WorldWideScience

Sample records for short-rotation wood production

  1. Short rotation Wood Crops Program

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Ehrenshaft, A.R.

    1990-08-01

    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

  2. Public perceptions of short rotation coppice

    International Nuclear Information System (INIS)

    Sadler, R.

    1993-01-01

    The ''Wood as a Fuel'' programme - which funded the research covered in this report - is one of the renewable energy development programmes managed by ETSU (the Energy Technology Support Unit) for the Department of Trade and Industry. This national programme is developing the production and use of fuel wood from two main sources - forestry residues and short rotation coppice. Wood fuel from short rotation coppice offers the greater potential - energy equivalent to 10 mtce (million tonnes of coal equivalent) could be produced annually from 1 million hectares of land. This programme is now well established, with ten trial coppice sites in operation, plus some 40 others. A number of successfully willow and poplar clones have been selected for different soil conditions, and machinery for planting and harvesting has been developed. Local consortia of farmers and users are being established to provide long-term markets for the wood fuel produced. (author)

  3. Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation

    International Nuclear Information System (INIS)

    Calfapietra, C.; De Angelis, P.; Scarascia-Mungozza, G.; Gielen, B.; Ceulemans, R.; Galema, A. N. J.; Lukac, M.; Moscatelli, M. C.

    2003-01-01

    The possible contribution of short rotation cultures (SRC) to carbon sequestration in both current and elevated carbon dioxide concentrations was investigated using the free-air carbon dioxide enrichment (FACE) technique. Three poplar species were grown in an SRC plantation for three growing seasons. Above-ground and below-ground biomass increased by 15 to 27 per cent and by 22 to 38 per cent, respectively; light-efficiency also increased as a result. Depletion of inorganic nitrogen from the soil increased after three growing seasons at elevated carbon dioxide levels, but carbon dioxide showed no effect on stem wood density. Stem wood density also differed significantly from species to species. These results confirmed inter-specific differences in biomass production in poplar, and demonstrated that elevated carbon dioxide enhanced biomass productivity and light-use efficiency of a poplar short rotation cultivation ecosystem without changing biomass allocation. The reduction in soil nitrogen raises the possibility of reduced long-term biomass productivity. 60 refs., 4 tabs., 4 figs

  4. Response surface methodology to simplify calculation of wood energy potency from tropical short rotation coppice species

    Science.gov (United States)

    Haqiqi, M. T.; Yuliansyah; Suwinarti, W.; Amirta, R.

    2018-04-01

    Short Rotation Coppice (SRC) system is an option to provide renewable and sustainable feedstock in generating electricity for rural area. Here in this study, we focussed on application of Response Surface Methodology (RSM) to simplify calculation protocols to point out wood chip production and energy potency from some tropical SRC species identified as Bauhinia purpurea, Bridelia tomentosa, Calliandra calothyrsus, Fagraea racemosa, Gliricidia sepium, Melastoma malabathricum, Piper aduncum, Vernonia amygdalina, Vernonia arborea and Vitex pinnata. The result showed that the highest calorific value was obtained from V. pinnata wood (19.97 MJ kg-1) due to its high lignin content (29.84 %, w/w). Our findings also indicated that the use of RSM for estimating energy-electricity of SRC wood had significant term regarding to the quadratic model (R2 = 0.953), whereas the solid-chip ratio prediction was accurate (R2 = 1.000). In the near future, the simple formula will be promising to calculate energy production easily from woody biomass, especially from SRC species.

  5. The role of short-rotation woody crops in sustainable development

    International Nuclear Information System (INIS)

    Shepard, J.P.; Tolbert, V.R.

    1996-01-01

    One answer to increase wood production is by increasing management intensity on existing timberland, especially in plantation forests. Another is to convert land currently in agriculture to timberland. Short-rotation woody crops can be used in both cases. But, what are the environmental consequences? Short-rotation woody crops can provide a net improvement in environmental quality at both local and global scales. Conversion of agricultural land to short-rotation woody crops can provide the most environmental quality enhancement by reducing erosion, improving soil quality, decreasing runoff, improving groundwater quality, and providing better wildlife habitat. Forest products companies can use increased production from intensively managed short-rotation woody crop systems to offset decreased yield from the portion of their timberland that is managed less intensively, e.g. streamside management zones and other ecologically sensitive or unique areas. At the global scale, use of short-rotation woody crops for bioenergy is part of the solution to reduce greenhouse gases produced by burning fossil fuels. Incorporating short-rotation woody crops into the agricultural landscape also increases storage of carbon in the soil, thus reducing atmospheric concentrations. In addition, use of wood instead of alternatives such as steel, concrete, and plastics generally consumes less energy and produces less greenhouse gases. Cooperative research can be used to achieve energy, fiber, and environmental goals. This paper will highlight several examples of ongoing cooperative research projects that seek to enhance the environmental aspects of short-rotation woody crop systems. Government, industry, and academia are conducting research to study soil quality, use of mill residuals, nutrients in runoff and groundwater, and wildlife use of short-rotation woody crop systems in order to assure the role of short-rotation crops as a sustainable way of meeting society's needs

  6. Energy wood production in short rotation. Opportunities and problems in their implementation. An analysis involving expert interviews; Energieholzproduktion im Kurzumtrieb. Chancen und Probleme bei ihrer Umsetzung. Eine Analyse unter Einbeziehung von Experteninterviews

    Energy Technology Data Exchange (ETDEWEB)

    Wirkner, Ronny

    2010-12-01

    The thesis has to the content the latest stand and the possibilities of further development of wood energy production by short rotation coppice (SRC). After analyzing the development of this relatively new option of the management of fast growing tree species and their possibilities, the associated legal bases are being analyzed. In addition to related agricultural land, other options will be considered to establish land (forest, fallow land). Weaknesses in delimitation and promotion, especially at country level are discussed. There follows a detailed consideration of the economical and ecological contemplation of wood agricultural cultivation, as well as the basics of the management including the raw material supply. The analyzed results serve as a basis for running interviews with experts of the subject fast growing tree species. The results of the interviews show that SRC mainly as an opportunity for long-term wood energy supply and establishment of regional circuits is seen with emphasis on the agricultural sector, but in this context there are lots of deficits on side of the management technology, basic conditions and other establishment barriers that we are confront with. After overcoming the remaining start-up difficulties however the chances are good to expand the energy wood production in short rotation forestry in an economically viable, ecologically profitable and socially acceptable way and therewith contribute to the diversification of agricultural production and relief of multifunctional forest management. (orig.)

  7. Short-rotation forestry as an alternative land use in Hawaii

    International Nuclear Information System (INIS)

    Phillips, V.D.; Wei Liu; Merriam, R.A.

    1995-01-01

    The traditional mainstays of Hawaii's economy: sugarcane and pineapple crops, have declined such that as much as 80,000 hectares of agricultural land are now available for alternative land uses. Concurrently, imports of fossil fuels continue to accelerate and now provide over 90% of the total energy supply at a cost exceeding 1 billion dollars annually exported from the local economy. The feasibility of short-rotation forestry on these former sugarcane and pineapple plantation lands to produce a variety of wood products, including biofuels, is being evaluated using a species- and site-specific empirical model to predict yields of Eucalyptus saligna, a system model to estimate delivered costs of wood chips to a bioconversion facility, and a geographic information system to extend the analysis to areas where no field trials exist and to present results in map form. The island of Hawaii is showcased as an application of the methodology. Modelling results are presented for using tropical hardwoods as dedicated feedstocks from biomass energy plantations to produce methanol, ethanol and electricity. A hypothetical, integrated, high-value hardwood, veneer, utility lumber and wood-chip operation is featured in contrast to the biomass energy plantation scenario. Short-rotation forestry may hold some promise for the greening of Hawaii's energy system and even greater promise for the industrial production of value-added wood products for the benefit of the state's citizens and visitors. The methodology is readily transferable to other regions of the United States and the rest of the world. (author)

  8. Short-rotation forestry as an alternative land use in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, V.D.; Wei Liu [Hawaii Univ., Honolulu, HI (United States). Coll. of Tropical Agriculture and Human Resources; Bain, R.L. [National Renewable Energy Lab., Golden, CO (United States); Merriam, R.A.

    1995-12-31

    The traditional mainstays of Hawaii`s economy: sugarcane and pineapple crops, have declined such that as much as 80,000 hectares of agricultural land are now available for alternative land uses. Concurrently, imports of fossil fuels continue to accelerate and now provide over 90% of the total energy supply at a cost exceeding 1 billion dollars annually exported from the local economy. The feasibility of short-rotation forestry on these former sugarcane and pineapple plantation lands to produce a variety of wood products, including biofuels, is being evaluated using a species- and site-specific empirical model to predict yields of Eucalyptus saligna, a system model to estimate delivered costs of wood chips to a bioconversion facility, and a geographic information system to extend the analysis to areas where no field trials exist and to present results in map form. The island of Hawaii is showcased as an application of the methodology. Modelling results are presented for using tropical hardwoods as dedicated feedstocks from biomass energy plantations to produce methanol, ethanol and electricity. A hypothetical, integrated, high-value hardwood, veneer, utility lumber and wood-chip operation is featured in contrast to the biomass energy plantation scenario. Short-rotation forestry may hold some promise for the greening of Hawaii`s energy system and even greater promise for the industrial production of value-added wood products for the benefit of the state`s citizens and visitors. The methodology is readily transferable to other regions of the United States and the rest of the world. (author)

  9. Efficient utilization of short rotation tree biomass for cooking in India

    Science.gov (United States)

    Sharma, R.; Chauhan, S. K.

    2012-04-01

    The human as well as livestock population increase is phenomenal in developing world including India. The survival of this huge population certainly depends on the carrying capacity of the natural systems, which is essentially determined by the nature itself. Present state of the forests can satisfy the needs of certain population and the demand for wood has rapidly outstripped the sustainability of forests. The fuelwood requirements in the developing world is approximately 80 per cent of total wood requirements and is the major cause of forest degradation. Therefore, there is need to maximize the productivity on one hand and protection/extention of the area on another hand. Wood substitution is an option including shifting from fuelwood for cooking to fossil fuels but in the changing climatic situation, this option is short term alternative. There is need to produce more and use the same efficiently to reduce the demands. Millions of households across the country are using crude cooking stoves for their daily needs which are not only energy inefficient but detrimental to women health also. It has been the policy of Government to encourage trees outside forests to minimize the pressure from forests through meeting requirements outside forests, which is possible through intensively managed short rotation forestry and also some initiatives have been taken to increase the fuelwood efficiency through improved cooking stove, which are working successfully. Woodfuel remained the most important source of household energy in India but regular attempts have not been made to improve the efficiency in its use. This paper will focus on potential of short rotation forestry plantations for energy consumption and its efficient use at domestic scale. This has three fold interrelated economic, environmental and social impact. Key words: Short Rotation Forestry, trees outside forests, wood energy, cooking stove

  10. The silviculture, nutrition and economics of short rotation willow coppice in the uplands of mid-Wales

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, R J; Randerson, P F; Slater, F M

    2000-07-01

    The potential of short rotation coppice as a biomass crop on land over 250m (the uplands) of mid Wales was studied. The results found in this study indicate that growing short rotation coppice willow in the uplands is a viable proposition with regard to establishment success and yields. In the event of a secure wood chip market in Wales, returns to the grower would be comparable to those from sheep production. (author)

  11. Wood for fuel

    Energy Technology Data Exchange (ETDEWEB)

    Beaton, D

    1986-01-01

    Growing wood for energy could contribute three million tonnes of coal equivalent per year by the end of the century. Research programmes in the UK involved with energy forestry are reported. Three systems of wood energy, modified conventional forestry, single stem timber cropping and short rotation coppicing are being investigated. The short rotation coppicing requires inputs similar to those of agricultural crops and the machinery geared towards agricultural operations is compatible with it. Single stem forestry has a medium rotation period of 20 years. The production of coppice wood fuels is discussed in further detail for different parts of the UK with recommendations for species selection and adaption of existing farming practices. A coppice willow harvester has been developed for harvesting during November - February. Weed control and fertilizer application are also briefly mentioned.

  12. Energy plants increasingly important. Scientific results and practical experiences on the production of biogas plants and short rotation coppices. Symposium; Energiepflanzen im Aufwind. Wissenschaftliche Ergebnisse und praktische Erfahrungen zur Produktion von Biogaspflanzen und Feldholz. Fachtagung

    Energy Technology Data Exchange (ETDEWEB)

    Heiermann, M.; Scholz, V.; Foltan, H. (comps.)

    2007-05-15

    The conference proceedings contain 15 contributions on energy plants: energy plant production in Germany - developments and research activities; potentials and constraints of cultivating energy crops; environmental aspects of production and utilization of energy plants; costs of energy crop supply; crops for the biogas production in the territory of Brandenburg; mixed cropping systems on sandy soils - alternative cropping strategies; impact of ensiling process on biogas production - recent research results; solid state anaerobic digestion of renewable biomass sources - state of research and development; energy crops as feedstock in a biogas plant; proffer and demand of wood fuel in the State of Brandenburg; regulatory framework of growing short rotation coppice; mechanization of SRC production; 20 years of short rotation coppice; willow production and marketing in Denmark; short rotation coppice production in Italy.

  13. Biomass yield potential of short-rotation hardwoods in the Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, W A [Kansas State Univ., Manhattan, KS (USA). Dept. of Forestry

    1989-01-01

    Wood for fuel has increased in importance. Its primary use in the world is for energy, increasingly coming from wood wastes and new biomass sources. One solution to the potential problem of using high-quality trees for fuel could be woody biomass grown under a short-rotation intensive culture system. Species, size, age and spacing are factors that affect biomass production of broadleafed trees. Trials of several species grown at close spacing (0.3 m x 0.3 m) and cut at various ages are described and related to the growth and yield of more conventionally spaced plantings on an alluvial site in eastern Kansas. (author).

  14. Production and ecological aspects of short rotation poplars in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Karacic, Almir

    2005-02-01

    Poplars (Populus sp.) are widely used in short rotation forestry for production of biomass for bioenergy, fibre and environmental services. Swedish short rotation forestry is based on Salix sp., and little is known about the production potential of poplar plantations and their effects on the environment. This thesis focuses on four aspects of intensive short rotation forestry with poplars: 1) Biomass production and partitioning at several initial densities and a range of latitudes and growing conditions in Sweden, 2) the effects of poplar plantation on floristic diversity in the Swedish agricultural landscape, 3) the pattern of wind damage and its effects on production in poplar plantations in southern Sweden, and 4) ecological characterisation of poplar varieties in short-term experiments with pot-grown plants. Annual biomass production in poplar plots and plantations over a rotation period of 9-14 years ranges between 3.3 and 9.2 Mg/ha/yr. These high production figures are achieved on relatively fertile, non-fertilised and non-irrigated agricultural land. The production assessments for commercial poplar plantations established at lower initial densities (1000 trees/ha) in southern Sweden indicate a similar production potential as in closely spaced cultures (5000 trees/ha), though at 3-5 years longer rotations. Lower initial densities enable higher pulpwood yields along with the production of biomass for bioenergy. A comparison among 21 poplar plots, 0.1-13 ha large and adjacent arable fields, indicates that small poplar plantations may increase floristic diversity on a landscape scale, mainly by providing a different type of habitat that may favour shade-tolerant and draught-sensitive species. This is reflected by a relatively low number of species shared by both types of habitat. Wind damage in two poplar plantations, 15 and 33 ha large, was assessed using wind damage classes based on leaning angle of individual trees on plots established before wind damage

  15. The economic impacts of federal tax reform for investments in short-rotation forest plantations

    International Nuclear Information System (INIS)

    Siegel, W.C.

    1991-01-01

    In discussing the potential contributions of short-rotation forest plantations to the fuel wood supply, a number of economic factors have been considered and analyzed. Very little, however, has been written on the income tax aspects of the subject. The tax treatment of such plantings is an extremely important factor. The federal income tax, in particular, can have a significant impact on production costs and is a major factor in determining the economic feasibility of this type of investment. The major federal Income tax provisions of significance are those that deal with capital expenditures, currently deductible costs and sale receipts. Several alternative tax approaches were available prior to passage of the 1986 Tax Reform Act. The new act's provisions, however, have completely changed the federal income tax treatment of timber income and expenditures, including those associated with short-rotation plantations. This paper analyzes the changes and discusses their economic implications for fuel wood culture

  16. Willow coppice systems in short rotation forestry: effects of plant spacing, rotation length and clonal composition on biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Willebrand, E.; Ledin, S.; Verwijst, T. (Swedish University of Agricultural Sciences, Uppsala (Sweden). Dept. of Ecology and Environmental Research)

    1993-01-01

    Above ground biomass production was determined for ten Salix clones grown in pure and mixed stands at a square spacing of 1 m and seven rotation periods (1 to 6 and 8 years), and of one clone grown at four square spacings (0.5, 0.6, 0.7 and 1 m), with rotation cycles of 1 to 5 years. Most clones reached a maximum mean annual increment (8 to 14 tons dry matter ha[sup -1] yr[sup -1]) under a rotation period of 4 to 5 years. Densely spaced stands exhibited a higher production than wider spacings during the first harvests under the shortest rotation periods. Neither in later harvests of short cycles (1 to 3 years) nor in any harvests of longer cycles (> 3 years) did spacing affect biomass production. Some clones suffered from leaf rust and grazing by roe deer. Clone mixtures showed a higher biomass production in the later stages due to the compensatory effect of the successful clones which, when growing in mixtures, could fill out the gaps left by individuals that suffered from impacts other than competition. We conclude that extremely short rotations (1 to 2 years) are unsuitable for Swedish conditions, and that 4- to 6-year rotations perform best. In such longer rotations, biomass production of stands with 2 x 10[sup 4] plants per hectare equals the production of denser stands. (Author)

  17. Radiocaesium uptake and cycling in willow short rotation coppice

    International Nuclear Information System (INIS)

    Gommers, A.

    2002-01-01

    The document is an abstract of a PhD thesis. The study investigates the uptake and cycling of radiocaesium in willow short rotation coppice. Different factors influencing the soil-to-wood transfer of radiocaesium were investigated, among others the type of minerals, supply of potassium and soil composition

  18. Short-rotation forestry for energy production in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, V.C.; Liu, W. [Univ. of Hawaii, Honolulu, HI (United States); Merriam, R.A.

    1993-12-31

    In Hawaii, imports of fossil fuels continue to accelerate and now provide over 90% of the total energy supply at a cost exceeding $1 {times} 10{sup 9} annually exported from the local economy. Concurrently, sugarcane and pineapple crops, the traditional mainstays of the state`s economy, have declined such that as much as 80,000 hectares of agricultural land are now available for alternative land uses. The feasibility of short-rotation forestry for sustainable energy production on these former sugarcane and pineapple plantation lands is being evaluated using species- and site-specific empirical models to predict yields of Eucalyptus grandis, E. saligna, and Leucaena leucocephala, a system model to estimate delivered costs, and a geographic information system to extend the analysis to areas where no field trials exist and to present results in map form. The island of Hawaii is showcased as an application of the methodology. Modeling results of methanol, ethanol, and electricity production from tropical hardwoods are presented. Short-rotation forestry appears to hold promise for the greening of Hawaii`s energy system and agricultural lands for the benefit of the state`s citizens and visitors. The methodology is readily transferable to other regions of the United States and rest of the world.

  19. Quality Testing of Short Rotation Coppice Willow Cuttings

    Directory of Open Access Journals (Sweden)

    Katrin Heinsoo

    2018-06-01

    Full Text Available The production and feasibility of Short Rotation Coppice depend on cutting early performance. The shoot and root biomass production of Salix cuttings in hydroponic conditions was studied. The amount of sprouted biomass after four weeks of growth depended on cutting the diameter, but the original position of the cutting along the rod or number of visible buds was not in correlation with biomass produced. Application of mineral fertilizer or soil originating from the willow plantation did not increase the total production. On the contrary, the addition of soil tended to decrease biomass production and we assumed this was a result of a shortage of light. Under the influence of fertilization, plants allocated greater biomass to roots. Comparison of different clones revealed that those with S. dasyclados genes tended to allocate less biomass to roots and the poorest-performing clone in our experiment, also had the lowest wood production in the plantation. The number of visible buds on the cutting was also clone-specific.

  20. Short rotation coppice for energy production: hydrological guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.L.

    2003-07-01

    This report provides hydrological guidelines for growers, land and water resource managers, environmental groups and other parties interested in utilising short rotation coppice (SRC) for energy production. The aim of the report is to help interested parties decide if a location is suitable for SRC planting by considering whether potential hydrological impacts will have an adverse effect on crop productivity and yield. The guidelines consider: the water use of SRC compared with other crops; the factors governing water use; the water requirements for a productive crop; and the likely impacts on the availability and quantity of water. The report points out that there are still gaps in our knowledge of the processes controlling the water use and growth of SRC and notes that, in some situations, there will be considerable uncertainty in predictions.

  1. Life-cycle assessment of eucalyptus short-rotation coppices for bioenergy production in Southern France

    OpenAIRE

    Gabrielle , Benoit; Nguyen The , Nicolas; Maupu , Pauline; Vial , Estelle

    2011-01-01

    Short rotation coppices (SRCs) are considered prime candidates for biomass production, yielding good-quality feedstock that is easy to harvest. Besides technical, social and economical aspects, environmental issues are important to take into account when developing SRCs. Here, we evaluated the environmental impacts of delivering 1 GJ of heat from eucalyptus SRC using life cycle assessment (LCA), based on management scenarios involving different rotations lengths, fertilizer input rates, stem ...

  2. Wood power in North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, J.G.; Guessous, L. [Research Triangle Institute, Research Triangle Park, NC (United States)

    1993-12-31

    North Carolina (NC) is one of the most forested states, and supports a major wood products industry. The NC Department of Natural Resources sponsored a study by Research Triangle Institute to examine new, productive uses of the State`s wood resources, especially electric power generation by co-firing with coal. This paper summarizes our research of the main factors influencing wood power generation opportunities, i.e., (1) electricity demand; (2) initiative and experience of developers; (3) available fuel resources; (4) incentives for alternate fuels; and (5) power plant technology and economics. The results cover NC forests, short rotation woody crops, existing wood energy facilities, electrical power requirements, and environmental regulations/incentives. Quantitative assessments are based on the interests of government agencies, utilities, electric cooperatives, developers and independent power producers, forest products industries, and the general public. Several specific, new opportunities for wood-to-electricity in the State are identified and described. Comparisons are made with nationwide resources and wood energy operations. Preferred approaches in NC are co-generation in existing or modified boilers and in dedicated wood power plants in forest industry regions. Co-firing is mainly an option for supplementing unreliable primary fuel supplies to existing boilers.

  3. Carbon storage and recycling in short-rotation energy crops

    International Nuclear Information System (INIS)

    Ranney, J.W.; Wright, L.L.; Mitchell, C.P.

    1991-01-01

    Short-rotation energy crops can play a significant role in storing carbon compared to the agricultural land uses they would displace. However, the benefits from these plantations in avoiding further use of fossil fuel and in taking pressure off of native forests for energy uses provides longer term carbon benetfits than the plantation carbon sequestration itself. The fast growth and harvest frequency of plantations tends to limit the amount of above and below-ground carbon storage in them. The primary components of plantation carbon sequestering compared to sustained agricultural practices involve above-ground wood, possible increased soil carbon, litter layer formation, and increased root biomass. On the average, short-rotation plantations in total may increase carbon inventories by about 30 to 40 tonnes per hectare over about a 20- to 56-year period when displacing cropland. This is about doubling in storage over cropland and about one-half the storage in human-impacted forests. The sequestration benefit of wood energy crops over cropland would be negated in about 75 to 100 years by the use of fossil fuels to tend the plantations and handle biomass. Plantation interactions with other land uses and total landscape carbon inventory is important in assessing the relative role plantations play in terrestrial and atmospheric carbon dynamics. It is speculated that plantations, when viewed in this context. could trencrate a global leveling of net carbon emissions for approximately 10 to 20 years

  4. Establishment and monitoring of large scale trials of short rotation coppice for energy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, C.; Stevens, E.A.; Watters, M.P.

    1998-09-01

    The overall objective of the trials was to obtain information on costs, logistics, productivity and biology of short rotation coppice crops in order to evaluate their potential for producing wood for fuel. More specifically, the objectives of the final and most recent phase of the research work were: the continuing management and monitoring of the coppice trial sites established during phases 1 and 2 of the project; to provide technical and economic data on the management and maintenance of the continuing coppice trail sites; to identify appropriate methods for stool removal and land reclamation and provide technical and economic data on those operations; and to undertake yield assessment at the remaining sites using appropriate methods of yield estimation. (author)

  5. Simulated long-term effects of varying tree retention on wood production, dead wood and carbon stock changes.

    Science.gov (United States)

    Santaniello, Francesca; Djupström, Line B; Ranius, Thomas; Weslien, Jan; Rudolphi, Jörgen; Sonesson, Johan

    2017-10-01

    Boreal forests are an important source of timber and pulp wood, but provide also other products and services. Utilizing a simulation program and field data from a tree retention experiment in a Scots pine forest in central Sweden, we simulated the consequences during the following 100 years of various levels of retention on production of merchantable wood, dead wood input (as a proxy for biodiversity), and carbon stock changes. At the stand level, wood production decreased with increased retention levels, while dead wood input and carbon stock increased. We also compared 12 scenarios representing a land sharing/land sparing gradient. In each scenario, a constant volume of wood was harvested with a specific level of retention in a 100-ha landscape. The area not needed to reach the defined volume was set-aside during a 100-year rotation period, leading to decreasing area of set-asides with increasing level of retention across the 12 scenarios. Dead wood input was positively affected by the level of tree retention whereas the average carbon stock decreased slightly with increasing level of tree retention. The scenarios will probably vary in how they favor species preferring different substrates. Therefore, we conclude that a larger variation of landscape-level conservation strategies, also including active creation of dead wood, may be an attractive complement to the existing management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Increasing the productivity of short-rotation Populus plantations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeBell, D.S.; Harrington, C.A.; Clendenen, G.W.; Radwan, M.A.; Zasada, J.C. [Forest Service, Olympia, WA (United States). Pacific Northwest Research Station

    1997-12-31

    This final report represents the culmination of eight years of biological research devoted to increasing the productivity of short rotation plantations of Populus trichocarpa and Populus hybrids in the Pacific Northwest. Studies provide an understanding of tree growth, stand development and biomass yield at various spacings, and how patterns differ by Populus clone in monoclonal and polyclonal plantings. Also included is some information about factors related to wind damage in Populus plantings, use of leaf size as a predictor of growth potential, and approaches for estimating tree and stand biomass and biomass growth. Seven research papers are included which provide detailed methods, results, and interpretations on these topics.

  7. Non-energy markets for small roundwood, forest residues and short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Watt, G.

    1995-06-01

    Competition for roundwood is intense at the present time with prices ranging from approximately Pound 20 to Pound 51 per green tonne delivered at mill. The sawmilling industry produces nearly 2 million green tonnes of residues annually from converting British roundwood and about 85% of this is used by the panelboard and paperboard mills. The remaining 15%, comprising mostly bark, and some of the unpeeled chips are used as material for mulching, landscaping and horticultural use, play areas, paths and horse gallops, soil composting and soil conditioning. Wood shavings and sawdust is produced by joinery and milling firms from imported sawn timber and amounts to about 300,000 tonnes/annum. Approximately 70% of this is used for higher priced markets, bedding for horses, chicken and turkeys, cattle and other uses. The remaining 30% is used in the wood processing industry. An increasing volume of solid wood waste which previously went for landfill sites is now being recycled and this trend is expected to continue. Only a very small proportion of the forest residues (tree tops and branches) produced each year is utilised and most of this material is used as mulch for horticultural and landscape uses. Markets for material from traditional short rotation coppice are limited relative to potential production but work is underway to develop new markets. There are no established markets for recently planted non-traditional coppice of willow and poplar with potential for energy production. Trials organised by ETSU and the DTI have indicated the suitability of the material for chipboard production provided the bark percentage is not too high. (author)

  8. Non-energy markets for small roundwood, forest residues and short rotation coppice

    International Nuclear Information System (INIS)

    Watt, G.

    1995-01-01

    Competition for roundwood is intense at the present time with prices ranging from approximately Pound 20 to Pound 51 per green tonne delivered at mill. The sawmilling industry produces nearly 2 million green tonnes of residues annually from converting British roundwood and about 85% of this is used by the panelboard and paperboard mills. The remaining 15%, comprising mostly bark, and some of the unpeeled chips are used as material for mulching, landscaping and horticultural use, play areas, paths and horse gallops, soil composting and soil conditioning. Wood shavings and sawdust is produced by joinery and milling firms from imported sawn timber and amounts to about 300,000 tonnes/annum. Approximately 70% of this is used for higher priced markets, bedding for horses, chicken and turkeys, cattle and other uses. The remaining 30% is used in the wood processing industry. An increasing volume of solid wood waste which previously went for landfill sites is now being recycled and this trend is expected to continue. Only a very small proportion of the forest residues (tree tops and branches) produced each year is utilised and most of this material is used as mulch for horticultural and landscape uses. Markets for material from traditional short rotation coppice are limited relative to potential production but work is underway to develop new markets. There are no established markets for recently planted non-traditional coppice of willow and poplar with potential for energy production. Trials organised by ETSU and the DTI have indicated the suitability of the material for chipboard production provided the bark percentage is not too high. (author)

  9. Effect of Intensive Forest Management Practices on Wood Properties and Pulp Yield of Young, Fast Growing Southern Pine

    Science.gov (United States)

    Timothy D. Faust; Alexander Clark; Charles E. Courchene; Barry D. Shiver; Monique L. Belli

    1999-01-01

    The demand for southern pine fiber is increasing. However, the land resources to produce wood fiber are decreasing. The wood industry is now using intensive cultural treatments, such as competition control, fertilization, and short rotations, to increase fiber production. The impact of these intensive environmental treatments on increased growth is positive and...

  10. An Analysis of the U.S. Wood Products Import Sector: Prospects for Tropical Wood Products Exporters

    Directory of Open Access Journals (Sweden)

    W.A.R.T.W. Bandara

    2012-10-01

    Full Text Available The U.S. has dramatically altered its wood product imports and exports during the past few years,and at present, it is the second largest wood product importer in the world. Hence, an understanding ofmarket structures, factors in selecting foreign suppliers, and the emphasis placed on environmentalissues/certification are critical to understand from the perspective of wood products importers in the U.S.This study provides an analysis of the U.S. wood products import sector with special emphasis on currentand future opportunities for tropical wood products exporters to the U.S. market.In this study, 158 wood products importers in the U.S. were surveyed using a mailingquestionnaire. The adjusted response rate was 40.6 percent. Results indicated that most of the respondentswere small to medium scale firms, but major importers of wood products. According to respondents,wood products to the U.S. mainly come from Brazil, Chile, and China. From the importers’ perspective,Brazilian wood products ranked first for its quality followed by wood products from Chile and Finland.Product quality, long term customer relationships, on-time delivery of orders, fair prices, and supplierreputation were the factors deemed important in selecting overseas suppliers. Majority of respondentswere importing certified wood products. FSC, SFI, and ISO 14000 were the mostly accepted certificationprograms. However, certification was not a major factor in foreign supplier selection criteria. Whenconsidered the U.S. wood products importers’ tendency to diversify their products and species imported,attractive opportunities exist for wood products suppliers from tropical countries.

  11. An integrated environmental analysis of short rotation forests as a biomass resource

    International Nuclear Information System (INIS)

    Stjernquist, Ingrid

    1994-01-01

    Short-rotation plantations are an environmental sound energy resource if: (1) the biomass production systems are not pressed to maximum production, (2) cultivation measures are taken to minimize nutrient leaching, (3) the short-rotation plantations are designed for visual adaptation to the landscape, and (4) directed silvicultural measures are taken to retain and improve important habitats and protect marginal forest areas. (author)

  12. Natural flood retention in mountain areas by forests and forest like short rotation coppices

    Science.gov (United States)

    Reinhardt-Imjela, Christian; Schulte, Achim; Hartwich, Jens

    2017-04-01

    Natural water retention is an important element of flood risk management in flood generating headwater areas in the low mountain ranges of Central Europe. In this context forests are of particular interest because of the high infiltration capacities of the soils and to increase water retention reforestation of agricultural land would be worthwhile. However competing claims for land use in intensely cultivated regions in Central Europe impede reforestation plans so the potential for a significant increase of natural water retention in forests is strongly limited. Nevertheless the development of innovative forms of land use and crop types opens new perspectives for a combination of agricultural land use with the water retention potential of forests. Recently the increasing demand for renewable energy resources leads to the cultivation of fast growing poplar and willow hybrids on agricultural land in short rotation coppices (SRC). Harvested in cycles of three to six years the wood from the plantations can be used as wood chips for heat and electricity production in specialized power plants. With short rotation plantations a crop type is established on arable land which is similar to forests so that an improvement of water retention can be expected. To what extend SRC may contribute to flood attenuation in headwater areas is investigated for the Chemnitzbach watershed (48 km2) in the Eastern Ore Mountains (Free State of Saxony, Germany), a low mountain range which is an important source of flood runoff in the Elbe basin. The study is based on a rainfall-runoff model of flood events using the conceptual modelling system NASIM. First results reveal a significant reduction of the flood peaks after the implementation of short rotation coppices. However the effect strongly depends on two factors. The first factor is the availability of areas for the plantations. For a substantial impact on the watershed scale large areas are required and with decreasing percentages of SRC

  13. Short rotation woody biomass production as option for the restoration of post-mining areas in lower Lusatia, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, C.; Quinkenstein, A.; Freese, D. [Brandenburg Univ. of Technology, Cottbus (Germany). Soil Protection and Recultivation; Huttl, R.R. [Brandenburg Univ. of Technology, Cottbus (Germany). Soil Protection and Recultivation; GFZ German Research Centre for Geosciences, Potsdam (Germany)

    2010-07-01

    Reclaimed mine sites in the Lusatian lignite-mining district in Germany are characterized by low annual precipitation and marginal soils. As such, crop yield is typically low and conventional land use systems fail in terms of reliable and efficient crop production. The production of woody biomass for bioenergy may be a promising alternative to improve soil fertility and also to enhance the economic value of these post-mining areas. Previous studies have shown that black locust (Robinia pseudoacacia L.) may be a suitable tree species for this purpose. This paper evaluated the ecological and economic benefits of producing woody biomass in short rotation coppices (SRC) and alley cropping systems (ACS) with black locust. The results showed that compared to conventional agriculture, such land use is not very profitable due to high establishment and harvesting costs and the comparatively low prices for wood energy. However, because of the improved microclimate, the crop yield in ACS is higher than in conventional agriculture. The cultivation of black locust resulted in a higher humus accumulation and in a lower harvest-related nutrient export than the cultivation of alfalfa as a typical recultivation crop in this region. It was concluded SRC with black locust is more beneficial than conventional agriculture in terms of improving soil fertility in the degraded post-mining areas of Lower Lusatia.

  14. Integrated production of wood fuel and pulp wood from young stands; Integroitujen tuotantomenetelmien vertailu

    Energy Technology Data Exchange (ETDEWEB)

    Korpilahti, A [Metsaeteho Oy, Helsinki (Finland)

    1997-12-01

    The aim of the study was to clarify the competitiveness of different harvesting chains and processing methods of first thinning wood. Great expectations have been laid on integrated production of wood fuel and pulp wood. Results produced in other bioenergy projects were taken into account, and in this project some field experiments on mechanised felling-bunching and compressing of the load of tree sections during forwarding were carried out. The new processing methods, the MASSAHAKE-method and chain-flail delimbing combined with small-scale drum debarking, still are under development giving a rather unstable data for comparisons. Both in pine and birch dominant stands modern multiple tree logging gave the most favourable results when ranking on the bases of the price of pulp chips. Integrated methods were not very far and they have more potential than methods based on harvesting delimbed short wood. When compared on the bases of the production cost of pulp, integrated methods were in general the most favourable because they give good subsidies on the form of bioenergy. (orig.)

  15. Sensitivity of short rotation poplar coppice biomass productivity to the throughfall reduction Estimating future drought impacts

    Czech Academy of Sciences Publication Activity Database

    Orság, Matěj; Fischer, Milan; Tripathi, Abishek; Žalud, Zdeněk; Trnka, Miroslav

    2018-01-01

    Roč. 109 (2018), s. 182-189 ISSN 0961-9534 Institutional support: RVO:86652079 Keywords : water -use * energy * stand * systems * dominance * density * l. * Dominance * Drought * Mortality * Productivity * Short-rotation coppice * Throughfall manipulation Subject RIV: GC - Agronomy OBOR OECD: Agronomy, plant breeding and plant protection Impact factor: 3.219, year: 2016

  16. Monitoring the progress of NFFO-3 projects: short rotation willow coppice - agronomy and economics

    International Nuclear Information System (INIS)

    Twemlow, R.K.M.

    1997-01-01

    The involvement of Sidney C. Banks p.l.c., and the subsidiary company Banks Agriculture, in fuel supply for biofuelled power stations started some 4 years ago. When identifying possible opportunities and crops it was apparent that, with the third tranche of Non-Fossil Fuel Obligations (NFFO3) coming up, there were companies looking at developing biofuelled power stations, using Short Rotation Coppice (SRC) and for this they needed to link with potential fuel suppliers. Sidney C. Banks p.l.c. linked with South Western Power (SWP) (a subsidiary of South Western Electricity p.l.c. (SWEB)) to act as their sole fuel supplier on projected biofuel wood power stations. Subsequently two wood fuelled power stations were awarded to SWP and Sidney C. Banks p.l.c. in the 3rd Tranche from NFFO, in December 1994. The objectives of this project were to: establish a network of SRC growers to produce fuel for a NFFO project; monitor the success of the enterprise; implement a programme of constant improvement to optimise the fuel supply strategy; and provide valuable information as to the performance of the SRC crop in large scale commercial production. (author)

  17. Wood adhesives : vital for producing most wood products

    Science.gov (United States)

    Charles R. Frihart

    2011-01-01

    A main route for the efficient utilization of wood resources is to reduce wood to small pieces and then bond them together (Frihart and Hunt 2010). Although humankind has been bonding wood since early Egyptian civilizations, the quality and quantity of bonded wood products has increased dramatically over the past 100 years with the development of new adhesives and...

  18. Sensitivity of short rotation poplar coppice biomass productivity to the throughfall reduction – Estimating future drought impacts

    Czech Academy of Sciences Publication Activity Database

    Orság, Matěj; Fischer, Milan; Tripathi, Abishek; Žalud, Zdeněk; Trnka, Miroslav

    2018-01-01

    Roč. 109 (2018), s. 182-189 ISSN 0961-9534 R&D Projects: GA MŠk(CZ) LO1415; GA MZe(CZ) QJ1610072 Institutional support: RVO:86652079 Keywords : Dominance * Drought * Mortality * Productivity * Short-rotation coppice * Throughfall manipulation Subject RIV: GC - Agronomy Impact factor: 3.219, year: 2016

  19. Mechanised harvesting of short-rotation coppices

    OpenAIRE

    Vanbeveren, Stefan P.P.; Spinelli, Raffaele; Eisenbies, Mark; Schweier, Janine; Mola-Yudego, Blas; Magagnotti, Natascia; Acuna, Mauricio; Dimitriou, Ioannis; Ceulemans, Reinhart

    2017-01-01

    Abstract: Short-rotation coppice (SRC) is an important source of woody biomass for bioenergy. Despite the research carried out on several aspects of SRC production, many uncertainties create barriers to farmers establishing SRC plantations. One of the key economic sources of uncertainty is harvesting methods and costs; more specifically, the performance of contemporary machine methods is reviewed. We collected data from 25 literature references, describing 166 field trials. Three harvesting s...

  20. Growth-related problems of aging and senescence in fast growing trees grown on short rotations

    Energy Technology Data Exchange (ETDEWEB)

    Blake, T J

    1981-06-01

    The paper is aimed at identifying some possible problem areas in the future management of coppice stands on short rotations. The paper considers the possible role of plant hormones, water, cultural and enviromental factors in regulating shoot production, growth and senescence in hardwoods grown on short rotations for biomass production. 77 references.

  1. The Carbon Impacts of Wood Products

    Science.gov (United States)

    Richard Bergman; Maureen Puettmann; Adam Taylor; Kenneth E. Skog

    2014-01-01

    Wood products have many environmental advantages over nonwood alternatives. Documenting and publicizing these merits helps the future competitiveness of wood when climate change impacts are being considered. The manufacture of wood products requires less fossil fuel than nonwood alternative building materials such as concrete, metals, or plastics. By nature, wood is...

  2. Romanian legal management rules limit wood production in Norway spruce and beech forests

    Directory of Open Access Journals (Sweden)

    Olivier Bouriaud

    2016-09-01

    Full Text Available Background The quantitative impact of forest management on forests’ wood resource was evaluated for Picea and Fagus mixed forests. The effects on the productivity of tendering operations, thinnings and rotation length have seldom been directly quantified on landscape scale. Methods Two sites of similar fertility but subject to contrasted forest management were studied with detailed inventories: one in Germany, the other in Romania, and compared with the respective national forest inventories. In Romania, regulations impose very long rotations, low thinnings and a period of no-cut before harvest. In contrast, tending and thinnings are frequent and intense in Germany. Harvests start much earlier and must avoid clear cutting but maintain a permanent forest cover with natural regeneration. While Germany has an average annual wood increment representative for Central Europe, Romania represents the average for Eastern Europe. Results The lack of tending and thinning in the Romanian site resulted in twice as many trees per hectare as in the German site for the same age. The productivity in Romanian production forests was 20 % lower than in Germany despite a similar fertility. The results were supported by the data from the national forest inventory of each country, which confirmed that the same differential exists at country scale. Furthermore, provided the difference in rotation length, two crops are harvested in Germany when only one is harvested in Romania. The losses of production due to a lower level of management in Romania where estimated to reach 12.8 million m3.y-1 in regular mountain production forests, and to 15 million m3.y-1 if managed protection forest is included. Conclusions The productivity of Picea and Fagus mountain forests in Romania is severely depressed by the lack of tending and thinning, by overly long rotations and the existence of a 25-years no-cut period prior to harvest. The average standing volume in Germany was 50

  3. Coppicing evaluation of short rotation coppice in the southeast of the U.S. to determine appropriate harvesting methods.

    Science.gov (United States)

    Rafael Santiago; Tom Gallagher; Matthew Smidt; Dana Mitchell

    2016-01-01

    Renewable fuels are being tested as an alternative for fossil fuels. For the Southeast U.S., the use of woody biomass has proven to be an excellent source of renewable energy in terms of cost benefit and availability. Short rotation woody crops (SRWC) are timber plantations with exclusive characteristics that can meet the intensive demand for wood due to their fast...

  4. Assessment of the wood waste resource and its position in the wood / wood-energy sector - Synthesis

    International Nuclear Information System (INIS)

    Guinard, Ludovic; Deroubaix, Gerard; Roux, Marie-Lise; Levet, Anne-Laure; Quint, Vincent

    2015-04-01

    The first objective of this study is to obtain a better knowledge of the 'wood wastes' issue, to propose a photography of the wood waste sector (productions, trades, consumptions), and then to elaborate different prospective scenarios on the use of wood waste volumes while taking into account possible evolutions on the medium or short term of the regulation and market of the wood/wood energy sector. The considered wastes come from industrial production, from the use of wood-based products, and from the end of life of products potentially containing wood. The authors present bibliographical sources and the adopted methodology, briefly describe the 'wood waste' system with its actors, and then report their assessment of wood wastes. They propose a global assessment as well as detailed assessments with respect to waste origins: wood trade and distribution, industries, craft, households and communities, building sector, public and private tertiary sector, packaging. They also address the collection and management of wood wastes by public services, and present the different types of valorisation (panel fabrication, energy, and others). They discuss exports, and then present different scenarios: a trend-based scenario, and two prospective scenarios with a priority to energetic valorisation or to material valorisation of wood wastes. These scenarios are compared

  5. Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) II. Energy production and CO2 emission reduction potential

    International Nuclear Information System (INIS)

    Walle, Inge van de; Camp, Nancy van; Casteele, Liesbet van de; Verheyen, Kris; Lemeur, Raoul

    2007-01-01

    Belgium, being an EU country, has committed itself to a 7.5% reduction of greenhouse gas emissions during the first commitment period of the Kyoto Protocol. Within this framework, the Flemish government aims at reaching a share of 6% of renewable electricity in the total electricity production by 2010. In this work, the biomass production of birch, maple, poplar and willow in a short-rotation forestry (SRF) plantation after a 4-year growth period served as the base to calculate the amount of (electrical) energy that could be produced by this type of bioenergy crop in Flanders. The maximum amount of electricity that could be provided by SRF biomass was estimated at 72.9 GWh e year -1 , which only accounts for 0.16% of the total electricity production in this region. Although the energy output was rather low, the bioenergy production process under consideration appeared to be more energy efficient than energy production processes based on fossil fuels. The high efficiency of birch compared to the other species was mainly due to the high calorific value of the birch wood. The maximum CO 2 emission reduction potential of SRF plantations in Flanders was estimated at only 0.09% of the total annual CO 2 emission. The most interesting application of SRF in Flanders seemed to be the establishment of small-scale plantations, linked to a local combined heat and power plant. These plantations could be established on marginal arable soils or on polluted sites, and they could be of importance in the densely populated area of Flanders because of other environmental benefits, among which their function as (temporary) habitat for many species

  6. Wood chip production technology and costs for fuel in Namibia

    Energy Technology Data Exchange (ETDEWEB)

    Leinonen, A.

    2007-12-15

    This work has been done in the project where the main target is to evaluate the technology and economy to use bush biomass for power production in Namibia. The project has been financed by the Ministry for Foreign Affairs of Finland and the Ministry of Agriculture, Water and Forestry of the Republic of Namibia. The target of this study is to calculate the production costs of bush chips at the power plant using the current production technology and to look possibilities to develop production technology in order to mechanize production technology and to decrease the production costs. The wood production costs are used in feasibility studies, in which the technology and economy of utilization of wood chips for power generation in 5, 10 and 20 MW electric power plants and for power generation in Van Eck coal fired power plant in Windhoek are evaluated. Field tests were made at Cheetah Conservation Farm (CCF) in Otjiwarongo region. CCF is producing wood chips for briquette factory in Otjiwarongo. In the field tests it has been gathered information about this CCF semi-mechanized wood chip production technology. Also new machines for bush biomass chip production have been tested. A new mechanized production chain has been designed on the basis of this information. The production costs for the CCF semi-mechanized and the new production chain have been calculated. The target in the moisture content to produce wood chips for energy is 20 w-%. In the semi-mechanized wood chip production chain the work is done partly manually, and the supply chain is organized into crews of 4.8 men. The production chain consists of manual felling and compiling, drying, chipping with mobile chipper and manual feeding and road transport by a tractor with two trailers. The CCF production chain works well. The chipping and road transport productivity in the semimechanized production chain is low. New production machines, such as chainsaw, brush cutter, lawn mover type cutter, rotator saw in skid

  7. Woody biomass from short rotation energy crops. Chapter 2

    Science.gov (United States)

    R.S., Jr. Zalesny Jr.; M.W. Cunningham; R.B. Hall; J. Mirck; D.L. Rockwood; J.A. Stanturf; T.A. Volk

    2011-01-01

    Short rotation woody crops (SRWCs) are ideal for woody biomass production and management systems because they are renewable energy feedstocks for biofuels, bioenergy, and bioproducts that can be strategically placed in the landscape to conserve soil and water, recycle nutrients, and sequester carbon. This chapter is a synthesis of the regional implications of producing...

  8. ECONOMIC ROTATION OF Eucalyptus grandis PLANTATIONS FOR PULP PRODUCTION

    Directory of Open Access Journals (Sweden)

    Thais Cunha Ferreira

    2004-07-01

    Full Text Available The objectives of the research were: to determine the economic impact of several minimum diameter and length of logs in economic rotation age, economic feasibility of Eucalyptus grandis plantation for cellulose production; to determine the economic loss of cutting the stand before or after the optimal economic rotation age. A biometric model for making wood volume prognosis was developed using data of a trial of Eucalyptus grandis plantation envisaging pulp production. Eucalyptus grandis stands of 19 and 103 months old, in the spacing 3 x 2 and 3 x 3 m in site index of 30; 28; 26 and 24 m were used. Theprognosis started at the age zero, considering logs of 2.5; 2.8; 4.0 and 6.0 m of length for minimum diameter varying from 4 to 10 cm, in intervals of 2 cm. Net Present Worth (VPL was used the economic criterion, considering an infinite horizon and a cost relation including reestablishment, yearly maintenance, logging and wood transportation costs. The main conclusions were: increases in the minimum diameter and or in logs length increase the rotation age; harvesting the stands in ages different from the optimal one cause large economic loss mainly in the better sites; the economic loss is larger if the harvest is made before the optimal economic rotation than if it is make after; economic feasibility increases when the minimum diameter is smaller and when the length of the logs is shorter. Any way, before making any decision it is necessary to take into account possible technical restrictions and effect on harvest and transportation costs caused by changer in the length of logs and in the size of the minimum commercial diameter.

  9. Fruit production and branching density affect shoot and whole-tree wood to leaf biomass ratio in olive.

    Science.gov (United States)

    Rosati, Adolfo; Paoletti, Andrea; Al Hariri, Raeed; Famiani, Franco

    2018-02-14

    The amount of shoot stem (i.e., woody part of the shoot) dry matter per unit shoot leaf dry matter (i.e., the shoot wood to leaf biomass ratio) has been reported to be lower in short shoots than in long ones, and this is related to the greater and earlier ability of short shoots to export carbon. This is important in fruit trees, since the greater and earlier carbon export ability of shoots with a lower wood to leaf biomass ratio improves fruit production. This ratio may vary with cultivars, training systems or plant age, but no study has previously investigated the possible effect of fruit production. In this study on two olive cultivars (i.e., Arbequina, with low growth rate, and Frantoio, with high growth rate) subject to different fruit production treatments, we found that at increasing fruit production, shoot length and shoot wood to leaf biomass ratio were proportionally reduced in the new shoots growing at the same time as the fruit. Specifically, fruit production proportionally reduced total new-shoot biomass, length, leaf area and average shoot length. With decreasing shoot length, shoot diameter, stem mass, internode length, individual leaf area and shoot wood to leaf biomass ratio also decreased. This may be viewed as a plant strategy to better support fruit growth in the current year, given the greater and earlier ability of short shoots to export carbon. Moreover, at the whole-tree level, the percentage of total tree biomass production invested in leaves was closely correlated with branching density, which differed significantly across cultivars. By branching more, Arbequina concentrates more shoots (thus leaves) per unit of wood (trunk, branches and root) mass, decreasing wood to leaf biomass ratio at the whole-tree level. Therefore, while, at the shoot level, shoot length determines shoot wood to leaf biomass ratio, at the canopy level branching density is also an important determinant of whole-tree wood to leaf biomass ratio. Whole-tree wood to leaf

  10. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations.

    Science.gov (United States)

    Bennett, Amanda J; Bending, Gary D; Chandler, David; Hilton, Sally; Mills, Peter

    2012-02-01

    There is a trend world-wide to grow crops in short rotation or in monoculture, particularly in conventional agriculture. This practice is becoming more prevalent due to a range of factors including economic market trends, technological advances, government incentives, and retailer and consumer demands. Land-use intensity will have to increase further in future in order to meet the demands of growing crops for both bioenergy and food production, and long rotations may not be considered viable or practical. However, evidence indicates that crops grown in short rotations or monoculture often suffer from yield decline compared to those grown in longer rotations or for the first time. Numerous factors have been hypothesised as contributing to yield decline, including biotic factors such as plant pathogens, deleterious rhizosphere microorganisms, mycorrhizas acting as pathogens, and allelopathy or autotoxicity of the crop, as well as abiotic factors such as land management practices and nutrient availability. In many cases, soil microorganisms have been implicated either directly or indirectly in yield decline. Although individual factors may be responsible for yield decline in some cases, it is more likely that combinations of factors interact to cause the problem. However, evidence confirming the precise role of these various factors is often lacking in field studies due to the complex nature of cropping systems and the numerous interactions that take place within them. Despite long-term knowledge of the yield-decline phenomenon, there are few tools to counteract it apart from reverting to longer crop rotations or break crops. Alternative cropping and management practices such as double-cropping or inter-cropping, tillage and organic amendments may prove valuable for combating some of the negative effects seen when crops are grown in short rotation. Plant breeding continues to be important, although this does require a specific breeding target to be identified. This

  11. RETENTION AND PENETRATION OF CCA IN WOOD OF FIRST AND SECOND ROTATION OF Eucalyptus urophylla S.T. Blake

    Directory of Open Access Journals (Sweden)

    Mara Lúcia Agostini Valle

    2013-06-01

    Full Text Available http://dx.doi.org/10.5902/198050989292This study aimed to evaluate the retention and penetration of copper chrome arsenate (CCA type C as well as some wood properties of two rotations of two natural hybrid of Eucalyptus urophylla S. T. Blake, aiming their use as treated wood. The study was conducted with material from commercial plantations, with 63 months of age. For the wood characterization, the relationship sapwood-heartwood, the basic density and the size of fibers and vessels were evaluated. For the evaluation of treated wood, the penetration and retention of copper chrome arsenate (CCA type C were determined. Four trees per rotation and genetic material were used, which subsequently were split into three logs, in a total of 12 logs for each treatment. The preservative treatment was performed using the full cell process in autoclave using CCA solution with 2% concentration of active ingredients. The treatment process used was effective under the conditions required by the NBR 9480, with retention values ​​higher than the minimum required by the standard, which is 6.5 kg/m3 of CCA per treated wood, and in addition, provided deep penetration and regular condom in sapwood of all timber treated. There are no restrictions on the use of wood from the first and second rotation for preservative treatment, based on the properties evaluated. There was no correlation between the type C CCA retention and wood properties evaluated.

  12. Storage and handling of willow from short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Kofman, P. D.; Spinelli, R.

    1997-07-01

    During the project two main storage and drying trials were organised. The first trial in 1996 consisted of 14 piles of 6 different size material (whole shoots, via 200 mm chunk, 100 mm chunk, 50 mm chip, 28 mm chips, 25 mm chips) and six different methods of covering: Open air storage, storage under plastic cover, storage under top-cover, airtight storage, unventilated storage under roof, and intermittent ventilation (cooling) under roof. The drying trial in 1997 which consisted of four piles was established in Horsens in the same building as the ventilated trials the year before. Only Austoft 50 mm chips were used for this trial. The four piles were established in February and removed in May. Based on all the results of the trials the following conclusions can be drawn: Storage of willow from short rotation coppice is very difficult. Fine chips, such as producted by the two main harvesting machines Claas and Austoft are not suitable for storage over prolonged periods of time (more than 2 months); fine chips loose a large amount of dry matter and a lot of their lower heating value; fine chips also have a heavy infestation of micro-organisms which might cause working environment problems; short rotation coppice is best delivered straight into the heating plants during harvest; if short rotation coppice has to be stored, then this should be done as whole shoots or large chunk; if short rotation coppice has to be stored as chips for a longer period of time (more than two months), then these chips should be sealed airtight as silage. (EG) EFP-94; EFP-95; EFP-96. 10 refs.

  13. Genetic improvement and evaluation of black cottonwood for short- rotation biomass production. Final report, 1987--1992

    Energy Technology Data Exchange (ETDEWEB)

    Stettler, R.F.; Hinckley, T.M. [Washington Univ., Seattle, WA (United States). Coll. of Forest Resources; Heilman, P.E. [Washington State Univ., Puyallup, WA (United States). Research and Extension Center; Bradshaw, H.D. Jr. [Washington Univ., Seattle, WA (United States). Dept. of Biochemistry

    1993-04-30

    This project was initiated in 1978 to serve three objectives: (1) develop genetically improved poplar cultivars offering increased productivity under short-rotation culture; (2) identify the major components of productivity in poplar and determine ways in which they can be manipulated, genetically and culturally; and (3) engage in technology transfer to regional industry and agencies so as to make poplar culture in the Pacific Northwest economically feasible. The project is aimed at capturing natural variation in the native black cottonwood. Populus trichocarpa T & G, and enhancing it through selective breeding. Major emphasis has been placed on hybridization of black cottonwood with P deltoides and P maximowiczii, more recently with p nigra. First-generation (F{sub 1}) hybrids have consistently outperformed black cottonwood by a factor of 1.5.-2. The high yields of woody biomass obtained from these clonally propagated hybrids, in rotations of 4-7 years, have fostered the establishment of large-scale plantations by the pulp and paper industry in the region. Physiological studies have helped to elucidate hybrid superiority and several of the underlying mechanisms.

  14. Economic investigations of short rotation intensively cultured hybrid poplars

    Science.gov (United States)

    David C. Lothner

    1983-01-01

    The history of the economic analyses is summarized for short rotation intensively cultured hybrid poplar at the North Central Forest Experiment Station. Early break-even analyses with limited data indicated that at a price of $25-30 per dry ton for fiber and low to medium production costs, several systems looked profitable. Later cash flow analyses indicated that two...

  15. Western Canadian wood residue production and consumption trends

    International Nuclear Information System (INIS)

    McCloy, B.

    2006-01-01

    This presentation considered various trends in western Canadian wood residue production and consumption. Potential markets for wood residue products were also discussed. Trends were reviewed by province for the years 2000-2004. British Columbia (BC) is currently the largest producer of residue in the country, and also retains the largest surpluses of bark, sawdust and shavings. Wood residues in BC are used in pulp and plywood mill production, as well as in the creation of particleboard and MDF. Surplus mill wood residue production in the province has greatly increased due to the Mountain Pine Beetle (MPB) infestation, which has in turn spurred expansion of the BC interior sawmill industry. The infestation has also resulted in a glut of pulp chips. Current wood residue products in Alberta are mostly used in pulp mill combined heat and power (CHP) systems, as well as for wood pellet production and the creation of particleboard and MDF. It was noted that surplus residues are rapidly declining in the province. Saskatchewan's wood residue storage piles are estimated to contain 2,900,000 BDt, while Manitoba surpluses are relatively minor. It was suggested that high natural gas prices have increased the payback on wood energy systems to approximately 2 years. The value of wood residue is now greater than $100/BDt as a substitute for natural gas once the wood energy system has been fully depreciated. Sawmills may now wish to consider equipping themselves to sell wood residue products, as most sawmills only require 20 per cent of their residues for heating purposes. It was concluded that markets for hog fuel wood pellets should be developed in Canada and internationally. Future markets may also develop if natural gas currently used in pulp mill power boilers and lime kilns is replaced with wood residue energy systems. refs., tabs., figs

  16. Wood for energy production. Technology - environment - economy

    International Nuclear Information System (INIS)

    Serup, H.; Falster, H.; Gamborg, C.

    1999-01-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  17. Wood for energy production. Technology - environment - economy

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-10-01

    `Wood for Energy Production`, 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named `Wood Chips for Energy Production`. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. `Wood for Energy Production` is also available in German and Danish. (au)

  18. Short-rotation coppices. State of the realizability, organisation and a model for the evaluation of the production and supply of rapidly growing wood from short-rotation coppices als a biofuel for biomass-fuelled heating power stations in Bavaria; Kurzumtriebsplantagen. Stand der Umsetzbarkeit, Organisation und ein Modell zur oekonomischen Bewertung von Produktion und Bereitstellung schnell wachsenden Holzes aus Kurzumtriebsplantagen als biogener Festbrennstoff fuer Biomasse(heiz)kraftwerke in Bayern

    Energy Technology Data Exchange (ETDEWEB)

    Paschlau, Helmut F

    2011-04-07

    The study examines most aspects of Short-rotation Coppice Crops (SRC), mainly from willows (Salix sp.) and poplars (Populus sp.), for energetic use in big biomass powerstations in Bavaria (southern Germany). In addition to the compilation of framework conditions concerning environmental and agrarian politics as well as legal issues, every link in the process chain of SRC will be considered - from planting to harvesting, treatment of the wood chips and Just-in-time delivery to the powerplant - followed by an evaluation of SRC in ecological terms. The basic aim of this study is to evaluate every single link with regard to organisational und economic issues, analysis of relevant markets and to develop a comprehensive calculation model for the amount of annuities of the whole process chain.

  19. Greenhouse gas mitigation potential of short-rotation-coppice based generation of electricity in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.; Meyer-Aurich, A.; Kern, J.; Balasus, A.; Prochnow, A. [Leibniz Inst. of Agricultural Engineering, Potsdam (Germany)

    2010-07-01

    The generation of energy from wood biomass may help secure local energy supplies and reduce the greenhouse effect by substituting fossil resources with bio-based ones. In the case of short rotation coppice (SRC), bio-based resources can be generated by extensive agricultural production systems. They produce less carbon dioxide equivalent (CO{sub 2eq}) emissions than fossil resources. This paper reported on a study in which a model system was developed for a regional supply chain producing second generation bioenergy generated from SRC in eastern Germany. The study focuses on the generation of electricity and was compared to a business-as-usual reference system, based on the latest CO{sub 2} mitigation factors for renewable energies in the German power-generation mix. A life cycle assessment based on greenhouse gas (GHG) inventories was also conducted in which other factors were also considered, such as options for nutrient cycling. The key determinants for GHG mitigation with SRC were also discussed with regards to indirect land-use effects resulting from increased demand for land.

  20. Nutrient enhanced short rotation coppice for biomass in central Wales

    Energy Technology Data Exchange (ETDEWEB)

    Hodson, R.W.; Slater, F.M.; Lynn, S.F.; Randerson, P.F. [Univ. of Wales (United Kingdom)

    1993-12-31

    Two projects involving short rotation willow coppice are taking place on the eastern side of the Cambrian Mountains in central Wales. One project examines, as an alternative land use, the potential of short rotation willow coppice variously enhanced by combinations of lime, phosphorous and potassium fertilizers and also digested sewage sludge on an acidic upland site at an altitude of 260m. The first year results of this project are described in detail, showing the necessity for limestone additions and also demonstrating that of the four willow varieties established, Salix dasyclados is the only possible, profitable fuel crop. The other project involving willow in a filter bed system is outlined along with an additional project investigating the effect of sewage sludge additions on the Rubus fruticosus production in a birch dominated mixed deciduous woodland.

  1. Development of short-rotation willow coppice systems for environmental purposes in Sweden

    International Nuclear Information System (INIS)

    Mirck, Jaconette; Verwijst, Theo; Isebrands, J.G.; Ledin, Stig

    2005-01-01

    During the last three decades, driving forces behind the development of short-rotation willow coppice (SRWC) in Sweden have been changing from a primary focus on biomass production towards emphasis on environmental applications. In most cases, current commercial SRWC practice is geared towards a combination of biomass production for energy purposes and environmental goals. The latter goals range from decreasing the impact of specific contaminants in the environment to organic waste handling in a recycling system in urban and/or agricultural areas. Where biomass production and pollutant management overlap, the science of phytoremediation has its practical application. Through phytoremediation, waste products that previously have been a burden for society can be used as valuable resources to increase short-rotation willow biomass production. In this paper we will present the terminology and definitions of different types of phytoremediation. We also give an overview of five different cases of phytoremediation activities with a potential for large-scale implementation. Some of the types of activities are already commercially used in Sweden; others seem promising but still need further development. (Author)

  2. EU mitigation potential of harvested wood products.

    Science.gov (United States)

    Pilli, Roberto; Fiorese, Giulia; Grassi, Giacomo

    2015-12-01

    The new rules for the Land Use, Land Use Change and Forestry sector under the Kyoto Protocol recognized the importance of Harvested Wood Products (HWP) in climate change mitigation. We used the Tier 2 method proposed in the 2013 IPCC KP Supplement to estimate emissions and removals from HWP from 1990 to 2030 in EU-28 countries with three future harvest scenarios (constant historical average, and +/-20% in 2030). For the historical period (2000-2012) our results are consistent with other studies, indicating a HWP sink equal on average to -44.0 Mt CO 2 yr -1 (about 10% of the sink by forest pools). Assuming a constant historical harvest scenario and future distribution of the total harvest among each commodity, the HWP sink decreases to -22.9 Mt CO 2 yr -1 in 2030. The increasing and decreasing harvest scenarios produced a HWP sink of -43.2 and -9.0 Mt CO 2 yr -1 in 2030, respectively. Other factors may play an important role on HWP sink, including: (i) the relative share of different wood products, and (ii) the combined effect of production, import and export on the domestic production of each commodity. Maintaining a constant historical harvest, the HWP sink will slowly tend to saturate, i.e. to approach zero in the long term. The current HWP sink will be maintained only by further increasing the current harvest; however, this will tend to reduce the current sink in forest biomass, at least in the short term. Overall, our results suggest that: (i) there is limited potential for additional HWP sink in the EU; (ii) the HWP mitigation potential should be analyzed in conjunction with other mitigation components (e.g. sink in forest biomass, energy and material substitution by wood).

  3. Wood products research in the USA

    Science.gov (United States)

    Theodore Wegner

    2010-01-01

    Forest biomass conversion to biofuels and other value-added co-products; hyper-performance advanced composites custom tailored to end use requirements; advanced high performance wood-based structures; and nanomaterials and nano-enable high performance products from wood represent important research and development investment areas for the successful transformation of...

  4. Effect of biomass pretreatment on the product distribution and composition resulting from the hydrothermal liquefaction of short rotation coppice willow

    DEFF Research Database (Denmark)

    Grigoras, Ionela; Stroe, Rodica-Elisabeta; Sintamarean, Iulia-Maria

    2017-01-01

    A major challenge for the implementation of hydrothermal liquefaction (HTL) as a continuous process is the formulation of lignocellulosic feedstock, which is prone to phase separation into water and biomass parts when pressurized. One approach to remedy such phase separation is to reduce the dry...... from the HTL of willow and proposes short rotation coppice as an alternative biomass feedstock for biofuels production. Alkaline–thermal pretreatment, besides making high dry matter pumpable feedstock slurries, also led to an increase in the production of the bio-crude product with an oxygen content...

  5. Production of dry wood chips in connection with a district heating plant

    Directory of Open Access Journals (Sweden)

    Yrjölä Jukka

    2004-01-01

    Full Text Available Moisture and its variation in wood chips make the control of burning in small scale heating appliances difficult resulting in emissions and loss of efficiency. If the quality of wood chips would be better, i. e. dried and sieved fuel with more uniform size distribution would be avail able, the burning could be much cleaner and efficiency higher. In addition higher power out put could be obtained and the investment costs of the burning appliances would be lower. The production of sieved and dried wood chip with good quality could be accomplished in connection with a district heating plant. Then the plant would make profit, in addition to the district heat, from the dried wood chips sold to the neighboring buildings and enterprises sep a rated from the district heating net using wood chips in energy production. The peak power of a district heating plant is required only a short time during the coldest days of the winter. Then the excess capacity during the milder days can be used as heat source for drying of wood chips to be marketed. Then wood chips are sieved and the fuel with best quality is sold and the reject is used as fuel in the plant it self. In a larger district heating plant, quality of the fuel does not need to be so high In this paper the effect of moisture on the fuel chain and on the boiler is discussed. Energy and mass balance calculations as a tool of system design is described and the characteristics of proposed dry chips production method is discussed.

  6. Predictive models of biomass for poplar and willow. Short rotation coppice in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, A.C.; Morgan, G.W.; Poole, E.J.; Baldwin, M.E.; Tubby, I. (Biometrics, Surveys and Statistics Division, Forest Research, Farnham (United Kingdom))

    2007-07-01

    A series of forty-nine experimental trials on short rotation coppice (SRC) were conducted throughout the United Kingdom using a selection of varieties of poplar and willow with the aim of evaluating their performance for wood fuel production under a representative range of UK conditions. Observations on the crops and on a range of site and climatic conditions during the growth of the crops were taken over two three-year cutting cycles. These observations were used to develop a suite of empirical models for poplar and willow SRC growth and yield from which systems were constructed to provide a- priori predictions of biomass yield for any site in the UK with known characteristics (predictive yield models), and estimates of biomass yield from a standing crop (standing biomass models). The structure of the series of field trials and the consequent approach and methodology used in the construction of the suite of empirical models are described, and their use in predicting biomass yields of poplar and willow SRC is discussed. (orig.)

  7. PRESTO: online calculation of carbon in harvested wood products

    Science.gov (United States)

    Coeli M. Hoover; Sarah J. Beukema; Donald C.E. Robinson; Katherine M. Kellock; Diana A. Abraham

    2014-01-01

    Carbon stored in harvested wood products is recognized under international carbon accounting protocols, and some crediting systems may permit the inclusion of harvested wood products when calculating carbon sequestration. For managers and landowners, however, estimating carbon stored in harvested wood products may be difficult. PRESTO (PRoduct EStimation Tool Online)...

  8. Wood for energy production. Technology - environment - economy[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-07-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  9. Energy valorization of the species used in short-rotation plantations

    International Nuclear Information System (INIS)

    Moya Roque, Roger; Tenorio Monge, Carolina; Salazar Zeledon, Estephania

    2016-01-01

    The energy potential of some non-traditional plantations for production of energy is exposed. Forest and forage species are utilized in Costa Rica for energy plantations. The characteristics of these species have been short rotation (1-3 years) and a production between 20 and 25 tonnes of dry matter per hectare. Agro-energy plantations are described. Gmelina arborea y Pennisetum purpureum species have been viable options for biomass production. However, the high cost of seedlings and land to cultivate have been one of the problems of this energy source [es

  10. The sustainable wood production initiative.

    Science.gov (United States)

    Robert. Deal

    2004-01-01

    To address concerns about sustainable forestry in the region, the Focused Science Delivery Program is sponsoring a three year Sustainable Wood Production Initiative. The Pacific Northwest is one of the world's major timber producing regions, and the ability of this region to produce wood on a sustained yield basis is widely recognized. Concerns relating to the...

  11. Harvested wood products : basis for future methodological development

    Science.gov (United States)

    Kenneth E. Skog

    2003-01-01

    The IPCC Guidelines (IPCC 1997) provide an outline of how harvested wood could be treated in national greenhouse gas (GHG) inventories. This section shows the relation of that outline to the approaches and estimation methods to be presented in this Appendix. Wood and paper products are referred to as harvested wood products (HWP). It does not include carbon in...

  12. Bioenergy Research Programme. Yearbook 1994. Production of wood fuels

    International Nuclear Information System (INIS)

    Alakangas, E.

    1995-01-01

    BIOENERGIA Research Programme is one of energy technology programmes of the Finnish Ministry of Trade and Industry (in 1995 TEKES, Technology Development Center). The aim of Bioenergy Research Programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels and new equipment and methods for production, handling and using of biofuels. The funding for 1994 was nearly 50 million FIM and projects numbered 60. The main goal of the production of wood fuels research area is to develop new production methods in order to decrease the production costs to the level of imported fuels. The total potential of the wood fuel use should be at least 1.0 million toe/a (5.5 million m 3 ). There were 27 projects in 1994 for research on wood fuel production. This part of the yearbook 1994 presents the main results of these projects. The wood reserves do not limit the obtainability of the target. Research and development work has, however, directed to development of equipment and research on wood fuels production chains. Many devices, designed for both separate and integrated production of wood fuels became ready or were becoming ready for prototyping, to be used for production tests. Results of the biomass harvesting and properties research were obtained for utilization in 1994. According to the results it is possible to obtain the desired targets both in integrated and separated production of wood fuels. (author)

  13. A synthesis of research on wood products and greenhouse gas impacts

    International Nuclear Information System (INIS)

    Sathre, R.; O'Connor, J.

    2008-11-01

    Existing scientific literature on the wood products industry was reviewed in an effort to summarize consensus findings, or range of findings, addressing the net life cycle greenhouse gas footprint of wood construction products. The report sought to clarify whether actively managing forests for wood production was better, worse or neutral for climate change than leaving the forest in its natural state. In addition, it sought to quantify the greenhouse gas emissions avoided per unit of wood substituted for non-wood materials. Forty-eight international studies were examined in terms of fossil energy used in wood manufacturing and compared alternatives, such as the avoidance of industrial process carbon emissions as with cement manufacturing; the storage of carbon in forests and forest products; the use of wood by-products as a biofuel replacement for fossil fuels; and carbon storage and emission due to forest products in landfills. The report presented a list of studies reviewed and individual summaries of study findings. A meta-analysis of displacement factors of wood product use was also presented. It was concluded from all of the studies reviewed, that the production of wood-based materials and products results in less greenhouse gas emission than the production of functionally comparable non-wood materials and products. 48 refs., 1 tab.

  14. Branch architecture in Ginkgo biloba: wood anatomy and long shoot-short shoot interactions.

    Science.gov (United States)

    Little, Stefan A; Jacobs, Brooke; McKechnie, Steven J; Cooper, Ranessa L; Christianson, Michael L; Jernstedt, Judith A

    2013-10-01

    Ginkgo, centrally placed in seed plant phylogeny, is considered important in many phylogenetic and evolutionary studies. Shoot dimorphism of Ginkgo has been long noted, but no work has yet been done to evaluate the relationships between overall branch architecture and wood ring characters, shoot growth, and environmental conditions. • Branches, sampled from similar canopy heights, were mapped with the age of each long shoot segment determined by counting annual leaf-scar series on its short shoots. Transverse sections were made for each long shoot segment and an adjacent short shoot; wood ring thickness, number of rings, and number of tracheids/ring were determined. Using branch maps, we identified wood rings for each long shoot segment to year and developmental context of each year (distal short shoot growth only vs. at least one distal long shoot). Climate data were also analyzed in conjunction with developmental context. • Significantly thicker wood rings occur in years with distal long shoot development. The likelihood that a branch produced long shoots in a given year was lower with higher maximum annual temperature. Annual maximum temperature was negatively correlated with ring thickness in microsporangiate trees only. Annual minimum temperatures were correlated differently with ring thickness of megasporangiate and microsporangiate trees, depending on the developmental context. There were no significant effects associated with precipitation. • Overall, developmental context alone predicts wood ring thickness about as well as models that include temperature. This suggests that although climatic factors may be strongly correlated with wood ring data among many gymnosperm taxa, at least for Ginkgo, correlations with climate data are primarily due to changes in proportions of shoot developmental types (LS vs. SS) across branches.

  15. Environmental effects of energy forest (short rotation willow)

    International Nuclear Information System (INIS)

    Frank, K.

    1994-01-01

    This paper deals with environmental effects of producing and combusting energy forest fuel. Energy forest means short rotation willow (Salix). Supposed effects of sewage sludge application are discussed as well. Energy forestry on agricultural land implies both advantages and disadvantages for the environment. Leaf litter (humified leaves) increases the humus content in the top soil. The soil fauna is also positively affected. Until now performed studies about nitrogen leakage from fields cultivated with energy forest (Salix), have not given any distinct results. A retarded drainage within energy forest fields is on the other hand noticed. While the root system of Salix is active during a long period of the year, the nitrogen leakage become less compared to traditional cultivation. The content of plant nutrients and organic matter in sewage sludge make a resource that can be useful for agricultural purposes, especially for energy forest cultivation. The content of heavy metals and organic emissions contradicts sludge application to agricultural land. Sewage sludge with todays quality increases somewhat the content of heavy metals in the soil. This condition can be counteracted to a certain extent by growing energy forest. It has been established that Salix has high ability to heavy metal uptake, especially cadmium. Growing energy forest on drained farm land is connected with a risk for root penetration into the drainage system. With enough water and plant nutrients in the top soil the risk is reduced. Shallow depth of the pipes increases the risk. Combustion of wood chip from energy forests (and other types of biomass) gives especially two advantages. It does not give any net contribution of carbon dioxide to the atmosphere. The sulphur discharge will be minimal since the sulphur content in wood fuels is low. Discharge of nitrogen oxide and hydrocarbons may give some problems. These can be reduced by technological measures when combusting. 27 refs, 4 tabs

  16. Implementation of new technologies in wood industry and their effect in wood products quality

    OpenAIRE

    ELVA ÇAUSHI; PANDELI MARKU

    2014-01-01

    There are about 300 companies producing furniture and about 250 small and medium enterprises (SME) producing sawn timber, which operate in the field of wood industry in Albania. This wood industry production is being challenged by the increasing demand in the domestic market, ranging from kitchen furniture to office and schools furniture, bedroom furniture, doors, windows, and saw timber in different dimensions. The production from the wood industry can fulfill about 80% of the domestic mark...

  17. Different growth strategies determine the carbon gain and productivity of aspen collectives to be used in short-rotation plantations

    International Nuclear Information System (INIS)

    Müller, Annika; Horna, Viviana; Zhang, Chunxia; Leuschner, Christoph

    2012-01-01

    Populus tremula is a favoured tree species in short-rotation forestry with a recognised large intraspecific variation in productivity. We compared the growth potential of 1-yr-old saplings of four Central European aspen collectives with different climate adaptation on a low-fertility site and searched for growth-determining physiological and morphological traits and their dependence on genetic constitution. Among the 35 investigated traits were photosynthetic capacity and mean assimilation rate, quantum yield and carboxylation efficiency, leaf water potential, leaf phaenology and the ratio of leaves lost to leaves produced (LP ratio), leaf size and total leaf area, axes length growth and canopy carbon gain as an estimate of productivity. The collectives differed by more than 30% in cumulative carbon gain with a large genotype effect, while mean assimilation rate and most photosynthetic and water status traits showed a relatively small intraspecific variation with no significant influence on the variation in C gain. The timing of the beginning of net leaf loss (leaf abscission > leaf production) in August differed between the four collectives and resulted in different maximum leaf areas and LP ratios, which were identified as key factors controlling C gain. Mean assimilation rate, though not related to cumulative C gain, was positively correlated with the light, CO 2 and water use efficiencies of photosynthesis. We conclude that genotype selection for high-yielding aspen in short-rotation forestry at low-fertility sites should focus on the parameters leaf phaenology, LP ratio at the end of the growing season, and the resulting total leaf area as key traits.

  18. Understanding key issues of sustainable wood production in the Pacific Northwest.

    Science.gov (United States)

    Robert L. Deal; Seth M. White

    2005-01-01

    Researchers involved with the Pacific Northwest (PNW) Research Station Sustainable Wood Production Initiative have outlined some of the barriers and opportunities for sustainable wood production in the region. Sustainable wood production is defined as the capacity of forests to produce wood, products, and services on a long-term basis and in the context of human...

  19. How to reconcile wood production and biodiversity conservation? The Pan-European boreal forest history gradient as an "experiment".

    Science.gov (United States)

    Naumov, Vladimir; Manton, Michael; Elbakidze, Marine; Rendenieks, Zigmars; Priednieks, Janis; Uhlianets, Siarhei; Yamelynets, Taras; Zhivotov, Anton; Angelstam, Per

    2018-07-15

    There are currently competing demands on Europe's forests and the finite resources and services that they can offer. Forestry intensification that aims at mitigating climate change and biodiversity conservation is one example. Whether or not these two objectives compete can be evaluated by comparative studies of forest landscapes with different histories. We test the hypothesis that indicators of wood production and biodiversity conservation are inversely related in a gradient of long to short forestry intensification histories. Forest management data containing stand age, volume and tree species were used to model the opportunity for wood production and biodiversity conservation in five north European forest regions representing a gradient in landscape history from very long in the West and short in the East. Wood production indicators captured the supply of coniferous wood and total biomass, as well as current accessibility by transport infrastructure. Biodiversity conservation indicators were based on modelling habitat network functionality for focal bird species dependent on different combinations of stand age and tree species composition representing naturally dynamic forests. In each region we randomly sampled 25 individual 100-km 2 areas with contiguous forest cover. Regarding wood production, Sweden's Bergslagen region had the largest areas of coniferous wood, followed by Vitebsk in Belarus and Zemgale in Latvia. NW Russia's case study regions in Pskov and Komi had the lowest values, except for the biomass indicator. The addition of forest accessibility for transportation made the Belarusian and Swedish study region most suitable for wood and biomass production, followed by Latvia and two study regions in NW Russian. Regarding biodiversity conservation, the overall rank among regions was opposite. Mixed and deciduous habitats were functional in Russia, Belarus and Latvia. Old Scots pine and Norway spruce habitats were only functional in Komi. Thus

  20. Water for wood products versus nature, food or feed

    Science.gov (United States)

    Schyns, Joep; Booij, Martijn; Hoekstra, Arjen

    2017-04-01

    Forests play a central interlinked role in the 2030 Agenda on Sustainable Development. The Agenda aims at an increased share of renewable energy in the global energy mix (target 7.2) and restoration and sustainable management of forests (targets 6.6, 15.1 & 15.2). Forests also play a key role in the hydrological cycle accounting for the largest water flux from land to atmosphere. However, we do not know which part of this is used for the production of wood products such as lumber, pulp and paper, firewood or biofuel. SDG target 6.4 calls for increased water-use efficiency across all sectors and requires understanding the competing demands for water and the potential conflicts between wood production and other purposes like food (SDG 2). To reach the SDGs we need to understand the interlinkages between the SDGs and know how much water is used in the forestry sector. We provide the first estimate of global water use in the forestry sector, using the water footprint (WF) as indicator and distinguishing between consumption of green water (precipitation) and blue water (groundwater through capillary rise). We estimate forest evaporation at a high spatial resolution level and attribute total water consumption to the various forest products, including ecosystem services. Global water consumption for wood production increased by 34% over 50 years to 290x109 m3/y in 2001-2010. Wood has a higher economic water productivity (EWP, US/m3) than common food or feed crops like wheat, maize and sugar beet, and bio-ethanol from wood has a small WF per unit of energy compared to first-generation bio-ethanol from these three crops. Counterintuitively, extensive wood production has a smaller WF and hence a higher EWP than intensive wood production. The reason is that extensively exploited forests host relatively more value next to wood production in the form of other ecosystem services. Recycling of wood products could effectively reduce the WF of the forestry sector, thereby leaving

  1. Design considerations for the commercial production of wood acrylics

    International Nuclear Information System (INIS)

    Witt, A.E.; Bosco, L.R.

    1978-01-01

    The major application of wood acrylics is for flooring, more specifically in high traffic area. The most important property is its abrasion resistance. As for the decisions in facility design, the following considerations must be made: irradiation or heat-catalyst to polymerize, machine irradiation or isotope irradiation, and wet or dry irradiation. Then, processing considerations are made on wood type, monomer selection, dye selection, fire retardant, dose conditions and crosslinker usage. In ''PermaGrain'' production, for example, the facility has the yearly production capacity of over 4,000,000 kilograms of wood acrylic. The starting wood form is small slats or fingers. After pressure cycle, the impregnant wet wood is lowered into an irradiation pool and the product canister passes around a cobalt 60 source. After irradiation, the product is taken out of the pool and allowed to cool. Then, final sizing and finishing are carried out. (Mori, K.)

  2. Climate effects of wood used for bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Ros, Jan P.M.; Van Minnen, Jelle G. [Netherlands Environmental Assessment Agency PBL, Bilthoven (Netherlands); Arets, Eric J.M.M. [Alterra, Wageningen University WUR, Wageningen (Netherlands)

    2013-08-15

    of carbon. The same is likely to be true for managed forests in other temperate regions. If wood from additional felling is used, it would be most effective to use it in products that stay in circulation for a long time, only to be used for energy at the end of its service life. An increase in wood demand may lead to an intensification of forest management, which may temporarily increase carbon sequestration rates and biomass yields. This would eventually reduce the payback times. However, it must be noted that it would still take a substantial amount of time for the intensification of forest management to become effective, especially when it includes drastic measures, such as converting natural forests into plantations. Short rotation plantations with fast growing trees on agricultural land may be another option, but in these cases there are similarities with the direct and indirect land-use change effects related to energy crops. Further analysis is required to enable a clear judgment on the impact of these options. Products are not the only place of storing carbon with a beneficial effect on climate change. The combination of bioenergy and carbon capture and storage (CCS) on large industrial sites where biomass is converted into energy carriers, such as transport fuel and electricity, is projected to be beneficial, as well. Even landfill sites may serve as storage of carbon in wood waste, as pieces of wood hardly degrade.

  3. Wood products trade and foreign markets. Annual production, consumption, and trade issue. Principal countries impacting US trade in wood products. Foreign agriculture circular

    International Nuclear Information System (INIS)

    1993-05-01

    The Forest Products Division has compiled production, consumption, and trade data on selected wood products for twenty eight significant countries. The data, collected from various sources, is not necessarily compatible with US export and import data normally published in this circular, which comes from the US Census Bureau. To supplement this data, the following perspectives offer a comparative snapshot of conditions in these countries, both in the general economy and the wood products sector. Economic information was extracted from the 1992 World Factbook; Central Intelligence Agency

  4. Five willow varieties cultivated across diverse field environments reveal stem density variation associated with high tension wood abundance

    Directory of Open Access Journals (Sweden)

    Nicolas eBerthod

    2015-10-01

    Full Text Available Sustainable and inexpensive production of biomass is necessary to make biofuel production feasible, but represents a challenge. Five short rotation coppice (SRC willow cultivars, selected for high biomass yield, were cultivated on sites at four diverse regions of Quebec to determine their bioenergy potential in contrasting environments. Wood composition and anatomical traits were characterized. Tree height and stem diameter were measured to evaluate growth performance of the cultivars according to the diverse pedoclimatic conditions. Each cultivar showed very specific responses to its environment. While no significant variation in lignin content was observed between sites, there was variation between cultivars. Surprisingly, the pattern of substantial genotype variability in stem density was maintained across all sites. However, wood anatomy did differ between sites in a cultivar (producing high and low density wood, suggesting a probable response to an abiotic stress. Furthermore, twice as many cellulose-rich G-fibers, comprising over 50 % of secondary xylem, were also found in the high density wood, a finding with potential to bring higher value to the lignocellulosic bioethanol industry

  5. Validity and Responsiveness of the Short Version of the Western Ontario Rotator Cuff Index (Short-WORC) in Patients With Rotator Cuff Repair.

    Science.gov (United States)

    Dewan, Neha; MacDermid, Joy C; MacIntyre, Norma

    2018-05-01

    Study Design Clinical measurement. Background Recently, the Western Ontario Rotator Cuff Index (WORC) was shortened, but few studies have reported its measurement properties. Objective To compare the validity and responsiveness of the short version of the Western Ontario Rotator Cuff Index (Short-WORC) and the WORC (disease-specific measures) with those of the Shoulder Pain and Disability Index (SPADI) and the simple shoulder test (SST) (joint-specific measures); the Disabilities of the Arm, Shoulder and Hand (DASH) (a region-specific measure); and the Medical Outcomes Study 12-Item Short-Form Health Survey version 2 (SF-12v2) (a general health status measure) in patients undergoing rotator cuff repair (RCR). Methods A cohort of patients (n = 223) completed the WORC, SPADI, SST, DASH, and SF-12v2 preoperatively and at 3 and 6 months after RCR. Short-WORC scores were extracted from the WORC questionnaire. The construct validity (Pearson correlations) and internal responsiveness (effect size [ES], standardized response mean [SRM], relative efficiency [RE]) of the Short-WORC were calculated. Results The Short-WORC was strongly correlated with the WORC (r = 0.89-0.96) and moderately to strongly correlated with non-disease-specific measures at preoperative and postoperative assessments (r = 0.51-0.92). The Short-WORC and WORC were equally responsive (RE Short-WORC/WORC = 1) at 0 to 6 months and highly responsive overall at 0 to 3 months (ES Short-WORC , 0.72; ES WORC , 0.92; SRM Short-WORC , 0.75; SRM WORC , 0.81) and 0 to 6 months (ES Short-WORC , 1.05; ES WORC , 1.12; SRM Short-WORC , 0.89; SRM WORC , 0.89). The responsiveness of the comparator measures (SPADI, SST, DASH, SF-12v2) was poor to moderate at 0 to 3 months (ES, 0.07-0.55; SRM, 0.09-0.49) and 0 to 6 months (ES, 0.05-0.78; SRM, 0.07-0.78). Conclusion The Short-WORC and WORC have similar responsiveness in patients undergoing RCR, and are more responsive than non-disease-specific measures. Future studies

  6. Some environmental impacts of short rotation willow coppice

    International Nuclear Information System (INIS)

    Slater, F.M.; Hodson, R.W.; Randrson, P.F.; Lynn, S.F.

    1997-01-01

    Short rotation willow coppice is a relatively new crop in upland Britain, and particularly in Environmentally Sensitive Areas the conservation and environmental effect of biomass crops needs to be evaluated. Investigations of sewage-sludge-treated plots in mid-Wales show that, because weed control was inadequate, recovery of the flora to its semi-natural precultivated state was rapid within and between experimental plots. Soil invertebrates responded to temporal stimuli before all else. Foliar-feeding invertebrates were greater in plots which had added fertilizer. Following cultivation voles were generally lost from the ploughed areas but field mice remained. Birds were studied in more extensive areas of short rotation coppice in central England and the assemblage of species was found to be similar to those found in conventional coppice but with a foreshortened successional sequence. The conservation value of short rotation willow coppice lies mainly in the abundant foliar invertebrates that provide a rich source of food for small passerine birds, particularly summer migrants. It also provides good cover for game birds - and their predators. (author)

  7. The Swedish energy forestry research programme at the Department of Short Rotation Forestry, SUAS, Uppsala. Summary report prepared for the evaluation of the short-rotation forestry research 1993-1996

    Energy Technology Data Exchange (ETDEWEB)

    Ledin, S.; Christersson, L. [eds.

    1996-12-31

    The overall aim of the Department of Short Rotation Forestry is to carry out research for development of basic, theoretical and practical knowledge in the related disciplines of biology, ecology and cultivation techniques in order to reach a high and sustainable production of woody biomass for energy purposes using environmentally acceptable methods. This report gives summaries of nine research programs within the Department, and the reports were prepared for the evaluation of the research during the period 1993-1996. The projects are: 1. Competition in short rotation forests (Theo Verwijst); 2. Carbon allocation as a function of nutrient and water availability (Lars Rytter, Tom Ericsson); 3. States and fluxes of water and carbon dioxide in the soil-plant-atmosphere system (Anders Lindroth); 4. Root dynamics of fast growing deciduous trees (Rose-Marie Rytter); 5. Accumulation and mobilization of root reserves in coppice growth (Lisa Sennerby-Forsse, Lars Bollmark, Yuehua von Fircks); 6. Effects of nutrient supply on frost resistance in fast growing Salix clones (Heinrich von Fircks); 7. Optimizing water and nutrients in poplar and willow plantations for maximum growth (Sune Elowson); 8. Soil biology in relation to energy forestry (Ulf Granhall); and 9. Plant protection in short rotation forestry against fungi and bacteria (Mauritz Ramstedt)

  8. Harvested wood products in the context of climate change : A comparison of different models and approaches for the Norwegian greenhouse gas inventory

    Energy Technology Data Exchange (ETDEWEB)

    Bache-Andreassen, Lihn

    2009-07-01

    Emissions of greenhouse gases is accounted for and reported annually under the UNFCCC and the Kyoto protocol. In the current accounting system, emissions of CO2 from harvested wood products (HWP) are attributed to the year of harvest and the country of harvest. All harvested wood is thus assumed to be oxidised to CO{sub 2} in the year of harvesting, and no wood goes into long term storage. This is called the IPCC default approach. Much of the harvested wood will however be stored for a short or long period of time before it oxidises and this will cause a delayed emission of CO{sub 2}. If more wood is stored than oxidised in a given year, harvested wood products will act as a sink and a removal of CO{sub 2} is recorded. However, if the consumption of wood decreases to a level below what is oxidised, harvested wood products will act as a source and emissions of CO{sub 2} is recorded. In Norway, as on many other countries, the stock of harvested wood products has been increasing for many years, and is likely to increase further. Including emissions/removals of CO{sub 2} from harvested wood products in the post Kyoto 2012 regime is under consideration by the UNFCCC, and in that context it is imperative to evaluate estimation models and approaches for the reporting/accounting. (Author)

  9. HIGH RESOLUTION MICROTOMOGRAPHY FOR DENSITY AND SPATIAL INFORMATION ABOUT WOOD STRUCTURES.

    Energy Technology Data Exchange (ETDEWEB)

    ILLMAN,B.

    1999-07-22

    Microtomography has successfully been used to characterize loss of structural integrity of wood. Tomographic images were generated with the newly developed third generation x-ray computed microtomography (XCMT) instrument at the X27A beamline at the National Synchrotron Light Source (NSLS). The beamline is equipped with high-flux x-ray monochromator based on multilayer optics developed for this application. The sample is mounted on a translation stage with which to center the sample rotation, a rotation stage to perform the rotation during data collection and a motorized goniometer head for small alignment motions. The absorption image is recorded by a single-crystal scintillator, an optical microscope and a cooled CCD array detector. Data reconstruction has provided three-dimensional geometry of the heterogeneous wood matrix in microtomographic images. Wood is a heterogeneous material composed of long lignocellulose vessels. Although wood is a strong natural product, fungi have evolved chemical systems that weaken the strength properties of wood by degrading structural vessels. Tomographic images with a resolution of three microns were obtained nonintrusively to characterize the compromised structural integrity of wood. Computational tools developed by Lindquist et al (1996) applied to characterize the microstructure of the tomographic volumes.

  10. The potential for short-rotation woody crops to reduce US CO2 emissions

    International Nuclear Information System (INIS)

    Graham, R.L.; Wright, L.L.; Turhollow, A.F.

    1992-01-01

    Short-rotation woody crops (SRWC) could potentially displace fossil fuels and thus mitigate CO 2 buildup in the atmosphere. To determine how much fossil fuel SRWC might displace in the United States and what the associated fossil carbon savings might be, a series of assumptions must be made. These assumptions concern the net SRWC biomass yields per hectare (after losses); the amount of suitable land dedicated to SRWC production; wood conversion efficiencies to electricity or liquid fuels; the energy substitution properties of various fuels; and the amount of fossil fuel used in growing, harvesting, transporting, and converting SRWC biomass. Assuming the current climate, present production, and conversion technologies and considering a conservative estimate of the US land base available for SRWC (14 x 10 6 ha), it is calculated that SRWC energy could displace 33.2 to 73.1 x 10 6 Mg of fossil carbon releases, 3-6% of the current annual US emissions. The carbon mitigation potential per unit of land is larger with the substitution of SRWC for coal-based electricity production than for the substitution of SRWC-derived ethanol for gasoline. Assuming current climate, predicted conversion technology advancements, an optimistic estimate of the US land base available for SRWC (28 x 10 6 ha), and an optimistic average estimate of net SRWC yields (22.4 dry Mg/ha), it is calculate that SRWC energy could displace 148 to 242 x 10 6 Mg of annual fossil fuel carbon releases. Under this scenario, the carbon migration potential of SRWC-based electricity production would be equivalent to about 4.4% of current global fossil fuel emissions and 20% of current US fossil fuel emissions. 21 refs., 5 tabs

  11. Trends in the highway market for wood products

    Science.gov (United States)

    Robert G. Knutson

    1975-01-01

    Forty-eight million cubic feet of wood products, about 50 million dollars worth, were used in the Nation's highway construction program in 1972. Expenditures for highway construction increased 2½ times from 1954 to 1972. The volume of wood products used in highway construction changed little during this period because other materials were substituted for...

  12. Meta-analysis of greenhouse gas displacement factors of wood product substitution

    International Nuclear Information System (INIS)

    Sathre, Roger; O'Connor, Jennifer

    2010-01-01

    A displacement factor can express the efficiency of using biomass to reduce net greenhouse gas (GHG) emission, by quantifying the amount of emission reduction achieved per unit of wood use. Here we integrate data from 21 different international studies in a meta-analysis of the displacement factors of wood products substituted in place of non-wood materials. We calculate the displacement factors in consistent units of tons of carbon (tC) of emission reduction per tC in wood product. The displacement factors range from a low of -2.3 to a high of 15, with most lying in the range of 1.0 to 3.0. The average displacement factor value is 2.1, meaning that for each tC in wood products substituted in place of non-wood products, there occurs an average GHG emission reduction of approximately 2.1 tC. Expressed in other units, this value corresponds to roughly 3.9 t CO 2 eq emission reduction per ton of dry wood used. The few cases of negative displacement factors are the result of worst-case scenarios that are unrealistic in current practice. This meta-analysis quantifies the range of GHG benefits of wood substitution, and provides a clear climate rationale for increasing wood substitution in place of other products, provided that forests are sustainably managed and that wood residues are used responsibly.

  13. Meta-analysis of greenhouse gas displacement factors of wood product substitution

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger [Ecotechnology, Mid Sweden University, 83125 Ostersund (Sweden); O' Connor, Jennifer [FPInnovations-Forintek, Vancouver, BC, Canada V6T 1W5 (Canada)

    2010-04-15

    A displacement factor can express the efficiency of using biomass to reduce net greenhouse gas (GHG) emission, by quantifying the amount of emission reduction achieved per unit of wood use. Here we integrate data from 21 different international studies in a meta-analysis of the displacement factors of wood products substituted in place of non-wood materials. We calculate the displacement factors in consistent units of tons of carbon (tC) of emission reduction per tC in wood product. The displacement factors range from a low of -2.3 to a high of 15, with most lying in the range of 1.0 to 3.0. The average displacement factor value is 2.1, meaning that for each tC in wood products substituted in place of non-wood products, there occurs an average GHG emission reduction of approximately 2.1 tC. Expressed in other units, this value corresponds to roughly 3.9 t CO{sub 2} eq emission reduction per ton of dry wood used. The few cases of negative displacement factors are the result of worst-case scenarios that are unrealistic in current practice. This meta-analysis quantifies the range of GHG benefits of wood substitution, and provides a clear climate rationale for increasing wood substitution in place of other products, provided that forests are sustainably managed and that wood residues are used responsibly.

  14. Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation

    NARCIS (Netherlands)

    Calfapietra, C.; Gielen, B.; Galema, A.N.J.; Lukac, M.; Angelis, de P.; Moscatelli, M.C.; Ceulemans, R.; Scarascia-Mugnozza, G.

    2003-01-01

    This paper investigates the possible contribution of Short Rotation Cultures (SRC) to carbon sequestration in both current and elevated atmospheric CO2 concentrations ([CO2]). A dense poplar plantation (1 x 1 m) was exposed to a [CO2] of 550 ppm in Central Italy using the free-air CO2 enrichment

  15. Using wood products to mitigate climate change: External costs and structural change

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, 831 25 Oestersund (Sweden)

    2009-02-15

    In this study we examine the use of wood products as a means to mitigate climate change. We describe the life cycle of wood products including forest growth, wood harvest and processing, and product use and disposal, focusing on the multiple roles of wood as both material and fuel. We present a comparative case study of a building constructed with either a wood or a reinforced concrete frame. We find that the production of wood building material uses less energy and emits less carbon than the production of reinforced concrete material. We compare the relative cost of the two building methods without environmental taxation, under the current Swedish industrial energy taxation regime, and in scenarios that incorporate estimates of the full social cost of carbon emission. We find that the inclusion of climate-related external costs improves the economic standing of wood construction vis-a-vis concrete construction. We conclude that policy instruments that internalise the external costs of carbon emission should encourage a structural change toward the increased use of sustainably produced wood products. (author)

  16. Women's work... in wood products

    Science.gov (United States)

    Janice K. Wiedenbeck

    1998-01-01

    Women have opportunities galore in the 1990s in wood products research, education, extension, consulting,manufacturing, marketing, and associations in North America. In the 1980s the same statement could not have been made.

  17. Plant diversity and energy potency of community forest in East Kalimantan, Indonesia: Searching for fast growing wood species for energy production

    Directory of Open Access Journals (Sweden)

    RUDIANTO AMIRTA

    2016-05-01

    Full Text Available Abstract. Amirta R, Yuliansyah, Angi EM, Ananto BR, Setiyono B, Haqiqi MT, Septiana HA, Lodong M, Oktavianto RN. 2016. Plant diversity and energy potency of community forest in East Kalimantan, Indonesia: Searching for fast growing wood species for energy production. Nusantara Bioscience 8: 22-30. Nowadays, there is an increasing interest in intensifying the production and use of biomass to replace fossil fuels for the production of heat and electricity, especially for a remote area that generally abundance with the wood biomass resources including in East Kalimantan, Indonesia. In this work, diversity of plant species that commonly growth in community forest area of East Kutai District, East Kalimantan, Indonesia had been studied to point out their energy potency to be used as biomass feedstock for the electricity generated. Diversity of plant species in the community forest was evaluated by making 13 sampling plots with 20mx20m size approximately. Concurently, the energy properties of plant biomass such as proximate and ultimate compositions were also analyzed using ASTM methods. Results showed that more than 30 species of tropical trees and wood shrubs were grown in the community forest. The presence of them was classified into two different growth of origins: natural and artificial plantation, and also three different categories of plant resources: tree species from logged over forest, commercial fast growing plant tree species for the fiber production and woody shrubs. The highest dominancy and productivity was found in Paraserianthes falcataria (L. Nielsen since the wood biomass was artificially planted for the commercial purposes. Among the 31 plant species analyzed we found the highest energy potency was obtained from Cratoxylum cochinchinense (Lour. Blume that produced 3.17 MWh/ton, and the lowest was from Trema orientalis (L. Blume 0.97 MWh/ton. The woody shrubs species such as Vernonia amigdalina Delile., Piper aduncum L., Gliricidia

  18. Competitiveness of wood pulp production in different Brazilian states

    Directory of Open Access Journals (Sweden)

    Naisy Silva Soares

    2013-06-01

    Full Text Available This work aimed to analyze the competitiveness of wood pulp production in different Brazilian states, in May, 2008 (Minas Gerais, São Paulo, Espírito Santo and Bahia, using the Policy Analysis Matrix (PAM. The results obtained indicated that the private and social profitability of wood pulp production and commercialization was positive and greater in Bahia. The Brazilian companies were penalized by public policies adopted for the sector; the wood pulp production in São Paulo and Bahia were more competitive and less exposed to the negative effects of public policies that reduce the national company profits.

  19. Users guide for WoodCite, a product cost quotation tool for wood component manufacturers [computer program

    Science.gov (United States)

    Jeff Palmer; Adrienn Andersch; Jan Wiedenbeck; Urs. Buehlmann

    2014-01-01

    WoodCite is a Microsoft® Access-based application that allows wood component manufacturers to develop product price quotations for their current and potential customers. The application was developed by the U.S. Forest Service and Virginia Polytechnic Institute and State University, in cooperation with the Wood Components Manufacturers Association.

  20. Life Cycle Analysis of Carbon Flow and Carbon Footprint of Harvested Wood Products of Larix principis-rupprechtii in China

    Directory of Open Access Journals (Sweden)

    Fei Lun

    2016-03-01

    Full Text Available Larix principis-rupprechtii is a native tree species in North China with a large distribution; and its harvested timbers can be used for producing wood products. This study focused on estimating and comparing carbon flows and carbon footprints of different harvested wood products (HWPs from Larix principis-ruppechtii based on the life cycle analysis (from seedling cultivation to HWP final disposal. Based on our interviews and surveys, the system boundary in this study was divided into three processes: the forestry process, the manufacturing process, and the use and disposal process. By tracking carbon flows of HWPs along the entire life cycle, we found that, for one forest rotation period, a total of 26.81 tC/ha sequestered carbon was transferred into these HWPs, 66.2% of which were still stored in the HWP when the rotation period had ended; however, the HWP carbon storage decreased to 0.25 tC/ha (only 0.9% left in the 100th year after forest plantation. The manufacturing process contributed more than 90% of the total HWP carbon footprint, but it was still smaller than the HWP carbon storage. In terms of the carbon storage and the carbon footprint, construction products had the largest net positive carbon balance compared to furniture and panel products. In addition, HWP are known to have a positive impact on global carbon mitigation because they can store parts of the sequestered carbon for a certain period of time and they have a substitution effect on carbon mitigation. Furthermore, there still exist great opportunities for carbon mitigation from HWPs through the use of cleaner energy and increasing the utilization efficiency of wood fuel.

  1. Carbon and energy balances for a range of biofuels options

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, M.A.; Matthews, R.; Mortimer, N.D.

    2003-03-01

    This is the final report of a project to produce a set of baseline energy and carbon balances for a range of electricity, heat and transport fuel production systems based on biomass feedstocks. A list of 18 important biofuel technologies in the UK was selected for study of their energy and carbon balances in a consistent approach. Existing studies on these biofuel options were reviewed and their main features identified in terms of energy input, greenhouse gas emissions (carbon dioxide, methane, nitrous oxide and total), transparency and relevance. Flow charts were produced to represent the key stages of the production of biomass and its conversion to biofuels. Outputs from the study included primary energy input per delivered energy output, carbon dioxide outputs per delivered energy output, methane output per delivered energy output, nitrous oxide output per delivered energy output and total greenhouse gas requirements. The net calorific value of the biofuel is given where relevant. Biofuels studied included: biodiesel from oilseed rape and recycled vegetable oil; combined heat and power (CHP) by combustion of wood chip from forestry residues; CHP by gasification of wood chip from short rotation coppice; electricity from the combustion of miscanthus, straw, wood chip from forestry residues and wood chip from short rotation coppice; electricity from gasification of wood chip from forestry residues and wood chip from short rotation coppice; electricity by pyrolysis of wood chip from forestry residues and wood chip from short rotation coppice; ethanol from lignocellulosics, sugar beet and wheat; heat (small scale) from combustion of wood chip from forestry residues and wood chip from short rotation coppice; and rapeseed oil from oilseed rape.

  2. Air quality and composite wood products

    Science.gov (United States)

    Melissa G. D. Baumann

    1999-01-01

    Research at the USDA Forest Service, Forest Products Laboratory (FPL) is being conducted to identify the compounds emitted from wood products during their manufacture and subsequent use. The FPL researchers are measuring the types and quantities of VOCs that are emitted from particleboard and MDF products to provide quantitative emissions information. This information...

  3. Emissions from laboratory combustor tests of manufactured wood products

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, R.; Evans, M.; Ragland, K. [Univ. of Wisconsin, Madison, WI (United States); Baker, A. [USDA Forest Products Lab., Madison, WI (United States)

    1993-12-31

    Manufactured wood products contain wood, wood fiber, and materials added during manufacture of the product. Manufacturing residues and the used products are burned in a furnace or boiler instead of landfilling. Emissions from combustion of these products contain additional compounds from the combustion of non-wood material which have not been adequately characterized to specify the best combustion conditions, emissions control equipment, and disposal procedures. Total hydrocarbons, formaldehyde, higher aldehydes and carbon monoxide emissions from aspen flakeboard and aspen cubes were measured in a 76 mm i.d. by 1.5 m long fixed bed combustor as a function of excess oxygen, and temperature. Emissions of hydrocarbons, aldehydes and CO from flakeboard and from clean aspen were very sensitive to average combustor temperature and excess oxygen. Hydrocarbon and aldehyde emissions below 10 ppM were achieved with 5% excess oxygen and 1,200{degrees}C average temperature for aspen flakeboard and 1,100{degrees}C for clean aspen at a 0.9 s residence time. When the average temperature decreased below these levels, the emissions increased rapidly. For example, at 950{degrees}C and 5% excess oxygen the formaldehyde emissions were over 1,000 ppM. These laboratory tests reinforce the need to carefully control the temperature and excess oxygen in full-scale wood combustors.

  4. Wood biomass: The potential of willow

    International Nuclear Information System (INIS)

    White, E.H.; Abrahamson, L.P.

    1991-10-01

    Experiments were established in central New York State in spring, 1987, to evaluate the potential of Salix for wood biomass production using ultrashort-rotation intensive-culture techniques. Five selected willow clones and one hybrid poplar clone planted at 1 x 1 foot spacing were tested for biomass production with annual coppicing. This report presents results of this research as of December 31, 1990. (VC)

  5. The economic potential of wood pellet production from alternative, low-value wood sources in the southeast of the US

    NARCIS (Netherlands)

    Hoefnagels, Ric; Junginger, Martin; Faaij, Andre

    2014-01-01

    The global demand for wood pellets used for energy purposes is growing. Therefore, increased amounts of wood pellets are produced from primary forestry products, such as pulp wood. The present analysis demonstrates that substantial amounts of alternative, low-value wood resources are available that

  6. Biomass production of dense direct-seeded lodgepole pine (Pinus contorta) at short rotation periods

    Energy Technology Data Exchange (ETDEWEB)

    Backlund, I.; Bergsten, U.

    2012-07-01

    Lodgepole pine (Pinus contorta) is a fast-growing species that is suitable for producing woody biomass in Nordic countries. Direct seeding of this species is cheaper than planting and creates dense, stable stands. The objective of this study was to quantify the stem volume and biomass production of direct seeded lodgepole pine stands grown under different site conditions with different stem densities, at an age that would permit extensive harvesting of biomass. A circle-plot inventory was performed in 16 of the oldest direct seeded lodgepole pine stands in mid-northern Sweden. Stemwood production of almost 200 m{sup 3}/ha was achieved on average on the best sites, rising to about 300 m{sup 3}/ha for the best circle-plots within 30 years of direct seeding despite the fact that pre-commercial thinning was made once or twice. This corresponds to 100 and 140 tons of dry weight biomass/ha, respectively. Higher stand stem densities ({>=}3000 st/ha) yielded more biomass with only slight reductions in diameter at breast height. The development of stem volume with respect to dominant height in direct seeded stands was becoming comparable to that in planted stands with similar spacing. It therefore seems that there is an unutilized potential for cost-effectively growing lodgepole pine in dense stands for biomass production after direct seeding. It may be possible to devise regimes for short(er) rotation forestry that would yield substantial amount of inexpensive biomass for biorefineries within a few decades. (orig.)

  7. Measuring and partitioning soil respiration in sharkey shrink-swell clays under plantation grown short-rotation woody crops

    Science.gov (United States)

    Wilson G. Hood; Michael C. Tyree; Dylan N. Dillaway Dillaway; Theodor D. Leininger

    2015-01-01

    The Lower Mississippi Alluvial Valley (LMAV) offers an ecological niche for short-rotation woody crop (SRWC) production by mating marginal agricultural land with optimal growing conditions. Approximately 1.7 million ha within the LMAV consist of Sharkey shrink-swell clays. They are considered marginal in terms of traditional agricultural productivity due to their...

  8. Wood-based composite materials : panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials

    Science.gov (United States)

    Nicole M. Stark; Zhiyong Cai; Charles Carll

    2010-01-01

    This chapter gives an overview of the general types and composition of wood-based composite products and the materials and processes used to manufacture them. It describes conventional wood-based composite panels and structural composite materials intended for general construction, interior use, or both. This chapter also describes wood–nonwood composites. Mechanical...

  9. Comparison of Different Wood Species as Raw Materials for Bioenergy

    Directory of Open Access Journals (Sweden)

    Bojana Klašnja

    2013-12-01

    Full Text Available Background and Purpose: Most projections of the global energy use predict that biomass will be an important component of primary energy sources in the coming decades. Short rotation plantations have the potential to become an important source of renewable energy in Europe because of the high biomass yields, a good combustion quality as solid fuel, ecological advantages and comparatively low biomass production costs. Materials and Methods: In this study, the wood of black locust Robinia pseudoacacia, white willow Salix alba L., poplars Populus deltoides and Populus x euramericana cl.I-214, aged eight years were examined. Immediately after the felling, sample discs were taken to assess moisture content, ash content, the width of growth rings, wood densities and calorific values, according to the standard methodology. Results:The mean values of willow, poplar and black locust wood density were 341 kg/m3, 336 kg/m3 and 602 kg/m3,respectively. The average heating values of willow poplar and black locust wood were 18.599 MJ/kg, 18.564 MJ/kg and 21.196 MJ/kg, respectively. The FVI index (average values was higher for black locust (17.186 than for poplar and willow clones, which were similar: 11.312 and 11.422 respectively. Conclusions: Black locust wood with a higher density, calorific value and ash content compared to poplar and willow wood proved to be a more suitable raw material as RES. However, it is very important, from the aspect of the application of wood of these tree species as RES, to also consider the influence of the biomass yield per unit area of the plantations established as “energy plantations”.

  10. Wood handbook : wood as an engineering material

    Science.gov (United States)

    Robert J. Ross; Forest Products Laboratory. USDA Forest Service.

    2010-01-01

    Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses.

  11. Science supporting the economic and environmental benefits of using wood and wood products in green building construction

    Science.gov (United States)

    Michael A. Ritter; Kenneth Skog; Richard Bergman

    2011-01-01

    The objective of this report is to summarize the scientific findings that support the environmental and economic benefits of using wood and wood products in green building construction. Despite documented advantages in many peer-reviewed scientific articles, most building professionals and members of the public do not recognize wood as a renewable resource or the role...

  12. Results of the production of wood derived fuels; Puupolttoaineiden tuotantotekniikka - tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Korpilahti, A [Metsaeteho, Helsinki (Finland)

    1997-12-31

    During the year 1995 there were over 30 projects concerning the production of wood derived fuels going on. Nearly half of them focused on integrated production of pulp wood and wood fuel. About in ten projects work was carried out to promote wood fuel production from logging residues. Other topics were fire wood production, production logistics and wood fuel resources. For production of fuel chips from logging residues, a new chipper truck, MOHA-SISU, was introduced. Having ability to move on terrain, and equipped with drum chipper, hook technic for interchangeable containers and a trailer, the whole production chain can be carried out by the same machine. In Mikkeli region three years of active work promoted the usage of wood fuel in a district power plant to the level of over 110 000 cubic metres of fuel chips. The production costs tend to be a little high in average, and the production chain still needs to be improved. In the field of integrated production a great stride was taken when the first pilot plant using the MASSAHAKE-method started up. Components of the production line and knowledge to operate the process have increased resulting in good performance of the plant. And even another concept for integrated production was introduced. In order to fully control the debarking of small sized trees, a production line of chain flail equipment and debarking drum followed by a chipper and screening facilities was built up. Equipment and machines for harvesting young stands in a way that increases substantially the yield of energy component are still mostly first prototypes. The development of them into well functioning, efficient tools is the most important task in integrated production

  13. Results of the production of wood derived fuels; Puupolttoaineiden tuotantotekniikka - tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Korpilahti, A. [Metsaeteho, Helsinki (Finland)

    1996-12-31

    During the year 1995 there were over 30 projects concerning the production of wood derived fuels going on. Nearly half of them focused on integrated production of pulp wood and wood fuel. About in ten projects work was carried out to promote wood fuel production from logging residues. Other topics were fire wood production, production logistics and wood fuel resources. For production of fuel chips from logging residues, a new chipper truck, MOHA-SISU, was introduced. Having ability to move on terrain, and equipped with drum chipper, hook technic for interchangeable containers and a trailer, the whole production chain can be carried out by the same machine. In Mikkeli region three years of active work promoted the usage of wood fuel in a district power plant to the level of over 110 000 cubic metres of fuel chips. The production costs tend to be a little high in average, and the production chain still needs to be improved. In the field of integrated production a great stride was taken when the first pilot plant using the MASSAHAKE-method started up. Components of the production line and knowledge to operate the process have increased resulting in good performance of the plant. And even another concept for integrated production was introduced. In order to fully control the debarking of small sized trees, a production line of chain flail equipment and debarking drum followed by a chipper and screening facilities was built up. Equipment and machines for harvesting young stands in a way that increases substantially the yield of energy component are still mostly first prototypes. The development of them into well functioning, efficient tools is the most important task in integrated production

  14. Chapter 6: Wood energy and competing wood product markers

    Science.gov (United States)

    Kenneth E. Skog; Robert C. Abt; Karen Abt

    2014-01-01

    Understanding the effect of expanding wood energy markets is important to all wood-dependent industries and to policymakers debating the implementation of public programs to support the expansion of wood energy generation. A key factor in determining the feasibility of wood energy projects (e.g. wood boiler or pellet plant) is the long-term (i.e. 20-30year) supply...

  15. Species selection in secondary wood products: implications for product design and promotion

    Science.gov (United States)

    Matthew S. Bumgardner; Scott A. Bowe; Scott A. Bowe

    2002-01-01

    This study investigated the perceptions that people have of several commercially important wood species and determined if word-based and specimen-based evaluations differed. Such knowledge can help secondary wood manufacturers better understand their products and develop more effective design concepts and promotional messages. A sample of more than 250 undergraduate...

  16. IMPACT OF ECONOMIC CRISIS ON WOOD MARKETS (CONSUMPTION, PRODUCTION AND TRADE

    Directory of Open Access Journals (Sweden)

    Maria‐Loredana POPESCU

    2013-12-01

    Full Text Available Global economic crisis represents one of the causes why wood consumption is increasing especially in countries less developed. In countries where governments couldn’t improve the quality of life and unemployment rate is higher, local communities devastate a lot of forestry. In last thirty years we saw a deforestation process at the global level related to land being converted to other uses: agriculture and urbanization, which represent a positive trend of a negative use. The statistics reveal, on one hand, an increasing demand for paper, paper products, wood products and wood energy. So this point is important to analyze: where wood came from and where it is going as either raw material or processed goods? For undeveloped countries, like Romania, it is easy to export primary wood product without evaluating the consequences. On the other hand, developed countries like Sweden export value added products which brig them higher value and profits and require greater manufacturing and marketing skills (case IKEA. For this, government policy could introduce trade barriers to decrease log consumption (like export taxes and simultaneously support furniture production and trade (e.g. export.

  17. Effects of Increased Nitrogen Deposition and Rotation Length on Long-Term Productivity of Cunninghamia lanceolata Plantation in Southern China

    Science.gov (United States)

    Zhao, Meifang; Xiang, Wenhua; Tian, Dalun; Deng, Xiangwen; Huang, Zhihong; Zhou, Xiaolu; Peng, Changhui

    2013-01-01

    Cunninghamia lanceolata (Lamb.) Hook. has been widely planted in subtropical China to meet increasing timber demands, leading to short-rotation practices that deplete soil nutrients. However, increased nitrogen (N) deposition offsets soil N depletion. While long-term experimental data investigating the coupled effects related to short rotation practices and increasing N deposition are scarce, applying model simulations may yield insights. In this study, the CenW3.1 model was validated and parameterized using data from pure C. lanceolata plantations. The model was then used to simulate various changes in long-term productivity. Results indicated that responses of productivity of C. lanceolata plantation to increased N deposition were more related to stand age than N addition, depending on the proportion and age of growing forests. Our results have also shown a rapid peak in growth and N dynamics. The peak is reached sooner and is higher under higher level of N deposition. Short rotation lengths had a greater effect on productivity and N dynamics than high N deposition levels. Productivity and N dynamics decreased as the rotation length decreased. Total productivity levels suggest that a 30-year rotation length maximizes productivity at the 4.9 kg N ha−1 year−1 deposition level. For a specific rotation length, higher N deposition levels resulted in greater overall ecosystem C and N storage, but this positive correlation tendency gradually slowed down with increasing N deposition levels. More pronounced differences in N deposition levels occurred as rotation length decreased. To sustain C. lanceolata plantation productivity without offsite detrimental N effects, the appropriate rotation length is about 20–30 years for N deposition levels below 50 kg N ha−1 year−1 and about 15–20 years for N deposition levels above 50 kg N ha−1 year−1. These results highlight the importance of assessing N effects on carbon management and the long-term productivity of

  18. Wood product industry - present state and studies of the development alternatives; Puuteollisuuden nykytilan ja haasteiden arviointia

    Energy Technology Data Exchange (ETDEWEB)

    Holmijoki, O.; Paajanen, T.; Kairi, M.

    2007-07-01

    In this research project the development of the wood products industry and its operating environment in Finland was studied using statistical data mainly from years 1995 - 2003. In this context, the wood products industry includes the sawmilling industry, the plywood and other wood panel industry, prefabricated wooden housing and the building joinery industry, wood packing manufacture and the manufacture of other wooden products. The development of the wood products industry and its operating environment has been estimated by combining statistical data about the business economy, production economy and the national economy from the Central Statistical Office of Finland together with data from the Finnish Forest Research Institute. Based on statistical data, the wood product markets, profitability and cost structure of branches, input market, use of labour force and investments have been studied. The economic importance of the wood products industry has been estimated at a national and a local level. Challenges facing wood products industry branches have been analysed using example calculations based on input-output theory. In the evaluation method, the business environment of the wood products industry branches and related branches, have been described with a use table at basic prices commonly using in the national economy. This method has enabled the direct and indirect effects of simultaneous quantity and price changes occurring in the wood product markets and markets related to the wood product industry, to be analysed. In the example calculations, variation of sawn timber production and log import, as well as the increments of sawn timber upgrading, wood product usage in building, wood panel production and purchase energy price, were reviewed

  19. Important Non-Wood Forest Products in Turkey: An Econometric Analysis

    Directory of Open Access Journals (Sweden)

    R. Kurt

    2016-12-01

    Full Text Available Wood resources obtained from forest and non-wood forest products (NWFP have gained great importance recently as their economic values keeps increasing by the day. In this study, forecasting of Turkish Non-Wood Forest Products such as thyme, bay leaves, salvia and pine nut export amounts was carried out using a linear regression analysis method for the next fifteen years based on the data for the years between 1990 and 2009. Moreover, estimated import values and actual import values from the last years were compered and analyzed. Finally, predictions on future trends were made.

  20. The suitability of selected wood species in the production of turned ...

    African Journals Online (AJOL)

    The study investigated the suitability of selected wood species in the production of turned glue-laminated products. Five different wood species of high quality grades which were sourced from Bodija market Ibadan, south western Nigeria were thoroughly examined where the moisture content, density and shrinkage ...

  1. Recycling of wood products. Final report of the preliminary study project partly financed by the Finnish Wood Research Oy; Puutuotteiden kierraetys. Finnish Wood Research Oy:n osarahoittaman esiselvityshankkeen loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Pirhonen, I.; Heraejaervi, H.; Saukkola, P.; Raety, T.; Verkasalo, E., Email: henrik.herajarvi@metla.fi

    2011-07-01

    The objective of this preliminary study was to clarify the present state of recycling of wood in Finland and Europe. In the work the control measures of recycling were examined. In Finland there will be a total amount of 850 000 tons of waste wood per year. Of this amount 670 000 tons is from construction and demolishing of buildings. Burning the wood to energy is technically and economically the most reasonable use of waste wood in Finland and in several other European countries where there is a long heating season. A lot of work has been done to find new ways of utilization. The objective of the European Union to increase the use of renewable natural resources in the energy production creates an additional demand to all kinds of wood, including waste wood. The waste legislation of Finland and EU is directing to recycling, not restricting it. Furthermore, the systems to try to create markets for products containing recycled materials are under development. In the future it is expected that the legislation is tightening and the burning of waste wood is no longer calculated as acceptable recycling. Other ways to utilize wood waste should then already be developed. Furthermore, the development and introduction of new recycling methods are of important significance also when marketing wood and wood products. The recycling should be taken into consideration already at the planning stage of the building

  2. Effects of Successive Rotation Regimes on Carbon Stocks in Eucalyptus Plantations in Subtropical China Measured over a Full Rotation.

    Science.gov (United States)

    Li, Xiaoqiong; Ye, Duo; Liang, Hongwen; Zhu, Hongguang; Qin, Lin; Zhu, Yuling; Wen, Yuanguang

    2015-01-01

    Plantations play an important role in carbon sequestration and the global carbon cycle. However, there is a dilemma in that most plantations are managed on short rotations, and the carbon sequestration capacities of these short-rotation plantations remain understudied. Eucalyptus has been widely planted in the tropics and subtropics due to its rapid growth, high adaptability, and large economic return. Eucalyptus plantations are primarily planted in successive rotations with a short rotation length of 6~8 years. In order to estimate the carbon-stock potential of eucalyptus plantations over successive rotations, we chose a first rotation (FR) and a second rotation (SR) stand and monitored the carbon stock dynamics over a full rotation from 1998 to 2005. Our results showed that carbon stock in eucalyptus trees (TC) did not significantly differ between rotations, while understory vegetation (UC) and soil organic matter (SOC) stored less carbon in the SR (1.01 vs. 2.76 Mg.ha(-1) and 70.68 vs. 81.08 Mg. ha(-1), respectively) and forest floor carbon (FFC) conversely stored more (2.80 vs. 2.34 Mg. ha(-1)). The lower UC and SOC stocks in the SR stand resulted in 1.13 times lower overall ecosystem carbon stock. Mineral soils and overstory trees were the two dominant carbon pools in eucalyptus plantations, accounting for 73.77%~75.06% and 20.50%~22.39%, respectively, of the ecosystem carbon pool. However, the relative contribution (to the ecosystem pool) of FFC stocks increased 1.38 times and that of UC decreased 2.30 times in the SR versus FR stand. These carbon pool changes over successive rotations were attributed to intensive successive rotation regimes of eucalyptus plantations. Our eight year study suggests that for the sustainable development of short-rotation plantations, a sound silvicultural strategy is required to achieve the best combination of high wood yield and carbon stock potential.

  3. Effects of Successive Rotation Regimes on Carbon Stocks in Eucalyptus Plantations in Subtropical China Measured over a Full Rotation.

    Directory of Open Access Journals (Sweden)

    Xiaoqiong Li

    Full Text Available Plantations play an important role in carbon sequestration and the global carbon cycle. However, there is a dilemma in that most plantations are managed on short rotations, and the carbon sequestration capacities of these short-rotation plantations remain understudied. Eucalyptus has been widely planted in the tropics and subtropics due to its rapid growth, high adaptability, and large economic return. Eucalyptus plantations are primarily planted in successive rotations with a short rotation length of 6~8 years. In order to estimate the carbon-stock potential of eucalyptus plantations over successive rotations, we chose a first rotation (FR and a second rotation (SR stand and monitored the carbon stock dynamics over a full rotation from 1998 to 2005. Our results showed that carbon stock in eucalyptus trees (TC did not significantly differ between rotations, while understory vegetation (UC and soil organic matter (SOC stored less carbon in the SR (1.01 vs. 2.76 Mg.ha(-1 and 70.68 vs. 81.08 Mg. ha(-1, respectively and forest floor carbon (FFC conversely stored more (2.80 vs. 2.34 Mg. ha(-1. The lower UC and SOC stocks in the SR stand resulted in 1.13 times lower overall ecosystem carbon stock. Mineral soils and overstory trees were the two dominant carbon pools in eucalyptus plantations, accounting for 73.77%~75.06% and 20.50%~22.39%, respectively, of the ecosystem carbon pool. However, the relative contribution (to the ecosystem pool of FFC stocks increased 1.38 times and that of UC decreased 2.30 times in the SR versus FR stand. These carbon pool changes over successive rotations were attributed to intensive successive rotation regimes of eucalyptus plantations. Our eight year study suggests that for the sustainable development of short-rotation plantations, a sound silvicultural strategy is required to achieve the best combination of high wood yield and carbon stock potential.

  4. Wood Degradation by Thermotolerant and Thermophilic Fungi for Sustainable Heat Production

    NARCIS (Netherlands)

    Caizan Juanarena, Leire; ter Heijne, Annemiek; Buisman, Cees; Van der Wal, A.

    2016-01-01

    The use of renewable biomass for production of heat and electricity plays an important role in the circular economy. Degradation of wood biomass to produce heat is a clean and novel process proposed as an alternative to wood burning, and could be used for various heating applications. So far, wood

  5. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements.

    Science.gov (United States)

    Zárubová, Pavla; Hejcman, Michal; Vondráčková, Stanislava; Mrnka, Libor; Száková, Jiřina; Tlustoš, Pavel

    2015-12-01

    Fast-growing clones of Salix and Populus have been studied for remediation of soils contaminated by risk elements (RE) using short-rotation coppice plantations. Our aim was to assess biomass yield and distributions of elements in wood and bark of highly productive willow (S1--[Salix schwerinii × Salix viminalis] × S. viminalis, S2--Salix × smithiana clone S-218) and poplar (P1--Populus maximowiczii × Populus nigra, P2--P. nigra) clones with respect to aging. The field experiment was established in April 2008 on moderately Cd-, Pb- and Zn- contaminated soil. Shoots were harvested after four seasons (February 2012) and separated into annual classes of wood and bark. All tested clones grew on contaminated soils, with highest biomass production and lowest mortality exhibited by P1 and S2. Concentrations of elements, with exception of Ca and Pb, decreased with age and were higher in bark than in wood. The Salix clones were characterised by higher removal of Cd, Mn and Zn compared to the Populus clones. Despite generally higher RE content in young shoots, partly due to lower wood/bark ratios and higher RE concentrations in bark, the overall removal of RE was higher in older wood classes due to higher biomass yield. Thus, longer rotations seem to be more effective when phytoextraction strategy is considered. Of the four selected clones, S1 exhibited the best removal of Cd and Zn and is a good candidate for phytoextraction.

  6. Health evaluation of volatile organic compound (VOC) emission from exotic wood products

    DEFF Research Database (Denmark)

    Kirkeskov, L; Witterseh, T; Funch, L W

    2009-01-01

    The purpose of this study was to measure and evaluate the impact of the emissions of selected products of exotic wood on health. Ten products were screened for chemical compounds, and five of the most used products which emitted more than 800 microg/kg were selected for further quantitative...... analyses by climate chamber measurement (iroko, ramin, sheesham, merbau, and rubber tree). Samples of exotic wood (rubber tree and belalu) were further analyzed for emission of chemical compounds by migration into artificial saliva and for content of pesticides and allergenic natural rubber latex (NR latex......) (rubber tree). The toxicological effects of all substances identified were evaluated and the lowest concentrations of interest (LCI) assessed. An R-value was calculated for each wood product (R-value below 1 is considered to be unproblematic as regards health). Emission from the evaluated exotic wood only...

  7. World trade in forest products and wood fuel

    International Nuclear Information System (INIS)

    Hillring, Bengt

    2006-01-01

    Wood fuel is a strategic resource for future energy supply and is usually utilised locally. Traditional use of wood fuel and other bioenergy has a share of 10-15% energy supply, used mainly for the household sector. The utilisation for industrial purposes is much smaller but is a strategic resource in the effort to fulfil the Kyoto agreement to replace fossil fuels and to mitigate greenhouse gas emissions. Many industrialised countries already use a significant share of biofuels in their energy supply e.g. Nordic countries while others like some other European Union countries are planning to increase their use. Production and use of biofuels need to be carried out sustainable. Official statistics do not report trade in such detail that international trade in different biomass types can be fully identified. However, FAO and European Forestry Institute are important sources. In some countries, there is a growing interest in the international trade, because the trade can provide biofuels at lower prices, larger quantities and better quality than domestic alternatives. The first signs of an international market price for wood fuel are indicated in Europe. For the future both the use and the trade of wood fuel is expected to increase. Analyses for trade in charcoal, wood chips, fuel wood and wood residues made in this report identify 'hot' trade spots in Europe, in south East Asia and in North America

  8. Bioenergy Research Programme, Yearbook 1995. Production of wood fuels; Bioenergian tutkimusohjelma, vuosikirja 1995. Puupolttoaineen tuotantotekniikka

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E [ed.

    1997-12-31

    Bioenergy Research Programme is one of the energy technology research programmes of the Technology Development Center TEKES. The aim of the Bioenergy Research Programme is to increase, by using technical research and development, the economically profitable and environmentally sound utilisation of bioenergy, to improve the competitiveness of present peat and wood fuels, and to develop new competitive fuels and equipment related to bioenergy. The funding for 1995 was nearly 52 million FIM and the number of projects 66. The main goal of the wood fuels research area is to develop new production methods in order to decrease the production costs to the level of imported fuels. The total potential of the wood fuel use should be at least 1.0 million toe/a (5.5 million m{sup 3}). During the year 1995 There were over 30 projects concerning the production of wood derived fuels going on. Nearly half of them focused on integrated production of pulp wood and wood fuel. About ten projects was carried out to promote the wood fuel production from logging residues. Other topics were firewood production, production logistics and wood fuel resources. For production of fuel chips from logging residues, a new chipper truck, MOHA-SISU, was introduced. The new machine gives a new logistic solution resulting in high productivity and reasonable operating costs. In Mikkeli region three years of active work promoted the usage of wood fuel in a district power plant to the level of over 110 000 m{sup 3} of fuel chips. The production costs tend to be a little high in average, and the production chain still needs to be improved

  9. Bioenergy Research Programme, Yearbook 1995. Production of wood fuels; Bioenergian tutkimusohjelma, vuosikirja 1995. Puupolttoaineen tuotantotekniikka

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E. [ed.

    1996-12-31

    Bioenergy Research Programme is one of the energy technology research programmes of the Technology Development Center TEKES. The aim of the Bioenergy Research Programme is to increase, by using technical research and development, the economically profitable and environmentally sound utilisation of bioenergy, to improve the competitiveness of present peat and wood fuels, and to develop new competitive fuels and equipment related to bioenergy. The funding for 1995 was nearly 52 million FIM and the number of projects 66. The main goal of the wood fuels research area is to develop new production methods in order to decrease the production costs to the level of imported fuels. The total potential of the wood fuel use should be at least 1.0 million toe/a (5.5 million m{sup 3}). During the year 1995 There were over 30 projects concerning the production of wood derived fuels going on. Nearly half of them focused on integrated production of pulp wood and wood fuel. About ten projects was carried out to promote the wood fuel production from logging residues. Other topics were firewood production, production logistics and wood fuel resources. For production of fuel chips from logging residues, a new chipper truck, MOHA-SISU, was introduced. The new machine gives a new logistic solution resulting in high productivity and reasonable operating costs. In Mikkeli region three years of active work promoted the usage of wood fuel in a district power plant to the level of over 110 000 m{sup 3} of fuel chips. The production costs tend to be a little high in average, and the production chain still needs to be improved

  10. Estimating Preferences for Wood Products with Environmental Attributes

    Directory of Open Access Journals (Sweden)

    Masaji Sakagami

    2018-01-01

    Full Text Available Tropical deforestation and forest degradation are serious problems for the global environment; as a result, sustainable forest management and forest certification have become important. In this study, using a choice experiment, we investigated, on the demand side, consumers’ preferences and willingness to pay (WTP for certified wood products that attempt to address public concerns regarding deforestation and forest degradation. Specifically, we investigated how estimates of consumers’ preferences and WTP were influenced by product attributes such as quality, certification, and price. To the authors’ knowledge, few studies of this kind have been conducted, particularly in Japan. The study’s main finding was that Japanese consumers were willing to pay a premium for certified wood products with attributes related to sustainable forest management; most preferred were products with attributes related to preserving biodiversity. These findings indicate that consumers are willing to pay a premium for products that contribute to solving the problems of deforestation and forest degradation.

  11. Potential greenhouse gas benefits of transatlantic wood pellet trade

    International Nuclear Information System (INIS)

    Dwivedi, Puneet; Khanna, Madhu; Bailis, Robert; Ghilardi, Adrian

    2014-01-01

    Power utility companies in the United Kingdom are using imported wood pellets from the southern region of the United States for electricity generation to meet the legally binding mandate of sourcing 15% of the nation’s total energy consumption from renewable sources by 2020. This study ascertains relative savings in greenhouse gas (GHG) emissions for a unit of electricity generated using imported wood pellet in the United Kingdom under 930 different scenarios: three woody feedstocks (logging residues, pulpwood, and logging residues and pulpwood combined), two forest management choices (intensive and non-intensive), 31 plantation rotation ages (year 10 to year 40 in steps of 1 year), and five power plant capacities (20–100 MW in steps of 20 MW). Relative savings in GHG emissions with respect to a unit of electricity derived from fossil fuels in the United Kingdom range between 50% and 68% depending upon the capacity of power plant and rotation age. Relative savings in GHG emissions increase with higher power plant capacity. GHG emissions related to wood pellet production and transatlantic shipment of wood pellets typically contribute about 48% and 31% of total GHG emissions, respectively. Overall, use of imported wood pellets for electricity generation could help in reducing the United Kingdom’s GHG emissions. We suggest that future research be directed to evaluation of the impacts of additional forest management practices, changing climate, and soil carbon on the overall savings in GHG emissions related to transatlantic wood pellet trade. (paper)

  12. Future carbon storage in harvested wood products from Ontario's Crown forests

    Science.gov (United States)

    Jiaxin Chen; Stephen J. Colombo; Michael T. Ter-Mikaelian; Linda S. Heath

    2008-01-01

    This analysis quantifies projected carbon (C) storage in harvested wood products (HWP) from Ontario's Crown forests. The large-scale forest C budget model, FORCARB-ON, was applied to estimate HWP C stock changes using the production approach defined by the Intergovernmental Panel on Climate Change. Harvested wood volume was converted to C mass and allocated to...

  13. Linear equations on thermal degradation products of wood chips in alkaline glycerol

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2004-01-01

    Wood chips of 0.3 and 2 mm depth from poplar and spruce wood samples, respectively, were degraded by using glycerol as a solvent and alkaline glycerol with and without Na 2 CO 3 and NaOH catalysts at different degradation temperatures: 440, 450, 460, 470, 480, 490 and 500 K. By products from the degradation processes of the ligno celluloses include lignin degradation products. Lignin and its degradation products have fuel values. The total degradation degree and cellulose degradation of the wood chips were determined to find the relationship, if any, between the yields of total degradation degree (YTD) and degradation temperature (T). There is a good linear relationship between YTD or the yields of cellulose degradation (YCD) and T (K). For the wood samples, the regression equations from NaOH (10%) catalytic runs for 0.3 mm x 15 mm x 15 mm chip size are: For poplar wood: (YTD=0.7250T-267.507) (YCD=0.1736T-71.707) For spruce wood: (YTD=0.2650T-105.979) (YCD=0.0707T-27.507) For Eqs., the square of the correlation coefficient (r 2 ) were 0.9841, 0.9496, 0.9839 and 0.9447, respectively

  14. Successional changes in live and dead wood carbon stores: implications for net ecosystem productivity.

    Science.gov (United States)

    Janisch, J E; Harmon, M E

    2002-02-01

    If forests are to be used in CO2 mitigation projects, it is essential to understand and quantify the impacts of disturbance on net ecosystem productivity (NEP; i.e., the change in ecosystem carbon (C) storage with time). We examined the influence of live tree and coarse woody debris (CWD) on NEP during secondary succession based on data collected along a 500-year chronosequence on the Wind River Ranger District, Washington. We developed a simple statistical model of live and dead wood accumulation and decomposition to predict changes in the woody component of NEP, which we call NEP(w). The transition from negative to positive NEP(w), for a series of scenarios in which none to all wood was left after disturbance, occurred between 0 and 57 years after disturbance. The timing of this transition decreased as live-tree growth rates increased, and increased as CWD left after disturbance increased. Maximum and minimum NEP(w) for all scenarios were 3.9 and -14.1 Mg C ha-1 year-1, respectively. Maximum live and total wood C stores of 319 and 393 Mg C ha(-1), respectively, were reached approximately 200 years after disturbance. Decomposition rates (k) of CWD ranged between 0.013 and 0.043 year-1 for individual stands. Regenerating stands took 41 years to attain a mean live wood mass equivalent to the mean mass of CWD left behind after logging, 40 years to equal the mean CWD mass in 500-year-old forest, and more than 150 years to equal the mean total live and dead wood in an old-growth stand. At a rotation age of 80 years, regenerating stands stored approximately half the wood C of the remaining nearby old-growth forests (predominant age 500 years), indicating that conversion of old-growth forests to younger managed forests results in a significant net release of C to the atmosphere.

  15. A New Stem Taper Function for Short-rotation poplar

    Energy Technology Data Exchange (ETDEWEB)

    Benbrahim, Mohammed [INRA Centre de Bordeaux, Cestas (France). Unite de Recherches Forestieres; Gavaland, Andre [INRA Centre de Toulouse, Castanet-Tolosane (France). Unite Agroforesterie et Foret Paysanne

    2003-07-01

    A new stem taper function was established for individual trees of two poplar hybrid clones grown on a short-rotation coppice. The model could be easily fitted and required three parameters to be estimated. It can be used to estimate both diameter at a given height and height for a given top diameter. Two of the three parameters controlled the conical and the neiloid parts of the stem. Significant differences in these parameters were observed between the two clones even if no differences were observed for diameter at breast height or total height of the stem. The model could not be integrated to calculate volumes (total volume, merchantable volume), which were estimated by numerical integration. However, use of this new model allows the optimal length of billets to be determined and thus maximizes the merchantable biomass of poplar in short-rotation coppice by minimizing the biomass of residues.

  16. Application of industrial wood residues for combined heat and power production

    International Nuclear Information System (INIS)

    Majchrzycka, A.

    2015-01-01

    The paper discusses combined production of heat and power (CHP) from industrial wood residues. The system will be powered by wood residues generated during manufacturing process of wooden floor panels. Based on power and heat demands of the plant and wood residues potential, the CHP system was selected. Preliminary analysis of biomass conversion in CHP system and environmental impact was performed.

  17. Effective technology of wood and gaseous fuel co-firing for clean energy production

    International Nuclear Information System (INIS)

    Zake, M.; Barmina, I.; Gedrovics, M.; Desnickis, A.

    2007-01-01

    The main aim of the study was to develop and optimise a small-scale experimental co-firing technique for the effective and clean heat energy production by replacing a proportion of fossil fuel (propane) with renewable one (wood biomass). Technical solutions of propane co-fire presenting two different ways of additional heat supply to the wood biomass are proposed and analysed. The experiments have shown that a better result can be obtained for the direct propane co-fire of the wood biomass, when the rate of wood gasification and the ignition of volatiles are controlled by additional heat energy supply to the upper portion of wood biomass. A less effective though cleaner way of heat energy production is the direct propane co-fire of volatiles when low-temperature self-sustaining burnout of the wood biomass controls the rate of the volatile formation, while additional heat energy supply to the flow of volatiles controls their burnout. The effect of propane co-fire on the heat production rate and the composition of polluting emissions is studied and analysed for different rates of the additional heat supply to the wood biomass and of the swirling air supply as well as for different charge of wood biomass above the inlet of the propane flame flow. (Authors)

  18. PRODUCTION OF MANGIUM (Acacia mangium WOOD VINEGAR AND ITS UTILIZATION

    Directory of Open Access Journals (Sweden)

    Tjutju Nurhayati

    2005-03-01

    Full Text Available Production  of  wood vinegar from mangium (Acacia  mangium wood bolts/pieces  with their diameter of 3  17 cm, length of 30  67 cm, moisture content of 84.4%, and specific gravity of 0.52 conducted in a dome-shaped kiln with 1.2 m'-capacity afforded a yield of 40.3%.   The mangium wood vinegar was produced  through condensation  (cooling of  smoke/gas fractions released during the charcoaling (carbonization process  of  mangium wood.    The  process  could be regarded  as an integrated production of wood vinegar and charcoal.  The yield of wood vinegar combined with the resulting charcoal was 73.9%  based on  the dry weight of  inputed  mangium wood.    Results of chromatography analysis on mangium wood vinegar as conducted in Japan revealed its organic acid content at 73.9 ppm, phenol content 8.09 ppm, methanol 3.34 ppm, acidity degree 4.91  ppm, and pH 3.89.   Similar analysis on the mangium wood vinegar was conducted in Indonesia's laboratories, and the results were comparable with  those  of  Japan.     Results of  inhibition  testings  on  particular microorganisms   (i.e.  Pseudomonas  aerogjnosa,  Stafi/ococms   attreus,  and  Candidi   albicans  fimgz indicated that the mangium wood vinegar could inflict antirnicrobe action on those microorganism with its effectiveness somewhat below that of  liquid betel soap which could be purchased  from drugstores.  The experimental use of mangium wood vinegar at 3-5% concentration on ginger (Zingiber officinale var. white ginger plants revealed significantly positive growth responses/  characteristics with respect to their height, leaf length, and sprout/ shoot development, in comparison with the untreated ginger plants (control.   Such responses/characteristics were not significantly different from those using atonik's growth hormone.  Likewise, the preliminary use of mangium wood vinegar at 2-percent concentration on teak

  19. Sewage sludge and wastewater fertilisation of Short Rotation Coppice (SRC) for increased bioenergy production - Biological and economic potential

    International Nuclear Information System (INIS)

    Dimitriou, I.; Rosenqvist, H.

    2011-01-01

    Application of municipal residues, e.g. wastewater or sewage sludge, to Short Rotation Coppice (SRC) is among the most attractive methods for attaining environmental and energy goals set for Europe. At current woodchip prices in Sweden, the gross margin for SRC cultivation is positive only if biomass production is >9 t DM/ha yr. The gross profit margin increases (by 39 and 199 EUR/GJ, respectively) if sewage sludge and wastewater are applied to SRC. Application of residues to SRC has proved to be an acceptable alternative treatment method, and the farmer's profit can be markedly increased if compensation is paid for waste treatment. If all available sludge and wastewater were applied to SRC plantations, they could be grown on large agricultural areas in Europe, and c. 6000 PJ of renewable energy could be produced annually. However, a more economical landuse strategy, e.g. the use of more P-rich residues, appears more rational, and is biologically justifiable. (author)

  20. Sewage sludge and wastewater fertilisation of Short Rotation Coppice (SRC) for increased bioenergy production - Biological and economic potential

    Energy Technology Data Exchange (ETDEWEB)

    Dimitriou, I. [Department of Crop Production Ecology, Swedish University of Agricultural Sciences, P.O. Box 7043, SE 750 07 Uppsala (Sweden); Rosenqvist, H. [Department of Agriculture-Farming Systems, Technology and Product Quality, Swedish University of Agricultural Sciences, P.O. Box 17, SE-261 21 Billeberga (Sweden)

    2011-02-15

    Application of municipal residues, e.g. wastewater or sewage sludge, to Short Rotation Coppice (SRC) is among the most attractive methods for attaining environmental and energy goals set for Europe. At current woodchip prices in Sweden, the gross margin for SRC cultivation is positive only if biomass production is >9 t DM/ha yr. The gross profit margin increases (by 39 and 199 EUR/GJ, respectively) if sewage sludge and wastewater are applied to SRC. Application of residues to SRC has proved to be an acceptable alternative treatment method, and the farmer's profit can be markedly increased if compensation is paid for waste treatment. If all available sludge and wastewater were applied to SRC plantations, they could be grown on large agricultural areas in Europe, and c. 6000 PJ of renewable energy could be produced annually. However, a more economical landuse strategy, e.g. the use of more P-rich residues, appears more rational, and is biologically justifiable. (author)

  1. Managing carbon sinks by changing rotation length in European forests

    International Nuclear Information System (INIS)

    Kaipainen, Terhi; Liski, Jari; Pussinen, Ari; Karjalainen, Timo

    2004-01-01

    Elongation of rotation length is a forest management activity countries may choose to apply under Article 3.4 of the Kyoto Protocol to help them meet their commitments for reduction of greenhouse gas emissions. We used the CO2FIX model to analyze how the carbon stocks of trees, soil and wood products depend on rotation length in different European forests. Results predicted that the carbon stock of trees increased in each forest when rotation length was increased, but the carbon stock of soil decreased slightly in German and Finnish Scots pine forests; the carbon stock of wood products also decreased slightly in cases other than the Sitka spruce forest in UK. To estimate the efficiency of increasing rotation length as an Article 3.4 activity, we looked at changes in the carbon stock of trees resulting from a 20-year increase in current rotation lengths. To achieve the largest eligible carbon sink mentioned in Article 3.4 of the Kyoto Protocol, the rotation lengths need to be increased on areas varying from 0.3 to 5.1 Mha depending on the forest. This would in some forests cause 1-6% declines in harvesting possibilities. The possible decreases in the carbon stock of soil indicate that reporting the changes in the carbon stocks of forests under Article 3.4 may require measuring soil carbon

  2. Gasification of Wood and Non-wood Waste of Timber Production as Perspectives for Development of Bioenergy

    Science.gov (United States)

    Kislukhina, Irina A.; Rybakova, Olga G.

    2018-03-01

    The article deals with biomass gasification technology using the gasification plant running on wood chips and pellets, produced from essential oils waste (waste of coniferous boughs). During the study, the authors solved the process task of improving the quality of the product gas derived from non-wood waste of timber production (coniferous boughs) due to the extraction of essential oils and the subsequent thermal processing of spent coniferous boughs at a temperature of 250-300°C degrees without oxygen immediately before pelleting. The paper provides the improved biomass gasification process scheme including the grinding of coniferous boughs, essential oil distillation and thermal treatment of coniferous boughs waste and pelletizing.

  3. Hot water extracted wood fiber for production of wood plastic composites (WPCs)

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Eini Lowell; Thomas E. Amidon; Timothy L. Chaffee

    2013-01-01

    Undebarked ponderosa pine chips were treated by hot water extraction to modify the chemical composition. In the treated pine (TP) , the mass was reduced by approximately 20%, and the extract was composed mainly of degradation products of hemicelluloses. Wood flour produced from TP and unextracted chips (untreated pine, UP) was blended with high-density polyethylene (...

  4. DEVELOPMENT OF WOOD-BASED PRODUCTS WORLDWIDE

    Directory of Open Access Journals (Sweden)

    Marius C. BARBU

    2015-12-01

    Full Text Available The tendency in recent decades for manufacturing plants of semi-finished products such as composite panels, has been to invest in order to achieve high production capacities (>2,000 m³/day for panels and >3,000 t/day for paper with one line. The trend of concentrating the primary processing capacities and manufacturing wood-based panels will continue for the next few years not only in Europe but in North and South America as well. The ten largest panel manufacturers had a combined manufacturing capacity that exceeded a third of the worldwide production capacity. The financial crisis that started in 2008 has caused the closure of a large number of factories especially in North America and Central Europe. Small- and medium-sized producers will only survive if they will continue to specialize in the manufacture of panel types and sizes (niche products that are “unprofitable” for mega-groups. The installed production capacity worldwide of all wood-based composite panels combined (includes PY, PB, MDF, OSB rose by more than 2.5 times between 1980 and 2005 (225 mil.m³, and continues to increase despite the crises reaching approx. 300 mil.m³ in 2013. The forecast for the coming years varies greatly from continent to continent. In North America and Central Europe, both a consolidation of the available production capacities and the closure of less efficient older lines are expected. The lowest point of the effect of the financial crisis on the building industry seems to have been overcome. The furniture production companies will continue to move from one continent and region to another.

  5. Enhancing the conservation value of short rotation biomass coppice. Phase 1

    International Nuclear Information System (INIS)

    Sage, R.B.; Robertson, P.A.; Poulson, J.G.

    1994-01-01

    The game and conservation value of existing short rotation coppice plantations in Britain and Ireland has been assessed. Four main wild life groups were surveyed during appropriate periods in 1993. These were songbirds, butterflies, pheasants and ground flora. For each group the process of field data collection, analysis and interpretation is described, the results are summarized and briefly discussed. A final overall discussion of the results in terms of their general findings and how typical they may be for future, large-scale production plots is presented. Proposals are made regarding management techniques that could be used with future plantings to benefit the various wildlife groups. (50 figures, 19 tables, 30 references). (UK)

  6. Chemical composition and fuel wood characteristics of fast growing tree species in India

    Science.gov (United States)

    Chauhan, S. K.; Soni, R.

    2012-04-01

    India is one of the growing economy in the world and energy is a critical input to sustain the growth of development. Country aims at security and efficiency of energy. Though fossil fuel will continue to play a dominant role in energy scenario but country is committed to global environmental well being thus stressing on environment friendly technologies. Concerns of energy security in this changing climatic situation have led to increasing support for the development of new renewable source of energy. Government though is determined to facilitate bio-energy and many projects have been established but initial after-affects more specifically on the domestic fuelwood are evident. Even the biomass power generating units are facing biomass crisis and accordingly the prices are going up. The CDM projects are supporting the viability of these units resultantly the Indian basket has a large number of biomass projects (144 out of total 506 with 28 per cent CERs). The use for fuelwood as a primary source of energy for domestic purpose by the poor people (approx. 80 per cent) and establishment of bio-energy plants may lead to deforestation to a great extent and only solution to this dilemma is to shift the wood harvest from the natural forests to energy plantations. However, there is conspicuous lack of knowledge with regards to the fuelwood characteristics of fast growing tree species for their selection for energy plantations. The calorific value of the species is important criteria for selection for fuel but it is affected by the proportions of biochemical constituents present in them. The aim of the present work was to study the biomass production, calorific value and chemical composition of different short rotation tree species. The study was done from the perspective of using the fast growing tree species for energy production at short rotation and the study concluded that short rotation tree species like Gmelina arborea, Eucalyptus tereticornis, Pongamia pinnata

  7. Factors driving and restraining adoption of Automation technologies in Swedish wood product industry.

    OpenAIRE

    Mapulanga, Mwanza; Saladi, Praveen

    2016-01-01

    Swedish wood product industry contributes significantly to the economy of the country. This industry adds more value to the sawn timber produced in order to manufacture different wooden products. Companies in Swedish wood product industry are presently seen as underdeveloped in terms of investments and developments in automation technologies. Automation technologies are seen by companies as a solution for improving productivity, product quality, manufacturing cost reduction and ultimately imp...

  8. An evaluation of herbicides for post-emergence use in short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, D.J.

    2000-07-01

    The objective of the project was to evaluate the safety and efficacy of a range of herbicides and mixtures of herbicides, with both contact and residual activity, for the post-emergence control of weeds in newly planted willow short rotation coppice (SRC). This report provides growers and advisers of short rotation coppice with important (but still limited) information on how to achieve improved weed control of problem weeds increasingly prevalent in SRC fields. This may provide guidance towards often-essential emergency treatments when the crop establishment is under considerable pressure and the potential safety, or otherwise, of certain weed-specific herbicides. (author)

  9. Properties of Eucalyptus benthamii wood for energy production

    Directory of Open Access Journals (Sweden)

    Dimas Agostinho Silva

    2015-12-01

    Full Text Available The objective of this study was to evaluate the energy potential of Eucalyptus benthamii Maiden et Cambage wood. The samples were collected in the municipality of Cerro Negro, Santa Catarina State, Brazil. Samples were collected from 5 trees at 0%, 25%, 50%, 75% and 100% of commercial height. It was determined basic density, high calorific value, elemental composition, immediate chemical analysis, lower calorific value, energy density, carbon storage and energy production. The physical and chemical variables studied and energy potential of wood did not present differences along the stem.

  10. Work analysis of the machine Claas Jaguar 880 employed in short rotation coppice harvesting

    Directory of Open Access Journals (Sweden)

    Verani S

    2010-02-01

    Full Text Available Working times observed during different harvesting phases in a poplar short rotation coppice (second rotation were calculated. The main objective of the work was to evaluate the yard productivity and the economic gain in order to furnish good indications to the field operators about the harvesting planning. A comparisons between productivity and economic features was carried out on observed (experimental yard and optimized data (optimized yard, the latter characterized by the absence of the inproductive times due to suboptimal yard organization. The harvested gross time as a function of distance covered by machine was assessed using linear regressions methods. The observed average biomass in plantation was 47.32 t ha-1. The harvesting gross average productivity observed in experimental yard was 34.20 t h-1 and the optimized was 54.16 t h-1. The working ability was 0.76 and 1.18 ha h-1 for experimental and optimized yard, respectively. The final product (chips costs estimated was 9.81 euro t-1 and 444.46 euro ha-1 in the experimental yard. The optimized yard was 22-24% more efficient. This paper demonstrates the feasibilty to estimate harvesting times and costs per hectare using linear regressions with good approximation when the standing biomass in plantation is known.

  11. Nitrogen supply and demand in short-rotation sweetgum plantations

    Science.gov (United States)

    D. Andrew Scott; James A. Burger; Donald J. Kaczmarek; Michael B. Kane

    2004-01-01

    Intensive management is crucial for optimizing hardwood plantation success, and nitrogen (N) nutrition management is one of the most important practices in intensive management. Because management of short-rotation woody crop plantations is a mixture of row-crop agriculture and plantation forestry, we tested the usefulness of an agronomic budget modified for deciduous...

  12. Production of wood fuels from young forests

    International Nuclear Information System (INIS)

    Korpilahti, A.

    1998-01-01

    National forest invention data shows that more than 200 000 ha of thinnings should be carried out annually. The stemwood accumulation corresponding to this is about 13 million m 3 . The share of industrial wood is about 5.7 million m 3 , so the energy wood potential is about 7.0 million m 3 . Because the growing stock can use the nutrients liberated from logging residues the topwood mass should not be totally harvested, and at the barren areas it should not be harvested at all. Even the difficult terrain restricts in some extent the harvesting of logging residues. After these reductions the economically harvestible energy wood potential has been estimated to be 5.1 million m 3 corresponding to about 0.9 million toe. The amount of first thinnings has during the last few years been only about one third of the need. The accumulation in the first thinning phase could be about 40-80 m 3 /ha. The annual young stand treatment area has usually been about 200 000 ha, but during the last few years it has remained to a little over 100 000 ha. Harvesting of wood fuels from young stands, based on a lot-chipping method and the traditional production chains, was investigated in the national Bioenergy Research Programme. Equipment of suitable size and price are needed for harvesting of small-diameter trees. The profitability of mechanized harvesting can be improved significantly if the single-tree processing is replaced with multi- tree processing. Multi-tree harvesting can be carried out in all production chains, felling-bunching, in partial and pulpwood harvesting, as well as with bare felling machines and harvesters. About 60 % of the stems were processed with a prototype machine, tested in treatment of young forests. About 70 % of fellings in felling-bunching, already in commercial use, was processed as multi- tree processing, and about 80 % in the partial-tree harvesting. The felling of pulpwood as partial trees was about 25-30 % faster as multi-tree processing than with

  13. Bioenergy research programme. Yearbook 1996. Production of wood fuels; Bioenergian tutkimusohjelma. Vuosikirja 1996. Puupolttoaineiden tuotantotekniikka

    Energy Technology Data Exchange (ETDEWEB)

    Nikku, P [ed.

    1997-12-01

    The aim of the programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels, new equipment and methods for production, handling and utilisation of biofuels. The total funding for 1996 was 27.3 million FIM and the number of projects 63. The number of projects concerning wood fuels production was 36. The main goals of the research are to develop new production methods for wood fuels in order to decrease the production costs to the level of imported fuels (100 km distance). The second goal is to decrease the small scale production costs by 20 % as compared with the 1992 technology level. Also, new harvesting technology and new work methods will be developed for forest owners and small-entrepreneurs in the course of the programme. Results of the projects carried out in 1996 in this programme are presented in this publication. The integrated harvesting methods, which supply both raw material to wood products industry and wood fuel for energy production, have been chosen the main research areas because they seem to be most promising. Most of the projects are focused in the wood fuel production from first thinnings and from final fellings. The projects broadly covered the research area focusing from material flows, productivity studies, basic wood properties to several case studies. The follow up project of Evaluation-drum chipper was completed with good fuel quality and productivity results. Also the large Forest Energy Project of Central Finland was completed. The project was a significant technology transfer and information dissemination project. (orig.)

  14. 24 CFR 3280.308 - Formaldehyde emission controls for certain wood products.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Formaldehyde emission controls for certain wood products. 3280.308 Section 3280.308 Housing and Urban Development Regulations Relating to... Body and Frame Construction Requirements § 3280.308 Formaldehyde emission controls for certain wood...

  15. Production of Short-Rotation Woody Crops Grown with a Range of Nutrient and Water Availability: Establishment Report and First-Year Responses

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Coyle; J. Blake; K. Britton; M.; R.G. Campbell; J. Cox; B. Cregg; D. Daniels; M. Jacobson; K. Johnsen; T. McDonald; K. McLeod; E.; D. Robison; R. Rummer; F. Sanchez; J.; B. Stokes; C. Trettin; J. Tuskan; L. Wright; S. Wullschleger

    2003-12-31

    Coleman, M.D., et. al. 2003. Production of Short-Rotation Woody Crops Grown with a Range of Nutrient and Water Availability: Establishment Report and First-Year Responses. Report. USDA Forest Service, Savannah River, Aiken, SC. 26 pp. Abstract: Many researchers have studied the productivity potential of intensively managed forest plantations. However, we need to learn more about the effects of fundamental growth processes on forest productivity; especially the influence of aboveground and belowground resource acquisition and allocation. This report presents installation, establishment, and first-year results of four tree species (two cottonwood clones, sycamore, sweetgum, and loblolly pine) grown with fertilizer and irrigation treatments. At this early stage of development, irrigation and fertilization were additive only in cottonwood clone ST66 and sweetgum. Leaf area development was directly related to stem growth, but root production was not always consistent with shoot responses, suggesting that allocation of resources varies among treatments. We will evaluate the consequences of these early responses on resource availability in subsequent growing seasons. This information will be used to: (1) optimize fiber and bioenergy production; (2) understand carbon sequestration; and (3) develop innovative applications such as phytoremediation; municipal, industrial, and agricultural wastes management; and protection of soil, air, and water resources.

  16. The development of a wood fuel gasification plant utilising short rotation coppice and forestry residues: project ARBRE

    International Nuclear Information System (INIS)

    Pitcher, K.F.; Lundbergt, H.

    1997-01-01

    This paper will discuss the development of ARBRE Energy, a joint venture company that includes Yorkshire Environmental of the United Kingdom and Tenniska Processer AB of Sweden. The project will establish 2000 hectares of short rotation coppices, some of which will be organically fertilized with digested sewage sludges, to provide 80% of the fuel requirements of a biomass integrated gasification combined cycle (BIGCC) electricity generation plant. The remaining 20% of the fuel requirements will come from forestry waste, although in the first 5 years all the fuel will come from the forestry sources until the coppices are mature. The project will construct a gasification plant at Eggborough, North Yorkshire, England, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 MW of electricity. It has been included in the 1993 tranche of the UK's Non Fossil Fuel Obligation (NFFO) and has gained financial support from the European Commission's THERMIE programme as a targeted BIGCC project. The project's technical and environmental effects and benefits will be examined in detail, together with the award of its planning permit and agreement on its operating license. (author)

  17. Allometric equations commonly used for estimating shoot biomass in short-rotation wood energy species: a review

    Directory of Open Access Journals (Sweden)

    Julio Cesar Ríos-Saucedo

    2016-01-01

    Full Text Available Los cultivos dendroenergéticos de corta rotación en monte bajo (Short Rotation Coppice -SRC comúnmente están formados por individuos unifustales en el primer ciclo de corta, pero a partir del segundo ciclo, de cada cepa surgen numerosos vástagos o brotes, los cuales presentan desafíos interesantes al momento de estimar su biomasa. El objetivo de este trabajo fue identificar especies, longitud de rotación y tipos de modelos alométricos usados para estimar biomasa en SRC, en revistas científicas de las bases de datos Scopus y Web of Science. Entre los modelos para estimar la biomasa (y de uso más frecuente destaca el exponencial, que tiene como variable predictora el diámetro normal ( D ( y = b 0 D b 1 , diámetro basal de tallo ( Db ( y = b 0 Db b 1 y la combinación de diámetro normal al cuadrado por la altura total ( D 2 H ( y = b 0 + b 1 D 2 H . Los géneros con mayor número de modelos diferentes fueron Populus, Salix y Eucalyptus . Los dos primeros son los más estudiados. La longitud de rotación empleada en los cultivos estudiados varió de uno a 15 años.

  18. Wood fuel production technologies in EU countries

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, P [Finnish Forest Research Institute, Vantaa (Finland)

    1998-12-31

    The presentation reviews the major technologies used for the production of fuel chips for heating plants in Europe. Three primary options are considered: production of whole-tree chips from young trees for fuel; integrated harvesting of fiber and energy from thinning based on tree-section system; and production of fuel chips from logging residue in clear-cut areas after fully mechanized logging. The characteristics of the available biomass reserve and proven technology for its recovery are discussed. The employment effects of fuel chip production and the costs of wood fuels are also briefly discussed. (author) 3 refs., 3 figs.

  19. Wood fuel production technologies in EU countries

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, P. [Finnish Forest Research Institute, Vantaa (Finland)

    1997-12-31

    The presentation reviews the major technologies used for the production of fuel chips for heating plants in Europe. Three primary options are considered: production of whole-tree chips from young trees for fuel; integrated harvesting of fiber and energy from thinning based on tree-section system; and production of fuel chips from logging residue in clear-cut areas after fully mechanized logging. The characteristics of the available biomass reserve and proven technology for its recovery are discussed. The employment effects of fuel chip production and the costs of wood fuels are also briefly discussed. (author) 3 refs., 3 figs.

  20. Hall magnetohydrodynamics simulations of end-shorting induced rotation in field-reversed configurations

    International Nuclear Information System (INIS)

    Macnab, A. I. D.; Milroy, R. D.; Kim, C. C.; Sovinec, C. R.

    2007-01-01

    End-shorting of the open field lines that surround a field-reversed configuration (FRC) is believed to contribute to its observed rotation. In this study, nonlinear extended magnetohydrodynamics (MHD) simulations were performed that detail the end-shorting process and the resulting spin-up of the FRC. The tangential component of the electric field E T is set to zero at the axial boundaries in an extended MHD model that includes the Hall and ∇P e terms. This shorting of the electric field leads to the generation of toroidal fields on the open field lines, which apply a torque leading to a rotation of the ions on the open field lines. The FRC then gains angular momentum through a viscous transfer from the open field line region. In addition, it is shown that spin-up is still induced when insulating boundaries are assumed

  1. Short period tidal variations of earth rotation

    Science.gov (United States)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.; Dickey, J. O.

    1981-01-01

    It is explained that the tidal deformation of the earth's polar moment of inertia by the moon and sun cause periodic variations in rotation. The short period oscillations give rise to a meter-sized, diurnal signature in the lunar laser ranging data obtained at McDonald Observatory. A solution is given for the scale parameter k/C at fortnightly and monthly tidal frequencies. The results are compared with those obtained by other investigators and with a theoretical estimate which includes the effect of oceans and a decoupled fluid core.

  2. Prospects for wood products trade under the new partnership for ...

    African Journals Online (AJOL)

    This paper evaluates the prospects for the development of inter-and ... the adoption of common policy to secure better deals for the wood products ... of value added products targetted towards foreign exchange conservation and substitution.

  3. Mixture toxicity of wood preservative products in the fish embryo toxicity test.

    Science.gov (United States)

    Coors, Anja; Dobrick, Jan; Möder, Monika; Kehrer, Anja

    2012-06-01

    Wood preservative products are used globally to protect wood from fungal decay and insects. We investigated the aquatic toxicity of five commercial wood preservative products, the biocidal active substances and some formulation additives contained therein, as well as six generic binary mixtures of the active substances in the fish embryo toxicity test (FET). Median lethal concentrations (LC50) of the single substances, the mixtures, and the products were estimated from concentration-response curves and corrected for concentrations measured in the test medium. The comparison of the experimentally observed mixture toxicity with the toxicity predicted by the concept of concentration addition (CA) showed less than twofold deviation for all binary mixtures of the active substances and for three of the biocidal products. A more than 60-fold underestimation of the toxicity of the fourth product by the CA prediction was detected and could be explained fully by the toxicity of one formulation additive, which had been labeled as a hazardous substance. The reason for the 4.6-fold underestimation of toxicity of the fifth product could not be explained unambiguously. Overall, the FET was found to be a suitable screening tool to verify whether the toxicity of formulated wood preservatives can reliably be predicted by CA. Applied as a quick and simple nonanimal screening test, the FET may support approaches of applying component-based mixture toxicity predictions within the environmental risk assessment of biocidal products, which is required according to European regulations. Copyright © 2012 SETAC.

  4. Influence of technical parameters of disk-shaped reactor on productivity of heat treatment of crushed wood

    Science.gov (United States)

    Safin, R. R.; Khasanshin, R. R.; Mukhametzyanov, S. R.

    2018-03-01

    The existing installations for heat treatment of the crushed wood are analyzed. The technology of heat treatment of the crushed wood in the devices of disk-shaped type is offered. The results of modeling for the purpose of determination of interrelation of the key design and technological parameters of the disk-shaped device are presented. It is established that the major factors, affecting duration of stay of the material in a device, are the speed of rotation of the mixer, the number of mixers and the number of rakes on the mixer.

  5. Production facility site selection factors for Texas value-added wood producers

    Science.gov (United States)

    Judd H. Michael; Joanna Teitel; James E. Granskog

    1998-01-01

    Value-added wood products manufacturers serve an important role in the economies of many U.S. regions and are therefore sought after by entities such as economic development agencies. The reasons why certain locations for a prospective prodution facility would be more attractive to secondary wood industry producers are not clearly understood. Therefore, this research...

  6. Interest in energy wood and energy crop production among Finnish non-industrial private forest owners

    International Nuclear Information System (INIS)

    Raemoe, A.-K.; Jaervinen, E.; Latvala, T.; Toivonen, R.; Silvennoinen, H.

    2009-01-01

    EU targets and regulations regarding energy production and the reduction of greenhouse gas emissions have been tightening in the 2000s. In Finland the targets are planned to be achieved mainly by increasing the use of biomass. Wood already accounts for a marked proportion of Finnish energy production, but additional reserves are still available. Energy crop production also has considerable potential. Practically all Finnish farmers are also forest owners. Therefore, private forest owners are in a decisive position regarding the supply of energy wood and crops in Finland. In this paper the future supply of biomass is examined according to their past behaviour, intentions and attitudes. Finnish forest owners have a positive attitude towards the use of wood and crops in energy production. Price is becoming more critical as a motive for the supply of energy wood. Recreation and nature conservation play a smaller role than factors related to wood production and forest management as for motives for harvesting energy wood. However, almost a half of forest owners in this study were uncertain of their willingness to supply biomass. This is partly due to limited knowledge of the issues involved in energy wood and agricultural energy crop production and the underdeveloped markets for energy biomass. In order to achieve the targets, supply should be activated by further developing market practices, information, guidance and possibly other incentives for landowners. In general, there is interest among landowners in increasing the supply of energy biomass. However, the growth of supply presumes that production is an economically attractive and competitive alternative, that the markets are better organized than at present, and that more comprehensive information is available about bioenergy and biomass markets and production techniques.

  7. Wood pellet seminar

    International Nuclear Information System (INIS)

    Aarniala, M.; Puhakka, A.

    2001-01-01

    The objective of the wood pellet seminar, arranged by OPET Finland and North Karelia Polytechnic, was to deliver information on wood pellets, pellet burners and boilers, heating systems and building, as well as on the activities of wood energy advisors. The first day of the seminar consisted of presentations of equipment and products, and of advisory desks for builders. The second day of the seminar consisted of presentations held by wood pellet experts. Pellet markets, the economy and production, the development of the pellet markets and their problems (in Austria), the economy of heating of real estates by different fuel alternatives, the production, delivery and marketing of wood pellets, the utilization of wood pellet in different utilization sites, the use of wood pellets in detached houses, pellet burners and fireplaces, and conversion of communal real estate houses to use wood pellets were discussed in the presentations. The presentations held in the third day discussed the utilization of wood pellets in power plants, the regional promotion of the production and the use of pellets. The seminar consisted also of visits to pellet manufacturing plant and two pellet burning heating plants

  8. Integrated production method for wood fuel and pulp wood in Northern Finland; Integroitu energiapuun tuotanto-menetelmae Pohjois-Suomessa

    Energy Technology Data Exchange (ETDEWEB)

    Hooli, A [Hooli Oy, Kemi (Finland); Ranta, T [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    Hooli Oy, operating mainly in the Northern Finland has developed the production method suitable for bunch-processing of small wood. The mobile machine, consisting of delimber-debarker, and fuel fraction crusher units, produces debarked stemwood for pulping industry and branchwood-bark chips for thermal power stations. The basic method has been ready for demonstration and practical applications since in the beginning of year 1996. The objective of the project is to develop a method suitable for bundle processing of small wood, in which the trees are delimbed and debarked, and the formed waste wood is crushed using a machine unit, developed especially for this purpose. The method is based on utilisation of a separate delimbing-debarking unit, which operates separately from the pulpwood transportation chain, so the pulpwood transportations can be done at the proper time either as debarked roundwood or chips. Based on field experiments in 1995 - 1996, to attain the targets of the project looks promising. In 1997 there will happen technical modifications to the machine to improve the debarking results (target < 1 % bark content) of the bolts and to improve the logistic productivity of the whole production chain

  9. Willow wood production on radionuclide polluted areas

    Directory of Open Access Journals (Sweden)

    Rodkin Oleg I.

    2010-01-01

    Full Text Available ABSTRACT: One of the key environmental problems in Belarus is effective use of agricultural lands contaminated by radionuclide due to the Chernobyl disaster. The alternative method to traditional agricultural crops is fast growing willow cultivation. It is possible to use biomass of willow as renewable energy source. The goal of our investigation was the estimation of environmental aspects of willow wood production on polluted areas. The field study experiments (2007-2010 were conducted at Krichev district of Mogilev region in eastern Belarus. This region characterized by high level of Cs-137 contamination as well as high level of heavy metals pollution. In the first stage of experiments, the concentration of cesium-137 in different parts of willow biomass had been measured and transfer factor calculated. The measuring had been done for leaves, roots, and wood. To control cesium-137 accumulation in willow biomass we apply different types (nitrogen N, phosphorus P and potassium K and dose of fertilizer. The experiments show that potassium mineral fertilizer is the key factor for radionuclide accumulation control. The optimal dose of potassium is 90 kg per hectare. On the base of experimental results the model of cesium-137 accumulation in the wood for a 21 year has been developed. In accordance with calculation to the end of willow cultivation (21 year concentration of cesium-137 in wood will not be higher than permitted even with the level of cesium-137 contamination in the soil 1480 kBq/m2 (maximum 140 kqB/m2 with permitted level for firewood is 740 Bq/kg.. The concentration of cesium-137 in the roots increases gradually and get maximum in 21 year (3000 kqB/m2. Our results confirm that in the sum about 0.8 million hectares of radionuclide polluted arable lands partly excluded from agricultural practice in Belarus could be used for willow biomass production.

  10. Transitioning Wood Furniture Products towards Sustainability

    OpenAIRE

    Lu, Lei; Zhang, WeiGuang; Zhang, WeiQing

    2008-01-01

    Wood Furniture Products (WFPs) play a significant role in both the global economy and the transition of society towards sustainability. This paper begins with a brief description of the industry and highlights the current challenges and compelling measures of WFPs from a systems perspective through the lens of the Framework for Strategic Sustainable Development (FSSD) and by applying backcasting from sustainability principles (SPs). An examination of the challenges and opportunities of WFPs i...

  11. Wood preservation

    Science.gov (United States)

    Rebecca E. Ibach

    1999-01-01

    When left untreated in many outdoor applications, wood becomes subject to degradation by a variety of natural causes. Although some trees possess naturally occurring resistance to decay (Ch. 3, Decay Resistance), many are in short supply or are not grown in ready proximity to markets. Because most commonly used wood species, such as Southern Pine, ponderosa pine, and...

  12. Short rotation woody crops: Using agroforestry technology for energy in the United States

    International Nuclear Information System (INIS)

    Wright, L.L.; Ranney, J.W.

    1991-01-01

    Agroforestry in the United States is being primarily defined as the process of using trees in agricultural systems for conservation purposes and multiple products. The type of agroforestry most commonly practiced in many parts of the world, that is the planting of tree crops in combination with food crops or pasture, is the type least commonly practiced in the United States. One type of agroforestry technique, which is beginning now and anticipated to expand to several million acres in the United States, is the planting of short-rotation woody crops (SRWCs) primarily to provide fiber and fuel. Research on SRWC's and environmental concerns are described

  13. Criterion 6, indicator 28 : total and per capita consumption of wood and wood products in round wood equivalents

    Science.gov (United States)

    James L. Howard; Rebecca Westby; Kenneth E. Skog

    2010-01-01

    Total consumption of wood and paper products and fuelwood, in roundwood equivalents, increased between 1965 and 1988 from 13.2 to 18.9 billion cubic feet. Since 1988, it has been about 20 billion cubic feet per year. Total per capita consumption increased between 1965 and 1987, from 68 to 83 ft3 per year. Since 1987 through 2006, per capita...

  14. Marketing of non-wood forest products: Case study of the enterprise for forest mushroom processing

    Directory of Open Access Journals (Sweden)

    Keča Ljiljana

    2009-01-01

    Full Text Available Under the impact of climate changes it is increasingly obvious that forestry should rely more strongly on the multi­functional character of the managed resources. In addition to wood, there is a series of non­wood products and services offered by forests. Non­wood forest products and services consist of various fruits of forest trees and shrubs, mushrooms, various objects made of non­wood material, and especially forest social services, such as recreation, tourism, hunting, photo­safari, etc. This paper presents a marketing analysis on the example of the enterprise dealing with the purchase, processing and sale of wild mushrooms and products made of mushrooms. The study applies a modern methodological approach implemented in similar researches.

  15. Production physiology and morphology of Populus species and their hybrids grown under short rotation. II. Biomass components and harvest index of hybrid and parental species clones

    Energy Technology Data Exchange (ETDEWEB)

    Scarascia-Mugnozza, G. E. [Univ. of Tuscia, Viterbo, (Italy); Ceulemans, R. [Antwerp Univ., Wilrijk (Belgium); Heilman, P. E. [Washington State Univ., Olympia, WA (United States); Isebrands, J. G.; Stettler, R. F.; Hinckley, T. M. [Forest Service, Rhinelander, WI (United States). North Central Forest Experiment Station

    1997-03-01

    Growth and biomass components of four poplar clones were studied during four consecutive years of short-rotation culture in western Washington, U.S.A. Results confirmed previous observations indicating the high productive potential of hybrid clones. In two of the hybrid clones tested, large differences in biomass distribution among tree components and in the pattern of growth were evident, as indicated by harvest index and root/shoot ratios. Results suggest that the clonal differences shown in total biomass, in allocation to different tree components, and in harvest index, have important implications for future poplar breeding programs. 39 refs., 4 tabs., 4 figs.

  16. Multi-Criteria Decision-Making Model for the Material Flow of Resonant Wood Production

    Directory of Open Access Journals (Sweden)

    Patrik Aláč

    2017-03-01

    Full Text Available This paper proposes a multi-criteria decision-making model, for the selection and evaluation of the most valuable wooden input—resonant wood. Application of a given model can improve the process of input valuation as well as impact and improve particular economic indicators for the resonant wood manufacturer. We have tried to describe and evaluate the supply chain of resonant wood manufacturing and production of musical instruments. Particular value-added and non-value-added activities have been chosen according to the logical sequence of technology. Then, concrete criteria were specified and their significance weightings. Another important part of our paper is the description of resonant wood, specifications, and demands on log and wood species. There are some important physical and mechanical properties which should be taken into account and evaluated during the production of musical instruments. By the application of this model, a particular enterprise can reach an enhanced tool for the continuous evaluation of the product flowing through the supply chain. Visibility of particular operations and their logical sequence, presented by Petri nets, can lead to easier detection of possible defects in these operations and their origin. So, the main purpose of the paper lies in the suggestion of an objective and quantified managerial tool for the decision making.

  17. Dry Matter Losses and Greenhouse Gas Emissions From Outside Storage of Short Rotation Coppice Willow Chip.

    Science.gov (United States)

    Whittaker, Carly; Yates, Nicola E; Powers, Stephen J; Misselbrook, Tom; Shield, Ian

    This study examined the dry matter losses and the greenhouse gas (GHG) concentrations within two short rotation coppice (SRC) willow wood chip storage heaps. One heap was built on a grassland area (East Midlands) and the other (Rothamsted) on a concrete hard standing. A series of 1- and 3-m probes were embedded in the heaps in order to retrieve gas samples for analysis, and pre-weighed net bags were positioned in the core of the heap to detect dry matter losses. The bagged samples showed dry matter losses of 18 and 19 % in the East Midlands and Rothamsted heaps after 210 and 97 days storage, respectively. The Rothamsted heap showed a whole-heap dry matter loss of 21 %. During this time, the wood chips dried from 54 to 39 % moisture content in the East Midlands heap and 50 to 43 % at Rothamsted. The results from analysing the whole Rothamsted heap indicated an overall loss of 1.5 GJ per tonne stored, although measurements from bagged samples in the core suggested that the chips dried sufficiently to have a minimal energy loss from storage. The process of mixing the heap, however, led to incorporation of wet outer layers and hence the average moisture content was higher in an average sample of chip. After establishment of the heaps, the temperature rose rapidly and this correlated with a peak in carbon dioxide (CO 2 ) concentration within the heap. A peak in methane (CH 4 ) concentration was also detected in both heaps, though more noticeably in the East Midlands heap after around 55 days. In both instances, the peak CH 4 concentration occurred as CO 2 concentrations dropped, suggesting that after an active period of aerobic decomposition in the first 2 months of storage, the conditions in the heap became anaerobic. The results from this study suggest that outside wood chip storage is not an efficient method of storing biomass, though this may be location-specific as there are some studies showing lower dry matter losses. It is necessary to explore other

  18. Growth and yield of mixed polyclonal stands of Populus in short-rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Benbrahim, Mohammed; Gavaland, Andre [INRA centre de Toulouse (France). Unite Agroforesterie et foret Paysanne; Gauvin, Jean [INRA centre d' Orleans (France). Unite d' Amelioration des arbres forestiers

    2000-07-01

    Eight clones of poplar were used to compare the growth and productivity of monoclonal and polyclonal mixed plantations in short-rotation coppice. At the end of the eight growing season, the diameter at breast height (DBH) and height of trees were measured and dry weight and yield were estimated. Polyclonal mixtures did not affect mortality. Few differences in growth were observed between clones in monoclonal plots. Polyclonal mixture slightly affected the growth and tree size of the clones compared with monoclonal plots. No increase in stand heterogeneity in relation to clone deployment was observed. A neighbourhood index was calculated for each tree and was significantly affected by polyclonal mixture. However, the relationship between the neighbourhood index and the DBH indicated that this effect did not cause a great change in DBH. Consequently, dry weight and yield productivity were not affected by clone deployment.

  19. Performance of Schizolobium amazonicum Wood in Bleached Kraft Pulp Production

    Directory of Open Access Journals (Sweden)

    Camila Sarto

    2015-05-01

    Full Text Available This study aimed to evaluate the characteristics of Schizolobium amazonicum wood, specifically its performance in bleached kraft pulp production and the characteristics of its pulp. Chips of Schizolobium amazonicum and Eucalyptus grandis x Eucalyptus urophylla (reference were used. The following parameters were evaluated in the wood: basic density, total extractives, total lignin, holocellulose, and fiber morphology. The pulping simulations were carried out in a laboratory digester, with parameters set to obtain pulp with kappa number 19 ± 0.5. Both pulps were bleached in a PFI mill and submitted to physical-mechanical tests. The results showed that S. amazonicum wood has low basic density and higher content of extractives when compared to E. grandis x E. urophylla wood. For pulping, S. amazonicum required higher alkali charge and H factor to achieve the same delignification level of E. grandis x E. urophylla, resulting in a lower yield, pulp with lower viscosity, and higher wood specific consumption. During bleaching, the brightness gain and final viscosity of S. amazonicum pulp were lower than E. grandis x E. urophylla pulp. Moreover, S. amazonicum pulp had worse physical-mechanical characteristics than E. grandis x E. urophylla.

  20. Environmental effects of growing short-rotation woody crops on former agricultural lands

    International Nuclear Information System (INIS)

    Tolbert, V.R.; Thornton, F.C.; Joslin, J.D.

    1997-01-01

    Field-scale studies in the Southeast have been addressing the environmental effects of converting agricultural lands to biomass crop production since 1994. Erosion, surface water quality and quantity and subsurface movement of water and nutrients from woody crops, switchgrass and agricultural crops are being compared. Nutrient cycling, soil physical changes, and crop productivity are also being monitored at the three sites. Maximum sediment losses occurred in the spring and fall. Losses were greater from sweetgum planted without a cover crop than with a cover crop. Nutrient losses of N and P in runoff and subsurface water occurred primarily after spring fertilizer application. These field plot studies are serving as the basis for a water shed study initiated in 1997. Results from the two studies will be used to develop and model nutrient and hydrologic budgets for woody crop plantings to identify potential constraints to sustainable deployment of short-rotation woody crops in the southeastern United States. (author)

  1. Non_standard Wood

    DEFF Research Database (Denmark)

    Tamke, Martin

    . Using parametric design tools and computer controlled production facilities Copenhagens Centre for IT and Architecture undertook a practice based research into performance based non-standard element design and mass customization techniques. In close cooperation with wood construction software......, but the integration of traditional wood craft techniques. The extensive use of self adjusting, load bearing wood-wood joints contributed to ease in production and assembly of a performance based architecture....

  2. Characterization of Cypress Wood for Kraft Pulp Production

    Directory of Open Access Journals (Sweden)

    António J. A. Santos

    2014-06-01

    Full Text Available Wood samples of Cupressus arizonica, C. lusitanica, and C. sempervirens were evaluated for chemical, anatomical, and pulp characteristics as raw material for pulp production. Two 17-year-old trees per species were harvested, and wood samples were taken at a height of 2 m. Wood chips from Pinus pinaster (Portugal and P. sylvestris (Finland were used as references. C. arizonica differed from C. lusitanica and C. sempervirens with significantly lower (p < 0.05 tracheid diameter and wall thickness in the earlywood. The total extractives contents were 3.9%, 3.3%, and 2.5% for C. lusitanica, C. sempervirens, and C. arizonica, respectively, lower than the 5.1% for P. pinaster and 4.5% for P. sylvestris. Klason lignin content ranged from 33.0 to 35.6%, higher than the 28.0 to 28.7% for the pinewoods. The kraft pulp yields for C. arizonica, C. lusitanica, and C. sempervirens were 37.7%, 36.7%, and 38.7%, respectively, with kappa numbers of 32.0, 31.6, and 28.7, respectively; the yield values were 40.8% and 42.8%, with kappa numbers of 23.4 and 21.0, for P. pinaster and P. sylvestris, respectively. The cypress species are clearly different from pine in relation to wood pulping behavior. Among the cypress, C. sempervirens provided the best pulping results.

  3. Updating of U.S. Wood Product Life-Cycle Assessment Data for Environmental Product Declarations

    Science.gov (United States)

    Richard Bergman; Elaine Oneil; Maureen Puettmann; Ivan Eastin; Indroneil Ganguly

    2014-01-01

    The marketplace has an increasing desire for credible and transparent product eco-labels based on life-cycle assessment (LCA) data, especially involving international trade. Over the past several years, stakeholders in the U.S. wood products industry have developed many such “eco-labels” under the ISO standard of LCA-based environmental product declarations (EPDs). The...

  4. Recent activities in flame retardancy of wood-plastic composites at the Forest Products Laboratory

    Science.gov (United States)

    Robert H. White; Nicole M. Stark; Nadir Ayrilmis

    2011-01-01

    For a variety of reasons, wood-plastic composite (WPC) products are widely available for some building applications. In applications such as outdoor decking, WPCs have gained a significant share of the market. As an option to improve the efficient use of wood fiber, the USDA Forest Service, Forest Products Laboratory (FPL), has an extensive research program on WPCs....

  5. Violates stem wood burning sustainable development?

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    2008-01-01

    friendly effects of substituting wood burning for fossil fuels. With reference to Bent Sørensen's classical work on 'Renewable Energy' the assumption of CO2-neutrality regarding incineration is problematised when applied to plants with long rotation periods as trees. Registered CO2-emissions from wood...... burning are characterised together with particle and PAH emissions. The positive treatment of wood stove-technology in the Danish strategy for sustainable development (draft 2007) is critically evaluated and approaches to better regulation are identified....

  6. Exposure testing of fasteners in preservative treated wood: Gravimetric corrosion rates and corrosion product analyses

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, Samuel L., E-mail: szelinka@fs.fed.u [USDA Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726 (United States); Sichel, Rebecca J. [College of Engineering, University of Wisconsin, Madison, WI 53706 (United States); Stone, Donald S. [Department of Materials Science and Engineering, College of Engineering, University of Wisconsin, Madison, WI 53706 (United States)

    2010-12-15

    Research highlights: {yields} The composition of the corrosion products was similar for the nail head and shank. {yields} Reduced copper was not detected on any of the fasteners. {yields} Measured corrosion rates were between 1 and 35 {mu}m year{sup -1}. - Abstract: Research was conducted to determine the corrosion rates of metals in preservative treated wood and also understand the mechanism of metal corrosion in treated wood. Steel and hot-dip galvanized steel fasteners were embedded in wood treated with one of six preservative treatments and exposed to 27 {sup o}C at 100% relative humidity for 1 year. The corrosion rate was determined gravimetrically and the corrosion products were analyzed with scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Although the accepted mechanism of corrosion in treated wood involves the reduction of cupric ions from the wood preservative, no reduced copper was found on the corrosion surfaces. The galvanized corrosion products contained sulfates, whereas the steel corrosion products consisted of iron oxides and hydroxides. The possible implications and limitations of this research on fasteners used in building applications are discussed.

  7. EFFECT OF TAXATION ON PRODUCTION COST, ON ROTATION AND ON REFORM OF Eucalyptus spp.

    Directory of Open Access Journals (Sweden)

    José Luiz Pereira de Rezende

    2005-03-01

    Full Text Available This work was designed to determine the influence of tributes on the optimum economical age of harvestingEucalyptus spp. stands, to determine the number of cuttings between the reform of Eucalyptus spp. stands, to determine and analyzethe contribution of tributes to the wood production costs. Many tributes are due on the forest sector. In this study, the tributesconsidered are the ones falling on the production of forest on products and services (TMS, income tax on businessoperation (ITJP, social raw material, not including, therefore, those which are due on industrialization. They are: forestrate (FR, cadastrum and registration rate (CRR, chainsaw record rate (MRR, chainsaw ownership tax (MPT, landownership tax (RTT, commercialization tax contribution on profit (SCP, contribution for financing of social security(CFSS, Contribution for the National Institute of Social Security (CNISS, contribution for the social integration program(CSIP, rural syndicate contribution (RSH. The criterion utilized to determine economic rotation and to determine theoptimum moment to renew the stand was the Net Present Value (NPV, considering an infinite planning horizon. The resultsobtained allowed to identify the ratio of the tributes in the total wood production cost.. It was found that the optimumharvesting time, not considering the tributes, occurred at 7 years o age; considering all the tributes, the optimum age occurredat 8 years. By not considering tributes would cause to unduly anticipate the optimum harvesting age. The optimum momentto make the renewal of the stand, not considering the tributes, occurred at 21 years, after the third cutting. However,taking into account the tributes, it would occur at 32 years (after the fourth cutting. By not considering the effect oftributation would cause one to unduly antecipate the optimum time to renew the stand. Tributation stands for 37.78% ofwood production cost, i.e., taxes contribute with 3.8%, imposts with 25

  8. Chapter 14: Evaluating the Leaching of Biocides from Preservative-Treated Wood Products

    Science.gov (United States)

    Stan T. Lebow

    2014-01-01

    Leaching of biocides is an important consideration in the long term durability and any potential for environmental impact of treated wood products. This chapter discusses factors affecting biocide leaching, as well as methods of evaluating rate and quantity of biocide released. The extent of leaching is a function of preservative formulation, treatment methods, wood...

  9. BROMINATION OF 4-VINYLCYCLOHEXANE AND APPLYING THE RESULTING PRODUCT TO IMPROVE THE FLAME RETARDANT PROPERTIES OF WOOD

    Directory of Open Access Journals (Sweden)

    N. S. Nikulina

    2014-01-01

    Full Text Available Currently, the demand for timber is increasing. Wood and products on its basis are considered to be the most popular in the construction industry, furniture industry, as building materials and other However, along with the positive features of this material there are also negative factors, which include low resistance to biological degradation, high temperature, resistance. Wood and materials based on it are the most flammable, and fire safety is characterized by the velocity of propagation of fire on the wooden structure. He is able to destroy it in a matter of minutes. So the wooden house elements must be protected from fire. It was therefore necessary for the fire protection of wood. It is in the handling of wood with flame retardants. Basic fire fighting methods is the impregnation of wood antipyrene composition, painting fire paint and constructive ways - insulation of timber, non-combustible compositions which can resist the fire. In the work of brominated 4-vinylcyclohexane formed as a by-product in the petrochemical industry, in chloroform synthesized compound with bromine 62-64 % and the possibility of using this product to get antiferromag composition. It is established that the application for the protective treatment of wood synthesized flame retardant has shown that this product can be used for the protective treatment of natural wood to make it flame retardant properties. Use as antiperiodic compositions bromodomain based products 4-vinylcyclohexane allows to obtain images of wood first group of flame retardant efficiency.

  10. Solid-wood production from temperate eucalypt plantations: a ...

    African Journals Online (AJOL)

    Since 1988, there has been a major focus in Tasmania on research for the management of temperate eucalypt plantations for solid wood. This coincided with the formal transfer of large areas of native forest that had previously been part of the production forest estate into reserves, a decision that triggered the establishment ...

  11. Effect of wood type and thickness on acetification kinetics in traditional vinegar production

    Directory of Open Access Journals (Sweden)

    Maria-Jesús Torija

    2009-04-01

    Full Text Available Maria-Jesús Torija1, Estibaliz Mateo1, Carlos-Alfredo Vegas1, Carla Jara1, Angel González1, Montse Poblet1, Cristina Reguant1, Jóse-Manuel Guillamon2, Albert Mas11Biotecnología enológica. Departament de Bioquímica i Biotecnologia, Facultat d’enologia, Universitat Rovira i Virgili, Tarragona, Spain; 2Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (CSIC, Burjassot, València, SpainAbstract: Traditional vinegar production is a lengthy process which implies high operational risks and jeopardizes the organoleptic characteristics of the final product. In an effort to solve these problems without changing the traditional model, we modified the wood type and thickness of vinegar barrels. We acetified in triplicate in barrels made of acacia, cherry, chestnut, and oak and in three wood thicknesses (15, 20, and 25 mm in two different vinegar plants. The operating volume was set at 60 L. Reducing wood thickness improved neither maximum acetification velocity or the total length of the process, and in some cases even worsened them. The process took longer in oak barrels than in other types of wood barrel in one of the vinegar plants. Therefore, the choice of wood is a parameter to be considered in the wine vinegar production. Keywords: acacia, cherry, chestnut, oak, acetic acid bacteria

  12. Admixture of lime in connection with deep rotary cultivation for short rotation energy forest

    Energy Technology Data Exchange (ETDEWEB)

    Danfors, B; Stambeck, A; Aasberg, G

    1985-01-01

    Spaghnum soils, which could be used for production of short rotation energy forests (Salix), require lime for the adjustment of the pH-level to obtain production at acceptable levels. It is necessary that the lime is distributed uniformly in the soil profile to a depth of at least 40-50 cm. The investigation has studied three methods of spreading and incorporating lime in the uppermost layer of soil. The first method concerned ploughing of peat soil with a conventional agricultural plough, the second method concerned rotovation with an agricutural rotovator to maximally 20 cm depth. In both cases the lime has been spread with a centrifugal broadcaster before the soil tillage. The third method implied simultaneous spreading of the lime and rotovation of the peat to a depth of maximally 50 cm, JTI has built and constructed a machine for this purpose. Ploughing as the only method of soil tillage of peat soils before planting of short rotation energy forests is rejected for two reasons. 1. Certain peat soils which have such mechanical properties that they immediately completely clog a plough. 2. The deficient distribution of lime in the ploughed layer. Rotovation with an agricultural rotovator has been done with good results. The delivery of lime in connection with the rotovation works well provided that the lime is dry. The peat is efficiently disintegrated and the lime gets a sufficiently uniform admixture. The cultivation depth, 40-50 cm, appears to be sufficient for the Salix plants to cope with the water supply during the summer. Limitations which should be discussed concern the cost of such an intensive and deep tillage of the peat.

  13. Metal leaching in mine tailings: short-term impact of biochar and wood ash amendments.

    Science.gov (United States)

    Beauchemin, Suzanne; Clemente, Joyce S; MacKinnon, Ted; Tisch, Bryan; Lastra, Rolando; Smith, Derek; Kwong, John

    2015-01-01

    Biochar is perceived as a promising amendment to reclaim degraded, metal-contaminated lands. The objective of this study was to compare the potential of biochar and wood ash amendments to reduce metal(loid) leaching in mine tailings. A 2-mo leaching experiment was conducted in duplicate on acidic and alkaline tailings, each mixed with 5 wt.% of one of the following amendments: three wood-derived, fast-pyrolysis biochars (OC > 57 wt.%) and two wood ash materials (organic carbon [OC] ≤ 16 wt.%); a control test with no carbon input was also added. The columns were leached with water after 1, 2, 4, 8, 16, 32, and 64 d, and the leachates were monitored for dissolved metals, OC, and pH. For the acidic and alkaline tailings, the most significant impact on metal mobility was observed with wood ash materials due to their greater neutralization potential (>15% CaCO eq.) compared with biochar (≤3.3% CaCO eq.). An increase of 1 pH unit in the wood ash-treated alkaline tailings led to an undesirable mobilization of As and Se. The addition of biochar did not significantly reduce the leaching of the main contaminants (Cu and Ni in the acidic tailings and As in the alkaline tailings) over 2 mo. The Se attenuation noted in some biochar-treated acid tailings may be mainly due to a slight alkaline effect rather than Se removal by biochar, given the low capacity for the fresh biochars to retain Se under acidic conditions (pH 4.5). The increased loss of dissolved OC in the biochar-amended systems was of short duration and was not associated with metal(loid) mobilization. Copyright © Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada.

  14. Material use and production changes in the U.S. wood pallet and container industry: 1992 to 2006

    Science.gov (United States)

    R. J. Bush; P. A. Araman

    2009-01-01

    A series of five studies conducted by the Virginia Tech Department of Wood Science and Forest Products, in collaboration with the USDA - Forest Service (Blacksburg, Virginia), have tracked activity in the U.S. wood pallet and container industry between 1992 and 2006. The studies documented trends in wood use and pallet production with in the industry, both new...

  15. Wood Products Other Building Materials Used in New Residential Construction in the United States

    Science.gov (United States)

    David B. McKeever; Joe Elling

    2015-01-01

    On average, new residential construction accounts for about one-third of all wood products consumed in the United States annually. During periods of robust housing activity, 45% or more of all wood products consumed are for new single-family and multifamily housing. This can fall to as low as 20% or less during times of economic recession. Unfortunately, 2012 was not...

  16. Coniferous tree plantations in forest conditions-economic analysis of dedicated and semi-dedicated pathways to increase wood production

    International Nuclear Information System (INIS)

    Rakotoarison, Hanitra; Richter, Claudine; Cailly, Priscilla; Deleuze, Christine; Berthelot, Alain

    2015-01-01

    To meet growing demand for wood, particularly softwoods, the authors study a number of new silvicultural pathways for planting 3 species: Douglas fir, spruce and maritime pine. The goal of these pathways is to achieve specialised production of either industrial and workable timber, or a mixture of industrial and workable timber with medium-diameter workable timber. Pathways of this type have already been standardised for hardwoods, generally on fertile farmland. In a less fertile forest context, softwoods have a significant potential for woody production but specialized pathways and their profitability have yet to be studied. This article describes the innovative work being done to construct and simulate profitable production, new potential pathways, where plantation density, rotation time, the level of fertility are made to vary using the data from the FCBA test network in conjunction with the FCBA growth models (Oasis for spruce and Douglas fir, Sylveco for maritime pine). Economic data is derived from auction sales statistics and the ONF management and forestry work costs for the period 2012-2015. The Economics module developed by FCBA and ONF on the Capsis platform in the framework of the ICI project (Futurol) was used for the economic simulations. The analyses show that compared to conventional pathways, these pathways generally increase productivity but are nonetheless less profitable than current economic assumptions, although results vary according to species, fertility and the particular pathway. The sensitivity study shows that variations in the price of wood could alter the performance ratings as between conventional and specialised pathways. (authors)

  17. Carbon sequestration in wood products: a method for attribution to multiple parties

    International Nuclear Information System (INIS)

    Tonn, Bruce; Marland, Gregg

    2007-01-01

    When forest is harvested some of the forest carbon ends up in wood products. If the forest is managed so that the standing stock of the forest remains constant over time, and the stock of wood products is increasing, then carbon dioxide is being removed from the atmosphere in net and this should be reflected in accounting for greenhouse gas emissions. We suggest that carbon sequestration in wood products requires cooperation of multiple parties; from the forest owner to the product manufacturer to the product user, and perhaps others. Credit for sequestering carbon away from the atmosphere could acknowledge the contributions of these multiple parties. Accounting under a cap-and-trade or tax system is not necessarily an inventory system, it is a system designed to motivate and/or reward an environmental objective. We describe a system of attribution whereby credits for carbon sequestration would be shared among multiple, contributing parties. It is hoped that the methodology outlined herein proves attractive enough to parties concerned to spur them to address the details of such a system. The system of incentives one would choose for limiting or controlling greenhouse gas emissions could be quite different, depending on how the attribution for emissions and sequestration is chosen

  18. Factors influencing the role of Non-Wood Forest Products and Services

    NARCIS (Netherlands)

    Janse, G.; Ottitsch, A.

    2005-01-01

    In the light of social and economic developments, forest functions other than timber production have gained international importance and recognition. Resulting from this development, Non-Wood Forest Products and Services (NWFPS) are becoming more important, both for the general public as for forest

  19. Closed Loop Short Rotation Woody Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Michael [CRC Development, LLC, Oakland, CA (United States)

    2012-09-30

    CRC Development LLC is pursuing commercialization of shrub willow crops to evaluate and confirm estimates of yield, harvesting, transportation and renewable energy conversion costs and to provide a diverse resource in its supply portfolio.The goal of Closed Loop Short Rotation Woody Biomass Energy Crops is supply expansion in Central New York to facilitate the commercialization of willow biomass crops as part of the mix of woody biomass feedstocks for bioenergy and bioproducts. CRC Development LLC established the first commercial willow biomass plantation acreage in North America was established on the Tug Hill in the spring of 2006 and expanded in 2007. This was the first 230- acres toward the goal of 10,000 regional acres. This project replaces some 2007-drought damaged acreage and installs a total of 630-acre new planting acres in order to demonstrate to regional agricultural producers and rural land-owners the economic vitality of closed loop short rotation woody biomass energy crops when deployed commercially in order to motivate new grower entry into the market-place. The willow biomass will directly help stabilize the fuel supply for the Lyonsdale Biomass facility, which produces 19 MWe of power and exports 15,000 pph of process steam to Burrows Paper. This project will also provide feedstock to The Biorefinery in New York for the manufacture of renewable, CO2-neutral liquid transportation fuels, chemicals and polymers. This project helps end dependency on imported fossil fuels, adds to region economic and environmental vitality and contributes to national security through improved energy independence.

  20. Geographical analyses of wood chips potentials, cost and supply for sustainable energy production in Denmark

    DEFF Research Database (Denmark)

    Möller, Bernd

    2004-01-01

    The paper presents a study which uses a practical application of rasterbased geographical information system to perform cost-supply analysis of wood chips resources for energy production.......The paper presents a study which uses a practical application of rasterbased geographical information system to perform cost-supply analysis of wood chips resources for energy production....

  1. Socio-ecological implications of modifying rotation lengths in forestry.

    Science.gov (United States)

    Roberge, Jean-Michel; Laudon, Hjalmar; Björkman, Christer; Ranius, Thomas; Sandström, Camilla; Felton, Adam; Sténs, Anna; Nordin, Annika; Granström, Anders; Widemo, Fredrik; Bergh, Johan; Sonesson, Johan; Stenlid, Jan; Lundmark, Tomas

    2016-02-01

    The rotation length is a key component of even-aged forest management systems. Using Fennoscandian forestry as a case, we review the socio-ecological implications of modifying rotation lengths relative to current practice by evaluating effects on a range of ecosystem services and on biodiversity conservation. The effects of shortening rotations on provisioning services are expected to be mostly negative to neutral (e.g. production of wood, bilberries, reindeer forage), while those of extending rotations would be more varied. Shortening rotations may help limit damage by some of today's major damaging agents (e.g. root rot, cambium-feeding insects), but may also increase other damage types (e.g. regeneration pests) and impede climate mitigation. Supporting (water, soil nutrients) and cultural (aesthetics, cultural heritage) ecosystem services would generally be affected negatively by shortened rotations and positively by extended rotations, as would most biodiversity indicators. Several effect modifiers, such as changes to thinning regimes, could alter these patterns.

  2. Assessment and management of dead-wood habitat

    Science.gov (United States)

    Hagar, Joan

    2007-01-01

    ; Marcot, 2003). For example, by puncturing bark and fragmenting sapwood, woodpeckers create sites favorable for wood-decaying organisms (Farris et al., 2004), which in turn create habitat for other species and facilitate nutrient cycling. Small mammals that use down wood for cover function in the dispersal of plant seeds and fungal spores (Carey et al., 1999). Resident cavitynesting birds may regulate insect populations by preying on overwintering arthropods (Jackson, 1979; Kroll and Fleet, 1979). These examples illustrate how dead wood not only directly provides habitat for a large number of wildlife species, but also forms the foundation of functional webs that critically influence forest ecosystems (Marcot, 2002; Marcot, 2003). The important and far-reaching implications of management of decaying wood highlight the need for conservation of dead-wood resources in managed forests. Consideration of the key ecological functions of species associated with dead wood can help guide management of dead wood in a framework consistent with the paradigm of ecosystem management (Marcot and Vander Heyden, 2001; Marcot, 2002.) As more information is revealed about the ecological and habitat values of decaying wood, concern has increased over a reduction in the current amounts of dead wood relative to historic levels (Ohmann and Waddell, 2002). Past management practices have tended to severely reduce amounts of dead wood throughout all stages of forest development (Hansen et al., 1991). The large amounts of legacy wood that characterize young post-disturbance forests are not realized in managed stands, because most of the wood volume is removed at harvest for economic and safety reasons. Mid-rotation thinning is used to “salvage” some mortality that might otherwise occur due to suppression, so fewer snags are recruited in mid-seral stages. Harvest rotations of 80 years or less truncate tree size in managed stands, and thus limit the production of large-diameter wood. As a

  3. SRWC bioenergy productivity and economic feasibility on marginal lands.

    Science.gov (United States)

    Ghezehei, Solomon B; Shifflett, Shawn D; Hazel, Dennis W; Nichols, Elizabeth Guthrie

    2015-09-01

    Evolving bioenergy markets necessitate consideration of marginal lands for woody biomass production worldwide particularly the southeastern U.S., a prominent wood pellet exporter to Europe. Growing short rotation woody crops (SRWCs) on marginal lands minimizes concerns about using croplands for bioenergy production and reinforces sustainability of wood supply to existing and growing global biomass markets. We estimated mean annual aboveground green biomass increments (MAIs) and assessed economic feasibility of various operationally established (0.5 ha-109 ha) SRWC stands on lands used to mitigate environmental liabilities of municipal wastewater, livestock wastewater and sludge, and subsurface contamination by petroleum and pesticides. MAIs (Mg ha(-1) yr(-1)) had no consistent relationship with stand density or age. Non-irrigated Populus, Plantanus occidentalis L. and Pinus taeda L. stands produced 2.4-12.4 Mg ha(-1) yr(-1). Older, irrigated Taxodium distchum L., Fraxinus pennsylvanica L., and coppiced P. occidentalis stands had higher MAIs (10.6-21.3 Mg ha(-1) yr(-1)) than irrigated Liquidambar styraciflua L. and non-coppiced, irrigated P. occidentalis (8-18 Mg ha(-1) yr(-1)). Natural hardwood MAIs at 20-60 years were less than hardwood and P. taeda productivities at 5-20 years. Unlike weed control, irrigation and coppicing improved managed hardwood productivity. Rotation length affected economic outcomes although the returns were poor due to high establishment and maintenance costs, low productivities and low current stumpage values, which are expected to quickly change with development of robust global markets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Characterization of Woodchips for Energy from Forestry and Agroforestry Production

    Directory of Open Access Journals (Sweden)

    Rodolfo Picchio

    2012-09-01

    Full Text Available We set out to determine the particle-size distribution, the fiber, the bark and the leaves content, the heating value, the CNH and the ash content of a wide sample of wood chips, collected from 10 forestry and 10 agroforestry production sources. This sampling focused on two main production types: forestry (Full Tree System—FTS—and logging residues—LR and agroforestry (Short Rotation Coppice—SRC. For the forestry production wood chips from coniferous and broadleaf species were considered. For the agroforestry production wood chips from poplar plantations were examined (different clones with two different harvesting intervals. Overall, we collected 400 samples. Particle size distribution was determined with an automatic screening device on 200 samples. The higher heating value was determined on 200 subsamples using an adiabatic bomb calorimeter. The CNH and the ash content was ascertained on another 200 subsamples. FTS and SRC (with three year old sprouts offered the best quality, with high fiber content (71%–80%, favorable particle-size distribution and good energetic parameters. On the contrary, both logging residues and SRC (with two year old sprouts presented a high bark content (18%–27% and occasionally a mediocre particle-size distribution, being often too rich in fines (6%–12%, but the energetic parameters are in the normal range.

  5. Input-output analysis of energy requirements for short rotation, intensive culture, woody biomass

    International Nuclear Information System (INIS)

    Strauss, C.H.; Grado, S.C.

    1992-01-01

    A production model for short rotation, intensive culture (SRIC) plantations was developed to determine the energy and financial cost of woody biomass. The model was based on hybrid poplars planted on good quality agricultural sites at a density of 2100 cuttings ha -1 , with average annual growth forecast at 16 metric tonne, oven dry (mg(OD)). Energy and financial analyses showed preharvest cost 4381 megajoules (MJ) Mg -1 (OD) and $16 (US) Mg -1 (OD). Harvesting and transportation requirements increased the total costs 6130 MJ Mg -1 (OD) and $39 Mg -1 (OD) for the delivered material. On an energy cost basis, the principal input was land, whereas on a financial basis, costs were more uniformly distributed among equipment, land, labor, and materials and fuel

  6. THE SHORT ROTATION PERIOD OF HI’IAKA, HAUMEA’S LARGEST SATELLITE

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, Danielle M.; Margot, Jean-Luc [University of California, Los Angeles, Department of Earth, Planetary, and Space Sciences, 595 Charles Young Drive East, Los Angeles, CA 90095 (United States); Ragozzine, Darin [Florida Institute of Technology, Department of Physics and Space Sciences, 150 West University Boulevard, Melbourne, FL 32901 (United States); Fabrycky, Daniel C. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Burkhart, Luke D.; Holman, Matthew [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fuentes, Cesar [Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Santiago (Chile); Brown, Michael E., E-mail: dhastings@g.ucla.edu [California Institute of Technology, Division of Geological and Planetary Sciences, MC 150-21, Pasadena, CA 91125 (United States)

    2016-12-01

    Hi’iaka is the larger outer satellite of the dwarf planet Haumea. Using relative photometry from the Hubble Space Telescope and Magellan and a phase dispersion minimization analysis, we have identified the rotation period of Hi’iaka to be ∼9.8 hr (double peaked). This is ∼120 times faster than its orbital period, creating new questions about the formation of this system and possible tidal evolution. The rapid rotation suggests that Hi’iaka could have a significant obliquity and spin precession that could be visible in light curves within a few years. We then turn to an investigation of what we learn about the (currently unclear) formation of the Haumea system and family based on this unexpectedly rapid rotation rate. We explore the importance of the initial semimajor axis and rotation period in tidal evolution theory and find that they strongly influence the time required to despin to synchronous rotation, relevant to understanding a wide variety of satellite and binary systems. We find that despinning tides do not necessarily lead to synchronous spin periods for Hi’iaka, even if it formed near the Roche limit. Therefore, the short rotation period of Hi’iaka does not rule out significant tidal evolution. Hi’iaka’s spin period is also consistent with formation near its current location and spin-up due to Haumea-centric impactors.

  7. A Planning Guide for Small and Medium Size Wood Products Companies

    Science.gov (United States)

    Jeff Howe; Stephen Bratkovich

    2005-01-01

    At the beginning of the 21st century, North American wood products companies are facing competitive pressure from numerous sources. Traditional products are being manufactured in new regions (e.g., China and the developing nations), and substitute products are being developed by competing industries (e.g., plastics and composites). The bottom line is strained by...

  8. Testing painted wood : past practices at the Forest Products Laboratory and recommendations for future research

    Science.gov (United States)

    R. Sam Williams

    2009-01-01

    A brief history of paint research at the Forest Products Laboratory (FPL) in Madison, Wisconsin, sets the stage for a discussion of testing paint on wood and wood products. Tests include laboratory and outdoor tests, and I discuss them in terms of several degradation mechanisms (loss of gloss and fading, mildew growth, extractives bleed, and cracking, flaking, and...

  9. Growing short rotation coppice on agricultural land in Germany: A Real Options Approach

    International Nuclear Information System (INIS)

    Musshoff, Oliver

    2012-01-01

    In many cases decision-makers apparently do not adapt as fast as expected to changing economic conditions. This is also the case for the conversion of farm land to short rotation coppice. From an economic point of view, short rotation coppice has become more interesting in the last few years. Nevertheless, farm land still is rarely used to grow this quite unknown crop. Several explanatory approaches (e.g., traditionalistic behavior and risk aversion) are currently discussed in order to explain this behavior. A relatively new explanatory approach is the Real Options Approach. The Real Options Approach uses a comprehensive dynamic-stochastic model that combines the uncertainty of investment returns, the sunk costs, and the temporal flexibility of the investment implementation. The quintessence of the Real Options Approach is that—compared to the Classical Investment Theory—the investment triggers will be shifted upwards if investments involve intertemporal opportunity costs. This paper develops a real options model which allows the determination of triggers on the basis of realistic assumptions. We examined when farmers, who only dispose of sandy soils with little water-storing capacity, should convert set-aside land to short rotation coppice. The results show that farmers should not convert until the present value of the investment returns exceeds the investment costs considerably. Thus, they confirm the empirically observed reluctance in conversion. Furthermore, it turned out that the magnitude of the difference between the Classical Investment Theory and the Real Options Approach depends heavily on the type of stochastic process that underlies the investment returns. -- Highlights: ► Frequently observed reluctance of farmers to convert to short rotation coppice. ► Risk neutral farmers should convert if the investment multiple exceeds 1.57. ► The Real Options Approach is an explanatory approach for this observation. ► Results depend very much on the

  10. Short rotation plantations policy history in Europe: lessons from the past and recommendations for the future.

    Science.gov (United States)

    Lindegaard, Kevin N; Adams, Paul W R; Holley, Martin; Lamley, Annette; Henriksson, Annika; Larsson, Stig; von Engelbrechten, Hans-Georg; Esteban Lopez, Gonzalo; Pisarek, Marcin

    2016-08-01

    Short rotation plantations (SRPs) are fast-growing trees (such as willow ( Salix spp.), poplar ( Populus spp.) and Eucalyptus ) grown closely together and harvested in periods of 2-20 years. There are around 50,000 hectares of SRPs in Europe, a relatively small area considering that there have been supportive policy measures in many countries for 30 years. This paper looks at the effect that the policy measures used in different EU countries have had, and how other external factors have impacted on the development of the industry. Rokwood was a 3-year European funded project which attempted to understand the obstacles and barriers facing the woody energy crops sector using well established methods of SWOT and PESTLE analysis. Stakeholder groups were formed in six different European regions to analyze the market drivers and barriers for SRP and propose ways that the industry could make progress through targeted research and development and an improved policy framework. Based upon the outcomes of the SWOT and PESTLE analysis, each region produced a series of recommendations for policymakers, public authorities, and government agencies to support the development, production, and use of SRP-derived wood fuel in each of the partner countries. This study provides details of the SRP policy analysis and reveals that each region shared a number of similarities with broad themes emerging. There is a need to educate farmers and policymakers about the multifunctional benefits of SRPs. Greater financial support from regional and/or national government is required in order to grow the SRP market. Introducing targeted subsidies as an incentive for growers could address lack of local supply chains. Long-term policy initiatives should be developed while increasing clarity within Government departments. Research funding should enable closer working between universities and industry with positive research findings developed into supportive policy measures.

  11. Influence of humic substances and wood decay products on the valency state of uranium

    International Nuclear Information System (INIS)

    Abraham, A.

    2002-01-01

    The purpose of the present study was to investigate the influence of dissolved natural substances on the oxidation state of iron and uranium. The ongoing remediation of uranium mining areas in Saxony and Thuringia involves flooding of extended pits, submerging and subjecting to microbial decay considerable amounts of pit timber in the process. This gives rise to the problem whether the reductive environment which develops as a result of wood decay in the pit water is capable of reducing the uranium (VI) and iron (III) contained in the flood water. Measurements of the valency state of uranium and iron following their interaction with natural decay products were performed by means of electrochemical, photometric and laser spectroscopic methods. This was followed by sorption experiments with a view to collecting phenomenological data on the binding behaviour of uranium species with respect to the rock bed of the Western Erz Hills and the sediments of the Elbe valley under different redox potential conditions. The study was concluded with redox potential calculations aimed at describing the state of pit waters as well as characterising analogous natural waters. The study was performed using humic acids for alkaline brown coal extract, high moor humic substances originating from natural microbial wood decay for wood decay products, and products from hydrothermal wood decomposition as well as lignin for a methanolic wood extract [de

  12. Identification and characterisation of factors affecting losses in the large-scale, non-ventilated bulk storage of wood chips and development of best storage practices

    Energy Technology Data Exchange (ETDEWEB)

    Garstang, J.; Weekes, A.; Poulter, R.; Bartlett, D.

    2002-07-01

    The report describes the findings of a study to determine the factors affecting the commercial storage of wood chips for biomass power generation in the UK. The UK's first such plant in North Yorkshire uses a mixture of forestry residues and short rotation coppice (SRC) willow, where problems with the stored fuel highlighted the need to determine best storage practices. Two wood chip piles were built (one with willow chip and the other with wood chips from board leaf forestry residues) and monitored (moisture, temperature, chemical composition, spore numbers and species, heat and air flows, bulk density, etc). Local weather data was also obtained. Recommendations for future storage practices are made.

  13. Energy wood. Part 2b: Wood pellets and pellet space-heating systems

    International Nuclear Information System (INIS)

    Nussbaumer, T.

    2002-01-01

    The paper gives an overview on pellet utilization including all relevant process steps: Potential and properties of saw dust as raw material, pellet production with drying and pelletizing, standardization of wood pellets, storage and handling of pellets, combustion of wood pellets in stoves and boilers and applications for residential heating. In comparison to other wood fuels, wood pellets show several advantages: Low water content and high heating value, high energy density, and homogeneous properties thus enabling stationary combustion conditions. However, quality control is needed to ensure constant properties of the pellets and to avoid the utilization of contaminated raw materials for the pellet production. Typical data of efficiencies and emissions of pellet stoves and boilers are given and a life cycle analysis (LCA) of wood pellets in comparison to log wood and wood chips is described. The LCA shows that wood pellets are advantageous thanks to relatively low emissions. Hence, the utilization of wood pellet is proposed as a complementary technology to the combustion of wood chips and log wood. Finally, typical fuel cost of wood pellets in Switzerland are given and compared with light fuel oil. (author)

  14. Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?

    Directory of Open Access Journals (Sweden)

    Heather Keith

    Full Text Available Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC's Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize

  15. Production of wood derived fuels. Review of research projects; Puupolttoaineiden tuotantotekniikka. Tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Korpilahti, A [Metsaeteho Oy, Helsinki (Finland)

    1997-12-01

    The research and development work was very active on the area of wood derived fuels during the past year 1996. Totally some 40 projects were going on, and till the end of the year about 15 projects were completed. The projects broadly covered the research area focusing from material flows, productivity studies, basic wood properties to several case studies. When new production methods and machinery was introduced earlier by demonstration projects, now they were investigated by follow up projects. The economical and quality results of logging residue harvesting and comminution seem quite satisfactory, but integrated methods and production chains still need research and development. (orig.)

  16. Biomass productivity and water use relation in short rotation poplar coppice (Populus nigra x p. maximowiczii) in the conditions of Czech Moravian Highlands

    Czech Academy of Sciences Publication Activity Database

    Fischer, Milan; Trnka, Miroslav; Kučera, J.; Fajman, M.; Žalud, Zdeněk

    LIX, č. 6 (2011), s. 141-152 ISSN 1211-8516 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : short rotation coppice * biomass increment * water consumption * water use effi ciency Subject RIV: EH - Ecology, Behaviour

  17. Eucalyptus wood and coffee parchment for particleboard production: Physical and mechanical properties

    Directory of Open Access Journals (Sweden)

    Mário Vanoli Scatolino

    Full Text Available ABSTRACT The wood panel industry is constantly growing, being necessary the innovation in technologies and raw materials to improve the quality of the final product. Considering the shortage and pressure to decrease the dependence of wood, there is an interest in other renewable materials such as agricultural wastes. Among these wastes, coffee parchment is one which deserves notoriety. An alternative use for coffee parchment could be for production of particleboard in association with wood particles. This study aimed to evaluate the feasibility of using coffee parchment for production of particleboard. The following percentages of wastes were used: 0, 10, 20, 30, 40 and 50% in association to eucalyptus wood. The panels were produced with 8% of urea formaldehyde (based on dry weight of particles. The pressing cycle consisted by: pre-pressing of 0.5 MPa for 10 minutes followed by pressing of 4.0 MPa, and temperature of 160° C for 15 minutes. The compaction ratio of particleboards produced using higher quantities of parchment improved the physical properties. The properties of Water Absorption (2 and 24 h and Thickness Swelling (2 h decreased with increasing percentage of coffee parchment. The Thickness Swelling (24 h showed not significant effect with an increase of coffee waste. The Modulus of Elasticity for coffee parchment particleboards was in the range 646.49 ± 112.65 to 402.03 ± 66.24 MPa, while the Modulus of Rupture ranged from 8.18 ± 1.39 to 4.45 ± 0.75 MPa. The results showed that 10% of coffee parchment could be added for production of particleboards.

  18. Shoot allometry and biomass productivity in poplar and willow varieties grown as short rotation coppice. Summary of results 1995-2000

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, R.; Henshall, P.; Tubby, I.

    2003-07-01

    This report summarises the results of a 4 year study assessing shoot diameters and lengths using non-destructive measurements in order to establish allometric relationships between biomass and non-destructive measurements and also to provide estimates of increments for the development of a model of short rotation cultivation growth and yield. Details are given of the basic methodology and measurement conventions; the data preparation, quality assurance classification and storage; and shoot diameter and length assessments and allometry analyses.

  19. Non-radial oscillations of rotating stars and their relevance to the short-period oscillations of cataclysmic variables

    International Nuclear Information System (INIS)

    Papaloizou, J.; Pringle, J.E.

    1978-01-01

    The usual hypothesis, that the short-period coherent oscillations seen in cataclysmic variables are attributable to g modes in a slowly rotating white dwarf, is considered. It is shown that this hypothesis is untenable for three main reasons: (i) the observed periods are too short for reasonable white dwarf models, (ii) the observed variability of the oscillations is too rapid and (iii) the expected rotation of the white dwarf, due to accretion, invalidates the slow rotation assumption on which standard g-mode theory is based. The low-frequency spectrum of a rotating pulsating star is investigated taking the effects of rotation fully into account. In this case there are two sets of low-frequency modes, the g modes, and modes similar to Rossby waves in the Earth's atmosphere and oceans, which are designated r modes. Typical periods for such modes are 1/m times the rotation period of the white dwarfs outer layers (m is the aximuthal wavenumber). It is concluded that non-radial oscillations of rotating white dwarfs can account for the properties of the oscillations seen in dwarf novae. Application of these results to other systems is also discussed. (author)

  20. Current research in Spain on walnut for wood production

    Science.gov (United States)

    Neus Alet& #224; Neus NO-VALUE

    2004-01-01

    The Department of Mediterranean Trees at the Institut de Recerca i Tecnologia Agroalimentaries (IRTA) in Spain initiated a research program in 1993 to examine the variability among walnut species for wood production and to establish orchards with improved selections. The main objective of the programme is to obtain superior Persian walnut (Juglans regia...

  1. Harvesting a short rotation forest

    Energy Technology Data Exchange (ETDEWEB)

    Perttu, K L [ed.

    1984-12-01

    Willow and Sallow, considered of great interest for Swedish conditions, present new problems in harvesting. Traditional logging techniques offer few elements of equipment or methods. Light whips may be comminuted to a bulk product, easy to handle, difficult to store, requiring a hot logging system - and requiring a heavy, powerful harvester. Aggregating the material introduces an intermediate wood-fuel unit, suitable for storing, transport and infeed into any comminuter. If the harvester produced billets it would require less energy for its operation and it may be used for other purposes such as pre-commercial thinning or row thinning during the growing season. A few groups of designers have worked on analyses of requirements and possible solutions. Test rigs for severing and bundling were built and evaluated. Public funding was made available for design work on harvesters. Five groups were selected to produce layout designs of large and small harvesters. An evaluation procedure was performed, leading to selection of two concepts, slightly reworked from their original shapes. One is a large self-propelled front-sutting harvester, the other is a harvesting unit to be mounted on a suitable farm tractor. With 3 refs.

  2. Certification of forests and wood products in Serbia in the context of new European union legislations: Current situation, problems and challenges

    Directory of Open Access Journals (Sweden)

    Vasiljević Aleksandar

    2011-01-01

    Full Text Available The paper presents research results of the current situation in the area of certification of forests and wood products in Serbia in the context of new European Union legislation referring to the placement of wood and wood products on this market. The objective of the research was to observe the situation, phases which Serbia implemented in the process of forest and wood products certification until now, as well as the problems and challenges the companies in this process face. Based on research results, future development of the market of certified wood products in Serbia was assessed and the proposal of measures which should be realized in order for Serbia to become a country whose companies will be ready for the moment when provisions and measures of the new EU legislation become effective was given. The selection of the abovementioned objective was conditioned by the fact that from January 1st, 2013 new legislation takes effect, with significantly stricter terms for the placement of wood and wood products from other countries on this market. One of the conditions which will have to be fulfilled by the companies wishing to export their products on this market refers to proving their origin. Since the EU is the most significant market for wood products exported from Serbia, fulfillment of the stated and other terms from the new EU legislation is of great importance to Serbian companies. Until the beginning of September 2010, only 387,000 ha were certified, namely 17.2% of the total area under forests. In the same period, only 33 wood processing companies in Serbia possessed CoC certificates for their products. Such a small number of companies possessing certificates for their wood products compared to competitive neighboring countries can represent a serious limitation in achieving their satisfactory competitiveness on the EU market in the following period.

  3. The Effect of Methylation and Anti-Oxidant on Discoloration of Weathered Wood Plastic Composites

    Directory of Open Access Journals (Sweden)

    Peivand Darabi

    2011-01-01

    Full Text Available As the outdoor application of Wood Plastic Composites (WPCs become more widespread, the resistance of these products against weathering, particularly ultraviolet (UV light becomes more important. When WPCs are exposed to outdoor ultraviolet light, rain, snow and atmosphere pollution, they will be degraded which can be indicated by color fade. To investigate the effects of methylation and Anti-Oxidant separately and together on discoloration of weathered wood plastic composites, composites of poplar wood flour and high density polyethylene.Were made according to the ASTMD 2565, samples were placed in Atlas Xenon apparatus for 250 and 2000 hours. Discoloration and FT-IR spectra of the samples were measured and compared. The results have shown that methylation in short term and long term can relatively reduce the discoloration of weathered samples and also in short term can hinder the photodegradation. FT-IR spectra showed that, in long term, neither of the treatments could protect lignin from irradiation within wood flour. But methylation limited the depth of penetration of weathering. The Antioxidant did not have an influence on color change in a long period of time, but was able to relatively decrease it in short term.

  4. Visible-light activate Ag/WO3 films based on wood with enhanced negative oxygen ions production properties

    Science.gov (United States)

    Gao, Likun; Gan, Wentao; Cao, Guoliang; Zhan, Xianxu; Qiang, Tiangang; Li, Jian

    2017-12-01

    The Ag/WO3-wood was fabricated through a hydrothermal method and a silver mirror reaction. The system of visible-light activate Ag/WO3-wood was used to produce negative oxygen ions, and the effect of Ag nanoparticles on negative oxygen ions production was investigated. From the results of negative oxygen ions production tests, it can be observed that the sample doped with Ag nanoparticles, the concentration of negative oxygen ions is up to 1660 ions/cm3 after 60 min visible light irradiation. Moreover, for the Ag/WO3-wood, even after 60 min without irradiation, the concentration of negative oxygen ions could keep more than 1000 ions/cm3, which is up to the standard of the fresh air. Moreover, due to the porous structure of wood, the wood acted as substrate could promote the nucleation of nanoparticles, prevent the agglomeration of the particles, and thus lead the improvement of photocatalytic properties. And such wood-based functional materials with the property of negative oxygen ions production could be one of the most promising materials in the application of indoor decoration materials, which would meet people's pursuit of healthy, environment-friendly life.

  5. Wood Volume Production and Use of 10 Woody Species in Semiarid Zones of Northeastern Mexico

    Directory of Open Access Journals (Sweden)

    Rahim Foroughbakhch

    2012-01-01

    Full Text Available A research strategy was established to analyze the structure of timber trees in terms of forest productivity (volume and wood density of 10 species. The native species Acacia farnesiana, Acacia schaffneri, Bumelia celastrina, Cercidium macrun, Condalia hookeri, Ebenopsis ebano, Helietta parvifolia, and Prosopis laevigata and the exotic species Eucalyptus camaldulensis and Leucaena leucocephala were chosen due to their ecological and economic importance to the rural villages of northeastern Mexico. Measurements of different growth parameters and volume of trees were evaluated. The introduced species E. camaldulensis and L. leucocephala showed the best performance in wood volume production per tree and per hectare when compared to the native species. Likewise, among the native species, E. ebano, P. laevigata, C. hookeri, and A. farnesiana tended to show better characteristics in terms of wood volume production in comparison to H. parvifolia, A. schaffneri, C. macrum, and B. celastrina. Results showed a high diversity on the properties studied. The high biomass produced by most of the species considered in this study revealed their great energetic potential when used as wood and firewood or vegetal charcoal.

  6. Developing and commercializing sustainable new wood products : a process for identifying viable products.

    Science.gov (United States)

    Gordon A. Enk; Stuart L. Hart

    2003-01-01

    A process was designed to evaluate the sustainability and potential marketability of USDA Forest Service patented technologies. The process was designed and tested jointly by the University of North Carolina, the University of Michigan, Partners for Strategic Change, and the USDA Forest Service. Two technologies were evaluated: a fiber-based product and a wood fiber/...

  7. Integrated production method for wood fuel and pulp wood in Northern Finland; Polttojakeen hankinta puun yhdistelmaekorjuussa ja integroitu energiapuun tuotantomenetelmae Pohjois-Suomessa

    Energy Technology Data Exchange (ETDEWEB)

    Hooli, A [Hooli Oy, Kemi (Finland); Kuitto, P J [VTT Energy, Jyvaeskylae (Finland); Ranta, T [Finntech Ltd. Oy, Jyvaeskylae (Finland)

    1997-12-31

    Chip production company Hooli Ltd. has built an innovative mobile chain-flail delimbing-debarking-unit which includes also a hammer crusher for wood fuel. This integrated production method for wood fuel and pulp wood based on that unit has been planned especially for the circumstances where the power or heating plants are near and the pulp mills more remote from the wood processing sites. The trees are felt into bunches and transported as whole trees or tree-sections to the roadside. The Hooli-unit delimbs and debarks the trees using multi-tree processing. The optimal bark content of Scot pine bolts after processing is under 1 %. All green branches, stops and bark are directly crushed into wood fuel in the same unit. Fuel chips are carried to the nearest power plant. The debarked bolts are transported to the pulpmills in the form of roundwood or pulpchips, thus giving better economy for the whole method. Based on first field experiments in 1995 this method has operated well. However, there are still development work ahead: e.g. good debarking quality of birch and spruce in the winter conditions. To attain the targets of the project looks promising. The project is carried out as joint project between Hooli Ltd, Finntech Ltd. Oy, the Finnish Forest Research Institute, Veitsiluoto Ltd and VTT Energy. The chain-flail delimbing-debarking-crushing unit was built at Tervolan Konepaja Ky

  8. Integrated production method for wood fuel and pulp wood in Northern Finland; Polttojakeen hankinta puun yhdistelmaekorjuussa ja integroitu energiapuun tuotantomenetelmae Pohjois-Suomessa

    Energy Technology Data Exchange (ETDEWEB)

    Hooli, A. [Hooli Oy, Kemi (Finland); Kuitto, P.J. [VTT Energy, Jyvaeskylae (Finland); Ranta, T. [Finntech Ltd. Oy, Jyvaeskylae (Finland)

    1996-12-31

    Chip production company Hooli Ltd. has built an innovative mobile chain-flail delimbing-debarking-unit which includes also a hammer crusher for wood fuel. This integrated production method for wood fuel and pulp wood based on that unit has been planned especially for the circumstances where the power or heating plants are near and the pulp mills more remote from the wood processing sites. The trees are felt into bunches and transported as whole trees or tree-sections to the roadside. The Hooli-unit delimbs and debarks the trees using multi-tree processing. The optimal bark content of Scot pine bolts after processing is under 1 %. All green branches, stops and bark are directly crushed into wood fuel in the same unit. Fuel chips are carried to the nearest power plant. The debarked bolts are transported to the pulpmills in the form of roundwood or pulpchips, thus giving better economy for the whole method. Based on first field experiments in 1995 this method has operated well. However, there are still development work ahead: e.g. good debarking quality of birch and spruce in the winter conditions. To attain the targets of the project looks promising. The project is carried out as joint project between Hooli Ltd, Finntech Ltd. Oy, the Finnish Forest Research Institute, Veitsiluoto Ltd and VTT Energy. The chain-flail delimbing-debarking-crushing unit was built at Tervolan Konepaja Ky

  9. Wood products in the waste stream: Characterization and combustion emissions. Volume 1. Final report

    International Nuclear Information System (INIS)

    1992-11-01

    Waste wood is wood separated from the solid-waste stream and processed into a uniform-sized product that is reused for other purposes such as fuel. As an alternative to the combustion of fossil fuels, it has raised concerns that if it is 'contaminated' with paints, resins, preservatives, etc., unacceptable environmental impacts may be generated during combustion. Given the difficulty of separating contaminated materials from waste wood and the large energy potential existing in the resource, it is important to identify possible problems associated with contaminated waste wood combustion. The study describes research about technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. The project's purpose was to provide environmental regulators, project developers, and others with data to make informed decisions on the use of waste wood materials as a combustion resource. Potential environmental problems and solutions were identified. A specific project result was the identification of combustion system operation parameters and air pollution control technologies that can minimize emissions of identified air and solid waste contaminants from combustion of wood waste

  10. EFFECT OF ARTIFICIAL WEATHERING ON WOOD LAMINATES COLOR TREATED WITH TWO FINISHING PRODUCTS

    Directory of Open Access Journals (Sweden)

    Thais Jacob Mendes

    2016-03-01

    Full Text Available Weathering is one of the main reasons for the degradation of wood, especially its color. The application of finishes minimizes these effects. This study aimed to monitor the effect of artificial weathering on wood veneer of the species cumaru (Dipteryx odorata and pau marfim (Balfourodendron riedelianum with two finishes, the marine varnish and Cetol, with monitoring using a spectrophotometer. The samples were subjected to cycles of exposure to weathering for 20, 40, 52, 76, 124, 226, 430, 838 and 960 hours. The colorimetric parameters (L*, a*, b*, C and h* were measured before treatment, after application of the products and during the weathering time intervals. The application of finishes darkened veneer of cumaru wood and pau marfim in nature. However, in higher weathering times, both species returned to a lighter color, and even became lighter than the natural wood. The use of Cetol was more efficient, giving greater stability in the conservation of wood color of the species studied.

  11. Manufacture of wood-pellets doubles. Biowatti Oy started a wood pellet plant in Turenki

    International Nuclear Information System (INIS)

    Rantanen, M.

    1999-01-01

    Wood pellets have many advantages compared to other fuels. It is longest processed biofuel with favorable energy content. It is simple to use, transport and store. Heating with wood pellets is cheaper than with light fuel oil, and approximately as cheap as utilization of heavy fuel oil, about 110 FIM/MWh. The taxable price of wood pellets is about 550 FIM/t. Stokers and American iron stoves are equally suitable for combustion of wood pellets. Chip fueled stokers are preferred in Finland, but they are also suitable for the combustion of wood pellets. Wood pellets is an environmentally friendly product, because it does not increase the CO 2 load in the atmosphere, and its sulfur and soot emissions are relatively small. The wood pelletizing plant of Biowatti Oy in Turenki was started in an old sugar mill. The Turenki sugar mill was chosen because the technology of the closed sugar factory was suitable for production of wood pellets nearly as such, and required only by slight modifications. A press, designed for briquetting of sugar beat clippings makes the pellets. The Turenki mill will double the volume of wood pellet manufacture in Finland during the next few years. At the start the annual wood pellet production will be 20 000 tons, but the environmental permit allows the production to be increased to 70 000 tons. At first the mill uses planing machine chips as a raw material in the production. It is the most suitable raw material, because it is already dry (moisture content 8-10%), and all it needs is milling and pelletizing. Another possible raw material is sawdust, which moisture content is higher than with planing machine chips. Most of the wood pellets produced are exported e.g. to Sweden, Denmark and Middle Europe. In Sweden there are over 10 000 single-family houses using wood pellets. Biowatti's largest customer is a power plant located in Stockholm, which combusts annually about 200 000 tons of wood pellets

  12. Justification of the Production Process of Pressed Wood and Study of its Properties

    Science.gov (United States)

    Polilov, A. N.; Dornyak, O. R.; Shamaev, V. A.; Rumachik, M. M.

    2018-05-01

    Results of a numerical analysis of the stress-strain state of wood during its pressing in different symmetry directions of the anisotropic material are presented. It is shown that the anisotropy of mechanical properties of wood is an important factor determining both the structural characteristics of the porous system and its strength. A mathematical modeling of the process of pressing wood as a three-phase anisotropic rheologically complex capillary-porous system allows one to predict parameters of the resulting wood composite. The compressed wood obtained by the production modes developed has a tensile strength eight times greater than that of the natural one, which is comparable to the strength of the St3 steel, but its specific strength is higher than that of the St45 steel. Compression and impregnation of softwood species with an aqueous solution of carbamide allows one to harden them. This kind of treatment endows the wood with enhanced strength characteristics comparable to the characteristics of the St3 steel. The special features of tensile tests used to estimate the elastic modulus and strength characteristics of such materials are considered. Data obtained by different testing methods are correlated, and characteristics of the strengthened wood and some brends of steel are compared.

  13. Local instabilities in magnetized rotational flows: A short-wavelength approach

    OpenAIRE

    Kirillov, Oleg N.; Stefani, Frank; Fukumoto, Yasuhide

    2014-01-01

    We perform a local stability analysis of rotational flows in the presence of a constant vertical magnetic field and an azimuthal magnetic field with a general radial dependence. Employing the short-wavelength approximation we develop a unified framework for the investigation of the standard, the helical, and the azimuthal version of the magnetorotational instability, as well as of current-driven kink-type instabilities. Considering the viscous and resistive setup, our main focus is on the cas...

  14. UTILIZATION OF CANDEIA (Eremanthus erythropappus WOOD RESIDUES IN THE PRODUCTION OF PARTICLEBOAD WITH ADDITION OF PET

    Directory of Open Access Journals (Sweden)

    Rosimeire Cavalcante dos Santos

    2011-03-01

    Full Text Available This work aimed to evaluate, through the physical and mechanical properties, the panels production viability with inclusion of candeia (Eremanthus erythropappus wood residues and the influence of different percentages of PET (polyethylene terephthalate, as well as the presence and absence of paraffin on the properties of particleboard. There were used candeia wood residues, after oil extraction, in association with eucalypt wood in the proportion of 25:75 and urea-formaldehyde adhesive (12% for panels production; besides the PET incorporation in particle form, which were originated from soft drink bottles and included in three percentages (0%, 25% e 50% in treatments in the presence (1% and absence of paraffin emulsion. The panels pressing cycle occurred under electric heating at 160°C, 0.4 MPa of pressure, during 8 minutes. The experimental design was entirely randomized with three repetitions. The properties evaluated, according to DIN (1971, ASTM D 1037-93 (1995 and CS 236-66 (1968 standards, were: internal bonding; static bending (modulus of elasticity – MOE and rupture – MOR; compression parallel to the panel surface; water absorption and thickness swelling, after 2 and 24 hours water immersion. The panel mechanical properties decreased with increasing in PET level; in general, paraffin addition did not improve the wood/plastic panels resistance and higroscopicity; the utilization of candeia wood residues is viable, in association with eucalypt wood, for the wood/plastic panel production, since the properties attended the minimum demands of the standards, except static bending.

  15. Effects of acidity on primary productivity in lakes: phytoplankton. [Lakes Panther, Sagamore, and Woods

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G R

    1979-01-01

    Relationships between phytoplankton communities and lake acidity are being studied at Woods Lake (pH ca. 4.9), Sagamore Lake (pH ca. 5.5), and Panther Lake (pH ca. 7.0). Numbers of phytoplankton species observed as of July 31, 1979 are Woods 27, Sagamore 38, and Panther 64, conforming to other observations that species numbers decrease with increasing acidity. Patterns of increasing biomass and productivity found in Woods Lake may be atypical of similar oligotrophic lakes in that they develop rather slowly instead of occuring very close to ice-out. Contributions of netplankton (net > 48 ..mu..m), nannoplankton (48 > nanno > 20 ..mu..m) and ultraplankton (20 > ultra >0.45 ..mu..m) to productivity per m/sup -2/ show that the smaller plankton are relatively more important in the more acid lakes. This pattern could be determined by nutrient availability (lake acidification leading to decreased availability of phosphorus). The amount of /sup 14/C-labelled dissolved photosynthate (/sup 14/C-DOM), as a percent of total productivity, is ordered Woods > Sagamore > Panther. This is consistent with a hypothesis that microbial heterotrophic activity is reduced with increasing acidity, but the smaller phytoplankton may be more leaky at low pH. (ERB)

  16. Wood energy-commercial applications

    Science.gov (United States)

    Kennel, R. P.

    1978-01-01

    Wood energy is being widely investigated in many areas of the country because of the many obvious benefits of wood fuel such as the low price per million Btus relative to coal, oil, and gas; the wide availability of noncommercial wood and the proven ability to harvest it; established technology which is reliable and free of pollution; renewable resources; better conservation for harvested land; and the potential for jobs creation. The Southeastern United States has a specific leadership role in wood energy based on its established forest products industry experience and the potential application of wood energy to other industries and institutions. Significant questions about the widespread usage of wood energy are being answered in demonstrations around the country as well as the Southeast in areas of wood storage and bulk handling; high capitalization costs for harvesting and combustion equipment; long term supply and demand contracts; and the economic feasibility of wood energy outside the forest products industry.

  17. The use of wood waste for energy production

    International Nuclear Information System (INIS)

    Karlopoulos, E.; Pavloudakis, F.

    1999-01-01

    The paper presents some technical aspects and management issues of wood waste reuse end disposal. It refers to the Greek and European legislation which determines the framework for rational and environmental friendly practices for woos waste management. It refers also to the wood waste classification systems and the currently applied methods of wood waste disposal and reuse. Emphasis is given to the wood waste-to-energy conversion system, particularly to the pretreatment requirements, the combustion techniques, and the environmental constrains. Finally, the decision making process for the investments in the wood waste firing thermal units is discussed

  18. 2009 Wood and Fiber Product Seminar : VTT and USDA joint activity

    Science.gov (United States)

    Ali Harlin; Minna Vikman

    2010-01-01

    Foward -- The development of high-value wood and fiber products is one of the most important challenges currently facing the forest industry. Traditional pulp and paper products are on a critical path in developed countries with prices and markets decreasing. Finland and the USA have faced the same problem, which is a fundamental reason for Industrial Biomaterials...

  19. Carbon stored in harvested wood products in Turkey and projections for 2020

    Directory of Open Access Journals (Sweden)

    Olivier Bouyer

    2016-01-01

    -2013 UNECE data series for sawnwood and wood-based panels production taking into account for each year the percentage of anomaly. However, from 1976 to 1982, the anomalies are much reduced (-1% in average, which allow using the UNECE data series from 1964 to 1975. We estimated the average share of each HWP over the last ten years: 48% for sawnwood and 38% for wood-based panels. The 14% of other HWP are not considered in the analysis, either because they are short-lived products or marginal or difficult to estimate. A projection of HWP has been done until 2020 based on 2 alternative scenarios based on OGM strategy documents: intensive harvesting and extensive harvesting. For each scenario, intensive vs extensive, we disaggregated the 2013-2020 volume of industrial roundwood into the two HWPs, using the calculated percentages. The results of our analysis revealed that the HWP pool can add 3.14 Gg CO2 eq yr-1 additional removal to LULUCF sector in the GHG inventory of Turkey for 2013 compared to 1990. The amount of contribution is estimated to rise up to 13.70 Mt CO2 eq yr-1, and 10.99 Mt CO2 eq yr-1 for intensive and extensive scenarios that are developed based on OGM strategic plans in 2020.

  20. The wood-electricity: development perspectives for the wood-based production of energy in France by 2015. Soil pollution. Soil contamination by hydrocarbon effluents: rehabilitation market analysis

    International Nuclear Information System (INIS)

    Barbier, C.

    1996-09-01

    A report proposes an economical analysis of the wood-based production of electricity in France, describes the different stages of this process, from supply (crop, tearing, transport, storage) through conversion (technologies, combustion or gasification) and to the output kWh (cost sensitivity analysis with respect to the evolution of other parameters). It describes the environmental impacts of wood-based electricity production and compares the quantities of pollutants emitted by this process with those emitted by other processes based on fossil energies. It identifies the main obstacles to the development of wood-based electricity production and proposes political and institutional measures inspired by the Danish experience. A second article is aimed at presenting an economic analysis of the cost of decontamination of hydrocarbon polluted sites in France (a majority of which are gas stations and storage sites)

  1. Harvested wood products and REDD+: looking beyond the forest border

    Directory of Open Access Journals (Sweden)

    Tunggul Butarbutar

    2016-05-01

    Full Text Available Abstract Background The focus of REDD+ is sensu stricto on maintaining forest carbon stocks. We extend the scope of sustainable management of forest from forests to timber utilization, and study carbon offsets resulting from the utilization of harvested timber for bio energy or harvested wood products (HWPs. The emission budget of harvesting operations depends on the loss of standing biomass by timber extracted from the forest site and logging losses on the one side, and on the other on the wood end use and the utilization of processing residues. We develop two scenarios to quantify the magnitude of CO2 emissions by (1 energetic utilization, and (2 energetic and material utilization of harvested timber and compare the substitution effects for different fossil energy sources. Results The direct energetic use of harvested timber does not compensate for the losses of forest carbon stock. Logging residuals and displacement factors reflecting different wood use constitute by far the most important factor in potential emission reductions. Substitution effects resulting from energetic use of mill residuals and from HWPs have only a subordinated contribution to the total emissions as well as the type of fossil fuel utilized to quantify substitution effects. Material substitution effects associated with harvested wood products show a high potential to increase the climate change benefits. Conclusions The observation and perception of REDD+ should not be restricted to sustainable management and reduced impact logging practices in the forest domain but should be extended to the utilization of extracted timber. Substitution effects from material and energetic utilization of harvested timber result in considerable emission reductions, which can compensate for the loss of forest carbon, and eventually contribute to the overall climate change mitigation benefits from forestry sector.

  2. Quality Measurement in the Wood Products Supply Chain

    OpenAIRE

    Espinoza, Omar Alejandro

    2009-01-01

    The purpose of this research is to learn about quality measurement practices in a wood products supply chain. According to the Supply Chain Management paradigm, companies no longer compete as individual entities, but as part of complex networks of suppliers and customers, linked together by flows of materials and information. Evidence suggests that a high degree of integration between supply chain members is essential to achieve superior market and financial performance. This study investigat...

  3. Forest Management for Non-Wood Forest Products and Services in ...

    African Journals Online (AJOL)

    The contribution of Non-Wood Forest Products (NWFPs) and services in livelihood support has been reviewed. Quite a number of NWFPs are also important articles of commerce and contribute significantly to the economies various African countries. The non-consumptive role of forests has been examined in terms of ...

  4. Wood products utilization : a call for reflection and innovation

    Science.gov (United States)

    John A. Youngquist; Thomas E. Hamilton

    1999-01-01

    It is hard to imagine a world without forests. Forests provide a wide range of benefits at the local, national, and global levels. Some of these benefits depend on leaving the forest alone or subjecting it to only minimal interference. Other benefits can only be realized by harvesting the forest for wood and other products. The shrinking land base and growing human...

  5. Abatement cost of GHG emissions for wood-based electricity and ethanol at production and consumption levels.

    Directory of Open Access Journals (Sweden)

    Puneet Dwivedi

    Full Text Available Woody feedstocks will play a critical role in meeting the demand for biomass-based energy products in the US. We developed an integrated model using comparable system boundaries and common set of assumptions to ascertain unit cost and greenhouse gas (GHG intensity of electricity and ethanol derived from slash pine (Pinus elliottii at the production and consumption levels by considering existing automobile technologies. We also calculated abatement cost of greenhouse gas (GHG emissions with respect to comparable energy products derived from fossil fuels. The production cost of electricity derived using wood chips was at least cheaper by 1 ¢ MJ-1 over electricity derived from wood pellets. The production cost of ethanol without any income from cogenerated electricity was costlier by about 0.7 ¢ MJ-1 than ethanol with income from cogenerated electricity. The production cost of electricity derived from wood chips was cheaper by at least 0.7 ¢ MJ-1 than the energy equivalent cost of ethanol produced in presence of cogenerated electricity. The cost of using ethanol as a fuel in a flex-fuel vehicle was at least higher by 6 ¢ km-1 than a comparable electric vehicle. The GHG intensity of per km distance traveled in a flex-fuel vehicle was greater or lower than an electric vehicle running on electricity derived from wood chips depending on presence and absence of GHG credits related with co-generated electricity. A carbon tax of at least $7 Mg CO2e-1 and $30 Mg CO2e-1 is needed to promote wood-based electricity and ethanol production in the US, respectively. The range of abatement cost of GHG emissions is significantly dependent on the harvest age and selected baseline especially for electricity generation.

  6. Biomass energy in organic farming - the potential role of short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Uffe; Dalgaard, Tommy [Danish Inst. of Agricultural Sciences (DIAS), Dept. of Agroecology, Research Centre Foulum, Tjele (Denmark); Kristensen, Erik Steen [Danish Research Centre for Organic Farming (DARCOF), Research Centre Foulum, Tjele (Denmark)

    2005-02-01

    One of the aims of organic farming is to 'reduce the use of non-renewable resources (e.g. fossil fuels) to a minimum'. So far, however, only very little progress has been made to introduce renewable energy in organic farming. This paper presents energy balances of Danish organic farming compared with energy balances of conventional farming. In general, the conversion to organic farming leads to a lower energy use (approximately 10% per unit of product). But the production of energy in organic farming is very low compared with the extensive utilisation of straw from conventional farming in Denmark (energy content of straw used for energy production was equivalent to 18% of total energy input in Danish agriculture in 1996). Biomass is a key energy carrier with a good potential for on-farm development. Apart from utilising farm manure and crop residues for biogas production, the production of nutrient efficient short rotation coppice (SRC) is an option in organic farming. Alder (Alnus spp.) is an interesting crop due to its symbiosis with the actinomycete Frankia, which has the ability to fix up to 185 kg/ha nitrogen (N{sub 2}) from the air. Yields obtained at different European sites are presented and the R and D needed to implement energy cropping in organic farming is discussed. Possible win-win solutions for SRC production in organic farming that may facilitate its implementation are; the protection of ground water quality in intensively farmed areas, utilisation of wastewater for irrigation, or combination with outdoor animal husbandry such as pigs or poultry. (Author)

  7. Multipass comminution process to produce precision wood particles of uniform size and shape with disrupted grain structure from wood chips

    Science.gov (United States)

    Dooley, James H; Lanning, David N

    2014-05-27

    A process of comminution of wood chips (C) having a grain direction to produce a mixture of wood particles (P), wherein the wood chips are characterized by an average length dimension (L.sub.C) as measured substantially parallel to the grain, an average width dimension (W.sub.C) as measured normal to L.sub.C and aligned cross grain, and an average height dimension (H.sub.C) as measured normal to W.sub.C and L.sub.C, and wherein the comminution process comprises the step of feeding the wood chips in a direction of travel substantially randomly to the grain direction one or more times through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of wood chip travel.

  8. Analysis of Competitiveness and Support Instruments for Heat and Electricity Production from Wood Biomass in Latvia

    Science.gov (United States)

    Klavs, G.; Kudrenickis, I.; Kundzina, A.

    2012-01-01

    Utilisation of renewable energy sources is one of the key factors in a search for efficient ways of reducing the emissions of greenhouse gases and improving the energy supply security. So far, the district heating supply in Latvia has been based on natural gas, with the wood fuel playing a minor role; the same is true for decentralised combined heat-power (CHP) production. The paper describes a method for evaluation of the economic feasibility of heat and electricity production from wood biomass under the competition between different fuel types and taking into account the electricity market. For the simulation, a cost estimation model is applied. The results demonstrate that wood biomass can successfully be utilised for competitive heat production by boiler houses, while for electricity production by CHP utilities it cannot compete on the market (even despite the low prices on wood biomass fuel) unless particular financial support instruments are applied. The authors evaluate the necessary support level and the impact of two main support instruments - the investment subsidies and the feed-in tariff - on the economic viability of wood-fuelled CHP plants, and show that the feed-in tariff could be considered as an instrument strongly affecting the competitiveness of such type CHP. Regarding the feed-in tariff determination, a compromise should be found between the economy-dictated requirement to develop CHP projects concerning capacities above 5 MWel - on the one hand, and the relatively small heat loads in many Latvian towns - on the other.

  9. Cone calorimeter tests of wood composites

    Science.gov (United States)

    Robert H. White; Kuma Sumathipala

    2013-01-01

    The cone calorimeter is widely used for the determination of the heat release rate (HRR) of building products and other materials. As part of an effort to increase the availability of cone calorimeter data on wood products, the U.S. Forest Products Laboratory and the American Wood Council conducted this study on composite wood products in cooperation with the Composite...

  10. European wood-fuel trade

    International Nuclear Information System (INIS)

    Hillring, B.; Vinterbaeck, J.

    2001-01-01

    This paper discusses research carried out during the l990s on European wood fuel trade at the Department of Forest Management and Products, SLU, in Sweden. Utilisation of wood-fuels and other biofuels increased very rapidly in some regions during that period. Biofuels are replacing fossil fuels which is an effective way to reduce the future influence of green house gases on the climate. The results indicate a rapid increase in wood-fuel trade in Europe from low levels and with a limited number of countries involved. The chief products traded are wood pellets, wood chips and recycled wood. The main trading countries are, for export, Germany and the Baltic states and, for import, Sweden, Denmark and to some extent the Netherlands. In the future, the increased use of biofuel in European countries is expected to intensify activity in this trade. (orig.)

  11. Sustainability Impact Assessment on the Production and Use of Different Wood and Fossil Fuels Employed for Energy Production in North Karelia, Finland

    Directory of Open Access Journals (Sweden)

    Matias Pekkanen

    2012-11-01

    Full Text Available The utilization rate of woody biomass in eastern Finland is high and expected to increase further in the near future as set out in several regional, national and European policies and strategies. The aim of this study was to assess the sustainability impacts of changes in fuel consumption patterns. We investigated fossil and woody biomass-based energy production chains in the region of North Karelia, focusing on some economic, environmental and social indicators. Indicators were selected based on stakeholder preferences and evaluated using the Tool for Sustainability Impact Assessment (ToSIA. The analysis was based on representative values from National Forest Inventory data, scientific publications, national and regional statistics, databases, published policy targets and expert opinion. From the results it became evident that shifting from fossil to wood-based energy production implies some trade-offs. Replacing oil with woody biomass in energy production would increase the local value added remaining in the region, create employment opportunities and would reduce total GHG emissions. However, firewood, wood chips from small-diameter trees from early thinning and wood pellets have high production costs. Moreover, large greenhouse gas emission resulted from wood pellet production. The case study generated valuable reference data for future sustainability assessments and demonstrated the usefulness of ToSIA as a tool presenting existing knowledge on sustainability impacts of alternative energy supply chains to inform decision making.

  12. How short rotation forest crops can be used for sustainable remediation of contaminated areas

    Energy Technology Data Exchange (ETDEWEB)

    Thiry, I

    1996-09-18

    In large territories of the CIS, it becomes obvious from the factual consequences of the Chernobyl environmental contamination that no successful remediation actions can be achieved without considering realistic technical and economical issues. In these conditions, the Short Rotation Forestry concept for energy purposes is proposed as an alternative and integrated approach for the recovery of agricultural practices on waste farm land. This corrective option will be examined with respect to this ecological, economical, and social relevancy. Different aspects of the culture in contaminated areas and of energy production from biomass remain to be investigated, developed and validated in the light of radiation protection criteria. In particular, attention will be drawn on the opportunity of this new concept to be integrated in the development of the site remediation research activities at SCK.CEN.

  13. Power generation from waste wood

    Energy Technology Data Exchange (ETDEWEB)

    Nitsche, H

    1980-04-18

    Since the energy crisis, power generation from waste wood has become increasingly important. The most profitable way to use waste wood in woodworking plants with an annual production of 100 to 150,000 m/sup 3/ solid measure of wood chips and bark is by combustion and thermal energy recovery. In plants with an annual production of 10,000 m/sup 3/ solid measure of wood chips and bark, electric power generation is a suitable application.

  14. Cellulose factories: advancing bioenergy production from forest trees.

    Science.gov (United States)

    Mizrachi, Eshchar; Mansfield, Shawn D; Myburg, Alexander A

    2012-04-01

    Fast-growing, short-rotation forest trees, such as Populus and Eucalyptus, produce large amounts of cellulose-rich biomass that could be utilized for bioenergy and biopolymer production. Major obstacles need to be overcome before the deployment of these genera as energy crops, including the effective removal of lignin and the subsequent liberation of carbohydrate constituents from wood cell walls. However, significant opportunities exist to both select for and engineer the structure and interaction of cell wall biopolymers, which could afford a means to improve processing and product development. The molecular underpinnings and regulation of cell wall carbohydrate biosynthesis are rapidly being elucidated, and are providing tools to strategically develop and guide the targeted modification required to adapt forest trees for the emerging bioeconomy. Much insight has already been gained from the perturbation of individual genes and pathways, but it is not known to what extent the natural variation in the sequence and expression of these same genes underlies the inherent variation in wood properties of field-grown trees. The integration of data from next-generation genomic technologies applied in natural and experimental populations will enable a systems genetics approach to study cell wall carbohydrate production in trees, and should advance the development of future woody bioenergy and biopolymer crops.

  15. Small-scale production and use of wood fuels. Report of the year 2005

    International Nuclear Information System (INIS)

    Alakangas, E.

    2005-01-01

    The target areas of the research programme are: Small-scale production and handling of wood fuels, Pellet production, distribution and use, Heating technology and Business and service concepts. Production and processing technology focuses on cost-effectiveness, fuel quality, logistics of production chains and storage, transport and feeding solutions. The quality of pellets in the view of the whole chain: production, storage, distribution and feeding, is under scrutiny. In addition, storage and distribution systems are being developed. The aim is to create functional and comprehensive heat production systems based on the use of wood pellets. Emissions from small-scale use are reduced and efficiency of combustion improved to meet the Central European standard. Modern control, automation and data management systems are applied cost-effectively. The aim is to create comprehensive systems and modular solutions. Business and service concepts relate to all target areas such as heat entrepreneurship and energy service companies (ESCO). The aim is to promote the networking of companies and develop new solutions for fuel and heat production services

  16. Synchrotron based x-ray fluorescence microscopy confirms copper in the corrosion products of metals in contact with treated wood

    Science.gov (United States)

    Samuel L. Zelinka; Joseph E. Jakes; Grant T. Kirker; David Vine; Stefan Vogt

    2017-01-01

    Copper based waterborne wood preservatives are frequently used to extend the service life of wood products when subjected to frequent moisture exposure. While these copper based treatments protect the wood from fungal decay and insect attack, they increase the corrosion of metals embedded or in contact with the treated wood. Previous research has shown the most...

  17. Wood production potential in poplar plantations in Sweden

    International Nuclear Information System (INIS)

    Christersson, Lars

    2010-01-01

    Shortage of oil, large variations in exports from Russia of wood to Europe, plenty of abandoned agriculture land, new ideas about a more intensive silviculture; these circumstances are driving forces in Sweden for planting fast-growing poplar and hybrid aspen clones on suitable land. The advantage of such trees is that the wood can be used for both energy (heat, biofuels, electricity), paper and for construction. Poplar clones bred in the USA and Belgium, and older hybrid aspen clones from Sweden, together with new poplar clones collected and selected for Swedish conditions from British Columbia, Canada, were planted during the 1990s in south and central Sweden. The stem diameters and heights of the trees have been measured during the last 10 years and the woody biomass production above ground has been calculated. MAI for all the plantations is 10-31 m 3 or 3-10 ton DM per hectare with the highest annual woody production of 45 m 3 or 15 ton DM per hectare in some years in a very dense plantation in the most southern part of Sweden. All the plantations have been fenced for at least the first ten years. The damage has been caused by stem canker, insects, leaf rust and by moose after removal of the fences. The possibilities for the use of poplar plantations as energy forest and vegetation filters are discussed. (author)

  18. LCA-based optimization of wood utilization under special consideration of a cascading use of wood.

    Science.gov (United States)

    Höglmeier, Karin; Steubing, Bernhard; Weber-Blaschke, Gabriele; Richter, Klaus

    2015-04-01

    Cascading, the use of the same unit of a resource in multiple successional applications, is considered as a viable means to improve the efficiency of resource utilization and to decrease environmental impacts. Wood, as a regrowing but nevertheless limited and increasingly in demand resource, can be used in cascades, thereby increasing the potential efficiency per unit of wood. This study aims to assess the influence of cascading wood utilization on optimizing the overall environmental impact of wood utilization. By combining a material flow model of existing wood applications - both for materials provision and energy production - with an algebraic optimization tool, the effects of the use of wood in cascades can be modelled and quantified based on life cycle impact assessment results for all production processes. To identify the most efficient wood allocation, the effects of a potential substitution of non-wood products were taken into account in a part of the model runs. The considered environmental indicators were global warming potential, particulate matter formation, land occupation and an aggregated single score indicator. We found that optimizing either the overall global warming potential or the value of the single score indicator of the system leads to a simultaneous relative decrease of all other considered environmental impacts. The relative differences between the impacts of the model run with and without the possibility of a cascading use of wood were 7% for global warming potential and the single score indicator, despite cascading only influencing a small part of the overall system, namely wood panel production. Cascading led to savings of up to 14% of the annual primary wood supply of the study area. We conclude that cascading can improve the overall performance of a wood utilization system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Wood-plastic combination

    International Nuclear Information System (INIS)

    Schaudy, R.

    1978-02-01

    A review on wood-plastic combinations is given including the production (wood and plastic component, radiation hardening, curing), the obtained properties, present applications and prospects for the future of these materials. (author)

  20. Short rotation coppice as a business field of an energy utility

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, T. (RWE Innogy Cogen GmbH, Dortmund (Germany))

    2010-07-01

    Companies that start planting short rotation coppice (SRC), enter a new territory. In fact, this subject is often discussed, but there is - at least in Germany - still comparatively little practical knowledge on that. Since ca. 1 year, RWE Innogy Cogen is doing pioneer work here and starts establishing SRC in Germany and Europe. Therefore, first results and experiences, as well as consequences for practice shall be presented and discussed in this article. (orig.)

  1. In Situ Groundwater Denitrification in the Riparian Zone of a Short-Rotation Woody Crop Experimental Watershed

    Science.gov (United States)

    Jeffers, J. B.; Jackson, C. R.; Rau, B.; Pringle, C. M.; Matteson, C.

    2017-12-01

    The southeastern United States has potential to become a major producer of short rotation woody crops (SRWC) for the production of biofuels, but this will require converting to more intensive forest management practices that will increase nitrate (NO3-) loading and alter nitrogen cycling in nearby freshwater ecosystems. Water quality monitoring in an experimental short-rotation woody crop watershed in the Coastal Plain of South Carolina has shown increased concentrations of NO3- in groundwater but no evidence of increased NO3- in riparian groundwater or surface waters. Forested riparian areas established as streamside management zones (SMZ) are known to act as buffers to surface water bodies by mitigating nutrients. The objectives of this study were to quantify denitrification by measuring dinitrogen (N2) and nitrous oxide (N2O) concentrations along groundwater flow paths and analyze relationships between denitrification estimates, nutrients, and water chemistry parameters. A network of piezometers has been established in the Fourmile Experimental Watershed at the Department of Energy - Savannah River Site. Water samples were collected monthly and were analyzed for concentrations of nutrients (temperature, specific conductivity, dissolved oxygen, pH, dissolved organic carbon) and dissolved gases (N2, Ar, N2O). Preliminary data showed greater dissolved N2O concentrations than dissolved N2 concentrations in groundwater. The ratios of N2O to combined end products of denitrification (N2O / N2O+N2) ranged from 0.33 to 0.99. Mean N2O+N2 concentrations were greater in groundwater samples in the SRWC plot and along the SMZ boundary than along the ephemeral stream within the riparian zone. Correlations between water chemistry parameters and N2 concentrations are indicative of known biogeochemical driving factors of denitrification. Continued monthly sampling will be coupled with analysis of nutrient concentrations (NO3-, NH4+, TN) to help determine transport and processing

  2. Continued growth expected for wood energy despite turbulence of the economic crisis : wood energy markets, 2008-2009

    Science.gov (United States)

    Rens Hartkamp; Bengt Hillring; Warren Mabee; Olle Olsson; Kenneth Skog; Henry Spelter; Johan Vinterback; Antje Wahl

    2009-01-01

    The economic crisis has not reduced the demand for wood energy, which is expected to continue to grow. The downturn in sawmill production caused a shortage of raw material supply for wood pellet producers. With decreased demand for pulpwood-quality roundwood for wood and paper products in 2009, some pulpwood is being converted into wood energy. Economies of scale are...

  3. A Study on Creep Behavior of Wood Flour- Recycled Polypropylene Composite

    Directory of Open Access Journals (Sweden)

    Saman Ghahri

    2013-06-01

    Full Text Available The creep behavior of wood flour- recycled polypropylene composites (with and without compatibilizer has been evaluated in this study. For this purpose, virgin polypropylene (PP was thermo-mechanically degraded by five times of extrusion under controlled conditions in a twin-screw extruder at a rotor speed of 100 rpm and at temperature of 1900C. The virgin and recycled polypropylene were mixed with the wood flour (50/50% W/W as well as the compatibilizer (0, 2% W/W by a counter-rotating twin-screw extruder to manufacture the wood flour-PP composites (WPCs samples. The nominal cross section of the manufactured composites was 70×10 mm2. Short term flexural creep test at 30% of ultimate bending load was performed by using flexural creep equipment. The total time to complete every test was 120 min (60 min creep and 60 min recovery. Results revealed that recycling of the PP reduced the creep resistance in composites containing recycled polypropylene. Also results have shown that with the presence of compatibilizer (MAPP creep deflection, creep factor and relative creep decrease and creep modulus increase. The composites containing virgin PP and MAPP exhibited higher creep resistance than those containing recycled PP.

  4. Utilization potential of wood clones of Eucalyptus urophylla in the production of wood-cement panels

    Directory of Open Access Journals (Sweden)

    Lourival Marin Mendes

    2011-03-01

    Full Text Available The objective of this study was to evaluate the potential of using clones of Eucalyptus urophylla in the production of wood-cement panels. The study used six clones of Eucalyptus urophylla with 8 years of age, from the Companhia Mineira de Metais, located in Paracatu - MG. For the formation of the panels it was used Portland cement CP V - ARI / Plus, possessing high initial resistance to mineral binder and calcium chloride (CaCl2 as accelerator for the cement curing. The panels were produced with the following parameters: dimensions of 49.5 x 49.5 x 1.5 cm, nominal density of 1.2 g/cm ³, relation wood: cement (1:2.5 and relation water: cement (1:1.5. The results can showed that: (1 for thickness swelling in two and twenty-four hours, only clones 19.28 and 58 attended the specifications, (2 for water absorption, clone 62 showed the best results, (3 to internal bond, only clone 58 didn`t attend specifications, (4 for the compression, clones 19.36 and 58 showed the best results, (5 for MOE and MOR, none of the clones presented values compatible to the bison process. It is suggested the continuation of this line of research, including the manipulation of variables of production, so that all properties be compatible to the minimum required standards.

  5. Forest and wood products role in carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, R.N.

    1997-12-31

    An evaluation of the use of U.S. forests and forest products for carbon emission mitigation is presented. The current role of forests in carbon sequestration is described in terms of regional differences and forest management techniques. The potential for increasing carbon storage by converting marginal crop and pasture land, increasing timberland growth, reducing wildfire losses, and changing timber harvest methods is examined. Post-harvest carbon flows, environmental impacts of wood products, biomass energy crops, and increased use of energy-conserving trees are reviewed for their potential in reducing or offsetting carbon emissions. It is estimated that these techniques could offset 20 to 40 percent of the carbon emitted annually in the U.S. 39 refs., 5 tabs.

  6. Chapter 23: Corrosion of Metals in Wood Products

    Science.gov (United States)

    Samuel L. Zelinka

    2014-01-01

    The corrosion of metals in contact with wood has been studied for over 80 years, and in most situations wood is not corrosive [1]. Recently, however, the durability of fasteners in preservative--treated wood has become a concern. Changes in legislation and certification in the United States, the European Union, and Australasia have restricted the use of chromated...

  7. What incentives to climate change mitigation through harvested wood products in the current french policy framework? (Summary). Climate Report no. 47

    International Nuclear Information System (INIS)

    Deheza, Mariana; N'Goran, Carmen; Bellassen, Valentin

    2014-09-01

    Beyond the important role that forests play in the fight against climate change through the sequestration of carbon in their biomass, wood products also contribute to climate change through three channels: - Material substitution: the manufacturing of wood products being less energy intensive allows to avoid carbon emissions from the processing of other alternative materials (eg. concrete, steel, etc); - Energy substitution: achieved by the generation of energy from wood combustion replacing other fossil fuels. - Carbon sequestration in the wood products: wood products sequester carbon during their whole life span until their decomposition. This Climate Report identifies French policies that have an impact on climate change mitigation by wood products through these three mitigation channels. Our analysis asserts that similarly to the context at the EU level, the current national policy framework incentives are mostly directed to the 'energy wood' sector. These incentives include fiscal and financial instruments such as: - The heat fund ('fonds chaleur'), which subsidizes the production of renewable heat particularly from biomass; - The zero interest rate eco-loans ('eco-pret a taux zero') and the Sustainable development tax credit ('credit d'impot developpement durable (CIDD)') which partly subsidize wood heating; - Reduced VAT on renewable heat purchases. The use of wood as a material is currently less encouraged, at least on the financial side: the few devices that support it are rarely binding and mobilize limited resources. Future measures planned under the National Action Plan for the forest-based sector and the upcoming law for the future of agriculture and forestry ('Loi d'avenir pour l'agriculture et la foret') could slightly re-balance this situation. (authors)

  8. Wood pellets : a worldwide fuel commodity

    International Nuclear Information System (INIS)

    Melin, S.

    2005-01-01

    Aspects of the wood pellet industry were discussed in this PowerPoint presentation. Details of wood pellets specifications were presented, and the wood pellet manufacturing process was outlined. An overview of research and development activities for wood pellets was presented, and issues concerning quality control were discussed. A chart of the effective calorific value of various fuels was provided. Data for wood pellet mill production in Canada, the United States and the European Union were provided, and various markets for Canadian wood pellets were evaluated. Residential sales as well as Canadian overseas exports were reviewed. Production revenues for British Columbia and Alberta were provided. Wood pellet heat and electricity production were discussed with reference to prefabricated boilers, stoves and fireplaces. Consumption rates, greenhouse gas (GHG) emissions, and fuel ratios for wood pellets and fossil fuels were compared. Price regulating policies for electricity and fossil fuels have prevented the domestic expansion of the wood pellet industry. There are currently no incentives for advanced biomass combustion to enter British Columbia markets, and this has led to the export of wood pellets. It was concluded that climate change mitigation policies will be a driving force behind market expansion for wood pellets. tabs., figs

  9. Short-rotation coppicing in France. Current state of research and prospects for future development

    Energy Technology Data Exchange (ETDEWEB)

    Bonduelle, P. (Association Foret Cellulose, Trelaze (France)); Bouvarel, L. (Institut National de la Recherche Agronomique, Olivet (France). Unite Experimentale Biomasse, Forestiere et Foret Paysanne); Petit, H. (Association pour la Rationalisation et la Mecanisation de l' Exploitation Forestiere, Fontainebleau (France)); Pierson, J. (Cellulose des Ardennes, Montemedy (France)); Savanne, D. (Agence de l' Environnement et de la Maitrise de l' Energie, 75 - Paris (France)); Sourie, J.C. (Institut National de la Recherche Agronomique, Grignon (France). Station d' Economie et de Sociologie Rurales)

    1992-01-01

    This article analyzes the current context and the prospects for crop development as well as offering a number of examples of short rotation coppicing projects. The industrial outlets created through state aid remain the primary driving force behind plantations at this time. (author)

  10. Strength loss in decayed wood

    Science.gov (United States)

    Rebecca E. Ibach; Patricia K. Lebow

    2014-01-01

    Wood is a durable engineering material when used in an appropriate manner, but it is susceptible to biological decay when a log, sawn product, or final product is not stored, handled, or designed properly. Even before the biological decay of wood becomes visually apparent, the decay can cause the wood to become structurally unsound. The progression of decay to that...

  11. Many Roles of Wood Adhesives

    Science.gov (United States)

    Charles R. Frihart

    2014-01-01

    Although wood bonding is one of the oldest applications of adhesives, going back to early recorded history (1), some aspects of wood bonds are still not fully understood. Most books in the general area of adhesives and adhesion do not cover wood bonding. However, a clearer understanding of wood bonding and wood adhesives can lead to improved products. This is important...

  12. Varying rotation lengths in northern production forests: Implications for habitats provided by retention and production trees.

    Science.gov (United States)

    Felton, Adam; Sonesson, Johan; Nilsson, Urban; Lämås, Tomas; Lundmark, Tomas; Nordin, Annika; Ranius, Thomas; Roberge, Jean-Michel

    2017-04-01

    Because of the limited spatial extent and comprehensiveness of protected areas, an increasing emphasis is being placed on conserving habitats which promote biodiversity within production forest. For this reason, alternative silvicultural programs need to be evaluated with respect to their implications for forest biodiversity, especially if these programs are likely to be adopted. Here we simulated the effect of varied rotation length and associated thinning regimes on habitat availability in Scots pine and Norway spruce production forests, with high and low productivity. Shorter rotation lengths reduced the contribution made by production trees (trees grown for industrial use) to the availability of key habitat features, while concurrently increasing the contribution from retention trees. The contribution of production trees to habitat features was larger for high productivity sites, than for low productivity sites. We conclude that shortened rotation lengths result in losses of the availability of habitat features that are key for biodiversity conservation and that increased retention practices may only partially compensate for this. Ensuring that conservation efforts better reflect the inherent variation in stand rotation lengths would help improve the maintenance of key forest habitats in production forests.

  13. Theoretical background to and practical utilization of short-rotation and energy forestry

    International Nuclear Information System (INIS)

    Christersson, L.

    1999-01-01

    This paper gives an overview of activities within short-rotation forestry in Sweden. The main interest lies in plantations of alder, poplar and birch and the study also mentions the industrial value of these tree species, especially for the pulp and paper, and furniture sector. The environmental impact of deciduous tree plantations as well as the possibility of waste water treatment is also discussed

  14. Impregnation and Polymerization Methods and Systems Used in the Production of Wood-Polymer Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mott, W. E.; Rotariu, G. J. [United States Atomic Energy Commission, Washington, DC 20545 (United States)

    1968-10-15

    Studies on the radiation production of wood-polymer materials began in the United States in 1961 at West Virginia University and have continued until today. In this paper the impregnation and polymerization methods and systems that have evolved from these studies are reviewed. Included is a description of the procedures developed at the College of Forestry, Syracuse University, for producing wood-polymers via a thermal-catalytic process. (author)

  15. Climate impact and energy efficiency from electricity generation through anaerobic digestion or direct combustion of short rotation coppice willow

    International Nuclear Information System (INIS)

    Ericsson, Niclas; Nordberg, Åke; Sundberg, Cecilia; Ahlgren, Serina; Hansson, Per-Anders

    2014-01-01

    Highlights: • Using LCA, CHP from willow use in biogas was compared with direct combustion. • Direct combustion was ninefold more energy-efficient. • Biogas had a much greater cooling effect on global mean surface temperature. • The effects of soil carbon changes on temperature over time differed. • Biogas had long-term temperature effects, direct combustion short-term effects. - Abstract: Short rotation coppice willow is an energy crop used in Sweden to produce electricity and heat in combined heat and power plants. Recent laboratory-scale experiments have shown that SRC willow can also be used for biogas production in anaerobic digestion processes. Here, life cycle assessment is used to compare the climate impact and energy efficiency of electricity and heat generated by these measures. All energy inputs and greenhouse gas emissions, including soil organic carbon fluxes were included in the life cycle assessment. The climate impact was determined using time-dependent life cycle assessment methodology. Both systems showed a positive net energy balance, but the direct combustion system delivered ninefold more energy than the biogas system. Both systems had a cooling effect on the global mean surface temperature change. The cooling impact per hectare from the biogas system was ninefold higher due to the carbon returned to soil with the digestate. Compensating the lower energy production of the biogas system with external energy sources had a large impact on the result, effectively determining whether the biogas scenario had a net warming or cooling contribution to the global mean temperature change per kWh of electricity. In all cases, the contribution to global warming was lowered by the inclusion of willow in the energy system. The use of time-dependent climate impact methodology shows that extended use of short rotation coppice willow can contribute to counteract global warming

  16. Future carbon storage in harvested wood products from Ontario's Crown forests

    International Nuclear Information System (INIS)

    Chen, J.; Colombo, S.J.; Ter-Mikaelian, M.T.

    2008-01-01

    Carbon (C) storage in harvested wood products (HWP) from Ontario's Crown forests were analyzed using a large-scale forest C budget model. The model was used to estimate HWP C stock changes as defined by the Intergovernmental Panel on Climate Change. The harvested C mass was then allocated to 4 HWP end-use categories, notably (1) in use; (2) landfill; (3) energy; and (4) emissions. C mass redistribution among HWP end-use categories was calculated using an age-based C distribution matrix. Emissions for harvest, transport, and manufacturing were accounted for as well as emission reductions gained by using the HWP in place of other construction materials and fossil fuels. Results of the study showed that C storage in HWP is projected to increase by 3.6 Mt per year. The projections indicated that the harvest of wood products in Ontario will result in a steadily increasing C sink in HWP and forests. 51 refs., 8 tabs., 4 figs

  17. A multi-tiered approach for assessing the forestry and wood products industries' impact on the carbon balance.

    Science.gov (United States)

    Knauf, Marcus

    2015-12-01

    The forestry and wood products industries play a significant role in CO 2 emissions reduction by increasing carbon stocks in living forest biomass and wood products. Moreover, wood can substitute for fossil fuels. Different methods can be used to assess the impact of regional forestry and wood products industries on regional CO 2 emissions. This article considers three of those methods and combines them into a multi-tiered approach. The multi-tiered approach proposed in this article combines: 1) a Kyoto-Protocol-oriented method focused on changes in CO 2 emissions resulting from regional industrial production, 2) a consumer-oriented method focused on changes in CO 2 emissions resulting from regional consumption, and 3) a value-creation-oriented method focused on changes in CO 2 emissions resulting from forest management and wood usage strategies. North Rhine-Westphalia is both a typical German state and an example of a region where each of these three methods yields different results. It serves as a test case with which to illustrate the advantages of the proposed approach. This case study argues that the choice of assessment methods is essential when developing and evaluating a strategy for reducing CO 2 emissions. Emissions can be reduced through various social and economic processes. Since none of the assessment methods considered above is suitable for all of these processes, only a multi-tiered approach may ensure that strategy development results in an optimal emissions reduction strategy.

  18. Management alternatives of energy wood thinning stands

    International Nuclear Information System (INIS)

    Heikkilae, Jani; Siren, Matti; Aeijaelae, Olli

    2007-01-01

    Energy wood thinning has become a feasible treatment alternative of young stands in Finland. Energy wood thinnings have been carried out mainly in stands where precommercial thinning has been neglected and the harvesting conditions for industrial wood thinning are difficult. Despite of its positive effects on harvesting costs and on renewable energy potential, whole-tree harvesting has been constantly criticized for causing growth loss. In this paper, the profitability of energy wood thinning was studied in 20 Scots pine-dominated stands where energy wood thinning was carried out. The growth of the stands after thinning was predicted with the help of Motti-stand simulator. Entire rotation time of the stands was simulated with different management alternatives. The intensity of first thinning and recovery level of logging residues varied between alternatives. In order to attain acceptable harvesting conditions, industrial wood thinning had to be delayed. The effect of energy wood thinning on subsequent stem wood growth was almost the same as in conventional thinning. Whole-tree harvesting for energy proved to be profitable alternative if the stumpage price is around 3EUR m -3 , the interest rate is 3% or 5% and the removal of pulpwood is less than 20 m 3 ha -1 . If the harvestable pulpwood yield is over 20 m 3 ha -1 , integrated harvesting of industrial and energy wood or delayed industrial wood harvesting becomes more profitable. (author)

  19. Small-scale production and utilization of wood fuels; Puupolttoaineen pientuotanto ja -kaeyttoe - katsaus tutkimus- projekteihin

    Energy Technology Data Exchange (ETDEWEB)

    Tuomi, S [Work Efficiency Inst., Rajamaeki (Finland)

    1997-12-31

    The objective of the research on small-scale production of wood fuels was to promote the forest owners` own utilization and procurement of firewood. The profitability of firewood was improved by developing new farm-tractor mountable equipment and methods for forest owners and small-entrepreneurs for harvesting of first-thinning wood and other small-dimeter wood. Totally new solution for machine felling of small trees and chopwood production were developed to serial production level. Recyclable processing and delivery units were developed for delivery of chopwood. A calculation model for analysing the costs of small-scale production of firewood became ready. A guide on the development of heating-entrepreneur activities, serving the entrepreneurs, was published. The objective of the firewood utilization research was to reduce the technical barriers of the utilization of firewood in small-house and real-estate scales. The main aim was to reduce the flue-gas emissions. The emissions of the fireplaces were reduced by developing the construction of fireplaces, catalytic combustion and heating methods. An automatic stoker-burner was developed for real-estate scale and a boiler series was designed for biofuels

  20. Small-scale production and utilization of wood fuels; Puupolttoaineen pientuotanto ja -kaeyttoe - katsaus tutkimus- projekteihin

    Energy Technology Data Exchange (ETDEWEB)

    Tuomi, S. [Work Efficiency Inst., Rajamaeki (Finland)

    1996-12-31

    The objective of the research on small-scale production of wood fuels was to promote the forest owners` own utilization and procurement of firewood. The profitability of firewood was improved by developing new farm-tractor mountable equipment and methods for forest owners and small-entrepreneurs for harvesting of first-thinning wood and other small-dimeter wood. Totally new solution for machine felling of small trees and chopwood production were developed to serial production level. Recyclable processing and delivery units were developed for delivery of chopwood. A calculation model for analysing the costs of small-scale production of firewood became ready. A guide on the development of heating-entrepreneur activities, serving the entrepreneurs, was published. The objective of the firewood utilization research was to reduce the technical barriers of the utilization of firewood in small-house and real-estate scales. The main aim was to reduce the flue-gas emissions. The emissions of the fireplaces were reduced by developing the construction of fireplaces, catalytic combustion and heating methods. An automatic stoker-burner was developed for real-estate scale and a boiler series was designed for biofuels

  1. Evaluation of leachate quality from pentachlorophenol, creosote and ACA [ammoniacal chromium arsenate] preserved wood products

    International Nuclear Information System (INIS)

    Whiticar, D.M.; Letourneau, L.; Konasewich, D.

    1994-01-01

    A field study was conducted to evaluate the leachability characteristics of pentachlorophenol (PCP), creosote, and ammoniacal chromium arsenate (ACA) wood preservatives from freshly treated wood products. Test products included PCP-treated utility poles, creosote-treated timbers and marine pilings, and ACA-treated utility poles. Bundles of test products were placed over collection trays to collect the leachate generated by natural rainfall and by sprinkling with tap water. The sampling schedule was based on accumulated rainfall with samples taken at about every 15 mm from 15 mm to 150 mm. Analyses included pH, oil and grease, total organic carbon, ammonia, metals, polynuclear aromatic hydrocarbons (PAH), chlorinated and nonchlorinated phenols, resin acids, and fish toxicity. The study indicated that leachates from wood products freshly treated with ACA, creosote, and PCP have potential for aquatic toxicity if released to the environment. A decreasing trend was noted in both the arsenic and copper releases as cumulative precipitation increased. PCP releases remained constant over the course of the study while PAH releases showed no significant trend. Phenanthrene was found to be the main component in the releases. 28 refs., 18 figs., 7 tabs

  2. Production of cattle feed by the growth of bacteria on mesquite wood

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, D W

    1975-01-01

    The potential for the conversion of mesquite into either a complete animal feed or a protein supplement was evaluated. Species of bacteria which can use the extremely hard mesquite wood as their sole C source were isolated by enrichment culture techniques. Each species was evaluated for its rate of growth, protein production, cellulase activity, amino acid profile of the single-cell protein, and acute toxicity or pathogenicity for weanling mice. The growth products were analyzed for protein, lignin, ash, carbohydrates, and caloric value. The single-cell protein produced from mesquite exceeded or equaled the FAO reference protein in 8 essential amino acids including methionine. No pathogenicity or acute toxicity of the bacteria for weanling mice was found. The results indicate that a high-energy, high-protein, complete cattle feed or an excellent protein supplement can be produced from mesquite wood.

  3. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    Energy Technology Data Exchange (ETDEWEB)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2003-12-18

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

  4. Wood production potential in poplar plantations in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Christersson, Lars [Section of Short Rotation Forestry, VPE, SLU, Uppsala (Sweden)

    2010-09-15

    Shortage of oil, large variations in exports from Russia of wood to Europe, plenty of abandoned agriculture land, new ideas about a more intensive silviculture; these circumstances are driving forces in Sweden for planting fast-growing poplar and hybrid aspen clones on suitable land. The advantage of such trees is that the wood can be used for both energy (heat, biofuels, electricity), paper and for construction. Poplar clones bred in the USA and Belgium, and older hybrid aspen clones from Sweden, together with new poplar clones collected and selected for Swedish conditions from British Columbia, Canada, were planted during the 1990s in south and central Sweden. The stem diameters and heights of the trees have been measured during the last 10 years and the woody biomass production above ground has been calculated. MAI for all the plantations is 10-31 m{sup 3} or 3-10 ton DM per hectare with the highest annual woody production of 45 m{sup 3} or 15 ton DM per hectare in some years in a very dense plantation in the most southern part of Sweden. All the plantations have been fenced for at least the first ten years. The damage has been caused by stem canker, insects, leaf rust and by moose after removal of the fences. The possibilities for the use of poplar plantations as energy forest and vegetation filters are discussed. (author)

  5. Developing estimates of potential demand for renewable wood energy products in Alaska

    Science.gov (United States)

    Allen M. Brackley; Valerie A. Barber; Cassie Pinkel

    2010-01-01

    Goal three of the current U.S. Department of Agriculture, Forest Service strategy for improving the use of woody biomass is to help develop and expand markets for woody biomass products. This report is concerned with the existing volumes of renewable wood energy products (RWEP) that are currently used in Alaska and the potential demand for RWEP for residential and...

  6. Comminution process to produce precision wood particles of uniform size and shape with disrupted grain structure from wood chips

    Science.gov (United States)

    Dooley, James H; Lanning, David N

    2013-08-13

    A process of comminution of wood chips (C) having a grain direction to produce a mixture of wood particles (P), wherein the wood chips are characterized by an average length dimension (L.sub.C) as measured substantially parallel to the grain, an average width dimension (W.sub.C) as measured normal to L.sub.C and aligned cross grain, and an average height dimension (H.sub.C) as measured normal to W.sub.C and L.sub.C, and wherein the comminution process comprises the step of feeding the wood chips in a direction of travel substantially randomly to the grain direction through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of wood chip travel, wherein the cutting discs have a uniform thickness (T.sub.D), and wherein at least one of L.sub.C, W.sub.C, and H.sub.C is greater than T.sub.D.

  7. The effect of location and facility demand on the marginal cost of delivered wood chips from energy crops: A case study of the state of Tennessee

    International Nuclear Information System (INIS)

    Graham, R.L.; Liu, W.; Downing, M.; Noon, C.; Daly, M.; Moore, A.

    1995-01-01

    Cost-supply curves for delivered wood chips from short rotation woody crops were calculated for 21 regularly-spaced locations spanning the state of Tennessee. These curves were used to systematically evaluate the combined effects of location and facility demand on wood chip feedstock costs in Tennessee. The cost-supply curves were developed using BRAVO, a GIS-based decision support system which calculates marginal cost of delivering wood chips to a specific location given road network maps and maps of farmgate prices and supplies of woody chips from short rotation energy crops. Marginal costs of delivered chips varied by both facility location in the state and facility demand. Marginal costs were lowest in central Tennessee unless the facility demand was greater than 2.7 million dry Mg per year (3 million dry tons per year) in which case west Tennessee was the lowest cost region. Marginal costs rose rapidly with increasing facility demand in the mountainous eastern portion of the state. Transportation costs accounted for 18 to 29% of the delivered cost and ranged between $8 and $18/dry Mg ($7 and $16/dry ton). Reducing the expected farmer participation rate from 100% to 50% or 25% dramatically raised the marginal costs of feedstock supply in the east and central regions of the state. The analysis demonstrates the need to use geographically-specific information when projecting the potential costs and supplies of biomass feedstock

  8. Life cycle environmental impacts of different construction wood waste and wood packaging waste processing methods

    OpenAIRE

    Manninen, Kaisa; Judl, Jáchym; Myllymaa, Tuuli

    2016-01-01

    This study compared the life cycle environmental impacts of different wood waste processing methods in three impact categories: climate impact, acidification impacts and eutrophication impacts. The wood waste recovery methods examined were the use of wood waste in terrace boards made out of wood composite which replace impregnated terrace boards, incineration of wood waste in a multi-fuel boiler instead of peat and the use of wood waste in the production of particleboard in either Finland or ...

  9. Material and energy balances in the production of ethanol from wood

    Energy Technology Data Exchange (ETDEWEB)

    Wayman, M; Lora, J H; Gulbinas, E

    1978-01-01

    Experimental production of ethanol from aspen wood gave yeilds of 70.7% or 83.4% or theory when acid hydrolysis or enzymatic hydrolysis weere used after autohydrolysis and extraction of lignin. These were, respectively, 58.4 and 68.9 gallons of 95% ethanol per ton of aspen wood (dry basis). In addition 426 lb of lignin with heat of combustion 11,100 Btu/lb were obtained per ton of wood. Gross energy recovery (ethanol + lignin) was 52.4 and 58.0% by thee two processes, or allowing for processing energy, net energy recovery was 36.1 and 42.3% respectively. Multi stage hydrolysis was beneficial for both acid and enzymatic hydrolysis, 80% and over 99% of theoretical yeilds of sugar being obtained by the two processes. Economic estimates show a significant advantage in investment and operating costs for the enzymatic process. Thee price of 95% ethanol, including a reasonable return on investment by this process is estimated at $1.34/gallon. This would be a good price for industrial ethanol, but would be quite high for gasoline use under prevailing circumstance.

  10. Coal and wood fuel for electricity production: An environmentally sound solution for waste and demolition wood

    Energy Technology Data Exchange (ETDEWEB)

    Penninks, F.W.M. [EPON, Zwolle (Netherlands)

    1997-12-31

    Waste wood from primary wood processing and demolition presents both a problem and a potential. If disposed in landfills, it consumes large volumes and decays, producing CH{sub 4}, CO{sub 2} and other greenhouse gases. As an energy source used in a coal fired power plant it reduces the consumption of fossil fuels reducing the greenhouse effect significantly. Additional advantages are a reduction of the ash volume and the SO{sub 2} and NO{sub x} emissions. The waste wood requires collection, storage, processing and burning. This paper describes a unique project which is carried out in the Netherlands at EPON`s Gelderland Power Plant (635 MW{sub e}) where 60 000 tonnes of waste and demolition wood will be used annually. Special emphasis is given to the processing of the powdered wood fuel. Therefore, most waste and demolition wood can be converted from an environmental liability to an environmental and economic asset. (author)

  11. Coal and wood fuel for electricity production: An environmentally sound solution for waste and demolition wood

    Energy Technology Data Exchange (ETDEWEB)

    Penninks, F W.M. [EPON, Zwolle (Netherlands)

    1998-12-31

    Waste wood from primary wood processing and demolition presents both a problem and a potential. If disposed in landfills, it consumes large volumes and decays, producing CH{sub 4}, CO{sub 2} and other greenhouse gases. As an energy source used in a coal fired power plant it reduces the consumption of fossil fuels reducing the greenhouse effect significantly. Additional advantages are a reduction of the ash volume and the SO{sub 2} and NO{sub x} emissions. The waste wood requires collection, storage, processing and burning. This paper describes a unique project which is carried out in the Netherlands at EPON`s Gelderland Power Plant (635 MW{sub e}) where 60 000 tonnes of waste and demolition wood will be used annually. Special emphasis is given to the processing of the powdered wood fuel. Therefore, most waste and demolition wood can be converted from an environmental liability to an environmental and economic asset. (author)

  12. Evaluation of the environmental impacts of wood products for bio-energy through Life Cycle Assessment (LCA)

    OpenAIRE

    Pierobon, Francesca

    2015-01-01

    The use of wood for energy has grown in the last years as an alternative to fossil fuels. National and international laws promote the use of wood in the policies for the mitigation of climate change, based on the assumption that wood has a neutral carbon balance because the combustion emissions are offset by the absorption in forest (assumption of carbon neutrality). However, this assumption does not take into account the emissions associated with the life cycle of the product, e.g. related t...

  13. An evaluation of harvesting machinery for short rotation coppice willow in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Kofman, P.D.; Spinelli, R.

    1997-12-31

    During the harvesting seasons 1994-1995 and 1995-1996 several harvesting trials were carried out within the EU project on harvesting and storage of Short Rotation Crops and within a national project. During this period the following machines were investigated: Diemelstadt poplar harvester, cut and chip; Claas forage harvester with SRF header, cut and chip; Austoft sugarcane harvester, adapted to SRF, cut and chip; Bender II, cut and chip; Hvidsted Energy Allrounder, whole shoot harvester; Dansalix whole shoot harvester. In the 1994-1995 season the intention was to harvest 300 tonnes of whole shoots, chunks and chips for a storage trial. The main conclusions of the 1994-1995 harvesting season must be that harvesting willow with the existing machines in wet winters without frozen ground is very difficult. The machines will have to be developed further and special interest should be given to developing shuttle vehicles with the same flotation as the tracked harvester. Several of the problems encountered with the machines in Denmark were confirmed by the experience in the other trials. Road transportation of chips from SRF plantations is just as expensive as transporting energy chips from the forest at about Dkr 50 per tonne over 48 km. Transporting whole shoots is very expensive due to the low bulk density. Transportation of whole shoots over 48 km costs on the average Dkr 133 per tonne fresh. A very short pilot study into chipping of whole shoots from a three metre high pile indicated that this comminution with a normal forest chipper has a low productivity (8.9 tonnes fresh per work place hour) and is very expensive at Dkr 157 per tonne. This productivity can be improved by equipping the chipper with a special feeding table and better feed rollers for the SRF crop. (EG)

  14. An exploratory assessment of the attitudes of Chinese wood products manufacturers towards forest certification.

    Science.gov (United States)

    Chen, Juan; Innes, John L; Kozak, Robert A

    2011-11-01

    Interviews with Chinese forest products manufacturers were conducted to explore their attitudes towards forest certification and related issues. Participants comprised owners, CEOs, and managers in 20 Chinese wood products companies, including producers of furniture, doors, flooring, and various engineered wood products. The interviews were used to analyze the extent to which participants were considering adopting forest certification and what might motivate such a decision. This was done by assessing their awareness and knowledge of certification. The results indicated that participants' understanding of forest certification was extremely low, despite major efforts in China to raise awareness of the issue. Potential economic benefits were the most frequently cited reason to adopt certification, including gaining or maintaining competitive advantage over their industry counterparts, improved access to both domestic and export markets, better customer recognition, and enhanced corporate responsibility practices. Some interviewees (3 out of 20) considered that certification would become a mandatory requirement or industry standard, and that this would be the only viable motivation for certification given that the financial benefits were potentially limited. According to the participants, the main differences between certified and uncertified wood products operations related to improved market access and public image. Interviewees felt that cooperation between and support from governments and the forest industry would enable the enhanced awareness of certification amongst manufacturers and the general public. This, in turn, could serve to stimulate demand for certified products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. economic assessment of two selected non-timber forest products in ...

    African Journals Online (AJOL)

    Aladex

    forest product commonly used for domestic and industrial energy generation. ... continue to depend on wood because bringing oil, gas and electricity within their .... coppicing and coppice trees are normally harvested in rotational patches ...

  16. Assessing the Availability of Wood Residues and Residue Markets in Virginia

    OpenAIRE

    Alderman, Delton R. Jr.

    1998-01-01

    A statewide mail survey of primary and secondary wood product manufacturers was undertaken to quantify the production and consumption of wood residues in Virginia. Two hundred and sixty-six wood product manufacturers responded to the study and they provided information on the production, consumption, markets, income or disposal costs, and disposal methods of wood residues. Hardwood and pine sawmills produce approximately 66 percent of Virginia's wood residues. Virginia's wood product man...

  17. Conservation value of low-productivity forests measured as the amount and diversity of dead wood and saproxylic beetles.

    Science.gov (United States)

    Hämäläinen, Aino; Strengbom, Joachim; Ranius, Thomas

    2018-06-01

    In many managed landscapes, low-productivity land comprises most of the remaining relatively untouched areas, and is often over-represented within protected areas. The relationship between the productivity and conservational value of a site is poorly known; however, it has been hypothesized that biodiversity increases with productivity due to higher resource abundance or heterogeneity, and that the species communities of low-productivity land are a nested subset of communities from more productive land. We tested these hypotheses for dead-wood-dependent beetles by comparing their species richness and composition, as well as the amount and diversity of dead wood, between low-productivity (potential forest growth dead wood, but volume appeared to be a better predictor than diversity for the higher species richness in set-asides. Beetle species composition was similar among stand types, and the assemblages in low-productivity stands were largely subsets of those in high-productivity set-asides. However, 11% of all species and 40% of red-listed species only occurred in high-productivity stands, while no species were unique to low-productivity stands. We conclude that low-productivity forests are less valuable for conservation than high-productivity forest land. Given the generally similar species composition among stand types, a comparable conservational effect could be obtained by setting aside a larger area of low-productivity forest in comparison to the high-productivity. In terms of dead wood volumes, 1.8-3.6 ha of low-productivity forest has the same value as 1 ha of unmanaged high-productivity forest. This figure can be used to estimate the conservation value of low-productivity forests; however, as high-productivity forests harbored some unique species, they are not completely exchangeable. © 2018 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.

  18. The Swedish wood fuel market

    International Nuclear Information System (INIS)

    Hillring, Bengt

    1999-01-01

    In Sweden, wood fuels are traditionally used in the Swedish forest products industry and for heating of single-family houses. More recently they are also become established as an energy source for district heating and electricity production. Energy policy, especially the energy taxation system, has favoured wood fuels and other biofuels, mainly for environmental reasons. There is now an established commercial market for wood fuels in the district heating sector, which amounts to 45 PJ and is growing 20 per cent annually. Price levels have been stable in current prices for a decade, mainly because of good access to wood fuels. Price levels are dominated by production costs on a market that is largely governed by the buyer. It is expected that the use of wood fuels will increased in Sweden in the future, which will push a further development of this section on the market and bring about technological changes in the area. (Author)

  19. Wood products used for residential repair and remodeling in the United States, 1991

    Science.gov (United States)

    D. B. McKeever; R. G. Anderson

    Large amounts of lumber and wood panel products are used annually for the repair and remodeling of residential structures and properties in the United States. In response to the need by government and industry for detailed information on this important market for timber products, a study was conducted by the Timber Demand and Technology...

  20. Forests and wood consumption on the carbon balance. Carbon emission reduction by use of wood products

    International Nuclear Information System (INIS)

    Sikkema, R.; Nabuurs, G.J.

    1995-01-01

    Until now studies on the greenhouse effect paid much attention to carbon fixation by forests, while the entire CO2 cycle of forests and forest products remained underexposed. Utilization of wood products instead of energy-intensive materials (plastics/steel) and fossil fuels (coal) proves to play an important role as well. The effect of utilization is even greater than that of fixation. In all, additional forests together with the multiple use of trees can contribute substantially to the reduction of CO2 emissions. The contribution can run from 5.3 ton CO2/ha/yr for a mixed forest of oak/beech to 18.9 ton CO2/ha/yr for energy plantations (poplar). 2 figs., 3 tabs

  1. Decadal Variations in Eastern Canada's Taiga Wood Biomass Production Forced by Ocean-Atmosphere Interactions.

    Science.gov (United States)

    Boucher, Etienne; Nicault, Antoine; Arseneault, Dominique; Bégin, Yves; Karami, Mehdi Pasha

    2017-05-26

    Across Eastern Canada (EC), taiga forests represent an important carbon reservoir, but the extent to which climate variability affects this ecosystem over decades remains uncertain. Here, we analyze an extensive network of black spruce (Picea mariana Mill.) ring width and wood density measurements and provide new evidence that wood biomass production is influenced by large-scale, internal ocean-atmosphere processes. We show that while black spruce wood biomass production is primarily governed by growing season temperatures, the Atlantic ocean conveys heat from the subtropics and influences the decadal persistence in taiga forests productivity. Indeed, we argue that 20-30 years periodicities in Sea Surface Temperatures (SSTs) as part of the the Atlantic Multi-decadal Oscillation (AMO) directly influence heat transfers to adjacent lands. Winter atmospheric conditions associated with the North Atlantic Oscillation (NAO) might also impact EC's taiga forests, albeit indirectly, through its effect on SSTs and sea ice conditions in surrounding seas. Our work emphasizes that taiga forests would benefit from the combined effects of a warmer atmosphere and stronger ocean-to-land heat transfers, whereas a weakening of these transfers could cancel out, for decades or longer, the positive effects of climate change on Eastern Canada's largest ecosystem.

  2. Forest production dynamics along a wood density spectrum in eastern US forests

    Science.gov (United States)

    C.W. Woodall; M.B. Russell; B.F. Walters; A.W. D' Amato; K. Zhu; S.S. Saatchi

    2015-01-01

    Emerging plant economics spectrum theories were confirmed across temperate forest systems of the eastern US where the use of a forest stand's mean wood density elucidated forest volume and biomass production dynamics integrating aspects of climate, tree mortality/growth, and rates of site occupancy.

  3. Managing for water-use efficient wood production in Eucalyptus globulus plantations

    Science.gov (United States)

    Donald A. White; John F. McGrath; Michael G. Ryan; Michael Battaglia; Daniel S. Mendham; Joe Kinal; Geoffrey M. Downes; D. Stuart Crombie; Mark E. Hunt

    2014-01-01

    This paper tests the hypothesis that thinning and nitrogen fertiliser can increase the mass of wood produced per volume of water used (evapotranspiration) by plantations of Eucalyptus globulus. We have called this plantation water productivity (PWPWOOD) and argue that, for a given genotype, this term integrates the effects of management, site and climate on both...

  4. MARKET OF NON-WOOD FOREST PRODUCTS FROM BRAZILIAN SAVANNA

    Directory of Open Access Journals (Sweden)

    Sandra Regina Afonso

    2009-10-01

    Full Text Available In this article, we analyze the main non-wood forest products from Brazilian savanna. We studied the behavior and the growth rates of production and prices of almond of babaçu, oil of copaiba, fiber of buriti, leaf of jaborandi, bark of barbatimão, bark of angico, fruit of mangaba, almonds of pequi, from 1982 to 2005. All the products exhibited decreasing production, with exception of the oil of copaiba and almonds of pequi, which showed positive growth rates: 12.9% and 8.5%, respectively. The analysis of prices for most products was not significant, except for barks of barbatimão and angico, and almonds of pequi, which showed positive trends: 10.9%, 6.7%, and 4.6%, respectively. We believe that results were not significant due to the severe variations of the Brazilian currency in the period. We conclude that pequi is the main product from savanna and that oil of copaiba has the biggest increase in the production because most of the production comes from the whole Brazilian Amazon region.

  5. Detoxification of wood preserving waste under ambient, enhanced and chemical pretreatment conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, M.S.; Brown, K.W.; Dale, B.E.; Donnelly, K.C.; He, L.Y.; Markiewicz, K.V. [Texas A and M Univ., College Station, TX (United States)

    1994-12-31

    Detoxification of pentachlorophenol-containing wood preserving waste was monitored under ambient, enhanced and chemical pretreatment conditions for genotoxicity and parent compound removal. Samples were collected throughout the treatment periods and sequentially extracted with dichloromethane and methanol with the Tecator Soxtec apparatus. The organic extracts were analyzed on GC/ECD and GC/MS. The extract mutagenic and genotoxic potentials were evaluated with and without metabolic activation with the Salmonella Microsomal and E. coli Prophage Induction assays. The Salmonella mutagenic responses of extracts from Weswood soil amended with wood preserving waste and treated under ambient conditions were 2.0, 34.6 and 2.4 times greater than the solvent control on days 0, 540 and 1,200 respectively. Organic extracts of soil amended with wood preserving waste and treated under enhanced conditions in a solid-phase rotating drum bioreactor had mutagenic potentials of 3.4, 4.9 and 3.5 on days 0, 14 and 30, respectively. Extracts from wood preserving waste sludge treated with potassium polyethylene glycol were shown to have mutagenic potentials of 2.8, 6.1 and 3.8 at 0, 10 and 30 minutes. The results indicate that the initial products of the wood preserving waste detoxification under all treatment conditions appear to have greater genotoxic potentials than the starting material. The results also suggest that a more rapid detoxification occurs under enhanced and chemical pretreatment conditions.

  6. Chapter 9: Wood Energy

    Science.gov (United States)

    Francisco X. Aguilar; Karen Abt; Branko Glavonjic; Eugene Lopatin; Warren  Mabee

    2016-01-01

    The availabilty of information on wood energy continues to improve, particularly for commoditized woodfuels.  Wood energy consumption and production vary in the UNECE region because demand is strngly affected by weather and the prices of competing energy sources.  There has been an increase in wood energy in the power-and-heat sector in the EU28 and North American...

  7. Iron Stain on Wood

    Science.gov (United States)

    Mark Knaebe

    2013-01-01

    Iron stain, an unsightly blue–black or gray discoloration, can occur on nearly all woods. Oak, redwood, cypress, and cedar are particularly prone to iron stain because these woods contain large amounts of tannin-like extractives. The discoloration is caused by a chemical reaction between extractives in the wood and iron in steel products, such as nails, screws, and...

  8. Short rotation coppice as a fuel: framework for a contractual infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This report summarises the results of a study exploring the contractual interface between growers and suppliers of short rotation coppice fuels and power generators in England and Wales, France and Sweden. Reviews of the main contractual considerations in relation to growers and generators in the UK, and Swedish and UK studies are presented. Proposals for the contractual treatment in the UK of the issues raised by the studies are considered, and recommendations for the treatment of contractual and economic requirements prevailing in France and Sweden are given. Appendices contains model agreements. (UK)

  9. Environmental life cycle assessment of wood-based building materials and building product. Oekobilanzen von Baustoffen und Bauprodukten aus Holz; Zusammenfassung erster Erkenntnisse

    Energy Technology Data Exchange (ETDEWEB)

    Richter, K; Sell, J [Eidgenoessische Materialpruefungs- und Versuchsanstalt fuer Industrie, Bauwesen und Gewerbe, Duebendorf (Switzerland)

    1992-08-01

    This report presents a summary of the main studies on the topic carried out at EMPA wood department in the last 4 years.In its first part, the concept of an environmental life cycle analysis (LCA), whose purpose is to quantify the known environmental impacts of a product by means of a systematic input/output analysis, is described. Such evaluation must include all phases of a product's life cycle, from the extraction of resources to the final disposal. Raw material and energy supply are input values, whereas main products, by-products, and emissions to the environment are outputs. It is essential for a meaningful data collection as well as for the final interpretation of the results to define exact system boundaries and explain the models used for data aggregation which are, therefore, described in detail. The report's second part summarizes the results of an environmental assessment of wood as a raw material and construction component, and of some important wood-based products. First, some product-independent ecological values of wood are shown, which today cannot be quantified sufficiently in LCA (e.g. relations between forest management and multi-functional values of forests, sustainable reproduction of wood, careful and benign harvesting practices, CO[sub 2] cycling with wood, and the complete utilization of the resource for industrial productions). Although all these basic characteristics contribute to the out-standing ecologic value of wood, an environmental analysis has to concentrate on material- and product-related aspects. In our study, this is realized by assessing energy consumption and air pollution. In a case study the data compiled are used to compare a timber frame wall with several wall types of different materials, but with identical heat transmission and acoustic performance: as expected, the timber frame wall shows very good ratings. (author) figs., tabs., 21 refs.

  10. Wood Flour Moulding Technology: Implications for Technical ...

    African Journals Online (AJOL)

    The intent of this article is to demonstrate how wood waste called sawdust or wood flour can be transformed by plastic moulding machine into items of economic value. Wood flour is wood reduced to very fine particle form. It can be waste product from saw mills, wood working plants or produced from selected dry wood by ...

  11. Integrated carbon analysis of biomass production on fallow agricultural land and product substitution in Sweden - Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, Veronika; Eggers, Thies; Gustavsson, Leif [Mid Sweden Univ., Oestersund (Sweden). Ecotechnology

    2006-07-15

    An important option in the Swedish context to reduce its net emissions of carbon dioxide (CO{sub 2}) is the increased use of biomass for energy and material substitution. On fallow agricultural land additional production of biomass would be possible. We analyse biomass production systems based on Norway spruce, hybrid poplar and willow hybrids and the use of this biomass to replace fossil energy and energy intensive material systems. The highest biomass production potential is for willow in southern Sweden. Fertilisation management of spruce could shorten the rotation lengths by about 17%. The fertilised production of Norway spruce with use of harvested timber for construction and use of remaining woody biomass for heat and power production gives the largest reductions of carbon emissions per hectare under the assumptions made. The use of willow for heat and power and of fertilised spruce for a wood product mix lead to the highest fossil primary energy savings in our scenarios. Spruce cultivations can achieve considerable carbon emission reductions in the long term, but willow and poplar might be a good option when fossil energy savings and carbon emission reductions should be achieved in the short term.

  12. Potential availability of urban wood biomass in Michigan: Implications for energy production, carbon sequestration and sustainable forest management in the U.S.A

    International Nuclear Information System (INIS)

    MacFarlane, David W.

    2009-01-01

    Tree and wood biomass from urban areas is a potentially large, underutilized resource viewed in the broader social context of biomass production and utilization. Here, data and analysis from a regional study in a 13-county area of Michigan, U.S.A. are combined with data and analysis from several other studies to examine this potential. The results suggest that urban trees and wood waste offer a modest amount of biomass that could contribute significantly more to regional and national bio-economies than it does at present. Better utilization of biomass from urban trees and wood waste could offer new sources of locally generated wood products and bio-based fuels for power and heat generation, reduce fossil fuel consumption, reduce waste disposal costs and reduce pressure on forests. Although wood biomass generally constitutes a 'carbon-neutral' fuel, burning rather than burying urban wood waste may not have a net positive effect on reducing atmospheric CO 2 levels, because it may reduce a significant long term carbon storage pool. Using urban wood residues for wood products may provide the best balance of economic and environmental values for utilization

  13. Housing and the wood industry, trends & market conditions

    Science.gov (United States)

    Urs Buehlmann; Matt Bumgardner; Al Schuler; K. Koenig

    2011-01-01

    Housing markets continue to have major impacts on the secondary wood industry. So, what are the steps being taken by wood products manufacturers in order to stay viable? As a follow-up to last year's article, "Housing Market's Impact on the Secondary Woodworking Industry" (Wood & Wood Products, July 2010), the focus of this year's study was...

  14. Special Analysis: Updated Analysis of the Effect of Wood Products on Trench Disposal Limits at the E-Area Low-Level Waste Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2001-01-01

    This Special Analysis (SA) develops revised radionuclide inventory limits for trench disposal of low-level radioactive waste in the presence of wood products in the E-Area Low-Level Waste Facility. These limits should be used to modify the Waste Acceptance Criteria (WAC) for trench disposal. Because the work on which this SA is based employed data from tests using 100 percent wood products, the 40 percent limitation on wood products for trench (i.e., slit or engineered trench) disposal is not needed in the modified WAC

  15. Economy of wood supply

    International Nuclear Information System (INIS)

    Imponen, V.

    1993-01-01

    Research and development of wood fuels production was vigorous in the beginning of the 1980's. Techniques and working methods used in combined harvesting and transportation of energy and merchantable wood were developed in addition to separate energy wood delivery. After a ten year silent period the research on this field was started again. At present the underutilization of forest supplies and the environmental effects of energy production based on fossil fuels caused the rebeginning of the research. One alternative for reduction of the price of wood fuels at the utilization site is the integration of energy and merchantable wood deliveries together. Hence the harvesting and transportation devices can be operated effectively, and the organizational costs are decreased as well. The wood delivery costs consist of the stumpage price, the harvesting and transportation costs, and of general expenses. The stumpage price form the largest cost category (over 50 %) of the industrial merchantable wood delivery, and the harvesting and transportation costs in the case of thinningwood delivery. Forest transportation is the largest part of the delivery costs of logging residues. The general expenses, consisting of the management costs and the interest costs of the capital bound to the storages, form a remarkable cost category in delivery of low-rank wood for energy or conversion purposes. The costs caused by the harvesting of thinningwood, the logging residues, chipping and crushing, the lorry transportation are reviewed in this presentation

  16. Small-scale semi-continuous reactor for the conversion of wood to fuel oil

    Energy Technology Data Exchange (ETDEWEB)

    Eager, R L; Pepper, J M; Mathews, J F

    1983-04-01

    The design and operation of a small-scale semi-continuous reactor to convert aspen wood meal into an oil product is described. Modifications that reduce erosion/corrosion are also presented. Short residence times and relatively low operating pressures have been achieved for the reaction of aspen with CO and H2O in the presence of Na2CO3. Conversions, char formation, and the effect of sodium carbonate concentration on oil product are reported.

  17. Estimates of carbon stored in harvested wood products from United States Forest Service Northern Region, 1906-2012

    Science.gov (United States)

    Keith Stockmann; Nathaniel Anderson; Jesse Young; Ken Skog; Sean Healey; Dan Loeffler; Edward Butler; J. Greg Jones; James Morrison

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  18. Estimates of carbon stored in harvested wood products from United States Forest Service Southern Region, 1911-2012

    Science.gov (United States)

    Dan Loeffler; Nathaniel Anderson; Keith Stockmann; Ken Skog; Sean Healey; J. Greg Jones; James Morrison; Jesse Young

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  19. Estimates of carbon stored in harvested wood products from United States Forest Service Intermountain Region, 1911-2012

    Science.gov (United States)

    Keith Stockmann; Nathaniel Anderson; Jesse Young; Ken Skog; Sean Healey; Dan Loeffler; Edward Butler; J. Greg Jones; James Morrison

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  20. Estimates of carbon stored in harvested wood products from United States Forest Service Eastern Region, 1911-2012

    Science.gov (United States)

    Dan Loeffler; Nathaniel Anderson; Keith Stockmann; Ken Skog; Sean Healey; J. Greg Jones; James Morrison; Jesse Young

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  1. Estimates of carbon stored in harvested wood products from United States Forest Service Alaska Region, 1910-2012

    Science.gov (United States)

    Dan Loeffler; Nathaniel Anderson; Keith Stockmann; Ken Skog; Sean Healey; J. Greg Jones; James Morrison; Jesse Young

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  2. Estimates of carbon stored in harvested wood products from United States Forest Service Southwestern Region, 1909-2012

    Science.gov (United States)

    Edward Butler; Keith Stockmann; Nathaniel Anderson; Jesse Young; Ken Skog; Sean Healey; Dan Loeffler; J. Greg Jones; James Morrison

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  3. Wood construction under cold climate

    DEFF Research Database (Denmark)

    Wang, Xiaodong; Hagman, Olle; Sundqvist, Bror

    2014-01-01

    As wood constructions increasingly use engineered wood products worldwide, concerns arise about the integrity of the wood and adhesives system. The glueline stability is a crucial issue for engineered wood application, especially under cold climate. In this study, Norway spruce (Picea abies...... affected shear strength of wood joints. As temperature decreased, the shear strength decreased. PUR resin resulted in the strongest shear strength at all temperatures tested. MF resin responded to temperature changes in a similar ways as the PUR resin. The shear strength of wood joints with EPI resins...... specimens need to be tested in further work to more completely present the issue. The EN 301 and EN 302 may need to be specified based on wood species....

  4. Co-pyrolysis of wood biomass and synthetic polymers mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sharypov, V.I.; Beregovtsova, N.G.; Kuznetsov, B.N.; Baryshnikov, S.V. [Institute of Chemistry and Chemical Technology SB RAS, K. Marx Str., Krasnoyarsk 660049 (Russian Federation); Cebolla, V.L. [Instituto de Carboquimica, CSIC, Zaragoza (Spain); Weber, J.V.; Collura, S.; Finqueneisel, G.; Zimny, T. [Laboratoire de Chimie et Applications, Universite de Metz, IUT, rue V. Demange, 57500 Saint Avold (France)

    2006-06-01

    The pyrolysis in a hydrogen atmosphere of pine wood and synthetic polymers (polyethylene and polypropylene) mixtures was studied in a rotating autoclave. The effects of reaction temperature, wood/polymers mixture composition and catalysts, on the mixtures conversion into liquids and gases were established and discussed. The used catalysts were pyrrhotite and haematite materials activated by mechanochemical treatment. In the co-liquefaction processes the interaction between fragments of wood and polymers thermal decomposition took place. This results in non-additive increase of the wood/polymers conversion degree by 10-15wt.% and of the yield of distillate fractions by 14-19wt.%. Iron ore materials were found catalytically active in the process of hydropyrolysis of wood/polymers mixtures. By using these catalysts a significant increase of the distillable liquids amounts (by 14-21wt.%) and a sharp decrease of olefins and cycloparaffins content (by approximately two to three times) were observed. (author)

  5. Surface Coating of Wood Building Products: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    Science.gov (United States)

    Learn about the NESHAP for surface coating of wood building products by reading the rule summary and history, with links to the federal register notices, additional documents, related rules and compliance information

  6. Generalized allometric regression to estimate biomass of Populus in short-rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Ben Brahim, Mohammed; Gavaland, Andre; Cabanettes, Alain [INRA Centre de Toulouse, Castanet-Tolosane Cedex (France). Unite Agroforesterie et Foret Paysanne

    2000-07-01

    Data from four different stands were combined to establish a single generalized allometric equation to estimate above-ground biomass of individual Populus trees grown on short-rotation coppice. The generalized model was performed using diameter at breast height, the mean diameter and the mean height of each site as dependent variables and then compared with the stand-specific regressions using F-test. Results showed that this single regression estimates tree biomass well at each stand and does not introduce bias with increasing diameter.

  7. The challenge of bonding treated wood

    Science.gov (United States)

    Charles R. Frihart

    2004-01-01

    Wood products are quite durable if exposure to moisture is minimized; however, most uses of wood involve considerable exposure to moisture. To preserve the wood, chemicals are used to minimize moisture pickup, to prevent insect attack, and/or to resist microbial growth. The chemicals used as preservatives can interfere with adhesive bonds to wood. Given the many...

  8. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production.

    Science.gov (United States)

    Miazek, Krystian; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2017-04-01

    This work evaluates the possibility of using beech wood (Fagus sylvatica) dilute-acid (H 2 SO 4 ) hydrolysate as a feedstock for Chlorella sorokiniana growth, fatty acid and pigment production. Neutralized wood acid hydrolysate, containing organic and mineral compounds, was tested on Chlorella growth at different concentrations and compared to growth under phototrophic conditions. Chlorella growth was improved at lower loadings and inhibited at higher loadings. Based on these results, a 12% neutralized wood acid hydrolysate (Hyd12%) loading was selected to investigate its impact on Chlorella growth, fatty acid and pigment production. Hyd12% improved microalgal biomass, fatty acid and pigment productivities both in light and in dark, when compared to photoautotrophic control. Light intensity had substantial influence on fatty acid and pigment composition in Chlorella culture during Hyd12%-based growth. Moreover, heterotrophic Chlorella cultivation with Hyd12% also showed that wood hydrolysate can constitute an attractive feedstock for microalgae cultivation in case of lack of light. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A further evaluation of herbicides for post-emergence use in short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, D.J.

    2002-07-01

    This report describes a study of the safety and efficacy of a range of herbicides and mixtures of herbicides (with both contact and residual activity) for the post-emergence control of weeds in newly planted willow short rotation coppice (SRC). Severe competition from weeds that have not been controlled adequately by pre-emergence herbicide application is one of the commonest causes of SRC crop failure. In the study, the effects of 11 herbicide treatments currently recommendation for weed control with cereals, legumes or potatoes were compared with an untreated control. There was minimal crop death from any treatment, though most of the treatments caused varying degrees of phytotoxicity. Two commercial products, Reflex T and Impuls, gave the best overall crop safety and weed control results. The report provides growers of SRC and their advisors with some information on how to achieve improved weed control in SRC fields, and recommends that British Biogen (the trade industry body) should consider the compilation of a technical register of herbicide applications based on information supplied by growers and advisers, including field treatment details.

  10. Waste wood incineration: long-lasting, environment-friendly and CO2-neutral

    International Nuclear Information System (INIS)

    Bouma, J.W.J.

    1993-01-01

    The economic aspects of energy production from waste wood are evaluated. Heating systems based on the incineration of wood have been considerably improved recently. Several aspects of the incineration of waste wood are reviewed: the implications with regard to the greenhouse effect, the calorific value of wood, the incineration process, and the cost price calculation of energy production by waste wood incineration. In conclusion is stated that energy production by waste wood incineration is a valuable economic alternative for heat production by oil products, especially in view of the current anti-pollution taxes in Belgium. (A.S.)

  11. Supply of Rubber Wood Log in Malaysia

    OpenAIRE

    Noraida, A. W.; Abdul-Rahim, A. S.

    2014-01-01

    Issue on shortage of raw material for wood processing solved by discovery of rubber wood log as one of the substitutes the natural log. This paper examines the supply of rubber wood log in Malaysia. We employ ARDL Bound Approach Test and time series data from 1980 to 2010 which represented the whole Malaysia are used to achieve the established objectives. The result shown, in the long run harvested area and wages have 1% and 10% significant level respectively. While in the short run, there wa...

  12. ARBRE monitoring - ecology of short rotation coppice plantations. Interim report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Rich, T.J.; Sage, R.; Moore, N.; Robertson, P.; Aegerter, J.; Bishop, J.

    2001-07-01

    Short Rotation willow coppice (SRC) is a potential habitat for wildlife in the British countryside according to research reported in the late 1990s, but so far the trials have been on small plantations without reference to the land use it would supersede. This interim report, on a 4-year study which began in January 2000, discusses the commercial availability of SRC plantations and assesses what might be achievable by changing land usage. Work so far, conducted on indicator species (songbirds, ground flora, butterflies, insects), suggests that there are likely to be marked environmental benefits to be gained through SRC.

  13. Economic Impact of Net Carbon Payments and Bioenergy Production in Fertilized and Non-Fertilized Loblolly Pine Plantations

    Directory of Open Access Journals (Sweden)

    Prativa Shrestha

    2015-08-01

    Full Text Available Sequestering carbon in forest stands and using woody bioenergy are two potential ways to utilize forests in mitigating emissions of greenhouse gases (GHGs. Such forestry related strategies are, however, greatly influenced by carbon and bioenergy markets. This study investigates the impact of both carbon and woody bioenergy markets on land expectation value (LEV and rotation age of loblolly pine (Pinus taeda L. forests in the southeastern United States for two scenarios—one with thinning and no fertilization and the other with thinning and fertilization. Economic analysis was conducted using a modified Hartman model. The amount of carbon dioxide (CO2 emitted during various activities such as management of stands, harvesting, and product decay was included in the model. Sensitivity analysis was conducted with a range of carbon offset, wood for bioenergy, and forest product prices. The results showed that LEV increased in both management scenarios as the price of carbon and wood for bioenergy increased. However, the results indicated that the management scenario without fertilizer was optimal at low carbon prices and the management scenario with fertilizer was optimal at higher carbon prices for medium and low forest product prices. Carbon payments had a greater impact on LEV than prices for wood utilized for bioenergy. Also, increase in the carbon price increased the optimal rotation age, whereas, wood prices for bioenergy had little impact. The management scenario without fertilizer was found to have longer optimal rotation ages.

  14. Effects of wood smoke particles from wood-burning stoves on the respiratory health of atopic humans

    Directory of Open Access Journals (Sweden)

    Riddervold Ingunn

    2012-04-01

    Full Text Available Abstract Background There is growing evidence that particulate air pollution derived from wood stoves causes acute inflammation in the respiratory system, increases the incidence of asthma and other allergic diseases, and increases respiratory morbidity and mortality. The objective of this study was to evaluate acute respiratory effects from short-term wood smoke exposure in humans. Twenty non-smoking atopic volunteers with normal lung function and without bronchial responsiveness were monitored during three different experimental exposure sessions, aiming at particle concentrations of about 200 μg/m3, 400 μg/m3, and clean air as control exposure. A balanced cross-over design was used and participants were randomly allocated to exposure orders. Particles were generated in a wood-burning facility and added to a full-scale climate chamber where the participants were exposed for 3 hours under controlled environmental conditions. Health effects were evaluated in relation to: peak expiratory flow (PEF, forced expiratory volume in the first second (FEV1, and forced vital capacity (FVC. Furthermore, the effects were assessed in relation to changes in nasal patency and from markers of airway inflammation: fractional exhaled nitric oxide (FENO, exhaled breath condensate (EBC and nasal lavage (NAL samples were collected before, and at various intervals after exposure. Results No statistically significant effect of wood smoke exposure was found for lung function, for FENO, for NAL or for the nasal patency. Limited signs of airway inflammation were found in EBC. Conclusion In conclusion, short term exposure with wood smoke at a concentration normally found in a residential area with a high density of burning wood stoves causes only mild inflammatory response.

  15. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    Science.gov (United States)

    Fabien H. Wagner; Bruno Herault; Damien Bonal; Clement Stahl; Liana O. Anderson; Timothy R. Baker; Gabriel Sebastian Becker; Hans Beeckman; Danilo Boanerges Souza; Paulo Cesar Botosso; David M. J. S. Bowman; Achim Brauning; Benjamin Brede; Foster Irving Brown; Jesus Julio Camarero; Plinio Barbosa Camargo; Fernanda C. G. Cardoso; Fabricio Alvim Carvalho; Wendeson Castro; Rubens Koloski Chagas; Jerome Chave; Emmanuel N. Chidumayo; Deborah A. Clark; Flavia Regina Capellotto Costa; Camille Couralet; Paulo Henrique da Silva Mauricio; Helmut Dalitz; Vinicius Resende de Castro; Jacanan Eloisa de Freitas Milani; Edilson Consuelo de Oliveira; Luciano de Souza Arruda; Jean-Louis Devineau; David M. Drew; Oliver Dunisch; Giselda Durigan; Elisha Elifuraha; Marcio Fedele; Ligia Ferreira Fedele; Afonso Figueiredo Filho; Cesar Augusto Guimaraes Finger; Augusto Cesar Franco; Joao Lima Freitas Junior; Franklin Galvao; Aster Gebrekirstos; Robert Gliniars; Paulo Mauricio Lima de Alencastro Graca; Anthony D. Griffiths; James Grogan; Kaiyu Guan; Jurgen Homeier; Maria Raquel Kanieski; Lip Khoon Kho; Jennifer Koenig; Sintia Valerio Kohler; Julia Krepkowski; Jose Pires Lemos-Filho; Diana Lieberman; Milton Eugene Lieberman; Claudio Sergio Lisi; Tomaz Longhi Santos; Jose Luis Lopez Ayala; Eduardo Eijji Maeda; Yadvinder Malhi; Vivian R. B. Maria; Marcia C. M. Marques; Renato Marques; Hector Maza Chamba; Lawrence Mbwambo; Karina Liana Lisboa Melgaco; Hooz Angela Mendivelso; Brett P. Murphy; Joseph O' Brien; Steven F. Oberbauer; Naoki Okada; Raphael Pelissier; Lynda D. Prior; Fidel Alejandro Roig; Michael Ross; Davi Rodrigo Rossatto; Vivien Rossi; Lucy Rowland; Ervan Rutishauser; Hellen Santana; Mark Schulze; Diogo Selhorst; Williamar Rodrigues Silva; Marcos Silveira; Susanne Spannl; Michael D. Swaine; Jose Julio Toledo; Marcos Miranda Toledo; Marisol Toledo; Takeshi Toma; Mario Tomazello Filho; Juan Ignacio Valdez Hernandez; Jan Verbesselt; Simone Aparecida Vieira; Gregoire Vincent; Carolina Volkmer de Castilho; Franziska Volland; Martin Worbes; Magda Lea Bolzan Zanon; Luiz E. O. C. Aragao

    2016-01-01

    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter...

  16. Harvesting of short rotation coppice. Harvesting trials with a cut and storage system in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Schweier, J.; Becker, G.

    2012-11-01

    Short rotation coppice (SRC) harvesting techniques are available in Germany, but broad experience and knowledge about machine performance and the related effective costs of harvesting operations are still missing. This information is crucial, as harvesting costs strongly influence the economic performance of the overall supply chain. Therefore, it was the aim of this study to collect and analyze productivity data of different harvesting systems for SRC. The combined cut and chip system on the one hand and the cut and storage system on the other hand were studied by literature review. Several studies analyze the combined cut and chip systems and the reported machine productivities showed great variations. The average was 30 green tons per scheduled machine hour (gt smh{sup -1}). Few studies are analysing the cut and storage system. They report that machines still are under development and that further research is needed. Therefore, time studies of harvesting operations using the cut and storage system were carried out. Five trials were performed with the harvesting machine 'Stemster MK III' developed by Nordic Biomass. The share of productive working time was 85% and the average productivity was 21 gt smh{sup -1}. These results were compared with values from the literature. Resulting harvesting costs were calculated per oven dry ton (Euro odt{sup -1}). The advantages and disadvantages of both harvesting systems are highlighted. (orig.)

  17. Assessing the fate of nutrients and carbon in the bioenergy chain through the modeling of biomass growth and conversion.

    Science.gov (United States)

    François, Jessica; Fortin, Mathieu; Patisson, Fabrice; Dufour, Anthony

    2014-12-02

    A forest growth model was coupled to a model of combined heat and power (CHP) production in a gasification plant developed in Aspen Plus. For a given production, this integrated forest-to-energy model made it possible to predict the annual flows in wood biomass, carbon, and nutrients, including N, S, P, and K, from the forest to the air emissions (NOx, SOx, PAH, etc.) and ash flows. We simulated the bioenergy potential of pure even-aged high-forest stands of European beech, an abundant forest type in Northeastern France. Two forest management practices were studied, a standard-rotation and a shorter-rotation scenario, along with two wood utilizations: with or without fine woody debris (FWD) harvesting. FWD harvesting tended to reduce the forested area required to supply the CHP by 15–22% since larger amounts of energy wood were available for the CHP process, especially in the short-rotation scenario. Because less biomass was harvested, the short-rotation scenario with FWD decreased the nutrient exports per hectare and year by 4–21% compared to standard practices but increased the amount of N, S, and P in the CHP process by 2–9%. This increase in the input nutrient flows had direct consequences on the inorganic air emissions, thus leading to additional NOx and SO2 emissions. This model is a valuable tool for assessing the life cycle inventories of the entire bioenergy chain.

  18. Regular Recycling of Wood Ash to Prevent Waste Production (RecAsh). Technical Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lars E-mail: lars.t.andersson@skogsstyreslen.se

    2007-03-15

    At present, the extraction of harvest residues is predicted to increase in Sweden and Finland. As an effect of the intensified harvesting, the export of nutrients and acid buffering substances from the growth site is also increased. Wood ash could be used to compensate forest soils for such losses. Most wood fuel ash is today often deposited in landfills. If the wood ash is recycled, wood energy is produced without any significant waste production. Ash recycling would therefore contribute to decreasing the production of waste, and to maintaining the chemical quality of forest waters and biological productivity of forest soils in the long term. The project has developed, analysed and demonstrated two regular ash-recycling systems. It has also distributed knowledge gathered about motives for ash recycling as well as technical and administrative solutions through a range of media (handbooks, workshops, field demonstrations, reports, web page and information videos). Hopefully, the project will contribute to decreasing waste problems related to bio-energy production in the EU at large. The project has been organised as a separate structure at the beneficiary and divided in four geographically defined subprojects, one in Finland and three in Sweden (Central Sweden, Northern Sweden, and South-western Sweden). The work in each subproject has been lead by a subproject leader. Each subproject has organised a regional reference group. A project steering committee has been established consisting of senior officials from all concerned partners. The project had nine main tasks with the following main expected deliverables and output: 1. Development of two complete full-scale ash-recycling systems; 2. Production of handbooks of the ash recycling system; 3. Ash classification study to support national actions for recommendations; 4. Organise regional demonstrations of various technical options for ash treatment and spreading; 5. Organise national seminars and demonstrations of

  19. Wood anatomy of the Euphorbiaceae, in particular of the subfamily Phyllanthoideae

    NARCIS (Netherlands)

    Mennega, Alberta M.W.

    1985-01-01

    The great variety in wood structure of the large family Euphorbiaceae makes it impossible to describe briefly a general wood pattern. Nevertheless, a more or less clear division into four anatomical groups can be made. A short overview is given of the wood structure of the uni-ovulate subfamilies

  20. Heat resistant soy adhesives for structural wood products

    Science.gov (United States)

    Christopher G. Hunt; Charles Frihart; Jane O' Dell

    2009-01-01

    Because load-bearing bonded wood assemblies must support the structure during a fire, the limited softening and depolymerization of biobased polymers at elevated temperatures should be an advantage of biobased adhesives compared to fossil fuel-based adhesives. Because load-bearing bonded wood assemblies must support the structure during a fire, the limited softening...

  1. Wood-energy market impact on competition, procurement practices, and profitability of landowners and forest products industry in the U.S. south

    International Nuclear Information System (INIS)

    Conrad, Joseph L. IV.; Bolding, M. Chad; Smith, Robert L.; Aust, W. Michael

    2011-01-01

    Recent emphasis on producing energy from woody biomass has raised questions about the impact of a wood-energy market on the U.S. South's wood supply chain. We surveyed wood-energy facilities, fibermills, sawmills, private landowners, and government landholders to investigate the expected impact of a vibrant wood-energy market on the southern wood supply chain. Specifically, our study was designed to document potential competition for resources, wood supply chain profitability, and landowner willingness to sell timber to energy facilities. Results indicate that wood-energy facilities and traditional mills were not competing for raw material on a large scale at the time of the study, but competition is expected over the next decade. Almost 90% of fibermills reported that traditional forest industry mills should enter the wood-energy market, but most were skeptical that the new market would improve profitability. Ninety percent of responding landowners reported a willingness to sell to energy facilities if the right price is offered and all of those who had already sold timber to an energy facility were satisfied with the experience. Only 3.5% of respondents were unwilling to sell timber to an energy company, and only one of these respondents listed timber production as a primary objective, which indicates those who would not harvest timber for energy, may be unlikely to harvest timber for other purposes also. This study suggests that the southern wood supply chain is in position to profit from a wood-energy market; however, concerns remain about the coexistence of the forest products and wood-energy industries. (author)

  2. Structural wood products in onshore buildings at Naval Station Norfolk, 2000.

    Science.gov (United States)

    David B. McKeever

    2003-01-01

    As of December 31, 2000, there were 603 buildings at Naval Station (NAVSTA) Norfolk with a combined floor area of nearly 17.3 million ft2. In one-third of these buildings, structural wood products were used in one or more major structural building applications, utilizing an estimated 11.6 million board feet of lumber, 0.4 million ft2 (3/8-in. basis) of structural...

  3. Catalytic combustion in small wood burning appliances

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H [VTT Energy, Jyvaeskylae (Finland)

    1997-12-31

    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  4. Catalytic combustion in small wood burning appliances

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  5. Wood durability and stability without toxicity

    Science.gov (United States)

    Roger M. Rowell; Rebecca E. Ibach; Thomas Nilsson

    2010-01-01

    Part of a sustainable future for wood products depends on extending the lifetime of wood used in adverse environments. For some products such as the daily news paper, the average life of the products is one day. For packaging, the products average life time may be as few days to a few weeks. For pallets and wooden containers, the lifetime may be several months. For...

  6. Feasibility study of wood-fired cogeneration at a Wood Products Industrial Park, Belington, WV. Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Vasenda, S.K.; Hassler, C.C.

    1992-06-01

    Customarily, electricity is generated in a utility power plant while thermal energy is generated in a heating/cooling plant; the electricity produced at the power plant is transmitted to the heating/cooling plant to power equipments. These two separate systems waste vast amounts of heat and result in individual efficiencies of about 35%. Cogeneration is the sequential production of power (electrical or mechanical) and thermal energy (process steam, hot/chilled water) from a single power source; the reject heat of one process issued as input into the subsequent process. Cogeneration increases the efficiency of these stand-alone systems by producing these two products sequentially at one location using a small additional amount of fuel, rendering the system efficiency greater than 70%. This report discusses cogeneration technologies as applied to wood fuel fired system.

  7. Reynolds-Stress and Triple-Product Models Applied to a Flow with Rotation and Curvature

    Science.gov (United States)

    Olsen, Michael E.

    2016-01-01

    Turbulence models, with increasing complexity, up to triple product terms, are applied to the flow in a rotating pipe. The rotating pipe is a challenging case for turbulence models as it contains significant rotational and curvature effects. The flow field starts with the classic fully developed pipe flow, with a stationary pipe wall. This well defined condition is then subjected to a section of pipe with a rotating wall. The rotating wall introduces a second velocity scale, and creates Reynolds shear stresses in the radial-circumferential and circumferential-axial planes. Furthermore, the wall rotation introduces a flow stabilization, and actually reduces the turbulent kinetic energy as the flow moves along the rotating wall section. It is shown in the present work that the Reynolds stress models are capable of predicting significant reduction in the turbulent kinetic energy, but triple product improves the predictions of the centerline turbulent kinetic energy, which is governed by convection, dissipation and transport terms, as the production terms vanish on the pipe axis.

  8. Thermochemical and physical evaluation of poplar genotypes as short rotation forestry crops for energy use

    International Nuclear Information System (INIS)

    Monedero, Esperanza; Hernández, Juan José; Cañellas, Isabel; Otero, Jose María; Sixto, Hortensia

    2016-01-01

    Highlights: • The combustion properties of poplar genotypes harvested from three different sites were analyzed. • Both the genotype and the locations affect the expected combustion behavior. • Among the poplar genotypes, ‘Monviso’ and ‘Viriato’ are expected to have better combustion behavior. • No operating problems derived from fouling/corrosion are expected for any of the genotypes. - Abstract: Short rotation plantations of fast-growing species provide a promising way to produce heat and electricity from renewable sources. The thermo-chemical and physical properties of different genotypes of poplar in short rotation forestry crops grown at three locations with different climatic and edaphic characteristics as well as planting density, have been determined in order to characterize the most appropriate biomass in terms of energy potential. The planting density was 6666 or 13,333 trees/ha (depending on the location) in a rotation of three-four years and the analysis was carried out at the end of the first rotation. For all the genotypes, experimental tests to quantify the moisture content, particle size distribution, bulk density, heating value, ash content and composition as well as the volatile matter were performed. In addition, natural air drying of biomass (stem and branches) was studied in two locations with the aim of determining the humidity loss during raw storage. A significant effect of the genotype and the planting density on the biomass properties was observed. The results obtained indicate that ‘Monviso’ and ‘Viriato’ are the most suitable genotypes. No operational problems related to ash fouling and deposition in combustion devices are expected for any of the genotypes studied.

  9. Carbon storage in harvested wood products for Ireland 1961–2009

    International Nuclear Information System (INIS)

    Donlan, Jennifer; Skog, Kenneth; Byrne, Kenneth A.

    2012-01-01

    Forests are significant stores of carbon (C). This has been recognised by the United Nations Framework Convention on Climate Change and forests are one of the sectors which are included in national greenhouse gas (GHG) inventories. Some of this C pool remains in wood after harvest and can remain in use for long periods of time. Accounting for the C stored in harvested wood products (HWP) can potentially contribute to GHG mitigation. A model was developed for this research to estimate C stocks and flows in HWP in Ireland for the years 1961–2009. The change in carbon stocks in HWP were estimated on an annual basis and shown to increase between 1961 and 2009. This increase in annual net additions to C stocks is the result of an increase in domestic harvest (and the resulting inflow into HWP pool) and an increase in HWP going to end uses with longer half-lives. This model (using a Tier II method) is an improvement to previous national estimates (using the Tier I method). Uncertainty was reduced by utilizing national data. This work shows that HWP has considerable potential to support GHG mitigation in Ireland. Inclusion of HWP in Ireland's National Inventory Report (NIR) would give a more comprehensive picture of how the Irish forest sector is mitigating GHG emissions. This model will be incorporated into CARBWARE (Black 2008), the model used to estimate C stored in each of the 5 forest pools, of current and future Irish forests. -- Highlights: ► A model was developed for C stocks in Harvested Wood Products (HWP) in Ireland. ► Uncertainty was reduced from previous estimates by using national and end use data. ► HWP C stocks estimated on an annual basis increased in years 1961–2009. ► This was caused by increased in harvest and products with longer half-lives. ► HWP has considerable potential to support GHG mitigation in Ireland.

  10. Non-timber forest products marketing systems and market players in southwest Virginia: crafts, medicinal and herbal, and specialty wood products

    Science.gov (United States)

    S.M. Greene; A.L. Hammett; S. Kant

    2000-01-01

    Non-timber forest products (NTFPs) are important in rural southwest Virginia as a source of household income. Marketing system of crafts, medicinal and herbal, and specialty wood products are studied using exploratory and qualitative research methods. Fifty market players at various levels in marketing chains are interviewed to get the information on elements of...

  11. Field performance of Populus in short-rotation intensive culture plantations in the north-central U.S.

    Science.gov (United States)

    Edward A. Hansen; Michael E. Ostry; Wendell D. Johnson; David N. Tolsted; Daniel A. Netzer; William E. Berguson; Richard B. Hall

    1994-01-01

    Describes a network of short-rotation, Populus research and demonstration plantations that has been established across a 5-state region in the north-central U.S. to identify suitable hybrid poplar clones for large-scale biomass plantations in the region. Reports 6-year results.

  12. Projected wood energy impact on US forest wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Skog, K.E. [USDA Forest Service, Madison, WI (United States)

    1993-12-31

    The USDA Forest Service has developed long-term projections of wood energy use as part of a 1993 assessment of demand for and supply of resources from forest and range lands in the United States. To assess the impact of wood energy demand on timber resources, a market equilibrium model based on linear programming was developed to project residential, industrial, commercial, and utility wood energy use from various wood energy sources: roundwood from various land sources, primary wood products mill residue, other wood residue, and black liquor. Baseline projections are driven by projected price of fossil fuels compared to price of wood fuels and the projected increase in total energy use in various end uses. Wood energy use is projected to increase from 2.67 quad in 1986 to 3.5 quad in 2030 and 3.7 quad in 2040. This is less than the DOE National Energy Strategy projection of 5.5 quad in 2030. Wood energy from forest sources (roundwood) is projected to increase from 3.1 billion (10{sup 9}) ft{sup 3} in 1986 to 4.4. billion ft{sup 3} in 2030 and 4.8 billion ft{sup 3} in 2040 (88, 124 and 136 million m{sup 3}, respectively). This rate of increase of roundwood use for fuel -- 0.8 percent per year -- is virtually the same as the projected increase rate for roundwood for pulpwood. Pulpwood roundwood is projected to increase from 4.2 billion ft{sup 3} in 1986 to 6.0 billion ft{sup 3} in 2030 and 6.4 billion ft{sup 3} in 2040 (119, 170 and 183 million m{sup 3}, respectively).

  13. Lumber attributes, characteristics, and species preferences as indicated by secondary wood products firms in the continental United States.

    Science.gov (United States)

    David L. Nicholls; Joseph. Roos

    2006-01-01

    The purpose of this research was to evaluate selected lumber attributes, species preferences, and lumber use properties among secondary wood manufacturers in the United States. Our sample included producers of kitchen cabinets, furniture, doors, windows, and molded products who attended regional and national wood manufacturing events. More than 51% of respondents had...

  14. 2006 : Wood Products Used in New Residential Construction U.S. and Canada, with Comparisons to 1995, 1998 and 2003 : Executive Summary

    Science.gov (United States)

    Craig Adair; David B. McKeever

    2009-01-01

    The construction of new single family, multifamily, and manufactured housing is an important market for wood products in both the United States and Canada. Annual wood products consumption is dependent on many factors, including the number of new units started, the size of units started, architectural characteristics, and consumer preferences. In 2006, about 39 percent...

  15. Switzerland's largest wood-pellet factory in Balsthal

    International Nuclear Information System (INIS)

    Stohler, F.

    2004-01-01

    This article describes how a small Swiss electricity utility has broken out of its traditional role in power generation and the distribution of electricity and gone into the production of wood pellets. The pellets, which are made from waste wood (sawdust) available from wood processing companies, are produced on a large scale in one of Europe's largest pellets production facilities. The boom in the use of wood pellets for heating purposes is discussed. The article discusses this unusual approach for a Swiss power utility, which also operates a wood-fired power station and is even involved in an incineration plant for household wastes. The markets being aimed for in Switzerland and in Europe are described, including modern low-energy-consumption housing projects. A further project is described that is to use waste wood available from a large wood processing facility planned in the utility's own region

  16. Preparation and applications of wood-polyester composites

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1982-01-01

    Optimum processing parameters were searched for the pilot-scale production of wood-polyester composites by irradiation of resin-impregnated wood material. The radiation initiation of the following systems were examined in wood and without wood matrix: methyl methacrylate, mixture of styrene and acrylonitryle, and their combination with unsaturated polyester. In the most cases the over-all rate of the complete polymerization process in wood matrix is proportional to the square root of the initiation rate. The parameters of the radiation technology of wood-polyester composites have been determined, using 260 TBq (7 kCi) 60 Co radiation source. A pilot plant has been constructed using an underwater irradiation system of 1.85 PBq (50 kCi) 60 Co. The successful production rate of 200 kg wood-polyester composite per day, as well as the application tests have demonstrated the technical feasibility of this new structural material. (author)

  17. Wood supply : what bioenergy resources are available as harvest residue and non-merchantable wood in New Brunswick?

    International Nuclear Information System (INIS)

    Forgrave, K.

    2005-01-01

    This paper examines resources available for bioenergy production in New Brunswick. An estimate of New Brunswick harvest levels, based on New Brunswick Forest Products Association web site figures was presented. Private wood lots harvest levels were also provided, with all estimates based on volume per year. Market conditions were discussed, with an emphasis on the dictates of price and availability for private wood lot owners. Market conditions and unused volume statistics were discussed. Various forest management options include the use of veneer, saw log, stud wood and pulp wood. Details of bioenergy percentages and potential were presented and general silviculture issues were discussed. It was concluded that many of the trade-offs of bioenergy involve placing more demands on forests, and that purchase prices will increasingly dictate volumes obtained from private wood lots. tabs, figs

  18. Wood thermoplastic composites

    Science.gov (United States)

    Daniel F. Caulfield; Craig Clemons; Rodney E. Jacobson; Roger M. Rowell

    2005-01-01

    The term “wood-plastic composites” refers to any number of composites that contain wood (of any form) and either thermoset or thermoplastic polymers. Thermosets or thermoset polymers are plastics that, once cured, cannot be remelted by heating. These include cured resins, such as epoxies and phenolics, plastics with which the forest products industry is most familiar (...

  19. Ergonomics and safety in secondary wood processing

    Science.gov (United States)

    Rado Gazo; James D. McGlothlin; Yuehwern, Wiedenbeck, Jan Yih; Yuehwern Yih

    2002-01-01

    The main goal of the project was to initiate a pilot program in ergonomics for the secondary wood products industry. Case studies were conducted at three Midwest secondary wood product companies in 2000 and 2001.

  20. Production rates and costs of cable yarding wood residue from clearcut units

    Science.gov (United States)

    Chris B. LeDoux

    1984-01-01

    Wood residue is a little used source of fiber, chips, and fuel because harvest costs are largely unknown. This study calculates incremental production rates and costs for yarding and loading logging residue in clearcut old-growth Douglas-fir/western hemlock forests. Harvest operations were observed for two timber sales in western Oregon. Three different cable yarding...

  1. Estimates of carbon stored in harvested wood products from United States Forest Service Rocky Mountain Region, 1906-2012

    Science.gov (United States)

    Keith Stockmann; Nathaniel Anderson; Jesse Young; Ken Skog; Sean Healey; Dan Loeffler; Edward Butler; J. Greg Jones; James Morrison

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  2. Estimates of carbon stored in harvested wood products from United States Forest Service Pacific Northwest Region, 1909-2012

    Science.gov (United States)

    Edward Butler; Keith Stockmann; Nathaniel Anderson; Ken Skog; Sean Healey; Dan Loeffler; J. Greg Jones; James Morrison; Jesse Young

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  3. Estimates of carbon stored in harvested wood products from United States Forest Service Pacific Southwest Region, 1909-2012

    Science.gov (United States)

    Keith Stockmann; Nathaniel Anderson; Jesse Young; Ken Skog; Sean Healey; Dan Loeffler; Edward Butler; J. Greg Jones; James Morrison

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  4. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...

  5. Effect of non-tariff barriers on secondary processed wood product trade: New Zealand exports to the United States, China and Japan

    Science.gov (United States)

    James A. Turner; Joseph Buongiorno; Shushuai Zhu; Frances Maplesden

    2008-01-01

    Secondary processed wood products - builder's carpentry and joinery, moldings and millwork, wooden furniture, and prefabricated buildings - have grown significantly in importance in the global trade of wood products. At the same time there has been increased use of non-tariff barriers to restrict their trade.  These barriers could have an important impact on the...

  6. Production of wood pellets. Influence of additives on production, quality, storage, combustion and life cycle analysis of wood pellets; Herstellung von Holzpellets. Einfluss von Presshilfsmitteln auf Produktion, Qualitaet, Lagerung, Verbrennung sowie Energie- und Oekobilanz von Holzpellets

    Energy Technology Data Exchange (ETDEWEB)

    Hasler, P.; Nussbaumer, T. [Verenum, Zuerich (Switzerland); Buerli, J. [Buerli Pellets, Willisau (Switzerland)

    2001-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study concerning the influence of additives on the various factors related to the manufacture of wood pellets and their use. Results of tests concerning the production, storage and combustion of wood pellets with and without additives are presented. Process modifications are discussed. The report shows that for all investigated additives neither energy consumption nor pellet throughput was improved. The influence of additives on the mechanical strength of the pellets is discussed, as are the combustion characteristics of the pellets, which emit significantly lower levels of NO{sub x} and particulate matter than typical wood chips. The authors recommend the application of advanced control technology to ensure optimum combustion conditions. A life-cycle analysis is presented which shows that pellets are ecologically more favourable than wood chips. The ecological potential for improvement in the manufacturing process is discussed, including emission reductions and heat recovery.

  7. Wood waste: A disposal problem or an opportunity?

    International Nuclear Information System (INIS)

    Vajda, P.

    1989-01-01

    The utilization of wood wastes in North America is reviewed, with a focus on the wood products industry and markets. On the whole, wood mill residues in North America have always been utilized except for a period from the 1940s to the 1970s oil crisis. In the latter period, low cost electric power and hydrocarbon fuels rendered uneconomical the use of wood wastes as fuel. As a response to the problem of disposing these wastes, a number of innovations occurred in that period, including the use of wood chips for manufacturing pulp and particleboard, and the use of sawdust and shavings for manufacturing hardboard and medium density fiberboard. Uses for bark, except as fuel, have not been successfully developed. Since the 1970s, wood waste in the USA is essentially all used for composite board products and fuel. This is also true in eastern Canada, which is close to the wood products markets and which has fairly high oil and gas costs. However, in western Canada, low energy costs and small internal markets have led to a serious wood waste disposal problem. A survey of wood waste supply and demand shows large surpluses in mill residues in western Canada and some remote locations in northern Ontario and Quebec. The Pacific Rim countries are identified as a potential market for western Canadian composite board production. The use of other sources of wood waste (forestry or logging residues, which are costly to collect, and municipal construction waste) is briefly discussed

  8. Background CH4 and N2O fluxes in low-input short rotation coppice

    Science.gov (United States)

    Görres, Carolyn-Monika; Zenone, Terenzio; Ceulemans, Reinhart

    2016-04-01

    Extensively managed short rotation coppice systems are characterized by low fluxes of CH4 and N2O. However due to the large global warming potential of these trace gases (GWP100: CH4: 34, N2O: 298), such background fluxes can still significantly contribute to offsetting the CO2 uptake of short rotation coppice systems. Recent technological advances in fast-response CH4 and N2O analysers have improved our capability to capture these background fluxes, but their quantification still remains a challenge. As an example, we present here CH4 and N2O fluxes from a short-rotation bioenergy plantation in Belgium. Poplars have been planted in a double-row system on a loamy sand in 2010 and coppiced in the beginning of 2012 and 2014 (two-year rotation system). In 2013 (June - November) and 2014 (April - August), the plantation's CH4 and N2O fluxes were measured in parallel with an eddy covariance tower (EC) and an automated chamber system (AC). The EC had a detection limit of 13.68 and 0.76 μmol m-2 h-1 for CH4 and N2O, respectively. The median detection limit of the AC was 0.38 and 0.08 μmol m-2 h-1 for CH4 and N2O, respectively. The EC picked up a few high CH4 emission events with daily averages >100 μmol m-2 h-1, but a large proportion of the measured fluxes were within the EC's detection limit. The same was true for the EC-derived N2O fluxes where the daily average flux was often close to the detection limit. Sporadically, some negative (uptake) fluxes of N2O were observed. On the basis of the EC data, no clear link was found between CH4 and N2O fluxes and environmental variables. The problem with fluxes within the EC detection limit is that a significant amount of the values can show the opposite sign, thus "mirroring" the true flux. Subsequently, environmental controls of background trace gas fluxes might be disguised in the analysis. As a next step, it will be tested if potential environmental drivers of background CH4 and N2O fluxes at the plantation can be

  9. Solid wood timber products consumption in major end uses in the United States, 1950-2009 : a technical document supporting the Forest Service 2010 RPA assessment

    Science.gov (United States)

    David B. McKeever; James L. Howard

    2011-01-01

    Solid wood timber products provide important raw materials to the construction, manufacturing, and shipping sectors of the U.S. economy. Nearly all new single-family houses and low-rise multifamily residential structures are wood framed and sheathed. Large amounts of solid wood timber products are also used in the construction of new nonresidential buildings, and in...

  10. Wood pellet production costs under Austrian and in comparison to Swedish framework conditions

    NARCIS (Netherlands)

    Obernberger, I.; Thek, G.

    2004-01-01

    Owing to the rapidly increasing importance of pellets as high-quality biomass fuel in Austria and Europe within the last years, many companies, mainly from the wood industry, are thinking of entering this market. The calculation of the production costs before starting a pellet plant is essential for

  11. Energy from wood - an overview

    International Nuclear Information System (INIS)

    Nussbaumer, T.

    2000-01-01

    The present publication is the introduction to a series of papers on fundamentals and applications of wood energy. It summarizes figures and data of the actual situation of fuel wood utilization in Switzerland and its potential for the future. Further, the advantages of bio-energy are discussed and the possibilities of funding for bio-energy in Switzerland are described. Wood contributes with 2.5% to the total energy demand in Switzerland nowadays. However, the utilization of wood energy can be more than doubled, which is one of the targets of the Swiss energy policy. The supply chains for the different types of fuel wood are described and specifications and prices of log wood, forestry wood chips and wood residues are presented. The main applications of wood energy are residential heating with manually operated wood boilers and stoves, on the one hand, and heat production with automatic wood furnaces in industry and communities, on the other hand. Automatic furnaces have been promoted in the past ten years and hence they contribute nowadays with more than 50% to the energy supply from wood with a further growing share. As an assistance for further information, a list of institutions and addresses in the field of wood energy in Switzerland is given in the paper. (author)

  12. Complex geometries in wood

    DEFF Research Database (Denmark)

    Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob

    2009-01-01

    The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners....

  13. Effect of Alternative Wood Species and First Thinning Wood on Oriented Strand Board Performance

    Directory of Open Access Journals (Sweden)

    Fabiane Salles Ferro

    2018-01-01

    Full Text Available This study aimed to evaluate the feasibility of using and influence of alternative wood species such as Cambará, Paricá, Pinus, and wood from first thinning operations on oriented strand board (OSB physical and mechanical properties. Besides that, an alternative resin, castor oil-based polyurethane, was used to bond the particles, due to the better environmental performance when compared to other resins commonly used worldwide in OSB production. Physical properties such as the moisture content, thickness swelling, and water absorption, both after 2 and 24 hours of water immersion, and mechanical properties such as the modulus of elasticity and resistance in static bending, in major and minor axes, and internal bonding were investigated. All tests were performed according to European code EN 300:2006. Results showed the influence of wood species on physical and mechanical properties. Panels made with higher density woods such as Cambará presented better physical performance, while those made with lower density woods such as Pinus presented better mechanical properties. Besides that, strand particle geometry was also influenced on all physical and mechanical properties investigated. Therefore, the feasibility of using alternative species and wood from first thinning and with castor oil-based polyurethane resin in OSB production was verified.

  14. QUALITY OF REACTION WOOD IN EucalyptusTREES TILTED BY WIND FOR PULP PRODUCTION

    Directory of Open Access Journals (Sweden)

    Walter Torezani Neto Boschetti

    2017-09-01

    Full Text Available This study aims to evaluate the quality of normal, tension and opposite wood of eucalyptus trees lengthwise, in straight and inclined stems, affected by wind action. It also aims to explain the pulping parameters resultant from the quality of the wood. The trees were grouped into four tilt ranges, ranging from 0 to 50º, and the basic density, chemical composition of the wood, and performance in kraft pulping were assessed. Normal and tension wood had similar basic densities; while for opposite wood, the density was lower, being responsible for a decrease in reaction wood density. The chemical composition of the wood was influenced by the presence of reaction wood in the stem.Tension and opposite wood showed lower levels of extractives and lignin and higher holocellulose content when compared to normal wood, with favorable wood quality for pulping. The increase in holocellulose content and the reduction of lignin and extractives content contributed positively to a more delignified pulp and reduction of the Kappa number. However, after cooking the reaction wood under the same conditions as those of normal wood, reaction wood pulping tends to have a lower screen yields. Due to differences in basic density and chemical constituents between opposite and normal wood, it is recommended not to designate the opposite wood as normal wood.

  15. Evaluation of wood characteristics: internal scanning of the material by microwaves

    International Nuclear Information System (INIS)

    Martin, P.; Collet, R.; Barthelemy, P.; Roussy, G.

    1987-01-01

    Internal scanning of wood by microwaves presents many advantages for the automatic detection of defects and the evaluation of the characteristics of wood in the dry wood processing industries. Advantages are: access to more than one variable, efficient coupling in the air, easy automation and reasonable cost. Microwaves are electromagnetic waves the speed and attenuation of which depend of the medium in which they are propagated, especially its electric permittivity which depends on its moisture content and its density. Since wood is anisotropic, this dielectric constant also varies with the direction of fibers. An experimental apparatus was set up that allows to test the feasibility of automatic detection of wood characteristics and defects. It automatically measures the attenuation and dephasing of an ultra high frequency wave sent through a board and moving through two rotating antennas. The graphs and results obtained gave significant information of physical characteristics of wood (density, moisture content, slope of grain) and the detection of defects (knots, metallic objects, sapwood)

  16. Contrasting seasonal overlaps between primary and secondary growth are linked to wood anatomy in Mediterranean sub-shrubs.

    Science.gov (United States)

    Camarero, J J; Palacio, S; Montserrat-Martí, G

    2013-09-01

    Whole-plant approaches allow quantification of the temporal overlap between primary and secondary growth. If the amount of time available to grow is short, there may be a high temporal overlap between shoot growth and wood formation. We hypothesise that such overlap depends on the duration of the growing season and relates to wood anatomy. We evaluated wood anatomy, shoot longitudinal and radial growth rates, fine root production and the concentrations of non-structural carbohydrates (NSC) in the wood of six sub-shrub species growing in sites with contrasting climatic conditions (Lepidium subulatum, Linum suffruticosum, Salvia lavandulifolia, Satureja montana, Ononis fruticosa, Echinospartum horridum). Sub-shrub species living in sites with a short growing season displayed a high overlap between aboveground primary and secondary growth and formed wide vessels, whereas species from the warmest and driest sites presented the reverse characteristics. The highest overlap was linked to a rapid shoot extension and thickening through the enhanced hydraulic conductivity provided by wide vessels. The reductions in NSC concentrations when growth peaked were low or moderate, indicating that sub-shrubs accumulate NSC in excess, as do trees. The temporal overlap among primary and secondary growth in woody plants may be connected to the duration and rates of shoot and wood growth, which in turn depend on the vessel lumen area. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Wood and Other Materials Used to Construct Nonresidential Buildings - Canada

    Science.gov (United States)

    David B. McKeever; Joe Elling

    2014-01-01

    Low-rise nonresidential building construction is an important market in Canada for lumber, engineered wood products, structural wood panels, and nonstructural wood panels. This report examines wood products consumption in 2012 for construction of selected low-rise nonresidential buildings types that have six or fewer stories. Buildings with more than six stories are...

  18. Bioremediation of treated wood with fungi

    Science.gov (United States)

    Barbara L. Illman; Vina W. Yang

    2006-01-01

    The authors have developed technologies for fungal bioremediation of waste wood treated with oilborne or metal-based preservatives. The technologies are based on specially formulated inoculum of wood-decay fungi, obtained through strain selection to obtain preservative-tolerant fungi. This waste management approach provides a product with reduced wood volume and the...

  19. Short-rotation woody-crops program. Quarterly progress report for period ending August 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.; Ranney, J.W.

    1982-04-01

    Progress of twenty-one projects in the Short Rotation Woody Crops Program is summarized for the period June 1 through August 31, 1981. Individual quarterly reports included from each of the projects discuss accomplishments within specific project objectives and identify recent papers and publications resulting from the research. The major program activities are species screening and genetic selection, stand establishment and cultural treatment, and harvest, collection, transportation, and storage.

  20. Short-rotation woody-crops program. Quarterly progress report for period ending May 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.; Ranney, J.W.

    1982-04-01

    Progress of twenty projects in the Short Rotation Woody Crops Program is summarized for the period March 1 through May 31, 1981. Individual quarterly reports included from each of the projects discuss accomplishments within specific project objectives and identify recent papers and publications resulting from the research. The major project activities are species screening and genetic selection, stand establishment and cultural treatment, and harvest, collection, transportation, and storage.

  1. Greek timber industries and wood product markets over the last century: development constraints and future directions

    Directory of Open Access Journals (Sweden)

    Panagiotis P. Koulelis

    2011-01-01

    Full Text Available This paper examines the Greek forestry sector after 1930. According to the past literature, the sector was entirely degraded and reliable data are not available. The study analyses critical historical data about timber sector and timber companies; the main objective is the specification of the factors that kept the Greek forest sector underdevelopment. The factors and the development constraints, including the indigenous characteristics of the Greek forests, the inhibitory policy for timber production investments, especially in the state industries, lack of market research, unorthodox procedures for sale of the wood, bad quality and high cost of production and periods of general economic recession are analyzed farther. Conclusively, the need for producing official forest maps, forest data recording, rapid adaptation to EU specifications, investments, deep changes in to the managership of the state industries, permanent and specialized personnel and promotion of national programs for the development of the small-scale wood elaboration and wood selling industrial units are some of the solutions for the above problems that could be suggested.

  2. Greek timber industries and wood product markets over the last century: development constraints and future directions

    Directory of Open Access Journals (Sweden)

    Panagiotis P. Koulelis

    2013-12-01

    Full Text Available This paper examines the Greek forestry sector after 1930. According to the past literature, the sector was entirely degraded and reliable data are not available. The study analyses critical historical data about timber sector and timber companies; the main objective is the specification of the factors that kept the Greek forest sector underdevelopment. The factors and the development constraints, including the indigenous characteristics of the Greek forests, the inhibitory policy for timber production investments, especially in the state industries, lack of market research, unorthodox procedures for sale of the wood, bad quality and high cost of production and periods of general economic recession are analyzed farther. Conclusively, the need for producing official forest maps, forest data recording, rapid adaptation to EU specifications, investments, deep changes in to the managership of the state industries, permanent and specialized personnel and promotion of national programs for the development of the small-scale wood elaboration and wood selling industrial units are some of the solutions for the above problems that could be suggested.

  3. California's hardwood resource: managing for wildlife, water, pleasing scenery, and wood products

    Science.gov (United States)

    Philip M. McDonald; Dean W. Huber

    1995-01-01

    A new management perspective that emphasizes a variety of amenities and commodities is needed for California’s forest-zone hardwoods. For the near future and perhaps more on public than on private land, these "yields" are wildlife, water, esthetics, and wood products. Each is presented first as an individual yield and then as part of a combined yield. As an...

  4. Micromechanical measurement of wood substructure properties.

    Science.gov (United States)

    David E. Kretschmann; Troy W. Schmidt; Roderic S. Lakes; Steven M. Cramer

    2002-01-01

    The annual rings of softwoods are visually obvious and represent cylindrical layers of primarily cellulosic material that possess significantly different properties. For simplicity, wood construction products are designed assuming a material homogeneity that does not exist. As rapidly grown plantation trees are used for wood products, fewer rings are contained in an...

  5. Bio-energy in the wood processing industry. Manual for energy production from residual matter for the wood processing industry

    International Nuclear Information System (INIS)

    Van Halen, C.J.G.; Arninkhof, M.J.C.; Rommens, P.J.M.; Karsch, P.

    2000-04-01

    This manual is published within the framework of a project, financed by Novem (EWAB programme) and the European Commission (Altener programme). Similar manuals were drafted in Germany, England and Sweden. The basis of the project was the manual 'Quality manual for small-scale wood incineration and wood gasification', published by Novem in 1998. That quality manual was drafted on the basis of an evaluation of a number of wood combustion and wood gasification projects. The original manual has been improved as a result of comments made by experts in the field of bio-energy. Updated information was added with respect to legislation, financing options and new technology. Also the manual is focused more on the wood processing industry

  6. Eucalyptus and Populus short rotation woody crops for phosphate mined lands in Florida USA

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, D L; Carter, D R; Langholtz, M H [The School of Forest Resources and Conservation, University of Florida, Box 110410, Gainesville, FL 32611 0410 (United States); Stricker, J A [Polk County Extension Service, University of Florida, Gainesville, FL 32611 (United States)

    2006-08-15

    Our short-rotation woody crops (SRWC) research in central and southern Florida is (1) developing superior Eucalyptus grandis (EG), E. amplifolia (EA), and cottonwood (Populus deltoides, PD) genotypes, (2) determining appropriate management practices for and associated productivities of these genotypes, and (3) assessing their economics and markets. Reclaimed clay settling areas (CSA) and overburden sites in phosphate mined areas in central Florida are a potential land base of over 80,000ha for SRWC production. On CSAs, PD grows well in the absence of cogongrass (Imperata cylindrica) but is not as productive as the non-invasive EG and EA. SRWC establishment on CSAs requires strict implementation of the following cultural practices: thorough site preparation through herbiciding/disking and bedding, superior trees, watering/packing seedlings, fertilization with ammonium nitrate at planting and annually thereafter as feasible, high planting density possibly including double row planting, and winter harvesting so that coppice regeneration suppresses weeds. PD cultural requirements, that may require post-planting weed control to suppress herbaceous competition, exceed those of the eucalypts. EG SRWCs on CSAs are at risk of blowdown 3-4 years after planting or coppicing; younger PD, EG, and EA SRWCs appear much less susceptible to wind damage. Genetic improvement must continue if EG, EA, and PD are to increase in commercial feasibility. SRWC cost competitiveness will depend on establishment success, yield improvements, harvesting costs, and identifying/using incentives. Strong collaboration among public and private partners is necessary for commercializing SRWCs in Florida. (author)

  7. Development of wood decay in wound-initiated discolored wood of eastern red cedar

    Science.gov (United States)

    Walter C. Shortle; Kenneth R. Dudzik; Kevin T. Smith

    2010-01-01

    Logs of eastern red cedar, Juniperus virginiana L., with well-developed bands of light-colored wood ("included sapwood") within heartwood can be unsuitable for sawn wood products. This finding is in contrast to published information that the "included sapwood" is (1) a heartwood anomaly rather than sapwood and (2) its occurrence...

  8. Holistic analysis of thermochemical processes by using solid biomass for fuel production in Germany

    International Nuclear Information System (INIS)

    Henssler, Martin

    2015-01-01

    According to the German act ''Biokraftstoff-Nachhaltigkeitsverordnung'', biofuels must show a CO 2eq -reduction compared to the fossil reference fuel (83.8 g CO 2eq /MJ fuel /Richtlinie 98/70/EG/) of 35 % beginning with 2011. In new plants, which go into operation after the 31.12.2016 the CO 2eq -savings must be higher than 50 % in 2017 and higher than 60 % in 2018 /Biokraft-NachV/. The biofuels (methyl ester of rapeseed, bioethanol and biomethane) considered in this study do not meet these requirements for new plants. To comply with these rules new processes must be deployed. Alternative thermochemical generated fuels could be an option. The aim of this work is to evaluate through a technical, ecological and economic analysis (Well-to-Wheel) whether and under what conditions the thermochemical production of Fischer-Tropsch-diesel or -gasoline, hydrogen (H 2 ) and Substitute Natural Gas (SNG) complies with the targets. Four different processes are considered (fast pyrolysis and torrefaction with entrained flow gasifier, CHOREN Carbo-V registered -gasifier, Absorption Enhanced Reforming (AER-) gasifier). Beside residues such as winter wheat straw and residual forest wood, wood from short-rotation plantations is taken into account. The technical analysis showed that at present status (2010) two and in 2050 six plants can be operated energy-self-sufficient. The overall efficiency of the processes is in the range of 41.5 (Fischer-Tropsch-diesel or -gasoline) and 59.4 % (H 2 ). Furthermore, it was found that for 2010, all thermochemical produced fuels except the H 2 -production from wood from short-rotation plantations in decentralised or central fast pyrolysis and in decentralised torrefactions with entrained flow gasifier keep the required CO 2eq -saving of 60 %. In 2050, all thermochemical produced fuels will reach these limits. The CO 2eq -saving is between 72 (H 2 ) and 95 % (Fischer-Tropsch-diesel or -gasoline). When the production costs of the

  9. Mechanical and natural durability properties of wood treated with a novel organic preservative/consolidant product

    International Nuclear Information System (INIS)

    Lionetto, Francesca; Frigione, Mariaenrica

    2009-01-01

    An organic preservative/consolidant of new formulation was selected in order to evaluate its effect on the mechanical properties of worm-eaten walnut wood. Walnut wood is widely used for the realization of artistic handworks (e.g. statues, altars, etc.) furniture and flooring. The flexural strength and modulus of elasticity, the toughness and the hardness were determined on both treated and untreated samples. The experimental results showed that the product increased significantly the flexural strength while the other mechanical properties were not appreciably affected by the chemical treatment. The microstructure of the samples tested was observed using scanning electron microscopy. The preserving character against insects of the investigated product was assessed by both visual inspection and measurements of weight loss on the treated specimens after their exposure to living insects. The samples on which the product was applied, exposed to Oligomerus ptilinoides for one year, were more resistant to decay than the corresponding untreated samples.

  10. Financial results achieved in short-day strawberry production

    Directory of Open Access Journals (Sweden)

    Galić Dragan

    2014-01-01

    Full Text Available In South-western Ontario's continental climate (short days, hot summers and very cold winters the matted-row system was the dominant production system to grow short-day strawberries. Varieties-staggered production (planting a combination of early, mid and late-season varieties provides strawberry harvest from five to seven weeks. Short-day strawberries are vegetative grown in the first year, and harvested for two consecutive years. The total cost of short-day strawberry production was 54,370 $CAD/ha. The production and harvest costs in the first and second years were 20,812 $CAD/ha and 16,930 $CAD/ ha, respectively, and accounted for 69.42% of the total. Pre-plans operations were the least expensive procedures costing 8.13%, while planting and care of young plants made up 22.45% of the total costs. The total income of growing short-day strawberries under a matted-row system was 76,671 $CAD/ha (the first and second production years 41,330 $CAD/ha and 35,341 $CAD/ha, respectively. The short-day strawberries in matted-row system, with average yield of 15,722 kg/ha, generated a net revenue of 22,300 $CAD/ha.

  11. Assessing the Influence of Summer Organic Fertilization Combined with Nitrogen Inhibitor on a Short Rotation Woody Crop in Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Anita Maienza

    2014-01-01

    Full Text Available The European Union Directive 91/676/EEC, known as Nitrates Directive, has dictated basic agronomic principles regarding the use of animal manure source as well as livestock and waste waters from small food companies. The use of nitrification inhibitors together with animal effluents as organic fertilizers could be beneficial for nutrient recycling, plant productivity, and greenhouse gas emission and could offer economic advantages as alternative to conventional fertilizers especially in the Mediterranean region. The aim of the present study was to investigate differences in plant productivity between bovine effluent treatments with (or without addition of a nitrification inhibitor (3,4 DMPP in a short rotation woody crop system. Results of the field experiment carried out in a Mediterranean dry environment indicated that the proposed strategy could improve tree growth with indirect, beneficial effects for agroforestry systems.

  12. USE OF CANDEIA’S (Eremanthus erythropappus WASTE WOOD

    Directory of Open Access Journals (Sweden)

    Rosimeire Cavalcante dos Santos

    2008-09-01

    Full Text Available The candeia (Eremanthus erythropappus is a native forest species with multiple uses and specially utilized as essential oils source. The use of the candeia´s waste wood after oil extraction for particle panels production becomes a viable alternative, avoiding environmental problems and increasing the availability of these products in the consuming market. This work verified the viability of producing wood-cement panels using waste wood generated after the extraction of candeia’s oil, in association with pinus and eucalipto woods. The experiment was installed according to a completely randomized design with three repetitions. The treatments were arranged according to a factorial 2 x 3 scheme (two wooden species and three replacement percentages of the woods by candeia’s waste. The results of the physical and mechanical property tests showed high potentiality of candeia waste wood, after oil extraction, in association with pinus and eucalipto wood for manufacturing wood-cement panels.

  13. Radioactivity of Wood and Environment

    International Nuclear Information System (INIS)

    Hus, M.; Kosutic, K.; Lulic, S.

    2003-01-01

    Nuclear experiments in the atmosphere and nuclear accidents caused global deposition of artificial radionuclides in the soil of Earth's northern hemisphere, the territory of the Republic of Croatia included. Soil contamination by radionuclides resulted in their deposition in plants growing on the contaminated soil as well as in the trees. Large area of the Republic of Croatia is covered with wood, which is exploited in manufacture of industrial wood and for firewood. From approximately 3 million cubic metres of wood exploited annually, nearly one third serves for firewood. In the process of burning a smaller portion of radionuclides deposited in the wood evaporates and goes to atmosphere while a larger portion is retained in the ash. In this paper are presented the results of natural radionuclides 4 0K , 2 32T h and 2 38U as well as of artificial radionuclide 1 37C s content determination in the wood, wood briquette, charcoal and in ash remained after burning the wood, wood briquette and charcoal. The obtained results are discussed from wood radiocontamination aspect and from the aspect of potential environmental radiocontamination by the products from wood burning process. (author)

  14. The influence of irradiated wood filler on some properties of polypropylene - wood composites

    Directory of Open Access Journals (Sweden)

    Điporović-Momčilović Milanka

    2007-01-01

    Full Text Available The problem of compatibility between the wood filler and thermoplastic matrix is of essential importance in composite production. Numerous methods have been developed for increasing this compatibility, which is still representing a challenging objective of composite research throughout the world. The research into these methods is primarily directed towards their efficiency from the viewpoint of the composite performance and their economical acceptability. The latter is of particular importance for the composite production in the developing countries with respect to the shortage of the corresponding funds. With this respect, the utilization of ionizing radiation might have considerable advantages. In this research, the beech wood flour was irradiated by a dose of 10 kGy of 60Co gamma rays for purpose of provoking the changes by the ionizing effect. The effects of ionizing radiation upon the properties of wood particles have been examined by IR spectroscopy and by determination of contents of hydroxyl groups in wood by acetylating as an indirect method. All these methods have been expected to reveal the chemical effects of the applied radiation treatment. The irradiated and the control wood flour were used in order to produce the samples of composite with polypropylene. The polypropylene-wood flour (PP-WF composites were produced with 40% of wood particles having fraction size 0.3 mm. The melt-blended composites were modified with amido-acrylic acid (AMACA as a new coupling agent synthesized for this propose in amount of 6 wt.% (based on wood filler and successively with 0.05 wt.% (based on PP of organic peroxide during mixing step. The composites containing coupling agents showed superior mechanical properties, compared to the untreated one. The highest extent of improvement of tensile was achieved in PP-WFl composites modified with AMACA coupling agent.

  15. Feedbacks between earlywood anatomy and non-structural carbohydrates affect spring phenology and wood production in ring-porous oaks

    Science.gov (United States)

    Pérez-de-Lis, Gonzalo; García-González, Ignacio; Rozas, Vicente; Olano, José Miguel

    2016-10-01

    Non-structural carbohydrates (NSC) play a central role in the construction and maintenance of a tree's vascular system, but feedbacks between the NSC status of trees and wood formation are not fully understood. We aimed to evaluate multiple dependencies among wood anatomy, winter NSC, and phenology for coexisting temperate (Quercus robur) and sub-Mediterranean (Q. pyrenaica) oaks along a water-availability gradient in the NW Iberian Peninsula. Sapwood NSC concentrations were quantified at three sites in December 2012 (N = 240). Leaf phenology and wood anatomy were surveyed in 2013. Structural equation modelling was used to analyse the interplay among hydraulic diameter (Dh), winter NSC, budburst date, and earlywood vessel production (EVP), while the effect of Dh and EVP on latewood width was assessed by using a mixed-effects model. NSC and wood production increased under drier conditions for both species. Q. robur showed a narrower Dh and lower soluble sugar (SS) concentration (3.88-5.08 % dry matter) than Q. pyrenaica (4.06-5.57 % dry matter), but Q. robur exhibited larger EVP and wider latewood (1403 µm) than Q. pyrenaica (667 µm). Stem diameter and Dh had a positive effect on SS concentrations, which were related to an earlier leaf flushing in both species. Sapwood sugar content appeared to limit EVP exclusively in Q. pyrenaica. In turn, Dh and EVP were found to be key predictors of latewood growth. Our results confirm that sapwood SS concentrations are involved in modulating growth resumption and xylem production in spring. Q. pyrenaica exhibited a tighter control of carbohydrate allocation to wood formation than Q. robur, which would play a role in protecting against environmental stress in the sub-Mediterranean area.

  16. The wood pellet market in Austria: A structural market model analysis

    International Nuclear Information System (INIS)

    Kristöfel, Christa; Strasser, Christoph; Schmid, Erwin; Morawetz, Ulrich B.

    2016-01-01

    EU bioenergy policies and oil price hikes have resulted in a significant increase of installed pellet boilers for residential heating. Hence, European demand for wood pellets has been growing faster and more steadily than supply leading to rising market prices in recent years. This article presents an econometric analysis of demand and supply of wood pellets in the residential heating sector in Austria, one of the most dynamic markets for residential pellets. Annual and monthly time series data between 2000 and 2014 are used in a two-stage least-squares (2SLS) regression to estimate supply and demand elasticities of wood pellets. In all model specifications, pellets demand is found to be inelastic (from −0.66 to −0.76) and pellets supply unit-elastic (from 1.03 to 1.18). Thus, consumers are highly exposed to price changes resulting from supply shocks. Policies which support investments in pellet boilers will shift the demand of wood pellets and likely leading to higher prices for consumers. - Highlights: • Characterisation of the European pellet market. • A structural market model for wood pellets in Austria. • Estimation of supply and demand price elasticities using a two-stage least-squares (2SLS) regression. • Pellets demand is found to be inelastic and pellets supply unit-elastic in the short run. • Policies stimulating demand will likely increase pellet and sawmill by-product prices.

  17. DNA barcoding of vouchered xylarium wood specimens of nine endangered Dalbergia species.

    Science.gov (United States)

    Yu, Min; Jiao, Lichao; Guo, Juan; Wiedenhoeft, Alex C; He, Tuo; Jiang, Xiaomei; Yin, Yafang

    2017-12-01

    ITS2+ trnH - psbA was the best combination of DNA barcode to resolve the Dalbergia wood species studied. We demonstrate the feasibility of building a DNA barcode reference database using xylarium wood specimens. The increase in illegal logging and timber trade of CITES-listed tropical species necessitates the development of unambiguous identification methods at the species level. For these methods to be fully functional and deployable for law enforcement, they must work using wood or wood products. DNA barcoding of wood has been promoted as a promising tool for species identification; however, the main barrier to extensive application of DNA barcoding to wood is the lack of a comprehensive and reliable DNA reference library of barcodes from wood. In this study, xylarium wood specimens of nine Dalbergia species were selected from the Wood Collection of the Chinese Academy of Forestry and DNA was then extracted from them for further PCR amplification of eight potential DNA barcode sequences (ITS2, matK, trnL, trnH-psbA, trnV-trnM1, trnV-trnM2, trnC-petN, and trnS-trnG). The barcodes were tested singly and in combination for species-level discrimination ability by tree-based [neighbor-joining (NJ)] and distance-based (TaxonDNA) methods. We found that the discrimination ability of DNA barcodes in combination was higher than any single DNA marker among the Dalbergia species studied, with the best two-marker combination of ITS2+trnH-psbA analyzed with NJ trees performing the best (100% accuracy). These barcodes are relatively short regions (wood as the source material, a necessary factor to apply DNA barcoding to timber trade. The present results demonstrate the feasibility of using vouchered xylarium specimens to build DNA barcoding reference databases.

  18. Wood bioenergy and soil productivity research

    Science.gov (United States)

    D. Andrew Scott; Deborah S. Page-Dumroese

    2016-01-01

    Timber harvesting can cause both short- and long-term changes in forest ecosystem functions, and scientists from USDA Forest Service (USDA FS) have been studying these processes for many years. Biomass and bioenergy markets alter the amount, type, and frequency at which material is harvested, which in turn has similar yet specific impacts on sustainable productivity....

  19. Preservation of forest wood chips

    Energy Technology Data Exchange (ETDEWEB)

    Kofman, P.D.; Thomsen, I.M.; Ohlsson, C.; Leer, E.; Ravn Schmidt, E.; Soerensen, M.; Knudsen, P.

    1999-01-01

    As part of the Danish Energy Research Programme on biomass utilisation for energy production (EFP), this project concerns problems connected to the handling and storing of wood chips. In this project, the possibility of preserving wood chips of the Norway Spruce (Picea Abies) is addressed, and the potential improvements by anaerobic storage are tested. Preservation of wood chips aims at reducing dry matter losses from extensive heating during storage and to reduce production of fungal spores. Fungal spores pose a health hazards to workers handling the chips. Further the producers of wood chips are interested in such a method since it would enable them to give a guarantee for the delivery of homogeneous wood chips also during the winter period. Three different types of wood chips were stored airtight and further one of these was stored in accordance with normal practise and use as reference. The results showed that airtight storage had a beneficial impact on the quality of the chips: no redistribution of moisture, low dry matter losses, unfavourable conditions for microbial activity of most fungi, and the promotion of yeasts instead of fungi with airborne spores. Likewise the firing tests showed that no combustion problems, and no increased risk to the environment or to the health of staff is caused by anaerobic storage of wood chips. In all, the tests of the anaerobic storage method of forest wood chips were a success and a large-scale test of the method will be carried out in 1999. (au)

  20. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp.

    Science.gov (United States)

    Ribera, Javier; Fink, Siegfried; Bas, Maria Del Carmen; Schwarze, Francis W M R

    2017-01-01

    The production of new generation of wood preservatives (without addition of a co-biocide) in combination with an exchange of wood poles on identical sites with high fungal inoculum, has resulted in an increase of premature failures of wood utility poles in the last decades. Wood destroying basidiomycetes inhabiting sites where poles have been installed, have developed resistance against wood preservatives. The objective of the in vitro studies was to identify a Trichoderma spp. with a highly antagonistic potential against wood destroying basidiomycetes that is capable of colonizing Cu-rich environments. For this purpose, the activity of five Trichoderma spp. on Cu-rich medium was evaluated according to its growth and sporulation rates. The influence of the selected Trichoderma spp. on wood colonization and degradation by five wood destroying basidiomycetes was quantitatively analyzed by means of dry weight loss of wood specimens. Furthermore, the preventative effect of the selected Trichoderma spp. in combination with four Cu-based preservatives was also examined by mass loss and histological changes in the wood specimens. Trichoderma harzianum (T-720) was considered the biocontrol agent with higher antagonistic potential to colonize Cu-rich environments (up to 0.1% CuSO4 amended medium). T. harzianum demonstrated significant preventative effect on wood specimens against four wood destroying basidiomycetes. The combined effect of T. harzianum and Cu-based wood preservatives demonstrated that after 9 months incubation with two wood destroying basidiomycetes, wood specimens treated with 3.8 kg m-3 copper-chromium had weight losses between 55-65%, whereas containers previously treated with T. harzianum had significantly lower weight losses (0-25%). Histological studies on one of the wood destroying basidiomycetes revealed typical decomposition of wood cells by brown-rot fungi in Cu-impregnated samples, that were notably absent in wood specimens previously exposed to T

  1. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    Javier Ribera

    Full Text Available The production of new generation of wood preservatives (without addition of a co-biocide in combination with an exchange of wood poles on identical sites with high fungal inoculum, has resulted in an increase of premature failures of wood utility poles in the last decades. Wood destroying basidiomycetes inhabiting sites where poles have been installed, have developed resistance against wood preservatives. The objective of the in vitro studies was to identify a Trichoderma spp. with a highly antagonistic potential against wood destroying basidiomycetes that is capable of colonizing Cu-rich environments. For this purpose, the activity of five Trichoderma spp. on Cu-rich medium was evaluated according to its growth and sporulation rates. The influence of the selected Trichoderma spp. on wood colonization and degradation by five wood destroying basidiomycetes was quantitatively analyzed by means of dry weight loss of wood specimens. Furthermore, the preventative effect of the selected Trichoderma spp. in combination with four Cu-based preservatives was also examined by mass loss and histological changes in the wood specimens. Trichoderma harzianum (T-720 was considered the biocontrol agent with higher antagonistic potential to colonize Cu-rich environments (up to 0.1% CuSO4 amended medium. T. harzianum demonstrated significant preventative effect on wood specimens against four wood destroying basidiomycetes. The combined effect of T. harzianum and Cu-based wood preservatives demonstrated that after 9 months incubation with two wood destroying basidiomycetes, wood specimens treated with 3.8 kg m-3 copper-chromium had weight losses between 55-65%, whereas containers previously treated with T. harzianum had significantly lower weight losses (0-25%. Histological studies on one of the wood destroying basidiomycetes revealed typical decomposition of wood cells by brown-rot fungi in Cu-impregnated samples, that were notably absent in wood specimens

  2. A further evaluation of herbicides for post-emergence use in short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, D.J.

    2002-07-01

    This report summarises the findings of a project evaluating the safety and efficiency of eleven herbicides for controlling weeds in newly plated willow short rotation coppices, and provides growers with information on post-emergence herbicide options, control of problem weeds, and emergency treatments. Weed germination, crop safety, and the encouraging results obtained using Reflex T and Impuls are discussed. It is suggested that a Technical Register of herbicide applications with contributions by growers and advisers should be considered by the British Biogen trade industry body.

  3. Comparing energy use and environmental emissions of reinforced wood doors and steel doors

    Science.gov (United States)

    Lynn Knight; Melissa Huff; Janet I. Stockhausen; Robert J. Ross

    2005-01-01

    The USDA Forest Service Forest Products Laboratory has patented a technology that incorporates fiberglass-reinforced wood into the structure of wood doors and other wood building products. The process of reinforcing wood doors with epoxy and fiberglass increases the strength and durability of the product. Also, it allows the use of low-value, small-diameter wood which...

  4. Integrated production of merchantable wood and wood fuels in industry; Teollisuuden ainespuun ja puupolttoaineen integroitu tuotanto

    Energy Technology Data Exchange (ETDEWEB)

    Kuvaja, K [Enso Oy, Imatra (Finland). Forest Dept.

    1997-12-01

    The aim of this project is the economically profitable integrated harvesting of industrial wood and firewood especially in harvesting of small-diameter first thinning wood. The research in 1994 was concentrated on improvement of the quality of the chipping methods based on chain-flail debarking chipping method, and on determination of the possible utilisation targets for the fuel fraction. A reasonably large drum debarking test was also carried out at the industrial scale debarking station of the Enocell Oy. More than 80 000 m{sup 3} of first thinning wood was delivered by Enocell during this project. The quality of wood chips, produced using the chain-flail delimbing method, could be improved in the case of pine nearly to the required quality level, but additional measures are still needed in the case of birch. The fuel fraction deliveries to different points of utilisation was started. The particle size of the fuel fraction appeared to be good after crushing. In 1995 a chain-flail-drum debarking chipping unit was developed to improve and homogenise the quality of chips. (orig.)

  5. Wood fuel in Sweden 1800-1990 - consumption and price trends

    International Nuclear Information System (INIS)

    Schoen, L.

    1992-01-01

    The report presents consumption and price trends of wood fuel in Sweden 1800-1990 and discusses the increase in the use of wood fuel in the 1980's in a long-term perspective. Consumption of wood fuel grew at the same rate as population during most of the 19th century with a share of 95-80 per cent of total fuel consumption. Since the modern industrial breakthrough around the 1880's, consumption of wood fuel has decreased while that of fossiles and electricity have expanded. Temporarily, consumption increased during the world wars, particularly during the second one. The increase after the energy crises of the 1970's differs from those of the wars in some respects - thus, the changes in the conditions of energy supply and energy use were conceived as long-lasting, the increase in consumption took place with markets in function, and an important new user appeared, namely the district heating services. During both the 19th and the 20th century, prices of wood fuel have risen strongly in relation to those of most other products. This increase expresses the shifts in demand to wood resources and the comparatively weak productivity growth in forestry. Compared to prices of fossile fuels, the price increase of wood fuel ended in the 1920's and the relation has since then fluctuated. The strong shift in consumption to fossils from the 1920's is explained rather by the high costs of handling wood fuel. Wood fuel consumption has increased during periods of relatively decreasing wages. While the price increase of wood fuel can stimulate extended production also within agriculture, the study emphasizes the need of productivity growth in wood fuel production as well as product development towards the lowering of the handling costs of the user. (23 refs., 8 figs., 4 tabs.)

  6. Impregnating Systems for Producing Wood-Plastic Composite Materials and Resinified Woods by Radiochemical Means

    International Nuclear Information System (INIS)

    Laizier, J.; Laroche, R.; Marchand, J.

    1969-01-01

    The effect of the nature of the components in the impregnation mixture on the characteristics of wood-plastic combinations has been studied in the case of beech by applying a wide variety of compositions. In particular, the effect of water (in the impregnator, and in the form of moisture in the wood) on the characteristics of the products obtained has been determined. It has been shown that, in place of the conventional method for preparing resinified woods (using a ternary monomer-solvent-water mixture), it is possible to use a method involving comonomers, which obviate the need to dry the wood after treatment. The evaluation of the results obtained is based on the value of the impregnation rate and on the modifications in microscopic structure; these emphasize the differences between the types of filler and enable comparisons to be drawn with the dimensional stabilities observed. Measurements of variations in dimensions and the recurrence of moisture have made it possible to establish a classification based on the types of monomer used and the operating conditions. It is shown that a whole range of products is obtained, the properties of which differ widely and are comparatively easily adaptable to the purpose specified. These properties illustrate clearly the differences and characteristics of resinified woods as opposed to conventional wood-plastic materials. (author) [fr

  7. Fifteen years of international trade in wood and forest-related products

    International Nuclear Information System (INIS)

    Desclos, Pierre-Marie

    2014-01-01

    Little is generally known about international trade in forest-related products in spite of the fact that a significant portion of world production is exported. Two irreversible trends underlie international trade in forest-related products. One is globalization while the other is adding as much value as possible locally by processing the materials to the greatest extent possible in the country of origin. Some of the more surprising recent developments are the growth in trade in wood as a source of energy and the dependency of Europe on its massive imports in this area. International trade in forest-related products is a continually changing sector that follows developments in the technical, economic, social and political spheres. Its growth has been spectacular and will remain strong in coming years. The greatest potential for development will come from environmental management, improved logistics and innovation. (authors)

  8. Profitability potential for Pinus taeda L. (loblolly pine) short-rotation bioenergy plantings in the southern USA

    Science.gov (United States)

    James H. Perdue; John A. Stanturf; Timothy M. Young; Xia Huang; Derek Dougherty; Michael Pigott; Zhimei Guo

    2017-01-01

    The use of renewable resources is important to the developing bioenergy economy and short rotation woody crops (SRWC) are key renewable feedstocks. A necessary step in advancing SRWC is defining regions suitable for SRWC commercial activities and assessing the relative economic viability among suitable regions. The goal of this study was to assess the potential...

  9. THE OPTIMAL ROTATIONS OF GMELINA STAND ON TWO CARBON PROJECTS: LENGTHENING ROTATION AND AFFORESTATION

    Directory of Open Access Journals (Sweden)

    Yonky Indrajaya

    2016-12-01

    Full Text Available Forest plantation may contribute economically and socially as a provider of wood raw materials for industry and providing jobs for local people. In addition, forest plantation may also contribute as watershed protection and carbon sequestration. Projects on carbon sequestration from plantation forest can be conducted in two types: (1 afforestation and (2 lengthening forest rotation. One of the potential carbon markets operationalized in the field is voluntary market with Verified Carbon Standard mechanism. This study aimed to analyze the optimal rotations of gmelina forests on two carbon projects: lengthening rotation and afforestation. The method used in this study was by using Hartman model ( i.e. Faustmann by maximizing profit with the revenue source from timber and carbon sequestration project. The results of this study showed that carbon price will affect the optimal rotation for lengthening forest rotation of VCS project. Meanwhile, for VCS afforestation project, carbon price had no effect on the optimal rotation on gmelina forest. The NPV value of afforestation project was relatively higher than that of NPV value of lengthening forest rotation project, since the amount of carbon that can be credited relatively higher in afforestation project.

  10. Importance of wood from planted forests for manufacturing industry

    Directory of Open Access Journals (Sweden)

    Victor Almeida De Araujo

    2017-06-01

    Full Text Available The manufactured wood products are essential to modern society, since they are made from renewable and recyclable raw material, characterizing a sustainable input. The objective of this study was to elucidate the importance of wood from planted forests in forest products manufacture of higher added value, addressing forest and wood contexts of topics related to education, resources, products, industry, government incentives, public policies and markets. Different from Europe, it was verified that Brazil does not support positively this important industrial sector, nevertheless it still presents growth potential due to range of wooden-based products. Thus, wood could reach a prominent position in Brazilian economy, if strategies and incentives were defined by rules and public policies..

  11. Wood pellets : is it a reliable, sustainable, green energy option?

    International Nuclear Information System (INIS)

    Swaan, J.

    2006-01-01

    The Wood Pellet Association of Canada was formerly called the BC Pellet Fuel Manufacturers Association, and was renamed and re-organized in January 2006. The association serves as an advocate for the wood pellet industry in addition to conducting research projects. This power point presentation presented an overview of the wood pellet industry in North America and Europe. Canada's 23 pellet plants currently produce just over 1,000,000 tons of wood pellets annually. Pellet producers in the United States produce approximately 800,000 tons annually for the residential bagged market. There are currently 240 pellet plants in Europe, and district heating is the largest growth market for wood pellets in Europe. British Columbia (BC) pellet producers will ship 450,000 tons to European power plants in 2005. Wood pellet specifications were presented, with details of calorific values, moisture and ash contents. An outline of wood pellet production processes was provided. New pellet plants currently under construction were reviewed. Domestic, North American and overseas exports were discussed, along with production estimates for BC for the next 5 years. A chart of world production and consumption of wood pellets between 2000 to 2010 was presented. North American wood pellet technologies were described. The impact of the pine beetle infestation in BC on the wood pellet industry was evaluated, and a worldwide wood pellet production growth forecast was presented. Issues concerning off-gassing, emissions, and torrifracation were also discussed. tabs., figs

  12. Chain-brush method in delimbing and debarking of wood; Ketjuharja-menetelmae puun karsinnassa ja kuorinnassa

    Energy Technology Data Exchange (ETDEWEB)

    Aho, V J; Nikala, L; Laitinen, H [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    The objective of this project is to study, develop and make an integrated method for production of wood fuels and industrial raw material, promoting the competitiveness of the refining and energy usage of felling residues based on chain-brush delimbing-debarking technology, operational. VTT Energy has tested different brush constructions and the thickness of chains using varying feeding speeds and rotation speeds of the brush-delimber. First thinning pine, spruce and birch have been tested as single trees. Different temperatures have been used in the summer, and frozen timber in the winter. A method has been developed for estimation of the bark content and the wood losses for pine. The method is based on the measurement of the areas covered by bark and the debarked areas of the timber, on the bark thickness values and dry substance content of the wood obtained from the literature, as well as on the calculation formulas obtained from these. Unscrambler software will be used to assist the planning of the tests, and for analysing of the results. The utilisation of the chain-brush method for different wood-species, and the effect of different chain adjustments will be simulated by the software. The chain-brush delimbing will be studied using the high-speed camera acquired to VTT Energy. (orig.)

  13. Productivity of aboveground coarse wood biomass and stand age related to soil hydrology of Amazonian forests in the Purus-Madeira interfluvial area

    Science.gov (United States)

    Cintra, B. B. L.; Schietti, J.; Emillio, T.; Martins, D.; Moulatlet, G.; Souza, P.; Levis, C.; Quesada, C. A.; Schöngart, J.

    2013-04-01

    The ongoing demand for information on forest productivity has increased the number of permanent monitoring plots across the Amazon. Those plots, however, do not comprise the whole diversity of forest types in the Amazon. The complex effects of soil, climate and hydrology on the productivity of seasonally waterlogged interfluvial wetland forests are still poorly understood. The presented study is the first field-based estimate for tree ages and wood biomass productivity in the vast interfluvial region between the Purus and Madeira rivers. We estimate stand age and wood biomass productivity by a combination of tree-ring data and allometric equations for biomass stocks of eight plots distributed along 600 km in the Purus-Madeira interfluvial area that is crossed by the BR-319 highway. We relate stand age and wood biomass productivity to hydrological and edaphic conditions. Mean productivity and stand age were 5.6 ± 1.1 Mg ha-1 yr-1 and 102 ± 18 yr, respectively. There is a strong relationship between tree age and diameter, as well as between mean diameter increment and mean wood density within a plot. Regarding the soil hydromorphic properties we find a positive correlation with wood biomass productivity and a negative relationship with stand age. Productivity also shows a positive correlation with the superficial phosphorus concentration. In addition, superficial phosphorus concentration increases with enhanced soil hydromorphic condition. We raise three hypotheses to explain these results: (1) the reduction of iron molecules on the saturated soils with plinthite layers close to the surface releases available phosphorous for the plants; (2) the poor structure of the saturated soils creates an environmental filter selecting tree species of faster growth rates and shorter life spans and (3) plant growth on saturated soil is favored during the dry season, since there should be low restrictions for soil water availability.

  14. Surface properties of thermally treated composite wood panels

    Science.gov (United States)

    Croitoru, Catalin; Spirchez, Cosmin; Lunguleasa, Aurel; Cristea, Daniel; Roata, Ionut Claudiu; Pop, Mihai Alin; Bedo, Tibor; Stanciu, Elena Manuela; Pascu, Alexandru

    2018-04-01

    Composite finger-jointed spruce and oak wood panels have been thermally treated under standard pressure and oxygen content conditions at two different temperatures, 180 °C and respectively 200 °C for short time periods (3 and 5 h). Due to the thermally-aided chemical restructuration of the wood components, a decrease in water uptake and volumetric swelling values with up to 45% for spruce and 35% for oak have been registered, comparing to the reference samples. In relation to water resistance, a 15% increase of the dispersive component of the surface energy has been registered for the thermal-treated spruce panels, which impedes water spreading on the surface. The thermal-treated wood presents superior resistance to accelerated UV exposure and subsequently, with up to 10% higher Brinell hardness values than reference wood. The proposed thermal treatment improves the durability of the finger-jointed wood through a more economically and environmental friendly method than traditional impregnation, with minimal degradative impact on the structural components of wood.

  15. Estimating consumer willingness to pay a price premium for Alaska secondary wood products.

    Science.gov (United States)

    Geoffrey H. Donovan; David L. Nicholls

    2003-01-01

    Dichotomous choice contingent valuation survey techniques were used to estimate mean willingness to pay (WTP) a price premium for made-in-Alaska secondary wood products. Respondents were asked to compare two superficially identical end tables, one made in China and one made in Alaska. The surveys were administered at home shows in Anchorage, Fairbanks, and Sitka in...

  16. Environmental education on wood preservatives and preservative ...

    African Journals Online (AJOL)

    The development and use of wood preservatives in Nigeria should address not only the cost and demand functions but also the potential hazards in environmental equations. Forest products specialists are often asked about the perceived risks and environmental costs of treated wood products. Evidently, the civil society is ...

  17. Developing technology for large-scale production of forest chips. Wood Energy Technology Programme 1999-2003. Interim report

    International Nuclear Information System (INIS)

    Hakkila, P.

    2003-01-01

    Finland is enhancing its use of renewable sources in energy production. From the 1995 level, the use of renewable energy is to be increased by 50 % by 2010, and 100 % by 2025. Wood-based fuels will play a leading role in this development. The main source of wood-based fuels is processing residues from the forest industries. However, as all processing residues are already in use, an increase is possible only as far as the capacity and wood consumption of the forest industries grow. Energy policy affects the production and availability of processing residues only indirectly. Another large source of wood-based energy is forest fuels, consisting of traditional firewood and chips comminuted from low-quality biomass. It is estimated that the reserve of technically harvest-able forest biomass is 10-16 Mm' annually, when no specific cost limit is applied. This corresponds to 2-3 Mtoe or 6-9 % of the present consumption of primary energy in Finland. How much of this re-serve it will actually be possible to harvest and utilize depends on the cost competitiveness of forest chips against alternative sources of energy. A goal of Finnish energy and climate strategies is to use 5 Mm' forest chips annually by 2010. The use of wood fuels is being promoted by means of taxation, investment aid and support for chip production from young forests. Furthermore, research and development is being supported in order to create techno-economic conditions for the competitive production of forest chips. In 1999, the National Technology Agency Tekes established the five-year Wood Energy Technology Programme to stimulate the development of efficient systems for the large-scale production of forest chips. Key tar-gets are competitive costs, reliable supply and good quality chips. The two guiding principles of the programme are: (1) close cooperation between researchers and practitioners and (2) to apply research and development to the practical applications and commercialization. As of November

  18. 21 CFR 178.3800 - Preservatives for wood.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Preservatives for wood. 178.3800 Section 178.3800... Certain Adjuvants and Production Aids § 178.3800 Preservatives for wood. Preservatives may be safely used... to accomplish the technical effect of protecting the wood from decay, mildew, and water absorption...

  19. 30 CFR 77.1913 - Fire-resistant wood.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fire-resistant wood. 77.1913 Section 77.1913 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Shaft Sinking § 77.1913 Fire-resistant wood. Except for crossties, timbers, and other wood products...

  20. Carbon isotope variation in shrub willow (Salix spp.) ring-wood as an indicator of long-term water status, growth and survival

    International Nuclear Information System (INIS)

    Schifman, Laura A.; Stella, John C.; Volk, Timothy A.; Teece, Mark A.

    2012-01-01

    Quantifying interannual change in water status of woody plants using stable carbon isotopes provides insight on long-term plant ecophysiology and potential success in variable environments, including under-utilized agricultural land for biomass production and highly disturbed sites for phytoremediation applications. We analyzed δ 13 C values in annual ring-wood of four shrub willow varieties used for biomass production and phytoremediation at three sites in central New York State (U.S.A). We tested a cost-effective sampling method for estimating whole-shrub water status by comparing δ 13 C values of the plant’s largest stem against a composite sample of all stems. The largest stem showed 0.3‰ 13 C enrichment (range −0.7–1.1‰) compared to the whole-plant, making it a more sensitive indicator of water status than the composite sample. Growing season precipitation exerted a strong negative influence on wood tissue chemistry, with an average 0.26‰ 13 C depletion per 100 mm increase in precipitation. An average annual 0.28‰ 13 C enrichment was also observed with increased plant age; this pattern was consistent among all four willow varieties and across sites. Finally, increased 13 C enrichment in wood tissue was positively associated with plant size at the individual plant level, and associated negatively and more variably survival at the plot scale. These results have important implications for the design and management of biomass production and phytoremediation systems. Increased sensitivity of older plants suggests that longer rotations may experience growth limitations and/or lower survival in low-precipitation years, resulting in reduced yields of biomass crops and loss of effectiveness in phytoremediation applications. -- Highlights: ► A 0.26‰ 13 C depletion in wood tissue occurred per 100 mm increase in precipitation. ► There was an average 13 C enrichment with plant age and size for all varieties. ► Greater 13 C enrichment often lead to

  1. Mechanical properties of wood-based composite materials

    Science.gov (United States)

    Zhiyong Cai; Robert J. Ross

    2010-01-01

    The term composite is used to describe any wood material bonded together with adhesives. The current product mix ranges from fiberboard to laminated beams and components. In this chapter, wood-based composite materials are classified into the following categories: panel products (plywood, oriented strandboard (OSB), particleboard, fiberboard, medium-density fiberboard...

  2. Factors affecting distribution of wood, detritus, and sediment in headwater streams draining managed young-growth red alder - Conifer forests in southeast Alaska

    Science.gov (United States)

    Gomi, T.; Johnson, A.C.; Deal, R.L.; Hennon, P.E.; Orlikowska, E.H.; Wipfli, M.S.

    2006-01-01

    Factors (riparian stand condition, management regimes, and channel properties) affecting distributions of wood, detritus (leaves and branches), and sediment were examined in headwater streams draining young-growth red alder (Alnus rubra Bong.) - conifer riparian forests (40 years old) remained in channels and provided sites for sediment and organic matter storage. Despite various alder-conifer mixtures and past harvesting effects, the abundance of large wood, fine wood, and detritus accumulations significantly decreased with increasing channel bank-full width (0.5-3.5 m) along relatively short channel distances (up to 700 m). Changes in wood, detritus, and sediment accumulations together with changes in riparian stand characteristics create spatial and temporal variability of in-channel conditions in headwater systems. A component of alder within young-growth riparian forests may benefit both wood production and biological recovery in disturbed headwater stream channels. ?? 2006 NRC.

  3. Wood for the trees

    Directory of Open Access Journals (Sweden)

    Rob Garbutt

    2013-10-01

    Full Text Available Our paper focuses on the materiality, cultural history and cultural relations of selected artworks in the exhibition Wood for the trees (Lismore Regional Gallery, New South Wales, Australia, 10 June – 17 July 2011. The title of the exhibition, intentionally misreading the aphorism “Can’t see the wood for the trees”, by reading the wood for the resource rather than the collective wood[s], implies conservation, preservation, and the need for sustaining the originating resource. These ideas have particular resonance on the NSW far north coast, a region once rich in rainforest. While the Indigenous population had sustainable practices of forest and land management, the colonists deployed felling and harvesting in order to convert the value of the local, abundant rainforest trees into high-value timber. By the late twentieth century, however, a new wave of settlers launched a protest movements against the proposed logging of remnant rainforest at Terania Creek and elsewhere in the region. Wood for the trees, curated by Gallery Director Brett Adlington, plays on this dynamic relationship between wood, trees and people. We discuss the way selected artworks give expression to the themes or concepts of productive labour, nature and culture, conservation and sustainability, and memory. The artworks include Watjinbuy Marrawilil’s (1980 Carved ancestral figure ceremonial pole, Elizabeth Stops’ (2009/10 Explorations into colonisation, Hossein Valamanesh’s (2008 Memory stick, and AñA Wojak’s (2008 Unread book (in a forgotten language. Our art writing on the works, a practice informed by Bal (2002, Muecke (2008 and Papastergiadis (2004, becomes a conversation between the works and the themes or concepts. As a form of material excess of the most productive kind (Grosz, 2008, p. 7, art seeds a response to that which is in the air waiting to be said of the past, present and future.

  4. Energy wood resources availability and delivery cost in Northwest Russia

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimov, Yuri; Karjalainen, Timo [Finnish Forest Research Inst., Joensuu (Finland)], E-mail: yuri.gerasimov@metla.fi

    2013-10-01

    Availability of solid by-products from wood harvesting and mechanical wood processing was estimated as sources for energy production based on recent actual harvesting, sawmill, and plywood production in Northwest Russia at 30 million m{sup 3}. Nearly 70% of the energy wood, 20 million m{sup 3}, was from harvesting, consisting of non-industrial round wood, unused branches and tops, defective wood resulting from logging, and spruce stumps removed after final felling. Over 30%, 10 million m{sup 3}, of the available volume was from sawmills and plywood mills, i.e. wood chips, sawdust, and bark. Due to current low utilization of energy wood for bioenergy in Northwest Russia, delivery cost of energy wood to the potential border-crossing points in Finland was analyzed for three means of transport: railways, roadways, and waterways. Nearly 28 million m{sup 3} of the energy wood could be transported by railways and 2 million m{sup 3} by roadways and waterways. The costs were lowest by roadways from the nearby border areas (10-15 Euro/m{sup 3} for wood processing by-products and 16-22 Euro/m{sup 3} for forest chips). The costs by railways varied from 12 to 27 Euro/m{sup 3} on shorter distances to 47-58 Euro/m{sup 3} on longer distances. Waterway transportation was the most expensive, about 28-48 Euro/m{sup 3}. It should be emphasized that we have estimated availability and delivery costs of energy wood, not prices which are defined by the market based on supply and demand.

  5. Significance of wood extractives for wood bonding.

    Science.gov (United States)

    Roffael, Edmone

    2016-02-01

    Wood contains primary extractives, which are present in all woods, and secondary extractives, which are confined in certain wood species. Extractives in wood play a major role in wood-bonding processes, as they can contribute to or determine the bonding relevant properties of wood such as acidity and wettability. Therefore, extractives play an immanent role in bonding of wood chips and wood fibres with common synthetic adhesives such as urea-formaldehyde-resins (UF-resins) and phenol-formaldehyde-resins (PF-resins). Extractives of high acidity accelerate the curing of acid curing UF-resins and decelerate bonding with alkaline hardening PF-resins. Water-soluble extractives like free sugars are detrimental for bonding of wood with cement. Polyphenolic extractives (tannins) can be used as a binder in the wood-based industry. Additionally, extractives in wood can react with formaldehyde and reduce the formaldehyde emission of wood-based panels. Moreover, some wood extractives are volatile organic compounds (VOC) and insofar also relevant to the emission of VOC from wood and wood-based panels.

  6. Reynolds-Stress and Triple-Product Models Applied to Flows with Rotation and Curvature

    Science.gov (United States)

    Olsen, Michael E.

    2016-01-01

    Predictions for Reynolds-stress and triple product turbulence models are compared for flows with significant rotational effects. Driver spinning cylinder flowfield and Zaets rotating pipe case are to be investigated at a minimum.

  7. Chapter 16: Soy Proteins as Wood Adhesives

    Science.gov (United States)

    Charles R. Frihart; Christopher G. Hunt; Michael J. Birkeland

    2014-01-01

    Protein adhesives allowed the development of bonded wood products such as plywood and glulam in the early 20th century. Petrochemical-based adhesives replaced proteins in most wood bonding applications because of lower cost, improved production efficiencies, and enhanced durability. However, several technological and environmental factors have led to a resurgence of...

  8. Assessing radiation doses to the public from radionuclides in timber and wood products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-10-01

    In the event of a nuclear accident involving the release of radionuclides to the biosphere the radioactive contamination of forests can become a significant potential source of public radiation exposure. Two of these accidents - the Kyshtim accident, Urals, USSR (now Russian Federation) in 1957 and the Chernobyl accident, USSR (now Ukraine), in 1986 - resulted in significant contamination of thousands of square kilometres of forested areas with mixtures of radionuclides including long lived fission products such as {sup 137}Cs and {sup 90}Sr. Measurements and modelling of forest ecosystems after both accidents have shown that, following initial contamination, the activity concentration of long lived radionuclides in wood gradually increases over one to two decades and then slowly decreases in the subsequent period. The longevity of the contamination is due to the slow migration and persistent bioavailability of radionuclides in the forest soil profile, which results in long term transfer into wood through the root system of the trees. Another source of contamination is from global radioactive fallout after nuclear weapons tests, but the level of contamination is much lower than that from, for example, the Chernobyl accident. For instance, the level of {sup 137}Cs in wood in Sweden is about 2-5 Bq kg{sup -1} from global fallout. Global values are very similar to the Swedish levels. In contrast, the level of {sup 137}Cs in Swedish wood due to Chernobyl is around 50 Bq kg{sup -1}. Levels in wood from some contaminated areas located in countries of the Former Soviet Union (FSU) are about one to two orders of magnitude higher than this. The data on {sup 137}Cs soil contamination within European territories, originating mainly from the Chernobyl accident, illustrate the scale of the problem. For comparison, residual {sup 137}Cs soil deposition in Europe from global radioactive fallout was in the range 1-4 kBq m{sup -2}. There is concern in several countries about the

  9. Short rotation coppice with Robinia pseudoacacia L. : a land use option for carbon sequestration on reclaimed mine sites

    Energy Technology Data Exchange (ETDEWEB)

    Quinkenstein, A.; Bohm, C.; Freese, D. [Brandenburg Univ. of Technology, Cottbus (Germany). Soil Protection and Recultivation; Huttl, R.R. [Brandenburg Univ. of Technology, Cottbus (Germany). Soil Protection and Recultivation; GFZ German Research Centre for Geosciences, Potsdam (Germany)

    2010-07-01

    A study in northeast Germany has shown that the establishment of short rotation coppices (SRC) of Robinia pseudoacacia L. may be a viable option for improving farmers income on marginal soils. The plantations produce woody biomass at a fast rate for energy use. Carbon is accumulated in the harvestable biomass, as well as in the stump and the roots. These plant compartments form a long-term carbon storage pool because they can survive a harvest, stay vital at the site and continue to grow as the plant ages. As organic litter decomposes, additional carbon is sequestered under SRC as soil organic carbon. The carbon sequestration in SRC of R. pseudoacacia on mining sites within the Lower Lusatian region in northeast Germany was studied and the results were complemented with findings of current field studies conducted on reclaimed mine sites. The average above ground dry matter productivity of R. pseudoacacia was found to be 3 to 10 Mg per hectare per year, depending on the plantation age and rotation period. It has been estimated that the carbon storage within the soil accounts to a carbon sequestration of up to 6 Mg per hectare per year for a soil depth of 60 cm.

  10. Carbon budget of Ontario's managed forests and harvested wood products, 2001–2100

    Science.gov (United States)

    Jiaxin Chen; Stephen J. Colombo; Michael T. Ter-Mikaelian; Linda S. Heath

    2010-01-01

    Forest and harvested wood products (HWP) carbon (C) stocks between 2001 and 2100 for Ontario's managed forests were projected using FORCARB-ON, an adaptation of the U.S. national forest C budget model known as FORCARB2. A fire disturbance module was introduced to FORCARB-ON to simulate the effects of wildfire on C, and some of the model's C pools were re-...

  11. Scientific Basis for Sustainable Management of Eucalyptus and Populus as Short-Rotation Woody Crops in the U.S.

    Directory of Open Access Journals (Sweden)

    Eric D. Vance

    2014-05-01

    Full Text Available Short rotation woody crops (SRWC, fast growing tree species that are harvested on short, repeated intervals, can augment traditional fiber sources. These crops have economic and environmental benefits stemming from their capability of supplying fiber on a reduced land base in close proximity to users and when sensitive sites cannot be accessed. Eucalyptus and Populus appear to be genera with the greatest potential to provide supplemental fiber in the U.S. Optimal productivity can be achieved through practices that overcome site limitations and by choosing the most appropriate sites, species, and clones. Some Eucalyptus species are potentially invasive, yet field studies across multiple continents suggest they are slower to disperse than predicted by risk assessments. Some studies have found lower plant and animal diversity in SRWC systems compared to mature, native forests, but greater than some alterative land uses and strongly influenced by stand management, land use history, and landscape context. Eucalyptus established in place of grasslands, arable lands, and, in some cases, native forests can reduce streamflow and lower water tables due to higher interception and transpiration rates but results vary widely, are scale dependent, and are most evident in drier regions.

  12. Knock on wood: Is wood production sustainable in the Pacific Northwest?

    Science.gov (United States)

    Jonathan Thompson

    2006-01-01

    The Pacific Northwest is one of the world’s major timber-producing regions, and its capacity to produce wood on a sustained-yield basis is widely recognized. Nonetheless, there has been increasing public interest in assuring that forests are being sustainably managed, as well as a desire by landowners to demonstrate their commitment to responsible stewardship.

  13. Long-term effects of conservation systems on productivity for the old rotation

    Science.gov (United States)

    Winter legumes in cotton (Gossypium hirsutum L.) production is not new to the Southeast. In 1896, the Old Rotation experiment at Auburn University was established to study the feasibility of producing cotton in crop rotations with winter legumes managed as a green manure crop. Throughout the experim...

  14. High-pressure treatment of wood - combination of mechanical and thermal drying in the ''I/D process''

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, M. [Bundesforschungsanstalt fuer Ernaehrung, Institut fuer Verfahrenstechnik, Haid-und-Neu-Str. 9, D-76131 Karlsruhe (Germany); Bentz, M. [Institut fuer Mechanische Verfahrenstechnik und Mechanik, Universitaet Karlsruhe (T.H.), D-76128 Karlsruhe (Germany)

    2004-11-01

    Thermal drying of materials with internal pores is always a time-consuming and energy-intensive step within a production process. For chemical and pharmaceutical mass products and, in particular, for wood as an important raw material it is desirable to reduce the water content before thermal treatment by mechanical operations. The wood-processing industry, facing a rising stress of competition, is forced more than ever to offer high-quality products at lowest prices. Today, drying of timber is mostly done by air drying or by technical drying in kiln dryers. In any case, drying is necessary to prevent deterioration in quality by shrinkage, formation of cracks, discoloration or infestation. A new process of dewatering wood by combining mechanical and thermal means has been developed at the University of Karlsruhe. Compared to conventional drying processes, short drying times and a low residual moisture content can be achieved and, thus, energy consumption and costs can be reduced. In industrial wood drying only thermal processes (e.g., convective kiln drying, vacuum drying, etc.) have been established because so far no method has been known for removing liquid by mechanical force without significant change in wood structure. With the new I/D process chances for alternatives to conventional thermal drying or for mechanothermal applications are offered. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  15. Insect-mediated nitrogen dynamics in decomposing wood

    Science.gov (United States)

    Michael D. Ulyshen

    2015-01-01

    1.Wood decomposition is characterised by complex and poorly understood nitrogen (N) dynamics with unclear implications for forest nutrient cycling and productivity.Wood-dwelling microbes have developed unique strategies for coping with the N limitations imposed by their substrate, including the translocation of N into wood by cord-forming fungi and the fixation of...

  16. Wood construction codes issues in the United States

    Science.gov (United States)

    Douglas R. Rammer

    2006-01-01

    The current wood construction codes find their origin in the 1935 Wood Handbook: Wood as an Engineering Material published by the USDA Forest Service. Many of the current design recommendations can be traced back to statements from this book. Since this time a series of development both historical and recent has led to a multi-layered system for use of wood products in...

  17. An identification of potential new herbicides for short rotation coppice (Task 4). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report summarises the findings of a project to identify potential new herbicides and their suitability for weed control in commercial short rotation coppice (SRC) crops, and to establish the safety of the crops. The arrangements for the use of 'off-label' pesticides, which are permitted for use on other crops, on SRC are discussed along with the importance of the use of laboratory pot trials and field trials. Several herbicides are proposed for larger scale field trials.

  18. COMPOSITES FROM RECYCLED WOOD AND PLASTICS

    Science.gov (United States)

    The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. Two processing technologies were used to prepare wood-plastic composites: air-laying and melt...

  19. Acoustic and adsorption properties of submerged wood

    Science.gov (United States)

    Hilde, Calvin Patrick

    Wood is a common material for the manufacture of many products. Submerged wood, in particular, is used in niche markets, such as the creation of musical instruments. An initial study performed on submerged wood from Ootsa Lake, British Columbia, provided results that showed that the wood was not suitable for musical instruments. This thesis re-examined the submerged wood samples. After allowing the wood to age unabated in a laboratory setting, the wood was retested under the hypothesis that the physical acoustic characteristics would improve. It was shown, however, that the acoustic properties became less adequate after being left to sit. The adsorption properties of the submerged wood were examined to show that the submerged wood had a larger accessible area of wood than that of control wood samples. This implied a lower amount of crystalline area within the submerged wood. From the combined adsorption and acoustic data for the submerged wood, relationships between the moisture content and speed of sound were created and combined with previous research to create a proposed model to describe how the speed of sound varies with temperature, moisture content and the moisture content corresponding to complete hydration of sorption sites within the wood.

  20. Ethanol from wood 'can be competitive'

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-19

    Estimates by Stones and Webster indicate that the cost of producing ethanol for fuel purposes from wood will be as cheap as any other method and comparable with proven sugarcane and maize technology. In coming to this conclusion, it was assumed that significant advances would be made in the hydrolysis of wood and that saleable by-products would be possible from the lignin and hemicellulose of the feedstock wood.

  1. Cone calorimeter tests of wood-based decking materials

    Science.gov (United States)

    Robert H. White; Mark A. Dietenberger; Nicole M. Stark

    2007-01-01

    New technologies in building materials have resulted in the use of a wide variety of materials in decks. As part of our effort to address fire concerns in the wildland-urban interface, the Forest Products Laboratory has been examining the fire performance of decking products. In addition to preservative-treated wood, decking products include wood-plastic composites and...

  2. Wood Flour Moulding Technology: Implications for Technical ...

    African Journals Online (AJOL)

    User

    2011-04-19

    Apr 19, 2011 ... be waste product from saw mills, wood working plants or produced from selected dry wood by .... Stop watch-used to indicate the exact time the mould has remained in the press before wood .... There is abundance of saw dust the source of which is the ... Madison, Wisconsin: Wiley Interscience. Usoro, H. S. ...

  3. Catalase-Aminotriazole Assay, an Invalid Method for Measurement of Hydrogen Peroxide Production by Wood Decay Fungi

    OpenAIRE

    Highley, Terry L.

    1981-01-01

    The catalase-aminotriazole assay for determination of hydrogen peroxide apparently cannot be used for measuring hydrogen peroxide production in crude preparations from wood decay fungi because of materials in the crude preparations that interfere with the test.

  4. Integrated production of merchantable wood and wood fuels in industry; Teollisuuden ainespuun ja puupoltto-aineen integroitu tuotanto

    Energy Technology Data Exchange (ETDEWEB)

    Kuvaja, K [Enso-Gutzeit Oy, Imatra (Finland). Forest Dept.

    1997-12-31

    The aim of this project is the economically profitable integrated harvesting of industrial wood and firewood especially in harvesting of small-diameter first thinning wood. The research in 1994 was concentrated on improvement of the quality of the chipping methods based on chain-flail debarking chipping method, and on determination of the possible utilization targets for the fuel fraction. A reasonably large drum debarking test was also carried out at the industrial scale debarking station of the Enocell Oy. More than 80 000 m{sup 3} of first thinning wood was delivered by Enocell during this project. The quality of wood chips, produced using the chain-flail delimbing method, could be improved in the case of pine nearly to the required quality level, but additional measures are still needed in the case of birch. The fuel fraction deliveries to different points of utilization was started. The particle size of the fuel fraction appeared to be good after crushing. In 1995 a chain-flail-dry drum debarking chipping unit was developed to improve and homogenize the quality of chips

  5. Integrated production of merchantable wood and wood fuels in industry; Teollisuuden ainespuun ja puupoltto-aineen integroitu tuotanto

    Energy Technology Data Exchange (ETDEWEB)

    Kuvaja, K. [Enso-Gutzeit Oy, Imatra (Finland). Forest Dept.

    1996-12-31

    The aim of this project is the economically profitable integrated harvesting of industrial wood and firewood especially in harvesting of small-diameter first thinning wood. The research in 1994 was concentrated on improvement of the quality of the chipping methods based on chain-flail debarking chipping method, and on determination of the possible utilization targets for the fuel fraction. A reasonably large drum debarking test was also carried out at the industrial scale debarking station of the Enocell Oy. More than 80 000 m{sup 3} of first thinning wood was delivered by Enocell during this project. The quality of wood chips, produced using the chain-flail delimbing method, could be improved in the case of pine nearly to the required quality level, but additional measures are still needed in the case of birch. The fuel fraction deliveries to different points of utilization was started. The particle size of the fuel fraction appeared to be good after crushing. In 1995 a chain-flail-dry drum debarking chipping unit was developed to improve and homogenize the quality of chips

  6. Characterization and potential recycling of home building wood waste

    Science.gov (United States)

    Philip A. Araman; D.P. Hindman; M.F. Winn

    2010-01-01

    Construction waste represents a significant portion of landfill waste, estimated as 17% of the total waste stream. Wood construction waste of a 2000 square foot single family home we found to be 1500-3700 lbs of solid-sawn wood, and 1000-1800 lbs of engineered wood products (EWP). Much of the solid-sawn lumber and EWPs could be recycled into several products. Through a...

  7. Video monitoring of wood transport in a free-meandering piedmont river

    Science.gov (United States)

    MacVicar, B. J.; Piégay, H.; Tougne, L.; Ali, I.

    2009-12-01

    Wood in rivers exerts an important influence on riverine habitat, sediment transport, geomorphological form, and human infrastructure. There is a need to quantify wood transport within river systems in order to understand the relevant processes and develop wood budgets at local and watershed scales. Here we present a study that uses a riverside video camera to monitor wood passage. The camera was installed at a gauging station on the Ain River, a 3500 km2 piedmont river (France), in early 2007. Video was obtained during 12 floods, including 5 that were at or greater than the bankfull discharge and one flood at twice the bankfull discharge with a return period between 2 and 5 years. An image analysis algorithm is presented that uses an intersection of intensity, gradient and image difference masks to detect moving wood objects on the surface of the water. The algorithm is compared to the results from manual detection of wood in a selection of video segments. Manual detection is also used to estimate the length, diameter, velocity, and rotation of wood pieces and to note the presence of roots and branches. Agreement between the detection algorithm and the manual detection procedure is on the order of 90%. Despite considerable scatter, results show a threshold of wood transport at approximately two-thirds bankfull, a linear relation between wood transport volume and flow discharge beyond the wood transport threshold, and a strong hysteresis effect such that wood transport is an order of magnitude higher on the rising limb than on the falling limb. Wood transport vs discharge for two floods

  8. Some Exploitation Properties of Wood Plastic Hybrid Composites Based on Polypropylene and Plywood Production Waste

    Science.gov (United States)

    Kajaks, Janis; Kalnins, Karlis; Uzulis, Sandris; Matvejs, Juris

    2015-12-01

    During the last 20-30 years many researchers have paid attention to the studies of properties of thewood polymer composites (WPC). A lot of works are closely related to investigations of exploitation properties of wood fibres or wood flour containing polyolefine composites [1, 2]. The most useful from wide selection of polyolefines are polypropylenes, but timber industry waste materials comprising lignocellulose fibres are often used as reinforcement of WPC [3-12]. Plywood industry is not an exception - part of waste materials (by-products) are used for heat energy, i.e. burned. In this work we have approbated reinforcing of polypropylene (PP) with one of the plywood industry by-products, such as birch plywood sawdust (PSWD),which containswood fibre fractions with different length [13]. The main fraction (50%) includes fibres with length l = 0.5 - 1 mm. Our previous study [13] has confirmed that PSWD is a promising filler for PP reinforcing. Addition of PSWD up to 40-50 wt.% has increased WPC tensile and flexural modulus, but decreased deformation ability of PP matrix, impact strength, water resistance and fluidity of composite melts. It was shown [13] that modification of the composites with interfacial modifier - coupling agent maleated polypropylene (MAPP content up to 5-7 wt.%) considerably improved all the abovementioned properties. SEM investigations also confirmed positive action of coupling agent on strengthening of adhesion interaction between components wood and PP matrix. Another way how to make better properties of the WPC is to form hybridcomposites [1, 14-24]. Very popular WPC modifiers are nanoparticle additions like organonanoclays, which increase WPC physical-mechanical properties - microhardness, water resistance and diminish barrier properties and combustibility [1, 2, 14-17, 19, 20]. The goal of this study was to investigate organonanoclays influence on plywood production industry by-product birch plywood sawdust (PSWD) containing

  9. Characterisation of wood combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto

    The combustion of wood chips and wood pellets for the production of renewable energy in Denmark increased from 5.7 PJ to 16 PJ during the period 2000-2015, and further increases are expected to occur within the coming years. In 2012, about 22,300 tonnes of wood ashes were generated in Denmark....... Currently, these ashes are mainly landfilled, despite Danish legislation allowing their application onto forest and agricultural soils for fertilising and/or liming purposes. During this PhD work, 16 wood ash samples generated at ten different Danish combustion plants were collected and characterised...... for their composition and leaching properties. Despite the relatively large variations in the contents of nutrients and trace metals, the overall levels were comparable to typical ranges reported in the literature for other wood combustion ashes, as well as with regards to leaching. In general, the composition...

  10. DNA Damage among Wood Workers Assessed with the Comet Assay

    Science.gov (United States)

    Bruschweiler, Evin Danisman; Wild, Pascal; Huynh, Cong Khanh; Savova-Bianchi, Dessislava; Danuser, Brigitta; Hopf, Nancy B.

    2016-01-01

    Exposure to wood dust, a human carcinogen, is common in wood-related industries, and millions of workers are occupationally exposed to wood dust worldwide. The comet assay is a rapid, simple, and sensitive method for determining DNA damage. The objective of this study was to investigate the DNA damage associated with occupational exposure to wood dust using the comet assay (peripheral blood samples) among nonsmoking wood workers (n = 31, furniture and construction workers) and controls (n = 19). DNA damage was greater in the group exposed to composite wood products compared to the group exposed to natural woods and controls (P < 0.001). No difference in DNA damage was observed between workers exposed to natural woods and controls (P = 0.13). Duration of exposure and current dust concentrations had no effect on DNA damage. In future studies, workers’ exposures should include cumulative dust concentrations and exposures originating from the binders used in composite wood products. PMID:27398027

  11. Consequences of increasing bioenergy demand on wood and forests: An application of the Global Forest Products Model

    Science.gov (United States)

    Buongiorno, J.; Raunikar, R.; Zhu, S.

    2011-01-01

    The Global Forest Products Model (GFPM) was applied to project the consequences for the global forest sector of doubling the rate of growth of bioenergy demand relative to a base scenario, other drivers being maintained constant. The results showed that this would lead to the convergence of the price of fuelwood and industrial roundwood, raising the price of industrial roundwood by nearly 30% in 2030. The price of sawnwood and panels would be 15% higher. The price of paper would be 3% higher. Concurrently, the demand for all manufactured wood products would be lower in all countries, but the production would rise in countries with competitive advantage. The global value added in wood processing industries would be 1% lower in 2030. The forest stock would be 2% lower for the world and 4% lower for Asia. These effects varied substantially by country. ?? 2011 Department of Forest Economics, SLU Ume??, Sweden.

  12. Respiratory symptoms and lung function in relation to wood dust and monoterpene exposure in the wood pellet industry.

    Science.gov (United States)

    Löfstedt, Håkan; Hagström, Katja; Bryngelsson, Ing-Liss; Holmström, Mats; Rask-Andersen, Anna

    2017-06-01

    Wood pellets are used as a source of renewable energy for heating purposes. Common exposures are wood dust and monoterpenes, which are known to be hazardous for the airways. The purpose of this study was to study the effect of occupational exposure on respiratory health in wood pellet workers. Thirty-nine men working with wood pellet production at six plants were investigated with a questionnaire, medical examination, allergy screening, spirometry, and nasal peak expiratory flow (nasal PEF). Exposure to wood dust and monoterpenes was measured. The wood pellet workers reported a higher frequency of nasal symptoms, dry cough, and asthma medication compared to controls from the general population. There were no differences in nasal PEF between work and leisure time. A lower lung function than expected (vital capacity [VC], 95%; forced vital capacity in 1 second [FEV 1 ], 96% of predicted) was noted, but no changes were noted during shifts. There was no correlation between lung function and years working in pellet production. Personal measurements of wood dust at work showed high concentrations (0.16-19 mg/m 3 ), and exposure peaks when performing certain work tasks. Levels of monoterpenes were low (0.64-28 mg/m 3 ). There was no association between exposure and acute lung function effects. In this study of wood pellet workers, high levels of wood dust were observed, and that may have influenced the airways negatively as the study group reported upper airway symptoms and dry cough more frequently than expected. The wood pellet workers had both a lower VC and FEV 1 than expected. No cross-shift changes were found.

  13. A Review of Relationships Between Wood Quality and Silvicultural Practices

    Directory of Open Access Journals (Sweden)

    Tomy Listyanto

    2009-07-01

    Full Text Available The effect of silviculture on wood quality has been approached from different perspectives. This relationship is being a critical concern of forest managers, landowners, and also researchers. Reliable information is needed to support forest managers in predicting the consequences of various silvicultural practices in terms of quantity and wood quality. Wood has beed used for a variety of products. Each product has particular requirements regarding quality. The variation of wood quality requirement allows industries to decide to use timber resource appropriate for their products. Silvicultural practives cover all treatments applied in forest stand management especially to improve the quality of stand, including manipulation of the availability of sunlight, nutrient and water by using several treatments such as thinning, control of spacing, fertilizing, and pruning. The quality of stand is aimed to achieve particular forest management objectives including higher wood quality. There is no broad generalization regarding the relation between silvicultural practice and wood quality. Many investigators showed positive results in relation to producing high quality of wood products, while other researchers revealed negative effects. Reliable information is needed to support forest managers in predicting the consequences of various silvicultural practices in relation to the wood quantity and quality. Continuous research is needed to find methods of producing wood of high quality based on silvicultural practices and genetic improvement which can be used in wider area by considering limitation including environment and geographic variation.

  14. Growth and yield models for Eucalyptus grandis grown in Swaziland ...

    African Journals Online (AJOL)

    The aim of this study was to develop a stand-level growth and yield model for short-rotationEucalyptus grandis grown for pulp wood production at Piggs Peak in Swaziland. The data were derived from a Nelder 1a spacing trial established with E. grandis clonal cuttings in 1998 and terminated in 2005. Planting density ...

  15. Proceedings of the 8. biennial residual wood conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This conference highlighted practical strategies for managing and utilizing residual wood as a true industry resource. Examples of successful wood energy projects were presented along with the technology and products of more than 30 companies involved in the residual wood business. The topics of discussion ranged from biomass supplies, quality issues, and harvesting guidelines to emerging biomass technologies, project overviews, and financing. The presentations outlined the many opportunities that exist for the forest industry to produce energy from biostock, such as healthy and diseased trees, underbrush, sawdust, wood chips, wood pulp and black liquor. Increasing fuel and energy costs along with advances in technology are improving the economy of forest-based biorefineries. The presentations showed how the industry can gain revenue from residual wood, which is steadily becoming a more valuable resource for pellet production and energy generation The conference featured 20 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  16. Soil carbon, after 3 years, under short-rotation woody crops grown under varying nutrient and water availability

    Science.gov (United States)

    Felipe G. Sanchez; Mark Coleman; Charles T. Garten; Robert J. Luxmoore; John A. Stanturf; Carl Trettin; Stan D. Wullschleger

    2007-01-01

    Soil carbon contents were measured on a short-rotation woody crop study located on the US Department of Energy's Savannah River Site outside Aiken, SC. This study included fertilization and irrigation treatments on five tree genotypes (sweetgum, loblolly pine, sycamore and two eastern cottonwood clones). Prior to study installation, the previous pine stand was...

  17. Assessing radiation doses to the public from radionuclides in timber and wood products

    International Nuclear Information System (INIS)

    2003-10-01

    In the event of a nuclear accident involving the release of radionuclides to the biosphere the radioactive contamination of forests can become a significant potential source of public radiation exposure. Two of these accidents - the Kyshtim accident, Urals, USSR (now Russian Federation) in 1957 and the Chernobyl accident, USSR (now Ukraine), in 1986 - resulted in significant contamination of thousands of square kilometres of forested areas with mixtures of radionuclides including long lived fission products such as 137 Cs and 90 Sr. Measurements and modelling of forest ecosystems after both accidents have shown that, following initial contamination, the activity concentration of long lived radionuclides in wood gradually increases over one to two decades and then slowly decreases in the subsequent period. The longevity of the contamination is due to the slow migration and persistent bioavailability of radionuclides in the forest soil profile, which results in long term transfer into wood through the root system of the trees. Another source of contamination is from global radioactive fallout after nuclear weapons tests, but the level of contamination is much lower than that from, for example, the Chernobyl accident. For instance, the level of 137 Cs in wood in Sweden is about 2-5 Bq kg -1 from global fallout. Global values are very similar to the Swedish levels. In contrast, the level of 137 Cs in Swedish wood due to Chernobyl is around 50 Bq kg -1 . Levels in wood from some contaminated areas located in countries of the Former Soviet Union (FSU) are about one to two orders of magnitude higher than this. The data on 137 Cs soil contamination within European territories, originating mainly from the Chernobyl accident, illustrate the scale of the problem. For comparison, residual 137 Cs soil deposition in Europe from global radioactive fallout was in the range 1-4 kBq m -2 . There is concern in several countries about the potential radiation exposure of people from

  18. Wood evidence : proper collection, documentation, and storage of wood evidence from a crime scene

    Science.gov (United States)

    Alex Wiedenhoeft

    2006-01-01

    Wood can be found at crime scenes in many forms: as a murder weapon, as material used to hide a body, or as trace evidence from forced entry or vandalism. In the course of my work at the Forest Products Laboratory, Center for Wood Anatomy Research, I have been part of several forensic investigations that were adversely affected by inappropriate procedures used to...

  19. Life?cycle impacts of ethanol production from spruce wood chips under high-gravity conditions

    OpenAIRE

    Janssen, Matty; Xiros, Charilaos; Tillman, Anne-Marie

    2016-01-01

    Background Development of more sustainable biofuel production processes is ongoing, and technology to run these processes at a high dry matter content, also called high-gravity conditions, is one option. This paper presents the results of a life?cycle assessment (LCA) of such a technology currently in development for the production of bio-ethanol from spruce wood chips. Results The cradle-to-gate LCA used lab results from a set of 30 experiments (or process configurations) in which the main p...

  20. Assessing potential sustainable wood yield

    Science.gov (United States)

    Robert F. Powers

    2001-01-01

    Society is making unprecedented demands on world forests to produce and sustain many values. Chief among them is wood supply, and concerns are rising globally about the ability of forests to meet increasing needs. Assessing this is not easy. It requires a basic understanding of the principles governing forest productivity: how wood yield varies with tree and stand...

  1. Fabrication of Wood-Rubber Composites Using Rubber Compound as a Bonding Agent Instead of Adhesives

    Directory of Open Access Journals (Sweden)

    Dongwei Shao

    2016-06-01

    Full Text Available Differing from the hot-pressing method in the manufacturing of traditional wood-rubber composites (WRCs, this study was aimed at fabricating WRCs using rubber processing to improve water resistance and mechanical properties. Three steps were used to make WRCs, namely, fiber-rubber mixing, tabletting, and the vulcanization molding process. Ninety-six WRC panels were made with wood fiber contents of 0%–50% at rotor rotational speeds of 15–45 rpm and filled coefficients of 0.55–0.75. Four regression equations, i.e., the tensile strength (Ts, elongation at break (Eb, hardness (Ha and rebound resilience (Rr as functions of fiber contents, rotational speed and filled coefficient, were derived and a nonlinear programming model were developed to obtain the optimum composite properties. Although the Ts, Eb and Rr of the panels were reduced, Ha was considerably increased by 17%–58% because of the wood fiber addition. Scanning electron microscope images indicated that fibers were well embedded in rubber matrix. The 24 h water absorption was only 1%–3%, which was much lower than commercial wood-based composites.

  2. Fabrication of Wood-Rubber Composites Using Rubber Compound as a Bonding Agent Instead of Adhesives.

    Science.gov (United States)

    Shao, Dongwei; Xu, Min; Cai, Liping; Shi, Sheldon Q

    2016-06-14

    Differing from the hot-pressing method in the manufacturing of traditional wood-rubber composites (WRCs), this study was aimed at fabricating WRCs using rubber processing to improve water resistance and mechanical properties. Three steps were used to make WRCs, namely, fiber-rubber mixing, tabletting, and the vulcanization molding process. Ninety-six WRC panels were made with wood fiber contents of 0%-50% at rotor rotational speeds of 15-45 rpm and filled coefficients of 0.55-0.75. Four regression equations, i.e. , the tensile strength ( T s), elongation at break ( E b), hardness ( H a) and rebound resilience ( R r) as functions of fiber contents, rotational speed and filled coefficient, were derived and a nonlinear programming model were developed to obtain the optimum composite properties. Although the T s, E b and R r of the panels were reduced, H a was considerably increased by 17%-58% because of the wood fiber addition. Scanning electron microscope images indicated that fibers were well embedded in rubber matrix. The 24 h water absorption was only 1%-3%, which was much lower than commercial wood-based composites.

  3. Preliminary evaluation of production and characterization of wood vinegar from rubberwood

    Directory of Open Access Journals (Sweden)

    Juraivan Ratanapisit

    2009-08-01

    Full Text Available This study deals with a slow pyrolysis of rubberwood in a furnace at an atmospheric pressure to produce pyroligneous liquid or wood vinegar. Pyroligneous liquids produced were separated into two fractions based on temperatures in a furnace. The yields of wood vinegar were quantified. Also pH, SG and boiling ranges were determined. The optimum condition of pyrolysis was obtained at the heating rate of 1.4oC/min to the final temperature at 550oC/min with a yield of 27.45%. The pH and specific gravity were attained at about 2.9-3.83 and 1.009-1.027, respectively, depend on process conditions. Also the boiling ranges of rubberwood vinegar approximately were 96-108oC based on the ASTM-D86 method. However, no significantlychanges were seen in the pH, specific gravity and boiling ranges of rubberwood vinegar regarding to hearting rates. For characterization, wood vinegar was fractionated by a distillation into three fractions. Both crude and distilled wood vinegars were analyzed by gas chromatography-mass spectroscopy and gas chromatography. Results showed that the wood vinegar is mainly composed of acetic acid. Also the rubberwood pyrolysis yields high methanol content compared to other woods.

  4. Overall ecologic evaluation of cascading use of wood. Environmental impacts of substantial and energetic systems for utilization of wood in comparison; Gesamtoekologische Bewertung der Kaskadennutzung von Holz. Umweltauswirkungen stofflicher und energetischer Holznutzungssysteme im Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, Sven; Hienz, Gunnar; Keller, Heiko; Mueller-Lindenlauf, Maria

    2013-01-15

    Wood demand is rising and its production can only be extended to a certain degree. This requires a prioritisation of wood use options. Therefore, the environmental aspects of using wood for energy production or as a material with and without cascading recycling steps of stepwise lower value are studied in a comprehensive life cycle assessment (LCA). In addition, the environmental impacts of tapping new wood resources are assessed qualitatively. The results show that under most conditions the environmental impacts are the lower the more steps of a high-value material use are performed before the wood is used for energy production. One has to consider, though, that extended material use cascades can cause decades of delays of the energy recovery step, which may lead to the replacement of cleaner energy sources in the future and thus impair the results for the long-lived wood products. At the same time, wood products can represent a temporary or even - if material wood use generally increases - a long-term carbon stock. This leads to a delay of the greenhouse effect. Depending on the assessment method, these opposing effects result in unchanged to diminished impacts of long-lived wood products on the climate. Nevertheless, from an environmental point of view, high-value material use is advantageous compared to a direct use of wood for energy production independent of the assessment method. When comparing material use options of wood, especially the high-quality use of high-value wood assortments (e.g. solid wood as construction wood) is associated with positive results from an environmental perspective. In this context, the main effects on the LCA results come from the choice of the non-wood reference product and its associated environmental impacts. Regarding the direct use of wood for energy production, the most advantageous option from an environmental point of view is a combined heat and power plant (CHP) with a high overall efficiency.

  5. U.S. Wood Shipments to Puerty Rico

    Science.gov (United States)

    James E. Granskog

    1992-01-01

    Puerto Rico's importance as an offshore market for U.S. wood products is often overlooked. Because of its unique Commonwealth status, trade flows between the United States and Puerto Rico are recorded separately and are not counted in the U.S. foreign trade statistics. In 1991, wood product shipments from the United States to Puerto Rico totaled more than $83...

  6. Economic impacts of short-rotation woody crops for energy or oriented strand board: a Minnesota case study

    Science.gov (United States)

    William F. Lazarus; Douglas G. Tiffany; Ronald S. Zalesny Jr.; Don E. Riemenschneider

    2011-01-01

    Short-rotation woody crops (SRWC) such as hybrid poplars are becoming increasingly competitive with agriculture on marginal land. The trees can be grown for energy and for traditional uses such as oriented strandboard. Using IMPLAN (Impact Analysis for Planning) software, we modeled the impacts of shifting land use from hay and pasture for cow-calf beef operations to...

  7. Preparation and testing of plant seed meal-based wood adhesives.

    Science.gov (United States)

    He, Zhongqi; Chapital, Dorselyn C

    2015-03-05

    Recently, the interest in plant seed meal-based products as wood adhesives has steadily increased, as these plant raw materials are considered renewable and environment-friendly. These natural products may serve as alternatives to petroleum-based adhesives to ease environmental and sustainability concerns. This work demonstrates the preparation and testing of the plant seed-based wood adhesives using cottonseed and soy meal as raw materials. In addition to untreated meals, water washed meals and protein isolates are prepared and tested. Adhesive slurries are prepared by mixing a freeze-dried meal product with deionized water (3:25 w/w) for 2 hr. Each adhesive preparation is applied to one end of 2 wood veneer strips using a brush. The tacky adhesive coated areas of the wood veneer strips are lapped and glued by hot-pressing. Adhesive strength is reported as the shear strength of the bonded wood specimen at break. Water resistance of the adhesives is measured by the change in shear strength of the bonded wood specimens at break after water soaking. This protocol allows one to assess plant seed-based agricultural products as suitable candidates for substitution of synthetic-based wood adhesives. Adjustments to the adhesive formulation with or without additives and bonding conditions could optimize their adhesive properties for various practical applications.

  8. Securing of supply in short and longer term of wood and straw

    International Nuclear Information System (INIS)

    Schultz, Gert

    2003-01-01

    In Denmark - as well as in the rest of Europe - the importance of biomass as energy source has developed during the last two decades. In the Nordic countries we have seen a rise in utilisation of wood, straw and biogas. Concurrently with this development the trade of biomass has grown and a market has been build up while prices for biofuels has declined by up to 40% in real term prices. The trade of biofuels is expected to increase in the future in order to meet the overall goal and fulfil the international agreements of climate change and reduction of CO 2 . Basically the object of securing supply of biomass for energy production is the same as for all types of fuel or other commodities: to make supply and demand meet at prices the market are able and willing to pay. Price and security of supply are of vital importance for users of biomass - such as Energi E2. Based on these criteria biomass would never have been a fuel for electricity production. The market and supply of biomass is small compared to fossil fuels and the price is 2-3 times the price of coal calculated on an energy basis. But legislation, financial support and tax on fossil fuels have made biomass a competitive fuel for production of electricity and heat. (au)

  9. Life cycle inventory of manufacturing prefinished engineered wood flooring in eastern U.S. with comparison to solid strip wood flooring

    Science.gov (United States)

    Richard D. Bergman; Scott A. Bowe

    2011-01-01

    Building products have come under increased scrutiny because of environmental impacts from their manufacture. Our study followed the life cycle inventory approach for prefinished engineered wood flooring in the eastern US and compared the results with those of solid strip wood flooring. Our study surveyed five engineered wood flooring manufacturers in the eastern US....

  10. Environmentally adapted energy production and working environment. Manufacture of wood pellets; Miljoeanpassad energiproduktion och arbetsmiljoe. Tillverkning av traepellets

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez de Davila, Eliana

    2002-04-01

    The working environment at three wood pellet production plants was studied. Measurements were made of dust, microorganisms (bacteria and molds) and terpenes. Both stationary and personal sampling equipment were used. Dust sources and dust diffusion were mapped. Work in the raw material storage rooms and at the semi-automatic sack-filling stations can give high exposure to wood dusts (max. 4.7 mg/m{sup 3}). These high levels might cause irritations in the respiratory tract. Relatively high levels of terpenes were detected in the plant that did not dry wood shavings or sawdust. Pressing of non-dried shavings probably leads to emission of terpenes and other gaseous substances in the plant. Recommendations for improvements of the working conditions are given in the report.

  11. Participatory approach used to develop a sustainability assessment tool for wood-based bioenergy industry in upper Michigan, USA

    Science.gov (United States)

    Vaidya, Ashma; Mayer, Audrey

    2015-04-01

    Biofuel production has grown significantly in the past few decades as a result of global concern over energy security, climate change implications and unsustainable attributes of fossil fuels. Currently, biofuels produced from food crops (such as corn, sugarcane, soy, etc.) constitute the bulk of global biofuel production. However, purported adverse impacts of direct and indirect land-use changes (such as increased food prices, competition for agricultural land and water, and carbon emissions from land-use change) resulting from large-scale expansion of the crop-based biofuel industry have motivated many nations to further shift their attention to second-generation (non crop-based) biofuel production. Current R&D on second-generation biofuel production is largely focused on exploring prospects of using abandoned/fallow land for growing feedstock (such as Jatropha, short rotation woody coppice, Willow/Poplar species, Micanthus etc.), and on producing fuel that is cost-effective and compatible with existing infrastructures. The bulk of existing research on second-generation biofuel production concentrates on enhancing its technical feasibility and compatibility with existing infrastructure; very few have attempted to qualitatively determine and understand stakeholders' concerns and perception regarding this emergent industry. Stakeholders' decisions regarding land and resource use will play a crucial role in ensuring the social sustainability of any industry. Our research is focused on understanding stakeholders' concerns and perceptions regarding biofuel production in the upper Michigan region, where wood-based bioenergy development is being planned and researched by businesses, government agencies, and the local university. Over a century ago, the region's economy was dependent upon mining and clear-cut logging industries, which left the area once the resources were depleted. Since that time, the region has lost significant population due to the lack of economic

  12. Energy and carbon balances of wood cascade chains

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, SE-831 25 OEstersund (Sweden)

    2006-07-15

    In this study we analyze the energy and carbon balances of various cascade chains for recovered wood lumber. Post-recovery options include reuse as lumber, reprocessing as particleboard, pulping to form paper products, and burning for energy recovery. We compare energy and carbon balances of chains of cascaded products to the balances of products obtained from virgin wood fiber or from non-wood material. We describe and quantify several mechanisms through which cascading can affect the energy and carbon balances: direct cascade effects due to different properties and logistics of virgin and recovered materials, substitution effects due to the reduced demand for non-wood materials when wood is cascaded, and land use effects due to alternative possible land uses when less timber harvest is needed because of wood cascading. In some analyses we assume the forest is a limiting resource, and in others we include a fixed amount of forest land from which biomass can be harvested for use as material or biofuel. Energy and carbon balances take into account manufacturing processes, recovery and transportation energy, material recovery losses, and forest processes. We find that land use effects have the greatest impact on energy and carbon balances, followed by substitution effects, while direct cascade effects are relatively minor. (author)

  13. Fire extinguishing strength of the combustion product of wood saw ...

    African Journals Online (AJOL)

    Forty saw dust samples from four mature hard wood plants grown in southwestern part of Nigeria were analyzed for their ash contents, moisture contents, metallic contents and hence the fire extinguishing strength of the saw dust ash by classical and instrumental methods of analyses. Mahogany (Khaya ivorensis) wood saw ...

  14. Evaluating the efficacy of wood shreds for mitigating erosion.

    Science.gov (United States)

    Foltz, Randy B; Copeland, Natalie S

    2009-02-01

    An erosion control product made by shredding on-site woody materials was evaluated for mitigating erosion through a series of rainfall simulations. Tests were conducted on bare soil and soil with 30, 50, and 70% cover on a coarse and a fine-grained soil. Results indicated that the wood product known as wood shreds reduced runoff and soil loss from both soil types. Erosion mitigation ranged from 60 to nearly 100% depending on the soil type and amount of concentrated flow and wood shred cover. Wood shreds appear to be a viable alternative to agricultural straw. A wood shred cover of 50% appears optimal, but the appropriate coverage rate will depend on the amount of expected concentrated flow and soil type.

  15. Changes in wood product proportions in the Douglas-fir region with respect to size, age, and time.

    Science.gov (United States)

    R.A. Monserud; X. Zhou

    2007-01-01

    We examine both the variation and the changing proportions of different wood products obtained from trees and logs in the Douglas-fir region of the Northwestern United States. Analyses are based on a large product recovery database covering over 40 years of recovery studies; 13 studies are available for Douglas-fir (Pseudotsuga menziesii (Mirb.)...

  16. Evaluation of energy efficient techniques in the wood working and wood processing industry. Final report THERMIE - Action no. DIS-0059-95-DE

    Energy Technology Data Exchange (ETDEWEB)

    Eichhammer, W.; Digutsch, O.; Frey, G. v. [and others

    1997-05-01

    With the entrance of Austria, Finland and Sweden in the European Union beginning of 1995 the pattern of industrial energy consumption has changed considerably in some branches which are large energy consumers in the Northern countries. The wood working and wood processing industry is one of those branches. It comprises the preparation of wood from primary processing in sawmills up to the production of finished products, and is highly energy-intensive although to a somewhat smaller extent than the large energy consumers such as the iron and steel production or glass manufacturing. It can further be assumed that official statistics underestimate the real importance of the energy consumption in the wood sector because most official statistics do not indicate waste wood as a fuel. Waste wood is a renewable fuel and has as such not the same impact in terms of CO{sub 2}-emissions as fossil fuels. Nevertheless, renewable energy sources should be also used efficiently because they can replace fossil fuels for other purposes. The objective of this study on the wood sector were to analyse and summarise the present status of energy consumption in the fifteen countries of the EU and the two EFTA countries Norway and Switzerland, to evaluate present day energy technology in the wood industry, and to investigate existing application barriers to these techniques in order to inform, support and to motivate small and medium-sized companies in particular, thus simulating the wide spread use of such techniques. (orig./SR)

  17. WOOD PROPERTIES AND EFFECT OF WOOD PROPERTIES ON THE WOOD FINISHING

    Directory of Open Access Journals (Sweden)

    Abdulkadir Malkoçoğlu

    2006-04-01

    Full Text Available Wood is basic raw material for furniture and joinery industries with wood structures. Wood is a biological material that has widely different properties depending on species, geographic area where the tree grew, the growth condition, size of the tree at harvest, sawing, and other manufacturing processes. Wood properties have been characterized within two groups as natural and manufacturing factors that effects finishing performance. Grow rate, density, knots, moisture content, extractives and juvenile wood are natural characteristics. Grain orientation, texture, drying and performance expectations are manufacturing characteristics. In this review, the effects of natural and manufacturing characteristics are discussed on the surface finishing performance of wood.

  18. The Potential for Forestry to Reduce Net CO2 Emissions

    International Nuclear Information System (INIS)

    Eriksson, Erik

    2006-01-01

    Forestry may have an important role to play in attempts to reduce atmospheric CO 2 levels, since countries may choose to account for forest management activities to fulfil their commitments under the Kyoto Protocol. However, the effectiveness of such efforts may depend on the forest management strategies applied. This thesis is based on four separate studies in which the potential for forest management strategies to decrease net CO 2 emissions was considered. Long-term field experiments and models were used to: evaluate the impact of different thinning regimes; study broad-leaved stands growing on abandoned farmland with different rotation lengths; predict the effects of using different rotation lengths on carbon accumulation and fossil fuel substitution; and perform an integrated analysis of forest management practices and the potential to substitute fossil fuels by wood products. To evaluate the effects of the management regimes considered, carbon stocks in the investigated stands and the potential of the resulting biomass to substitute fossil fuel were estimated. No significant differences were found in biomass production between the thinning regimes for Norway spruce (Picea abies (L.) Karst.) stands, but the standing biomass was significantly larger in unthinned stands, indicating that to maximize the carbon stock in tree biomass thinnings should be avoided. For Scots pine (Pinus sylvestris L.), thinned and fertilized stands produced significantly more biomass (2.60-2.72 ton d.w./ha/yr) than unthinned and unfertilized stands (2.17-2.34 ton d.w./ha/yr) in the northern regions. These findings indicate that fertilization might be a viable measure to increase production of biomass with the potential to replace fossil fuel and energy-intensive material. In addition, for broad-leaved trees stands on abandoned farmland, management regimes with a short rotation were found to be better for maximizing the substitution of fossil fuel than regimes with a long rotation

  19. 7 CFR 2902.42 - Wood and concrete sealers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Wood and concrete sealers. 2902.42 Section 2902.42... Items § 2902.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from damage caused by...

  20. Wood as Energy--Production and Marketing. Instructional Materials Developed for Iowa Teachers of Vocational Agriculture.

    Science.gov (United States)

    Iowa State Univ. of Science and Technology, Ames. Dept. of Agricultural Education.

    Instructional materials are provided for a unit dealing with production and marketing of wood as an energy source. Unit objectives and a list of visual masters appear first. Content is arranged by six topics: introduction, pre-cutting activities (planning a fuelwood cutting, marketing, chain saw safety), cutting activities, post-cutting…

  1. Bio energy and its vision

    International Nuclear Information System (INIS)

    Viglasky, J.

    2012-01-01

    The present state of fuel and energy basis in the world as well as in Slovakia urges on the need for radical intervention to the energy sector. This will initiate a change of fuel basis-transition to renewable sources of energy as an alternative to fossil fuels and it will also initiate the need for change of present technological basis in energy sector. The main problem with energy is that we are running short of traditional resources of supply. This sentence is the proof that the world energy situation is very complicated. In fact, it is never too early for a sustainable solution. One of the solutions is to replace traditional energy carriers such as raw oil, natural gas and coal with renewable energy resources and carriers. World-wide, there is an increasing demand for biomass, for production of renewable CO 2 -neutral fuel and as an inexpensive environmentally friendly raw material source for pulp and industry production. Short-Rotation-Plantations hold much promise in fulfilling these demands. Short-Rotation-Plantations combined with the safe application of waste water and sewage sludge for irrigation and fertilization purposes are a very promising alternative source of income due to the high economic biomass potential, the fast growing wood biomass demand for raw material (pulp) or wood chips, the low cost water treatment and the enormous potential to be used for irrigation and fertilization purposes. Thanks to this procedure, Short-Rotation-Plantations are high efficient biomass production systems with additional contribution as biological filters to a low-cost and environmentally safe biological wastewater and sludge treatment. (Author)

  2. Degradation Characteristics of Wood Using Supercritical Alcohols

    Directory of Open Access Journals (Sweden)

    Jeeban Poudel

    2012-11-01

    Full Text Available In this work, the characteristics of wood degradation using supercritical alcohols have been studied. Supercritical ethanol and supercritical methanol were used as solvents. The kinetics of wood degradation were analyzed using the nonisothermal weight loss technique with heating rates of 3.1, 9.8, and 14.5 °C/min for ethanol and 5.2, 11.3, and 16.3 °C/min for methanol. Three different kinetic analysis methods were implemented to obtain the apparent activation energy and the overall reaction order for wood degradation using supercritical alcohols. These were used to compare with previous data for supercritical methanol. From this work, the activation energies of wood degradation in supercritical ethanol were obtained as 78.0–86.0, 40.1–48.1, and 114 kJ/mol for the different kinetic analysis methods used in this work. The activation energies of wood degradation in supercritical ethanol were obtained as 78.0–86.0, 40.1–48.1, and 114 kJ/mol. This paper also includes the analysis of the liquid products obtained from this work. The characteristic analysis of liquid products on increasing reaction temperature and time has been performed by GC-MS. The liquid products were categorized according to carbon numbers and aromatic/aliphatic components. It was found that higher conversion in supercritical ethanol occurs at a lower temperature than that of supercritical methanol. The product analysis shows that the majority of products fall in the 2 to 15 carbon number range.

  3. Spin rotation function in a microscopic non-relativistic optical model

    International Nuclear Information System (INIS)

    Bauhoff, W.

    1984-01-01

    A microscopic optical potential, which is calculated non-relativistically with a density-dependent effective force, is used to calculate cross-section, polarization and spin-rotation function for elastic proton scattering from 40 Ca at 160 MeV and 497 MeV. At 160 MeV, the agreement to the data is comparable to phenomenological fits, and the spin-rotation can be used to distinguish between microscopic and Woods-Saxon potentials. A good fit to the spin-rotation function results at 497 MeV, whereas the polarization data are not well reproduced

  4. Environmental Performance of North American Wood Panel Manufacturing

    Science.gov (United States)

    R. Bergman; D. Kaestner; A. Taylor

    2015-01-01

    Manufacturing building products such as wood panels has environmental impacts, including contributions to climate change. This paper is a compilation of four studies quantifying these impacts using the life-cycle assessment (LCA) method on five wood-based panel products made in North America during 2012. LCA is an internationally accepted and standardized method for...

  5. EVALUATION OF BIOETHANOL PRODUCTION FROM Eucalyptus WOOD WITH Saccharomyces cerevisiae AND SACSV-10 1

    Directory of Open Access Journals (Sweden)

    Sylvia Enid Vazquez

    2018-04-01

    Full Text Available ABSTRACT Eucalyptus spp. residues of paper industry are a potential lignocellulosic raw material for production of second-generation bioethanol as an alternative to conventional production from cereal crops. Studying the behavior at 40 ºC of a commercial cellulase (Sunson, Eucalyptus sawdust saccharification was carried out under two pH conditions. With the aim to evaluate the bioethanol production from Eucalyptus wood, a strategy combining saccharification and Simultaneous Saccharification and Fermentation (SSF was undertaken at 40 ºC with a thermotolerant Saccharomyces cerevisiae with different substrate and inoculum concentrations, and different nitrogen sources. At last, the process was carried out in optimal conditions with Saccharomyces cerevisiae M522 and SacSV-10. Saccharification produced more free glucose at pH 5, reaching a maximum of 1.5 g/L. Encouraging results were obtained with 500 mg/L of ammonium sulphate as a nitrogen source and 10 % v/v initial inoculum at 106 cfu/mL concentration. Yeast SacSV-10 was not inhibited by phenols present in the culture media using a wood concentration of 10 g/L, but when the solids concentration was increased, the bioprocess yield was compromised. When the process was carried out in optimal conditions the bioethanol production, expressed as the conversion percentage of cellulose to ethanol, was 71.5 % and 73.6 % for M522 and the mutant strain respectively. The studied properties of the mutant strain provide added value to it, which pose new challenges to national companies dedicated to the production and sale of inputs for bioethanol industry.

  6. Greenhouse gas emissions from short-rotation forestry on a drained and rewetted fen

    Science.gov (United States)

    Schlaipfer, Martina; Fuertes Sánchez, Alicia; Drösler, Matthias

    2017-04-01

    More than 95 % of German peatlands have been drained, primarily for agricultural and forestry use. They constitute a significant source of greenhouse gases (GHG) with emissions of approximately 47 million tons per year. Propelled by the German energy turnaround farmers have increasingly converted their cropland to short rotation forestry (SRF), amongst them some who are cultivating drained peatland. In this study GHG emissions from alder and poplar short rotation plantations with differing groundwater levels near Rosenheim, Bavaria, were monitored over the course of three-and-a-half years. Moreover, the effect of ploughing for SRF establishment was investigated as well. Understorey GHG fluxes were measured using closed-chamber approaches. Gas samples were enclosed in vials every second week and analysed for their CH4 and N2O concentrations by gas chromatography at a laboratory. On-site measurements of CO2 fluxes were carried out over the course of a day every three to four weeks with a dynamic closed-chamber technique. Allometric methods were employed to estimate carbon sequestration into trees. Sheet piling was installed around a set of measurement sites in December 2014 to accentuate the difference between the sites with high and low water tables. As a result the water level around those sites rose from an average of -36.1 ± 6.1 cm in 2013 and 2014 to -20.8 ± 3.7 cm in 2015. The water table outside the sheet piling showed values of -61.8 ± 5.7 cm and -72.1 ± 6.2 cm in those years, respectively. First results suggest a limited effect of ploughing for SRF establishment on understorey GHG emissions. However, there seems to be a distinct impact on tree productivity. CO2 fluxes in the understorey seem to be strongly influenced by water table, but also land management (mulching of understorey vegetation to reduce weed competition for trees during the first year and for pest control in subsequent years) and shading of the understorey vegetation by trees. There is a

  7. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...

  8. Changes in soil quality following poplar short-rotation forestry under different cutting cycles

    Directory of Open Access Journals (Sweden)

    Claudia Di Bene

    2011-02-01

    Full Text Available In the last decade, the change of energy concept induced by global warming and fossil fuel depletion together with the advances in agriculture towards a multifunctional and a more sustainable use of rural areas promoted the development of biomass crops. In this regard, Populus is largely utilised in short-rotation forestry (SRF, as it is known to be a fast-growing tree, producing large yields and having a high energy potential. Most studies focused on economic-productive and energetic aspects of Populus plantations, whereas their impact on soil quality and health have been poorly investigated. In this study, the main soil chemical parameters, microbial biomass and activity were assessed aiming at evaluating the impact of Populus SRF under one, two and three-year cutting cycles (T1, T2 and T3 in comparison with an intensive food cropping system (wheat-soybean rotation, WS. In addition, arbuscular mycorrhizal (AM fungal inoculum potential was measured using root colonisation (RC and number of entry points (EP. In the 0-10 cm soil depth, pH, phosphorus (P, total nitrogen (N and soil organic carbon (SOC were significantly affected by the management. In comparison with WS, Populus SRF treatments produced significant pH decreases together with N and SOC increases, these last ones ranging from 11 to 34% and from 21 to 57%, respectively. Under T3 soil pH decreased of 0.25 units, while P, N and SOC increased of 10, 34 and 57%, respectively, in comparison with WS. Microbial biomass and soil respiration under SRF showed also mean increases of 71 and 17%, respectively. Under SRF treatments, Lolium perenne, commonly observed in all field plots, was more than twofold colonised by AM fungi in comparison with WS, while the number of EP, observed on Lactuca sativa used as a test plant, showed values ranging from 8 to 21 times higher. The present study shows the potential of a Populus SRF to improve soil chemical, biochemical and biological quality parameters in

  9. Pretreatments for converting wood into paper and chemicals

    Science.gov (United States)

    William R. Kenealy; Carl J. Houtman; Jose Laplaza; Thomas W. Jeffries; Eric G. Horn

    2007-01-01

    Biorefining wood into paper and chemicals is not as easy as making a single traditional paper product. Paper is made from the cellulose- containing fractions of wood and processing may remove lignin and hemicellulose components. The yield and composition of the product depend upon the type of paper being produced. The paper process often alters the noncellulose...

  10. Results from software based empirical models of and standing biomass for poplar and willow grown as short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.E.; Morgan, G.W.; Brewer, A.C. (Forest Research Biometrics, Surveys and Statistics Division, Forest Research, Wrecclesham (United Kingdom))

    2007-07-01

    Statistical analysis was used to create a model for estimating the quantity of biomass produced by crops of poplar and willow grown as short rotation coppice. This model was converted into a software system as described here. The software is currently available for scientific demonstration. (orig.)

  11. Wood : adhesives

    Science.gov (United States)

    A.H. Conner

    2001-01-01

    This chapter on wood adhesives includes: 1) Classification of wood adhesives 2) Thermosetting wood adhesives 3) Thermoplastic adhesives, 4) Wood adhesives based on natural sources 5) Nonconventional bonding of wood 6) Wood bonding.

  12. Report on the survey of the commercialization of wood biomass energy. Project on the production of wood pellet fuel; 2001 nendo mokushitsu baiomasu energy jigyoka chosa hokokusho. Mokushitsu peretto nenryo seizo jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    For the purpose of regenerating forestry and contributing to the policy for prevention of global warming, a potential study was made of the commercialization of the wood pellet using low-quality wood materials such as thinnings and wood pieces from lumber mill. In the study, based on the survey of raw materials of wood pellet and the demand amount, the scale of pellet production was assumed, and subjects were arranged toward the basic design of plant, evaluation of economical efficiency and commercialization. As a result of the study, the following subjects were extracted. In the study, the supply of lumbers of 2,800 t/y and securing of demand of about 1,600 t/y were set forth as a premise, but the subject was to secure the initial demand. The pellet combustor was higher in price than the kerosene combustor, and for the imported combustion equipment, the combustion of white pellet was supposed. It is necessary to develop combustor of pellets including the bark. In the trial calculation of the unit price of heat utilization (yen/Mcal), the pellet stove was about 3.3 times as high in price as the kerosene stove. It is necessary to reduce the pellet price down to 30 yen/kg or so by decreasing the cost of pellet production. (NEDO)

  13. An Investigation of Consolidants Penetration in Wood. Part 2: FTIR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Maria Cristina TIMAR

    2011-03-01

    Full Text Available FTIR spectroscopy was used in this work for studying the penetration of some consolidants frequentlyused in old wood conservation into test pieces of sound spruce wood (Picea abies wood. Thin microsections(30-60 μm of control and treated wood were analysed in reflectance mode using an ATR system. Theconsolidation products investigated were Paraloid B72, bee wax, a mixture of bee wax / linseed oil and twotypes of paraffins. These products presented FTIR spectra with characteristic common and specific bands,allowing their identification in the treated wood with no impediments coming from their colour, transparencyor the percent of cell lumena filling. The treatment of wood with these products brought about alterations ofthe spectra aspect by the appearance or intensification of some characteristic bands and the modification ofthe ratio between the areas of some characteristic absorption bands so that a qualitative and semiquantitativeevaluation of the presence and penetration depth and distribution of these consolidationproducts in wood was possible, proving the adopted method as valuable and useful for further research inthis field.

  14. Development of a Tool to Measure the Effectiveness of Kaizen Events within the Wood Products Industry

    OpenAIRE

    Erdogan, Sevtap

    2015-01-01

    Kaizen implementation and other continuous improvement practices can be used by companies to lower manufacturing costs and increase product value. Kaizen activities are one way that wood products companies can increase their competitiveness. Being able to measure the effectiveness of Kaizen events is important to factors that contribute to Kaizen effectiveness as well as identifying the success of Kaizen implementation. However, little research has focused on the implementation of Kaizen and ...

  15. Wood flow problems in the Swedish forestry

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Dick [Forestry Research Inst. of Sweden, Uppsala (Sweden); Roennqvist, M. [Linkoeping Univ. (Sweden). Dept. of Mathematics

    1998-12-31

    In this paper we give an overview of the wood-flow in Sweden including a description of organization and planning. Based on that, we will describe a number of applications or problem areas in the wood-flow chain that are currently considered by the Swedish forest companies to be important and potential in order to improve overall operations. We have focused on applications which are short term planning or operative planning. We do not give any final results as much of the development is currently ongoing or is still in a planning phase. Instead we describe what kind of models and decision support systems that could be applied in order to improve co-operation within and integration of the wood-flow chain 13 refs, 20 figs, 1 tab

  16. Long-term influence of alternative forest management treatments on total ecosystem and wood product carbon storage

    Science.gov (United States)

    Joshua J. Puhlick; Aaron R. Weiskittel; Ivan J. Fernandez; Shawn Fraver; Laura S. Kenefic; Robert S. Seymour; Randall K. Kolka; Lindsey E. Rustad; John C. Brissette

    2016-01-01

    Developing strategies for reducing atmospheric CO2 is one of the foremost challenges facing natural resource professionals today. The goal of this study was to evaluate total ecosystem and harvested wood product carbon (C) stocks among alternative forest management treatments (selection cutting, shelterwood cutting, commercial clearcutting, and...

  17. Wood plastic combination

    International Nuclear Information System (INIS)

    Cunanan, S.A.; Bonoan, L.S.; Verceluz, F.P.; Azucena, E.A.

    1976-03-01

    The purpose of this study is to improve the physical and mechaniproperties of local inferior quality wood species by radiation-induced graft polymerization with plastic monomers. The process involves the following: 1) Preparation of sample; 2) Impregnation of sample with the monomers; 3) Irradiation of the impregnated sample with the use of 20,000 curie Co-60 as gamma-source; 4) Drying of irradiated sample to remove the unpolymerized monomer. Experimentation on different wood species were undertaken and the results given. From the results obtained, it can be concluded that the monomers systems MMA, MMA-USP, and styrene-USP are suitable for graft polymerization with the wood species almon, apitong, bagtikan, mayapis, red lauan, and tanguile. This is shown by their maximum conversion value which range from 86% to 96% with the optimum dose range of 1 to 2 Mrads. However, in the application of WPC process, properties that are required in a given wood product must be considered, thus aid in the selection of the monomer system to be used with a particular wood species. Some promising applications of WPC is in the manufacture of picker sticks, shuttles, and bobbins for the textile industry. However, there is a need for a pilot plant scale study so that an economic assessment of the commercial feasibility of this process can be made

  18. Increasing off-service resident productivity while on their emergency department rotation using shift cards.

    Science.gov (United States)

    Chakravarthy, Bharath; Posadas, Emerson; Ibrahim, Deena; McArthur, Kurt; Osborn, Megan; Hoonpongsimanont, Wirachin; Wong, Andrew; Lotfipour, Shahram

    2015-04-01

    Differences in productivity between off-service residents rotating in the emergency department (ED) and their emergency medicine (EM) resident counterparts have never been directly quantified. We sought to quantify the difference between off-service residents rotating in the ED and their EM resident counterparts. We also sought to find whether shift cards could be used to increase the productivity of off-service residents rotating in the ED. This is a prospective cohort study conducted at an urban, tertiary, Level I trauma center. We implemented the use of shift cards for off-service residents during their EM rotation. Completion of the shift card involved recording patients seen and their dispositions, procedures done, and documenting a learned bedside teaching point from their shift that day. Productivity was measured in terms of patients seen per hour (PPH) and relative value units per hour (RVU/h). Off-service residents showed a productivity of 0.529 PPH (95% confidence interval [CI] 0.493-0.566) and 1.40 RVU/h (95% CI 1.28-1.53) prior to implementation of shift cards. With the introduction of shift cards, productivity increased to 0.623 PPH (95% CI 0.584-0.663, p = 0.001) and 1.77 RVU/h (95% CI 1.64-1.91, p = 0.001). In comparison, first year EM resident productivity was 0.970 PPH (95% CI 0.918-1.02) and 3.01 RVU/h (95% CI 2.83-3.19). Shift cards can be used to foster motivation for off-service residents rotating in the ED, and is a simple and cost-effective method to improve system-based practices and utilization of resources. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Nigerian Wood Waste: A Potential Resource for Economic ...

    African Journals Online (AJOL)

    ADOWIE PERE

    methods these vast amount of wood residues are often discarded ... contradict sustainable solid waste management which entails various .... waste through the production of steam in boiler super-heater .... Wood Fuels Handbook. AIEL: Italian.

  20. Productivity of whole-tree bundler in energy wood and pulpwood harvesting from early thinnings

    Energy Technology Data Exchange (ETDEWEB)

    Nuutinen, Yrjoe; Laitila, Juha (Finnish Forest Research Inst., Joensuu (Finland)), e-mail: Yrjo.Nuutinen@metla.fi; Kaerhae, Kalle; Keskinen, Sirkka (Metsaeteho Oy, Helsinki (Finland)); Jylhae, Paula (Finnish Forest Research Inst., Kannus (Finland))

    2011-06-15

    First thinnings have been neglected to great extent in Finland because of high harvesting costs. The whole-tree bundler (Fixteri) was developed in order to rationalize the integrated harvesting of small-diameter energy wood and pulpwood and to reduce transportation costs through load compaction. The operation of the whole-tree bundler is composed of cutting and compaction processes. In the present study, the productivity level and the performance characteristics of the second version of the whole-tree bundler (Fixteri II) in integrated energy wood and pulpwood harvesting from first thinnings were defined on the basis of a time study. When the mean volume of removed whole trees averaged 20 dm3 at the stand, the productivity of Fixteri II per effective working (E{sub 0} excluding delays) hour was 3.4 m3/(E{sub 0}) and with an average removal of 75 dm3, it was 6.1 m3/(E{sub 0}). When compared with the first prototype of the whole-tree bundler (Fixteri I), the productivity of Fixteri II was 38-77% higher, depending on the stand density and mean tree volume of the removal. The higher performance level of Fixteri II stemmed mainly from the increase in multi-tree cutting and from the introduction of grapple feeding of the bunches. Furthermore, the better hydraulic capacity of the base machine enabled a higher level of simultaneous working processes