-05-01

    The influence of Glomus etunicatum colonization on plant growth and drought tolerance of 3-month-old Pistacia vera seedlings in potted culture was studied in two different water treatments. The arbuscular mycorrhiza (AM) inoculation and plant growth (including plant shoot and root weight, leaf area, and total chlorophyll) were higher for well-watered than for water-stressed plants. The growth of AM-treated seedlings was higher than non-AM-treatment regardless of water status. P, K, Zn and Cu contents in AM-treated shoots were greater than those in non-AM shoots under well-watered conditions and drought stress. N and Ca content were higher under drought stress, while AM symbiosis did not affect the Mg content. The contents of soluble sugars, proteins, flavonoid and proline were higher in mycorrhizal than non-mycorrhizal-treated plants under the whole water regime. AM colonization increased the activities of peroxidase enzyme in treatments, but did not affect the catalase activity in shoots and roots under well-watered conditions and drought stress. We conclude that AM colonization improved the drought tolerance of P. vera seedlings by increasing the accumulation of osmotic adjustment compounds, nutritional and antioxidant enzyme activity. It appears that AM formation enhanced the drought tolerance of pistachio plants, which increased host biomass and plant growth. Copyright © 2012 Elsevier GmbH. All rights reserved.

  16. Effect of Drought Stress at Different Growth Stages on Yield and Yield Components of Six Rice (Oryza sativa L. Genotypes

    Directory of Open Access Journals (Sweden)

    Sharifunnessa Moonmoon

    2017-12-01

    Full Text Available Drought stress affects plant growth and development and ultimately, reduced grain yield of rice. But stress at different growth stages may respond differently which is still unclear. Therefore, a pot experiment was carried out with six rice genotypes to determine the critical growth stage where drought stress effect on yield reduction and to find stress tolerance mechanism in rice genotypes. Drought stress (control i.e. no stress and 40% field capacity, FC was imposed on Binadhan-13, Kalizira, BRRI dhan34, Ukunimodhu, RM-100-16 and NERICA mutant rice genotypes at maximum tillering, panicle initiation and grain filling stages and discontinued when the specific stage was over. The experiment was laid out in a complete randomized design with three replications. Drought stress affected number of effective tiller hill-1, number of spikelets panicle-1, filled grains hill-1, 1000-grain weight and grain yield. Binadhan-13 produced the highest grain yield and the lowest sterility under drought stress at grain filling stage. Percentage of spikelet sterility increased under drought stress (40% FC especially at the panicle initiation stage resulting low grain yield. Among the tested genotypes Binadhan-13 performed well by reducing spikelet sterility under drought stress condition. For 1000-grain weight and grain yield, grain filling stage was found more crucial. From the current research, drought tolerance mechanism was found in genotypes Binadhan-13 and NERICA mutant. [Fundam Appl Agric 2017; 2(3.000: 285-289

  17. The effect of triazole induced photosynthetic pigments and biochemical constituents of Zea mays L. (Maize) under drought stress

    Science.gov (United States)

    Rajasekar, Mahalingam; Rabert, Gabriel Amalan; Manivannan, Paramasivam

    2016-06-01

    In this investigation, pot culture experiment was carried out to estimate the ameliorating effect of triazole compounds, namely Triadimefon (TDM), Tebuconazole (TBZ), and Propiconazole (PCZ) on drought stress, photosynthetic pigments, and biochemical constituents of Zea mays L. (Maize). From 30 days after sowing (DAS), the plants were subjected to 4 days interval drought (DID) stress and drought with TDM at 15 mg l-1, TBZ at 10 mg l-1, and PCZ at 15 mg l-1. Irrigation at 1-day interval was kept as control. Irrigation performed on alternative day. The plant samples were collected on 40, 50, and 60 DAS and separated into root, stem, and leaf for estimating the photosynthetic pigments and biochemical constituents. Drought and drought with triazole compounds treatment increased the biochemical glycine betaine content, whereas the protein and the pigments contents chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, and anthocyanin decreased when compared to control. The triazole treatment mitigated the adverse effects of drought stress by increasing the biochemical potentials and paved the way to overcome drought stress in corn plant.

  18. Effect of drought stress on early growth of Adansonia digitata (L.) in ...

    African Journals Online (AJOL)

    Drought and high temperatures are said to have triggered increased tree mortality and could be linked to the menace of climate change. This research therefore investigated the effect of drought stress on early growth of Adansonia digitata where seedlings were exposed to different watering frequencies (Once daily, after 3, ...

  19. Drought Stress Results in a Compartment-Specific Restructuring of the Rice Root-Associated Microbiomes

    Directory of Open Access Journals (Sweden)

    Christian Santos-Medellín

    2017-07-01

    Full Text Available Plant roots support complex microbial communities that can influence plant growth, nutrition, and health. While extensive characterizations of the composition and spatial compartmentalization of these communities have been performed in different plant species, there is relatively little known about the impact of abiotic stresses on the root microbiota. Here, we have used rice as a model to explore the responses of root microbiomes to drought stress. Using four distinct genotypes, grown in soils from three different fields, we tracked the drought-induced changes in microbial composition in the rhizosphere (the soil immediately surrounding the root, the endosphere (the root interior, and unplanted soils. Drought significantly altered the overall bacterial and fungal compositions of all three communities, with the endosphere and rhizosphere compartments showing the greatest divergence from well-watered controls. The overall response of the bacterial microbiota to drought stress was taxonomically consistent across soils and cultivars and was primarily driven by an enrichment of multiple Actinobacteria and Chloroflexi, as well as a depletion of several Acidobacteria and Deltaproteobacteria. While there was some overlap in the changes observed in the rhizosphere and endosphere communities, several drought-responsive taxa were compartment specific, a pattern likely arising from preexisting compositional differences, as well as plant-mediated processes affecting individual compartments. These results reveal that drought stress, in addition to its well-characterized effects on plant physiology, also results in restructuring of root microbial communities and suggest the possibility that constituents of the altered plant microbiota might contribute to plant survival under extreme environmental conditions.

  20. Exogenous Hydrogen Peroxide Contributes to Heme Oxygenase-1 Delaying Programmed Cell Death in Isolated Aleurone Layers of Rice Subjected to Drought Stress in a cGMP-Dependent Manner.

    Science.gov (United States)

    Wang, Guanghui; Xiao, Yu; Deng, Xiaojiang; Zhang, Heting; Li, Tingge; Chen, Huiping

    2018-01-01

    Hydrogen peroxide (H 2 O 2 ) is a reactive oxygen species (ROS) that plays a dual role in plant cells. Here, we discovered that drought (20% polyethylene glycol-6000, PEG)-triggered decreases of HO-1 transcript expression and HO activity. However, exogenous H 2 O 2 contributed toward the increase in HO-1 gene expression and activity of the enzyme under drought stress. Meanwhile, the HO-1 inducer hematin could mimic the effects of the H 2 O 2 scavengers ascorbic acid (AsA) and dimethylthiourea (DMTU) and the H 2 O 2 synthesis inhibitor diphenyleneiodonium (DPI) for scavenging or diminishing drought-induced endogenous H 2 O 2 . Conversely, the zinc protoporphyrin IX (ZnPPIX), an HO-1-specific inhibitor, reversed the effects of hematin. We further analyzed the endogenous H 2 O 2 levels and HO-1 transcript expression levels of aleurone layers treated with AsA, DMTU, and DPI in the presence of exogenous H 2 O 2 under drought stress, respectively. The results showed that in aleurone layers subjected to drought stress, when the endogenous H 2 O 2 level was inhibited, the effect of exogenous H 2 O 2 on the induction of HO-1 was enhanced. Furthermore, exogenous H 2 O 2 -activated HO-1 effectively enhanced amylase activity. Application of 8-bromoguanosine 3',5'-cyclic guanosine monophosphate (8-Br-cGMP) (the membrane permeable cGMP analog) promoted the effect of exogenous H 2 O 2 -delayed PCD of aleurone layers in response to drought stress. More importantly, HO-1 delayed the programmed cell death (PCD) of aleurone layers by cooperating with nitric oxide (NO), and the delayed effect of NO on PCD was achieved via mediation by cGMP under drought stress. In short, in rice aleurone layers, exogenous H 2 O 2 (as a signaling molecule) triggered HO-1 and delayed PCD via cGMP which possibly induced amylase activity under drought stress. In contrast, as a toxic by-product of cellular metabolism, the drought-generated H 2 O 2 promoted cell death.

  1. Inoculation with Azospirillum sp. and Herbaspirillum sp. Bacteria Increases the Tolerance of Maize to Drought Stress.

    Science.gov (United States)

    Curá, José Alfredo; Franz, Diego Reinaldo; Filosofía, Julián Ezequiel; Balestrasse, Karina Beatríz; Burgueño, Lautaro Exequiel

    2017-07-26

    Stress drought is an important abiotic factor that leads to immense losses in crop yields around the world. Strategies are urgently needed to help plants adapt to drought in order to mitigate crop losses. Here we investigated the bioprotective effects of inoculating corn grown under drought conditions with two types of plant growth-promoting rhizobacteria (PGPR), A. brasilense , strain SP-7, and H. seropedicae , strain Z-152. Plants inoculated with the bacteria were grown in a greenhouse with perlite as a substrate. Two hydric conditions were tested: normal well-watered conditions and drought conditions. Compared to control non-inoculated plants, those that were inoculated with PGPR bacteria showed a higher tolerance to the negative effects of water stress in drought conditions, with higher biomass production; higher carbon, nitrogen, and chlorophyll levels; and lower levels of abscisic acid and ethylene, which are plant hormones that affect the stress response. The oxidative stress levels of these plants were similar to those of non-inoculated plants grown in well-watered conditions, showing fewer injuries to the cell membrane. We also noted higher relative water content in the vegetal tissue and better osmoregulation in drought conditions in inoculated plants, as reflected by significantly lower proline content. Finally, we observed lower gene expression of ZmVP14 in the inoculated plants; notably, ZmVP14 is involved in the biosynthesis of abscisic acid. Taken together, these results demonstrate that these bacteria could be used to help plants cope with the negative effects of drought stress conditions.

  2. Physiological Responses of Bambara Groundnut (Vigna subterranea L. Verdc) to Short Periods of Water Stress During Different Developmental Stages

    OpenAIRE

    R. Vurayai; V. Emongor and B. Moseki

    2011-01-01

    The study was conducted to evaluate the responses of bambara groundnut (Vigna subterranea L. Verdc) to short periods of water stress imposed at different growth stages, and the recuperative ability of the species from drought stress. A major problem associated with Bambara groundnut production is its very low yields due to intra-seasonal and inter-seasonal variability in rainfall in semi-arid regions. The response pattern of physiological processes to water stress imposed at different growth ...

  3. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.

    Science.gov (United States)

    Pérez-Pérez, J G; Syvertsen, J P; Botía, P; García-Sánchez, F

    2007-08-01

    Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. Plants preconditioned by

  4. [Effects of exogenous salicylic acid on seed germination and physiological characteristics of Coronilla varia under drought stress.

    Science.gov (United States)

    Ma, Le Yuan; Chen, Nian Lai; Han, Guo Jun; Li, Liang

    2017-10-01

    This research investigated the effects of different concentrations (0, 0.5, 1.0, 2.0 mmol·L -1 ) of salicylic acid on the seed germination and physiological characteristics of legume forage Coronilla varia (cultivar 'Lvbaoshi') under PEG-6000 (concentration 8% and 12%) simulated drought stress. The results showed that under drought stress, 0.5-1.0 mmol·L -1 salicylic acid significantly increased germination percentage, germination vigour, germination index, vitality index and bud length of C. varia. Under the stress of 12% PEG, the dry mass of C. varia seedlings processed by 1.0 mmol·L -1 salicylic acid was significantly higher than that under drought stress. 0.5-1.0 mmol·L -1 salicylic acid processing significantly increased proline, soluble protein content, the activities of catalase, peroxidase and superoxide dismutase of C. varia seedlings under drought stress, but cell electrolyte permeability, H2O2 content and O2 - · production rate of seedlings were significantly decreased. 1.0 mmol·L -1 salicylic acid produced the best results. When the concentration of salicylic acid was beyond 2.0 mmol·L -1 , no mitigation effect was observed on the seed germination and growth of seedlings under drought stress. It was concluded that salicylic acid at appropriate concentrations could effectively improve osmotic regulation, antioxidation and mitigate the damage of drought stress so as to promote the growth of C. varia seedlings.

  5. Effect of drought stress on water status, electrolyte leakage and enzymatic antioxidants of kochia (kochia scoparia) under saline condition

    International Nuclear Information System (INIS)

    Masoumi, A.; Kafi, M.; Khazaei, Z.; Davari, K.

    2010-01-01

    Drought stress is considered as the main factor of yield limitations in arid and semi-arid areas, where drought and salinity stresses are usually combined. Kochia species have recently attracted the attention of researchers as forage and fodder crop in marginal lands worldwide due to its drought and salt tolerant characters. This field experiment was performed at the Salinity Research Station (36 deg. 15'N, 59 deg. 28' E) of Ferdowsi University, ashhad, Iran in 2008, in a split plot based on randomized complete block design with three replications. Three levels of drought stress (control, no irrigation in vegetative stage (recovery treatment) and no irrigation at reproductive stage for one month (stress treatment)), and two Kochia ecotypes (Birjand and Borujerd) were allocated as main and sub-plots, respectively. Relative water content (RWC), membrane permeability and antioxidant enzymes were assayed at the beginning of anthesis. Stress treatment caused a significant decrease in the leaf RWC and increase in electrolyte leakage compared with control and recovered conditions. Furthermore, stress treatment caused a significant increase in antioxidant enzyme activities except of superoxide dismutase (SOD) and peroxidase (POX). The Birjand ecotype was significantly more tolerant to drought than Borujerd ecotype. According to the results, there were no difference between recovered plants and control treatment, therefore, Kochia can recover quickly after removing drought stress. Kochia showed high tolerance against drought and salinity stresses and different antioxidant enzymes had different behavior under stress conditions. (author)

  6. Physiology and productivity of rice crop influenced by drought stress ...

    African Journals Online (AJOL)

    Rice is sensitive to moisture stress and in view of the water scarcity in the coming years, it is imperative to evaluate the performance of rice cultivar under moisture deficit. The present study aimed to evaluate the physiological responses of two rice cultivars under drought stress induced at panicle initiation and soft dough ...

  7. Silicon alleviates salt and drought stress of Glycyrrhiza uralensis seedling by altering antioxidant metabolism and osmotic adjustment.

    Science.gov (United States)

    Zhang, Wenjin; Xie, Zhicai; Wang, Lianhong; Li, Ming; Lang, Duoyong; Zhang, Xinhui

    2017-05-01

    This study was conducted to determine effect and mechanism of exogenous silicon (Si) on salt and drought tolerance of Glycyrrhiza uralensis seedling by focusing on the pathways of antioxidant defense and osmotic adjustment. Seedling growth, lipid peroxidation, antioxidant metabolism, osmolytes concentration and Si content of G. uralensis seedlings were analyzed under control, salt and drought stress [100 mM NaCl with 0, 10 and 20% of PEG-6000 (Polyethylene glycol-6000)] with or without 1 mM Si. Si addition markedly affected the G. uralensis growth in a combined dose of NaCl and PEG dependent manner. In brief, Si addition improved germination rate, germination index, seedling vitality index and biomass under control and NaCl; Si also increased radicle length under control, NaCl and NaCl-10% PEG, decreased radicle length, seedling vitality index and germination parameters under NaCl-20% PEG. The salt and drought stress-induced-oxidative stress was modulated by Si application. Generally, Si application increased catalase (CAT) activity under control and NaCl-10% PEG, ascorbate peroxidase (APX) activity under all treatments and glutathione (GSH) content under salt combined drought stress as compared with non-Si treatments, which resisted to the increase of superoxide radicals and hydrogen peroxide caused by salt and drought stress and further decreased membrane permeability and malondialdehyde (MDA) concentration. Si application also increased proline concentration under NaCl and NaCl-20% PEG, but decreased it under NaCl-10% PEG, indicating proline play an important role in G. uralensis seedling response to osmotic stress. In conclusion, Si could ameliorate adverse effects of salt and drought stress on G. uralensis likely by reducing oxidative stress and osmotic stress, and the oxidative stress was regulated through enhancing of antioxidants (mainly CAT, APX and GSH) and osmotic stress was regulated by proline.

  8. Diffusive and Metabolic Constraints to Photosynthesis in Quinoa during Drought and Salt Stress

    Directory of Open Access Journals (Sweden)

    Dilek Killi

    2017-10-01

    Full Text Available Quinoa (Chenopodium quinoa Willd. has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased drought and salt stress in the future. We characterised the diffusive and metabolic limitations to photosynthesis in quinoa exposed to drought and salt stress in isolation and combination. Drought-induced pronounced stomatal and mesophyll limitations to CO2 transport, but quinoa retained photosynthetic capacity and photosystem II (PSII performance. Saline water (300 mmol NaCl-equivalent to 60% of the salinity of sea-water supplied in identical volumes to the irrigation received by the control and drought treatments induced similar reductions in stomatal and mesophyll conductance, but also reduced carboxylation of ribulose-1,5-bisphosphate carboxylase/oxygenase, regeneration of ribulose-1,5-bisphosphate, increased non-photochemical dissipation of energy as heat and impaired PSII electron transport. This suggests that ion toxicity reduced PN via interference with photosynthetic enzymes and degradation of pigment–protein complexes within the thylakoid membranes. The results of this study demonstrate that the photosynthetic physiology of quinoa is resistant to the effects of drought, but quinoa may not be a suitable crop for areas subject to strong salt stress or irrigation with a concentration of saline water equivalent to a 300 mmol NaCl solution.

  9. Diffusive and Metabolic Constraints to Photosynthesis in Quinoa during Drought and Salt Stress

    Science.gov (United States)

    Killi, Dilek; Haworth, Matthew

    2017-01-01

    Quinoa (Chenopodium quinoa Willd.) has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased drought and salt stress in the future. We characterised the diffusive and metabolic limitations to photosynthesis in quinoa exposed to drought and salt stress in isolation and combination. Drought-induced pronounced stomatal and mesophyll limitations to CO2 transport, but quinoa retained photosynthetic capacity and photosystem II (PSII) performance. Saline water (300 mmol NaCl-equivalent to 60% of the salinity of sea-water) supplied in identical volumes to the irrigation received by the control and drought treatments induced similar reductions in stomatal and mesophyll conductance, but also reduced carboxylation of ribulose-1,5-bisphosphate carboxylase/oxygenase, regeneration of ribulose-1,5-bisphosphate, increased non-photochemical dissipation of energy as heat and impaired PSII electron transport. This suggests that ion toxicity reduced PN via interference with photosynthetic enzymes and degradation of pigment–protein complexes within the thylakoid membranes. The results of this study demonstrate that the photosynthetic physiology of quinoa is resistant to the effects of drought, but quinoa may not be a suitable crop for areas subject to strong salt stress or irrigation with a concentration of saline water equivalent to a 300 mmol NaCl solution. PMID:29039809

  10. Role of abscisic acid (aba) in modulating the responses of two apple rootstocks to drought stress

    International Nuclear Information System (INIS)

    Zhang, L.; Li, X.; Li, B.; Han, M.; Liu, F.; Zhang, L.; Zheng, P.

    2014-01-01

    Drought stress is considered as the main limiting factor for apple (Malus domestica L.) production in some semi-arid areas of China. In this study, we investigated the modulation role of abscisic acid (ABA) and fluridone (ABA synthesis inhibitor) on water relations and antioxidant enzyme system in 2-year-old seedlings of two apple rootstocks i.e. Malus sieversii (Ledeb.) Roem. (MS) and Malus hupehensis (Pamp.) Rehd. (MH). Drought stress induced ion leakage, accumulation of malondiadehyde (MDA) and decreases in leaf water potential and relative water content (RWC) in both rootstocks, which were significantly alleviated by exogenous ABA application. Drought stress also induced markedly increases in endogenous ABA content and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR), to a greater magnitude in MS as compared to MH rootstock. Concentration of 100 mol/L and 50 mol/L ABA had the most positive effects on drought-stressed rootstocks of MS and MH, respectively. Spraying optimum exogenous ABA contributed to enhancement in most of the above antioxidant enzymes activities but reduction in content of MDA and maintained the appropriate leaf water potential and RWC in both rootstocks. Pretreatment with fluridone aggravated ion leakage and the accumulation of MDA in two apple rootstocks under drought stress, which was overcome by exogenous ABA application to some extent. In conclusion, the endogenous ABA was probably involved in the regulation of two apple rootstocks in responses to drought stress. (author)

  11. Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance.

    Science.gov (United States)

    Killi, Dilek; Bussotti, Filippo; Raschi, Antonio; Haworth, Matthew

    2017-02-01

    Heat and drought stress frequently occur together, however, their impact on plant growth and photosynthesis (P N ) is unclear. The frequency, duration and severity of heat and drought stress events are predicted to increase in the future, having severe implications for agricultural productivity and food security. To assess the impact on plant gas exchange, physiology and morphology we grew drought tolerant and sensitive varieties of C3 sunflower (Helianthus annuus) and C4 maize (Zea mays) under conditions of elevated temperature for 4 weeks prior to the imposition of water deficit. The negative impact of temperature on P N was most apparent in sunflower. The drought tolerant sunflower retained ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity under heat stress to a greater extent than its drought sensitive counterpart. Maize exhibited no varietal difference in response to increased temperature. In contrast to previous studies, where a sudden rise in temperature induced an increase in stomatal conductance (G s ), we observed no change or a reduction in G s with elevated temperature, which alongside lower leaf area mitigated the impact of drought at the higher temperature. The drought tolerant sunflower and maize varieties exhibited greater investment in root-systems, allowing greater uptake of the available soil water. Elevated temperatures associated with heat-waves will have profound negative impacts on crop growth in both sunflower and maize, but the deleterious effect on P N was less apparent in the drought tolerant sunflower and both maize varieties. As C4 plants generally exhibit water use efficiency (WUE) and resistance to heat stress, selection on the basis of tolerance to heat and drought stress would be more beneficial to the yields of C3 crops cultivated in drought prone semi-arid regions. © 2016 Scandinavian Plant Physiology Society.

  12. Transcriptional Responses in root and leaf of Prunus persica Under Drought Stress Using RNA Sequencing

    Directory of Open Access Journals (Sweden)

    Najla Ksouri

    2016-11-01

    Full Text Available Prunus persica L. Batch, or peach, is one of the most important crops and it is widely established in irrigated arid and semi-arid regions. However, due to variations in the climate and the increased aridity, drought has become a major constraint, causing crop losses worldwide. The use of drought-tolerant rootstocks in modern fruit production appears to be a useful method of alleviating water deficit problems. However, the transcriptomic variation and the major molecular mechanisms that underlie the adaptation of drought-tolerant rootstocks to water shortage remain unclear. Hence, in this study, high-throughput sequencing (RNA-seq was performed to assess the transcriptomic changes and the key genes involved in the response to drought in root tissues (GF677 rootstock and leaf tissues (graft, var. Catherina subjected to 16 days of drought stress. In total, 12 RNA libraries were constructed and sequenced. This generated a total of 315M raw reads from both tissues, which allowed the assembly of 22,079 and 17,854 genes associated with the root and leaf tissues, respectively. Subsets of 500 differentially expressed genes (DEGs in roots and 236 in leaves were identified and functionally annotated with 56 gene ontology (GO terms and 99 metabolic pathways, which were mostly associated with aminobenzoate degradation and phenylpropanoid biosynthesis. The GO analysis highlighted the biological functions that were exclusive to the root tissue, such as locomotion, hormone metabolic process, and detection of stimulus, indicating the stress-buffering role of the GF677 rootstock. Furthermore, the complex regulatory network involved in the drought response was revealed, involving proteins that are associated with signaling transduction, transcription and hormone regulation, redox homeostasis, and frontline barriers. We identified two poorly characterized genes in P. persica: growth-regulating factor 5 (GRF5, which may be involved in cellular expansion, and AtHB12

  13. Some Root Traits of Barley (Hordeum vulgare L. as Affected by Mycorrhizal Symbiosis under Drought Stress

    Directory of Open Access Journals (Sweden)

    R. Bayani

    2016-05-01

    Full Text Available The effect of drought stress and mycorrhizal symbiosis on the colonization, root and leaf phosphorous content, root and leaf phosphatase activity, root volume and area as well as shoot dry weight of a variety of hulless barley were evaluated using a completely randomized experimental design (CRD with 3 replications. Treatments were three levels of drought stress of 30, 60 and 90% field capacity and two levels of mycorrhizal with and without inoculation. According to the results, the highest value of leaf phosphorous (1.54 mg/g was observed at mycorrhizal symbiosis against severe drought treatment. Root phosphatase activity was highest (297.9 OD min -1 FW-1 at severe drought stress with mycorrhizal symbiosis which in comparison with mild stress in the presence of mycorrhiza showed 16.6 fold increasing. The control and non-mycorrhizal symbiosis treatments had highest root dry weight (0.091 g. The lowest root volume (0.016 cm2 observed at mycorrhizal symbiosis × severe drought treatment. Generally, Inoculation of barley seed with mycorrhiza at severe water stress could transport more phosphorous to shoot, especially leaf via inducing of leaf and root phosphatase activity. Also, in addition to supply of nutrient sources especially phosphorous for plant, mycorrhizal symbiosis could play an important role in withstanding water stress in plant via increasing of root dry weight and area.

  14. A plant microRNA regulates the adaptation of roots to drought stress

    KAUST Repository

    Chen, Hao; Li, Zhuofu; Xiong, Liming

    2012-01-01

    Plants tend to restrict their horizontal root proliferation in response to drought stress, an adaptive response mediated by the phytohormone abscisic acid (ABA) in antagonism with auxin through unknown mechanisms. Here, we found that stress

  15. The effects of drought stress on the activity of acid phosphatase and ...

    African Journals Online (AJOL)

    A model of drought was created on pigweed and the effects of drought stress on the activity of acid phosphatase and its protective enzymes were examined. The pot-cultured pigweeds were divided into 4 groups (ten plants per group) when they reached 6 leaves. (1) In the control group, the culture media contained 70 ...

  16. Evaluation of the CBL family gene expression under drought stress and virus attack in two susceptible and drought tolerant tomato cultivars using semi-quantitative PCR analysis

    Directory of Open Access Journals (Sweden)

    Peyman Aghaie

    2017-08-01

    Full Text Available Eleven genes encoding Calcineurin B-Like proteins with a high degree of sequence conservation were identified using bioinformatics approaches in tomato. These proteins classified into five clusters including SlCBL1, SlCBL3, SlCBL4, SlCBL8 and SlCBL10 using orthology-based method of nomenclature. Sequence analysis showed that all five members of SlCBL1 and SlCBL4 contained a myristoylation conserved motif (MGXXXS/T at their N-terminals. Semi-quantitative RT-PCR showed that among the SlCBL1 members, SlCBL1-3 up-regulated under both drought and virus stresses, as well as the combined treatment. Although, both SlCBL3-1 and SlCBL3-2 up-regulated under both drought and virus stresses in both susceptive and resistant cultivars, the combined stress did not have any additional effect on the expression. Among SlCBL4 members, only SlCBL4-1 up-regulated under drought or virus attack. There was a diverse pattern of expression between the two SlCBL8 members under different stresses in both cultivars. SlCBL10 showed no change in expression pattern under drought or virus stresses in susceptive cultivar and this gene showed to be up-regulated under drought in resistant cultivar. Overall, it was concluded that changes in the expression pattern of CBL genes under biotic and abiotic stresses seemingly induced various CBL/CIPK patways in suseptive or resistant plants.

  17. Effect of Short Term NaCl Stress on Cultivars of S. lycopersicum: A Comparative Biochemical Approach

    Directory of Open Access Journals (Sweden)

    Chaitali Roy

    2014-03-01

    Full Text Available Tomato is a crop plant with high fruit nutritive value and other useful properties. The cultivation of this species is dependent on many environmental factors, e.g. temperature, salinity, nutrients etc, affecting the yield and reproductive potential of the plant. Salinity in soil or water is of increasing importance to agriculture because it causes stress to crop plants. Plants exposed to an excess amount of salts such as NaCl undergo osmotic stress, water deficit and ionic imbalances and can increase production of reactive oxygen species(ROS. Higher plants possess very efficient enzymatic and non-enzymatic antioxidative defense mechanisms that allow the scavenging of ROS and protection of cellular components from oxidative damage. Studies were conducted to investigate the effect of short term salinity stress on some physiological alterations in three tomato cultivars Pusa Ruby(PR, Punjab Keshari (PK and Ailsa Craig(AC. Some biochemical parameters (anthocyanin and carotenoeid content, polyamines, proline, cysteine, peroxidase and malondialdehyde were set and applied at two month old stage of tomato plants. Three tomato cultivars were grown in 0.5xMS for 2 months and at this stage, they were treated with 0 and 200mM NaCl for a short period of six hours in hydroponic conditions. The genotypes exhibited different responses in terms of different osmoprotectant, antioxidant, and pigment level. The relationships among the salinity and accumulation of these compounds in leaf were then determined. It was concluded that, tomato cultivars under study responded differently showing their sensitivity or tolerance to salinity stress. Among three cultivars PK appeared to be more tolerant genotype than the other two cultivars PR and AC. PK could rapidly evolve physiological and antioxidant mechanisms to adapt to salt and manage the oxidative stress. The research was conducted in a completely randomized design with three replications.

  18. A Medicago truncatula EF-hand family gene, MtCaMP1, is involved in drought and salt stress tolerance.

    Directory of Open Access Journals (Sweden)

    Tian-Zuo Wang

    Full Text Available BACKGROUND: Calcium-binding proteins that contain EF-hand motifs have been reported to play important roles in transduction of signals associated with biotic and abiotic stresses. To functionally characterize genes of EF-hand family in response to abiotic stress, an MtCaMP1 gene belonging to EF-hand family from legume model plant Medicago truncatula was isolated and its function in response to drought and salt stress was investigated by expressing MtCaMP1 in Arabidopsis. METHODOLOGY/PRINCIPAL FINDINGS: Transgenic Arabidopsis seedlings expressing MtCaMP1 exhibited higher survival rate than wild-type seedlings under drought and salt stress, suggesting that expression of MtCaMP1 confers tolerance of Arabidopsis to drought and salt stress. The transgenic plants accumulated greater amounts of Pro due to up-regulation of P5CS1 and down-regulation of ProDH than wild-type plants under drought stress. There was a less accumulation of Na(+ in the transgenic plants than in WT plants due to reduced up-regulation of AtHKT1 and enhanced regulation of AtNHX1 in the transgenic plants compared to WT plants under salt stress. There was a reduced accumulation of H2O2 and malondialdehyde in the transgenic plants than in WT plants under both drought and salt stress. CONCLUSIONS/SIGNIFICANCE: The expression of MtCaMP1 in Arabidopsis enhanced tolerance of the transgenic plants to drought and salt stress by effective osmo-regulation due to greater accumulation of Pro and by minimizing toxic Na(+ accumulation, respectively. The enhanced accumulation of Pro and reduced accumulation of Na(+ under drought and salt stress would protect plants from water default and Na(+ toxicity, and alleviate the associated oxidative stress. These findings demonstrate that MtCaMP1 encodes a stress-responsive EF-hand protein that plays a regulatory role in response of plants to drought and salt stress.

  19. Study of Germination Characteristics of Fenugreek (Trigonella foenum-graecum L. population under Salinity and Drought Stress

    Directory of Open Access Journals (Sweden)

    hassan Farhadi

    2017-10-01

    Full Text Available Introduction: Fenugreek (Trigonalla foenum-graecum L., an annual herbaceous plant belonging to the Coleoidea (Fabaceae family, has numerous medicinal properties such as decreasing blood glucose, laxative, appetizer, mucus, antipyretic and increasing the amount of milk during lactation . Among the most important problems in arid and semi-arid regions, drought stress or water shortage will have negative effects on plant growth. Drought stress occurs mostly because of reducing water availability in the soil. This may be due to excessive water loss or absorption problems, or both of them. One of the major factors limiting germination, which occurs in more arid and semi-arid regions, is salt stress. The study was done to evaluate germination of four Iranian population of fenugreek (Amol, Tabriz, Sari and Mashhad under drought and salinity stresses. Materials and methods: To investigate the effect of salinity and drought stresses on germination and seedling growth characteristics of native landrace fenugreek, two separate experiments were conducted in a Completely Randomized Design with three replications in Seed Laboratory of University of Mashhad in 2014. The experiment treatments consisted of four levels of salinity (0, 60, 120, 180 mM that was induced by different concentrations of sodium chloride and drought stress induced by polyethylene glycol 6000 (PEG 6000 at four levels (0, -3, -6 and -9 Bar with three replications. The drought stress levels were simulation by polyethylene glycol 6000 and using the Michel and Kaufmann formula. Distilled water was applied as control. Iranian seed population of fenugreek were purchased from the city of Amol, Tabriz, Sari and Mashhad then the seeds were washed with sodium hypochlorite (3 % v/v for two minutes for disinfestation and washed three times with distilled water. On the twelfth day of experiment, seedling traits such as plumule and root length and weight in Petri dishes were measured. Results and

  20. Effects of Drought Stress and Rewatering on some Morphological and Physiological Properties of Three Grapevine Cultivars

    Directory of Open Access Journals (Sweden)

    Mehdi Aran

    2017-12-01

    Full Text Available Introduction: Most plants have developed morphological and physiological mechanisms which allow them to cope with drought stress. Almost all the studies conducted on grapevines (Vitisvinifera L. responses to drought conditions have focused on physiological responses such as stomatal reactions, photosynthesis and osmotic adjustment, and biochemical responses like carbohydrates and proline. According to these studies, physiological and biochemical responses of grapevines to water stress are quite variable. This variability could be related to cultivar, time of the year, previous water stress level, intensity of stress, and environmental conditions. Osmotic adjustment in terms of compatible solutes accumulation has been considered as an important physiological adaptation for plant to resist drought, which facilitates the extraction of water from dry soils and maintenance of cell turgor, gas exchange and growth in very dry environments. Acting as compatible solutes as well as antioxidants, a significant rise in proline amount was observed in grapevine leaves under water stress conditions, suggesting that this amino acid has a protective role against the formation of excessive reactive oxygen species (ROS. Plants, in order to overcome oxidative stress, have developed enzymatic and non-enzymatic antioxidant defense mechanisms against scavenge ROS. Materials and Methods: This research was conducted to assess the effect of different levels of irrigation on some characteristics of three cultivars of grapevine (Yaghooti, Bidanesefid and Askari, as a factorial based on a randomized complete block design in two years with four replications. The experiment started in June 21, 2014 and 2015. Water treatments were applied in four levels including: control plant (100% FC, moderate stress (60% FC, severe stress (30% FC and rewatering treatment after severe stress treatment. Increase height, leaf number, stem diameter, leaf fresh and dry weight, stem dry weight

  1. Resilient Leaf Physiological Response of European Beech (Fagus sylvatica L. to Summer Drought and Drought Release

    Directory of Open Access Journals (Sweden)

    Ellen E. Pflug

    2018-02-01

    Full Text Available Drought is a major environmental constraint to trees, causing severe stress and thus adversely affecting their functional integrity. European beech (Fagus sylvatica L. is a key species in mesic forests that is commonly expected to suffer in a future climate with more intense and frequent droughts. Here, we assessed the seasonal response of leaf physiological characteristics of beech saplings to drought and drought release to investigate their potential to recover from the imposed stress and overcome previous limitations. Saplings were transplanted to model ecosystems and exposed to a simulated summer drought. Pre-dawn water potentials (ψpd, stomatal conductance (gS, intercellular CO2 concentration (ci, net-photosynthesis (AN, PSII chlorophyll fluorescence (PItot, non-structural carbohydrate concentrations (NSC; soluble sugars, starch and carbon isotope signatures were measured in leaves throughout the growing season. Pre-dawn water potentials (ψpd, gS, ci, AN, and PItot decreased as drought progressed, and the concentration of soluble sugars increased at the expense of starch. Carbon isotopes in soluble sugars (δ13CS showed a distinct increase under drought, suggesting, together with decreased ci, stomatal limitation of AN. Drought effects on ψpd, ci, and NSC disappeared shortly after re-watering, while full recovery of gS, AN, and PItot was delayed by 1 week. The fast recovery of NSC was reflected by a rapid decay of the drought signal in δ13C values, indicating a rapid turnover of assimilates and a reactivation of carbon metabolism. After recovery, the previously drought-exposed saplings showed a stimulation of AN and a trend toward elevated starch concentrations, which counteracted the previous drought limitations. Overall, our results suggest that the internal water relations of beech saplings and the physiological activity of leaves are restored rapidly after drought release. In the case of AN, stimulation after drought may partially

  2. Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system.

    Science.gov (United States)

    Biju, Sajitha; Fuentes, Sigfredo; Gupta, Dorin

    2017-10-01

    Silicon (Si) has been widely reported to have beneficial effect on mitigating drought stress in plants. However, the effect of Si on seed germination under drought conditions is still poorly understood. This research was carried out to ascertain the role of Si to abate polyethylene glycol-6000 mediated drought stress on seed germination and seedling growth of lentil. Results showed that drought stress significantly decreased the seed germination traits and increased the concentration of osmolytes (proline, glycine betaine and soluble sugars), reactive oxygen species (hydrogen peroxide and superoxide anion) and lipid peroxides in lentil seedlings. The activities of hydrolytic enzymes and antioxidant enzymes increased significantly under osmotic stress. The application of Si significantly enhanced the plants ability to withstand drought stress conditions through increased Si content, improved antioxidants, hydrolytic enzymes activity, decreased concentration of osmolytes and reactive oxygen species. Multivariate data analysis showed statistically significant correlations among the drought-tolerance traits, whereas cluster analysis categorised the genotypes into distinct groups based on their drought-tolerance levels and improvements in expression of traits due to Si application. Thus, these results showed that Si supplementation of lentil was effective in alleviating the detrimental effects of drought stress on seed germination and increased seedling vigour. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. East African highland bananas (Musa spp. AAA-EA) 'worry' more about potassium deficiency than drought stress

    NARCIS (Netherlands)

    Taulya, G.

    2013-01-01

    Drought stress, potassium (K) and nitrogen (N) deficiencies are major constraints to rain-fed East African highland banana (EAHB) production in Uganda. It was hypothesised that the reduction in fresh bunch mass and increase in dry matter (DM) allocation to corms with drought stress, K and N

  4. Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance.

    Science.gov (United States)

    Hu, Longxing; Wang, Zhaolong; Du, Hongmei; Huang, Bingru

    2010-01-15

    Expression of dehydrin proteins may be induced or enhanced by environmental stresses that lead to cell dehydration. The objective of the this study was to investigate genetic variation in dehydrin protein accumulation in response to drought stress of whole-plants or dehydration of detached leaves and to identify dehydrins differentially expressed in bermudagrass (Cynodon spp.) genotypes differing in drought tolerance. Plants of four hybrid bermudagrass (Cynodondactylon L. xCynodontransvaalensis L.) ('Tifway', 'Tifdwarf', 'Tifeagle', 'Kan1') and four common bermudagrass (Cynodon dactylon) ('C299', 'Sportbermuda', 'H10', and 'H19') genotypes were subjected to 14d of drought stress and detached leaves of two genotypes were exposed to dehydration in growth chambers. Turf quality and leaf relative water content (RWC) decreased while electrolyte leakage (EL) increased during whole-plant drought stress for all genotypes, with more pronounced changes in each parameter for 'C299' and 'Tifeagle' than those for other genotypes ('Tifway', 'Kan 1', 'Sportbermuda', 'H10', and H19'), suggesting that the former two genotypes were more sensitive to drought stress than the other genotypes. During dehydration of detached leaves, relative water loss rate (RWL) was significantly lower in drought-tolerant 'Tifway' than in drought-sensitive 'C299'. Immunoblotting analysis indicated that no dehydrin polypeptides were detected in all genotypes under well-watered conditions. A 24-kDa polypeptide was detected in 'C299' at 6 d of drought, but not in the other genotypes. The dehydrin polypeptides of about 14-74kDa accumulated at 10d of drought stress and in a range of RWL for detached leaves, and two dehydrins (31 and 40kDa) exhibited differential accumulation in the drought-sensitive 'C299' and tolerant 'Tifway', as demonstrated by the whole-plant drought responses. The 31-kDa dehydrin polypeptide was present only in 'Tifway' and 'H19' at 10d of drought stress, and accumulated with the

  5. Short-Term Caloric Restriction Suppresses Cardiac Oxidative Stress and Hypertrophy Caused by Chronic Pressure Overload.

    Science.gov (United States)

    Kobara, Miyuki; Furumori-Yukiya, Akiko; Kitamura, Miho; Matsumura, Mihoko; Ohigashi, Makoto; Toba, Hiroe; Nakata, Tetsuo

    2015-08-01

    Caloric restriction (CR) prevents senescent changes, in which reactive oxygen species (ROS) have a critical role. Left ventricular (LV) hypertrophy is a risk factor for cardiovascular diseases. We examined whether CR alters cardiac redox state and hypertrophy from chronic pressure overload. Male c57BL6 mice were subjected to ascending aortic constriction (AAC) with ad libitum caloric intake (AL + AAC group) or 40% restricted caloric intake (CR + AAC group). CR was initiated 2 weeks before AAC and was continued for 4 weeks. Two weeks after constriction, AAC increased LV wall thickness, impaired transmitral flow velocity, and augmented myocyte hypertrophy and fibrosis, in association with enhancement of BNP and collagen III expressions in the AL + AAC group. In the AL + AAC group, oxidative stress in cardiac tissue and mitochondria were enhanced, and NADPH oxidase activity and mitochondrial ROS production were elevated. These changes were significantly attenuated in the CR + AAC group. Additionally, in antioxidant systems, myocardial glutathione peroxidase and superoxide dismutase activities were enhanced in the CR + AAC group. Chronic pressure overload increased cardiac oxidative damage, in association with cardiac hypertrophy and fibrosis. Short-term CR suppressed oxidative stress and improved cardiac function, suggesting that short-term CR could be a useful strategy to prevent pressure overload-induced cardiac injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. EFFECT OF SHORT-TERM CAFFEINE SUPPLEMENTATION ON STRESS RESPONSE AND IMMUNE SYSTEM OF MALE ATHLETES

    Directory of Open Access Journals (Sweden)

    Asghar Tofighi

    2014-03-01

    Full Text Available Vigorous exercise stress might be leading cause of immune system disorders and appearance of acute and chronic inflammation in human body. Caffeine supplementation prior to exercise can be effective on body immune response. This study aimed to evaluate the effect of short-term caffeine supplementation on immune response and stress index in male athletes after an exhaustive aerobic exercise. Materials and methods : In a double-blind study 24 male athletes (endurance runner and triathlon randomly divided in Caffeine supplementation (CAF and Placebo (CON groups. One hour prior to main exhaustive treadmill test (Bruce test CAF group consumed caffeine (6 Mg/BW and CON group received placebo. Blood samples were collected before and immediately after exercise test from anticubital vein. After supplying serum; Cortisol, leukocyte and serum Heat shock protein 72 (Hsp72 concentrations were determined using ELISA method. Paired and independent t student test was used for analysis of inter and intra group differences respectively. Results: serum cortisol and Hsp72 concentrations in CON group was significantly higher than CAF group (P0.05. In addition Mean of variation in CON group was significantly higher than CAF group (P<0.05. Conclusions: Based on study results caffeine supplementation prior to short-term exhaustive aerobic exercise has positive effect on innate immunity and body defensive system.

  7. EFFECT OF SHORT-TERM CAFFEINE SUPPLEMENTATION ON STRESS RESPONSE AND IMMUNE SYSTEM OF MALE ATHLETES

    Directory of Open Access Journals (Sweden)

    Asghar Tofighi

    2014-04-01

    Full Text Available Vigorous exercise stress might be leading cause of immune system disorders and appearance of acute and chronic inflammation in human body. Caffeine supplementation prior to exercise can be effective on body immune response. This study aimed to evaluate the effect of short-term caffeine supplementation on immune response and stress index in male athletes after an exhaustive aerobic exercise. Materials and methods : In a double-blind study 24 male athletes (endurance runner and triathlon randomly divided in Caffeine supplementation (CAF and Placebo (CON groups. One hour prior to main exhaustive treadmill test (Bruce test CAF group consumed caffeine (6 Mg/BW and CON group received placebo. Blood samples were collected before and immediately after exercise test from anticubital vein. After supplying serum; Cortisol, leukocyte and serum Heat shock protein 72 (Hsp72 concentrations were determined using ELISA method. Paired and independent t student test was used for analysis of inter and intra group differences respectively. Results: serum cortisol and Hsp72 concentrations in CON group was significantly higher than CAF group (P0.05. In addition Mean of variation in CON group was significantly higher than CAF group (P<0.05. Conclusions: Based on study results caffeine supplementation prior to short-term exhaustive aerobic exercise has positive effect on innate immunity and body defensive system.

  8. Impact of drought stress on growth and quality of miscanthus for biofuel production

    NARCIS (Netherlands)

    Weijde, van der Tim; Huxley, Laurie M.; Hawkins, Sarah; Eben Haeser Sembiring, Eben; Farrar, Kerrie; Dolstra, Oene; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Miscanthus has a high potential as a biomass feedstock for biofuel production. Drought tolerance is an important breeding goal in miscanthus as water deficit is a common abiotic stress and crop irrigation is in most cases uneconomical. Drought may not only severely reduce biomass yields, but also

  9. Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett

    DEFF Research Database (Denmark)

    Wang, Xiao; Vignjevic, Marija; Jiang, Dong

    2014-01-01

    Drought stress occurring during the reproductive growth stage leads to considerable reductions in crop production and has become an important limiting factor for food security globally. In order to explore the possible role of drought priming (pre-exposure of the plants to mild drought stress...

  10. Effect of drought stress and subsequent recovery on protein, carbohydrate contents, catalase and peroxidase activities in three chickpea (Cicer arietinum) cultivars

    NARCIS (Netherlands)

    Mafakheri, A.; Siosemardeh, A.; Bahramnejad, B.; Struik, P.C.; Sohrabi, Y.

    2011-01-01

    Drought stress is one of the major abiotic stresses in agriculture worldwide. This study was carried out to investigate the effects of drought stress and subsequent recovery on protein, carbohydrate content, catalase (CAT), and peroxidase (POX) activities in three varieties of chickpea (drought

  11. Arabidopsis calcium-dependent protein kinase AtCPK1 plays a positive role in salt/drought-stress response.

    Science.gov (United States)

    Huang, Kui; Peng, Lu; Liu, Yingying; Yao, Rundong; Liu, Zhibin; Li, Xufeng; Yang, Yi; Wang, Jianmei

    2018-03-25

    The calcium-dependent protein kinases (CDPKs) play vital roles in plant response to various environmental stimuli. Here, we investigated the function of Arabidopsis AtCPK1 in response to salt and drought stress. The loss-of-function cpk1 mutant displayed hypersensitive to salt and drought stress, whereas overexpressing AtCPK1 in Arabidopsis plants significantly enhanced the resistance to salt or drought stress. The reduced or elevated tolerance of cpk1 mutant and AtCPK1-overexpressing lines was confirmed by the changes of proline, malondialdehyde (MDA) and H 2 O 2 . Real-time PCR analysis revealed that the expression of several stress-inducible genes (RD29A, COR15A, ZAT10, APX2) down-regulated in cpk1 mutant and up-regulated in AtCPK1-overexpressing plants. These results are likely to indicate that AtCPK1 positively regulates salt and drought stress in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Early field performance of drought-stressed scots pine (pinus sylvestris l.) seedlings

    International Nuclear Information System (INIS)

    Kulac, S.; Clcek, E.; Tasdemir, U.

    2015-01-01

    Scots pine (Pinus sylvestris) has a large natural distribution throughout the world, including semi-arid areas of Turkey, where it is being used for afforestation. Determining the drought resistance of Scots pine provenances can increase the success of afforestation efforts in semi-arid regions. In the first stage of this study, water-stress treatments were applied to ten provenances of one-year-old Scots pine seedlings in their second vegetation period (between April and November). The diameter and height of the seedlings were evaluated in the nursery in order to determine their morphology. The four drought-stress treatments consisted of once-weekly irrigation (IR1), twice-weekly irrigation (IR2-Control), biweekly irrigation (IR3) and open field conditions (IR4). Later, the water-stressed seedlings were planted in a semi-arid district in Bayburt, Turkey, and their survival and growth performances were evaluated over a five-year period. The nursery study showed that drought stress and provenance as well as the interaction of the two significantly affected the morphological characteristics of the seedlings. Under water-stress conditions, the best growth performance was found in the Dokurcun, Degirmendere and Dirgine provenance seedlings. Water-stress and provenance factors and their interaction also affected the open field performance of the seedlings, where the Degirmendere, Dirgine and Dokurcun provenances again exhibited the best performance. Consequently, these Scots pine provenances can be recommended for afforestation sites having conditions similar to those of the study site. (author)

  13. Mechanisms of induced susceptibility to Diplodia tip blight in drought-stressed Austrian pine.

    Science.gov (United States)

    Sherwood, Patrick; Villari, Caterina; Capretti, Paolo; Bonello, Pierluigi

    2015-05-01

    Plants experiencing drought stress are frequently more susceptible to pathogens, likely via alterations in physiology that create favorable conditions for pathogens. Common plant responses to drought include the production of reactive oxygen species (ROS) and the accumulation of free amino acids (AAs), particularly proline. These same phenomena also frequently occur during pathogenic attack. Therefore, drought-induced perturbations in AA and ROS metabolism could potentially contribute to the observed enhanced susceptibility. Furthermore, nitrogen (N) availability can influence AA accumulation and affect plant resistance, but its contributions to drought-induced susceptibility are largely unexplored. Here we show that drought induces accumulation of hydrogen peroxide (H2O2) in Austrian pine (Pinus nigra Arnold) shoots, but that shoot infection by the blight and canker pathogen Diplodia sapinea (Fr.) Fuckel leads to large reductions in H2O2 levels in droughted plants. In in vitro assays, H2O2 was toxic to D. sapinea, and the fungus responded to this oxidative stress by increasing catalase and peroxidase activities, resulting in substantial H2O2 degradation. Proline increased in response to drought and infection when examined independently, but unlike all other AAs, proline further increased in infected shoots of droughted trees. In the same tissues, the proline precursor, glutamate, decreased significantly. Proline was found to protect D. sapinea from H2O2 damage, while also serving as a preferred N source in vitro. Fertilization increased constitutive and drought-induced levels of some AAs, but did not affect plant resistance. A new model integrating interactions of proline and H2O2 metabolism with drought and fungal infection of plants is proposed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress

    Directory of Open Access Journals (Sweden)

    Chunqing Liu

    2015-08-01

    Full Text Available Drought stress is one of the major abiotic factors affecting Brassica napus (B. napus productivity. In order to identify genes of potential importance to drought stress and obtain a deeper understanding of the molecular mechanisms regarding the responses of B. napus to dehydration stress, we performed large-scale transcriptome sequencing of B. napus plants under dehydration stress using the Illumina sequencing technology. In this work, a relatively drought tolerant B. napus line, Q2, identified in our previous study, was used. Four cDNA libraries constructed from mRNAs of control and dehydration-treated root and leaf were sequenced by Illumina technology. A total of 6018 and 5377 differentially expressed genes (DEGs were identified in root and leaf. In addition, 1745 genes exhibited a coordinated expression profile between the two tissues under drought stress, 1289 (approximately 74% of which showed an inverse relationship, demonstrating different regulation patterns between the root and leaf. The gene ontology (GO enrichment test indicated that up-regulated genes in root were mostly involved in “stimulus” “stress” biological process, and activated genes in leaf mainly functioned in “cell” “cell part” components. Furthermore, a comparative network related to plant hormone signal transduction and AREB/ABF, AP2/EREBP, NAC, WRKY and MYC/MYB transcription factors (TFs provided a view of different stress tolerance mechanisms between root and leaf. Some of the DEGs identified may be candidates for future research aimed at detecting drought-responsive genes and will be useful for understanding the molecular mechanisms of drought tolerance in root and leaf of B. napus.

  15. Improving creativity performance by short-term meditation

    Science.gov (United States)

    2014-01-01

    Background One form of meditation intervention, the integrative body-mind training (IBMT) has been shown to improve attention, reduce stress and change self-reports of mood. In this paper we examine whether short-term IBMT can improve performance related to creativity and determine the role that mood may play in such improvement. Methods Forty Chinese undergraduates were randomly assigned to short-term IBMT group or a relaxation training (RT) control group. Mood and creativity performance were assessed by the Positive and Negative Affect Schedule (PANAS) and Torrance Tests of Creative Thinking (TTCT) questionnaire respectively. Results As predicted, the results indicated that short-term (30 min per day for 7 days) IBMT improved creativity performance on the divergent thinking task, and yielded better emotional regulation than RT. In addition, cross-lagged analysis indicated that both positive and negative affect may influence creativity in IBMT group (not RT group). Conclusions Our results suggested that emotion-related creativity-promoting mechanism may be attributed to short-term meditation. PMID:24645871

  16. Genome-wide identification of conserved microRNA and their response to drought stress in Dongxiang wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Zhang, Fantao; Luo, Xiangdong; Zhou, Yi; Xie, Jiankun

    2016-04-01

    To identify drought stress-responsive conserved microRNA (miRNA) from Dongxiang wild rice (Oryza rufipogon Griff., DXWR) on a genome-wide scale, high-throughput sequencing technology was used to sequence libraries of DXWR samples, treated with and without drought stress. 505 conserved miRNAs corresponding to 215 families were identified. 17 were significantly down-regulated and 16 were up-regulated under drought stress. Stem-loop qRT-PCR revealed the same expression patterns as high-throughput sequencing, suggesting the accuracy of the sequencing result was high. Potential target genes of the drought-responsive miRNA were predicted to be involved in diverse biological processes. Furthermore, 16 miRNA families were first identified to be involved in drought stress response from plants. These results present a comprehensive view of the conserved miRNA and their expression patterns under drought stress for DXWR, which will provide valuable information and sequence resources for future basis studies.

  17. The Arabidopsis RNA-Binding Protein AtRGGA Regulates Tolerance to Salt and Drought Stress

    KAUST Repository

    Ambrosone, Alfredo; Batelli, Giorgia; Nurcato, Roberta; Aurilia, Vincenzo; Punzo, Paola; Bangarusamy, Dhinoth Kumar; Ruberti, Ida; Sassi, Massimiliano; Leone, Antonietta; Costa, Antonello; Grillo, Stefania

    2015-01-01

    Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress.

  18. The Arabidopsis RNA-Binding Protein AtRGGA Regulates Tolerance to Salt and Drought Stress

    KAUST Repository

    Ambrosone, Alfredo

    2015-03-17

    Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress.

  19. Measuring Photosynthetic Response to Drought Stress using Active and Passive Fluorescence

    Science.gov (United States)

    Helm, L.; Lerdau, M.; Wang, W.; Yang, X.

    2017-12-01

    Photosynthesis, the endothermic reactions involving the absorption of light and fixation and reduction of carbon dioxide by plants, plays important roles in carbon and water cycles, food security, and even weather and climate patterns. Solar radiation provides the energy for photosynthesis, but often plants absorb more solar energy than they can use to reduce carbon dioxide. This excess energy, which is briefly stored as high-energy electrons in the chloroplast, must be removed or damage to the leaf's photosynthetic machinery will occur. One important energy dissipation pathway is for the high energy electrons to return to their lower valance state and, in doing so, release radiation (fluorescence). This fluorescence (known as solar induced fluorescence (SIF) has been found to strongly correlate with gross photosynthesis. Recent advances in the remote sensing of SIF allow for large-scale real-time estimation of photosynthesis. In a warming climate with more frequent stress, remote sensing is necessary for measuring the spatial and temporal variability of photosynthesis. However, the mechanisms that link SIF and photosynthesis are unclear, particularly how the relationship may or may not change under stress. We present data from leaf-level measurements of gas exchange, pulse amplitude modulation (PAM) fluorescence, and SIF in two major tree species in North America. Water-stressed and well-watered plants were compared to determine how SIF and carbon dioxide exchange are modulated by drought diurnally and seasonally. Secondly, photosynthesis and fluorescence under high and low oxygen concentrations were compared to determine how photorespiration alters the relationship between SIF and gross photosynthesis. We find a strong correlation between SIF and steady-state fluorescence measured with conventional PAM fluorometry. Our results also indicate that drought-stress modulates the SIF-photosynthesis relationship, and this may be driven by drought-induced changes in

  20. Drought effects on ecosystem functioning and interactions with CO2 and warming - results from CLIMAITE

    Science.gov (United States)

    Beier, Claus; Ibrom, Andreas; Linden, Leon G.; Selsted, Merete B.; Albert, Kristian R.; Kongstad, Jane; Andresen, Louise C.

    2010-05-01

    both processes responsible for inputs and outputs of carbon with an overall effect of drought reducing the carbon gain in the ecosystem. Long term changes in rewetting capability observed in other drought studies (Sowerby et al., 2009) are not visible in the CLIMAITE experiment yet. Elevated CO2 improves the water use efficiency and thereby reduces the water use and water stress in the ecosystem during droughts. Consequently, a higher plant growth and carbon gain can be maintained during dry periods. Higher water status during dry periods might also stimulate carbon turnover by microbes, but this effect is, at least on the short term less prominent than the effect on plant growth and CO2 in combination with drought seemed to stimulate ecosystem carbon gain. Increased temperature may amplify reduced water availability by stimulating evapotranspiration, and the responses in CLIMAITE generally support this with reduced plant growth and carbon uptake in plants when temperature and drought was combined. Furthermore, it might be expected that elevated temperature stimulates soil carbon mineralisation leading to an overall reduction in ecosystem carbon gain when the ecosystem is exposed to both warming and drought. However, the short term results from CLIMAITE are inconclusive on this point with generally small and varied responses to warming. The full factorial experiment shows clear interactions among factors and simple precipitation change experiments may not provide a valid picture of the responses to the combined climate change scenario, even at the short term. On the longer term more complex interactions may occur and make prediction even more uncertain. In relation to water this may in particular be linked to long term changes in soil structure and microbial biomass as well as changes in plant species composition leading to dominating plants with better opportunities to deal with either limited or fluctuating water availability. The CLIMAITE studies support emerging

  1. Drought stress does not protect Quercus ilex L. from ozone effects: results from a comparative study of two subspecies differing in ozone sensitivity.

    Science.gov (United States)

    Alonso, R; Elvira, S; González-Fernández, I; Calvete, H; García-Gómez, H; Bermejo, V

    2014-03-01

    Long-term effects of ozone (O3) exposure and drought stress were assessed on two subspecies of Quercus ilex: ssp. ilex and ssp. ballota. Two-year-old seedlings were continuously exposed for 26 months in open-top chambers to three O3 treatments: charcoal filtered air, non-filtered air and non-filtered air supplemented with 40 nl · l(-1) O3. Additionally, two irrigation regimes were adopted: half of the plants were well-watered and the others received half of the water supplied to control plants. Growth, shoot water potential and gas exchange rates were assessed seasonally, and biomass accumulation was determined at the end of the experiment. Drought stress caused higher reductions of gas exchange, growth and biomass accumulation than O3 exposure in both subspecies. The combination of O3 and drought stress caused further decreases of accumulated aboveground biomass but no additive effects were observed on gas exchange rates or root biomass. Thus, drought stress did not protect Q. ilex from O3 effects on biomass when the response of the whole plant was considered. Q. ilex ssp. ballota was more sensitive to O3 and ssp. ilex was more affected by drought stress. The different O3 sensitivity was not only related to pollutant uptake but also to the ability of plants for resource acquisition and allocation. Based on biomass dose-response functions, Q. ilex is more resistant to O3 than other European evergreen tree species, however, O3 represents an additional stress factor that might be impairing plant ability to withstand current and future climate change. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Drought-induced vegetation stress in southwestern North America

    International Nuclear Information System (INIS)

    Zhang Xiaoyang; Goldberg, Mitchell; Tarpley, Dan; Kogan, Felix; Yu Yunyue; Friedl, Mark A; Morisette, Jeffrey

    2010-01-01

    Trends towards earlier greenup and increased average greenness have been widely reported in both humid and dry ecosystems. By analyzing NOAA (National Oceanic and Atmospheric Administration) AVHRR (Advanced Very High Resolution Radiometer) data from 1982 to 2007, we report complex trends in both the growing season amplitude and seasonally integrated vegetation greenness in southwestern North America and further highlight regions consistently experiencing drought stress. In particular, greenness measurements from 1982 to 2007 show an increasing trend in grasslands but a decreasing trend in shrublands. However, vegetation greenness in this period has experienced a strong cycle, increasing from 1982 to 1993 but decreasing from 1993 to 2007. The significant decrease during the last decade has reduced vegetation greenness by 6% in shrublands and 13% in grasslands (16% and 21%, respectively, in the severe drought years). The greenness cycle correlates to both annual precipitation and dry season length derived from NOAA North America Regional Reanalysis data. If drought events continue as predicted by climate models, they will exacerbate ecosystem degradation and reduce carbon uptake.

  3. Nitrogen Nutrition Improves the Potential of Wheat (Triticum aestivum L.) to Alleviate the Effects of Drought Stress during Vegetative Growth Periods.

    Science.gov (United States)

    Abid, Muhammad; Tian, Zhongwei; Ata-Ul-Karim, Syed Tahir; Cui, Yakun; Liu, Yang; Zahoor, Rizwan; Jiang, Dong; Dai, Tingbo

    2016-01-01

    Efficient nitrogen (N) nutrition has the potential to alleviate drought stress in crops by maintaining metabolic activities even at low tissue water potential. This study was aimed to understand the potential of N to minimize the effects of drought stress applied/occur during tillering (Feekes stage 2) and jointing (Feekes stage 6) growth stages of wheat by observing the regulations and limitations of physiological activities, crop growth rate during drought periods as well as final grain yields at maturity. In present study, pot cultured plants of a wheat cultivar Yangmai-16 were exposed to three water levels [severe stress at 35-40% field capacity (FC), moderate stress at 55-60% FC and well-watered at 75-80% FC] under two N rates (0.24 g and 0.16 g/kg soil). The results showed that the plants under severe drought stress accompanied by low N exhibited highly downregulated photosynthesis, and chlorophyll (Chl) fluorescence during the drought stress periods, and showed an accelerated grain filling rate with shortened grain filling duration (GFD) at post-anthesis, and reduced grain yields. Severe drought-stressed plants especially at jointing, exhibited lower Chl and Rubisco contents, lower efficiency of photosystem II and greater grain yield reductions. In contrast, drought-stressed plants under higher N showed tolerance to drought stress by maintaining higher leaf water potential, Chl and Rubisco content; lower lipid peroxidation associated with higher superoxide dismutase and ascorbate peroxidase activities during drought periods. The plants under higher N showed delayed senescence, increased GFD and lower grain yield reductions. The results of the study suggested that higher N nutrition contributed to drought tolerance in wheat by maintaining higher photosynthetic activities and antioxidative defense system during vegetative growth periods.

  4. QsMYB1 expression is modulated in response to heat and drought stresses and during plant recovery in Quercus suber.

    Science.gov (United States)

    Almeida, Tânia; Pinto, Glória; Correia, Barbara; Santos, Conceição; Gonçalves, Sónia

    2013-12-01

    Cork oak is an economically important forest species showing a great tolerance to high temperatures and shortage of water. However, the mechanisms underlying this plasticity are still poorly understood. Among the stress regulators, transcription factors (TFs) are especially important since they can control a wide range of stress-inducible genes, which make them powerful targets for genetic engineering of stress tolerance. Here we evaluated the influence of increasing temperatures (up to 55 °C) or drought (18% field capacity, FC) on the expression profile of an R2R3-MYB transcription factor of cork oak, the QsMYB1. QsMYB1 was previously identified as being preferentially expressed in cork tissues and as having an associated alternative splicing mechanism, which results in two different transcripts (QsMYB1.1 and QsMYB1.2). Expression analysis by reverse transcription quantitative PCR (RT-qPCR) revealed that increasing temperatures led to a gradual down-regulation of QsMYB1 transcripts with more effect on QsMYB1.1 abundance. On the other hand, under drought condition, expression of QsMYB1 variants, mainly the QsMYB1.2, was transiently up-regulated shortly after the stress imposition. Recovery from each stress has also resulted in a differential response by both QsMYB1 transcripts. Several physiological and biochemical parameters (plant water status, chlorophyll fluorescence, lipid peroxidation and proline content) were determined in order to monitor the plant performance under stress and recovery. In conclusion, this report provides the first evidence that QsMYB1 TF may have a putative function in the regulatory network of cork oak response to heat and drought stresses and during plant recovery. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Responses of nitrogen metabolism and seed nutrition to drought stress in soybean genotypes differing in slow-wilting phenotype

    Directory of Open Access Journals (Sweden)

    Nacer eBellaloui

    2013-12-01

    Full Text Available Recent advances in soybean breeding have resulted in genotypes that express the slow-wilting phenotype (trait under drought stress conditions. The physiological mechanisms of this trait remain unknown due to the complexity of trait × environment interactions. The objective of this research was to investigate nitrogen metabolism and leaf and seed nutrients composition of the slow-wilting soybean genotypes under drought stress conditions. A repeated greenhouse experiment was conducted using check genotypes: NC-Roy (fast wilting, Boggs (intermediate in wilting; and NTCPR94-5157 and N04-9646 (slow-wilting, SLW genotypes. Plants were either well-watered or drought stressed. Results showed that under well-watered conditions, nitrogen fixation (NF, nitrogen assimilation (NA, and leaf and seed composition differed between genotypes. Under drought stress, NF and NA were higher in NTCPR94-5157 and N04-9646 than in NC-Roy and Boggs. Under severe water stress, however, NA was low in all genotypes. Leaf water potential was significantly lower in checks (-2.00 MPa than in the SLW genotypes (-1.68 MPa. Leaf and seed concentrations of K, P, Ca, Cu, Na, B were higher in SLW genotypes than in the checks under drought stress conditions. Seed protein, oleic acid, and sugars were higher in SLW genotypes, and oil, linoleic and linolenic acids were lower in SLW genotypes. This research demonstrated that K, P, Ca, Cu, Na, and B may be involved in SLW trait by maintaining homeostasis and osmotic regulation. Maintaining higher leaf water potential in NTCPR94-5157 and N04-9646 under drought stress could be a possible water conservation mechanism to maintain leaf turgor pressure. The increase in osmoregulators such as minerals, raffinose and stachyose, and oleic acid could be beneficial for soybean breeders in selecting for drought stress tolerance.

  6. A Nucleus-localized Long Non-Coding RNA Enhances Drought and Salt Stress Tolerance

    KAUST Repository

    Qin, Tao; Zhao, Huayan; Cui, Peng; Albesher, Nour H.; Xiong, Liming

    2017-01-01

    stress. DRIR was expressed at a low level under non-stress conditions but can be significantly activated by drought and salt stress as well as by abscisic acid (ABA) treatment. We identified a T-DNA insertion mutant, drirD, which had higher expression

  7. QTLs for tolerance of drought and breeding for tolerance of abiotic and biotic stress: an integrated approach.

    Directory of Open Access Journals (Sweden)

    Shalabh Dixit

    Full Text Available BACKGROUND: The coupling of biotic and abiotic stresses leads to high yield losses in rainfed rice (Oryza sativa L. growing areas. While several studies target these stresses independently, breeding strategies to combat multiple stresses seldom exist. This study reports an integrated strategy that combines QTL mapping and phenotypic selection to develop rice lines with high grain yield (GY under drought stress and non-stress conditions, and tolerance of rice blast. METHODOLOGY: A blast-tolerant BC2F3-derived population was developed from the cross of tropical japonica cultivar Moroberekan (blast- and drought-tolerant and high-yielding indica variety Swarna (blast- and drought-susceptible through phenotypic selection for blast tolerance at the BC2F2 generation. The population was studied for segregation distortion patterns and QTLs for GY under drought were identified along with study of epistatic interactions for the trait. RESULTS: Segregation distortion, in favour of Moroberekan, was observed at 50 of the 59 loci. Majority of these marker loci co-localized with known QTLs for blast tolerance or NBS-LRR disease resistance genes. Despite the presence of segregation distortion, high variation for DTF, PH and GY was observed and several QTLs were identified under drought stress and non-stress conditions for the three traits. Epistatic interactions were also detected for GY which explained a large proportion of phenotypic variance observed in the population. CONCLUSIONS: This strategy allowed us to identify QTLs for GY along with rapid development of high-yielding purelines tolerant to blast and drought with considerably reduced efforts. Apart from this, it also allowed us to study the effects of the selection cycle for blast tolerance. The developed lines were screened at IRRI and in the target environment, and drought and blast tolerant lines with high yield were identified. With tolerance to two major stresses and high yield potential, these

  8. Proteome dynamics and physiological responses to short-term salt stress in Leymus chinensis leaves.

    Directory of Open Access Journals (Sweden)

    Jikai Li

    Full Text Available Salt stress is becoming an increasing threat to global agriculture. In this study, physiological and proteomics analysis were performed using a salt-tolerant grass species, Leymus chinensis (L. chinensis. The aim of this study is to understand the potential mechanism of salt tolerance in L. chinensis that used for crop molecular breeding. A series of short-term (<48 h NaCl treatments (0 ~ 700 mM were conducted. Physiological data indicated that the root and leaves growth were inhibited, chlorophyll contents decreased, while hydraulic conductivity, proline, sugar and sucrose were accumulated under salt stress. For proteomic analysis, we obtained 274 differentially expressed proteins in response to NaCl treatments. GO analysis revealed that 44 out of 274 proteins are involved in the biosynthesis of amino acids and carbon metabolism. Our findings suggested that L. chinensis copes with salt stress by stimulating the activities of POD, SOD and CAT enzymes, speeding up the reactions of later steps of citrate cycle, and synthesis of proline and sugar. In agreement with our physiological data, proteomic analysis also showed that salt stress depress the expression of photosystem relevant proteins, Calvin cycle, and chloroplast biosynthesis.

  9. Time-dependent effects of climate and drought on tree growth in a Neotropical dry forest: Short-term tolerance vs. long-term sensitivity

    NARCIS (Netherlands)

    Mendivelso, H.A.; Camarero, J.J.; Gutierrez, E.; Zuidema, P.

    2014-01-01

    We analyzed the effects of climate and drought on radial growth using dendrochronology in seven deciduous tree species coexisting in a Bolivian tropical dry forest subjected to seasonal drought. Precipitation, temperature and a multiscalar drought index were related to tree-ring width data at

  10. Saussurea involucrata SiDhn2 gene confers tolerance to drought stress in upland cotton

    International Nuclear Information System (INIS)

    Liu, B.; Zhu, J.; Mu, J.; Zhu, J.; Liang, Z.; Zhang, L.

    2017-01-01

    Severe water shortage has long been acknowledged as one major limiting factor for global cotton production, and cultivation of cotton varieties with strong drought resistance is of important economic and social significances. In this study, the Xinjiang upland cotton variety Xinluzao 42 was transformed with the SiDhn2 gene by optimized agrobacterium transformation system. The integration of SiDhn2 gene into cotton genome was confirmed by PCR and Southern blot hybridization, and the drought resistance of transgenic and corresponding receptor cotton plants and their physiological indexes under drought stress were detailedly analyzed. Multiple physiological and biochemical indexes including soluble sugar content, free proline content, chlorophyll content, relative water content, net photosynthetic rate, transpiration rate, intercellular CO/sub 2/ concentration in transgenic cotton expressing SiDhn2 gene under drought stress were significantly higher than those of receptor cotton. More importantly, the transgenic cotton plants exhibited remarkably decreased boll abscission rate and highly increased seed yield, indicating the significant role of SiDhn2 gene in cotton drought resistance and its great application potential in agricultural production. (author)

  11. Modulation of Antioxidant Defense System Is Associated with Combined Drought and Heat Stress Tolerance in Citrus.

    Science.gov (United States)

    Zandalinas, Sara I; Balfagón, Damián; Arbona, Vicent; Gómez-Cadenas, Aurelio

    2017-01-01

    Drought and high temperatures are two major abiotic stress factors that often occur simultaneously in nature, affecting negatively crop performance and yield. Moreover, these environmental challenges induce oxidative stress in plants through the production of reactive oxygen species (ROS). Carrizo citrange and Cleopatra mandarin are two citrus genotypes with contrasting ability to cope with the combination of drought and heat stress. In this work, a direct relationship between an increased antioxidant activity and stress tolerance is reported. According to our results, the ability of Carrizo plants to efficiently coordinate superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and glutathione reductase (GR) activities involved in ROS detoxification along with the maintenance of a favorable GSH/GSSG ratio could be related to their relative tolerance to this stress combination. On the other hand, the increment of SOD activity and the inefficient GR activation along with the lack of CAT and APX activities in Cleopatra plants in response to the combination of drought and heat stress, could contribute to an increased oxidative stress and the higher sensibility of this citrus genotype to this stress combination.

  12. Prosodic Similarity Effects in Short-Term Memory in Developmental Dyslexia.

    Science.gov (United States)

    Goswami, Usha; Barnes, Lisa; Mead, Natasha; Power, Alan James; Leong, Victoria

    2016-11-01

    Children with developmental dyslexia are characterized by phonological difficulties across languages. Classically, this 'phonological deficit' in dyslexia has been investigated with tasks using single-syllable words. Recently, however, several studies have demonstrated difficulties in prosodic awareness in dyslexia. Potential prosodic effects in short-term memory have not yet been investigated. Here we create a new instrument based on three-syllable words that vary in stress patterns, to investigate whether prosodic similarity (the same prosodic pattern of stressed and unstressed syllables) exerts systematic effects on short-term memory. We study participants with dyslexia and age-matched and younger reading-level-matched typically developing controls. We find that all participants, including dyslexic participants, show prosodic similarity effects in short-term memory. All participants exhibited better retention of words that differed in prosodic structure, although participants with dyslexia recalled fewer words accurately overall compared to age-matched controls. Individual differences in prosodic memory were predicted by earlier vocabulary abilities, by earlier sensitivity to syllable stress and by earlier phonological awareness. To our knowledge, this is the first demonstration of prosodic similarity effects in short-term memory. The implications of a prosodic similarity effect for theories of lexical representation and of dyslexia are discussed. © 2016 The Authors. Dyslexia published by John Wiley & Sons Ltd. © 2016 The Authors. Dyslexia published by John Wiley & Sons Ltd.

  13. Drought monitoring over the Horn of Africa using remotely sensed evapotranspiration, soil moisture and vegetation parameters

    Science.gov (United States)

    Timmermans, J.; Gokmen, M.; Eden, U.; Abou Ali, M.; Vekerdy, Z.; Su, Z.

    2012-04-01

    The need to good drought monitoring and management for the Horn of Africa has never been greater. This ongoing drought is the largest in the past sixty years and is effecting the life of around 10 million people, according to the United Nations. The impact of drought is most apparent in food security and health. In addition secondary problems arise related to the drought such as large migration; more than 15000 Somalia have fled to neighboring countries to escape the problems caused by the drought. These problems will only grow in the future to larger areas due to increase in extreme weather patterns due to global climate change. Monitoring drought impact and managing the drought effects are therefore of critical importance. The impact of a drought is hard to characterize as drought depends on several parameters, like precipitation, land use, irrigation. Consequently the effects of the drought vary spatially and range from short-term to long-term. For this reason a drought event can be characterized into four categories: meteorological, agricultural, hydrological and socio-economical. In terms of food production the agricultural drought, or short term dryness near the surface layer, is most important. This drought is usually characterized by low soil moisture content in the root zone, decreased evapotranspiration, and changes in vegetation vigor. All of these parameters can be detected with good accuracy from space. The advantage of remote sensing in Drought monitoring is evident. Drought monitoring is usually performed using drought indices, like the Palmer Index (PDSI), Crop Moisture Index (CMI), Standard Precipitation Index (SPI). With the introduction of remote sensing several indices of these have shown great potential for large scale application. These indices however all incorporate precipitation as the main surface parameter neglecting the response of the surface to the dryness. More recently two agricultural drought indices, the EvapoTranspiration Deficit

  14. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress.

    Science.gov (United States)

    Ma, Ying; Rajkumar, Mani; Moreno, António; Zhang, Chang; Freitas, Helena

    2017-10-01

    This study evaluates the potential of serpentine endophytic bacterium to foster phytoremediation efficiency of Trifolium arvense grown on multi-metal (Cu, Zn and Ni) contaminated soils under drought stress. A drought resistant endophytic bacterial strain ASS1 isolated from the leaves of Alyssum serpyllifolium grown in serpentine soils was identified as Pseudomonas azotoformans based on biochemical tests and partial 16S rRNA gene sequencing. P. azotoformans ASS1 possessed abiotic stress resistance (heavy metals, drought, salinity, antibiotics and extreme temperature) and plant growth promoting (PGP) properties (phosphate solubilization, nitrogen fixation, production of 1-aminocyclopropane-1-carboxylate deaminase, siderophore and ammonia). Inoculation of T. arvense with ASS1 considerably increased the plant biomass and leaf relative water content in both roll towel assay and pot experiments in the absence and presence of drought stress (DS). In the pot experiments, ASS1 greatly enhanced chlorophyll content, catalase, peroxidase, superoxide dismutase activities, and proline content (only in the absence of drought) in plant leaves, whereas they decreased the concentrations of malondialdehyde. Irrespective of water stress, ASS1 significantly improved accumulation, total removal, bio-concentration factor and biological accumulation coefficient of metals (Cu, Zn and Ni), while decreased translocation factors of Cu. The effective colonization and survival in the rhizosphere and tissue interior assured improved plant growth and successful metal phytoremediation under DS. These results demonstrate the potential of serpentine endophytic bacterium ASS1 for protecting plants against abiotic stresses and helping plants to thrive in semiarid ecosystems and accelerate phytoremediation process in metal polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Exogenous Hydrogen Peroxide Contributes to Heme Oxygenase-1 Delaying Programmed Cell Death in Isolated Aleurone Layers of Rice Subjected to Drought Stress in a cGMP-Dependent Manner

    Science.gov (United States)

    Wang, Guanghui; Xiao, Yu; Deng, Xiaojiang; Zhang, Heting; Li, Tingge; Chen, Huiping

    2018-01-01

    Hydrogen peroxide (H2O2) is a reactive oxygen species (ROS) that plays a dual role in plant cells. Here, we discovered that drought (20% polyethylene glycol-6000, PEG)-triggered decreases of HO-1 transcript expression and HO activity. However, exogenous H2O2 contributed toward the increase in HO-1 gene expression and activity of the enzyme under drought stress. Meanwhile, the HO-1 inducer hematin could mimic the effects of the H2O2 scavengers ascorbic acid (AsA) and dimethylthiourea (DMTU) and the H2O2 synthesis inhibitor diphenyleneiodonium (DPI) for scavenging or diminishing drought-induced endogenous H2O2. Conversely, the zinc protoporphyrin IX (ZnPPIX), an HO-1-specific inhibitor, reversed the effects of hematin. We further analyzed the endogenous H2O2 levels and HO-1 transcript expression levels of aleurone layers treated with AsA, DMTU, and DPI in the presence of exogenous H2O2 under drought stress, respectively. The results showed that in aleurone layers subjected to drought stress, when the endogenous H2O2 level was inhibited, the effect of exogenous H2O2 on the induction of HO-1 was enhanced. Furthermore, exogenous H2O2-activated HO-1 effectively enhanced amylase activity. Application of 8-bromoguanosine 3′,5′-cyclic guanosine monophosphate (8-Br-cGMP) (the membrane permeable cGMP analog) promoted the effect of exogenous H2O2-delayed PCD of aleurone layers in response to drought stress. More importantly, HO-1 delayed the programmed cell death (PCD) of aleurone layers by cooperating with nitric oxide (NO), and the delayed effect of NO on PCD was achieved via mediation by cGMP under drought stress. In short, in rice aleurone layers, exogenous H2O2 (as a signaling molecule) triggered HO-1 and delayed PCD via cGMP which possibly induced amylase activity under drought stress. In contrast, as a toxic by-product of cellular metabolism, the drought-generated H2O2 promoted cell death. PMID:29449858

  16. Genes and co-expression modules common to drought and bacterial stress responses in Arabidopsis and rice.

    Directory of Open Access Journals (Sweden)

    Rafi Shaik

    Full Text Available Plants are simultaneously exposed to multiple stresses resulting in enormous changes in the molecular landscape within the cell. Identification and characterization of the synergistic and antagonistic components of stress response mechanisms contributing to the cross talk between stresses is of high priority to explore and enhance multiple stress responses. To this end, we performed meta-analysis of drought (abiotic, bacterial (biotic stress response in rice and Arabidopsis by analyzing a total of 386 microarray samples belonging to 20 microarray studies and identified approximately 3100 and 900 DEGs in rice and Arabidopsis, respectively. About 38.5% (1214 and 28.7% (272 DEGs were common to drought and bacterial stresses in rice and Arabidopsis, respectively. A majority of these common DEGs showed conserved expression status in both stresses. Gene ontology enrichment analysis clearly demarcated the response and regulation of various plant hormones and related biological processes. Fatty acid metabolism and biosynthesis of alkaloids were upregulated and, nitrogen metabolism and photosynthesis was downregulated in both stress conditions. WRKY transcription family genes were highly enriched in all upregulated gene sets while 'CO-like' TF family showed inverse relationship of expression between drought and bacterial stresses. Weighted gene co-expression network analysis divided DEG sets into multiple modules that show high co-expression and identified stress specific hub genes with high connectivity. Detection of consensus modules based on DEGs common to drought and bacterial stress revealed 9 and 4 modules in rice and Arabidopsis, respectively, with conserved and reversed co-expression patterns.

  17. Enriching Genomic Resources and Transcriptional Profile Analysis of Miscanthus sinensis under Drought Stress Based on RNA Sequencing

    Directory of Open Access Journals (Sweden)

    Gang Nie

    2017-01-01

    Full Text Available Miscanthus × giganteus is wildly cultivated as a potential biofuel feedstock around the world; however, the narrow genetic basis and sterile characteristics have become a limitation for its utilization. As a progenitor of M. × giganteus, M. sinensis is widely distributed around East Asia providing well abiotic stress tolerance. To enrich the M. sinensis genomic databases and resources, we sequenced and annotated the transcriptome of M. sinensis by using an Illumina HiSeq 2000 platform. Approximately 316 million high-quality trimmed reads were generated from 349 million raw reads, and a total of 114,747 unigenes were obtained after de novo assembly. Furthermore, 95,897 (83.57% unigenes were annotated to at least one database including NR, Swiss-Prot, KEGG, COG, GO, and NT, supporting that the sequences obtained were annotated properly. Differentially expressed gene analysis indicates that drought stress 15 days could be a critical period for M. sinensis response to drought stress. The high-throughput transcriptome sequencing of M. sinensis under drought stress has greatly enriched the current genomic available resources. The comparison of DEGs under different periods of drought stress identified a wealth of candidate genes involved in drought tolerance regulatory networks, which will facilitate further genetic improvement and molecular studies of the M. sinensis.

  18. Genome-Wide Investigation of WRKY Transcription Factors Involved in Terminal Drought Stress Response in Common Bean.

    Science.gov (United States)

    Wu, Jing; Chen, Jibao; Wang, Lanfen; Wang, Shumin

    2017-01-01

    WRKY transcription factor plays a key role in drought stress. However, the characteristics of the WRKY gene family in the common bean ( Phaseolus vulgaris L.) are unknown. In this study, we identified 88 complete WRKY proteins from the draft genome sequence of the "G19833" common bean. The predicted genes were non-randomly distributed in all chromosomes. Basic information, amino acid motifs, phylogenetic tree and the expression patterns of PvWRKY genes were analyzed, and the proteins were classified into groups 1, 2, and 3. Group 2 was further divided into five subgroups: 2a, 2b, 2c, 2d, and 2e. Finally, we detected 19 WRKY genes that were responsive to drought stress using qRT-PCR; 11 were down-regulated, and 8 were up-regulated under drought stress. This study comprehensively examines WRKY proteins in the common bean, a model food legume, and it provides a foundation for the functional characterization of the WRKY family and opportunities for understanding the mechanisms of drought stress tolerance in this plant.

  19. Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance

    Science.gov (United States)

    Yang, Liming; Fountain, Jake C.; Wang, Hui; Ni, Xinzhi; Ji, Pingsheng; Lee, Robert D.; Kemerait, Robert C.; Scully, Brian T.; Guo, Baozhu

    2015-01-01

    Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS) and reactive nitrogen species (RNS) than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding. PMID:26492235

  20. Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Liming Yang

    2015-10-01

    Full Text Available Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS and reactive nitrogen species (RNS than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding.

  1. Combined Effects of Ozone and Drought on the Physiology and Membrane Lipids of Two Cowpea (Vigna unguiculata (L.) Walp) Cultivars.

    Science.gov (United States)

    Rebouças, Deborah Moura; De Sousa, Yuri Maia; Bagard, Matthieu; Costa, Jose Helio; Jolivet, Yves; De Melo, Dirce Fernandes; Repellin, Anne

    2017-03-03

    The interactive effects of drought and ozone on the physiology and leaf membrane lipid content, composition and metabolism of cowpea (Vigna unguiculata (L.) Walp.) were investigated in two cultivars (EPACE-1 and IT83-D) grown under controlled conditions. The drought treatment (three-week water deprivation) did not cause leaf injury but restricted growth through stomatal closure. In contrast, the short-term ozone treatment (130 ppb 12 h daily during 14 day) had a limited impact at the whole-plant level but caused leaf injury, hydrogen peroxide accumulation and galactolipid degradation. These effects were stronger in the IT83-D cultivar, which also showed specific ozone responses such as a higher digalactosyl-diacylglycerol (DGDG):monogalactosyldiacylglycerol (MGDG) ratio and the coordinated up-regulation of DGDG synthase (VuDGD2) and ω-3 fatty acid desaturase 8 (VuFAD8) genes, suggesting that membrane remodeling occurred under ozone stress in the sensitive cultivar. When stresses were combined, ozone did not modify the stomatal response to drought and the observed effects on whole-plant physiology were essentially the same as when drought was applied alone. Conversely, the drought-induced stomatal closure appeared to alleviate ozone effects through the reduction of ozone uptake.

  2. Semi-quantitative analysis of transcript accumulation in response to drought stress by Lepidium latifolium seedlings.

    Science.gov (United States)

    Gupta, Sanjay Mohan; Singh, Sadhana; Pandey, Pankaj; Grover, Atul; Ahmed, Zakwan

    2013-09-01

    Cross-amplification of five Arabidopsis abiotic stress-responsive genes (AtPAP, ZFAN, Vn, LC4 and SNS) in Lepidium has been documented in plants raised out of seeds pre-treated with potassium nitrate (KNO 3) for assessment of enhanced drought stress tolerance. cDNA was synthesized from Lepidium plants pre-treated with KNO 3 (0.1% and 0.3%) and exposed to drought conditions (5% and 15% PEG) at seedling stage for 30 d. Transcript accumulation of all the five genes were found suppressed in set of seedlings, which were pre-treated with 0.1% KNO 3 and were exposed to 15% PEG for 30 d. The present study establishes that different pre-treatments may further enhance the survivability of Lepidium plants under conditions of drought stress to different degrees.

  3. Effects of Drought Stress on Canola (Brassica napus L. Genotypes Yield and Yield Components

    Directory of Open Access Journals (Sweden)

    R Khani

    2018-02-01

    Full Text Available Introduction Canola (Brassica napus L. genotypes with wide adaptability to environmental conditions could play a major role in Iran’s oilseed crop production. Selection of high performing genotypes is very important for developing canola cultivation. Water stress can reduce crop yield by affecting both source and sink for assimilation. Canola yield depends on genotype and environmental conditions and response of genotypes to environmental factors. Canola genotypes response to stress depends on the developmental stage and the events occurring prior to and during flowering stage. Resistance to water stress is divided to avoidance and tolerance. Some species are tolerable against water stress. In a while, other species respond ending life cycle, falling leaves and other reactions into water stress. Therefore, investigation of canola genotypes response to water stress in phenological growth stages can be valuable in order to determine resistant or tolerant genotypes. Materials and Methods In order to study the effect of drought stress on canola genotypes yield and its components, an experiment was conducted in 2013-2014 as a split plot based on randomized complete block design with three replications at the research farm, Agricultural and Natural Resources Research Center of East-Azarbaijan, Tabriz-Iran. Three levels of drought stress were considered as main plot (No-stress, stress at the flowering and pod setting growth stages and 18 canola genotypes including HW113, RS12, Karaj1, KR18, L73, L72, HW101, L146, L210, L183, SW101, L5, L201, HW118, KR4, Karaj2, Karaj3 and KS7 as subplots. Flood irrigation was scheduled at 50% field capacity, 30 and 30% field capacity for no-stress, stress at the flowering and pod setting growth stages, respectively; i.e. soil moisture capacity was maintained at 30% by irrigating to 100% field capacity when available moisture reached 30% in drought stress treatments. An ANOVA was conducted using the PROC-GLM procedure

  4. Evaluation of Grain Quality in Bread Wheat Recombinant Inbred Lines Under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    H. Shahbazi

    2014-04-01

    Full Text Available To study drought stress effect on grain quality properties of wheat, an experiment was conductedusing 169 recombinant inbreed lines (RILS under water stress and non-stress condition and with two separated lattice designs. Grain yield, protein yield, protein content, volume of Zeleny sediment, grain hardness, water absorption, grain moisture content and grain dry matter were evaluated. Analysis of variance showed that there were significant differences among the lines for all traits. Moreover, comparison between two lines in two environmental conditions showed, the quality in bread wheat under drought stress conditions due to increment of protein yield is improved. Protein yield in both irrigation regimes has a significant and negative correlation with grain moisture and in the other hand, significant and positive correlation with the grain hardiness dry matter, Zeleny sedimentation and water intake in both conditions. The results showed that the identification of favorable quality characteristics in optimum and stressed conditions were possible and the lines with high grain quality can be used in breeding programs for improving of baking quality. Although some drought sensitive genotypes possessed a favorable baking quality but their grain yield was low.

  5. Age-related mechanism and its relationship with secondary metabolism and abscisic acid in Aristotelia chilensis plants subjected to drought stress.

    Science.gov (United States)

    González-Villagra, Jorge; Rodrigues-Salvador, Acácio; Nunes-Nesi, Adriano; Cohen, Jerry D; Reyes-Díaz, Marjorie M

    2018-03-01

    Drought stress is the most important stress factor for plants, being the main cause of agricultural crop loss in the world. Plants have developed complex mechanisms for preventing water loss and oxidative stress such as synthesis of abscisic acid (ABA) and non-enzymatic antioxidant compounds such as anthocyanins, which might help plants to cope with abiotic stress as antioxidants and for scavenging reactive oxygen species. A. chilensis (Mol.) is a pioneer species, colonizing and growing on stressed and disturbed environments. In this research, an integrated analysis of secondary metabolism in Aristotelia chilensis was done to relate ABA effects on anthocyanins biosynthesis, by comparing between young and fully-expanded leaves under drought stress. Plants were subjected to drought stress for 20 days, and physiological, biochemical, and molecular analyses were performed. The relative growth rate and plant water status were reduced in stressed plants, with young leaves significantly more affected than fully-expanded leaves beginning from the 5th day of drought stress. A. chilensis plants increased their ABA and total anthocyanin content and showed upregulation of gene expression when they were subjected to severe drought (day 20), with these effects being higher in fully-expanded leaves. Multivariate analysis indicated a significant positive correlation between transcript levels for NCED1 (9-cis-epoxycarotenoid dioxygenase) and UFGT (UDP glucose: flavonoid-3-O-glucosyltransferase) with ABA and total anthocyanin, respectively. Thus, this research provides a more comprehensive analysis of the mechanisms that allow plants to cope with drought stress. This is highlighted by the differences between young and fully-expanded leaves, showing different sensibility to stress due to their ability to synthesize anthocyanins. In addition, this ability to synthesize different and high amounts of anthocyanins could be related to higher NCED1 and MYB expression and ABA levels

  6. Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings.

    Science.gov (United States)

    Villar-Salvador, Pedro; Peñuelas, Juan L; Jacobs, Douglass F

    2013-02-01

    Functional attributes determine the survival and growth of planted seedlings in reforestation projects. Nitrogen (N) and water are important resources in the cultivation of forest species, which have a strong effect on plant functional traits. We analyzed the influence of N nutrition on drought acclimation of Pinus pinea L. seedlings. Specifically, we addressed if high N fertilization reduces drought and frost tolerance of seedlings and whether drought hardening reverses the effect of high N fertilization on stress tolerance. Seedlings were grown under two N fertilization regimes (6 and 100 mg N per plant) and subjected to three drought-hardening levels (well-watered, moderate and strong hardening). Water relations, gas exchange, frost damage, N concentration and growth at the end of the drought-hardening period, and survival and growth of seedlings under controlled xeric and mesic outplanting conditions were measured. Relative to low-N plants, high-N plants were larger, had higher stomatal conductance (27%), residual transpiration (11%) and new root growth capacity and closed stomata at higher water potential. However, high N fertilization also increased frost damage (24%) and decreased plasmalemma stability to dehydration (9%). Drought hardening reversed to a great extent the reduction in stress tolerance caused by high N fertilization as it decreased frost damage, stomatal conductance and residual transpiration by 21, 31 and 24%, respectively, and increased plasmalemma stability to dehydration (8%). Drought hardening increased tissue non-structural carbohydrates and N concentration, especially in high-fertilized plants. Frost damage was positively related to the stability of plasmalemma to dehydration (r = 0.92) and both traits were negatively related to the concentration of reducing soluble sugars. No differences existed between moderate and strong drought-hardening treatments. Neither N nutrition nor drought hardening had any clear effect on seedling

  7. Carotenoid profiling of leaves of selected eggplant accessions subjected to drought stress

    Science.gov (United States)

    This study focused on the quantification of carotenoids of the leaves of African eggplants commonly consumed as leafy and fruit vegetables. The results gave comparative profiles of carotenoids at different growth and developmental stages and under drought stress. Stress was achieved by limiting irri...

  8. Oak sprouts grow better than seedlings under drought stress

    Czech Academy of Sciences Publication Activity Database

    Pietras, Justyna; Stojanović, Marko; Knott, R.; Pokorný, Radek

    2016-01-01

    Roč. 9, č. 4 (2016), s. 529-535 ISSN 1971-7458 R&D Projects: GA MŠk(CZ) EE2.3.20.0267 Institutional support: RVO:67179843 Keywords : drought stress * sap flow * transpiration * biomass Production * sessile Oak * sprout * seedling Subject RIV: EF - Botanics Impact factor: 1.623, year: 2016

  9. Temperature as a potent driver of regional forest drought stress and tree mortality

    Science.gov (United States)

    Williams, A. Park; Allen, Craig D.; Macalady, Alison K.; Griffin, Daniel; Woodhouse, Connie A.; Meko, David M.; Swetnam, Thomas W.; Rauscher, Sara A.; Seager, Richard; Grissino-Mayer, Henri D.; Dean, Jeffrey S.; Cook, Edward R.; Gangodagamage, Chandana; Cai, Michael; McDowell, Nathan G.

    2012-01-01

    s the climate changes, drought may reduce tree productivity and survival across many forest ecosystems; however, the relative influence of specific climate parameters on forest decline is poorly understood. We derive a forest drought-stress index (FDSI) for the southwestern United States using a comprehensive tree-ring data set representing AD 1000-2007. The FDSI is approximately equally influenced by the warm-season vapour-pressure deficit (largely controlled by temperature) and cold-season precipitation, together explaining 82% of the FDSI variability. Correspondence between the FDSI and measures of forest productivity, mortality, bark-beetle outbreak and wildfire validate the FDSI as a holistic forest-vigour indicator. If the vapour-pressure deficit continues increasing as projected by climate models, the mean forest drought-stress by the 2050s will exceed that of the most severe droughts in the past 1,000 years. Collectively, the results foreshadow twenty-first-century changes in forest structures and compositions, with transition of forests in the southwestern United States, and perhaps water-limited forests globally, towards distributions unfamiliar to modern civilization.

  10. Effect of cycocel on photosynthetic activity and essential oil of fennel (Foeniculum vulgare Mill. under drought stress

    Directory of Open Access Journals (Sweden)

    Fatemeh Nouri

    2014-12-01

    Full Text Available Drought stress is one of the most important and most common environmental stresses that limit plant growth. Photosynthesis is the main determinant of plant growth and its retention ability under environmental stress condition is important for preservation of growth stability. To study the effect of spraying CCC on photosynthesis activity and essential oil content on 'Foeniculum vulgare', an experiment was done in split plot design based on complete block with four replications in research field of University of Zanjan in 2011. Levels of drought stress included, control, soft stress (when 30% of available water was out of soil, severe stress (when 90% of available water was out of soil, and three concentration of CCC 0, 1500 and 3000 mg/L. The results showed that between rates foliar application on physiologic characteristics as photosynthesis rate, transpiration severity, RWC and TΔ intercellular (Ci, stomata conductivity, mesophyll conductivity and essential oil content was significant. By spraying 3000 mg/L CCC, balanced the plant position against drought stress and could reduce negative effect. Foliar application of CCC caused significant increase in photosynthesis rate, mesophyll conductivity and significant decrease stomata conductivity, transpiration severity under drought stress and could increase essential oil content under soft stress. In this study, foliar application of CCC to content 3000 mg/L had the highest effect on this characters.

  11. Effect of a Short-Term and Long-Term Melatonin Administration on Mammary Carcinogenesis in Female Sprague-Dawley Rats Influenced by Repeated Psychoemotional Stress

    Directory of Open Access Journals (Sweden)

    M. Kassayová

    2007-01-01

    Full Text Available The aim of this study was to evaluate the effect of melatonin (MEL on N-methyl-N-nitrosourea (NMU-induced mammary carcinogenesis in female Sprague-Dawley rats exposed to repeated psychoemotional stress - immobilization in boxes. NMU was applied intraperitoneally in two doses each of 50 mg/kg b.w. between 40 - 50 postnatal days. Melatonin was administered in drinking water at a concentration of 4 μg/ml daily from 15:00 h to 8:00 h. The application was initiated 5 days prior to the fi rst NMU dose and lasted 15 days, i.e. during the promotion phase of tumour development, or long-term until the end of the experiment (week 20. Immobilization (2 h per day began on the third day after the second carcinogen application and lasted for 7 consecutive days. Short-term MEL administration to immobilized animals increased incidence by 22%, decreased tumour frequency per animal by 26% and reduced tumour volume gain (by 21% when compared to the immobilized group without MEL application. Decreased frequency per animal by 28% and more than a 40% decrease in tumour volume gain and cumulative volume were the most pronounced changes in the animals drinking MEL until the end of the experiment. Long-term MEL administration reduced the number and size of mammary tumours more markedly than its short-term administration. Melatonin decreased certain attributes of mammary carcinogenesis in female rats influenced by psychoemotional stress.

  12. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest.

    Science.gov (United States)

    Klein, Tamir; Hoch, Günter; Yakir, Dan; Körner, Christian

    2014-09-01

    In trees exposed to prolonged drought, both carbon uptake (C source) and growth (C sink) typically decrease. This correlation raises two important questions: (i) to what degree is tree growth limited by C availability; and (ii) is growth limited by concurrent C storage (e.g., as nonstructural carbohydrates, NSC)? To test the relationships between drought, growth and C reserves, we monitored the changes in NSC levels and constructed stem growth chronologies of mature Pinus halepensis Miller trees of three drought stress levels growing in Yatir forest, Israel, at the dry distribution limit of forests. Moderately stressed and stressed trees showed 34 and 14% of the stem growth, 71 and 31% of the sap flux density, and 79 and 66% of the final needle length of healthy trees in 2012. In spite of these large reductions in growth and sap flow, both starch and soluble sugar concentrations in the branches of these trees were similar in all trees throughout the dry season (2-4% dry mass). At the same time, the root starch concentrations of moderately stressed and stressed trees were 47 and 58% of those of healthy trees, but never drought there is more than one way for a tree to maintain a positive C balance. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Water and Forest Health: Drought Stress as a Core Driver of Forest Disturbances and Tree Mortality in Western North America

    Science.gov (United States)

    Allen, C. D.; Williams, P.

    2012-12-01

    Increasing warmth and dry climate conditions have affected large portions of western North America in recent years, causing elevated levels of both chronic and acute forest drought stress. In turn, increases in drought stress amplify the incidence and severity of the most significant forest disturbances in this region, including wildfire, drought-induced tree mortality, and outbreaks of damaging insects and diseases. Regional patterns of drought stress and various forest disturbances are reviewed, including interactions among climate and the various disturbance processes; similar global-scale patterns and trends of drought-amplified forest die-off and high-severity wildfire also are addressed. New research is presented that derives a tree-ring-based Forest Drought Stress Index (FDSI) for the three most widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii) in the southwestern US (Arizona, New Mexico), demonstrating nonlinear escalation of FDSI to levels unprecedented in the past 1000 years, in response to both drought and especially recent warming. This new work further highlights strong correlations between drought stress and amplified forest disturbances (fire, bark beetle outbreaks), and projects that by ca. 2050 anticipated regional warming will cause mean FDSI levels to reach extreme levels that may exceed thresholds for the survival of current tree species in large portions of their current range. Given recent trends of forest disturbance and projections for substantially warmer temperatures and greater drought stress for much of western North America in coming years, the growing risks to western forest health are becoming clear. This emerging understanding suggests an urgent need to determine potentials and methods for managing water on-site to maintain the vigor and resilience of western forests in the face of increasing levels of climate-induced water stress.

  14. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses.

    Science.gov (United States)

    Wang, Xin; Oh, MyeongWon; Sakata, Katsumi; Komatsu, Setsuko

    2016-01-01

    Growth in the early stage of soybean is markedly inhibited under flooding and drought stresses. To explore the responsive mechanisms of soybean, temporal protein profiles of root tip under flooding and drought stresses were analyzed using gel-free/label-free proteomic technique. Root tip was analyzed because it was the most sensitive organ against flooding, and it was beneficial to root penetration under drought. UDP glucose: glycoprotein glucosyltransferase was decreased and increased in soybean root under flooding and drought, respectively. Temporal protein profiles indicated that fermentation and protein synthesis/degradation were essential in root tip under flooding and drought, respectively. In silico protein-protein interaction analysis revealed that the inductive and suppressive interactions between S-adenosylmethionine synthetase family protein and B-S glucosidase 44 under flooding and drought, respectively, which are related to carbohydrate metabolism. Furthermore, biotin/lipoyl attachment domain containing protein and Class II aminoacyl tRNA/biotin synthetases superfamily protein were repressed in the root tip during time-course stresses. These results suggest that biotin and biotinylation might be involved in energy management to cope with flooding and drought in early stage of soybean-root tip. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effect of potassium application in drought-stressed tobacco (Nicotiana rustica L. plants: Comparison of root with foliar application

    Directory of Open Access Journals (Sweden)

    Sara Bahrami-Rad

    2017-12-01

    Full Text Available Effect of potassium (K application through leaves (LA or roots (RA was studied in tobacco plants grown under K deficiency and drought stress conditions. Application of K was effective in improving the shoot growth only under drought conditions, whereas root biomass and length responded under both watering regimes. Under drought conditions, photosynthesis and transpiration activities increased upon K application leading to a reduced water use efficiency. Both RA and LA increased the leaf water potential, relative water content and turgor under both well-watered and drought conditions; RA was more effective than LA in the recovery of leaf turgor. Analyses of water relation parameters in different aged leaves showed lower susceptibility of the middle-aged leaves to both K deficiency and drought stresses than the upper and lower leaves; this phenomenon was accompanied by a more conservative control of water loss in the middle-aged leaves. In contrast, proline was accumulated in the young leaves, and K application increased it further. Although various organic osmolytes were accumulated under the combinative effect of K deficiency and drought stress, they did not exceed the amounts found in the control (well-watered +K plants and were merely a result of the concentration effect. Collectively, our results revealed that the majority of leaf biochemical responses to drought stress are developmentally regulated processes. In addition, the alleviating effect of both RA and LA despite higher water loss indicated that an improved stomatal function upon K application allowed carbohydrates synthesis, thus, enhancing plant growth under water stress.

  16. Involvement of dehydrins in 24-epibrassinolide-induced protection of wheat plants against drought stress.

    Science.gov (United States)

    Shakirova, Farida; Allagulova, Chulpan; Maslennikova, Dilara; Fedorova, Kristina; Yuldashev, Ruslan; Lubyanova, Alsu; Bezrukova, Marina; Avalbaev, Azamat

    2016-11-01

    In this study, we performed a comparative analysis of the physiological and biochemical parameters of wheat cultivars with contrasting drought resistance, drought-resistant Omskaya 35 (O-35) and less drought-resistant Salavat Yulaev (SYu), during 7-day germination under drought stress simulated by 5% mannitol. In addition, we evaluated the effectiveness of pre-sowing seed treatment with 0.4 μM 24-epibrassinolide (EBR) used to increase the resistance of plants of both cultivars to drought stress. It was revealed that mannitol has caused significant changes in the hormonal balance of the plants of both cultivars, associated with abscisic acid (ABA) accumulation and decrease in the contents of indoleacetic acid (IAA) and cytokinins (CKs). It should be noted that more dramatic changes in the content of phytohormones were characteristic for seedlings of SYu cultivar, which was reflected in a stronger growth inhibition of these plants. Pretreatment with EBR mitigated the negative effect of drought on the hormonal status and growth of seedlings during their germination. Furthermore, we found that drought caused accumulation of dehydrin (DHN) proteins, especially of low molecular weight DHNs, whose abundance was 2.5 times greater in O-35 cultivar than in SYu plants. EBR-pretreated plants of both cultivars were characterized by the additional accumulation of DHNs, indicating their involvement in the development of the EBR-induced wheat drought resistance. The use of fluridone allowed us to demonstrate ABA-dependent and ABA-independent pathways of regulation of low molecular mass dehydrins accumulation by EBR in wheat plants of both cultivars under drought conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. The Effects of Foliar Application of Methanol on Morphological Characteristics of Bean (Phaseolus vulgaris L. under Drought Stress Condition

    Directory of Open Access Journals (Sweden)

    N. Armand

    2016-02-01

    Full Text Available Introduction Available water is an important factor for plant growth in arid environments. Results indicated that foliar application of methanol is believed to be more important than the drought tolerance in C3 plant. Since bean is a C3 plant, it performs light respiration under intense heat, light and water stress due to internal leaf CO2 concentration reduction and oxygen concentration increase. Light respiration can cause up to 20% loss of carbon in plants and decrease the yield. Increasing concentration of carbon dioxide can neutralize the effect caused by drought stress. Thus, the use of substances that can cause an increase in the concentration of carbon dioxide in the plant, leads to improving the yield under the drought conditions. One of the ways of increasing the concentration of carbon dioxide in plants is by using compounds such as methanol, ethanol, propanol, butanol as well as use of the amino acids of glycine, glutamate and aspartate. Plants can easily absorb methanol sprayed on leaves and use it as a carbon source added to atmospheric carbon. Methanol is relatively smaller compared to the CO2 molecules, so it can be easily absorbed and utilized by plants. Materials and Methods In order to evaluate the effects of foliar application of methanol on some morphological characteristics of bean under drought stress, a factorial experiment was conducted based on completely randomized block design with three replications in 2014 at the Khatam Alanbia University of Behbahan. The treatment of spraying methanol was at 4 levels include control (without spraying, 10, 20 and 30% v/v methanol which added 2 g l-1 glycine to each of solutions. Adding glycine to aqueous solution of methanol leads to prevention of damages caused by the toxicity of methanol. The drought factors including control (100% field of capacity, moderate drought stress (50% field of capacity and severe drought stress (25% field of capacity were considered. In this experiment

  18. Characterization of gene expression associated with drought avoidance and tolerance traits in a perennial grass species.

    Directory of Open Access Journals (Sweden)

    Peng Zhou

    Full Text Available To understand molecular mechanisms of perennial grass adaptation to drought stress, genes associated with drought avoidance or tolerance traits were identified and their expression patterns were characterized in C4 hybrid bermudagrass [Cynodon dactylon (L. Pers.×C. transvaalensis Burtt Davy, cv. Tifway] and common bermudagrass (C. dactylon, cv. C299. Plants of drought-tolerant 'Tifway' and drought-sensitive 'C299' were exposed to drought for 5 d (mild stress and 10 d (severe stress by withholding irrigation in a growth chamber. 'Tifway' maintained significantly lower electrolyte leakage and higher relative water content than 'C299' at both 5 and 10 d of drought stress. Four cDNA libraries via suppression subtractive hybridization analysis were constructed and identified 277 drought-responsive genes in the two genotypes at 5 and 10 d of drought stress, which were mainly classified into the functional categories of stress defense, metabolism, osmoregulation, membrane system, signal and regulator, structural protein, protein synthesis and degradation, and energy metabolism. Quantitative-PCR analysis confirmed the expression of 36 drought up-regulated genes that were more highly expressed in drought-tolerant 'Tifway' than drought-sensitive 'C299', including those for drought avoidance traits, such as cuticle wax formation (CER1 and sterol desaturase, for drought tolerance traits, such as dehydration-protective proteins (dehydrins, HVA-22-like protein and oxidative stress defense (superoxide dismutase, dehydroascorbate reductase, 2-Cys peroxiredoxins, and for stress signaling (EREBP-4 like protein and WRKY transcription factor. The results suggest that the expression of genes for stress signaling, cuticle wax accumulation, antioxidant defense, and dehydration-protective protein accumulation could be critically important for warm-season perennial grass adaptation to long-term drought stress.

  19. FPGA-Based Smart Sensor for Drought Stress Detection in Tomato Plants Using Novel Physiological Variables and Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Carlos Duarte-Galvan

    2014-10-01

    Full Text Available Soil drought represents one of the most dangerous stresses for plants. It impacts the yield and quality of crops, and if it remains undetected for a long time, the entire crop could be lost. However, for some plants a certain amount of drought stress improves specific characteristics. In such cases, a device capable of detecting and quantifying the impact of drought stress in plants is desirable. This article focuses on testing if the monitoring of physiological process through a gas exchange methodology provides enough information to detect drought stress conditions in plants. The experiment consists of using a set of smart sensors based on Field Programmable Gate Arrays (FPGAs to monitor a group of plants under controlled drought conditions. The main objective was to use different digital signal processing techniques such as the Discrete Wavelet Transform (DWT to explore the response of plant physiological processes to drought. Also, an index-based methodology was utilized to compensate the spatial variation inside the greenhouse. As a result, differences between treatments were determined to be independent of climate variations inside the greenhouse. Finally, after using the DWT as digital filter, results demonstrated that the proposed system is capable to reject high frequency noise and to detect drought conditions.

  20. Variable Levels of Tolerance to Water Stress (Drought and Associated Biochemical Markers in Tunisian Barley Landraces

    Directory of Open Access Journals (Sweden)

    Sameh Dbira

    2018-03-01

    Full Text Available Due to its high tolerance to abiotic stress, barley (Hordeum vulgare is cultivated in many arid areas of the world. In the present study, we evaluate the tolerance to water stress (drought in nine accessions of “Ardhaoui” barley landraces from different regions of Tunisia. The genetic diversity of the accessions is evaluated with six SSR markers. Seedlings from the nine accessions are subjected to water stress by completely stopping irrigation for three weeks. A high genetic diversity is detected among the nine accessions, with no relationships between genetic distance and geographical or ecogeographical zone. The analysis of growth parameters and biochemical markers in the water stress-treated plants in comparison to their respective controls indicated great variability among the studied accessions. Accession 2, from El May Island, displayed high tolerance to drought. Increased amounts of proline in water-stressed plants could not be correlated with a better response to drought, as the most tolerant accessions contained lower levels of this osmolyte. A good correlation was established between the reduction of growth and degradation of chlorophylls and increased levels of malondialdehyde and total phenolics. These biochemical markers may be useful for identifying drought tolerant materials in barley.

  1. Protective effects of short-term dietary restriction in surgical stress and chemotherapy.

    Science.gov (United States)

    Brandhorst, Sebastian; Harputlugil, Eylul; Mitchell, James R; Longo, Valter D

    2017-10-01

    Reduced caloric intake including fasting, as well as the dietary composition or the timing of food intake, impact longevity, likely through a modification in the onset or the severity of chronic aging-related diseases such as cancer. As with pre- and post-operative dietary recommendations, evidence-based nutritional advice from healthcare professionals during and after cancer treatment is often vague or conflicting. We hypothesize that preventive dietary recommendations can help in the context of both chronic cancer treatment efficacy and the avoidance of development of secondary malignancies, as well as in the context of protection from the acute stress of surgery. In this perspective review, we will discuss the latest findings on the potential role of short-term dietary restriction in cancer treatment and improvement of surgical outcome. Copyright © 2017. Published by Elsevier B.V.

  2. Modulation of Antioxidant Defense System Is Associated with Combined Drought and Heat Stress Tolerance in Citrus

    Directory of Open Access Journals (Sweden)

    Sara I. Zandalinas

    2017-06-01

    Full Text Available Drought and high temperatures are two major abiotic stress factors that often occur simultaneously in nature, affecting negatively crop performance and yield. Moreover, these environmental challenges induce oxidative stress in plants through the production of reactive oxygen species (ROS. Carrizo citrange and Cleopatra mandarin are two citrus genotypes with contrasting ability to cope with the combination of drought and heat stress. In this work, a direct relationship between an increased antioxidant activity and stress tolerance is reported. According to our results, the ability of Carrizo plants to efficiently coordinate superoxide dismutase (SOD, ascorbate peroxidase (APX, catalase (CAT, and glutathione reductase (GR activities involved in ROS detoxification along with the maintenance of a favorable GSH/GSSG ratio could be related to their relative tolerance to this stress combination. On the other hand, the increment of SOD activity and the inefficient GR activation along with the lack of CAT and APX activities in Cleopatra plants in response to the combination of drought and heat stress, could contribute to an increased oxidative stress and the higher sensibility of this citrus genotype to this stress combination.

  3. Combining short-term manipulative experiments with long-term palaeoecological investigations at high resolution to assess the response of Sphagnum peatlands to drought, fire and warming

    Directory of Open Access Journals (Sweden)

    M. Lamentowicz

    2016-09-01

    Full Text Available Northern hemisphere peatlands are substantial carbon stores. However, recent climate change and human impacts (e.g., drainage and atmospheric nutrient deposition may trigger the emission of their stored carbon to the atmosphere. Biodiversity losses are also an important consequence of those changes. Therefore, there is a need to recognise these processes in space and time. Global change experiments are often conducted to improve our understanding of the potential responses of various ecosystems to global warming and drought. Most of the experiments carried out in peatlands are focused on carbon balance and nitrogen deposition. Nevertheless, it is still unclear how fast peatlands respond to temperature changes and water-table lowering in the continental climate setting. This is important because continental regions account for a significant proportion of all northern hemisphere peatlands. A combination of short-term and long-term approaches in a single research project is especially helpful because it facilitates the correct interpretation of experimental data. Here we describe the CLIMPEAT project - a manipulative field experiment in a Sphagnum-dominated peatland supported by a high-resolution multi-proxy palaeoecological study. The design of the field experiment (e.g., treatments, methodology and biogeographical setting are presented. We suggest it is beneficial to support field experiments with an investigation of past environmental changes in the studied ecosystem, as human impacts during the past 300 years have already caused substantial changes in ecosystem functioning which may condition the response in experimental studies.

  4. Effects of drought stress on some agronomic and morphological ...

    African Journals Online (AJOL)

    ajl yemi

    2011-10-19

    Oct 19, 2011 ... has a vital usage. Being aware of ... world. Most countries in the world are facing the problem of drought. ... yield over a wide range of environmental condition is very important. ... grain yield and straw weight decreases with water stress ... Each plastic pot had been filled with cultivated soil, sand and manure ...

  5. Specific and unspecific responses of plants to cold and drought stress

    Indian Academy of Sciences (India)

    Madhu Sudhan

    2007-03-22

    Mar 22, 2007 ... Introduction. Cold, drought and salinity are those environmental stressors which affect .... The general stress concept emphasizing the incidence of a specific primary and a less specific secondary strain by a specific stressor.

  6. Chaparral Shrub Hydraulic Traits, Size, and Life History Types Relate to Species Mortality during California's Historic Drought of 2014.

    Directory of Open Access Journals (Sweden)

    Martin D Venturas

    Full Text Available Chaparral is the most abundant vegetation type in California and current climate change models predict more frequent and severe droughts that could impact plant community structure. Understanding the factors related to species-specific drought mortality is essential to predict such changes. We predicted that life history type, hydraulic traits, and plant size would be related to the ability of species to survive drought. We evaluated the impact of these factors in a mature chaparral stand during the drought of 2014, which has been reported as the most severe in California in the last 1,200 years. We measured tissue water potential, native xylem specific conductivity, leaf specific conductivity, percentage loss in conductivity, and chlorophyll fluorescence for 11 species in February 2014, which was exceptionally dry following protracted drought. Mortality among the 11 dominant species ranged from 0 to 93%. Total stand density was reduced 63.4% and relative dominance of species shifted after the drought. Mortality was negatively correlated with water potential, native xylem specific conductivity, and chlorophyll fluorescence, but not with percent loss in hydraulic conductivity and leaf specific conductivity. The model that best explained mortality included species and plant size as main factors and indicated that larger plants had greater survival for 2 of the species. In general, species with greater resistance to water-stress induced cavitation showed greater mortality levels. Despite adult resprouters typically being more vulnerable to cavitation, results suggest that their more extensive root systems enable them to better access soil moisture and avoid harmful levels of dehydration. These results are consistent with the hypothesis that short-term high intensity droughts have the strongest effect on mature plants of shallow-rooted dehydration tolerant species, whereas deep-rooted dehydration avoiding species fare better in the short-term

  7. The influence of salinity and drought stress on sodium,potassium and proline content of solanum lycopersicum l. cv. rio grande

    International Nuclear Information System (INIS)

    Ali, S.; Rab, A.

    2017-01-01

    The influence of salinity and drought stress on sodium (Na+), potassium (K+) and proline content of Solanum lycopersicum L. (tomato) cv. Rio Grande was investigated by exposing the plants to five salinity levels i.e., 0 (control), 50, 100, 150 and 200 mM NaCl and four drought regimes i.e. 0 (Control), 2, 4 and 6 days, applied from seedling (4-5 true leaves) to the harvesting stage. The means across salinity levels showed an increase in proline content and Na+ concentration but a reduced K+ concentrations, resulting in high Na+/K+ ratios in shoot and root tissue. In contrast, drought stress decreased the Na+ and K+ content, Na+/K+ ratio but increased the proline content in both the root and shoot tissue. The interaction of salinity and drought significantly affected the sodium (Na+) and potassium (K+) contents, Na+/K+ and proline content of the shoot but K+ content and proline accumulation were not significant. The root and shoot tissue of control plants (0 mMNaCl + 0 Days drought stress) had the minimum Na+ content (2316 and 3490 mu M/g D.wt.), Na+/ K+ ratio (0.399 and 0.364) and proline content (0.72 and 1.91 mu M/g F.wt.) but the highest K+ content (6399 and 9603 mu M/g D.wt.). Whereas, the Na+ content increased with salinity, the K+ content declined. It resulted in the maximum Na+/K+ ratio of the root (1.26) and shoot (0.76) with 200 mMNaCl + 0 Days drought stress. The drought stress also increased the Na+/K+ ratio. Thus, the highest Na+/K+ ratio of root (0.78) and shoot (0.77) was recorded in plants grown under 200 mMNaCl+ 6 Days drought stress. The proline content of the root and shoot were 0.462 and 1.904 mu M/g F.wt. respectively in control plants which increased with increasing salinity and drought stress duration. Thus, the maximum proline content of root (10.61 mu M/g F.wt.) and shoot (28.05 mu M/g F.wt.) was recorded in plants exposed to 200 mMNaCl + 6 days drought stress combination. (author)

  8. Physiological and metabolic changes of purslane (Portulaca oleracea L. in response to drought, heat and combined stresses

    Directory of Open Access Journals (Sweden)

    Rui eJin

    2016-01-01

    Full Text Available Purslane (Portulaca oleracea L. is a fleshy herbaceous plant. So far, little information is available on the response of this plant to combined drought and heat stress. In this study, changes in physiological and metabolic levels were characterized after treatments with drought, heat and combined stresses. Both individual and combined stress treatments increased malondialdehyde (MDA, electrolyte leakage (EL, O2•− and activities of superoxide dismutase (SOD, peroxidase (POD, while declined chlorophyll content. No significant differences were found between control and treatments in leaf water content (LWC and catalase (CAT activity. Additionally, 37 metabolic compounds were detected in purslane. Through pathway analysis, 17 metabolites were directly involved in the glycolysis metabolic pathway. The present study indicated that combined drought and heat stress caused more serious damage in purslane than individual stress. To survive, purslane has a high capability to cope with environmental stress conditions through activation of physiological and metabolic pathways.

  9. Physiological and Metabolic Changes of Purslane (Portulaca oleracea L.) in Response to Drought, Heat, and Combined Stresses

    Science.gov (United States)

    Jin, Rui; Wang, Yanping; Liu, Ruijie; Gou, Junbo; Chan, Zhulong

    2016-01-01

    Purslane (Portulaca oleracea L.) is a fleshy herbaceous plant. So far, little information is available on the response of this plant to combined drought and heat stress. In this study, changes in physiological and metabolic levels were characterized after treatments with drought, heat and combined stresses. Both individual and combined stress treatments increased malondialdehyde (MDA), electrolyte leakage (EL), O2•− and activities of superoxide dismutase (SOD), peroxidase (POD), while declined chlorophyll content. No significant differences were found between control and treatments in leaf water content (LWC) and catalase (CAT) activity. Additionally, 37 metabolic compounds were detected in purslane. Through pathway analysis, 17 metabolites were directly involved in the glycolysis metabolic pathway. The present study indicated that combined drought and heat stress caused more serious damage in purslane than individual stress. To survive, purslane has a high capability to cope with environmental stress conditions through activation of physiological and metabolic pathways. PMID:26779204

  10. Effect of silicon application on physiological characteristics and growth of wheat (Triticum aestivum L. under drought stress condition

    Directory of Open Access Journals (Sweden)

    A. Karmollachaab

    2016-05-01

    Full Text Available In order to investigate the effect of silicon application on some physiological characteristics and growth of Wheat (Triticum aestivum L. under late drought stress condition, an experiment was conducted at the Agriculture and Natural Resources University of Ramin, Khuzestan during year 2012. The experiment was conducted in the open environment as factorial randomized complete block design with three levels of drought stress (irrigation after 25, 50 and 75% depletion of available water content as the first factor and four levels of silicon (0, 10, 20 and 30 mg Si.kg-1 soil as the second factor with three replications. The results showed that drought stress imposed a negative significant effect on all traits. The drought stress led to increased electrolyte leakage and proline content, cuticular wax, leaf silicon concentration, superoxide dismutase activity (SOD and grain potassium were decreased. The severe drought stress has most effect on electrolyte leakage (up to 53%. The application of silicon except the shoot/root parameter, on all characters have been affected so that application of 30 mg Si.kg-1 soil led to decrease electrolyte leakage up to 22.5% and increased SOD activity, proline content, cuticular wax grain K and flag leaf Si concentration, 25, 12.8, 21, 17 and 30% compared to control, respectively. In general, the results showed a positive effect of silicon on wheat plant under stress conditions that were higher than no stress condition.

  11. Impact of short-term dietary modification on postprandial oxidative stress

    Directory of Open Access Journals (Sweden)

    Bloomer Richard J

    2012-03-01

    Full Text Available Abstract Background We have recently reported that short-term (21-day dietary modification in accordance with a stringent vegan diet (i.e., a Daniel Fast lowers blood lipids as well as biomarkers of oxidative stress. However, this work only involved measurements obtained in a fasted state. In the present study, we determined the postprandial response to a high-fat milkshake with regards to blood triglycerides (TAG, biomarkers of oxidative stress, and hemodynamic variables before and following a 21-day Daniel Fast. Methods Twenty-two subjects (10 men and 12 women; aged 35 ± 3 years completed a 21-day Daniel Fast. To induce oxidative stress, a milkshake (fat = 0.8 g·kg-1; carbohydrate = 1.0 g·kg-1; protein = 0.25 g·kg-1 was consumed by subjects on day one and day 22 in a rested and 12-hour fasted state. Before and at 2 and 4 h after consumption of the milkshake, heart rate (HR and blood pressure were measured. Blood samples were also collected at these times and analyzed for TAG, malondialdehyde (MDA, hydrogen peroxide (H2O2, advanced oxidation protein products (AOPP, nitrate/nitrite (NOx, and Trolox Equivalent Antioxidant Capacity (TEAC. Results A time effect was noted for HR (p = 0.006, with values higher at 2 hr post intake of the milkshake as compared to pre intake (p p = 0.02, and a trend for lower systolic blood pressure was noted (p = 0.07. Time effects were noted for TAG (p = 0.001, MDA (p 2O2 (p p p p p = 0.02, which was higher post fast as compared to pre fast. No pre/post fast × time interactions were noted (p > 0.05, with the area under the curve from pre to post fast reduced only slightly for TAG (11%, MDA (11%, H2O2 (8%, and AOPP (12%, with a 37% increase noted for NOx. Conclusion Partaking in a 21-day Daniel Fast does not result in a statistically significant reduction in postprandial oxidative stress. It is possible that a longer time course of adherence to the Daniel Fast eating plan may be needed to observe significant

  12. Exogenous application of urea and a urease inhibitor improves drought stress tolerance in maize (Zea mays L.).

    Science.gov (United States)

    Gou, Wei; Zheng, Pufan; Tian, Li; Gao, Mei; Zhang, Lixin; Akram, Nudrat Aisha; Ashraf, Muhammad

    2017-05-01

    Drought is believed to cause many metabolic changes which affect plant growth and development. However, it might be mitigated by various inorganic substances, such as nitrogen. Thus, the study was carried out to investigate the effect of foliar-applied urea with or without urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) on a maize cultivar under drought stress simulated by 15% (w/v) polyethylene glycol 6000. Foliar-applied urea resulted in a significant increase in plant dry weight, relative water content, and photosynthetic pigments under water stress condition. Furthermore, the activities of superoxide dismutase (SOD), peroxidase (POD), and hydrogen peroxidase (CAT), were enhanced with all spraying treatments under drought stress, which led to decreases in accumulation of hydrogen peroxide (H 2 O 2 ), superoxide anion ([Formula: see text]) and malondialdehyde (MDA). The contents of soluble protein and soluble sugar accumulated remarkably with urea-applied under drought stress condition. Moreover, a further enhancement in above metabolites was observed by spraying a mixture of urea and urease inhibitor as compared to urea sprayed only. Taken together, our findings show that foliar application of urea and a urease inhibitor could significantly enhance drought tolerance of maize through protecting photosynthetic apparatus, activating antioxidant defense system and improving osmoregulation.

  13. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply.

    Science.gov (United States)

    Wang, Xiubo; Wang, Lifang; Shangguan, Zhouping

    2016-01-01

    Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.). In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs), but with a greater increase in instantaneous water use efficiency (WUE). At the meantime, the nitrogen (N) supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP), the maximum photochemical efficiency (Fv/Fm), the quantum yield of photosystemII(ΦPSII), and the apparent photosynthetic electron transport rate (ETR) decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root-shoot ratio (R/S) increased slightly with water stress at a low N level; the smallest root-shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency.

  14. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply.

    Directory of Open Access Journals (Sweden)

    Xiubo Wang

    Full Text Available Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.. In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn, transpiration rate (E, and stomatal conductance (Gs, but with a greater increase in instantaneous water use efficiency (WUE. At the meantime, the nitrogen (N supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP, the maximum photochemical efficiency (Fv/Fm, the quantum yield of photosystemII(ΦPSII, and the apparent photosynthetic electron transport rate (ETR decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root-shoot ratio (R/S increased slightly with water stress at a low N level; the smallest root-shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency.

  15. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings.

    Science.gov (United States)

    Liu, Fangchun; Xing, Shangjun; Ma, Hailin; Du, Zhenyu; Ma, Bingyao

    2013-10-01

    One of the proposed mechanisms through which plant growth-promoting rhizobacteria (PGPR) enhance plant growth is the production of plant growth regulators, especially cytokinin. However, little information is available regarding cytokinin-producing PGPR inoculation on growth and water stress consistence of forest container seedlings under drought condition. This study determined the effects of Bacillus subtilis on hormone concentration, drought resistance, and plant growth under water-stressed conditions. Although no significant difference was observed under well-watered conditions, leaves of inoculated Platycladus orientalis (oriental thuja) seedlings under drought stress had higher relative water content and leaf water potential compared with those of noninoculated ones. Regardless of water supply levels, the root exudates, namely sugars, amino acids and organic acids, significantly increased because of B. subtilis inoculation. Water stress reduced shoot cytokinins by 39.14 %. However, inoculation decreased this deficit to only 10.22 %. The elevated levels of cytokinins in P. orientalis shoot were associated with higher concentration of abscisic acid (ABA). Stomatal conductance was significantly increased by B. subtilis inoculation in well-watered seedlings. However, the promoting effect of cytokinins on stomatal conductance was hampered, possibly by the combined action of elevated cytokinins and ABA. B. subtilis inoculation increased the shoot dry weight of well-watered and drought seedlings by 34.85 and 19.23 %, as well as the root by 15.445 and 13.99 %, respectively. Consequently, the root/shoot ratio significantly decreased, indicative of the greater benefits of PGPR on shoot growth than root. Thus, inoculation of cytokinin-producing PGPR in container seedlings can alleviate the drought stress and interfere with the suppression of shoot growth, showing a real potential to perform as a drought stress inhibitor in arid environments.

  16. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches.

    Science.gov (United States)

    Jin, Zhenong; Zhuang, Qianlai; Tan, Zeli; Dukes, Jeffrey S; Zheng, Bangyou; Melillo, Jerry M

    2016-09-01

    Stresses from heat and drought are expected to increasingly suppress crop yields, but the degree to which current models can represent these effects is uncertain. Here we evaluate the algorithms that determine impacts of heat and drought stress on maize in 16 major maize models by incorporating these algorithms into a standard model, the Agricultural Production Systems sIMulator (APSIM), and running an ensemble of simulations. Although both daily mean temperature and daylight temperature are common choice of forcing heat stress algorithms, current parameterizations in most models favor the use of daylight temperature even though the algorithm was designed for daily mean temperature. Different drought algorithms (i.e., a function of soil water content, of soil water supply to demand ratio, and of actual to potential transpiration ratio) simulated considerably different patterns of water shortage over the growing season, but nonetheless predicted similar decreases in annual yield. Using the selected combination of algorithms, our simulations show that maize yield reduction was more sensitive to drought stress than to heat stress for the US Midwest since the 1980s, and this pattern will continue under future scenarios; the influence of excessive heat will become increasingly prominent by the late 21st century. Our review of algorithms in 16 crop models suggests that the impacts of heat and drought stress on plant yield can be best described by crop models that: (i) incorporate event-based descriptions of heat and drought stress, (ii) consider the effects of nighttime warming, and (iii) coordinate the interactions among multiple stresses. Our study identifies the proficiency with which different model formulations capture the impacts of heat and drought stress on maize biomass and yield production. The framework presented here can be applied to other modeled processes and used to improve yield predictions of other crops with a wide variety of crop models. © 2016 John

  17. Land-atmosphere coupling and soil moisture memory contribute to long-term agricultural drought

    Science.gov (United States)

    Kumar, S.; Newman, M.; Lawrence, D. M.; Livneh, B.; Lombardozzi, D. L.

    2017-12-01

    We assessed the contribution of land-atmosphere coupling and soil moisture memory on long-term agricultural droughts in the US. We performed an ensemble of climate model simulations to study soil moisture dynamics under two atmospheric forcing scenarios: active and muted land-atmosphere coupling. Land-atmosphere coupling contributes to a 12% increase and 36% decrease in the decorrelation time scale of soil moisture anomalies in the US Great Plains and the Southwest, respectively. These differences in soil moisture memory affect the length and severity of modeled drought. Consequently, long-term droughts are 10% longer and 3% more severe in the Great Plains, and 15% shorter and 21% less severe in the Southwest. An analysis of Coupled Model Intercomparsion Project phase 5 data shows four fold uncertainty in soil moisture memory across models that strongly affects simulated long-term droughts and is potentially attributable to the differences in soil water storage capacity across models.

  18. Redox systems are a potential link between drought stress susceptibility and the exacerbation of aflatoxin contamination in crops

    Science.gov (United States)

    Drought stress aggravates Aspergillus flavus infection and aflatoxin contamination in oilseed crops such as peanut and maize. Reactive oxygen species (ROS) are produced in plants in response to abiotic and biotic stresses as a means of defense. In the host plant-A. flavus interaction under drought c...

  19. Short-term adaptations as a response to travel time: results of a stated adaptation experimentincreases

    NARCIS (Netherlands)

    Psarra, I.; Arentze, T.A.; Timmermans, H.J.P.

    2016-01-01

    This study focused on short-term dynamics of activity-travel behavior as a response to travel time increases. It is assumed that short-term changes are triggered by stress, which is defined as the deviation between an individual’s aspirations and his or her daily experiences. When stress exceeds a

  20. Broader leaves result in better performance of indica rice under drought stress.

    Science.gov (United States)

    Farooq, M; Kobayashi, N; Ito, O; Wahid, A; Serraj, R

    2010-09-01

    Leaf growth is one of the first physiological processes affected by changes in plant water status under drought. A decrease in leaf expansion rate usually precedes any reduction in stomatal conductance or photosynthesis. Changes in leaf size and stomatal opening are potential adaptive mechanisms, which may help avoid drought by reducing transpiration rate, and can be used to improve rice genotypes in water-saving cultivation. The indica rice cultivar IR64 and four of its near-isogenic lines (NILs; BC(3)-derived lines) unique for leaf size traits, YTK 124 (long leaves), YTK 127 (broad leaves), YTK 205 (short leaves) and YTK 214 (narrow leaves), were compared in this study for changes in leaf growth and its water status. The plants were subjected to two soil water regimes, well-watered and progressive soil drying measured by the fraction of transpirable soil water (FTSW). Applied drought reduced leaf number, total leaf area, specific leaf area, plant biomass, tiller number, plant height, stomatal conductance, amount of water transpired, leaf relative water content, and leaf water potential more in IR64 and the NILs than in the respective controls; nonetheless, transpiration efficiency (TE) was slightly higher under drought than in the well-watered controls. NILs with broader leaves had higher biomass (and its individual components), less stomatal conductance, and higher TE under drought than NILs with narrow and shorter leaves. Under drought, leaf number was positively correlated with tiller number and plant height; nonetheless, root weight and total biomass, water transpired and TE, and plant height and TE were positively correlated with each other. However, a negative correlation was observed between stomatal conductance and the FTSW threshold at which normalized transpiration started to decline during soil drying. Overall, the IR64-derived lines with broader leaves performed better than NILs with narrow and short leaves under drought. Copyright 2010 Elsevier Gmb

  1. The Effect of Osmo and Hormone Priming on Germination and Seed Reserve Utilization of Millet Seeds under Drought Stress

    Directory of Open Access Journals (Sweden)

    Maasoumeh Asadi Aghbolaghi

    2014-03-01

    Full Text Available The objective of this research was to evaluate the effect of seed priming with osmo and hormone priming on growth and seed reserve utilization of millet seeds under drought stress. Treatments were combinations of 4 levels of drought stress (0, -4, -8 and -12 bar and 3 levels of seed priming and control with 3 replications. Results showed that with increase in drought stress, germination components such as germination percentage, germination index, mean time to germination, normal seedling percentage, seedling length, seedling dry weight, weight of utilized (mobilized seed and seed reserve utilization efficiency decreased, but seed priming showed lower reduction. The highest germination characteristics and seed reserve utilization was obtained by priming in control conditions. It is concluded that priming results in improvement in germination components of millet in drought stress conditions.

  2. Oxidative stress and myocardial dysfunction in young rabbits after short term anabolic steroids administration.

    Science.gov (United States)

    Germanakis, Ioannis; Tsarouhas, Konstantinos; Fragkiadaki, Persefoni; Tsitsimpikou, Christina; Goutzourelas, Nikolaos; Champsas, Maria Christakis; Stagos, Demetrios; Rentoukas, Elias; Tsatsakis, Aristidis M

    2013-11-01

    The present study focuses on the short term effects of repeated low level administration of turinabol and methanabol on cardiac function in young rabbits (4 months-old). The experimental scheme consisted of two oral administration periods, lasting 1 month each, interrupted by 1-month wash-out period. Serial echocardiographic evaluation at the end of all three experimental periods was performed in all animals. Oxidative stress markers have also been monitored at the end of each administration period. Treated animals originally showed significantly increased myocardial mass and systolic cardiac output, which normalized at the end of the wash out period. Re-administration led to increased cardiac output, at the cost though of a progressive myocardial mass reduction. A dose-dependent trend towards impaired longitudinal systolic, diastolic and global myocardial function was also observed. The adverse effects were more pronounced in the methanabol group. For both anabolic steroids studied, the low dose had no significant effects on oxidative stress markers monitored, while the high dose created a hostile oxidative environment. In conclusion, anabolic administration has been found to create a possible deleterious long term effect on the growth of the immature heart and should be strongly discouraged especially in young human subjects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Evaluation Physiological Characteristics and Grain Yield Canola Cultivars under end Seasonal Drought Stress in Weather Condition of Ahvaz

    Directory of Open Access Journals (Sweden)

    A Seyed Ahmadi

    2015-07-01

    Full Text Available To evaluate canola cultivars response to physiological characteristics and grain yield end seasonal drought stress in weather condition of Ahvaz, farm experiments were done at research farm of Khuzestan agriculture and natural resources center. During 2007-2008 and 2008-2009 crop years. Farm test comprised drought stress was done as split plot form with randomize complete block design with four replication, treatments consist of drought stress (main factor including 50, 60 and 70 percent of water use content, which was applied from early heading stage until physiological maturity, and three spring canola cultivar including Shirali, Hayola 401 and R.G.S. were considered as sub plots. Measurements include biological yield, grain yield, harvesting index, number of pod per plant 1000 grain weight, number of grain in pod, plant height, and stem diameter, oil and protein percentage. Results showed that drought stress reduced significantly grain yield, biological yield, harvest index and the average of reduction of them during 2 years for per unit reduce moisture from 50% to 70% were 2, 1.35, and 0.81 percent, respectively. During two years, 1000 grain weight, number of pods per plant and number of grain per pod reduced 27, 36 and 20 percent, respectively. Terminal Drought stress reduced significantly plant height, stem diameter, stem number per plant and pod length, this reduced were 12, 46, 36 and 14 percent, respectively. Stem diameter, and stem number per plant reduced more than other characteristics. In this study oil grain decreased 12 % and protein grain increased 18.5% but oil and protein yield decreased 44.9% and 27.1% respectively..Finally, in weather condition of Khuzestan, terminal drought stress on February and March in which has simultaneous with early flowering stage and filling seed, significantly, reduced yield and compounded yield and affects on stem growth and qualities oil and protein negatively. Therefore, with irrigation

  4. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest.

    Science.gov (United States)

    Jardine, Kolby J; Chambers, Jeffrey Q; Holm, Jennifer; Jardine, Angela B; Fontes, Clarissa G; Zorzanelli, Raquel F; Meyers, Kimberly T; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O; Piva, Luani R de O; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O

    2015-09-15

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C₅ and C₆ GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C₆ GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.

  5. Are tall trees more sensitive to prolonged drought in tropical per-humid forests?

    Science.gov (United States)

    Schuldt, Bernhard; Horna, Viviana; Leuschner, Christoph

    2010-05-01

    Seasonality of water flux was investigated for common tree species of a Central Sulawesi pre-montane perhumid forest located in the Lore Lindu National Park. Trees were exposed to reduced soil water levels under a rainfall exclusion experiment (Sulawesi Throughfall Displacement Experiment, STD), to simulate drought effects and to monitor species-specific short-term responses to extended water stress. Several climate scenarios predict more frequent occurrence of ENSO droughts with increasing severity induced by global warming. Detailed assessments of the ecological consequences of droughts in perhumid forests are scarce and knowledge whether and how these ecosystems are adapted to severe droughts is limited. Key research questions were: (1) how do tall rainforest trees cope with long pathways under low evaporative demand, (2) how sensitive are trees from tropical perhumid forests and how do they acclimate to drought-stress and 3) does wood density determine the drought sensitivity of perhumid forest trees? From June 2007 until October 2009 we monitored 95 trees from 8 common tree species. Half of them were located under the STD Experiment and the other half in control areas. We used the constant heated method to continuously monitor stem xylem flux density and conduct parallel measurements of xylem anatomy and hydraulic conductivity in twigs, stems and roots. After almost 22 months of experimental drought only 25% of xylem flux density reduction was observed in the experimental trees. But the reaction to water stress was species-specific and in some species xylem flux went down to 50 % compared to the individuals located at the control plots. Wood density did not correlate with any hydraulic measurement, but anatomy and hydraulic architecture observations showed a positive correlation between xylem conductivity and vessel size with tree height. These results reveal a well adapted hydraulic system of tall canopy trees allowing for highly efficient water flow under

  6. Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress

    Science.gov (United States)

    Tea [Camellia sinensis (L.) O. Kuntze] is an important economic crop, and drought is the most important abiotic stress affecting yield and quality. Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance. Increased understanding of ABA effects on tea plant unde...

  7. Effect of Filter Cake on Morphophysiological and Yield of Sweet Corn Under Late Season Drought Stress Condition

    Directory of Open Access Journals (Sweden)

    S. A. Siadat

    2015-06-01

    Full Text Available In order to investigate the effect of Filter Cake application on some morpho-physiological characteristics and yield of sweet corn (Zea mays var saccharata under different irrigation regimes, an experiment was conducted in Ramin Agriculture and Natural Resources University, Khuzestan, in 2012. The experiment was arranged in split-plot design in RCBD (Completely Randomized Block Design with three replications. Treatments were drought stress (irrigation after 25, 50 and 75% depletion of available water content in main plots and Filter Cake (0, 10, 20 and 30 tonha-1 arranged in sub-plots. Results showed that drought stress increased electrolyte leakage (EL and proline content (PC while height of plant, relative water content (RWC, chlorophyll stability index and ear and grain yield were decreased. The intensive drought stress had the greatest effect on EL and PC (54% increase, and decreased ear and grain yield by21 and 37% compared to control, respectively. Application of filter cake on non-stress condition increased height of plant and economic yield. But Filter Cake in intensive stress reduced RWC and yield and increased EL compared to control. Also, the application of 30 tonha-1 of Filter Cake in intensive stress condition decreased ear and grain yield by 14.5 and 10.7% respectively. Thus, positive effect of Filter Cake application was clear on non-stress condition, but on drought stress condition it decreased the economic yield.

  8. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome

    Directory of Open Access Journals (Sweden)

    Ferrari Francesco

    2009-06-01

    Full Text Available Abstract Background Water stress during grain filling has a marked effect on grain yield, leading to a reduced endosperm cell number and thus sink capacity to accumulate dry matter. The bread wheat cultivar Chinese Spring (CS, a Chinese Spring terminal deletion line (CS_5AL-10 and the durum wheat cultivar Creso were subjected to transcriptional profiling after exposure to mild and severe drought stress at the grain filling stage to find evidences of differential stress responses associated to different wheat genome regions. Results The transcriptome analysis of Creso, CS and its deletion line revealed 8,552 non redundant probe sets with different expression levels, mainly due to the comparisons between the two species. The drought treatments modified the expression of 3,056 probe sets. Besides a set of genes showing a similar drought response in Creso and CS, cluster analysis revealed several drought response features that can be associated to the different genomic structure of Creso, CS and CS_5AL-10. Some drought-related genes were expressed at lower level (or not expressed in Creso (which lacks the D genome or in the CS_5AL-10 deletion line compared to CS. The chromosome location of a set of these genes was confirmed by PCR-based mapping on the D genome (or the 5AL-10 region. Many clusters were characterized by different level of expression in Creso, CS and CS_AL-10, suggesting that the different genome organization of the three genotypes may affect plant adaptation to stress. Clusters with similar expression trend were grouped and functional classified to mine the biological mean of their activation or repression. Genes involved in ABA, proline, glycine-betaine and sorbitol pathways were found up-regulated by drought stress. Furthermore, the enhanced expression of a set of transposons and retrotransposons was detected in CS_5AL-10. Conclusion Bread and durum wheat genotypes were characterized by a different physiological reaction to water

  9. No Time to Waste: Transcriptome Study Reveals that Drought Tolerance in Barley May Be Attributed to Stressed-Like Expression Patterns that Exist before the Occurrence of Stress.

    Science.gov (United States)

    Janiak, Agnieszka; Kwasniewski, Miroslaw; Sowa, Marta; Gajek, Katarzyna; Żmuda, Katarzyna; Kościelniak, Janusz; Szarejko, Iwona

    2017-01-01

    Plant survival in adverse environmental conditions requires a substantial change in the metabolism, which is reflected by the extensive transcriptome rebuilding upon the occurrence of the stress. Therefore, transcriptomic studies offer an insight into the mechanisms of plant stress responses. Here, we present the results of global gene expression profiling of roots and leaves of two barley genotypes with contrasting ability to cope with drought stress. Our analysis suggests that drought tolerance results from a certain level of transcription of stress-influenced genes that is present even before the onset of drought. Genes that predispose the plant to better drought survival play a role in the regulatory network of gene expression, including several transcription factors, translation regulators and structural components of ribosomes. An important group of genes is involved in signaling mechanisms, with significant contribution of hormone signaling pathways and an interplay between ABA, auxin, ethylene and brassinosteroid homeostasis. Signal transduction in a drought tolerant genotype may be more efficient through the expression of genes required for environmental sensing that are active already during normal water availability and are related to actin filaments and LIM domain proteins, which may function as osmotic biosensors. Better survival of drought may also be attributed to more effective processes of energy generation and more efficient chloroplasts biogenesis. Interestingly, our data suggest that several genes involved in a photosynthesis process are required for the establishment of effective drought response not only in leaves, but also in roots of barley. Thus, we propose a hypothesis that root plastids may turn into the anti-oxidative centers protecting root macromolecules from oxidative damage during drought stress. Specific genes and their potential role in building up a drought-tolerant barley phenotype is extensively discussed with special emphasis

  10. No Time to Waste: Transcriptome Study Reveals that Drought Tolerance in Barley May Be Attributed to Stressed-Like Expression Patterns that Exist before the Occurrence of Stress

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiak

    2018-01-01

    Full Text Available Plant survival in adverse environmental conditions requires a substantial change in the metabolism, which is reflected by the extensive transcriptome rebuilding upon the occurrence of the stress. Therefore, transcriptomic studies offer an insight into the mechanisms of plant stress responses. Here, we present the results of global gene expression profiling of roots and leaves of two barley genotypes with contrasting ability to cope with drought stress. Our analysis suggests that drought tolerance results from a certain level of transcription of stress-influenced genes that is present even before the onset of drought. Genes that predispose the plant to better drought survival play a role in the regulatory network of gene expression, including several transcription factors, translation regulators and structural components of ribosomes. An important group of genes is involved in signaling mechanisms, with significant contribution of hormone signaling pathways and an interplay between ABA, auxin, ethylene and brassinosteroid homeostasis. Signal transduction in a drought tolerant genotype may be more efficient through the expression of genes required for environmental sensing that are active already during normal water availability and are related to actin filaments and LIM domain proteins, which may function as osmotic biosensors. Better survival of drought may also be attributed to more effective processes of energy generation and more efficient chloroplasts biogenesis. Interestingly, our data suggest that several genes involved in a photosynthesis process are required for the establishment of effective drought response not only in leaves, but also in roots of barley. Thus, we propose a hypothesis that root plastids may turn into the anti-oxidative centers protecting root macromolecules from oxidative damage during drought stress. Specific genes and their potential role in building up a drought-tolerant barley phenotype is extensively discussed

  11. valuation of Germination Characteristics for Hedysarum Criniferum Boiss in Alternative Temperature and Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    A. Shahbazi

    2016-05-01

    24-26 °C day-night and four drought levels (0, -2, -4, and -6 bar with three replications. According to the results, different levels of drought stress and alternative temperature had significant effects on germination percentage and germination speed of the species seeds (α=5%. The study showed that increasing temperature and drought levels leads to reducing the germination percentage and germination speed of the species. Higher germination percentage of H. criniferum seeds in different drought levels compared to alternative temperature levels of 24-26 °C indicated that this species is more sensitive to higher temperature than high levels of drought condition. Therefore, it could partly be concluded that the H. criniferum is a relatively drought resistance species.

  12. Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress.

    Science.gov (United States)

    Okay, Sezer; Derelli, Ebru; Unver, Turgay

    2014-10-01

    The WRKY superfamily of transcription factors was shown to be involved in biotic and abiotic stress responses in plants such as wheat (Triticum aestivum L.), one of the major crops largely cultivated and consumed all over the world. Drought is an important abiotic stress resulting in a considerable amount of loss in agronomical yield. Therefore, identification of drought responsive WRKY members in wheat has a profound significance. Here, a total of 160 TaWRKY proteins were characterized according to sequence similarity, motif varieties, and their phylogenetic relationships. The conserved sequences of the TaWRKYs were aligned and classified into three main groups and five subgroups. A novel motif in wheat, WRKYGQR, was identified. To putatively determine the drought responsive TaWRKY members, publicly available RNA-Seq data were analyzed for the first time in this study. Through in silico searches, 35 transcripts were detected having an identity to ten known TaWRKY genes. Furthermore, relative expression levels of TaWRKY16/TaWRKY16-A, TaWRKY17, TaWRKY19-C, TaWRKY24, TaWRKY59, TaWRKY61, and TaWRKY82 were measured in root and leaf tissues of drought-tolerant Sivas 111/33 and susceptible Atay 85 cultivars. All of the quantified TaWRKY transcripts were found to be up-regulated in root tissue of Sivas 111/33. Differential expression of TaWRKY16, TaWRKY24, TaWRKY59, TaWRKY61 and TaWRKY82 genes was discovered for the first time upon drought stress in wheat. These comprehensive analyses bestow a better understanding about the WRKY TFs in bread wheat under water deficit, and increased number of drought responsive WRKYs would contribute to the molecular breeding of tolerant wheat cultivars.

  13. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants

    Science.gov (United States)

    Szalonek, Michal; Sierpien, Barbara; Rymaszewski, Wojciech; Gieczewska, Katarzyna; Garstka, Maciej; Lichocka, Malgorzata; Sass, Laszlo; Paul, Kenny; Vass, Imre; Vankova, Radomira; Dobrev, Peter; Szczesny, Pawel; Marczewski, Waldemar; Krusiewicz, Dominika; Strzelczyk-Zyta, Danuta; Hennig, Jacek; Konopka-Postupolska, Dorota

    2015-01-01

    Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress. PMID:26172952

  14. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants.

    Science.gov (United States)

    Szalonek, Michal; Sierpien, Barbara; Rymaszewski, Wojciech; Gieczewska, Katarzyna; Garstka, Maciej; Lichocka, Malgorzata; Sass, Laszlo; Paul, Kenny; Vass, Imre; Vankova, Radomira; Dobrev, Peter; Szczesny, Pawel; Marczewski, Waldemar; Krusiewicz, Dominika; Strzelczyk-Zyta, Danuta; Hennig, Jacek; Konopka-Postupolska, Dorota

    2015-01-01

    Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.

  15. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants.

    Directory of Open Access Journals (Sweden)

    Michal Szalonek

    Full Text Available Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L. during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin than wild type (WT. Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII, as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.

  16. A near real-time satellite-based global drought climate data record

    International Nuclear Information System (INIS)

    AghaKouchak, Amir; Nakhjiri, Navid

    2012-01-01

    Reliable drought monitoring requires long-term and continuous precipitation data. High resolution satellite measurements provide valuable precipitation information on a quasi-global scale. However, their short lengths of records limit their applications in drought monitoring. In addition to this limitation, long-term low resolution satellite-based gauge-adjusted data sets such as the Global Precipitation Climatology Project (GPCP) one are not available in near real-time form for timely drought monitoring. This study bridges the gap between low resolution long-term satellite gauge-adjusted data and the emerging high resolution satellite precipitation data sets to create a long-term climate data record of droughts. To accomplish this, a Bayesian correction algorithm is used to combine GPCP data with real-time satellite precipitation data sets for drought monitoring and analysis. The results showed that the combined data sets after the Bayesian correction were a significant improvement compared to the uncorrected data. Furthermore, several recent major droughts such as the 2011 Texas, 2010 Amazon and 2010 Horn of Africa droughts were detected in the combined real-time and long-term satellite observations. This highlights the potential application of satellite precipitation data for regional to global drought monitoring. The final product is a real-time data-driven satellite-based standardized precipitation index that can be used for drought monitoring especially over remote and/or ungauged regions. (letter)

  17. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles.

    Directory of Open Access Journals (Sweden)

    Salme Timmusk

    Full Text Available Water is the key resource limiting world agricultural production. Although an impressive number of research reports have been published on plant drought tolerance enhancement via genetic modifications during the last few years, progress has been slower than expected. We suggest a feasible alternative strategy by application of rhizospheric bacteria coevolved with plant roots in harsh environments over millions of years, and harboring adaptive traits improving plant fitness under biotic and abiotic stresses. We show the effect of bacterial priming on wheat drought stress tolerance enhancement, resulting in up to 78% greater plant biomass and five-fold higher survivorship under severe drought. We monitored emissions of seven stress-related volatiles from bacterially-primed drought-stressed wheat seedlings, and demonstrated that three of these volatiles are likely promising candidates for a rapid non-invasive technique to assess crop drought stress and its mitigation in early phases of stress development. We conclude that gauging stress by elicited volatiles provides an effectual platform for rapid screening of potent bacterial strains and that priming with isolates of rhizospheric bacteria from harsh environments is a promising, novel way to improve plant water use efficiency. These new advancements importantly contribute towards solving food security issues in changing climates.

  18. Heavy and frequent thinning promotes drought adaptation in Pinus sylvestris forests.

    Science.gov (United States)

    Sohn, Julia A; Hartig, Florian; Kohler, Martin; Huss, Jürgen; Bauhus, Jürgen

    2016-10-01

    Droughts and their negative effects on forest ecosystems are projected to increase under climate change for many regions. It has been suggested that intensive thinning could reduce drought impacts on established forests in the short-term. Most previous studies on the effect of thinning on drought impacts, however, have been confined to single forest sites. It is therefore still unclear how general and persisting the benefits of thinning are. This study assesses the potential of thinning to increase drought tolerance of the wide spread Scots pine (Pinus sylvestris) in Central Europe. We hypothesized (1) that increasing thinning intensity benefits the maintenance of radial growth of crop trees during drought (resistance) and its recovery following drought, (2) that those benefits to growth decrease with time elapsed since the last thinning and with stand age, and (3) that they may depend on drought severity as well as water limitations in pre- and post-drought periods. To test these hypotheses, we assessed the effects of thinning regime, stand age, and drought severity on radial growth of 129 Scots pine trees during and after drought events in four long-term thinning experiments in Germany. We found that thinning improved the recovery of radial growth following drought and to a lesser extent the growth resistance during a drought event. Growth recovery following drought was highest after the first thinning intervention and in recently and heavily thinned stands. With time since the last thinning, however, this effect decreased and could even become negative when compared to unthinned stands. Further, thinning helped to avoid an age-related decline in growth resistance (and recovery) following drought. The recovery following drought, but not the resistance during drought, was related to water limitations in the drought period. This is the first study that analyzed drought-related radial growth in trees of one species across several stands of different age. The

  19. Low Temperature-Induced 30 (LTI30 positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation

    Directory of Open Access Journals (Sweden)

    Haitao eShi

    2015-10-01

    Full Text Available As a dehydrin belonging to group II late embryogenesis abundant protein (LEA family, Arabidopsis Low Temperature-Induced 30 (LTI30/XERO2 has been shown to be involved in plant freezing stress resistance. However, the other roles of AtLTI30 remain unknown. In this study, we found that the expression of AtLTI30 was largely induced by drought stress and abscisic acid (ABA treatments. Thereafter, AtLTI30 knockout mutants and overexpressing plants were isolated to investigate the possible involvement of AtLTI30 in ABA and drought stress responses. AtLTI30 knockout mutants were less sensitive to ABA-mediated seed germination, while AtLTI30 overexpressing plants were more sensitive to ABA compared with wild type (WT. Consistently, the AtLTI30 knockout mutants displayed decreased drought stress resistance, while the AtLTI30 overexpressing plants showed improved drought stress resistance compared with WT, as evidenced by a higher survival rate and lower leaf water loss than WT after drought stress. Moreover, manipulation of AtLTI30 expression positively regulated the activities of catalases (CATs and endogenous proline content, as a result, negatively regulated drought stress-triggered hydrogen peroxide (H2O2 accumulation. All these results indicate that AtLTI30 is a positive regulator of plant drought stress resistance, partially through the modulation of ABA sensitivity, H2O2 and proline accumulation.

  20. Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress

    Science.gov (United States)

    Jinkui, FENG; Decheng, WANG; Changyong, SHAO; Lili, ZHANG; Xin, TANG

    2018-03-01

    The effect of different cold plasma treatments on the germination and seedling growth of alfalfa (Medicago sativa L.) seeds under simulated drought stress conditions was investigated. Polyethyleneglycol-6000 (PEG 6000)with the mass fraction of 0% (purified water), 5%, 10%, and 15% were applied to simulate the drought environment. The alfalfa seeds were treated with 15 different power levels ranged between 0-280 W for 15 s. The germination potential, germination rate, germination index, seedling root length, seedling height, and vigor index were investigated. Results indicated significant differences between treated with proper power and untreated alfalfa seeds. With the increase of treatment power, these indexes mentioned above almost presented bimodal curves. Under the different mass fractions of PEG 6000, results showed that the lower power led to increased germination, and the seedlings presented good adaptability to different drought conditions. Meanwhile, higher power levels resulted in a decreased germination rate. Seeds treated with 40 W resulted in higher germination potential, germination rate, seedling height, root length, and vigor index. Vigor indexes of the treated seeds under different PEG 6000 stresses increased by 38.68%, 43.91%, 74.34%, and 39.20% respectively compared to CK0-0, CK5-0, CK10-0, and CK15-0 (the control sample under 0%, 5%, 10%, and 15% PEG 6000). Therefore, 40 W was regarded as the best treatment in this research. Although the trend indexes of alfalfa seeds treated with the same power were statistically the same under different PEG 6000 stresses, the cold plasma treatment had a significant effect on the adaptability of alfalfa seeds in different drought environments. Thus, this kind of treatment is worth implementing to promote seed growth under drought situations.

  1. Drought monitoring with soil moisture active passive (SMAP) measurements

    Science.gov (United States)

    Mishra, Ashok; Vu, Tue; Veettil, Anoop Valiya; Entekhabi, Dara

    2017-09-01

    Recent launch of space-borne systems to estimate surface soil moisture may expand the capability to map soil moisture deficit and drought with global coverage. In this study, we use Soil Moisture Active Passive (SMAP) soil moisture geophysical retrieval products from passive L-band radiometer to evaluate its applicability to forming agricultural drought indices. Agricultural drought is quantified using the Soil Water Deficit Index (SWDI) based on SMAP and soil properties (field capacity and available water content) information. The soil properties are computed using pedo-transfer function with soil characteristics derived from Harmonized World Soil Database. The SMAP soil moisture product needs to be rescaled to be compatible with the soil parameters derived from the in situ stations. In most locations, the rescaled SMAP information captured the dynamics of in situ soil moisture well and shows the expected lag between accumulations of precipitation and delayed increased in surface soil moisture. However, the SMAP soil moisture itself does not reveal the drought information. Therefore, the SMAP based SWDI (SMAP_SWDI) was computed to improve agriculture drought monitoring by using the latest soil moisture retrieval satellite technology. The formulation of SWDI does not depend on longer data and it will overcome the limited (short) length of SMAP data for agricultural drought studies. The SMAP_SWDI is further compared with in situ Atmospheric Water Deficit (AWD) Index. The comparison shows close agreement between SMAP_SWDI and AWD in drought monitoring over Contiguous United States (CONUS), especially in terms of drought characteristics. The SMAP_SWDI was used to construct drought maps for CONUS and compared with well-known drought indices, such as, AWD, Palmer Z-Index, sc-PDSI and SPEI. Overall the SMAP_SWDI is an effective agricultural drought indicator and it provides continuity and introduces new spatial mapping capability for drought monitoring. As an

  2. Alleviation of Drought Stress by Hydrogen Sulfide Is Partially Related to the Abscisic Acid Signaling Pathway in Wheat.

    Science.gov (United States)

    Ma, Dongyun; Ding, Huina; Wang, Chenyang; Qin, Haixia; Han, Qiaoxia; Hou, Junfeng; Lu, Hongfang; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Little information is available describing the effects of exogenous H2S on the ABA pathway in the acquisition of drought tolerance in wheat. In this study, we investigated the physiological parameters, the transcription levels of several genes involved in the abscisic acid (ABA) metabolism pathway, and the ABA and H2S contents in wheat leaves and roots under drought stress in response to exogenous NaHS treatment. The results showed that pretreatment with NaHS significantly increased plant height and the leaf relative water content of seedlings under drought stress. Compared with drought stress treatment alone, H2S application increased antioxidant enzyme activities and reduced MDA and H2O2 contents in both leaves and roots. NaHS pretreatment increased the expression levels of ABA biosynthesis and ABA reactivation genes in leaves; whereas the expression levels of ABA biosynthesis and ABA catabolism genes were up-regulated in roots. These results indicated that ABA participates in drought tolerance induced by exogenous H2S, and that the responses in leaves and roots are different. The transcription levels of genes encoding ABA receptors were up-regulated in response to NaHS pretreatment under drought conditions in both leaves and roots. Correspondingly, the H2S contents in leaves and roots were increased by NaHS pretreatment, while the ABA contents of leaves and roots decreased. This implied that there is complex crosstalk between these two signal molecules, and that the alleviation of drought stress by H2S, at least in part, involves the ABA signaling pathway.

  3. Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation.

    Science.gov (United States)

    Furlan, Ana Laura; Bianucci, Eliana; Castro, Stella; Dietz, Karl-Josef

    2017-10-01

    Legumes belong to the most important crops worldwide. They increase soil fertility due their ability to establish symbiotic associations with soil microorganisms, known as rhizobia, capable of fixing nitrogen from the atmosphere. However, they are frequently exposed to abiotic stress conditions in particular drought. Such adverse conditions impair the biological nitrogen fixation (BNF) and depend largely on the legume. Therefore, two peanut cultivars with contrasting tolerance to drought, namely the more tolerant EC-98 and the sensitive Granoleico, were investigated to elucidate the relative contribution of BNF to the tolerance to drought. The tolerant cultivar EC-98 sustained growth and BNF similar to the control condition despite the reduced water potential and photosynthesis, suggesting the functioning of distinct metabolic pathways that contributed to enhance the tolerance. The biochemical and metabolomics approaches revealed that nodules from the tolerant cultivar accumulated trehalose, proline and gamma-aminobutyric acid (GABA), metabolites with known function in protecting against drought stress. The amide metabolism was severely affected in nodules from the sensitive cultivar Granoleico as revealed by the low content of asparagine and glutamine in the drought stressed plants. The sensitive cultivar upon rehydration was unable to re-establish a metabolism similar to well-watered plants. This was evidenced by the low level of metabolites and, transcripts and specific activities of enzymes from the carbon (sucrose synthase) and nitrogen (glutamine synthetase) metabolism which decreased below the values of control plants. Therefore, the increased content of metabolites with protective functions under drought stress likely is crucial for the full restoration upon rehydration. Smaller changes of drought stress-related metabolites in nodule are another trait that contributes to the effective control of BNF in the tolerant peanut cultivar (EC-98). Copyright © 2017

  4. Physiological Responses to Prolonged Drought Differ Among Three Oak (Quercus) Species

    Science.gov (United States)

    Cooper, C. E.; Moore, G. W.; Vogel, J. G.; Muir, J. P.

    2015-12-01

    The physiological response of plants to water stress provides insights into which species may survive in exceptional drought conditions. This study conducted on a remnant post oak savanna site in College Station, Texas, examined how drought affected the physiology of three native oak species. In June 2014, after a period of equal watering, we subjected three year old Quercus shumardii (Shumard oak; SO), Q. virginiana (live oak; LO), and Q. macrocarpa (bur oak; BO) saplings to one of two watering treatments: 1) watered, receiving the equivalent of theaverage precipitation rate and 2) droughted, receiving a 100% reduction in precipitation. We measured predawn (ΨPD) and midday (ΨMD) leaf water potential; midday gas exchange (MGE) parameters including photosynthesis (Al), transpiration (T), stomatal conductance (gsw); and leaf soluble (SS) and non-soluble sugar (NSS) concentrations monthly between June and October 2014. Drought stress responses were evident after only one month of induced drought. Droughted saplings showed reduced ΨPD, ΨMD, and MGE (P ≤ 0.05) in comparison to watered saplings of the same species. LO saplings exhibited greater MGE (P ≤ 0.05) while maintaining similar LWP to their respective watered and droughted BO and SO counterparts. Droughted LO exhibited MGE rates similar to those of watered BO and SO (P ≤ 0.05), while watered LO adjusted its MGE rates to changes in water availability better than BO and LO during short-term drought. Compared to water saplings, droughted saplings had greater leaf SS (P = 0.08) and lower NSS concentrations (P = 0.10), possibly due to the conversion of NSS to SS and other simple compounds and reduced consumption of SS for growth by the droughted saplings. Although SO and BO exhibited similar photosynthesis rates, leaf total sugar (SS+NSS) concentration was greater in SO (P ≤ 0.05). By displaying the greatest average photosynthesis rate (P ≤ 0.05), LO should have accumulated the greatest amount of carbon

  5. Climatological aspects of drought in Ohio

    International Nuclear Information System (INIS)

    Rogers, J.C.

    1993-01-01

    Precipitation and Palmer hydrological drought index (PHDI) data have been used to identify past occurrences of Ohio drought, to illustrate the temporal variability occurring statewide within dry periods, and to compare some of the key dry spells to those of 1987-88 and 1991-92. Periods of hydrologic drought and low precipitation generally persist for 2 to 5 years and tend to cluster in time, such as occurred from 1930-1966. It is not uncommon for precipitation to return to normal or near normal conditions while short-term drought persists in terms of streamflow, ground water supply, and runoff, as measured by the PHDI. The period April 1930 to March 1931 is the driest on record in Ohio although longer periods of low precipitation have occurred from 1893-1896, 1952-1955, and 1963-1965. The temporal clusters of droughts are separated by prolonged wet periods, including those extending roughly from 1875-1893, 1905-1924, and 1966-1987. Correlations between Ohio monthly precipitation and mean air temperature suggest that drought is linked to unusually high summer temperatures through mechanisms such as increased evapotranspiration, leading to increased fluxes of sensible heat from dry soil surfaces. In winter, warm conditions tend to favor higher precipitation, soil recharge, and runoff. Variations in mean temperature and atmospheric circulation may also be linked to other observed climatic features such as long-term trends in soil-water recharge season (October-March) precipitation

  6. Lipidomics Unravels the Role of Leaf Lipids in Thyme Plant Response to Drought Stress

    Directory of Open Access Journals (Sweden)

    Parviz Moradi

    2017-09-01

    Full Text Available Thymus is one of the best known genera within the Labiatae (Lamiaceae family, with more than 200 species and many medicinal and culinary uses. The effects of prolonged drought on lipid profile were investigated in tolerant and sensitive thyme plants (Thymus serpyllum L. and Thymus vulgaris L., respectively. Non-targeted non-polar metabolite profiling was carried out using Fourier transform ion cyclotron resonance (FT-ICR mass spectrometry with one-month-old plants exposed to drought stress, and their morpho-physiological parameters were also evaluated. Tolerant and sensitive plants exhibited clearly different responses at a physiological level. In addition, different trends for a number of non-polar metabolites were observed when comparing stressed and control samples, for both sensitive and tolerant plants. Sensitive plants showed the highest decrease (55% in main lipid components such as galactolipids and phospholipids. In tolerant plants, the level of lipids involved in signaling increased, while intensities of those induced by stress (e.g., oxylipins dramatically decreased (50–60%, in particular with respect to metabolites with m/z values of 519.3331, 521.3488, and 581.3709. Partial least square discriminant analysis separated all the samples into four groups: tolerant watered, tolerant stressed, sensitive watered and sensitive stressed. The combination of lipid profiling and physiological parameters represented a promising tool for investigating the mechanisms of plant response to drought stress at non-polar metabolome level.

  7. Isoprene emission response to drought and the impact on global atmospheric chemistry

    Science.gov (United States)

    Jiang, Xiaoyan; Guenther, Alex; Potosnak, Mark; Geron, Chris; Seco, Roger; Karl, Thomas; Kim, Saewung; Gu, Lianhong; Pallardy, Stephen

    2018-06-01

    Biogenic isoprene emissions play a very important role in atmospheric chemistry. These emissions are strongly dependent on various environmental conditions, such as temperature, solar radiation, plant water stress, ambient ozone and CO2 concentrations, and soil moisture. Current biogenic emission models (i.e., Model of Emissions of Gases and Aerosols from Nature, MEGAN) can simulate emission responses to some of the major driving variables, such as short-term variations in temperature and solar radiation, but the other factors are either missing or poorly represented. In this paper, we propose a new modelling approach that considers the physiological effects of drought stress on plant photosynthesis and isoprene emissions for use in the MEGAN3 biogenic emission model. We test the MEGAN3 approach by integrating the algorithm into the existing MEGAN2.1 biogenic emission model framework embedded into the global Community Land Model of the Community Earth System Model (CLM4.5/CESM1.2). Single-point simulations are compared against available field measurements at the Missouri Ozarks AmeriFlux (MOFLUX) field site. The modelling results show that the MEGAN3 approach of using of a photosynthesis parameter (Vcmax) and soil wetness factor (βt) to determine the drought activity factor leads to better simulated isoprene emissions in non-drought and drought periods. The global simulation with the MEGAN3 approach predicts a 17% reduction in global annual isoprene emissions, in comparison to the value predicted using the default CLM4.5/MEGAN2.1 without any drought effect. This reduction leads to changes in surface ozone and oxidants in the areas where the reduction of isoprene emissions is observed. Based on the results presented in this study, we conclude that it is important to simulate the drought-induced response of biogenic isoprene emission accurately in the coupled Earth System model.

  8. Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to drought stress.

    Science.gov (United States)

    Zhang, Chao; Zhang, Lin; Zhang, Sheng; Zhu, Shuang; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2015-01-21

    Physic nut (Jatropha curcas L.) is a small perennial tree or large shrub, which is well-adapted to semi-arid regions and is considered to have potential as a crop for biofuel production. It is now regarded as an excellent model for studying biofuel plants. However, our knowledge about the molecular responses of this species to drought stress is currently limited. In this study, genome-wide transcriptional profiles of roots and leaves of 8-week old physic nut seedlings were analyzed 1, 4 and 7 days after withholding irrigation. We observed a total of 1533 and 2900 differentially expressed genes (DEGs) in roots and leaves, respectively. Gene Ontology analysis showed that the biological processes enriched in droughted plants relative to unstressed plants were related to biosynthesis, transport, nucleobase-containing compounds, and cellular protein modification. The genes found to be up-regulated in roots were related to abscisic acid (ABA) synthesis and ABA signal transduction, and to the synthesis of raffinose. Genes related to ABA signal transduction, and to trehalose and raffinose synthesis, were up-regulated in leaves. Endoplasmic reticulum (ER) stress response genes were significantly up-regulated in leaves under drought stress, while a number of genes related to wax biosynthesis were also up-regulated in leaves. Genes related to unsaturated fatty acid biosynthesis were down-regulated and polyunsaturated fatty acids were significantly reduced in leaves 7 days after withholding irrigation. As drought stress increased, genes related to ethylene synthesis, ethylene signal transduction and chlorophyll degradation were up-regulated, and the chlorophyll content of leaves was significantly reduced by 7 days after withholding irrigation. This study provides us with new insights to increase our understanding of the response mechanisms deployed by physic nut seedlings under drought stress. The genes and pathways identified in this study also provide much information of

  9. MtCAS31 Aids Symbiotic Nitrogen Fixation by Protecting the Leghemoglobin MtLb120-1 Under Drought Stress in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Xin Li

    2018-05-01

    Full Text Available Symbiotic nitrogen fixation (SNF in legume root nodules injects millions of tons of nitrogen into agricultural lands and provides ammonia to non-legume crops under N-deficient conditions. During plant growth and development, environmental stresses, such as drought, salt, cold, and heat stress are unavoidable. This raises an interesting question as to how the legumes cope with the environmental stress along with SNF. Under drought stress, dehydrin proteins are accumulated, which function as protein protector and osmotic substances. In this study, we found that the dehydrin MtCAS31 (cold-acclimation-specific 31 functions in SNF in Medicago truncatula during drought stress. We found that MtCAS31 is expressed in nodules and interacts with leghemoglobin MtLb120-1. The interaction between the two proteins protects MtLb120-1 from denaturation under thermal stress in vivo. Compared to wild type, cas31 mutants display a lower nitrogenase activity, a lower ATP/ADP ratio, higher expression of nodule senescence genes and higher accumulation of amyloplasts under dehydration conditions. The results suggested that MtCAS31 protects MtLb120-1 from the damage of drought stress. We identified a new function for dehydrins in SNF under drought stress, which enriches the understanding of the molecular mechanism of dehydrins.

  10. Expression of Finger Millet EcDehydrin7 in Transgenic Tobacco Confers Tolerance to Drought Stress.

    Science.gov (United States)

    Singh, Rajiv Kumar; Singh, Vivek Kumar; Raghavendrarao, Sanagala; Phanindra, Mullapudi Lakshmi Venkata; Venkat Raman, K; Solanke, Amolkumar U; Kumar, Polumetla Ananda; Sharma, Tilak Raj

    2015-09-01

    One of the critical alarming constraints for agriculture is water scarcity. In the current scenario, global warming due to climate change and unpredictable rainfall, drought is going to be a master player and possess a big threat to stagnating gene pool of staple food crops. So it is necessary to understand the mechanisms that enable the plants to cope with drought stress. In this study, effort was made to prospect the role of EcDehydrin7 protein from normalized cDNA library of drought tolerance finger millet in transgenic tobacco. Biochemical and molecular analyses of T0 transgenic plants were done for stress tolerance. Leaf disc assay, seed germination test, dehydration assay, and chlorophyll estimation showed EcDehydrin7 protein directly link to drought tolerance. Northern and qRT PCR analyses shows relatively high expression of EcDehydrin7 protein compare to wild type. T0 transgenic lines EcDehydrin7(11) and EcDehydrin7(15) shows superior expression among all lines under study. In summary, all results suggest that EcDehydrin7 protein has a remarkable role in drought tolerance and may be used for sustainable crop breeding program in other food crops.

  11. Title: Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress.

    Science.gov (United States)

    Zahoor, Rizwan; Zhao, Wenqing; Abid, Muhammad; Dong, Haoran; Zhou, Zhiguo

    2017-08-01

    To evaluate the role of potassium (K) in maintaining nitrogen metabolism and osmotic adjustment development of cotton functional leaves to sustain growth under soil drought and rewatering conditions, the plants of two cotton cultivars Siza 3 (low-K sensitive) and Simian 3 (low-K tolerant), were grown under three different K rates (K0, K1, and K2; 0, 150, and 300kgK 2 Oha -1 , respectively) and exposed to drought stress with 40±5% soil relative water content (SRWC). The drought stress was applied at flowering stage by withholding water for eight days followed by rewatering to a well-watered level (75±5% SRWC). The results showed that drought-stressed plants of both cultivars showed a decrease in leaf relative water content (RWC) and osmotic potential in the functional leaves and developed osmotic adjustment with an increase in the contents of free amino acids, soluble sugars, inorganic K, and nitrate as compared to well-watered plants. In drought-stressed plants, nitrogen-metabolizing enzyme activities of nitrogen reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT) were diminished significantly (P≤0.05) along with decreased chlorophyll content and soluble proteins. However, drought-stressed plants under K application not only exhibited higher osmotic adjustment with greater accumulation of osmolytes but also regulated nitrogen metabolism by maintaining higher enzyme activities, soluble proteins, and chlorophyll content in functional leaves as compared to the plants without K application. Siza 3 showed better stability in enzyme activities and resulted in 89% higher seed cotton yield under K2 as compared to K0 in drought-stressed plants, whereas this increase was 53% in the case of Simian 3. The results of the study suggested that K application enhances cotton plants' potential for sustaining high nitrogen-metabolizing enzyme activities and related components to supplement osmotic adjustment under soil drought conditions. Copyright © 2017

  12. Effect of Salinity and Drought Stresses on Germination Stage and Growth of Black Cumin (Bunium Persicum Boiss

    Directory of Open Access Journals (Sweden)

    H. R. Saeedi Goraghani

    2017-06-01

    Full Text Available Introduction Range plants have important and crucial roles in medicinal industry andtogether with scarcity and low quality of the water and soil resources, prevent a quick recovery of the soil plant covering. Because of these restrictions, it is important to consider the use of salt and drought tolerant species for plantation and to preserve plant cover. In this sense, the use of native species such as black cumin (Bunium persicum Boiss may be of interest due to their medicinal characteristics and potential ability to adapt to adverse conditions (dry and saline conditions. Black cumin (B. persicum as a medicinal plant plays a vital role in Iranian medicine so there is a need to know about the factors affecting their growth and propagation. Materials and Methods To investigate the effects of drought and salt stresses on germination and growth in black cumin two separate experiments were conducted. Drought stress was applied through incubation in four different concentrations of PEG 6000 that provide solutions with water potentials ranging from -0.2 to -0.8 MPa (including control and four levels of dryness. Salinity treatments (including control and four levels of salinity were prepared by adding molar concentrations of NaCl to provide a range of salinity from 50 to 300 mM. Germination percentage and speed was calculated by computation of germinated seeds every day. Growth parameters (rootlet, shoot and seedling length total, allometric index and seed vigority were obtained accordingly. Results and Discussion Seeds under both drought and salt stress showed significant reduction in germination percentage, germination rate, radicle length, plumule length, and alometric and seed vigor indices. This trend was much pronounced under high levels of NaCl and low levels of water potentials, so that germination at Ψs = -0.6 MP was completely stopped. Conclusions Assessment of drought and salt stresses on germination and growth in black cumin is very

  13. Intra-specific variations in expression of stress-related genes in beech progenies are stronger than drought-induced responses.

    Science.gov (United States)

    Carsjens, Caroline; Nguyen Ngoc, Quynh; Guzy, Jonas; Knutzen, Florian; Meier, Ina Christin; Müller, Markus; Finkeldey, Reiner; Leuschner, Christoph; Polle, Andrea

    2014-12-01

    Rapidly decreasing water availability as a consequence of climate change is likely to endanger the range of long-lived tree species. A pressing question is, therefore, whether adaptation to drought exists in important temperate tree species like European beech (Fagus sylvatica L.), a wide-spread, dominant forest tree in Central Europe. Here, five beech stands were selected along a precipitation gradient from moist to dry conditions. Neutral genetic markers revealed strong variation within and little differentiation between the populations. Natural regeneration from these stands was transferred to a common garden and used to investigate the expression of genes for abscisic acid (ABA)-related drought signaling [9-cis-epoxy-dioxygenase (NCED), protein phosphatase 2C (PP2C), early responsive to dehydration (ERD)] and stress protection [ascorbate peroxidase (APX), superoxide dismutase (SOD), aldehyde dehydrogenase (ALDH), glutamine amidotransferase (GAT)] that are involved in drought acclimation. We hypothesized that progenies from dry sites exhibit constitutively higher expression levels of ABA- and stress-related genes and are less drought responsive than progenies from moist sites. Transcript levels and stress responses (leaf area loss, membrane integrity) of well-irrigated and drought-stressed plants were measured during the early, mid- and late growing season. Principal component (PC) analysis ordered the beech progenies according to the mean annual precipitation at tree origin by the transcript levels of SOD, ALDH, GAT and ERD as major loadings along PC1. PC2 separated moist and drought treatments with PP2C levels as important loading. These results suggest that phosphatase-mediated signaling is flexibly acclimated to the current requirements, whereas stress compensatory measures exhibited genotypic variation, apparently underlying climate selection. In contrast to expectation, the drought responses were less pronounced than the progeny-related differences and the

  14. Against Drought Stress Effect of Antioxidant Enzymes of Boron

    Directory of Open Access Journals (Sweden)

    Mahmut Doğan

    2013-04-01

    Full Text Available In this study, soybean seeds (Glycine max. L., cv., “A3935 were grown under controlled conditions (25±2 C composed of different boron compounds. In the experiment, 5 groups were determined respectively as potassium tetraborate tetrahydrate (1 mg/1, ammonium tetraborate tetrahydrate (1 mg/1, sodium boron hydride (1 mg/1, lithium tetraborate tetrahydrate (100 mg/1, and sodium tetraborate decahydrate (100 mg/1. The doses used in this study were determined according to the results of a preliminary study. Soybean seeds were exposed to different amounts of drought stress based on time (control, 3, 6, 9, 12, 15, and 18 days. Activities of antioxidant enzymes superoxide dismutase (SOD: EC 1.15.1.1, glutathione reductase (GR: EC 1.6.4.2, ascorbate peroxidase (APX: EC 1.11.1.11 and catalase (CAT: EC 1.11.1.6 measured. According to the results stress+potassium tetraborate tetrahydrate environment has increased the amount of CAT, decreased the amount GR, APX and SOD. Potassium tetraborate 0.1 mg / l dose administration is the most appropriate critical value, and the most important indicator of drought CAT enzyme found to give the best results.

  15. Impact of drought stress on specialised metabolism: Biosynthesis and the expression of monoterpene synthases in sage (Salvia officinalis).

    Science.gov (United States)

    Radwan, Alzahraa; Kleinwächter, Maik; Selmar, Dirk

    2017-09-01

    In previous experiments, we demonstrated that the amount of monoterpenes in sage is increased massively by drought stress. Our current study is aimed to elucidate whether this increase is due, at least in part, to elevated activity of the monoterpene synthases responsible for the biosynthesis of essential oils in sage. Accordingly, the transcription rates of the monoterpene synthases were analyzed. Salvia officinalis plants were cultivated under moderate drought stress. The concentrations of monoterpenes as well as the expression of the monoterpene synthases were analyzed. The amount of monoterpenes massively increased in response to drought stress; it doubled after just two days of drought stress. The observed changes in monoterpene content mostly match with the patterns of monoterpene synthase expressions. The expression of bornyl diphosphate synthase was strongly up-regulated; its maximum level was reached after two days. Sabinene synthase increased gradually and reached a maximum after two weeks. In contrast, the transcript level of cineole synthase continuously declined. This study revealed that the stress related increase of biosynthesis is not only due to a "passive" shift caused by the stress related over-reduced status, but also is due - at least in part-to an "active" up-regulation of the enzymes involved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses).

    Science.gov (United States)

    Tang, Sha; Li, Lin; Wang, Yongqiang; Chen, Qiannan; Zhang, Wenying; Jia, Guanqing; Zhi, Hui; Zhao, Baohua; Diao, Xianmin

    2017-08-30

    Understanding drought-tolerance mechanisms and identifying genetic dominance are important for crop improvement. Setaria italica, which is extremely drought-tolerant, has been regarded as a model plant for studying stress biology. Moreover, different genotypes of S. italica have evolved various drought-tolerance/avoidance mechanisms that should be elucidated. Physiological and transcriptomic comparisons between drought-tolerant S. italica cultivar 'Yugu1' and drought-sensitive 'An04' were conducted. 'An04' had higher yields and more efficient photosystem activities than 'Yugu1' under well-watered conditions, and this was accompanied by positive brassinosteroid regulatory actions. However, 'An04's growth advantage was severely repressed by drought, while 'Yugu1' maintained normal growth under a water deficiency. High-throughput sequencing suggested that the S. italica transcriptome was severely remodelled by genotype × environment interactions. Expression profiles of genes related to phytohormone metabolism and signalling, transcription factors, detoxification, and other stress-related proteins were characterised, revealing genotype-dependent and -independent drought responses in different S. italica genotypes. Combining our data with drought-tolerance-related QTLs, we identified 20 candidate genes that contributed to germination and early seedling' drought tolerance in S. italica. Our analysis provides a comprehensive picture of how different S. italica genotypes respond to drought, and may be used for the genetic improvement of drought tolerance in Poaceae crops.

  17. Transcriptome Profiling of the Potato (Solanum tuberosum L.) Plant under Drought Stress and Water-Stimulus Conditions.

    Science.gov (United States)

    Gong, Lei; Zhang, Hongxia; Gan, Xiaoyan; Zhang, Li; Chen, Yuchao; Nie, Fengjie; Shi, Lei; Li, Miao; Guo, Zhiqian; Zhang, Guohui; Song, Yuxia

    2015-01-01

    Drought stress can seriously affect tuberization, yield and quality of potato plant. However, the precise molecular mechanisms governing potato stolon's response to drought stress and water supply are not very well understood. In this work, a potato (Solanum tuberosum L.) variant, Ningshu 4, was subjected to severe drought stress treatment (DT) and re-watering treatment (RWT) at tuber bulking stage. Strand-specific cDNA libraries of stolon materials were constructed for paired-end transcriptome sequencing analyses and differentially expressed gene (DEG) examination. In comparison to untreated-control (CT) plants, 3189 and 1797 DEGs were identified in DT and RWT plants and 4154 solely expressed DEGs were screened out from these two comparison groups. Interestingly, 263 genes showed opposite expression patterns in DT and RWT plants. Among them, genes homologous to Protein Phosphatase 2C (PP2C), Aspartic protease in guard cell 1 (ASPG1), auxin-responsive protein, Arabidopsis pseudo response regualtor 2 (APRR2), GA stimulated transcripts in Arabidopsis 6 (GASA6), Calmodulin-like protein 19 (CML19), abscisic acid 8'-hydroxylases and calcium-transporting ATPase, et al. were related with drought-stress and water stimulus response. Sixteen DEGs involved in starch synthesis, accumulation and tuber formation exhibited significantly different expression upon re-watering. In addition, 1630, 1527 and 1596 transcription factor encoding genes were detected in CT, DT and RWT. DEGs of ERF, bHLH, MYB, NAC, WRKY, C2H2, bZIP and HD-ZIP families accounted for 50% in three comparison groups, respectively. Furthermore, characteristics of 565 gene ontology (GO) and 108 Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were analyzed with the 4154 DEGs. All these results suggest that the drought- and water-stimulus response could be implemented by the regulated expression of metabolic pathway DEGs, and these genes were involved in the endogenous hormone biosynthesis and signal

  18. Transcriptome Profiling of the Potato (Solanum tuberosum L. Plant under Drought Stress and Water-Stimulus Conditions.

    Directory of Open Access Journals (Sweden)

    Lei Gong

    Full Text Available Drought stress can seriously affect tuberization, yield and quality of potato plant. However, the precise molecular mechanisms governing potato stolon's response to drought stress and water supply are not very well understood. In this work, a potato (Solanum tuberosum L. variant, Ningshu 4, was subjected to severe drought stress treatment (DT and re-watering treatment (RWT at tuber bulking stage. Strand-specific cDNA libraries of stolon materials were constructed for paired-end transcriptome sequencing analyses and differentially expressed gene (DEG examination. In comparison to untreated-control (CT plants, 3189 and 1797 DEGs were identified in DT and RWT plants and 4154 solely expressed DEGs were screened out from these two comparison groups. Interestingly, 263 genes showed opposite expression patterns in DT and RWT plants. Among them, genes homologous to Protein Phosphatase 2C (PP2C, Aspartic protease in guard cell 1 (ASPG1, auxin-responsive protein, Arabidopsis pseudo response regualtor 2 (APRR2, GA stimulated transcripts in Arabidopsis 6 (GASA6, Calmodulin-like protein 19 (CML19, abscisic acid 8'-hydroxylases and calcium-transporting ATPase, et al. were related with drought-stress and water stimulus response. Sixteen DEGs involved in starch synthesis, accumulation and tuber formation exhibited significantly different expression upon re-watering. In addition, 1630, 1527 and 1596 transcription factor encoding genes were detected in CT, DT and RWT. DEGs of ERF, bHLH, MYB, NAC, WRKY, C2H2, bZIP and HD-ZIP families accounted for 50% in three comparison groups, respectively. Furthermore, characteristics of 565 gene ontology (GO and 108 Kyoto Encyclopedia of Genes and Genomes pathways (KEGG were analyzed with the 4154 DEGs. All these results suggest that the drought- and water-stimulus response could be implemented by the regulated expression of metabolic pathway DEGs, and these genes were involved in the endogenous hormone biosynthesis and signal

  19. Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance.

    Science.gov (United States)

    Zhu, Zhangsheng; Sun, Binmei; Xu, Xiaoxia; Chen, Hao; Zou, Lifang; Chen, Guoju; Cao, Bihao; Chen, Changming; Lei, Jianjun

    2016-01-01

    Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice, and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs, and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA, and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA-mediated signaling response in Chinese kale.

  20. Ectomycorrhizal inoculation with Pisolithus tinctorius reduces stress induced by drought in cork oak.

    Science.gov (United States)

    Sebastiana, Mónica; da Silva, Anabela Bernardes; Matos, Ana Rita; Alcântara, André; Silvestre, Susana; Malhó, Rui

    2018-04-01

    We investigated whether the performance of cork oak under drought could be improved by colonization with the ectomycorrhizal fungus Pisolithus tinctorius. Results show that inoculation alone had a positive effect on plant height, shoot biomass, shoot basal diameter, and root growth. Under drought, root growth of mycorrhizal plants was significantly increased showing that inoculation was effective in increasing tolerance to drought. In accordance, mycorrhizal plants subjected to drought showed less symptoms of stress when compared to non-mycorrhizal plants, such as lower concentration of soluble sugars and starch, increased ability to maintain fatty acid content and composition, and increased unsaturation level of membrane lipids. After testing some of the mechanisms suggested to contribute to the enhanced tolerance of mycorrhizal plants to drought, we could not find any by which Pisolithus tinctorius could benefit cork oak, at least under the drought conditions imposed in our experiment. Inoculation did not increase photosynthesis under drought, suggesting no effect in sustaining stomatal opening at low soil water content. Similarly, plant water status was not affected by inoculation suggesting that P. tinctorius does not contribute to an increased plant water uptake during drought. Inoculation did increase nitrogen concentration in plants but it was independent of the water status. Furthermore, no significant mycorrhizal effect on drought-induced ROS production or osmotic adjustment was detected, suggesting that these factors are not important for the improved drought tolerance triggered by P. tinctorius.

  1. Multi-environment QTL mixed models for drought stress adaptation in wheat

    NARCIS (Netherlands)

    Mathews, K.L.; Malosetti, M.; Chapman, S.; McIntyre, L.; Reynolds, M.; Shorter, R.; Eeuwijk, van F.A.

    2008-01-01

    Many quantitative trait loci (QTL) detection methods ignore QTL-by-environment interaction (QEI) and are limited in accommodation of error and environment-specific variance. This paper outlines a mixed model approach using a recombinant inbred spring wheat population grown in six drought stress

  2. Evaluation of Relationship Between Auxin and Cytokinine Hormones on Yield and Yield Components of Maize under Drought Stress Condition

    Directory of Open Access Journals (Sweden)

    A Mahrokh

    2016-10-01

    Full Text Available Introduction Drought is one of the major environmental conditions that adversely affects plant growth and crop yield. In the face of a global scarcity of water resources, water stress has already become a primary factor in limiting crop production worldwide. Drought is the major restriction in maize production. The plant growth reduction under drought stress conditions could be an outcome of altered hormonal balance and hence the exogenous application of growth regulators under stress conditions could be the possible means for reversing the effects of abiotic stress. Phytohormones such as auxine and cytokinine are known to be involved in the regulation of plant response to the adverse effects of stress conditions. Previous studies have shown that endogenous hormones are essential regulators for translocation and partitioning of photoassimilates for grain filling in cereal crops, and therefore could be involved in the regulation of grain weight and yield. Materials and Methods The experiment was carried out in three separately environments included non-drought stress environment (irrigation after soil moisture reached to 75% field capacity, drought stress in vegetative stage (irrigation after soil moisture reached to 50% field capacity in V4 to tasseling stage, but irrigation after soil moisture reached to 75% field capacity in pollination to physiological maturity stage and drought stress in reproductive stage (irrigation after soil moisture reached to 75% field capacity in V4 to tasseling stage and irrigation after soil moisture reached to 50% field capacity in pollination to physiological maturity stage. Cytokinin hormone in three levels (control, spraying in V5 –V6 and V8-V10 stages and auxin hormone in three levels (control, spraying in silk emergence stage and 15 days after that were laid out as a factorial design based on randomized complete block with three replications in each environment at Seed and Plant Improvement Institute (SPII

  3. Identification of differentially expressed genes in sunflower (Helianthus annuus) leaves and roots under drought stress by RNA sequencing.

    Science.gov (United States)

    Liang, Chunbo; Wang, Wenjun; Wang, Jing; Ma, Jun; Li, Cen; Zhou, Fei; Zhang, Shuquan; Yu, Ying; Zhang, Liguo; Li, Weizhong; Huang, Xutang

    2017-10-25

    Sunflower is recognized as one of the most important oil plants with strong tolerance to drought in the world. In order to study the response mechanisms of sunflower plants to drought stress, gene expression profiling using high throughput sequencing was performed for seedling leaves and roots (sunflower inbred line R5) after 24 h of drought stress (15% PEG 6000). The transcriptome assembled using sequences of 12 samples was used as a reference. 805 and 198 genes were identified that were differentially expressed in leaves and roots, respectively. Another 71 genes were differentially expressed in both organs, in which more genes were up-regulated than down-regulated. In agreement with results obtained for other crops or from previous sunflower studies, we also observed that nine genes may be associated with the response of sunflower to drought. The results of this study may provide new information regarding the sunflower drought response, as well as add to the number of known genes associated with drought tolerance.

  4. Oxidative stress response in SH-SY5Y cells exposed to short-term 1800 MHz radiofrequency radiation.

    Science.gov (United States)

    Marjanovic Cermak, Ana Marija; Pavicic, Ivan; Trosic, Ivancica

    2018-01-28

    The exact mechanism that could explain the effects of radiofrequency (RF) radiation exposure at non-thermal level is still unknown. Increasing evidence suggests a possible involvement of reactive oxygen species (ROS) and development of oxidative stress. To test the proposed hypothesis, human neuroblastoma cells (SH-SY5Y) were exposed to 1800 MHz short-term RF exposure for 10, 30 and 60 minutes. Electric field strength within Gigahertz Transverse Electromagnetic cell (GTEM) was 30 V m -1 and specific absorption rate (SAR) was calculated to be 1.6 W kg -1 . Cellular viability was measured by MTT assay and level of ROS was determined by fluorescent probe 2',7'-dichlorofluorescin diacetate. Concentrations of malondialdehyde and protein carbonyls were used to assess lipid and protein oxidative damage and antioxidant activity was evaluated by measuring concentrations of total glutathione (GSH). After radiation exposure, viability of irradiated cells remained within normal physiological values. Significantly higher ROS level was observed for every radiation exposure time. After 60 min of exposure, the applied radiation caused significant lipid and protein damage. The highest GSH concentration was detected after 10 minute-exposure. The results of our study showed enhanced susceptibility of SH-SY5Y cells for development of oxidative stress even after short-term RF exposure.

  5. Comparison of physiological responses of linseed (Linum usitatissimum L. to drought and salt stress and salicylic acid foliar application

    Directory of Open Access Journals (Sweden)

    Mohsen Movahhedi Dehnavi

    2017-11-01

    Full Text Available In order to compare the physiological responses of linseed (Linum usitatissimum L. in drought and salinity stress conditions and salicylic acid foliar application, a greenhouse experiment was conducted based on completly randomized design with three replications in Yasouj university in 2015. Treatments including different levels of salinity and drought with similar osmotic potentials (-2, -4, -7 and -9 bar in 8 levels and a control treatment were applied in Hoagland solution. Second factor was salicylic acid foliar application in 2 levels (0 and 0.5 mM. Salinity and drought applied using sodium chloride and polyethylene glycol 6000, respectively. The results showed that leaf protein content, catalase activity, total chlorophyll and carotenoid significantly decreased compared to control by increasing salinity and drought levels, however salicylic acid could prevent this trend.  Proline soluble sugars and malodealdehide content significantly increased compared to control by increasing salinity and drought. However salicylic acid could not prevent this trend. Shoot and root dry weights significantly decreased in salinity and drought stress treatments, compared to control and salicylic acid could prevent this decrease. Generally regarded to the most of the measured traits, impact of drought was more than salinity and salicylic acid could compensate the stress impacts on linseed.

  6. Maize water status and physiological traits as affected by root endophytic fungus Piriformospora indica under combined drought and mechanical stresses.

    Science.gov (United States)

    Hosseini, Fatemeh; Mosaddeghi, Mohammad Reza; Dexter, Anthony Roger; Sepehri, Mozhgan

    2018-05-01

    Under combined drought and mechanical stresses, mechanical stress primarily controlled physiological responses of maize. Piriformospora indica mitigated the adverse effects of stresses, and inoculated maize experienced less oxidative damage and had better adaptation to stressful conditions. The objective of this study was to investigate the effect of maize root colonization by an endophytic fungus P. indica on plant water status, physiological traits and root morphology under combined drought and mechanical stresses. Seedlings of inoculated and non-inoculated maize (Zea mays L., cv. single cross 704) were cultivated in growth chambers filled with moistened siliceous sand at a matric suction of 20 hPa. Drought stress was induced using PEG 6000 solution with osmotic potentials of 0, - 0.3 and - 0.5 MPa. Mechanical stress (i.e., penetration resistances of 1.05, 4.23 and 6.34 MPa) was exerted by placing weights on the surface of the sand medium. After 30 days, leaf water potential (LWP) and relative water content (RWC), root and shoot fresh weights, root volume (RV) and diameter (RD), leaf proline content, leaf area (LA) and catalase (CAT) and ascorbate peroxidase (APX) activities were measured. The results show that exposure to individual drought and mechanical stresses led to higher RD and proline content and lower plant biomass, RV and LA. Moreover, increasing drought and mechanical stress severity increased APX activity by about 1.9- and 3.1-fold compared with the control. When plants were exposed to combined stresses, mechanical stress played the dominant role in controlling plant responses. P. indica-inoculated plants are better adapted to individual and combined stresses. The inoculated plants had greater RV, LA, RWC, LWP and proline content under stressful conditions. In comparison with non-inoculated plants, inoculated plants showed lower CAT and APX activities which means that they experienced less oxidative stress induced by stressful conditions.

  7. Transcriptomic analysis reveals importance of ROS and phytohormones in response to short-term salinity stress in Populus tomentosa

    Directory of Open Access Journals (Sweden)

    Lingyu eZheng

    2015-09-01

    Full Text Available Populus tomentosa (Chinese white poplar is well adapted to various extreme environments, and is considered an important species to study the effects of salinity stress on poplar trees. To decipher the mechanism of poplar’s rapid response to short-term salinity stress, we firstly detected the changes in H2O2 and hormone, and then profiled the gene expression pattern of ten-week-old seedling roots treated with 200 mM NaCl for 0, 6, 12 and 24 hours (h by RNA-seq on the Illumina-Solexa platform. Physiological determination showed that the significant increase in H2O2 began at 6 h, while that in hormone ABA was at 24 h, under salt stress. Compared with controls (0 h, 3991, 4603 and 4903 genes were up regulated, and 1408, 2206 and 3461 genes were down regulated (adjusted P-value ≤ 0.05 and |log2Ratio|≥1 at 6, 12, and 24 h time points, respectively. The Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway annotation revealed that the differentially expressed genes (DEGs were highly enriched in hormone- and reactive oxygen species-related biological processes, including ‘response to oxidative stress or abiotic stimulus’, ‘peroxidase activity’, ‘regulation of transcription’, ‘hormone synthetic and metabolic process’, ‘hormone signal transduction’, ‘antioxidant activity’ and ‘transcription factor activity’. Moreover, K-means clustering demonstrated that DEGs (total RPKM value>12 from four time points could be categorized into four kinds of expression trends: quick up/down over 6 h or 12 h, and slow up/down over 24 h. Of these, DEGs involved in H2O2- and hormone- producing and signal-related genes were further enriched in this analysis, which indicated that the two kinds of small molecules, hormones and H2O2, play pivotal roles in the short-term salt stress response in poplar. This study provides a basis for future studies of the molecular adaptation of poplar and other tree species to salinity

  8. Transcriptome-Wide Profiling and Expression Analysis of Diploid and Autotetraploid Paulownia tomentosa × Paulownia fortunei under Drought Stress

    Science.gov (United States)

    Xu, Enkai; Fan, Guoqiang; Niu, Suyan; Zhao, Zhenli; Deng, Minjie; Dong, Yanpeng

    2014-01-01

    Paulownia is a fast-growing deciduous hardwood species native to China, which has high ecological and economic value. In an earlier study, we reported ploidy-dependent differences in Paulownia drought tolerance by the microscopic observations of the leaves. Autotetraploid Paulownia has a higher resistance to drought stress than their diploid relatives. In order to obtain genetic information on molecular mechanisms responses of Paulownia plants to drought, Illumina/Solexa Genome sequencing platform was used to de novo assemble the transcriptomes of leaves from diploid and autotetraploid Paulownia tomentosa × Paulownia fortunei seedlings (PTF2 and PTF4 respectively) grown under control conditions and under drought stress and obtained 98,671 nonredundant unigenes. A comparative transcriptome analysis revealed that hundreds of unigenes were predicted to be involved mainly in ROS-scavenging system, amino acid and carbohydrate metabolism, plant hormone biosynthesis and signal transduction, while these unigenes exhibited differential transcript alteration of the two accessions. This study provides a comprehensive map of how P. tomentosa × P. fortunei responds to drought stress at physiological and molecular levels, which may help in understanding the mechanisms involve in water-deficit response and will be useful for further study of drought tolerance in woody plants. PMID:25405758

  9. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest.

    Science.gov (United States)

    Barbeta, Adrià; Mejía-Chang, Monica; Ogaya, Romà; Voltas, Jordi; Dawson, Todd E; Peñuelas, Josep

    2015-03-01

    Vegetation in water-limited ecosystems relies strongly on access to deep water reserves to withstand dry periods. Most of these ecosystems have shallow soils over deep groundwater reserves. Understanding the functioning and functional plasticity of species-specific root systems and the patterns of or differences in the use of water sources under more frequent or intense droughts is therefore necessary to properly predict the responses of seasonally dry ecosystems to future climate. We used stable isotopes to investigate the seasonal patterns of water uptake by a sclerophyll forest on sloped terrain with shallow soils. We assessed the effect of a long-term experimental drought (12 years) and the added impact of an extreme natural drought that produced widespread tree mortality and crown defoliation. The dominant species, Quercus ilex, Arbutus unedo and Phillyrea latifolia, all have dimorphic root systems enabling them to access different water sources in space and time. The plants extracted water mainly from the soil in the cold and wet seasons but increased their use of groundwater during the summer drought. Interestingly, the plants subjected to the long-term experimental drought shifted water uptake toward deeper (10-35 cm) soil layers during the wet season and reduced groundwater uptake in summer, indicating plasticity in the functional distribution of fine roots that dampened the effect of our experimental drought over the long term. An extreme drought in 2011, however, further reduced the contribution of deep soil layers and groundwater to transpiration, which resulted in greater crown defoliation in the drought-affected plants. This study suggests that extreme droughts aggravate moderate but persistent drier conditions (simulated by our manipulation) and may lead to the depletion of water from groundwater reservoirs and weathered bedrock, threatening the preservation of these Mediterranean ecosystems in their current structures and compositions. © 2014

  10. Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet (Setaria italica L.

    Directory of Open Access Journals (Sweden)

    Weiping Shi

    2018-05-01

    Full Text Available Drought stress is one of the most important abiotic factors limiting crop productivity. A better understanding of the effects of drought on millet (Setaria italica L. production, a model crop for studying drought tolerance, and the underlying molecular mechanisms responsible for drought stress responses is vital to improvement of agricultural production. In this study, we exposed the drought resistant F1 hybrid, M79, and its parental lines E1 and H1 to drought stress. Subsequent physiological analysis demonstrated that M79 showed higher photosynthetic energ