WorldWideScience

Sample records for short-range muscle stiffness

  1. Measurement and Treatment of Passive Muscle Stiffness

    DEFF Research Database (Denmark)

    Kirk, Henrik

    , which aimed to investigate: 1) The development of a clinical method to evaluate and distinguish neural (reflex mediated stiffness) and non-neural (passive muscle stiffness) components of muscle stiffness in adults with CP by objective and reliable measurements. 2) The association between increased...... and reliability of the method, and argue for the use of the method in the clinical practice. The device is able to distinguish between passive muscle stiffness and reflex-mediated stiffness in subjects with CP. It shows good high intrarater and interrater reliability in evaluation of passive muscle stiffness...... to measure muscle stiffness, and distinguish between passive muscle stiffness and reflex-mediated stiffness. Furthermore, it is a reliable device to measure changes in passive ROM. Treatment of passive muscle stiffness should be directed towards intense training, comprising many repetitions with a functional...

  2. Artificial muscles with adjustable stiffness

    International Nuclear Information System (INIS)

    Mutlu, Rahim; Alici, Gursel

    2010-01-01

    This paper reports on a stiffness enhancement methodology based on using a suitably designed contact surface with which cantilevered-type conducting polymer bending actuators are in contact during operation. The contact surface constrains the bending behaviour of the actuators. Depending on the topology of the contact surface, the resistance of the polymer actuators to deformation, i.e. stiffness, is varied. As opposed to their predecessors, these polymer actuators operate in air. Finite element analysis and modelling are used to quantify the effect of the contact surface on the effective stiffness of a trilayer cantilevered beam, which represents a one-end-free, the-other-end-fixed polypyrrole (PPy) conducting polymer actuator under a uniformly distributed load. After demonstrating the feasibility of the adjustable stiffness concept, experiments were conducted to determine the stiffness of bending-type conducting polymer actuators in contact with a range (20–40 mm in radius) of circular contact surfaces. The numerical and experimental results presented demonstrate that the stiffness of the actuators can be varied using a suitably profiled contact surface. The larger the radius of the contact surface is, the higher is the stiffness of the polymer actuators. The outcomes of this study suggest that, although the stiffness of the artificial muscles considered in this study is constant for a given geometric size, and electrical and chemical operation conditions, it can be changed in a nonlinear fashion to suit the stiffness requirement of a considered application. The stiffness enhancement methodology can be extended to other ionic-type conducting polymer actuators

  3. Cryotherapy induces an increase in muscle stiffness.

    Science.gov (United States)

    Point, M; Guilhem, G; Hug, F; Nordez, A; Frey, A; Lacourpaille, L

    2018-01-01

    Although cold application (ie, cryotherapy) may be useful to treat sports injuries and to prevent muscle damage, it is unclear whether it has adverse effects on muscle mechanical properties. This study aimed to determine the effect of air-pulsed cryotherapy on muscle stiffness estimated using ultrasound shear wave elastography. Myoelectrical activity, ankle passive torque, shear modulus (an index of stiffness), and muscle temperature of the gastrocnemius medialis were measured before, during an air-pulsed cryotherapy (-30°C) treatment of four sets of 4 minutes with 1-minute recovery in between and during a 40 minutes postcryotherapy period. Muscle temperature significantly decreased after the second set of treatment (10 minutes: 32.3±2.5°C; Pcryotherapy induces an increase in muscle stiffness. This acute change in muscle mechanical properties may lower the amount of stretch that the muscle tissue is able to sustain without subsequent injury. This should be considered when using cryotherapy in athletic practice. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Association of Gastrocnemius Muscle Stiffness With Passive Ankle Joint Stiffness and Sex-Related Difference in the Joint Stiffness.

    Science.gov (United States)

    Chino, Kintaro; Takashi, Hideyuki

    2017-11-15

    Passive ankle joint stiffness is affected by all structures located within and over the joint, and is greater in men than in women. Localized muscle stiffness can be assessed by ultrasound shear wave elastography, and muscle architecture such as fascicle length and pennation angle can be measured by B-mode ultrasonography. Thus, we assessed localized muscle stiffness of the medial gastrocnemius (MG) with consideration of individual variability in the muscle architecture, and examined the association of the muscle stiffness with passive ankle joint stiffness and the sex-related difference in the joint stiffness. Localized muscle stiffness of the MG in 16 men and 17 women was assessed at 10° and 20° plantar flexion, neutral anatomical position, 10° and 20° dorsiflexion. Fascicle length and pennation angle of the MG were measured at these joint positions. Passive ankle joint stiffness was determined by the ankle joint angle-torque relationship. Localized MG muscle stiffness was not significantly correlated with passive ankle joint stiffness, and did not show significant sex-related difference, even when considering the muscle architecture. This finding suggest that muscle stiffness of the MG would not be a prominent factor to determine passive ankle joint stiffness and the sex-related difference in the joint stiffness.

  5. Measuring anisotropic muscle stiffness properties using elastography.

    Science.gov (United States)

    Green, M A; Geng, G; Qin, E; Sinkus, R; Gandevia, S C; Bilston, L E

    2013-11-01

    Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (μ‖ = 0.86 ± 0.15 kPa; μ⊥ = 0.66 ± 0.19 kPa, P < 0.001), soleus (μ‖ = 0.83 ± 0.22 kPa; μ⊥ = 0.65 ± 0.13 kPa, P < 0.001) and the tibialis anterior (μ‖ = 0.78 ± 0.24 kPa; μ⊥ = 0.66 ± 0.16 kPa, P = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Sport stretching : Effect on passive muscle stiffness of short hamstrings

    NARCIS (Netherlands)

    Halbertsma, JPK; vanBolhuis, AI; Goeken, LNH

    Objective: To evaluate the effects of one 10-minute stretch on muscle stiffness in subjects with short hamstrings. Design: Randomized control trial. Setting: Laboratory for human movement sciences in the department of rehabilitation of a university hospital. Subjects: Sixteen students from the

  7. Passive stiffness of rat skeletal muscle undernourished during fetal development

    Directory of Open Access Journals (Sweden)

    Ana Elisa Toscano

    2010-01-01

    Full Text Available OBJECTIVES: The aim of the study was to investigate the effect of fetal undernutrition on the passive mechanical properties of skeletal muscle of weaned and young adult rats. INTRODUCTION: A poor nutrition supply during fetal development affects physiological functions of the fetus. From a mechanical point of view, skeletal muscle can be also characterized by its resistance to passive stretch. METHODS: Male Wistar rats were divided into two groups according to their mother's diet during pregnancy: a control group (mothers fed a 17% protein diet and an isocaloric low-protein group (mothers fed a 7.8% protein diet. At birth, all mothers received a standardized meal ad libitum. At the age of 25 and 90 days, the soleus muscle and extensor digitorum longus (EDL muscles were removed in order to test the passive mechanical properties. A first mechanical test consisted of an incremental stepwise extension test using fast velocity stretching (500 mm/s enabling us to measure, for each extension stepwise, the dynamic stress (σd and the steady stress (σs. A second test consisted of a slow velocity stretch in order to calculate normalized stiffness and tangent modulus from the stress-strain relationship. RESULTS: The results for the mechanical properties showed an important increase in passive stiffness in both the soleus and EDL muscles in weaned rat. In contrast, no modification was observed in young adult rats. CONCLUSIONS: The increase in passive stiffness in skeletal muscle of weaned rat submitted to intrauterine undernutrition it is most likely due to changes in muscle passive stiffness.

  8. Associations of passive muscle stiffness, muscle stretch tolerance, and muscle slack angle with range of motion: individual and sex differences.

    Science.gov (United States)

    Miyamoto, Naokazu; Hirata, Kosuke; Miyamoto-Mikami, Eri; Yasuda, Osamu; Kanehisa, Hiroaki

    2018-05-29

    Joint range of motion (ROM) is an important parameter for athletic performance and muscular injury risk. Nonetheless, a complete description of muscular factors influencing ROM among individuals and between men and women is lacking. We examined whether passive muscle stiffness (evaluated by angle-specific muscle shear modulus), tolerance to muscle stretch (evaluated by muscle shear modulus at end-ROM), and muscle slack angle of the triceps surae are associated with the individual variability and sex difference in dorsiflexion ROM, using ultrasound shear wave elastography. For men, ROM was negatively correlated to passive muscle stiffness of the medial and lateral gastrocnemius in a tensioned state and positively to tolerance to muscle stretch in the medial gastrocnemius. For women, ROM was only positively correlated to tolerance to muscle stretch in all muscles but not correlated to passive muscle stiffness. Muscle slack angle was not correlated to ROM in men and women. Significant sex differences were observed only for dorsiflexion ROM and passive muscle stiffness in a tensioned state. These findings suggest that muscular factors associated with ROM are different between men and women. Furthermore, the sex difference in dorsiflexion ROM might be attributed partly to that in passive muscle stiffness of plantar flexors.

  9. Increased Stiffness in Aged Skeletal Muscle Impairs Muscle Progenitor Cell Proliferative Activity.

    Directory of Open Access Journals (Sweden)

    Grégory Lacraz

    Full Text Available Skeletal muscle aging is associated with a decreased regenerative potential due to the loss of function of endogenous stem cells or myogenic progenitor cells (MPCs. Aged skeletal muscle is characterized by the deposition of extracellular matrix (ECM, which in turn influences the biomechanical properties of myofibers by increasing their stiffness. Since the stiffness of the MPC microenvironment directly impacts MPC function, we hypothesized that the increase in muscle stiffness that occurs with aging impairs the behavior of MPCs, ultimately leading to a decrease in regenerative potential.We showed that freshly isolated individual myofibers from aged mouse muscles contain fewer MPCs overall than myofibers from adult muscles, with fewer quiescent MPCs and more proliferative and differentiating MPCs. We observed alterations in cultured MPC behavior in aged animals, where the proliferation and differentiation of MPCs were lower and higher, respectively. These alterations were not linked to the intrinsic properties of aged myofibers, as shown by the similar values for the cumulative population-doubling values and fusion indexes. However, atomic force microscopy (AFM indentation experiments revealed a nearly 4-fold increase in the stiffness of the MPC microenvironment. We further showed that the increase in stiffness is associated with alterations to muscle ECM, including the accumulation of collagen, which was correlated with higher hydroxyproline and advanced glycation end-product content. Lastly, we recapitulated the impaired MPC behavior observed in aging using a hydrogel substrate that mimics the stiffness of myofibers.These findings provide novel evidence that the low regenerative potential of aged skeletal muscle is independent of intrinsic MPC properties but is related to the increase in the stiffness of the MPC microenvironment.

  10. Comparative study of a muscle stiffness sensor and electromyography and mechanomyography under fatigue conditions.

    Science.gov (United States)

    Han, Hyonyoung; Jo, Sungho; Kim, Jung

    2015-07-01

    This paper proposes the feasibility of a stiffness measurement for muscle contraction force estimation under muscle fatigue conditions. Bioelectric signals have been widely studied for the estimation of the contraction force for physical human-robot interactions, but the correlation between the biosignal and actual motion is decreased under fatigue conditions. Muscle stiffness could be a useful contraction force estimator under fatigue conditions because it measures the same physical quantity as the muscle contraction that generates the force. Electromyography (EMG), mechanomyography (MMG), and a piezoelectric resonance-based active muscle stiffness sensor were used to analyze the biceps brachii under isometric muscle fatigue conditions with reference force sensors at the end of the joint. Compared to EMG and MMG, the change in the stiffness signal was smaller (p fatigue condition changed fatigue conditions. This result indicates that the muscle stiffness signal is less sensitive to muscle fatigue than other biosignals. This investigation provides insights into methods of monitoring and compensating for muscle fatigue.

  11. Increased muscle belly and tendon stiffness in patients with Parkinson's disease, as measured by myotonometry.

    Science.gov (United States)

    Marusiak, Jarosław; Jaskólska, Anna; Budrewicz, Sławomir; Koszewicz, Magdalena; Jaskólski, Artur

    2011-09-01

    Based on Davis's law, greater tonus of the muscle belly in individuals with Parkinson's disease can create greater tension in the tendon, leading to structural adjustment and an increase in tendon stiffness. Our study aimed to separately assess passive stiffness in the muscle belly and tendon in medicated patients with Parkinson's disease, using myotonometry. We tested 12 patients with Parkinson's disease and 12 healthy matched controls. Passive stiffness of muscle belly and tendon was estimated by myotonometry, electromyography, and mechanomyography in relaxed biceps and triceps brachii muscles. Compared with controls, patients with Parkinson's disease had higher stiffness in the muscle belly and tendon of the biceps brachii and in the tendon of the triceps brachii. In patients with Parkinson's disease, there was a positive correlation between muscle belly stiffness and parkinsonian rigidity in the biceps brachii. Patients with Parkinson's disease have higher passive stiffness of the muscle belly and tendon than healthy matched controls. Copyright © 2011 Movement Disorder Society.

  12. Differential rigor development in red and white muscle revealed by simultaneous measurement of tension and stiffness.

    Science.gov (United States)

    Kobayashi, Masahiko; Takemori, Shigeru; Yamaguchi, Maki

    2004-02-10

    Based on the molecular mechanism of rigor mortis, we have proposed that stiffness (elastic modulus evaluated with tension response against minute length perturbations) can be a suitable index of post-mortem rigidity in skeletal muscle. To trace the developmental process of rigor mortis, we measured stiffness and tension in both red and white rat skeletal muscle kept in liquid paraffin at 37 and 25 degrees C. White muscle (in which type IIB fibres predominate) developed stiffness and tension significantly more slowly than red muscle, except for soleus red muscle at 25 degrees C, which showed disproportionately slow rigor development. In each of the examined muscles, stiffness and tension developed more slowly at 25 degrees C than at 37 degrees C. In each specimen, tension always reached its maximum level earlier than stiffness, and then decreased more rapidly and markedly than stiffness. These phenomena may account for the sequential progress of rigor mortis in human cadavers.

  13. The relationship between passive stiffness and evoked twitch properties: the influence of muscle CSA normalization

    International Nuclear Information System (INIS)

    Ryan, E D; Thompson, B J; Sobolewski, E J; Herda, T J; Costa, P B; Walter, A A; Cramer, J T

    2011-01-01

    Passive stiffness measurements are often used as a clinical tool to examine a muscle's passive lengthening characteristics. The purpose of this study was to examine the relationship between passive stiffness and evoked twitch properties prior to and following normalization of passive stiffness to muscle cross-sectional area (CSA). Ten healthy volunteers (mean ± SD age = 23 ± 3 year) performed passive range of motion, evoked twitch, and muscle CSA assessments of the plantar flexor muscles. Passive stiffness was determined from the slope of the final 5° of the angle–torque curve. Peak twitch torque (PTT) and rate of torque development (RTD) were determined via transcutaneous electrical stimulation, and muscle CSA was assessed using a peripheral quantitative computed tomography scanner. Pearson product moment correlation coefficients (r) were used to assess the relationships between passive stiffness and PTT and RTD and normalized passive stiffness (passive stiffness . muscle CSA −1 ) and PTT and RTD. Significant positive relationships were observed between passive stiffness and PTT (P = 0.003, r = 0.828) and RTD (P = 0.003, r = 0.825). There were no significant relationships between normalized passive stiffness and PTT (P = 0.290, r = 0.372) or RTD (P = 0.353, r = 0.329) demonstrating that stiffness did not account for a significant portion of the variance in twitch properties. Passive stiffness was largely influenced by the amount of muscle tissue in this study. Future studies that examine muscle stiffness and its relationship with performance measures, among different populations, and following various interventions may consider normalizing stiffness measurements to muscle CSA

  14. Effects of plyometric and isometric training on muscle and tendon stiffness in vivo.

    Science.gov (United States)

    Kubo, Keitaro; Ishigaki, Tomonobu; Ikebukuro, Toshihiro

    2017-08-01

    The purpose of this study was to compare the effects of plyometric and isometric training on tendon properties during ramp and ballistic contractions and muscle stiffness under passive and active conditions. Eleven subjects completed 12 weeks (3 days/week) of a unilateral training program for the plantar flexors. They performed plyometric training on one side (PLY) and isometric training on the other side (ISO). Active muscle stiffness in the medial gastrocnemius muscle was calculated according to changes in estimated muscle force and fascicle length during fast stretching after submaximal isometric contractions. Passive muscle stiffness was also calculated from estimated passive muscle force and fascicle length during slow passive stretching. Stiffness and hysteresis of tendon structures were measured using ultrasonography during ramp and ballistic contractions. Passive muscle stiffness and tendon hysteresis did not change for PLY or ISO Active muscle stiffness significantly increased for PLY, but not for ISO Tendon stiffness during ramp and ballistic contractions increased significantly for ISO, but not for PLY In addition, tendon elongation values at force production levels beyond 100 N during ballistic contractions increased for PLY These results suggest that plyometric training (but not isometric training) enhances the extensibility of tendon structures during ballistic contractions and active muscle stiffness during fast stretching, and these changes may be related to improved performances during stretch-shortening cycle exercises. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. Muscle contributions to elbow joint rotational stiffness in preparation for sudden external arm perturbations.

    Science.gov (United States)

    Holmes, Michael W R; Keir, Peter J

    2014-04-01

    Understanding joint stiffness and stability is beneficial for assessing injury risk. The purpose of this study was to examine joint rotational stiffness for individual muscles contributing to elbow joint stability. Fifteen male participants maintained combinations of three body orientations (standing, supine, sitting) and three hand preloads (no load, solid tube, fluid filled tube) while a device imposed a sudden elbow extension. Elbow angle and activity from nine muscles were inputs to a biomechanical model to determine relative contributions to elbow joint rotational stiffness, reported as percent of total stiffness. A body orientation by preload interaction was evident for most muscles (Psafety.

  16. Short-range communication system

    Science.gov (United States)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2012-01-01

    A short-range communication system includes an antenna, a transmitter, and a receiver. The antenna is an electrical conductor formed as a planar coil with rings thereof being uniformly spaced. The transmitter is spaced apart from the plane of the coil by a gap. An amplitude-modulated and asynchronous signal indicative of a data stream of known peak amplitude is transmitted into the gap. The receiver detects the coil's resonance and decodes same to recover the data stream.

  17. Short-range fundamental forces

    International Nuclear Information System (INIS)

    Antoniadis, I.; Baessler, S.; Buchner, M.; Fedorov, V.V.; Hoedl, S.; Nesvizhevsky, V.V.; Pignol, G.; Protasov, K.V.; Lambrecht, A.; Reynaud, S.; Sobolev, Y.

    2010-01-01

    We consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: 1) spin-independent forces; 2) spin-dependent axion-like forces. Different experimental techniques are sensitive in respective ranges of characteristic distances. The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experiments. We focus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments

  18. Nonlocality and short-range wetting phenomena.

    Science.gov (United States)

    Parry, A O; Romero-Enrique, J M; Lazarides, A

    2004-08-20

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  19. Nonlocality and Short-Range Wetting Phenomena

    Science.gov (United States)

    Parry, A. O.; Romero-Enrique, J. M.; Lazarides, A.

    2004-08-01

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  20. MR elastography analysis of stiffness change induced by muscle contraction. President award proceedings

    International Nuclear Information System (INIS)

    Hata, Junichi; Yano, Keichi; Numano, Tomokazu; Yagi, Kazuo; Mizuhara, Kazuyuki; Washio, Toshikatsu; Homma, Kazuhiro; Takamoto, Koichi; Saijyo, Toshio

    2012-01-01

    Magnetic resonance elastography (MRE) was originally advocated in 1995 and has been the subject of recent attention. We employed MRE to characterize the stiffness of skeletal muscle of the lower thigh and changes in that stiffness. We obtained MRE images using a gradient recalled echo pulse sequence with parameters: repetition time (TR)/echo time (TE), 20/3.6 ms; number of excitations (NEX), 3; flip angle, 20deg; matrix, 512 x 512; scan time, 32 s; flex coil; and vibration frequency, 50 Hz. We made a vibration pad of 2 divergence types to excite the lower thigh from both sides evenly. When contraction and relaxation about the skeletal muscles, we enforced MRE. We drew regions of interest (ROI) on the stiffness images and measured it by using sclerometer to compare stiffness. We MRE enabled visualization of changes in the stiffness of skeletal muscles as a result of contraction and relaxation. The lateral gastrocnemius and soleus muscle demonstrated significant difference in stiffness at muscle contraction. MRE also permitted measurement of deep muscle using the muscle sclerometer. MRE allows evaluation of stiffness in a given biological section from the surface to deep tissue. (author)

  1. Non-invasive assessment of muscle stiffness in patients with Duchenne muscular dystrophy.

    Science.gov (United States)

    Lacourpaille, Lilian; Hug, François; Guével, Arnaud; Péréon, Yann; Magot, Armelle; Hogrel, Jean-Yves; Nordez, Antoine

    2015-02-01

    Assessment of muscle mechanical properties may provide clinically valuable information for follow-up of patients with Duchenne muscular dystrophy (DMD) through the course of their disease. In this study we aimed to assess the effect of DMD on stiffness of relaxed muscles using elastography (supersonic shear imaging). Fourteen DMD patients and 13 control subjects were studied. Six muscles were measured at 2 muscle lengths (shortened and stretched): gastrocnemius medialis (GM); tibialis anterior (TA); vastus lateralis (VL); biceps brachii (BB); triceps brachii (TB); and abductor digiti minimi (ADM). Stiffness was significantly higher in DMD patients compared with controls for all the muscles (main effect for population, P muscle lengths) to large (d = 0.86 for BB/stretched). Supersonic shear imaging is a sensitive non-invasive technique to assess the increase in muscle stiffness associated with DMD. © 2014 Wiley Periodicals, Inc.

  2. Association of low back pain with muscle stiffness and muscle mass of the lumbar back muscles, and sagittal spinal alignment in young and middle-aged medical workers.

    Science.gov (United States)

    Masaki, Mitsuhiro; Aoyama, Tomoki; Murakami, Takashi; Yanase, Ko; Ji, Xiang; Tateuchi, Hiroshige; Ichihashi, Noriaki

    2017-11-01

    Muscle stiffness of the lumbar back muscles in low back pain (LBP) patients has not been clearly elucidated because quantitative assessment of the stiffness of individual muscles was conventionally difficult. This study aimed to examine the association of LBP with muscle stiffness assessed using ultrasonic shear wave elastography (SWE) and muscle mass of the lumbar back muscle, and spinal alignment in young and middle-aged medical workers. The study comprised 23 asymptomatic medical workers [control (CTR) group] and 9 medical workers with LBP (LBP group). Muscle stiffness and mass of the lumbar back muscles (lumbar erector spinae, multifidus, and quadratus lumborum) in the prone position were measured using ultrasonic SWE. Sagittal spinal alignment in the standing and prone positions was measured using a Spinal Mouse. The association with LBP was investigated by multiple logistic regression analysis with a forward selection method. The analysis was conducted using the shear elastic modulus and muscle thickness of the lumbar back muscles, and spinal alignment, age, body height, body weight, and sex as independent variables. Multiple logistic regression analysis showed that muscle stiffness of the lumbar multifidus muscle and body height were significant and independent determinants of LBP, but that muscle mass and spinal alignment were not. Muscle stiffness of the lumbar multifidus muscle in the LBP group was significantly higher than that in the CTR group. The results of this study suggest that LBP is associated with muscle stiffness of the lumbar multifidus muscle in young and middle-aged medical workers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Estimation of airway smooth muscle stiffness changes due to length oscillation using artificial neural network.

    Science.gov (United States)

    Al-Jumaily, Ahmed; Chen, Leizhi

    2012-10-07

    This paper presents a novel approach to estimate stiffness changes in airway smooth muscles due to external oscillation. Artificial neural networks are used to model the stiffness changes due to cyclic stretches of the smooth muscles. The nonlinear relationship between stiffness ratios and oscillation frequencies is modeled by a feed-forward neural network (FNN) model. The structure of the FNN is selected through the training and validation using literature data from 11 experiments with different muscle lengths, muscle masses, oscillation frequencies and amplitudes. Data pre-processing methods are used to improve the robustness of the neural network model to match the non-linearity. The validation results show that the FNN model can predict the stiffness ratio changes with a mean square error of 0.0042. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Is passive stiffness in human muscles related to the elasticity of tendon structures?

    Science.gov (United States)

    Kubo, K; Kanehisa, H; Fukunaga, T

    2001-08-01

    The purpose of this study was to examine in vivo whether passive stiffness in human muscles was related to the elasticity of tendon structures and to performance during stretch-shortening cycle exercise. Passive torque of plantar flexor muscles was measured during passive stretch from 90 degrees (anatomical position) to 65 degrees of dorsiflexion at a constant velocity of 5 degrees.s-1. The slope of the linear portion of the passive torque-angle curve during stretching was defined as the passive stiffness of the muscle. The elongation of the tendon and aponeurosis of the medial gastrocnemius muscle (MG) was directly measured using ultrasonography during ramp isometric plantar flexion up to the voluntary maximum. The relationship between the estimated muscle force of MG and tendon elongation was fitted to a linear regression, the slope of which was defined as the stiffness of the tendon. In addition, the dynamic torques during maximal voluntary concentric plantar flexion with and without prior eccentric contraction were determined at a constant velocity of 120 degrees.s-1. There were no significant correlations between passive stiffness and either the tendon stiffness (r = 0.19, P > 0.05) or the relative increase in torque with prior eccentric contraction (r = -0.19, P > 0.05). However, tendon stiffness was negatively correlated to the relative increase in torque output (r = -0.42, P tendon structures, and had no favourable effect on the muscle performance during stretch-shortening cycle exercise.

  5. A comparison of muscle stiffness and musculoarticular stiffness of the knee joint in young athletic males and females.

    Science.gov (United States)

    Wang, Dan; De Vito, Giuseppe; Ditroilo, Massimiliano; Fong, Daniel T P; Delahunt, Eamonn

    2015-06-01

    The objective of this study was to investigate the gender-specific differences in peak torque (PT), muscle stiffness (MS) and musculoarticular stiffness (MAS) of the knee joints in a young active population. Twenty-two male and twenty-two female recreational athletes participated. PT of the knee joint extensor musculature was assessed on an isokinetic dynamometer, MS of the vastus lateralis (VL) muscle was measured in both relaxed and contracted conditions, and knee joint MAS was quantified using the free oscillation technique. Significant gender differences were observed for all dependent variables. Females demonstrated less normalized PT (mean difference (MD)=0.4Nm/kg, p=0.005, η(2)=0.17), relaxed MS (MD=94.2N/m, pjoint injury incidence and prevalence in females when compared to males. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Sway‐dependent changes in standing ankle stiffness caused by muscle thixotropy

    Science.gov (United States)

    Sakanaka, Tania E.; Lakie, Martin

    2016-01-01

    Key points The passive stiffness of the calf muscles contributes to standing balance, although the properties of muscle tissue are highly labile.We investigated the effect of sway history upon intrinsic ankle stiffness and demonstrated reductions in stiffness of up to 43% during conditions of increased baseline sway.This sway dependence was most apparent when using low amplitude stiffness‐measuring perturbations, and the short‐range stiffness component was smaller during periods of high sway.These characteristics are consistent with the thixotropic properties of the calf muscles causing the observed changes in ankle stiffness.Periods of increased sway impair the passive stabilization of standing, demanding more active neural control of balance. Abstract Quiet standing is achieved through a combination of active and passive mechanisms, consisting of neural control and intrinsic mechanical stiffness of the ankle joint, respectively. The mechanical stiffness is partly determined by the calf muscles. However, the viscoelastic properties of muscle are highly labile, exhibiting a strong dependence on movement history. By measuring the effect of sway history upon ankle stiffness, the present study determines whether this lability has consequences for the passive stabilization of human standing. Ten subjects stood quietly on a rotating platform whose axis was collinear with the ankle joint. Ankle sway was increased by slowly tilting this platform in a random fashion, or decreased by fixing the body to a board. Ankle stiffness was measured by using the same platform to simultaneously apply small, brief perturbations (ankle stiffness by up to 43% compared to the body‐fixed condition. Normal quiet stance was associated with intermediate values. The effect was most apparent when using smaller perturbation amplitudes to measure stiffness (0.1 vs. 0.6 deg). Furthermore, torque responses exhibited a biphasic pattern, consisting of an initial steep rise followed by a

  7. Contribution of pelvic floor muscles to stiffness of the pelvic ring

    NARCIS (Netherlands)

    Pool-Goudzwaard, A.L.; Hoek van Dijke, G; van Gurp, M; Mulder, P; Snijders, C.J.; Stoeckart, R.

    2004-01-01

    STUDY DESIGN: A biomechanical study in embalmed specimens, on the relation between applied tension in the pelvic floor muscles, stiffness of the pelvic ring and generation of movement in the sacroiliac joints. OBJECTIVE: To gain insight into the effect of tension in the pelvic floor muscles on

  8. Botulinum toxin injection causes hyper-reflexia and increased muscle stiffness of the triceps surae muscle in the rat.

    Science.gov (United States)

    Pingel, Jessica; Wienecke, Jacob; Lorentzen, Jakob; Nielsen, Jens Bo

    2016-12-01

    Botulinum toxin is used with the intention of diminishing spasticity and reducing the risk of development of contractures. Here, we investigated changes in muscle stiffness caused by reflex activity or elastic muscle properties following botulinum toxin injection in the triceps surae muscle in rats. Forty-four rats received injection of botulinum toxin in the left triceps surae muscle. Control measurements were performed on the noninjected contralateral side in all rats. Acute experiments were performed, 1, 2, 4, and 8 wk following injection. The triceps surae muscle was dissected free, and the Achilles tendon was cut and attached to a muscle puller. The resistance of the muscle to stretches of different amplitudes and velocities was systematically investigated. Reflex-mediated torque was normalized to the maximal muscle force evoked by supramaximal stimulation of the tibial nerve. Botulinum toxin injection caused severe atrophy of the triceps surae muscle at all time points. The force generated by stretch reflex activity was also strongly diminished but not to the same extent as the maximal muscle force at 2 and 4 wk, signifying a relative reflex hyperexcitability. Passive muscle stiffness was unaltered at 1 wk but increased at 2, 4, and 8 wk (P botulinum toxin causes a relative increase in reflex stiffness, which is likely caused by compensatory neuroplastic changes. The stiffness of elastic elements in the muscles also increased. The data are not consistent with the ideas that botulinum toxin is an efficient antispastic medication or that it may prevent development of contractures. Copyright © 2016 the American Physiological Society.

  9. Stiffness of individual quadriceps muscle assessed using ultrasound shear wave elastography during passive stretching

    Directory of Open Access Journals (Sweden)

    Jingfei Xu

    2018-04-01

    Full Text Available Background: Until recently it has not been possible to isolate the mechanical behavior of individual muscles during passive stretching. Muscle shear modulus (an index of muscle stiffness measured using ultrasound shear wave elastography can be used to estimate changes in stiffness of an individual muscle. The aims of the present study were (1 to determine the shear modulus–knee angle relationship and the slack angle of the vastus medialis oblique (VMO, rectus femoris (RF, and vastus lateralis (VL muscles; (2 to determine whether this differs between the muscles. Methods: Nine male rowers took part in the study. The shear modulus of VMO, RF, and VL muscles was measured while the quadriceps was passively stretched at 3°/s. The relationship between the muscle shear modulus and knee angle was plotted as shear modulus–knee angle curve through which the slack angle of each muscle was determined. Results: The shear modulus of RF was higher than that of VMO and VL when the muscles were stretched over 54° (all p  0.05. The slack angle was similar among the muscles: 41.3° ± 10.6°, 44.3° ± 9.1°, and 44.3° ± 5.6° of knee flexion for VMO, RF, and VL, respectively (p = 0.626. Conclusion: This is the first study to experimentally determine the muscle mechanical behavior of individual heads of the quadriceps during passive stretching. Different pattern of passive tension was observed between mono- and bi-articular muscles. Further research is needed to determine whether changes in muscle stiffness are muscle-specific in pathological conditions or after interventions such as stretching protocols. Keywords: Muscle tension, Optimal length, Shear modulus, Slack angle, Stretch, Ultrasonography, Vastus lateralis, Vastus medialis

  10. Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging.

    Science.gov (United States)

    Sehgel, Nancy L; Sun, Zhe; Hong, Zhongkui; Hunter, William C; Hill, Michael A; Vatner, Dorothy E; Vatner, Stephen F; Meininger, Gerald A

    2015-02-01

    Hypertension and aging are both recognized to increase aortic stiffness, but their interactions are not completely understood. Most previous studies have attributed increased aortic stiffness to changes in extracellular matrix proteins that alter the mechanical properties of the vascular wall. Alternatively, we hypothesized that a significant component of increased vascular stiffness in hypertension is due to changes in the mechanical and adhesive properties of vascular smooth muscle cells, and that aging would augment the contribution from vascular smooth muscle cells when compared with the extracellular matrix. Accordingly, we studied aortic stiffness in young (16-week-old) and old (64-week-old) spontaneously hypertensive rats and Wistar-Kyoto wild-type controls. Systolic and pulse pressures were significantly increased in young spontaneously hypertensive rats when compared with young Wistar-Kyoto rats, and these continued to rise in old spontaneously hypertensive rats when compared with age-matched controls. Excised aortic ring segments exhibited significantly greater elastic moduli in both young and old spontaneously hypertensive rats versus Wistar-Kyoto rats. were isolated from the thoracic aorta, and stiffness and adhesion to fibronectin were measured by atomic force microscopy. Hypertension increased both vascular smooth muscle cell stiffness and vascular smooth muscle cell adhesion, and these increases were both augmented with aging. By contrast, hypertension did not affect histological measures of aortic collagen and elastin, which were predominantly changed by aging. These findings support the concept that stiffness and adhesive properties of vascular smooth muscle cells are novel mechanisms contributing to the increased aortic stiffness occurring with hypertension superimposed on aging. © 2014 American Heart Association, Inc.

  11. Botulinum toxin injection causes hyper-reflexia and increased muscle stiffness of the triceps surae muscle in the rat

    DEFF Research Database (Denmark)

    Pingel, Jessica; Wienecke, Jacob; Lorentzen, Jakob

    2016-01-01

    Botulinum toxin is used to diminish spasticity and reduce the risk of development of contractures. Here, we investigated changes in muscle stiffness caused by reflex activity or elastic muscle properties following botulinum toxin injection in the triceps surae muscle in rats. Forty-four rats...... received injection of botulinum toxin in the left triceps surae muscle. Control measurements were performed on the non-injected contralateral side in all rats. Acute experiments were performed 1, 2, 4 and 8 weeks following injection. The triceps surae muscle was dissected free, the Achilles tendon was cut...... and attached to a muscle puller. The resistance of the muscle to stretches of different amplitudes and velocities was systematically investigated. Reflex mediated torque was normalized to the maximal muscle force (Mmax) evoked by supramaximal stimulation of the tibial nerve. Botulinum toxin injection caused...

  12. The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies

    OpenAIRE

    Yin, Jun; Zhang, Zhaoyan

    2013-01-01

    The influence of the thyroarytenoid (TA) and cricothyroid (CT) muscle activation on vocal fold stiffness and eigenfrequencies was investigated in a muscularly controlled continuum model of the vocal folds. Unlike the general understanding that vocal fold fundamental frequency was determined by vocal fold tension, this study showed that vocal fold eigenfrequencies were primarily determined by vocal fold stiffness. This study further showed that, with reference to the resting state of zero stra...

  13. Effects of plyometric training on passive stiffness of gastrocnemii muscles and Achilles tendon.

    Science.gov (United States)

    Fouré, Alexandre; Nordez, Antoine; Cornu, Christophe

    2012-08-01

    Plyometric training is commonly used to improve athletic performance; however, it is unclear how each component of the muscle-tendon complex (MTC) is affected by this intervention. The effects of 14 weeks of plyometric training on the passive stiffness of the gastrocnemii muscles and Achilles tendon was determined simultaneously to assess possible local adaptations of elastic properties. The passive force-length relationship of the gastrocnemii MTC and elongation of the gastrocnemii muscles were determined using ultrasonography during passive cyclic stretching in 19 subjects divided into trained (n = 9) and control (n = 10) groups. An upward trend in stiffness of the gastrocnemii MTC (P = 0.09) and a significant increase in the intrinsic gastrocnemii muscle stiffness were found (P  0.05). Considering the lack of change in gastrocnemii muscle geometry, the change in the gastrocnemii muscle stiffness may be mainly due to a change in the intrinsic mechanical properties of the muscular tissues.

  14. Biomechanical Effect of Margin Convergence Techniques: Quantitative Assessment of Supraspinatus Muscle Stiffness.

    Directory of Open Access Journals (Sweden)

    Taku Hatta

    Full Text Available Although the margin convergence (MC technique has been recognized as an option for rotator cuff repair, little is known about the biomechanical effect on repaired rotator cuff muscle, especially after supplemented footprint repair. The purpose of this study was to assess the passive stiffness changes of the supraspinatus (SSP muscle after MC techniques using shear wave elastography (SWE. A 30 × 40-mm U-shaped rotator cuff tear was created in 8 cadaveric shoulders. Each specimen was repaired with 6 types of MC technique (1-, 2-, 3-suture MC with/without footprint repair, in a random order at 30° glenohumeral abduction. Passive stiffness of four anatomical regions in the SSP muscle was measured based on an established SWE method. Data were obtained from the SSP muscle at 0° abduction under 8 different conditions: intact (before making a tear, torn, and postoperative conditions with 6 techniques. MC techniques using 1-, or 2-suture combined with footprint repair showed significantly higher stiffness values than the intact condition. Passive stiffness of the SSP muscle was highest after a 1-suture MC with footprint repair for all regions when compared among all repair procedures. There was no significant difference between the intact condition and a 3-suture MC with footprint repair. MC techniques with single stitch and subsequent footprint repair may have adverse effects on muscle properties and tensile loading on repair, increasing the risk of retear of repairs. Adding more MC stitches could reverse these adverse effects.

  15. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength.

    Science.gov (United States)

    Seymore, Kayla D; Domire, Zachary J; DeVita, Paul; Rider, Patrick M; Kulas, Anthony S

    2017-05-01

    Hamstring strain injury is a frequent and serious injury in competitive and recreational sports. While Nordic hamstring (NH) eccentric strength training is an effective hamstring injury-prevention method, the protective mechanism of this exercise is not understood. Strength training increases muscle strength, but also alters muscle architecture and stiffness; all three factors may be associated with reducing muscle injuries. The purpose of this study was to examine the effects of NH eccentric strength training on hamstring muscle architecture, stiffness, and strength. Twenty healthy participants were randomly assigned to an eccentric training group or control group. Control participants performed static stretching, while experimental participants performed static stretching and NH training for 6 weeks. Pre- and post-intervention measurements included: hamstring muscle architecture and stiffness using ultrasound imaging and elastography, and maximal hamstring strength measured on a dynamometer. The experimental group, but not the control group, increased volume (131.5 vs. 145.2 cm 3 , p hamstring strength. The NH intervention was an effective training method for muscle hypertrophy, but, contrary to common literature findings for other modes of eccentric training, did not increase fascicle length. The data suggest that the mechanism behind NH eccentric strength training mitigating hamstring injury risk could be increasing volume rather than increasing muscle length. Future research is, therefore, warranted to determine if muscle hypertrophy induced by NH training lowers future hamstring strain injury risk.

  16. Muscle stiffness at different force levels measured with two myotonometric devices

    International Nuclear Information System (INIS)

    Jarocka, Ewa; Marusiak, Jarosław; Kumorek, Martyna; Jaskólska, Anna; Jaskólski, Artur

    2012-01-01

    Myotonometric measurements are quantitative methods of muscle tone assessment and may be used as an alternative for palpation evaluation. The objective of the study was to compare the measurements of brachioradialis muscle tone and stiffness using the Myoton-3 and the Myotonometer. The participants were young males (N = 17, mean age 21 ± 1 years). The skeletal muscle state was expressed by the Myoton-3 parameters stiffness (N m −1 ), frequency (Hz) and decrement (no unit) and the Myotonometer's area under the curve (AUC) parameter (area under the curve, no unit), when muscle was at rest and during activity at 25%, 50%, 80% and 100% of maximal voluntary contraction for elbow flexors. Pearson's correlation between AUC and stiffness is r = −0.89, AUC and frequency r = −0.84 and AUC and decrement r = 0.79, p < 0.01. When comparing the results from each experimental condition separately for frequency and AUC, the correlation was from −0.63 to −0.80, for stiffness and AUC it ranged from −0.25 to −0.75 and for decrement and AUC from 0.27 to 0.74. The degree of correlation between myotonometric measurements depends on whether the measured muscle is at rest or during contraction. The correlation is diverse among related parameters. (paper)

  17. Fatigue and muscle-tendon stiffness after stretch-shortening cycle and isometric exercise.

    Science.gov (United States)

    Toumi, Hechmi; Poumarat, Georges; Best, Thomas M; Martin, Alain; Fairclough, John; Benjamin, Mike

    2006-10-01

    The purpose of the present study was to compare vertical jump performance after 2 different fatigue protocols. In the first protocol, subjects performed consecutive sets of 10 repetitions of stretch-shortening cycle (SSC) contractions. In the second protocol, successive sets of 10 repetitions of isometric contractions were performed for 10 s with the knee at 90 degrees of flexion. The exercises were stopped when the subjects failed to reach 50% of their maximum voluntary isometric contractions. Maximal isometric force and maximal concentric power were assessed by performing supine leg presses, squat jumps, and drop jumps. Surface EMG was used to determine changes in muscle activation before and after fatigue. In both groups, the fatigue exercises reduced voluntary isometric force, maximal concentric power, and drop jump performance. Kinematic data showed a decrease in knee muscle-tendon stiffness accompanied by a lengthened ground contact time. EMG analysis showed that the squat and drop jumps were performed similarly before and after the fatigue exercise for both groups. Although it was expected that the stiffness would decrease more after SSC than after isometric fatigue (as a result of a greater alteration of the reflex sensitivity SSC), our results showed that both protocols had a similar effect on knee muscle stiffness during jumping exercises. Both fatigue protocols induced muscle fatigue, and the decrease in jump performance was linked to a decrease in the strength and stiffness of the knee extensor muscles.

  18. A young lady with swelling and stiffness of calf muscles

    Directory of Open Access Journals (Sweden)

    H S Kiran

    2011-01-01

    Full Text Available Hypothyroidism causes a variety of changes in the body. Though uncommon, hypothyroidism can present as myopathy. Hoffman′s syndrome is a specific, rare form of hypothyroid myopathy, which causes proximal weakness and pseudohypertrophy of muscles.

  19. Magnetic short range order in Gd

    International Nuclear Information System (INIS)

    Child, H.R.

    1976-01-01

    Quasielastic neutron scattering has been used to investigate magnetic short range order in Gd for 80 0 K 0 K. Short range order exists throughout this range from well below T/sub C/ = 291 0 K to well above it and can be reasonably well described by an anisotropic Orstein-Zernike form for chi

  20. FITTS LAW AS A LOW-PASS FILTER EFFECT OF MUSCLE-STIFFNESS

    NARCIS (Netherlands)

    VANGALEN, GP; SCHOMAKER, LRB; Schomaker, Lambertus

    It is proposed that the speed of aiming movements is the optimized outcome of a stochastic, oscillatory recruitment signal to the muscles and filtering properties of the effector limb. The filtering characteristic of the limb is seen to be modulated through a stiffness parameter, to be set by the

  1. Muscle Synergies Heavily Influence the Neural Control of Arm Endpoint Stiffness and Energy Consumption.

    Science.gov (United States)

    Inouye, Joshua M; Valero-Cuevas, Francisco J

    2016-02-01

    Much debate has arisen from research on muscle synergies with respect to both limb impedance control and energy consumption. Studies of limb impedance control in the context of reaching movements and postural tasks have produced divergent findings, and this study explores whether the use of synergies by the central nervous system (CNS) can resolve these findings and also provide insights on mechanisms of energy consumption. In this study, we phrase these debates at the conceptual level of interactions between neural degrees of freedom and tasks constraints. This allows us to examine the ability of experimentally-observed synergies--correlated muscle activations--to control both energy consumption and the stiffness component of limb endpoint impedance. In our nominal 6-muscle planar arm model, muscle synergies and the desired size, shape, and orientation of endpoint stiffness ellipses, are expressed as linear constraints that define the set of feasible muscle activation patterns. Quadratic programming allows us to predict whether and how energy consumption can be minimized throughout the workspace of the limb given those linear constraints. We show that the presence of synergies drastically decreases the ability of the CNS to vary the properties of the endpoint stiffness and can even preclude the ability to minimize energy. Furthermore, the capacity to minimize energy consumption--when available--can be greatly affected by arm posture. Our computational approach helps reconcile divergent findings and conclusions about task-specific regulation of endpoint stiffness and energy consumption in the context of synergies. But more generally, these results provide further evidence that the benefits and disadvantages of muscle synergies go hand-in-hand with the structure of feasible muscle activation patterns afforded by the mechanics of the limb and task constraints. These insights will help design experiments to elucidate the interplay between synergies and the mechanisms

  2. Measurement of gastrocnemius muscle elasticity by shear wave elastography: association with passive ankle joint stiffness and sex differences.

    Science.gov (United States)

    Chino, Kentaro; Takahashi, Hideyuki

    2016-04-01

    Passive joint stiffness is an important quantitative measure of flexibility, but is affected by muscle volume and all of the anatomical structures located within and over the joint. Shear wave elastography can assess muscle elasticity independent of the influences of muscle volume and the other nearby anatomical structures. We determined how muscle elasticity, as measured using shear wave elastography, is associated with passive joint stiffness and patient sex. Twenty-six healthy men (24.4 ± 5.9 years) and 26 healthy women (25.2 ± 4.8 years) participated in this study. The passive ankle joint stiffness and tissue elasticity of the medial gastrocnemius (MG) were quantified with the ankle in 30° plantar flexion (PF), a neutral anatomical position (NE), and 20° dorsiflexion (DF). No significant difference in passive joint stiffness by sex was observed with the ankle in PF, but significantly greater passive ankle joint stiffness in men than in women was observed in NE and DF. The MG elasticity was not significantly associated with joint stiffness in PF or NE, but it was significantly associated with joint stiffness in DF. There were no significant differences in MG elasticity by sex at any ankle position. Muscle elasticity, measured independent of the confounding effects of muscle volume and the other nearby anatomical structures, is associated with passive joint stiffness in the joint position where the muscle is sufficiently lengthened, but does not vary by sex in any joint position tested.

  3. The effect of eccentric and concentric calf muscle training on Achilles tendon stiffness.

    Science.gov (United States)

    Morrissey, Dylan; Roskilly, Anna; Twycross-Lewis, Richard; Isinkaye, Tomide; Screen, Hazel; Woledge, Roger; Bader, Dan

    2011-03-01

    To compare in vivo effects of eccentric and concentric calf muscle training on Achilles tendon stiffness, in subjects without tendinopathy. Thirty-eight recreational athletes completed 6 weeks eccentric (6 males, 13 females, 21.6  ±  2.2 years) or concentric training (8 males, 11 females, 21.1  ±  2.0 years). Achilles tendon stiffness, tendon modulus and single-leg jump height were measured before and after intervention. Exercise adherence was recorded using a diary. All data are reported as mean  ±  SD. Groups were matched for height and weight but the eccentric training group were more active at baseline (P Tendon stiffness was higher in the eccentrically trained group at baseline compared to the concentrically trained group (20.9  ±  7.3 N/mm v 13.38  ±  4.66 N/mm; P = 0.001) and decreased significantly after eccentric training (to 17.2 ( ±  5.9) N/mm (P = 0.035)). There was no stiffness change in the concentric group (P = 0.405). Stiffness modulus showed similar changes to stiffness. An inverse correlation was found between initial, and subsequent, reduction in stiffness (r = -0.66). Jump height did not change and no correlation between stiffness change and adherence was observed in either group (r = 0.01). Six weeks of eccentric training can alter Achilles tendon stiffness while a matched concentric programme shows no similar effects. Studies in patients with Achilles tendinopathy are warranted.

  4. Impaired Muscle Oxygenation and Elevated Exercise Blood Pressure in Hypertensive Patients: Links With Vascular Stiffness.

    Science.gov (United States)

    Dipla, Konstantina; Triantafyllou, Areti; Koletsos, Nikolaos; Papadopoulos, Stavros; Sachpekidis, Vasileios; Vrabas, Ioannis S; Gkaliagkousi, Eugenia; Zafeiridis, Andreas; Douma, Stella

    2017-08-01

    This study examined in vivo (1) skeletal muscle oxygenation and microvascular function, at rest and during handgrip exercise, and (2) their association with macrovascular function and exercise blood pressure (BP), in newly diagnosed, never-treated patients with hypertension and normotensive individuals. Ninety-one individuals (51 hypertensives and 40 normotensives) underwent office and 24-hour ambulatory BP, arterial stiffness, and central aortic BP assessment, followed by a 5-minute arterial occlusion and a 3-minute submaximal handgrip exercise. Changes in muscle oxygenated and deoxygenated hemoglobin and tissue oxygen saturation were continuously monitored by near-infrared spectroscopy and beat-by-beat BP by Finapres. Hypertensives had higher ( P age and body mass index (BMI) adjusted). When exercising at the same submaximal intensity, hypertensives required a significantly greater ( P hypertension exhibit prominent reductions in in vivo indices of skeletal muscle oxidative capacity, suggestive of mitochondrial dysfunction, and blunted muscle microvascular reactivity. These dysfunctions were associated with higher aortic systolic BP and arterial stiffness. Dysregulations in muscle oxygen delivery/utilization and microvascular stiffness, in hypertensive patients, partially contribute to their exaggerated BP during exercise. © 2017 American Heart Association, Inc.

  5. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness.

    Science.gov (United States)

    Brandenburg, Joline E; Eby, Sarah F; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S; Chen, Shigao; An, Kai-Nan

    2014-11-01

    The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Strain sonoelastographic evaluation of biceps muscle intrinsic stiffness after botulinum toxin-A injection.

    Science.gov (United States)

    Aşkın, Ayhan; Kalaycı, Özlem Tuğçe; Bayram, Korhan Barış; Tosun, Aliye; Demirdal, Ümit Seçil; Atar, Emel; İnci, Mehmet Fatih

    2017-01-01

    The most commonly used clinical tools for measuring spasticity are modified Ashworth scale (MAS) and Tardieu scale but both yield subjective rather than objective results. Ultrasound elastography (EUS) provides information on tissue stiffness and allows the qualitative or quantitative measurements of the mechanical properties of tissues. To assess the stiffness of biceps brachialis muscles in stroke patients by strain EUS and to investigate the sonoelastographic changes and its correlations with clinical evaluation parameters after botulinum toxin-A (BTA) injections. This is a prospective study. A total of 48 chronic stroke patients requiring BTA injections to biceps brachialis muscles were included in the study. All patients received injections with BTA to biceps brachialis muscles under ultrasound guidance. MAS, goniometric measurements, and strain EUS assessments were performed at preintervention and at 4-week postintervention. Strain index values of biceps muscle on the affected side were significantly increased compared with those on the unaffected side (p < 0.01). At 4 weeks after BTA injection, significant improvements were observed in MAS grades and goniometric measurements (p < 0.05). Statistically significant differences were also found between the MAS grades and strain index values in both pre-/postintervention period (p < 0.01). No significant correlations were observed between clinical parameters and strain EUS findings. Strain EUS is a promising diagnostic tool for assessing stiffness in spastic muscles, in establishing the treatment plan and monitoring the effectiveness of the therapeutic modality.

  7. Muscle stiffness of posterior lower leg in runners with a history of medial tibial stress syndrome.

    Science.gov (United States)

    Saeki, J; Nakamura, M; Nakao, S; Fujita, K; Yanase, K; Ichihashi, N

    2018-01-01

    Previous history of medial tibial stress syndrome (MTSS) is a risk factor for MTSS relapse, which suggests that there might be some physical factors that are related to MTSS development in runners with a history of MTSS. The relationship between MTSS and muscle stiffness can be assessed in a cross-sectional study that measures muscle stiffness in subjects with a history of MTSS, who do not have pain at the time of measurement, and in those without a history of MTSS. The purpose of this study was to compare the shear elastic modulus, which is an index of muscle stiffness, of all posterior lower leg muscles of subjects with a history of MTSS and those with no history and investigate which muscles could be related to MTSS. Twenty-four male collegiate runners (age, 20.0±1.7 years; height, 172.7±4.8 cm; weight, 57.3±3.7 kg) participated in this study; 14 had a history of MTSS, and 10 did not. The shear elastic moduli of the lateral gastrocnemius, medial gastrocnemius, soleus, peroneus longus, peroneus brevis, flexor hallucis longus, flexor digitorum longus, and tibialis posterior were measured using shear wave elastography. The shear elastic moduli of the flexor digitorum longus and tibialis posterior were significantly higher in subjects with a history of MTSS than in those with no history. However, there was no significant difference in the shear elastic moduli of other muscles. The results of this study suggest that flexor digitorum longus and tibialis posterior stiffness could be related to MTSS. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. No change in calf muscle passive stiffness after botulinum toxin injection in children with cerebral palsy.

    Science.gov (United States)

    Alhusaini, Adel A A; Crosbie, Jack; Shepherd, Roberta B; Dean, Catherine M; Scheinberg, Adam

    2011-06-01

    Stiffness and shortening of the calf muscle due to neural or mechanical factors can profoundly affect motor function. The aim of this study was to investigate non-neurally mediated calf-muscle tightness in children with cerebral palsy (CP) before and after botulinum toxin type A (BoNT-A) injection. Sixteen children with spastic CP (seven females, nine males; eight at Gross Motor Function Classification System level I, eight at level II; age range 4-10 y) and calf muscle spasticity were tested before and during the pharmaceutically active phase after injection of BoNT-A. Measures of passive muscle compliance and viscoelastic responses, hysteresis, and the gradient of the torque-angle curve were computed and compared before and after injection. Although there was a slight, but significant increase in ankle range of motion after BoNT-A injection and a small, significant decrease in the torque required to achieve plantigrade and 5° of dorsiflexion, no significant difference in myotendinous stiffness or hysteresis were detected after BoNT-A injection. Despite any effect on neurally mediated responses, the compliance of the calf muscle was not changed and the muscle continued to offer significant resistance to passive motion of the ankle. These findings suggest that additional treatment approaches are required to supplement the effects of BoNT-A injections when managing children with calf muscle spasticity. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.

  9. Aging impairs smooth muscle-mediated regulation of aortic stiffness: a defect in shock absorption function?

    Science.gov (United States)

    Gao, Yuan Z.; Saphirstein, Robert J.; Yamin, Rina; Suki, Bela

    2014-01-01

    Increased aortic stiffness is an early and independent biomarker of cardiovascular disease. Here we tested the hypothesis that vascular smooth muscle cells (VSMCs) contribute significantly to aortic stiffness and investigated the mechanisms involved. The relative contributions of VSMCs, focal adhesions (FAs), and matrix to stiffness in mouse aorta preparations at optimal length and with confirmed VSMC viability were separated by the use of small-molecule inhibitors and activators. Using biomechanical methods designed for minimal perturbation of cellular function, we directly quantified changes with aging in aortic material stiffness. An alpha adrenoceptor agonist, in the presence of NG-nitro-l-arginine methyl ester (l-NAME) to remove interference of endothelial nitric oxide, increases stiffness by 90–200% from baseline in both young and old mice. Interestingly, increases are robustly suppressed by the Src kinase inhibitor PP2 in young but not old mice. Phosphotyrosine screening revealed, with aging, a biochemical signature of markedly impaired agonist-induced FA remodeling previously associated with Src signaling. Protein expression measurement confirmed a decrease in Src expression with aging. Thus we report here an additive model for the in vitro biomechanical components of the mouse aortic wall in which 1) VSMCs are a surprisingly large component of aortic stiffness at physiological lengths and 2) regulation of the VSMC component through FA signaling and hence plasticity is impaired with aging, diminishing the aorta's normal shock absorption function in response to stressors. PMID:25128168

  10. Forearm Flexor Muscles in Children with Cerebral Palsy Are Weak, Thin and Stiff

    Directory of Open Access Journals (Sweden)

    Eva Pontén

    2017-04-01

    Full Text Available Children with cerebral palsy (CP often develop reduced passive range of motion with age. The determining factor underlying this process is believed to be progressive development of contracture in skeletal muscle that likely changes the biomechanics of the joints. Consequently, to identify the underlying mechanisms, we modeled the mechanical characteristics of the forearm flexors acting across the wrist joint. We investigated skeletal muscle strength (Grippit® and passive stiffness and viscosity of the forearm flexors in 15 typically developing (TD children (10 boys/5 girls, mean age 12 years, range 8–18 yrs and nine children with CP Nine children (6 boys/3 girls, mean age 11 ± 3 years (yrs, range 7–15 yrs using the NeuroFlexor® apparatus. The muscle stiffness we estimate and report is the instantaneous mechanical response of the tissue that is independent of reflex activity. Furthermore, we assessed cross-sectional area of the flexor carpi radialis (FCR muscle using ultrasound. Age and body weight did not differ significantly between the two groups. Children with CP had a significantly weaker (−65%, p < 0.01 grip and had smaller cross-sectional area (−43%, p < 0.01 of the FCR muscle. Passive stiffness of the forearm muscles in children with CP was increased 2-fold (p < 0.05 whereas viscosity did not differ significantly between CP and TD children. FCR cross-sectional area correlated to age (R2 = 0.58, p < 0.01, body weight (R2 = 0.92, p < 0.0001 and grip strength (R2 = 0.82, p < 0.0001 in TD children but only to grip strength (R2 = 0.60, p < 0.05 in children with CP. We conclude that children with CP have weaker, thinner, and stiffer forearm flexors as compared to typically developing children.

  11. Effect of sex and fatigue on muscle stiffness and musculoarticular stiffness of the knee joint in a young active population.

    Science.gov (United States)

    Wang, Dan; De Vito, Giuseppe; Ditroilo, Massimiliano; Delahunt, Eamonn

    2017-08-01

    The purpose of this study was to investigate the influence of sex and fatigue on knee extensor peak torque (PT), muscle stiffness (MS) of the vastus lateralis (VL) and knee joint musculoarticular stiffness (MAS) in young adults. Twenty-two male and 22 female recreational athletes participated. Males were characterised by higher relaxed [pre-: males 364.43 (52.00) N · m -1 , females 270.27 (37.25) N · m -1 ; post-: males 446.75 (83.27) N · m -1 , females 307.39 (38.58) N · m -1 ] and contracted [pre-: males 495.07 (71.04) N · m -1 , females 332.34 (85.42) N · m -1 ; post-: males 546.37 (90.74) N · m -1 , females 349.21 (85.55) N · m -1 ] MS of the VL, and knee joint MAS [pre-: males 1450.11 (507.98) N · m -1 , females 1027.99 (227.33) N · m -1 ; post-: males 1345.81 (404.90) N · m -1 , females 952.78 (192.38) N · m -1 ] than females pre- and post-fatigue. A similar finding was observed in pre-fatigue normalised knee extensor PT [pre-: males 2.77 (0.42) N · m kg -1 , females 2.41 (0.40) N · m kg -1 , post-: males 2.53 (0.54) N · m kg -1 , females 2.26 (0.44) N · m kg -1 ]. After the fatigue protocol, normalised knee extensor PT and knee joint MAS decreased, whilst relaxed and contracted MS of the VL increased in both sexes. These observed differences may contribute to the higher risk of knee injury in females and following the onset of fatigue.

  12. Short-range correlations with pseudopotentials

    International Nuclear Information System (INIS)

    Osman, A.

    1976-01-01

    Short-range correlations in nuclei are considered on an unitary-model operator approach. Short-range pseudopotentials have been added to achieve healing in the correlated wave functions. With the introduction of the pseudopotentials, correlated basis wave functions are constructed. The matrix element for effective interaction in nuclei is developed. The required pseudopotentials have been calculated for the Hamda-Johnston, Yale and Reid potentials and for the nuclear nucleon-nucleon potential A calculated by us according to meson exchange between nucleons. (Osman, A.)

  13. Short range order of selenite glasses

    Czech Academy of Sciences Publication Activity Database

    Neov, S.; Gerasimova, I.; Yordanov, S.; Lakov, L.; Mikula, Pavol; Lukáš, Petr

    1999-01-01

    Roč. 40, č. 2 (1999), s. 111-112 ISSN 0031-9090 R&D Projects: GA AV ČR KSK1010104 Keywords : short range * selenite glasses Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.822, year: 1999

  14. Effects of warm-up on hamstring muscles stiffness: Cycling vs foam rolling.

    Science.gov (United States)

    Morales-Artacho, A J; Lacourpaille, L; Guilhem, G

    2017-12-01

    This study investigated the effects of active and/or passive warm-up tasks on the hamstring muscles stiffness through elastography and passive torque measurements. On separate occasions, fourteen males randomly completed four warm-up protocols comprising Control, Cycling, Foam rolling, or Cycling plus Foam rolling (Mixed). The stiffness of the hamstring muscles was assessed through shear wave elastography, along with the passive torque-angle relationship and maximal range of motion (ROM) before, 5, and 30 minutes after each experimental condition. At 5 minutes, Cycling and Mixed decreased shear modulus (-10.3% ± 5.9% and -7.7% ± 8.4%, respectively; P≤.0003, effect size [ES]≥0.24) and passive torque (-7.17% ± 8.6% and -6.2% ± 7.5%, respectively; P≤.051, ES≥0.28), and increased ROM (+2.9% ± 2.9% and +3.2% ± 3.5%, respectively; P≤.001, ES≥0.30); 30 minutes following Mixed, shear modulus (P=.001, ES=0.21) and passive torque (P≤.068, ES≥0.2) were still slightly decreased, while ROM increased (P=.046, ES=0.24). Foam rolling induced "small" immediate short-term decreases in shear modulus (-5.4% ± 5.7% at 5 minutes; P=.05, ES=0.21), without meaningful changes in passive torque or ROM at any time point (P≥.12, ES≤0.23). These results suggest that the combined warm-up elicited no acute superior effects on muscle stiffness compared with cycling, providing evidence for the key role of active warm-up to reduce muscle stiffness. The time between warm-up and competition should be considered when optimizing the effects on muscle stiffness. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Equivalent linear damping characterization in linear and nonlinear force-stiffness muscle models.

    Science.gov (United States)

    Ovesy, Marzieh; Nazari, Mohammad Ali; Mahdavian, Mohammad

    2016-02-01

    In the current research, the muscle equivalent linear damping coefficient which is introduced as the force-velocity relation in a muscle model and the corresponding time constant are investigated. In order to reach this goal, a 1D skeletal muscle model was used. Two characterizations of this model using a linear force-stiffness relationship (Hill-type model) and a nonlinear one have been implemented. The OpenSim platform was used for verification of the model. The isometric activation has been used for the simulation. The equivalent linear damping and the time constant of each model were extracted by using the results obtained from the simulation. The results provide a better insight into the characteristics of each model. It is found that the nonlinear models had a response rate closer to the reality compared to the Hill-type models.

  16. Magnetic short-range order in Gd

    International Nuclear Information System (INIS)

    Child, H.R.

    1978-01-01

    The magnetic short-range order in a ferromagnetic, isotopically enriched 160 Gd metal single crystal has been investigated by quasielastic scattering of 81-meV neutrons. Since Gd behaves as an S-state ion in the metal, little anisotropy is expected in its magnetic behavior. However, the data show that there is anisotropic short-range order present over a large temperature interval both above and below T/sub C/. The data have been analyzed in terms of an Ornstein-Zernike Lorentzian form with anisotropic correlation ranges. These correlation ranges as deduced from the observed data behave normally above T/sub C/ but seem to remain constant over a fairly large interval below T/sub C/ before becoming unobservable at lower temperatures. These observations suggest that the magnetic ordering in Gd may be a more complicated phenomenon than first believed

  17. Brownian motion in short range random potentials

    International Nuclear Information System (INIS)

    Romero, A.H.; Romero, A.H.; Sancho, J.M.

    1998-01-01

    A numerical study of Brownian motion of noninteracting particles in random potentials is presented. The dynamics are modeled by Langevin equations in the high friction limit. The random potentials are Gaussian distributed and short ranged. The simulations are performed in one and two dimensions. Different dynamical regimes are found and explained. Effective subdiffusive exponents are obtained and commented on. copyright 1998 The American Physical Society

  18. Relationships Between Lower-Body Muscle Structure and Lower-Body Strength, Power, and Muscle-Tendon Complex Stiffness.

    Science.gov (United States)

    Secomb, Josh L; Lundgren, Lina E; Farley, Oliver R L; Tran, Tai T; Nimphius, Sophia; Sheppard, Jeremy M

    2015-08-01

    The purpose of this study was to determine whether any relationships were present between lower-body muscle structure and strength and power qualities. Fifteen elite male surfing athletes performed a battery of lower-body strength and power tests, including countermovement jump (CMJ), squat jump (SJ), isometric midthigh pull (IMTP), and had their lower-body muscle structure assessed with ultrasonography. In addition, lower-body muscle-tendon complex (MTC) stiffness and dynamic strength deficit (DSD) ratio were calculated from the CMJ and IMTP. Significant relationships of large to very large strength were observed between the vastus lateralis (VL) thickness of the left (LVL) and right (RVL) leg and peak force (PF) (r = 0.54-0.77, p well as IMTP PF (r = 0.53-0.60, p = 0.02-0.04). Furthermore, large relationships were found between left lateral gastrocnemius (LG) pennation angle and SJ and IMTP PF (r = 0.53, p = 0.04, and r = 0.70, p < 0.01, respectively) and between LG and IMTP relative PF (r = 0.63, p = 0.01). Additionally, large relationships were identified between lower-body MTC stiffness and DSD ratio (r = 0.68, p < 0.01), right (LG) pennation angle (r = 0.51, p = 0.05), CMJ PF (r = 0.60, p = 0.02), and jump height (r = 0.53, p = 0.04). These results indicate that greater VL thickness and increased LG pennation angle are related to improved performance in the CMJ, SJ, and IMTP. Furthermore, these results suggest that lower-body MTC stiffness explains a large amount of variance in determining an athlete's ability to rapidly apply force during a dynamic movement.

  19. Does experimental low back pain change posteroanterior lumbar spinal stiffness and trunk muscle activity? A randomized crossover study.

    Science.gov (United States)

    Wong, Arnold Y L; Parent, Eric C; Prasad, Narasimha; Huang, Christopher; Chan, K Ming; Kawchuk, Gregory N

    2016-05-01

    While some patients with low back pain demonstrate increased spinal stiffness that decreases as pain subsides, this observation is inconsistent. Currently, the relation between spinal stiffness and low back pain remains unclear. This study aimed to investigate the effects of experimental low back pain on temporal changes in posteroanterior spinal stiffness and concurrent trunk muscle activity. In separate sessions five days apart, nine asymptomatic participants received equal volume injections of hypertonic or isotonic saline in random order into the L3-L5 interspinous ligaments. Pain intensity, spinal stiffness (global and terminal stiffness) at the L3 level, and the surface electromyographic activity of six trunk muscles were measured before, immediately after, and 25-minute after injections. These outcome measures under different saline conditions were compared by generalized estimating equations. Compared to isotonic saline injections, hypertonic saline injections evoked significantly higher pain intensity (mean difference: 5.7/10), higher global (mean difference: 0.73N/mm) and terminal stiffness (mean difference: 0.58N/mm), and increased activity of four trunk muscles during indentation (Ppain subsided. While previous clinical research reported inconsistent findings regarding the association between spinal stiffness and low back pain, our study revealed that experimental pain caused temporary increases in spinal stiffness and concurrent trunk muscle co-contraction during indentation, which helps explain the temporal relation between spinal stiffness and low back pain observed in some clinical studies. Our results substantiate the role of spinal stiffness assessments in monitoring back pain progression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Muscle structure and stiffness assessment after botulinum toxin type A injection. A systematic review.

    Science.gov (United States)

    Mathevon, L; Michel, F; Decavel, P; Fernandez, B; Parratte, B; Calmels, P

    2015-12-01

    Botulinum toxin type A manages spasticity disorders in neurological central diseases. Some studies have reported that it might induce muscle changes. We present a literature review abiding by the PRISMA statement guidelines. The purpose was to explore the structural and passive biomechanical muscle properties after botulinum toxin type A injections in healthy and spastic limb muscles, on animals and humans, as well as methods for evaluating these properties. We searched the PubMed and Cochrane Library databases using the following keywords: "Botulinum toxin" AND ("muscle structure" OR "muscle atrophy") and, "Botulinum toxin" AND "muscle elasticity". From the 228 initially identified articles, 21 articles were included. Histological analyses were performed, especially on animals. A neurogenic atrophy systematically occurred. In humans, one year after a single injection, the histological recovery remained incomplete. Furthermore, 2D ultrasound analyses showed a reduction of the gastrocnemius thickness and pennation angle. MRI volumetric analysis evidenced muscular atrophy six months or one year after a single injection. Passive muscle stiffness depends on these structural changes. On the short term, the biomechanical analysis showed an elastic modulus increase in animals whereas no change was recorded in humans. On the short term, ultrasound elastography imaging showed a decreased elastic modulus. To date, few data are available, but all show a structural and mechanical muscle impact post injections, specifically muscle atrophy which can linger over time. Further studies are necessary to validate this element, and the possibility of change must be taken into account particularly with repeated injections. Thus, in clinical practice, 2D ultrasound and ultrasound elastography are two non-invasive techniques that will help physicians to develop an efficient long term monitoring. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Intraoperative length and tension curves of human eye muscles. Including stiffness in passive horizontal eye movement in awake volunteers

    NARCIS (Netherlands)

    H.J. Simonsz (Huib); G.H. Kolling (Gerold); H. Kaufmann (Herbert); B. van Dijk (Bob)

    1986-01-01

    textabstractIntraoperative continuous-registration length and tension curves of attached and detached eye muscles were made in 18 strabismic patients under general anesthesia. For relaxed eye muscles, we found an exponential relation between length and tension. An increased stiffness was quantified

  2. Pilot study on quantitative assessment of muscle imbalance: differences of muscle synergies, equilibrium-point trajectories, and endpoint stiffness in normal and pathological upper-limb movements.

    Science.gov (United States)

    Oku, Takanori; Uno, Kanna; Nishi, Tomoki; Kageyama, Masayuki; Phatiwuttipat, Pipatthana; Koba, Keitaro; Yamashita, Yuto; Murakami, Kenta; Uemura, Mitsunori; Hirai, Hiroaki; Miyazaki, Fumio; Naritomi, Hiroaki

    2014-01-01

    This paper proposes a novel method for assessment of muscle imbalance based on muscle synergy hypothesis and equilibrium point (EP) hypothesis of motor control. We explain in detail the method for extracting muscle synergies under the concept of agonist-antagonist (AA) muscle pairs and for estimating EP trajectories and endpoint stiffness of human upper limbs in a horizontal plane using an electromyogram. The results of applying this method to the reaching movement of one normal subject and one hemiplegic subject suggest that (1) muscle synergies (the balance among coactivation of AA muscle pairs), particularly the synergies that contributes to the angular directional kinematics of EP and the limb stiffness, are quite different between the normal subject and the hemiplegic subject; (2) the concomitant EP trajectory is also different between the normal and hemiplegic subjects, corresponding to the difference of muscle synergies; and (3) the endpoint (hand) stiffness ellipse of the hemiplegic subject becomes more elongated and orientation of the major axis rotates clockwise more than that of the normal subject. The level of motor impairment would be expected to be assessed from a comparison of these differences of muscle synergies, EP trajectories, and endpoint stiffness among normal and pathological subjects using the method.

  3. The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies

    Science.gov (United States)

    Yin, Jun; Zhang, Zhaoyan

    2013-01-01

    The influence of the thyroarytenoid (TA) and cricothyroid (CT) muscle activation on vocal fold stiffness and eigenfrequencies was investigated in a muscularly controlled continuum model of the vocal folds. Unlike the general understanding that vocal fold fundamental frequency was determined by vocal fold tension, this study showed that vocal fold eigenfrequencies were primarily determined by vocal fold stiffness. This study further showed that, with reference to the resting state of zero strain, vocal fold stiffness in both body and cover layers increased with either vocal fold elongation or shortening. As a result, whether vocal fold eigenfrequencies increased or decreased with CT/TA activation depended on how the CT/TA interaction influenced vocal fold deformation. For conditions of strong CT activation and thus an elongated vocal fold, increasing TA contraction reduced the degree of vocal fold elongation and thus reduced vocal fold eigenfrequencies. For conditions of no CT activation and thus a resting or slightly shortened vocal fold, increasing TA contraction increased the degree of vocal fold shortening and thus increased vocal fold eigenfrequencies. In the transition region of a slightly elongated vocal fold, increasing TA contraction first decreased and then increased vocal fold eigenfrequencies. PMID:23654401

  4. Transversal stiffness of fibers and desmin content in leg muscles of rats under gravitational unloading of various durations.

    Science.gov (United States)

    Ogneva, I V

    2010-12-01

    The aim of this research was the analysis of structural changes in various parts of the sarcolemma and contractile apparatus of muscle fibers by measuring their transversal stiffness by atomic force microscopy under gravitational unloading. Soleus, medial gastrocnemius, and tibialis anterior muscles of Wistar rats were the objects of the study. Gravitational unloading was carried out by antiorthostatic suspension of hindlimbs for 1, 3, 7, and 12 days. It was shown that the transversal stiffness of different parts of the contractile apparatus of soleus muscle fibers decreases during gravitational unloading in the relaxed, calcium-activated, and rigor states, the fibers of the medial gastrocnemius show no changes, whereas the transversal stiffness of tibialis anterior muscle increases. Thus the transversal stiffness of the sarcolemma in the relaxed state is reduced in all muscles, which may be due to the direct action of gravity as an external mechanical factor that can influence the tension on a membrane. The change of sarcolemma stiffness in activated fibers, which is due probably to the transfer of tension from the contractile apparatus, correlates with the dynamics of changes in the content of desmin.

  5. Short range order in liquid pnictides

    International Nuclear Information System (INIS)

    Mayo, M; Makov, G; Yahel, E; Greenberg, Y

    2013-01-01

    Liquid pnictides have anomalous physical properties and complex radial distribution functions. The quasi-crystalline model of liquid structure is applied to interpret the three-dimensional structure of liquid pnictides. It is shown that all the column V elements can be characterized by a short range order lattice symmetry similar to that of the underlying solid, the A7 structure, which originates from a Peierls distorted simple cubic lattice. The evolution of the liquid structure down the column as well as its temperature and pressure dependence is interpreted by means of the effect of thermodynamic parameters on the Peierls distortion. Surprisingly, it is found that the Peierls effect increases with temperature and the nearest neighbour distances exhibit negative thermal expansion. (paper)

  6. Narrow resonances and short-range interactions

    International Nuclear Information System (INIS)

    Gelman, Boris A.

    2009-01-01

    Narrow resonances in systems with short-range interactions are discussed in an effective field theory (EFT) framework. An effective Lagrangian is formulated in the form of a combined expansion in powers of a momentum Q 0 | 0 --a resonance peak energy. At leading order in the combined expansion, a two-body scattering amplitude is the sum of a smooth background term of order Q 0 and a Breit-Wigner term of order Q 2 (δε) -1 which becomes dominant for δε 3 . Such an EFT is applicable to systems in which short-distance dynamics generates a low-lying quasistationary state. The EFT is generalized to describe a narrow low-lying resonance in a system of charged particles. It is shown that in the case of Coulomb repulsion, a two-body scattering amplitude at leading order in a combined expansion is the sum of a Coulomb-modified background term and a Breit-Wigner amplitude with parameters renormalized by Coulomb interactions.

  7. Matrix stiffness-modulated proliferation and secretory function of the airway smooth muscle cells.

    Science.gov (United States)

    Shkumatov, Artem; Thompson, Michael; Choi, Kyoung M; Sicard, Delphine; Baek, Kwanghyun; Kim, Dong Hyun; Tschumperlin, Daniel J; Prakash, Y S; Kong, Hyunjoon

    2015-06-01

    Multiple pulmonary conditions are characterized by an abnormal misbalance between various tissue components, for example, an increase in the fibrous connective tissue and loss/increase in extracellular matrix proteins (ECM). Such tissue remodeling may adversely impact physiological function of airway smooth muscle cells (ASMCs) responsible for contraction of airways and release of a variety of bioactive molecules. However, few efforts have been made to understand the potentially significant impact of tissue remodeling on ASMCs. Therefore, this study reports how ASMCs respond to a change in mechanical stiffness of a matrix, to which ASMCs adhere because mechanical stiffness of the remodeled airways is often different from the physiological stiffness. Accordingly, using atomic force microscopy (AFM) measurements, we found that the elastic modulus of the mouse bronchus has an arithmetic mean of 23.1 ± 14 kPa (SD) (median 18.6 kPa). By culturing ASMCs on collagen-conjugated polyacrylamide hydrogels with controlled elastic moduli, we found that gels designed to be softer than average airway tissue significantly increased cellular secretion of vascular endothelial growth factor (VEGF). Conversely, gels stiffer than average airways stimulated cell proliferation, while reducing VEGF secretion and agonist-induced calcium responses of ASMCs. These dependencies of cellular activities on elastic modulus of the gel were correlated with changes in the expression of integrin-β1 and integrin-linked kinase (ILK). Overall, the results of this study demonstrate that changes in matrix mechanics alter cell proliferation, calcium signaling, and proangiogenic functions in ASMCs. Copyright © 2015 the American Physiological Society.

  8. Ultrasound shear wave elastography in the assessment of passive biceps brachii muscle stiffness: influences of sex and elbow position.

    Science.gov (United States)

    Chen, Johnson; O'Dell, Michael; He, Wen; Du, Li-Juan; Li, Pai-Chi; Gao, Jing

    To assess differences in biceps brachii muscle (BBM) stiffness as evaluated by ultrasound shear wave elastography (SWE). The passive stiffness of the BBM was quantified with shear wave velocity (SWV) measurements obtained from 10 healthy volunteers (5 men and 5 women, mean age 50years, age range 42-63 years) with the elbow at full extension and 30° flexion in this IRB-approved study. Potential differences between two depths within the muscle, two elbow positions, the two arms, and sexes were assessed by using two-tailed t-test. The reproducibility of SWV measurements was tested by using intraclass correlation coefficient (ICC). Significantly higher passive BBM stiffness was found at full elbow extension compared to 30° of flexion (p≤0.00006 for both arms). Significantly higher passive stiffness in women was seen for the right arm (p=0.04 for both elbow positions). Good correlation of shear wave velocity measured at the different depths. The ICC for interobserver and intraobserver variation was high. SWE is a reliable quantitative tool for assessing BBM stiffness, with differences in stiffness based on elbow position demonstrated and based on sex suggested. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Pneumatic Artificial Muscles Force Modelling and the Position and Stiffness Control on the Knee Joint of the Musculoskeletal Leg

    Directory of Open Access Journals (Sweden)

    Jingtao Lei

    2017-03-01

    Full Text Available Pneumatic artificial muscles (PAMs have properties similar to biological muscle and are widely used in robotics as actuators. A musculoskeletal leg mechanism driven by PAMs is presented in this paper. The joint stiffness of the musculoskeletal bionic leg for jumping movement needs to be analysed. The synchronous control on the position and stiffness of the joint is important to improve the flexibility of leg. The accurate force model of PAM is the foundation to achieving better control and dynamic jumping performance. The experimental platform of PAM is conducted, and the static equal pressure experiments are performed to obtain the PAM force model. According to the testing data, parameter identification method is adopted to determine the force model of PAM. A simulation on the position and stiffness control of the knee joint is performed, and the simulation results show the effectiveness of the presented method.

  10. Muscle mass decline, arterial stiffness, white matter hyperintensity, and cognitive impairment: Japan Shimanami Health Promoting Program study.

    Science.gov (United States)

    Kohara, Katsuhiko; Okada, Yoko; Ochi, Masayuki; Ohara, Maya; Nagai, Tokihisa; Tabara, Yasuharu; Igase, Michiya

    2017-08-01

    There is a close association between frailty and cognitive impairment. However, the underlying contribution of sarcopenia to the development of cognitive impairment is unclear. We investigated the possible association between muscle mass decline and cognitive impairment in a cross-sectional study of 1518 subjects aged 55 years or above. We also evaluated arterial stiffness and white matter hyperintensities (WMHs) as possible underlying mechanisms for this association. Two sarcopenic indices were measured: thigh muscle cross-sectional area (CSA; calculated by computed tomography) and skeletal muscle mass (bioelectric impedance). Muscle mass decline was defined as either the bottom 10% or 20% of participants for each sex. Cognitive function was assessed using the Touch Panel-type Dementia Assessment Scale, and brachial-ankle pulse wave velocity was measured as an index of arterial stiffness. Both sarcopenic indices were modestly but significantly associated with brachial-ankle pulse wave velocity in male and female subjects. The presence of WMHs was significantly associated with low thigh muscle CSA in men and with low skeletal muscle mass in women. The Touch Panel-type Dementia Assessment Scale score was modestly but significantly and positively associated with thigh muscle CSA in men and skeletal muscle mass in women. Muscle mass decline in the bottom 10% of participants on both sarcopenic indices was significantly and independently related to cognitive impairment in women. Lower sarcopenic indices are significantly related to lower cognitive scores. Arterial stiffness and WMHs could account, at least in part, for this association. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  11. Effects of Quadriceps Muscle Fatigue on Stiff-Knee Gait in Patients with Hemiparesis

    Science.gov (United States)

    Boudarham, Julien; Roche, Nicolas; Pradon, Didier; Delouf, Eric; Bensmail, Djamel; Zory, Raphael

    2014-01-01

    The relationship between neuromuscular fatigue and locomotion has never been investigated in hemiparetic patients despite the fact that, in the clinical context, patients report to be more spastic or stiffer after walking a long distance or after a rehabilitation session. The aim of this study was to evaluate the effects of quadriceps muscle fatigue on the biomechanical gait parameters of patients with a stiff-knee gait (SKG). Thirteen patients and eleven healthy controls performed one gait analysis before a protocol of isokinetic quadriceps fatigue and two after (immediately after and after 10 minutes of rest). Spatiotemporal parameters, sagittal knee and hip kinematics, rectus femoris (RF) and vastus lateralis (VL) kinematics and electromyographic (EMG) activity were analyzed. The results showed that quadriceps muscle weakness, produced by repetitive concentric contractions of the knee extensors, induced an improvement of spatiotemporal parameters for patients and healthy subjects. For the patient group, the increase in gait velocity and step length was associated with i) an increase of sagittal hip and knee flexion during the swing phase, ii) an increase of the maximal normalized length of the RF and VL and of the maximal VL lengthening velocity during the pre-swing and swing phases, and iii) a decrease in EMG activity of the RF muscle during the initial pre-swing phase and during the latter 2/3 of the initial swing phase. These results suggest that quadriceps fatigue did not alter the gait of patients with hemiparesis walking with a SKG and that neuromuscular fatigue may play the same functional role as an anti-spastic treatment such as botulinum toxin-A injection. Strength training of knee extensors, although commonly performed in rehabilitation, does not seem to be a priority to improve gait of these patients. PMID:24718087

  12. Folding of polymer chains with short-range binormal interactions

    International Nuclear Information System (INIS)

    Craig, A; Terentjev, E M

    2006-01-01

    We study the structure of chains which have anisotropic short-range contact interactions that depend on the alignment of the binormal vectors of chain segments. This represents a crude model of hydrogen bonding or 'stacking' interactions out of the plane of curvature. The polymers are treated as ribbon-like semi-flexible chains, where the plane of the ribbon is determined by the local binormal. We show that with dipole-dipole interactions between the binormals of contacting chain segments, mean-field theory predicts a first-order transition to a binormally aligned state. We describe the onset of this transition as a function of the temperature-dependent parameters that govern the chain stiffness and the strength of the binormal interaction, as well as the binormal alignment's coupling to chain collapse. We also examine a metastable state governing the folding kinetics. Finally, we discuss the possible mesoscopic structure of the aligned phase, and application of our model to secondary structure motifs like β-sheets and α-helices, as well as composite structures like β-(amyloid) fibrils

  13. The Acute Effect of Local Vibration As a Recovery Modality from Exercise-Induced Increased Muscle Stiffness

    Directory of Open Access Journals (Sweden)

    Hervé Pournot, Jérémy Tindel, Rodolphe Testa, Laure Mathevon, Thomas Lapole

    2016-03-01

    Full Text Available Exercise involving eccentric muscle contractions is known to decrease range of motion and increase passive muscle stiffness. This study aimed at using ultrasound shear wave elastography to investigate acute changes in biceps brachii passive stiffness following intense barbell curl exercise involving both concentric and eccentric contractions. The effect of local vibration (LV as a recovery modality from exercise-induced increased stiffness was further investigated. Eleven subjects performed 4 bouts of 10 bilateral barbell curl movements at 70% of the one-rep maximal flexion force. An arm-to-arm comparison model was then used with one arm randomly assigned to the passive recovery condition and the other arm assigned to the LV recovery condition (10 min of 55-Hz vibration frequency and 0.9-mm amplitude. Biceps brachii shear elastic modulus measurements were performed prior to exercise (PRE, immediately after exercise (POST-EX and 5 min after the recovery period (POST-REC. Biceps brachii shear elastic modulus was significantly increased at POST-EX (+53 ± 48%; p < 0.001 and POST-REC (+31 ± 46%; p = 0.025 when compared to PRE. No differences were found between passive and LV recovery (p = 0.210. LV as a recovery strategy from exercise-induced increased muscle stiffness was not beneficial, probably due to an insufficient mechanical action of vibrations.

  14. Effects of Duchenne muscular dystrophy on muscle stiffness and response to electrically-induced muscle contraction: A 12-month follow-up.

    Science.gov (United States)

    Lacourpaille, Lilian; Gross, Raphaël; Hug, François; Guével, Arnaud; Péréon, Yann; Magot, Armelle; Hogrel, Jean-Yves; Nordez, Antoine

    2017-03-01

    The present study aimed to assess the ability of muscle stiffness (shear modulus) and response to electrically-induced muscle contraction to detect changes in muscle properties over a 12-month period in children with Duchenne muscular dystrophy (DMD). Ten children with DMD and nine age-matched healthy male controls participated in two experimental sessions (T 0 and T +12months ) separated by 12.4 ± 0.9 months. Two contractions of the biceps brachii were electrically-induced during which an ultrasound probe was placed over the muscle. The resting shear modulus was measured using elastography from six muscles. Evoked maximal torque was increased at T +12months in controls (+11.2 ± 7.6%, P muscle stiffness at T +12months in children with DMD for tibialis anterior (+75.1 ± 93.5%, P= 0.043), gastrocnemius medialis (+144.8 ± 180.6%, P= 0.050) and triceps brachii (+35.5 ± 32.2%, P= 0.005). This 12-month follow-up study demonstrates that electromechanical delay and elastography may help detect subtle muscle impairments in patients with DMD. These sensitive outcomes may improve the follow-up of innovative therapeutic interventions within the field of DMD. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Increased Upper Trapezius Muscle Stiffness in Overhead Athletes with Rotator Cuff Tendinopathy.

    Directory of Open Access Journals (Sweden)

    Hio Teng Leong

    Full Text Available Although excessive tension of the upper trapezius (UT is thought to contribute to rotator cuff tendinopathy, no study examined UT tension in athletes with and without rotator cuff tendinopathy. Here we used UT shear modulus measured using ultrasound shear wave elastography as an index of muscle stiffness/tension. The aims of this study were twofold: 1 to determine whether the UT muscle shear modulus is altered in athletes with rotator cuff tendinopathy compared to asymptomatic athletes, and 2 to detect optimal cut-off points of UT shear modulus in identifying athletes with rotator cuff tendinopathy. Forty-three male volleyball players (17 asymptomatic and 26 with rotator cuff tendinopathy, mean age = 22.9±3.5 years participated in the study. UT shear modulus was quantified during active arm holding at 30° and 60° of shoulder abduction and passive arm positioning at 0°, 30° and 60° of shoulder abduction. During the active tasks, the UT shear modulus was higher in athletes with rotator cuff tendinopathy than the asymptomatic athletes (p = 0.002, regardless the arm position. During the passive tasks, athletes with rotator cuff tendinopathy exhibited a higher UT shear modulus than asymptomatic athletes only at 0° of shoulder abduction (13.0±2.5 kPa vs 10.2±1.8 kPa, p = 0.001. When considering the active task, an optimal cut-off shear modulus of 12.0 kPa at 30° of shoulder abduction (sensitivity = 0.84, specificity = 0.57, AUC = 0.757, p = 0.008 and 9.5 kPa at 60° of shoulder abduction (sensitivity = 0.88, specificity = 0.67, AUC = 0.816, p = 0.002 was detected. When considering the passive task at 0° of shoulder abduction, a cut-off of 12.2 kPa was found (sensitivity = 0.73, AUC = 0.817, p = 0.001. Findings from the present study show that monitoring passive and active UT muscle shear modulus may provide important information for the prevention/rehabilitation of rotator cuff tendinopathy.

  16. Relationships Between Lower-Body Muscle Structure and, Lower-Body Strength, Explosiveness and Eccentric Leg Stiffness in Adolescent Athletes

    Directory of Open Access Journals (Sweden)

    Josh L. Secomb, Sophia Nimphius, Oliver R.L. Farley, Lina E. Lundgren, Tai T. Tran, Jeremy M. Sheppard

    2015-12-01

    Full Text Available The purpose of the present study was to determine whether any relationships were present between lower-body muscle structure and, lower-body strength, variables measured during a countermovement jump (CMJ and squat jump (SJ, and eccentric leg stiffness, in adolescent athletes. Thirty junior male (n = 23 and female (n = 7 surfing athletes (14.8 ± 1.7 y; 1.63 ± 0.09 m; 54.8 ± 12.1 kg undertook lower-body muscle structure assessment with ultrasonography and performed a; CMJ, SJ and an isometric mid-thigh pull (IMTP. In addition, eccentric leg stiffness was calculated from variables of the CMJ and IMTP. Moderate to very large relationships (r = 0.46-0.73 were identified between the thickness of the vastus lateralis (VL and lateral gastrocnemius (LG muscles, and VL pennation angle and; peak force (PF in the CMJ, SJ and IMTP. Additionally, moderate to large relationships (r = 0.37-0.59 were found between eccentric leg stiffness and; VL and LG thickness, VL pennation angle, and LG fascicle length, with a large relationship (r = 0.59 also present with IMTP PF. These results suggest that greater thickness of the VL and LG were related to improved maximal dynamic and isometric strength, likely due to increased hypertrophy of the extensor muscles. Furthermore, this increased thickness was related to greater eccentric leg stiffness, as the associated enhanced lower-body strength likely allowed for greater neuromuscular activation, and hence less compliance, during a stretch-shortening cycle.

  17. Magnetic short range order and the exchange coupling in magnets

    International Nuclear Information System (INIS)

    Antropov, V.P.

    2006-01-01

    We discuss our recent results of time-dependent density functional simulations of magnetic properties of Fe and Ni at finite temperatures. These results indicated that a strong magnetic short range order is responsible for the magnetic properties of elementary Ni and any itinerant magnet in general. We demonstrated that one can use the value of the magnetic short range order parameter to produce new quantitative classification of magnets. We also discuss the nature of the exchange coupling and its connection with the short range order. The spin-wave like propagating and diffusive excitations in paramagnetic localized systems with small short range order have been predicted while in the itinerant systems the short range order is more complicated. The possible smallness of the quantum factor in the itinerant magnets with short range order is discussed

  18. Comparison of Passive Stiffness Changes in the Supraspinatus Muscle after Double-row and Knotless Transosseous-equivalent Rotator Cuff Repair Techniques: A Cadaveric Study

    Science.gov (United States)

    Hatta, Taku; Giambini, Hugo; Hooke, Alexander W.; Zhao, Chunfeng; Sperling, John W.; Steinmann, Scott P.; Yamamoto, Nobuyuki; Itoi, Eiji; An, Kai-Nan

    2016-01-01

    Purpose To investigate the alteration of passive stiffness in the supraspinatus muscle after double-row (DR) and knotless transosseous-equivalent (KL-TOE) repair techniques, using the shear wave elastography (SWE) in cadavers with rotator cuff tears. We also aimed to compare altered muscular stiffness after these repairs to that obtained from shoulders with intact rotator cuff tendon. Methods Twelve fresh-frozen cadaveric shoulders with rotator cuff tear (tear size; small [6], medium-large [6]) were used. Passive stiffness of four anatomical regions in the supraspinatus muscle was measured based on an established SWE method. Each specimen underwent DR and KL-TOE footprint repairs at 30° glenohumeral abduction. SWE values, obtained at 0°, 10°, 20°, 30°, 60°, and 90° abduction, were assessed in 3 different conditions: preoperative (torn) and postoperative conditions with the 2 techniques. The increase ratio of SWE values after repair was compared among the four regions to assess stiffness distribution. In addition, SWE values were obtained on 12 shoulders with intact rotator cuff tendons as control. Results In shoulders with medium-large size tears, supraspinatus muscles showed an increased passive stiffness after rotator cuff repairs, and this was significantly observed at adducted positions. KL-TOE repair showed uniform stiffness changes among the four regions of the supraspinatus muscle (mean, 189-218% increase after repair), whereas, DR repair caused a significantly heterogeneous stiffness distribution within the muscle (mean, 187-319% after repair, P = 0.002). Although a repair-induced increase in muscle stiffness was observed also in small size tear, there were no significant differences in repaired stiffness changes between DR and KL-TOE (mean, 127-138% and 127-130% after repairs, respectively). Shoulders with intact rotator cuff tendon showed uniform SWE values among the four regions of the supraspinatus muscle (mean, 38.2-43.0 kPa). Conclusion Passive

  19. Numerical challenges of short range wake field calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Thomas; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder (TEMF)

    2011-07-01

    For present and future accelerator projects with ultra short bunches the accurate and reliable calculation of short range wake fields is an important issue. However, the numerical calculation of short range wake fields is a numerical challenging task. The presentation gives an overview over the numerical challenges and techniques for short range wake field calculations. Finally, some simulation results obtained by the program PBCI developed at the TU Darmstadt are presented.

  20. Change in skeletal muscle stiffness after running competition is dependent on both running distance and recovery time: a pilot study

    Directory of Open Access Journals (Sweden)

    Seyedali Sadeghi

    2018-03-01

    Full Text Available Long-distance running competitions impose a large amount of mechanical loading and strain leading to muscle edema and delayed onset muscle soreness (DOMS. Damage to various muscle fibers, metabolic impairments and fatigue have been linked to explain how DOMS impairs muscle function. Disruptions of muscle fiber during DOMS exacerbated by exercise have been shown to change muscle mechanical properties. The objective of this study is to quantify changes in mechanical properties of different muscles in the thigh and lower leg as function of running distance and time after competition. A custom implementation of Focused Comb-Push Ultrasound Shear Elastography (F-CUSE method was used to evaluate shear modulus in runners before and after a race. Twenty-two healthy individuals (age: 23 ± 5 years were recruited using convenience sampling and split into three race categories: short distance (nine subjects, 3–5 miles, middle distance (10 subjects, 10–13 miles, and long distance (three subjects, 26+ miles. Shear Wave Elastography (SWE measurements were taken on both legs of each subject on the rectus femoris (RF, vastus lateralis (VL, vastus medialis (VM, soleus, lateral gastrocnemius (LG, medial gastrocnemius (MG, biceps femoris (BF and semitendinosus (ST muscles. For statistical analyses, a linear mixed model was used, with recovery time and running distance as fixed variables, while shear modulus was used as the dependent variable. Recovery time had a significant effect on the soleus (p = 0.05, while running distance had considerable effect on the biceps femoris (p = 0.02, vastus lateralis (p < 0.01 and semitendinosus muscles (p = 0.02. Sixty-seven percent of muscles exhibited a decreasing stiffness trend from before competition to immediately after competition. The preliminary results suggest that SWE could potentially be used to quantify changes of muscle mechanical properties as a way for measuring recovery procedures for runners.

  1. Isobar configurations in nuclei and short range correlations

    CERN Document Server

    Weber, H J

    1979-01-01

    Recent results on short range correlations and isobar configurations are reviewed, and in particular a unitary version of the isobar model, coupling constants and rho -meson transition potentials, a comparison with experiments, the CERN N*-knockout from /sup 4/He, QCD and the NN interaction of short range. (42 refs).

  2. Combined resistance and endurance exercise training improves arterial stiffness, blood pressure, and muscle strength in postmenopausal women.

    Science.gov (United States)

    Figueroa, Arturo; Park, Song Y; Seo, Dae Y; Sanchez-Gonzalez, Marcos A; Baek, Yeong H

    2011-09-01

    Menopause is associated with increased arterial stiffness and reduced muscle strength. Combined resistance (RE) and endurance (EE) exercise training can decrease brachial-ankle pulse wave velocity (baPWV), an index of arterial stiffness, in young men. We tested the hypothesis that combined circuit RE and EE training would improve baPWV, blood pressure (BP), and muscle strength in postmenopausal women. Twenty-four postmenopausal women (age 47-68 y) were randomly assigned to a "no exercise" control (n = 12) or to combined exercise training (EX; n = 12) group. The EX group performed concurrent circuit RE training followed by EE training at 60% of the predicted maximal heart rate (HR) 3 days per week. Brachial systolic BP, diastolic BP, mean arterial pressure, baPWV, HR, and dynamic and isometric muscle strength were measured before and after the 12-week study. Mean ± SE baPWV (-0.8 ± 0.2 meters/s), systolic BP (-6.0 ± 1.9 mm Hg), diastolic BP (-4.8 ± 1.7 mm Hg), HR (-4.0 ± 1.0 beats/min), and mean arterial pressure (-5.1 ± 1.6 mm Hg) decreased (P hypertension and frailty in postmenopausal women.

  3. Impact of additional surface observation network on short range ...

    Indian Academy of Sciences (India)

    Stations (AWS) surface observations (temperature and moisture) on the short range forecast over the Indian ... models, which are able to resolve mesoscale fea- ... J. Earth Syst. Sci. ..... terization of the snow field in a cloud model; J. Climate.

  4. Measurements of short-range ordering in Ni3Al

    International Nuclear Information System (INIS)

    Okamoto, J.K.; Ahn, C.C.

    1992-01-01

    This paper reports on extended electron energy-loss fine structure (EXELFS) that has been used to measure short-range ordering in Ni 3 Al. Films of fcc Ni 3 Al with suppressed short-range order synthesized by vacuum evaporation of Ni 3 Al onto room temperature substrates. EXELFS data were taken from both Al K and Ni L 23 edges. The development of short-range order was observed after the samples were annealed for various times at temperatures below 350 degrees C. Upon comparison with ab initio planewave EXELFS calculations, it was found that the Warren-Cowley short-range order parameter a(1nn) changed by about -0.1 after 210 minutes of annealing at 150 degrees C

  5. Hard probes of short-range nucleon-nucleon correlations

    Energy Technology Data Exchange (ETDEWEB)

    J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian

    2012-10-01

    The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nuclei and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.

  6. Associations between lower extremity muscle mass and multiplanar knee laxity and stiffness: a potential explanation for sex differences in frontal and transverse plane knee laxity.

    Science.gov (United States)

    Shultz, Sandra J; Pye, Michele L; Montgomery, Melissa M; Schmitz, Randy J

    2012-12-01

    in females in these planes. Frontal and transverse plane laxity and stiffness may be modifiable through strength training interventions that promote changes in muscle characteristics (eg, muscle cross-sectional area, stiffness) that may contribute to static knee joint stability, thus dynamic joint stability during sport activity.

  7. Stiff Hands

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Stiff Hands Email to a friend * required fields ...

  8. A method of short range system analysis for nuclear utilities

    International Nuclear Information System (INIS)

    Eng, R.; Mason, E.A.; Benedict, M.

    1976-01-01

    An optimization procedure has been formulated and tested that is capable of solving for the optimal generation schedule of several nuclear power reactors in an electric power utility system, under short-range, resource-limited, conditions. The optimization procedure utilizes a new concept called the Opportunity Cost of Nuclear Power (OCNP) to optimally assign the resource-limited nuclear energy to the different weeks and hours in the short-range planning horizon. OCNP is defined as the cost of displaced energy when optimally distributed nuclear energy is marginally increased. Under resource-limited conditions, the short-range 'value' of nuclear power to a utility system is not its actual generation cost, but the cost of the next best alternative supply of energy, the OCNP. OCNP is a function of a week's system reserve capacity, the system's economic loading order, the customer demand function, and the nature of the available utility system generating units. The optimized OCNP value of the short-range planning period represents the utility's short-range energy replacement cost incurred when selling nuclear energy to a neighbouring utility. (author)

  9. Short-range components of nuclear forces: Experiment versus mythology

    International Nuclear Information System (INIS)

    Kukulin, V. I.; Platonova, M. N.

    2013-01-01

    The present-day situation around the description of various (central, spin-orbit, and tensor) components of short-range nuclear forces is discussed. A traditional picture of these interactions based on the idea of one-meson exchange is contrasted against numerous results of recent experiments. As is shown in the present study, these results often deviate strongly from the predictions of traditional models. One can therefore state that such models are inapplicable to describing short-range nuclear forces and that it is necessary to go over from a traditional description to some alternative QCD-based (or QCD-motivated) picture. This means that, despite the widespread popularity of traditional concepts of short-range nuclear forces and their applicability in many particular cases, these concepts are not more than scientific myths that show their inconsistency when analyzed from the viewpoint of the modern experiment

  10. Botulinum toxin injection causes hyper-reflexia and increased muscle stiffness of the triceps surae muscle in the rat

    OpenAIRE

    Pingel, Jessica; Wienecke, Jacob; Lorentzen, Jakob; Nielsen, Jens Bo

    2016-01-01

    This study demonstrates, for the first time, adaptive plastic changes in the stretch reflex circuitry following denervation induced by botulinum toxin injection. The study also demonstrates alterations of the elastic properties of the muscles following botulinum injection.

  11. A short-range ensemble prediction system for southern Africa

    CSIR Research Space (South Africa)

    Park, R

    2012-10-01

    Full Text Available system for southern Africa R PARK, WA LANDMAN AND F ENGELBRECHT CSIR, PO Box 395, Pretoria, South Africa, 0001 Email: xxxxxxxxxxxxxx@csir.co.za ? www.csir.co.za INTRODUCTION This research has been conducted in order to develop a short-range ensemble... stream_source_info Park_2012.pdf.txt stream_content_type text/plain stream_size 7211 Content-Encoding ISO-8859-1 stream_name Park_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 A short-range ensemble prediction...

  12. Sonographic evaluation of the immediate effects of eccentric heel drop exercise on Achilles tendon and gastrocnemius muscle stiffness using shear wave elastography

    Science.gov (United States)

    Leung, Wilson K.C.; Chu, KL

    2017-01-01

    Background Mechanical loading is crucial for muscle and tendon tissue remodeling. Eccentric heel drop exercise has been proven to be effective in the management of Achilles tendinopathy, yet its induced change in the mechanical property (i.e., stiffness) of the Achilles tendon (AT), medial and lateral gastrocnemius muscles (MG and LG) was unknown. Given that shear wave elastography has emerged as a powerful tool in assessing soft tissue stiffness with promising intra- and inter-operator reliability, the objective of this study was hence to characterize the stiffness of the AT, MG and LG in response to an acute bout of eccentric heel drop exercise. Methods Forty-five healthy young adults (36 males and nine females) performed 10 sets of 15-repetition heel drop exercise on their dominant leg with fully-extended knee, during which the AT and gastrocnemius muscles, but not soleus, were highly stretched. Before and immediately after the heel drop exercise, elastic moduli of the AT, MG and LG were measured by shear wave elastography. Results After the heel drop exercise, the stiffness of AT increased significantly by 41.8 + 33.5% (P eccentric heel drop exercise. The findings from this pilot study shed some light on how and to what extent the AT and gastrocnemius muscles mechanically responds to an isolated set of heel drop exercise. Taken together, appropriate eccentric load might potentially benefit mechanical adaptations of the AT and gastrocnemius muscles in the rehabilitation of patients with Achilles tendinopathy. PMID:28740756

  13. Small Device For Short-Range Antenna Measurements Using Optics

    DEFF Research Database (Denmark)

    Yanakiev, Boyan Radkov; Nielsen, Jesper Ødum; Christensen, Morten

    2011-01-01

    This paper gives a practical solution for implementing an antenna radiation pattern measurement device using optical fibers. It is suitable for anechoic chambers as well as short range channel sounding. The device is optimized for small size and provides a cheap and easy way to make optical antenna...

  14. Passive stiffness of monoarticular lower leg muscles is influenced by knee joint angle.

    Science.gov (United States)

    Ateş, Filiz; Andrade, Ricardo J; Freitas, Sandro R; Hug, François; Lacourpaille, Lilian; Gross, Raphael; Yucesoy, Can A; Nordez, Antoine

    2018-03-01

    While several studies demonstrated the occurrence of intermuscular mechanical interactions, the physiological significance of these interactions remains a matter of debate. The purpose of this study was to quantify the localized changes in the shear modulus of the gastrocnemius lateralis (GL), monoarticular dorsi- and plantar-flexor muscles induced by a change in knee angle. Participants underwent slow passive ankle rotations at the following two knee positions: knee flexed at 90° and knee fully extended. Ultrasound shear wave elastography was used to assess the muscle shear modulus of the GL, soleus [both proximally (SOL-proximal) and distally (SOL distal)], peroneus longus (PERL), and tibialis anterior (TA). This was performed during two experimental sessions (experiment I: n = 11; experiment II: n = 10). The shear modulus of each muscle was compared between the two knee positions. The shear modulus was significantly higher when the knee was fully extended than when the knee was flexed (P passive muscle force, these results provide evidence of a non-negligible intermuscular mechanical interaction between the human lower leg muscles during passive ankle rotations. The role of these interactions in the production of coordinated movements requires further investigation.

  15. High-Capacity Short-Range Optical Communication Links

    DEFF Research Database (Denmark)

    Tatarczak, Anna

    Over the last decade, we have observed a tremendous spread of end-user mobile devices. The user base of a mobile application can grow or shrink by millions per day. This situation creates a pressing need for highly scalable server infrastructure; a need nowadays satisfied through cloud computing...... offered by data centers. As the popularity of cloud computing soars, the demand for high-speed, short-range data center links grows. Vertical cavity surface emitting lasers (VCSEL) and multimode fibers (MMF) prove especially well-suited for such scenarios. VCSELs have high modulation bandwidths......, we achieve 10 Gbps over 400 m and then conrm the approach in an optimized system at 25 Gbps over 300 m. The techniques described in this thesis leverage additional degrees of freedom to better utilize the available resources of short-range links. The proposed schemes enable higher speeds and longer...

  16. Schroedinger operators with point interactions and short range expansions

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoeegh-Krohn, R.; Oslo Univ.

    1984-01-01

    We give a survey of recent results concerning Schroedinger operators with point interactions in R 3 . In the case where the point interactions are located at a discrete set of points we discuss results about the resolvent, the spectrum, the resonances and the scattering quantities. We also discuss the approximation of point interactions by short range local potentials (short range or low energy expansions) and the one electron model of a 3-dimensional crystal. Moreover we discuss Schroedinger operators with Coulomb plus point interactions, with applications to the determination of scattering lengths and of level shifts in mesic atoms. Further applications to the multiple well problem, to multiparticle systems, to crystals with random impurities, to polymers and quantum fields are also briefly discussed. (orig.)

  17. Thermodynamic properties of short-range square well fluid

    Science.gov (United States)

    López-Rendón, R.; Reyes, Y.; Orea, P.

    2006-08-01

    The interfacial properties of short-range square well fluid with λ =1.15, 1.25, and 1.375 were determined by using single canonical Monte Carlo simulations. Simulations were carried out in the vapor-liquid region. The coexistence curves of these models were calculated and compared to those previously reported in the literature and good agreement was found among them. We found that the surface tension curves for any potential model of short range form a single master curve when we plot γ* vs T /Tc. It is demonstrated that the critical reduced second virial coefficient B2* as a function of interaction range or Tc* is not constant.

  18. Recent results on short-range gravity experiment

    International Nuclear Information System (INIS)

    Hata, Maki; Akiyama, Takashi; Ikeda, Yuki; Kawamura, Hirokazu; Narita, Keigo; Ninomiya, Kazufumi; Ogawa, Naruya; Sato, Toshiaki; Seitaibashi, Etsuko; Sekiguchi, Yuta; Tsutsui, Ryosuke; Yazawa, Kazumasa; Murata, Jiro

    2009-01-01

    According to the ADD model, deviation from Newton's inverse square law is expected at below sub-millimeter scale. Present study is an experimental investigation of the Newton's gravitational law at a short range scale. We have developed an experimental setup using torsion balance bar, and succeeded to confirm the inverse square law at a centimeter scale. In addition, composition dependence of gravitational constant G is also tested at the centimeter scale, motivated to test the weak equivalence principle.

  19. Chemical and topological short-range order in metallic glasses

    International Nuclear Information System (INIS)

    Vincze, I.; Schaafsma, A.S.; Van der Woude, F.; Kemeny, T.; Lovas, A.

    1980-10-01

    Moessbauer spectroscopy is applied to the study of chemical short-range order in (Fe,Ni)B metallic glasses. It is found that the atomic arrangement in melt-quenched glasses closely resembles that of the crystalline counterparts (Fe 3 B is tetragonal, Ni 3 B is orthorombic). The distribution of transition metal atoms is not random at high Ni concentrations: Ni atoms prefer a neighbourhood with a higher boron coordination. (P.L.)

  20. Short-range correlations in quark and nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Froemel, Frank

    2007-06-15

    In the first part of this thesis, the role of short-range correlations in quark matter is explored within the framework of the Nambu-Jona-Lasinio model. Starting from a next-to-leading order expansion in the inverse number of the quark colors, a fully self-consistent model constructed that employs the close relations between spectral functions and self-energies. In contrast to the usual quasiparticle approximations, this approach allows the investigation of the collisional broadening of the quark spectral function. Numerical calculations at various chemical potentials and zero temperature show that the short-range correlations do not only induce a finite width of the spectral function but also have some influence on the structure of the chiral phase transition. In the second part of this thesis, the temperature and density dependence of the nucleon spectral function in symmetric nuclear matter is investigated. The short-range correlations can be well described by a simple, self-consistent model on the one-particle-two-hole and two-particle-one-hole level (1p2h, 2p1h). The thermodynamically consistent description of the mean-field properties of the nucleons is ensured by incorporating a Skyrme-type potential. Calculations at temperatures and densities that can also be found in heavy-ion collisions or supernova explosions and the formation of neutron stars show that the correlations saturate at high temperatures and densities. (orig.)

  1. Therapeutic effects of anti-gravity treadmill (AlterG) training on reflex hyper-excitability, corticospinal tract activities, and muscle stiffness in children with cerebral palsy.

    Science.gov (United States)

    Parvin, Sh; Taghiloo, A; Irani, A; Mirbagheri, M Mehdi

    2017-07-01

    We aimed to study therapeutic effects of antigravity treadmill (AlterG) training on reflex hyper-excitability, muscle stiffness, and corticospinal tract (CST) function in children with spastic hemiplegic cerebral palsy (CP). Three children received AlterG training 3 days per week for 8 weeks as experimental group. Each session lasted 45 minutes. One child as control group received typical occupational therapy for the same amount of time. We evaluated hyper-excitability of lower limb muscles by H-reflex response. We quantified muscle stiffness by sonoelastography images of the affected muscles. We quantified CST activity by transcranial magnetic stimulation (TMS). We performed the evaluations before and after training for both groups. H response latency and maximum M-wave amplitude were improved in experimental group after training compared to control group. Two children of experimental group had TMS response. Major parameters of TMS (i.e. peak-to-peak amplitude of motor evoked potential (MEP), latency of MEP, cortical silent period, and intensity of pulse) improved for both of them. Three parameters of texture analysis of sonoelastography images were improved for experimental group (i.e. contrast, entropy, and shear wave velocity). These findings indicate that AlterG training can improve reflexes, muscle stiffness, and CST activity in children with spastic hemiplegic CP and can be considered as a therapeutic tool to improve neuromuscular abnormalities occurring secondary to CP.

  2. The effects of onabotulinum toxin A injection into rectus femoris muscle in hemiplegic stroke patients with stiff-knee gait: a placebo-controlled, nonrandomized trial.

    Science.gov (United States)

    Tok, Fatih; Balaban, Birol; Yaşar, Evren; Alaca, Rdvan; Tan, Arif Kenan

    2012-04-01

    This study aimed to compare the efficacy of onabotulinum toxin A (onabot) injection into the rectus femoris muscle with that of placebo in the treatment of hemiplegic stroke patients presenting with stiff-knee gait. Twenty-five chronic hemiparetic stroke patients presenting with a stiff-knee gait were included in this study. Fifteen patients received 100-125 U of onabot, and 10 patients received placebo into the rectus femoris muscle. Three-dimensional gait analysis, energy expenditure, 10-m and 6-min walk tests, and spasticity level of the rectus femoris were evaluated at baseline and 2 mos posttreatment. The mean age of patients who received onabot was 53.86 ± 14.74 yrs and of those who received placebo was 59.00 ± 8.11 yrs. At study onset, groups were similar with respect to all parameters (P > 0.05). We observed significant improvement in knee flexion (7 degrees average) during swing and a reduction in energy cost of 0.8-J/kg per meter response to injection of 100-125 U of onabot into the rectus femoris muscle. Onabot treatment significantly reduced muscle tone and improved knee kinematics, energy expenditure during walking, and functional assessments at 2 mos (P application of onabot into the rectus femoris muscle in stroke patients who presented with stiff-knee gait may be a treatment option to provide independent, safe, and less tiring ambulation.

  3. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion.

    Science.gov (United States)

    Sartori, Massimo; Maculan, Marco; Pizzolato, Claudio; Reggiani, Monica; Farina, Dario

    2015-10-01

    This work presents an electrophysiologically and dynamically consistent musculoskeletal model to predict stiffness in the human ankle and knee joints as derived from the joints constituent biological tissues (i.e., the spanning musculotendon units). The modeling method we propose uses electromyography (EMG) recordings from 13 muscle groups to drive forward dynamic simulations of the human leg in five healthy subjects during overground walking and running. The EMG-driven musculoskeletal model estimates musculotendon and resulting joint stiffness that is consistent with experimental EMG data as well as with the experimental joint moments. This provides a framework that allows for the first time observing 1) the elastic interplay between the knee and ankle joints, 2) the individual muscle contribution to joint stiffness, and 3) the underlying co-contraction strategies. It provides a theoretical description of how stiffness modulates as a function of muscle activation, fiber contraction, and interacting tendon dynamics. Furthermore, it describes how this differs from currently available stiffness definitions, including quasi-stiffness and short-range stiffness. This work offers a theoretical and computational basis for describing and investigating the neuromuscular mechanisms underlying human locomotion. Copyright © 2015 the American Physiological Society.

  4. [Desmin content and transversal stiffness of the left ventricle mouse cardiomyocytes and skeletal muscle fibers after a 30-day space flight on board "BION-M1" biosatellite].

    Science.gov (United States)

    Ogneva, I V; Maximova, M V; Larina, I M

    2014-01-01

    The aim of this study was to determine the transversal stiffness of the cortical cytoskeleton and the cytoskeletal protein desmin content in the left ventricle cardiomyocytes, fibers of the mouse soleus and tibialis anterior muscle after a 30-day space flight on board the "BION-M1" biosatellite (Russia, 2013). The dissection was made after 13-16.5 h after landing. The transversal stiffness was measured in relaxed and calcium activated state by, atomic force microscopy. The desmin content was estimated by western blotting, and the expression level of desmin-coding gene was detected using real-time PCR. The results indicate that, the transversal stiffness of the left ventricle cardiomyocytes and fibers of the soleus muscle in relaxed and activated states did not differ from the control. The transversal stiffness of the tibialis muscle fibers in relaxed and activated state was increased in the mice group after space flight. At the same time, in all types of studied tissues the desmin content and the expression level of desmin-coding gene did not differ from the control level.

  5. Level shifts induced by a short-range potential

    International Nuclear Information System (INIS)

    Karnakov, B.M.; Mur, V.D.

    1984-01-01

    Formulas are derived which express the shifts of levels with energies Esub(n)sup((0)) << rsub(c)sup(-2) in a field Vsub(f)(r) induced by a short-range potential U(r) of radius rsub(c) in terms of the low energy scattering parameters (scattering length and effective radius) with a moment l in the potential. If the interaction between the particle and center is nonresonant, the method developed is identical to perturbation theory on the scattering length. The theory is extended to systems with random degeneracy (Vsub(f) is the Coulomb potential). Formulas describing quasi-intersection of terms are obtained for the case of resonance interaction with the center in a partial wave with l not equal to 0 when energetically close levels are present in both U and Vsub(f). Some features of the level shift are mentioned for the case when the level possesses an anomalously small coupling energy and its coresponding wave function becomes delocalized with decrease of the coupling energy to zero. The problem is discussed of the level shift when the potential Vsub(f) is a potential well surrounded by a weaklyt penetrable barrier. Some applications of the theory to a particle in the field of two short-range potentials or in the field of a short-range and Coulomb centers are considered. Formulas are also obtained for the shifts and widths of the Landau levels and of the shallow level with an arbitrary moment which perturbs the Landau levels

  6. Influence of short range ordering and clustering on transport properties

    International Nuclear Information System (INIS)

    Vigier, G.; Pelletier, J.M.

    1982-01-01

    The influence of short range ordering and clustering phenomena on the electrical resistivity p and the thermopower S is investigated both theoretically and experimentally. According to the considered alloys either increases or decreases of transport properties may be observed when deviations from a random distribution of solute atoms occur. These observations are explained with a model based on free electrons and Born approximations the importance of the potential choice is underlined; two kinds of description of the structure factor are investigated. A good semiquantitative agreement is obtained between computed results and experimental observations

  7. Amorphous photonic crystals with only short-range order.

    Science.gov (United States)

    Shi, Lei; Zhang, Yafeng; Dong, Biqin; Zhan, Tianrong; Liu, Xiaohan; Zi, Jian

    2013-10-04

    Distinct from conventional photonic crystals with both short- and long-range order, amorphous photonic crystals that possess only short-range order show interesting optical responses owing to their unique structural features. Amorphous photonic crystals exhibit unique light scattering and transport, which lead to a variety of interesting phenomena such as isotropic photonic bandgaps or pseudogaps, noniridescent structural colors, and light localization. Recent experimental and theoretical advances in the study of amorphous photonic crystals are summarized, focusing on their unique optical properties, artificial fabrication, bionspiration, and potential applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dynamical arrest in dense short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Foffi, G; Sciortino, F; Zaccarelli, E; Tartaglia, P

    2004-01-01

    We study thermodynamic and dynamic properties of model colloidal systems interacting with a hard core repulsion and a short-range attraction, and provide an overall picture of their phase diagrams which shows a very rich phenomenology. We focus on the slow dynamic properties of this model, investigating in detail the glass transition lines (both repulsive and attractive), the glass-glass transitions and the location of the higher order singularities. We discuss the relative location of the glass lines and of the metastable liquid-gas binodal, an issue relevant for the understanding of low density arrested states of matter

  9. The nuclear contacts and short range correlations in nuclei

    Science.gov (United States)

    Weiss, R.; Cruz-Torres, R.; Barnea, N.; Piasetzky, E.; Hen, O.

    2018-05-01

    Atomic nuclei are complex strongly interacting systems and their exact theoretical description is a long-standing challenge. An approximate description of nuclei can be achieved by separating its short and long range structure. This separation of scales stands at the heart of the nuclear shell model and effective field theories that describe the long-range structure of the nucleus using a mean-field approximation. We present here an effective description of the complementary short-range structure using contact terms and stylized two-body asymptotic wave functions. The possibility to extract the nuclear contacts from experimental data is presented. Regions in the two-body momentum distribution dominated by high-momentum, close-proximity, nucleon pairs are identified and compared to experimental data. The amount of short-range correlated (SRC) nucleon pairs is determined and compared to measurements. Non-combinatorial isospin symmetry for SRC pairs is identified. The obtained one-body momentum distributions indicate dominance of SRC pairs above the nuclear Fermi-momentum.

  10. Unsupervised learning in neural networks with short range synapses

    Science.gov (United States)

    Brunnet, L. G.; Agnes, E. J.; Mizusaki, B. E. P.; Erichsen, R., Jr.

    2013-01-01

    Different areas of the brain are involved in specific aspects of the information being processed both in learning and in memory formation. For example, the hippocampus is important in the consolidation of information from short-term memory to long-term memory, while emotional memory seems to be dealt by the amygdala. On the microscopic scale the underlying structures in these areas differ in the kind of neurons involved, in their connectivity, or in their clustering degree but, at this level, learning and memory are attributed to neuronal synapses mediated by longterm potentiation and long-term depression. In this work we explore the properties of a short range synaptic connection network, a nearest neighbor lattice composed mostly by excitatory neurons and a fraction of inhibitory ones. The mechanism of synaptic modification responsible for the emergence of memory is Spike-Timing-Dependent Plasticity (STDP), a Hebbian-like rule, where potentiation/depression is acquired when causal/non-causal spikes happen in a synapse involving two neurons. The system is intended to store and recognize memories associated to spatial external inputs presented as simple geometrical forms. The synaptic modifications are continuously applied to excitatory connections, including a homeostasis rule and STDP. In this work we explore the different scenarios under which a network with short range connections can accomplish the task of storing and recognizing simple connected patterns.

  11. Vascular smooth muscle cell stiffness and adhesion to collagen I modified by vasoactive agonists.

    Directory of Open Access Journals (Sweden)

    Zhongkui Hong

    Full Text Available In vascular smooth muscle cells (VSMCs integrin-mediated adhesion to extracellular matrix (ECM proteins play important roles in sustaining vascular tone and resistance. The main goal of this study was to determine whether VSMCs adhesion to type I collagen (COL-I was altered in parallel with the changes in the VSMCs contractile state induced by vasoconstrictors and vasodilators. VSMCs were isolated from rat cremaster skeletal muscle arterioles and maintained in primary culture without passage. Cell adhesion and cell E-modulus were assessed using atomic force microscopy (AFM by repetitive nano-indentation of the AFM probe on the cell surface at 0.1 Hz sampling frequency and 3200 nm Z-piezo travelling distance (approach and retraction. AFM probes were tipped with a 5 μm diameter microbead functionalized with COL-I (1 mg\\ml. Results showed that the vasoconstrictor angiotensin II (ANG-II; 10-6 significantly increased (p<0.05 VSMC E-modulus and adhesion probability to COL-I by approximately 35% and 33%, respectively. In contrast, the vasodilator adenosine (ADO; 10-4 significantly decreased (p<0.05 VSMC E-modulus and adhesion probability by approximately -33% and -17%, respectively. Similarly, the NO donor (PANOate, 10-6 M, a potent vasodilator, also significantly decreased (p<0.05 the VSMC E-modulus and COL-I adhesion probability by -38% and -35%, respectively. These observations support the hypothesis that integrin-mediated VSMC adhesion to the ECM protein COL-I is dynamically regulated in parallel with VSMC contractile activation. These data suggest that the signal transduction pathways modulating VSMC contractile activation and relaxation, in addition to ECM adhesion, interact during regulation of contractile state.

  12. Short range order in FeCo-X alloys

    International Nuclear Information System (INIS)

    Fultz, B.

    1988-01-01

    Moessbauer spectrometry was used to study the kinetics of chemical ordering in FeCo and in FeCo alloyed with ternary solutes. With respect to the binary FeCo alloy, the kinetics of B2 ordering were slowed when 2% of 4d- or 5d-series ternary solute atoms were present, but 3p- and 3d-series ternary solutes had little effect on ordering kinetics. The relaxation of order around the ternary solute atoms could be discerned in Moessbauer spectra, and it seems that the development of B2 short range order is influenced by structural relaxations around the ternary solute atoms. Different thermal treatments were shown to cause different relaxations of and correlations, suggesting that Moessbauer spectrometry can be used to identify different kinetic paths of ordering in ternary alloys. (orig.)

  13. Short-range disorder in pseudobinary ionic alloys

    International Nuclear Information System (INIS)

    Di Cicco, Andrea; Principi, Emiliano; Filipponi, Adriano

    2002-01-01

    The short-range distribution functions of the RbBr 1-x I x solid and molten ionic alloys have been accurately measured using multiple-edge refinement of the K-edge extended x-ray absorption fine structure spectra (EXAFS). The local structure is characterized by two well-defined first-neighbor peaks associated with the Rb-I and Rb-Br distributions, both for solid and liquid alloys. The distribution of distances in solid alloys gives experimental evidence to available theoretical models. In the liquid, the two distance distributions are found to be practically independent of the concentration x. The effect of different effective charge screening of the ions is observed in the molten systems for limiting concentrations

  14. Kernel optimization for short-range molecular dynamics

    Science.gov (United States)

    Hu, Changjun; Wang, Xianmeng; Li, Jianjiang; He, Xinfu; Li, Shigang; Feng, Yangde; Yang, Shaofeng; Bai, He

    2017-02-01

    To optimize short-range force computations in Molecular Dynamics (MD) simulations, multi-threading and SIMD optimizations are presented in this paper. With respect to multi-threading optimization, a Partition-and-Separate-Calculation (PSC) method is designed to avoid write conflicts caused by using Newton's third law. Serial bottlenecks are eliminated with no additional memory usage. The method is implemented by using the OpenMP model. Furthermore, the PSC method is employed on Intel Xeon Phi coprocessors in both native and offload models. We also evaluate the performance of the PSC method under different thread affinities on the MIC architecture. In the SIMD execution, we explain the performance influence in the PSC method, considering the "if-clause" of the cutoff radius check. The experiment results show that our PSC method is relatively more efficient compared to some traditional methods. In double precision, our 256-bit SIMD implementation is about 3 times faster than the scalar version.

  15. Freely cooling granular gases with short-ranged attractive potentials

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Eric; Subramaniam, Shankar, E-mail: shankar@iastate.edu [Department of Mechanical Engineering, Center for Multiphase Flow Research, Iowa State University, Ames, Iowa 50011 (United States)

    2015-04-15

    We treat the case of an undriven gas of inelastic hard-spheres with short-ranged attractive potentials via an extension of the pseudo-Liouville operator formalism. New evolution equations for the granular temperature and coordination number are obtained. The granular temperature exhibits deviation from both Haff’s law and the case of long-ranged potentials. We verify this departure using soft-sphere discrete element method simulations. Excellent agreement is found for the duration of the simulation even beyond where exclusively binary collisions are expected. Simulations show the emergence of strong spatial-velocity correlations on the length scale of the last peak in the pair-correlation function but do not show strong correlations beyond this length scale. We argue that molecular chaos may remain an adequate approximation if the system is modelled as a Smoluchowski type equation with aggregation and break-up processes.

  16. Estimation of tissue stiffness, reflex activity, optimal muscle length and slack length in stroke patients using an electromyography driven antagonistic wrist model.

    Science.gov (United States)

    de Gooijer-van de Groep, Karin L; de Vlugt, Erwin; van der Krogt, Hanneke J; Helgadóttir, Áróra; Arendzen, J Hans; Meskers, Carel G M; de Groot, Jurriaan H

    2016-06-01

    About half of all chronic stroke patients experience loss of arm function coinciding with increased stiffness, reduced range of motion and a flexed wrist due to a change in neural and/or structural tissue properties. Quantitative assessment of these changes is of clinical importance, yet not trivial. The goal of this study was to quantify the neural and structural properties contributing to wrist joint stiffness and to compare these properties between healthy subjects and stroke patients. Stroke patients (n=32) and healthy volunteers (n=14) were measured using ramp-and-hold rotations applied to the wrist joint by a haptic manipulator. Neural (reflexive torque) and structural (connective tissue stiffness and slack lengths and (contractile) optimal muscle lengths) parameters were estimated using an electromyography driven antagonistic wrist model. Kruskal-Wallis analysis with multiple comparisons was used to compare results between healthy subjects, stroke patients with modified Ashworth score of zero and stroke patients with modified Ashworth score of one or more. Stroke patients with modified Ashworth score of one or more differed from healthy controls (Pslack length of connective tissue of the flexor muscles. Non-invasive quantitative analysis, including estimation of optimal muscle lengths, enables to identify neural and non-neural changes in chronic stroke patients. Monitoring these changes in time is important to understand the recovery process and to optimize treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Combining 2-m temperature nowcasting and short range ensemble forecasting

    Directory of Open Access Journals (Sweden)

    A. Kann

    2011-12-01

    Full Text Available During recent years, numerical ensemble prediction systems have become an important tool for estimating the uncertainties of dynamical and physical processes as represented in numerical weather models. The latest generation of limited area ensemble prediction systems (LAM-EPSs allows for probabilistic forecasts at high resolution in both space and time. However, these systems still suffer from systematic deficiencies. Especially for nowcasting (0–6 h applications the ensemble spread is smaller than the actual forecast error. This paper tries to generate probabilistic short range 2-m temperature forecasts by combining a state-of-the-art nowcasting method and a limited area ensemble system, and compares the results with statistical methods. The Integrated Nowcasting Through Comprehensive Analysis (INCA system, which has been in operation at the Central Institute for Meteorology and Geodynamics (ZAMG since 2006 (Haiden et al., 2011, provides short range deterministic forecasts at high temporal (15 min–60 min and spatial (1 km resolution. An INCA Ensemble (INCA-EPS of 2-m temperature forecasts is constructed by applying a dynamical approach, a statistical approach, and a combined dynamic-statistical method. The dynamical method takes uncertainty information (i.e. ensemble variance from the operational limited area ensemble system ALADIN-LAEF (Aire Limitée Adaptation Dynamique Développement InterNational Limited Area Ensemble Forecasting which is running operationally at ZAMG (Wang et al., 2011. The purely statistical method assumes a well-calibrated spread-skill relation and applies ensemble spread according to the skill of the INCA forecast of the most recent past. The combined dynamic-statistical approach adapts the ensemble variance gained from ALADIN-LAEF with non-homogeneous Gaussian regression (NGR which yields a statistical mbox{correction} of the first and second moment (mean bias and dispersion for Gaussian distributed continuous

  18. Hybrid gesture recognition system for short-range use

    Science.gov (United States)

    Minagawa, Akihiro; Fan, Wei; Katsuyama, Yutaka; Takebe, Hiroaki; Ozawa, Noriaki; Hotta, Yoshinobu; Sun, Jun

    2012-03-01

    In recent years, various gesture recognition systems have been studied for use in television and video games[1]. In such systems, motion areas ranging from 1 to 3 meters deep have been evaluated[2]. However, with the burgeoning popularity of small mobile displays, gesture recognition systems capable of operating at much shorter ranges have become necessary. The problems related to such systems are exacerbated by the fact that the camera's field of view is unknown to the user during operation, which imposes several restrictions on his/her actions. To overcome the restrictions generated from such mobile camera devices, and to create a more flexible gesture recognition interface, we propose a hybrid hand gesture system, in which two types of gesture recognition modules are prepared and with which the most appropriate recognition module is selected by a dedicated switching module. The two recognition modules of this system are shape analysis using a boosting approach (detection-based approach)[3] and motion analysis using image frame differences (motion-based approach)(for example, see[4]). We evaluated this system using sample users and classified the resulting errors into three categories: errors that depend on the recognition module, errors caused by incorrect module identification, and errors resulting from user actions. In this paper, we show the results of our investigations and explain the problems related to short-range gesture recognition systems.

  19. Short-range quantitative precipitation forecasting using Deep Learning approaches

    Science.gov (United States)

    Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.

    2017-12-01

    Predicting short-range quantitative precipitation is very important for flood forecasting, early flood warning and other hydrometeorological purposes. This study aims to improve the precipitation forecasting skills using a recently developed and advanced machine learning technique named Long Short-Term Memory (LSTM). The proposed LSTM learns the changing patterns of clouds from Cloud-Top Brightness Temperature (CTBT) images, retrieved from the infrared channel of Geostationary Operational Environmental Satellite (GOES), using a sophisticated and effective learning method. After learning the dynamics of clouds, the LSTM model predicts the upcoming rainy CTBT events. The proposed model is then merged with a precipitation estimation algorithm termed Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) to provide precipitation forecasts. The results of merged LSTM with PERSIANN are compared to the results of an Elman-type Recurrent Neural Network (RNN) merged with PERSIANN and Final Analysis of Global Forecast System model over the states of Oklahoma, Florida and Oregon. The performance of each model is investigated during 3 storm events each located over one of the study regions. The results indicate the outperformance of merged LSTM forecasts comparing to the numerical and statistical baselines in terms of Probability of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), RMSE and correlation coefficient especially in convective systems. The proposed method shows superior capabilities in short-term forecasting over compared methods.

  20. Exploiting orbital effects for short-range extravehicular transfers

    Science.gov (United States)

    Williams, Trevor; Baughman, David

    The problem studied in this paper is that of using Simplified Aid for Extravehicular Activity (EVA) Rescue (SAFER) to carry out efficient short-range transfers from the payload bay of the Space Shuttle Orbiter to the vicinity of the underside of the vehicle, for instance for inspection and repair of thermal tiles or umbilical doors. Trajectories are shown to exist, for the shuttle flying noise forward and belly down, that take the astronaut to the vicinity of the underside with no thrusting after the initial push-off. However, these trajectories are too slow to be of practical interest, as they take roughly an hour to execute. Additionally, they are quite sensitive to errors in the initial push-off rates. To overcome both of these difficulties, trajectories are then studied which include a single in-flight impulse of small magnitude ( in the range 0.1 - 0.4 fps). For operational simplicity, this impulse is applied towards the Orbiter at the moment when the line-of -sight of the EVA crewmember is tangential to the underside of the vehicle. These trajectories are considerably faster than the non-impulsive ones: transit times of less than 10 minutes are achievable. Furthermore, the man-in-the-loop feedback scheme used for impulse timing greatly reduces the sensitivity to initial velocity errors. Finally, similar one-impulse trajectories are also shown to exist for the Orbiter in a gravity-gradient attitiude.

  1. Short range spread-spectrum radiolocation system and method

    Science.gov (United States)

    Smith, Stephen F.

    2003-04-29

    A short range radiolocation system and associated methods that allow the location of an item, such as equipment, containers, pallets, vehicles, or personnel, within a defined area. A small, battery powered, self-contained tag is provided to an item to be located. The tag includes a spread-spectrum transmitter that transmits a spread-spectrum code and identification information. A plurality of receivers positioned about the area receive signals from a transmitting tag. The position of the tag, and hence the item, is located by triangulation. The system employs three different ranging techniques for providing coarse, intermediate, and fine spatial position resolution. Coarse positioning information is provided by use of direct-sequence code phase transmitted as a spread-spectrum signal. Intermediate positioning information is provided by the use of a difference signal transmitted with the direct-sequence spread-spectrum code. Fine positioning information is provided by use of carrier phase measurements. An algorithm is employed to combine the three data sets to provide accurate location measurements.

  2. Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype.

    Science.gov (United States)

    Floren, Michael; Bonani, Walter; Dharmarajan, Anirudh; Motta, Antonella; Migliaresi, Claudio; Tan, Wei

    2016-02-01

    Cell-matrix and cell-biomolecule interactions play critical roles in a diversity of biological events including cell adhesion, growth, differentiation, and apoptosis. Evidence suggests that a concise crosstalk of these environmental factors may be required to direct stem cell differentiation toward matured cell type and function. However, the culmination of these complex interactions to direct stem cells into highly specific phenotypes in vitro is still widely unknown, particularly in the context of implantable biomaterials. In this study, we utilized tunable hydrogels based on a simple high pressure CO2 method and silk fibroin (SF) the structural protein of Bombyx mori silk fibers. Modification of SF protein starting water solution concentration results in hydrogels of variable stiffness while retaining key structural parameters such as matrix pore size and β-sheet crystallinity. To further resolve the complex crosstalk of chemical signals with matrix properties, we chose to investigate the role of 3D hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Our data revealed the potential to upregulate matured vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Overall, our observations suggest that chemical and physical stimuli within the cellular microenvironment are tightly coupled systems involved in the fate decisions of hMSCs. The production of tunable scaffold materials that are biocompatible and further specialized to mimic tissue-specific niche environments will be of considerable value to future tissue engineering platforms. This article investigates the role of silk fibroin hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Specifically, we

  3. The MOLDY short-range molecular dynamics package

    Science.gov (United States)

    Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.

    2011-12-01

    We describe a parallelised version of the MOLDY molecular dynamics program. This Fortran code is aimed at systems which may be described by short-range potentials and specifically those which may be addressed with the embedded atom method. This includes a wide range of transition metals and alloys. MOLDY provides a range of options in terms of the molecular dynamics ensemble used and the boundary conditions which may be applied. A number of standard potentials are provided, and the modular structure of the code allows new potentials to be added easily. The code is parallelised using OpenMP and can therefore be run on shared memory systems, including modern multicore processors. Particular attention is paid to the updates required in the main force loop, where synchronisation is often required in OpenMP implementations of molecular dynamics. We examine the performance of the parallel code in detail and give some examples of applications to realistic problems, including the dynamic compression of copper and carbon migration in an iron-carbon alloy. Program summaryProgram title: MOLDY Catalogue identifier: AEJU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 382 881 No. of bytes in distributed program, including test data, etc.: 6 705 242 Distribution format: tar.gz Programming language: Fortran 95/OpenMP Computer: Any Operating system: Any Has the code been vectorised or parallelized?: Yes. OpenMP is required for parallel execution RAM: 100 MB or more Classification: 7.7 Nature of problem: Moldy addresses the problem of many atoms (of order 10 6) interacting via a classical interatomic potential on a timescale of microseconds. It is designed for problems where statistics must be gathered over a number of equivalent runs, such as

  4. Short-range solar radiation forecasts over Sweden

    Directory of Open Access Journals (Sweden)

    T. Landelius

    2018-04-01

    Full Text Available In this article the performance for short-range solar radiation forecasts by the global deterministic and ensemble models from the European Centre for Medium-Range Weather Forecasts (ECMWF is compared with an ensemble of the regional mesoscale model HARMONIE-AROME used by the national meteorological services in Sweden, Norway and Finland. Note however that only the control members and the ensemble means are included in the comparison. The models resolution differs considerably with 18 km for the ECMWF ensemble, 9 km for the ECMWF deterministic model, and 2.5 km for the HARMONIE-AROME ensemble.The models share the same radiation code. It turns out that they all underestimate systematically the Direct Normal Irradiance (DNI for clear-sky conditions. Except for this shortcoming, the HARMONIE-AROME ensemble model shows the best agreement with the distribution of observed Global Horizontal Irradiance (GHI and DNI values. During mid-day the HARMONIE-AROME ensemble mean performs best. The control member of the HARMONIE-AROME ensemble also scores better than the global deterministic ECMWF model. This is an interesting result since mesoscale models have so far not shown good results when compared to the ECMWF models.Three days with clear, mixed and cloudy skies are used to illustrate the possible added value of a probabilistic forecast. It is shown that in these cases the mesoscale ensemble could provide decision support to a grid operator in terms of forecasts of both the amount of solar power and its probabilities.

  5. Randomized Comparison of the Therapeutic Effect of Acupuncture, Massage, and Tachibana-Style-Method on Stiff Shoulders by Measuring Muscle Firmness, VAS, Pulse, and Blood Pressure

    Directory of Open Access Journals (Sweden)

    Kazuhiro Tachibana

    2012-01-01

    Full Text Available To compare the therapeutic efficacy of acupuncture, massage, and Tachibana-Ryojutsu (one of Japanese traditional body balance therapy techniques (SEITAI, on stiff shoulders, the subjects’ muscle firmness, blood pressure, pulse, VAS, and body temperature were measured before and after the treatment. Forty-seven volunteer subjects gave written informed consent to participate in this study. The subjects were randomly divided into three groups to receive acupuncture, massage, or Tachibana-Ryojutsu. Each therapy lasted for 90 seconds. The acupuncture treatment was applied by a retaining-needle at GB-21, massage was conducted softly on the shoulders, and Tachibana-Ryojutsu treated only the muscles and joints from the legs to buttocks without touching the shoulders or backs. The study indicated that the muscle firmness and VAS of the Tachibana-Ryojutsu group decreased significantly in comparison with the acupuncture and massage groups after treatment.

  6. Stretching human mesenchymal stromal cells on stiffness-customized collagen type I generates a smooth muscle marker profile without growth factor addition

    Science.gov (United States)

    Rothdiener, Miriam; Hegemann, Miriam; Uynuk-Ool, Tatiana; Walters, Brandan; Papugy, Piruntha; Nguyen, Phong; Claus, Valentin; Seeger, Tanja; Stoeckle, Ulrich; Boehme, Karen A.; Aicher, Wilhelm K.; Stegemann, Jan P.; Hart, Melanie L.; Kurz, Bodo; Klein, Gerd; Rolauffs, Bernd

    2016-10-01

    Using matrix elasticity and cyclic stretch have been investigated for inducing mesenchymal stromal cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage but not in combination. We hypothesized that combining lineage-specific stiffness with cyclic stretch would result in a significantly increased expression of SMC markers, compared to non-stretched controls. First, we generated dense collagen type I sheets by mechanically compressing collagen hydrogels. Atomic force microscopy revealed a nanoscale stiffness range known to support myogenic differentiation. Further characterization revealed viscoelasticity and stable biomechanical properties under cyclic stretch with >99% viable adherent human MSC. MSCs on collagen sheets demonstrated a significantly increased mRNA but not protein expression of SMC markers, compared to on culture flasks. However, cyclic stretch of MSCs on collagen sheets significantly increased both mRNA and protein expression of α-smooth muscle actin, transgelin, and calponin versus plastic and non-stretched sheets. Thus, lineage-specific stiffness and cyclic stretch can be applied together for inducing MSC differentiation towards SMCs without the addition of recombinant growth factors or other soluble factors. This represents a novel stimulation method for modulating the phenotype of MSCs towards SMCs that could easily be incorporated into currently available methodologies to obtain a more targeted control of MSC phenotype.

  7. Experimental Searches for Exotic Short-Range Forces Using Mechanical Oscillators

    Science.gov (United States)

    Weisman, Evan

    Experimental searches for forces beyond gravity and electromagnetism at short range have attracted a great deal of attention over the last decade. In this thesis I describe the test mass development for two new experiments searching for forces below 1 mm. Both modify a previous experiment that used 1 kHz mechanical oscillators as test masses with a stiff conducting shield between them to suppress backgrounds, a promising technique for probing exceptionally small distances at the limit of instrumental thermal noise. To further reduce thermal noise, one experiment will use plated silicon test masses at cryogenic temperatures. The other experiment, which searches for spin-dependent interactions, will apply the spin-polarizable material Dy3Fe5O 12 to the test mass surfaces. This material exhibits orbital compensation of the magnetism associated with its intrinsic electron spin, minimizing magnetic backgrounds. Several plated silicon test mass prototypes were fabricated using photolithography (useful in both experiments), and spin-dependent materials were synthesized with a simple chemical recipe. Both silicon and spin-dependent test masses demonstrate the mechanical and magnetic properties necessary for sensitive experiments. I also describe sensitivity calculations of another proposed spin-dependent experiment, based on a modified search for the electron electric dipole moment, which show unprecedented sensitivity to exotic monopole-dipole forces. Inspired by a finite element model, a study attempting to maximize detector quality factor versus geometry is also presented, with experimental results so far not explained by the model.

  8. A novel nuclear dependence of nucleon–nucleon short-range correlations

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Hongkai [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Rong, E-mail: rwang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Lanzhou University, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huang, Yin [Lanzhou University, Lanzhou 730000 (China); Chen, Xurong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-10

    A linear correlation is found between the magnitude of nucleon–nucleon short-range correlations and the nuclear binding energy per nucleon with pairing energy removed. By using this relation, the strengths of nucleon–nucleon short-range correlations of some unmeasured nuclei are predicted. Discussions on nucleon–nucleon pairing energy and nucleon–nucleon short-range correlations are made. The found nuclear dependence of nucleon–nucleon short-range correlations may shed some lights on the short-range structure of nucleus.

  9. The effects of cervical traction, cranial rhythmic impulse, and Mckenzie exercise on headache and cervical muscle stiffness in episodic tension-type headache patients.

    Science.gov (United States)

    Choi, Sung-Yong; Choi, Jung-Hyun

    2016-03-01

    [Purpose] The purpose of this study was to examine the effects of cervical traction treatment, cranial rhythmic impulse treatment, a manual therapy, and McKenzie exercise, a dynamic strengthening exercise, on patients who have the neck muscle stiffness of the infrequent episodic tension-type (IETTH) headache and frequent episodic tension-type headache(FETTH), as well as to provide the basic materials for clinical interventions. [Subjects] Twenty-seven subjects (males: 15, females: 12) who were diagnosed with IETTH and FETTH after treatment by a neurologist were divided into three groups: (a cervical traction group (CTG, n=9), a cranial rhythmic contractiongroup (CRIG, n=9), and a McKenzie exercise group (MEG, n=9). An intervention was conducted for each group and the differences in their degrees of neck pain and changes in muscle tone were observed. [Results] In the within-group comparison of each group, headache significantly decreased in CTG. According to the results of the analysis of the muscle tone of the upper trapezius, there was a statistically significant difference in MEG on the right side and in CRIG on the left side. According to the results of the analysis of the muscle tone of the sternocleidomastoid muscle, there was a statistically significant difference in MEG on the right side and in CRIG on the left side. [Conclusion] In the comparison of the splenius capitis muscle between the groups, there was a statistically significant difference on the right side. Hence, compared to the other methods, cervical traction is concluded to be more effective at reducing headaches in IETTH and FETTH patients.

  10. Desempenho muscular, dor, rigidez e funcionalidade de idosas com osteoartrite de joelho Muscle performance, pain, stiffness, and functionality in elderly women with knee osteoarthritis

    Directory of Open Access Journals (Sweden)

    Mary Luci Avelar Di Sabatino Santos

    2011-01-01

    Full Text Available OBJETIVO: Verificar a correlação do desempenho dos músculos do joelho e os domínios dor, rigidez e funcionalidade do Questionário Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC de idosas com osteoartrite de joelho (OA. MÉTODOS: Estudo transversal observacional com uma amostra de 80 idosas (71,2 ± 5,3 anos com diagnóstico clínico de OA de joelho. Força, resistência e equilíbrio musculares foram avaliados por meio do dinamômetro isocinético Biodex System 3 Pro, nas velocidades angulares de 60º/s e 180º/s; a funcionalidade, presença de dor e rigidez foram avaliadas pelo questionário WOMAC. A correlação entre as variáveis foi analisada pelo teste de Spearman. RESULTADOS: Houve correlação inversa significativa da força e resistência musculares do quadríceps (QUA e isquiossurais (IQS nas velocidades de 60º/s e 180°/s, respectivamente, e da relação de equilíbrio muscular IQS/QUA a 180°/s com todos os domínios do WOMAC (pOBJECTIVE: To determinethe correlation between performance of the knee muscles and pain, stiffness, and functionality, through theWestern Ontario and McMaster Universities Osteoarthritis Index (WOMAC Questionnaire applied to an elderly population with osteoarthritis of the knee (OA. METHODS: This study uses an observational, cross-sectional approach applied to a convenience sample of 80 elderly individuals (71.2 ± 5.3 years of age with a clinical diagnosis of OA of the knee. Muscle strength, resistance, and balance of the knee were evaluated using the Biodex System 3 Pro isokinetic dynamometer at angularspeedsof 60º/s and 180º/s. The self-reported functionality, presence of pain, and stiffness were evaluated by the WOMAC questionnaire. The correlation between the variables was analyzed bySpearman's coefficient of correlation (α = 0.05. RESULTS: A significant inverse correlation was observed between muscle strength and resistance of the quadriceps muscle (Q and the hamstring

  11. Change in skeletal muscle stiffness after running competition is dependent on both running distance and recovery time: a pilot study.

    Science.gov (United States)

    Sadeghi, Seyedali; Newman, Cassidy; Cortes, Daniel H

    2018-01-01

    Long-distance running competitions impose a large amount of mechanical loading and strain leading to muscle edema and delayed onset muscle soreness (DOMS). Damage to various muscle fibers, metabolic impairments and fatigue have been linked to explain how DOMS impairs muscle function. Disruptions of muscle fiber during DOMS exacerbated by exercise have been shown to change muscle mechanical properties. The objective of this study is to quantify changes in mechanical properties of different muscles in the thigh and lower leg as function of running distance and time after competition. A custom implementation of Focused Comb-Push Ultrasound Shear Elastography (F-CUSE) method was used to evaluate shear modulus in runners before and after a race. Twenty-two healthy individuals (age: 23 ± 5 years) were recruited using convenience sampling and split into three race categories: short distance (nine subjects, 3-5 miles), middle distance (10 subjects, 10-13 miles), and long distance (three subjects, 26+ miles). Shear Wave Elastography (SWE) measurements were taken on both legs of each subject on the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), soleus, lateral gastrocnemius (LG), medial gastrocnemius (MG), biceps femoris (BF) and semitendinosus (ST) muscles. For statistical analyses, a linear mixed model was used, with recovery time and running distance as fixed variables, while shear modulus was used as the dependent variable. Recovery time had a significant effect on the soleus ( p  = 0.05), while running distance had considerable effect on the biceps femoris ( p  = 0.02), vastus lateralis ( p  trend from before competition to immediately after competition. The preliminary results suggest that SWE could potentially be used to quantify changes of muscle mechanical properties as a way for measuring recovery procedures for runners.

  12. Relationship between activation of ankle muscles and quasi-joint stiffness in early and middle stances during gait in patients with hemiparesis.

    Science.gov (United States)

    Sekiguchi, Yusuke; Muraki, Takayuki; Tanaka, Naofumi; Izumi, Shin-Ichi

    2015-09-01

    It is unclear whether muscle contraction is necessary to increase quasi-joint stiffness (QJS) of the ankle joint during gait in patients with hemiparesis. The purpose of the present study was to investigate the relationship between QJS and muscle activation at the ankle joint in the stance phase during gait in patients with hemiparesis. Spatiotemporal and kinetic gait parameters and activation of the medial head of the gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) muscles were measured using a 3-dimensional motion analysis system and surface electromyography, in 21 patients with hemiparesis due to stroke and 10 healthy individuals. In the early stance, the QJS on the paretic side (PS) of patients was greater than that on the non-PS (phemiparesis, plantarflexor activation may not contribute to QJS in the early stance. On the other hand, QJS in the middle stance may be attributed to activation of the MG and SOL. Our findings suggest that activation of the MG and SOL in the middle stance on the PS may require to be enhanced to increase QJS during gait in patients with hemiparesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Mechanical characterization of the mouse diaphragm with optical coherence elastography reveals fibrosis-related change of direction-dependent muscle tissue stiffness

    Science.gov (United States)

    Wang, Shang; Loehr, James A.; Larina, Irina V.; Rodney, George G.; Larin, Kirill V.

    2016-03-01

    The diaphragm, composed of skeletal muscle, plays an important role in respiration through its dynamic contraction. Genetic and molecular studies of the biomechanics of mouse diaphragm can provide great insights into an improved understanding and potential treatment of the disorders that lead to diaphragm dysfunction (i.e. muscular dystrophy). However, due to the small tissue size, mechanical assessment of mouse diaphragm tissue under its proper physiological conditions has been challenging. Here, we present the application of noncontact optical coherence elastography (OCE) for quantitative elastic characterization of ex vivo mouse diaphragm. Phase-sensitive optical coherence tomography was combined with a focused air-puff system to capture and measure the elastic wave propagation from tissue surface. Experiments were performed on wildtype and dystrophic mouse diaphragm tissues containing different levels of fibrosis. The OCE measurements of elastic wave propagation were conducted along both the longitudinal and transverse axis of the muscle fibers. Cross-correlation of the temporal displacement profiles from different spatial locations was utilized to obtain the propagation time delay, which was used to calculate the wave group velocity and to further quantify the tissue Young's modulus. Prior to and after OCE assessment, peak tetanic force was measured to monitor viability of the tissue during the elasticity measurements. Our experimental results indicate a positive correlation between fibrosis level and tissue stiffness, suggesting this elastic-wave-based OCE method could be a useful tool to monitor mechanical properties of skeletal muscle under physiological and pathological conditions.

  14. Dependability investigation of wireless short range embedded systems: hardware platform oriented approach

    NARCIS (Netherlands)

    Senouci, B.; Kerkhoff, Hans G.; Annema, Anne J.; Bentum, Marinus Jan

    2015-01-01

    A new direction in short-range wireless applications has appeared in the form of high-speed data communication devices for distances of hundreds meters. Behind these embedded applications, a complex heterogeneous architecture is built. Moreover, these short range communications are introduced into

  15. Positional short-range order in the nematic phase of n BABAs

    Science.gov (United States)

    Usha Deniz, K.; Pepy, G.; Parette, G.; Keller, P.

    1991-10-01

    The positional short-range order, SRO ⊥, perpendicular to the nematic director n̂ has been studied in the fibre-type nematics, nBABAs, by neutron diffraction. SRO ⊥ is found to be dependent on other types of nematic short-range order but not on the orientational long-range order.

  16. Short-range airborne transmission of expiratory droplets between two people

    DEFF Research Database (Denmark)

    Liu, Li; Li, Yuguo; Nielsen, Peter Vilhelm

    2017-01-01

    , ventilation, and breathing mode. Under the specific set of conditions studied, we found a substantial increase in airborne exposure to droplet nuclei exhaled by the source manikin when a susceptible manikin is within about 1.5 m of the source manikin, referred to as the proximity effect. The threshold...... distance of about 1.5 m distinguishes the two basic transmission processes of droplets and droplet nuclei, that is, short-range modes and the long-range airborne route. The short-range modes include both the conventional large droplet route and the newly defined short-range airborne transmission. We thus...... reveal that transmission occurring in close proximity to the source patient includes both droplet-borne (large droplet) and short-range airborne routes, in addition to the direct deposition of large droplets on other body surfaces. The mechanisms of the droplet-borne and short-range airborne routes...

  17. An acoustic startle alters knee joint stiffness and neuromuscular control.

    Science.gov (United States)

    DeAngelis, A I; Needle, A R; Kaminski, T W; Royer, T R; Knight, C A; Swanik, C B

    2015-08-01

    Growing evidence suggests that the nervous system contributes to non-contact knee ligament injury, but limited evidence has measured the effect of extrinsic events on joint stability. Following unanticipated events, the startle reflex leads to universal stiffening of the limbs, but no studies have investigated how an acoustic startle influences knee stiffness and muscle activation during a dynamic knee perturbation. Thirty-six individuals were tested for knee stiffness and muscle activation of the quadriceps and hamstrings. Subjects were seated and instructed to resist a 40-degree knee flexion perturbation from a relaxed state. During some trials, an acoustic startle (50 ms, 1000 Hz, 100 dB) was applied 100 ms prior to the perturbation. Knee stiffness, muscle amplitude, and timing were quantified across time, muscle, and startle conditions. The acoustic startle increased short-range (no startle: 0.044 ± 0.011 N·m/deg/kg; average startle: 0.047 ± 0.01 N·m/deg/kg) and total knee stiffness (no startle: 0.036 ± 0.01 N·m/deg/kg; first startle 0.027 ± 0.02 N·m/deg/kg). Additionally, the startle contributed to decreased [vastus medialis (VM): 13.76 ± 33.6%; vastus lateralis (VL): 6.72 ± 37.4%] but earlier (VM: 0.133 ± 0.17 s; VL: 0.124 ± 0.17 s) activation of the quadriceps muscles. The results of this study indicate that the startle response can significantly disrupt knee stiffness regulation required to maintain joint stability. Further studies should explore the role of unanticipated events on unintentional injury. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Methods for studying short-range order in solid binary solutions

    International Nuclear Information System (INIS)

    Beranger, Gerard

    1969-12-01

    The short range order definition and its characteristic parameters are first recalled. The different methods to study the short range order are then examined: X ray diffusion, electrical resistivity, specific heat and thermoelectric power, neutron diffraction, electron spin resonance, study of thermodynamic and mechanical properties. The theory of the X ray diffraction effects due to short range order and the subsequent experimental method are emphasized. The principal results obtained from binary Systems, by the different experimental techniques, are reported and briefly discussed. The Au-Cu, Li-Mg, Au-Ni and Cu-Zn Systems are moreover described. (author) [fr

  19. Evaluating the Ergonomic Benefit of a Wrist Brace on Wrist Posture, Muscle Activity, Rotational Stiffness, and Peak Shovel-Ground Impact Force During a Simulated Tree-Planting Task.

    Science.gov (United States)

    Sheahan, Peter J; Cashaback, Joshua G A; Fischer, Steven L

    2017-09-01

    Background Tree planters are at a high risk for wrist injury due to awkward postures and high wrist loads experienced during each planting cycle, specifically at shovel-ground impact. Wrist joint stiffness provides a measure that integrates postural and loading information. Objective The purpose of this study was to evaluate wrist joint stiffness requirements at the instant of shovel-ground impact during tree planting and determine if a wrist brace could alter muscular contributions to wrist joint stiffness. Method Planters simulated tree planting with and without wearing a brace on their planting arm. Surface electromyography (sEMG) from six forearm muscles and wrist kinematics were collected and used to calculate muscular contributions to joint rotational stiffness about the wrist. Results Wrist joint stiffness increased with brace use, an unanticipated and negative consequence of wearing a brace. As a potential benefit, planters achieved a more neutrally oriented wrist angle about the flexion/extension axis, although a less neutral wrist angle about the ulnar/radial axis was observed. Muscle activity did not change between conditions. Conclusion The joint stiffness analysis, combining kinematic and sEMG information in a biologically relevant manner, revealed clear limitations with the interface between the brace grip and shovel handle that jeopardized the prophylactic benefits of the current brace design. This limitation was not as evident when considering kinematics and sEMG data independently. Application A neuromechanical model (joint rotational stiffness) enhanced our ability to evaluate the brace design relative to kinematic and sEMG parameter-based metrics alone.

  20. Short Range Air Defense in Army Divisions: Do We Really Need It

    National Research Council Canada - National Science Library

    Anderson, Charles

    2000-01-01

    Ever since the Soviet threat collapsed, coupled with the demonstrated, overwhelming, capability of our air forces during numerous operations in the 1990s, the relevance of the Short Range Air Defense (SHORAD...

  1. Revision to dedicated short range communication roadside equipment specification - RSU 4.1.Bench Test Plan.

    Science.gov (United States)

    2017-04-28

    The document describes the overall process for evaluating Dedicated Short Range Communication (DSRC) Roadside Units (RSU) against USDOT RSU Specification 4.1 in preparation for field evaluation. The Test Cases contained in this document only evaluate...

  2. Magnetism and atomic short-range order in Ni-Rh alloys

    Science.gov (United States)

    Carnegie, D. W., Jr.; Claus, H.

    1984-07-01

    Low-field ac susceptibility measurements of Ni-Rh samples of various concentrations are presented. Giant effects of the metallurgical state on the magnetic ordering temperature are associated with changes in the degree of atomic short-range order. By careful control of this degree of short-range order, it is possible to demonstrate the existence of a spin-glass state in Ni-Rh alloys.

  3. Force encoding in muscle spindles during stretch of passive muscle.

    Directory of Open Access Journals (Sweden)

    Kyle P Blum

    2017-09-01

    Full Text Available Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle

  4. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  5. Short-range/Long-range Integrated Target (SLIT) for Video Guidance Sensor Rendezvous and Docking

    Science.gov (United States)

    Roe, Fred D. (Inventor); Bryan, Thomas C. (Inventor)

    2009-01-01

    A laser target reflector assembly for mounting upon spacecraft having a long-range reflector array formed from a plurality of unfiltered light reflectors embedded in an array pattern upon a hemispherical reflector disposed upon a mounting plate. The reflector assembly also includes a short-range reflector array positioned upon the mounting body proximate to the long-range reflector array. The short-range reflector array includes three filtered light reflectors positioned upon extensions from the mounting body. The three filtered light reflectors retro-reflect substantially all incident light rays that are transmissive by their monochromatic filters and received by the three filtered light reflectors. In one embodiment the short-range reflector array is embedded within the hemispherical reflector,

  6. Double scattering of light from Biophotonic Nanostructures with short-range order

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O.; Mochrie, Simon G.J.; Dufresne, Eric R.; Cao, Hui (Yale)

    2010-07-28

    We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.

  7. Short-range wireless communication fundamentals of RF system design and application

    CERN Document Server

    Bensky, Alan

    2004-01-01

    The Complete "Tool Kit” for the Hottest Area in RF/Wireless Design!Short-range wireless-communications over distances of less than 100 meters-is the most rapidly growing segment of RF/wireless engineering. Alan Bensky is an internationally recognized expert in short-range wireless, and this new edition of his bestselling book is completely revised to cover the latest developments in this fast moving field.You'll find coverage of such cutting-edge topics as: architectural trends in RF/wireless integrated circuits compatibility and conflict issues between differen

  8. The effect of short-range spatial variability on soil sampling uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Perk, Marcel van der [Department of Physical Geography, Utrecht University, P.O. Box 80115, 3508 TC Utrecht (Netherlands)], E-mail: m.vanderperk@geo.uu.nl; De Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici (APAT), Servizio Laboratori, Misure ed Attivita di Campo, Via di Castel Romano, 100-00128 Roma (Italy); Fajgelj, Ales; Sansone, Umberto [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-1400 Vienna (Austria); Jeran, Zvonka; Jacimovic, Radojko [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2008-11-15

    This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.

  9. The effect of short-range spatial variability on soil sampling uncertainty.

    Science.gov (United States)

    Van der Perk, Marcel; de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Sansone, Umberto; Jeran, Zvonka; Jaćimović, Radojko

    2008-11-01

    This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.

  10. The effect of topical thiocolchicoside in preventing and reducing the increase of muscle tone, stiffness, and soreness: A real-life study on top-level road cyclists during stage competition.

    Science.gov (United States)

    Gervasi, Marco; Sisti, Davide; Benelli, Piero; Fernández-Peña, Eneko; Calcabrini, Cinzia; Rocchi, Marco B L; Lanata, Luigi; Bagnasco, Michela; Tonti, Andrea; Vilberto, Stocchi; Sestili, Piero

    2017-07-01

    In professional road cyclists, the majority of overuse injuries affect the lower limbs and are mostly represented by contractures or muscle shortening, characterized by an increase of tone and stiffness and a variation of elasticity. Treatment and prevention of these specific conditions may include physical, supplementary, and pharmacologic support. The aim of this real-life study was to determine: first, the alterations of tone, stiffness, elasticity, and soreness of rectus femoris (RF) and biceps femoris (BF) in top class cyclists engaged in 3 multistage races, and second, whether any variable in the management of the athletes may affect the prevention and/or reduction of such alterations.Twenty-three professional cyclists competing in 3 international, cycling stage races were assessed. Athletes could receive, upon the approval of the medical staff, physical, dietary, and/or pharmacological management which could include treatments with topical over-the-counter myorelaxants to prevent and/or reduce muscle contractures. MyotonPro was used to daily measure tone, stiffness, and elasticity in RF and BF in relaxed and contracted state after every stage. In parallel, BF and RF soreness was also assessed with a Likert scale.All athletes received the same general massage management; none of them received dietary supplements; some of the athletes were treated with a topical myorelaxant thiocolchicoside (TCC 0.25%) foam 3 times daily. TCC was identified as the only variable able to affect these muscle parameters in the cyclists. Tone, stiffness (regardless of the state), and soreness significantly increased over time either in BF or RF in all athletes. In the group of athletes that used TCC (n = 11; TCC+) the increase in tone, stiffness, and soreness was significantly lower than in the group not receiving TCC (n = 12; No-TCC). Elasticity varied coherently with tone and stiffness.A very intense and protracted sport activity increases muscular tone, stiffness, and

  11. Functional framework and hardware platform for dependability study in short range wireless embedded systems

    NARCIS (Netherlands)

    Senouci, B.; Annema, Anne J.; Bentum, Marinus Jan; Kerkhoff, Hans G.

    2011-01-01

    A new direction in short-range wireless applications has appeared in the form of high-speed data communication devices for distances of a few meters. Behind these embedded applications, a complex Hardware/Software architecture is built. Dependability is one of the major challenges in these systems.

  12. Short-range clustering and decomposition in copper-nickel and copper-nickel-iron alloys

    International Nuclear Information System (INIS)

    Aalders, T.J.A.

    1982-07-01

    The thermodynamic equilibrium state of short-range clustering and the kinetics of short-range clustering and decomposition has been studied for a number of CuNi(Fe)-alloys by means of neutron scattering. The validity of the theories, which are usually applied to describe spinodal decomposition, nucleation and growth, coarsening etc., was investigated. It was shown that for the investigated substances the conventional theory of spinodal decomposition is valid for the relaxation of short-range clustering only for the case that the initial and final states do not differ too much. The dynamical scaling procedure described by Lebowitz et al. did not lead to a time-independent scaled function F(x) for the relaxation of short-range clustering, for the early stages of decomposition and for the case that an alloy, which was already decomposed at the quench temperature T 1 , was annealed at a temperature T 2 (T 1 ). For the later stages of decomposition, however, the scaling procedure was indeed successful. The coarsening of the alloys could, except for the later stages, be described by the Lifshitz-Slyozov theory. (Auth.)

  13. Neutron diffraction study on the medium and short-range order of ternary chalcogenide glasses

    Czech Academy of Sciences Publication Activity Database

    Neov, S.; Gerasimova, I.; Skordeva, E.; Arsova, D.; Pamukchieva, V.; Mikula, Pavol; Lukáš, Petr; Sonntag, R.

    1999-01-01

    Roč. 34, - (1999), s. 3669-3676 ISSN 0022-2461 R&D Projects: GA ČR GV202/97/K038 Keywords : neutron diffraction * short-range order * chalcogenide glasses Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.786, year: 1999

  14. EXAFS, Determination of Short Range Order and Local Structures in Materials

    NARCIS (Netherlands)

    Koningsberger, D.C.; Prins, R.

    1981-01-01

    Extended X-ray Absorption Fine Structure (EXAFS) is a powerful method of determining short range order and local structures in materials using X-ray photons produced by a synchrotron light source, or in-house by a high intensity rotating anode X-ray generator. The technique has provided valuable

  15. Status of the dedicated short-range communications technology and applications : report to Congress.

    Science.gov (United States)

    2015-07-01

    This report responds to a Congressional request for an assessment of the 5.9 Gigahertz (GHz) Dedicated Short Range : Communications (DSRC) in accordance with the requirements provided by Congress in the Moving Ahead for Progress in the : 21st Century...

  16. Electronically driven short-range lattice instability: Possible role in superconductive pairing

    International Nuclear Information System (INIS)

    Szasz, A.

    1991-01-01

    A superconducting pairing mechanism is suggested, mediating by collective and coherent cluster fluctuations in the materials. The model, based on a geometrical frustration, proposes a dynamic effect driven by a special short-range electronic instability. Experimental support for this model is discussed

  17. Investigations of multiphoton excitation and ionization in a short range potential

    International Nuclear Information System (INIS)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a δ-function potential. 9 refs., 3 figs

  18. Investigations of multiphoton excitation and ionization in a short range potential

    Energy Technology Data Exchange (ETDEWEB)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a delta-function potential. 9 refs., 3 figs.

  19. Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction

    NARCIS (Netherlands)

    Kern, N.; Frenkel, D.

    2003-01-01

    We present a systematic numerical study of the phase behavior of square-well fluids with a "patchy" short-ranged attraction. In particular, we study the effect of the size and number of attractive patches on the fluid–fluid coexistence. The model that we use is a generalization of the hard sphere

  20. Fluctuations in substitution type alloys and their analyses. Short-range order structures

    International Nuclear Information System (INIS)

    Iwasaki, Hiroshi; Ohshima, Ken-ichi

    2010-01-01

    This article is the fifth of the serial lecture, microstructures and fluctuations, in this magazine. The formula of X-ray diffuse scattering intensity was derived for binary alloys by introducing short-range order parameters. Diffuse scattering intensities for a single crystal Cu 3 Au were measured above critical temperature for ordering. The short-range parameters were obtained by a three-dimensional Fourier analysis. The long-range pair interaction between atoms was originated from the indirect screening interaction due to conduction electrons. A detailed study was made on short-range-order diffuse scattering from Cu 3 Au in the disordered state by electron diffraction. Fourfold splitting of the diffuse scattering was observed at 110 in the reciprocal lattice, and this result was attributed to the reflection of the form of the Fermi surface. The X-ray diffuse scattering intensity was measured at room temperature for disordered Cu-Pd alloys for the six composition of Pd. Twofold and fourfold splitting of diffuse scattering due to the short-range order (SRO) were observed at 100, 110 and equivalent positions respectively from alloys with more than 13.0at% Pd. The SRO parameters were determined from all the six alloys. For Cu-Pt alloys, the diffuse scattering originated from the correlation between Cu and Pt layers in direction was observed in addition to the one due to the reflection of the Fermi surface imaging. (author)

  1. On the universality of the long-/short-range separation in multiconfigurational density-functional theory

    Science.gov (United States)

    Fromager, Emmanuel; Toulouse, Julien; Jensen, Hans Jørgen Aa.

    2007-02-01

    In many cases, the dynamic correlation can be calculated quite accurately and at a fairly low computational cost in Kohn-Sham density-functional theory (KS-DFT), using current standard approximate functionals. However, in general, KS-DFT does not treat static correlation effects (near degeneracy) adequately which, on the other hand, can be described in wave-function theory (WFT), for example, with a multiconfigurational self-consistent field (MCSCF) model. It is therefore of high interest to develop a hybrid model which combines the best of both WFT and DFT approaches. The merge of WFT and DFT can be achieved by splitting the two-electron interaction into long-range and short-range parts. The long-range part is then treated by WFT and the short-range part by DFT. In this work the authors consider the so-called "erf" long-range interaction erf(μr12)/r12, which is based on the standard error function, and where μ is a free parameter which controls the range of the long-/short-range decomposition. In order to formulate a general method, they propose a recipe for the definition of an optimal μopt parameter, which is independent of the approximate short-range functional and the approximate wave function, and they discuss its universality. Calculations on a test set consisting of He, Be, Ne, Mg, H2, N2, and H2O yield μopt≈0.4a.u.. A similar analysis on other types of test systems such as actinide compounds is currently in progress. Using the value of 0.4a.u. for μ, encouraging results are obtained with the hybrid MCSCF-DFT method for the dissociation energies of H2, N2, and H2O, with both short-range local-density approximation and PBE-type functionals.

  2. Characterizing short-range vs. long-range spatial correlations in dislocation distributions

    Energy Technology Data Exchange (ETDEWEB)

    Chevy, Juliette, E-mail: juliette.chevy@gmail.com [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)] [Laboratoire Science et Ingenierie des Materiaux et Procedes, Grenoble INP-CNRS-UJF, BP 75, 38402 St. Martin d' Heres Cedex (France); Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent [Laboratoire de Physique et Mecanique des Materiaux, Universite Paul Verlaine-Metz/CNRS, Ile du Saulcy, 57045 Metz Cedex (France); Bastie, Pierre [Laboratoire de Spectrometrie Physique, BP 87, 38402 St. Martin d' Heres Cedex (France)] [Institut Laue Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Duval, Paul [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)

    2010-03-15

    Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.

  3. Characterizing short-range vs. long-range spatial correlations in dislocation distributions

    International Nuclear Information System (INIS)

    Chevy, Juliette; Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent; Bastie, Pierre; Duval, Paul

    2010-01-01

    Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.

  4. The short range effective interaction and the spectra of calcium isotopes in (f-p) space

    International Nuclear Information System (INIS)

    Qing-ying, Z.; Shen-wu, L.; Jian-xin, W.

    1986-01-01

    In this work, the authors use a new type of extremely short range interaction, the double delta interaction (DDI) to calculate the low-lying spectra of calcium isotopes /sup 41/Ca through /sup 48/Ca. The configuration space (f-p) includes configurations ( f/sub 7/2//sup n/ ) and ( f/sub 7/2//sup n-1/2p/sub 3/2/). The calculated energies are compared with experimental data for 75 levels. For comparison, they also use usual modified surface delta interaction (MSDI) to calculate the same spectra aforementioned. It is clear that the results calculated with DDI are better than with MSDI. Therefore, in the short-range effective interaction the addition of body delta force to the modified surface delta force may improve the agreement with experiment. The authors believe that the conclusion will not be changed if one enlarges the shell model space

  5. Attractive short-range interatomic potential in the lattice dynamics of niobium and tantalum

    International Nuclear Information System (INIS)

    Onwuagba, B.N.; Pal, S.

    1987-01-01

    It is shown in the framework of the pseudopotential approach that there is a sizable attractive short-range component of the interatomic potential due to the s-d interaction which has the same functional form in real space as the Born-Mayer repulsion due to the overlap of core electron wave functions centred on neighbouring ions. The magnitude of this attractive component is such as to completely cancel the conventional Born-Mayer repulsion, making the resultant short-range interatomic potential attractive rather than repulsive. Numerical calculations show that the attractive interatomics potential, which represents the local-field correction, leads to a better understanding of the occurrence of the soft modes in the phonon dispersion curves of niobium and tantalum

  6. Short-range order in amorphous thin films of indium selenides

    International Nuclear Information System (INIS)

    Zakharov, V.P.; Poltavtsev, Yu.G.; Sheremet, G.P.

    1982-01-01

    A structure of the short-range order and a character of interatomic interactions in indium selenides Insub(1-x)Sesub(x) with 0.333 <= x <= 0.75, obtained in the form of amorphous films 0.05-0.80 μm thick are studied using electron diffraction method. It is found out that mostly tetrahedrical coordination of nearest neighbours in the vicinity of indium atoms is characteristic for studied amorphous films, and coordination of selenium atoms is different. Amorphous film with x=0.75 posesses a considereably microheterogeneous structure of the short-range order, which is characterized by the presence of microunclusions of amorphous selenium and atoms of indium, octohedrically coordinated by selenium atoms

  7. Structure of the short-range atomic order of WO3 amorphous films

    International Nuclear Information System (INIS)

    Olevskij, S.S.; Sergeev, M.S.; Tolstikhina, A.L.; Avilov, A.S.; Shkornyakov, S.M.; Semiletov, S.A.

    1984-01-01

    To study the causes of electrochromism manifestation in thin tungsten oxide films, the structure of WO 3 amorphous films has been investigated. The films were obtained by three different methods: by W(CO) 6 tungsten carbonyl pyrolysis, by high-frequency ion-plasma sputtering of a target prepared by WO 3 powder sintering, and by WO 3 powder thermal evaporation. Monocrystalline wafers of silicon and sodium chloride were used as substrates. The structure of short-range order in WO 3 amorphous films varies versus, the method of preparation in compliance with the type of polyhedral elements, (WO 6 , WO 5 ) and with the character of their packing (contacts via edges or vertices). Manifestation of electroc ro mism in WO 3 films prepared by varions methods and having different structure of short-range order is supposed to be realized through various mechanisms. One cannot exclude a potential simultaneous effect of the two coloration mechanisms

  8. Study of the effect of short ranged ordering on the magnetism in FeCr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Ambika Prasad, E-mail: apjena@bose.res.in [Department of Condensed Matter and Materials Science, S N Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India); Sanyal, Biplab, E-mail: biplab.sanyal@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Mookerjee, Abhijit, E-mail: abhijit.mookerjee61@gmail.com [Department of Condensed Matter and Materials Science, S N Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India)

    2014-01-15

    For the study of magnetism in systems where the local environment plays an important role, we propose a marriage between the Monte Carlo simulation and Zunger's special quasi-random structures. We apply this technique on disordered FeCr alloys and show that our estimates of the transition temperature is in good agreement with earlier experiments. - Highlights: • The magnetism in FeCr is sensitively depended on the ordering of the atoms : disordered or with short ranged ordering. • This work uses the SQS technique suggested by Zunger has been used to generate various degrees of short range ordering in FeCr. • The electronic structure and pair energies have been obatined from first principles ASR and Lichtenstein methods. • The effect of chemical ordering on magnetic ordering is studied in detail. • Only those situations where the chemical ordering is complete have been studied.

  9. Study of the effect of short ranged ordering on the magnetism in FeCr alloys

    International Nuclear Information System (INIS)

    Jena, Ambika Prasad; Sanyal, Biplab; Mookerjee, Abhijit

    2014-01-01

    For the study of magnetism in systems where the local environment plays an important role, we propose a marriage between the Monte Carlo simulation and Zunger's special quasi-random structures. We apply this technique on disordered FeCr alloys and show that our estimates of the transition temperature is in good agreement with earlier experiments. - Highlights: • The magnetism in FeCr is sensitively depended on the ordering of the atoms : disordered or with short ranged ordering. • This work uses the SQS technique suggested by Zunger has been used to generate various degrees of short range ordering in FeCr. • The electronic structure and pair energies have been obatined from first principles ASR and Lichtenstein methods. • The effect of chemical ordering on magnetic ordering is studied in detail. • Only those situations where the chemical ordering is complete have been studied

  10. Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review

    Directory of Open Access Journals (Sweden)

    Changzhan Gu

    2016-07-01

    Full Text Available Short-range noncontact sensors are capable of remotely detecting the precise movements of the subjects or wirelessly estimating the distance from the sensor to the subject. They find wide applications in our day lives such as noncontact vital sign detection of heart beat and respiration, sleep monitoring, occupancy sensing, and gesture sensing. In recent years, short-range noncontact sensors are attracting more and more efforts from both academia and industry due to their vast applications. Compared to other radar architectures such as pulse radar and frequency-modulated continuous-wave (FMCW radar, Doppler radar is gaining more popularity in terms of system integration and low-power operation. This paper reviews the recent technical advances in Doppler radars for healthcare applications, including system hardware improvement, digital signal processing, and chip integration. This paper also discusses the hybrid FMCW-interferometry radars and the emerging applications and the future trends.

  11. Neutrino-Nucleus Interactions and the Short-Range Structure of Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Cavanna, F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palamara, O. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schiavilla, R. [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wiringa, R. B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-08

    Improvements in theoretical modeling of Short Range structures and phenomena, and comparisons with data, will require sustained collaboration between nuclear theorists and neutrino experimentalists. The extensive history of studying this area of nuclear physics in electron- and hadron-scattering experiments, coupled with the transformative capabilities of LArTPCs to identify neutrinos, will provide a ripe opportunity for new discoveries that will further our understanding of the nucleus.

  12. Determination of thermodynamical coefficients for Mo-W alloys according to short-range order parameters

    International Nuclear Information System (INIS)

    Erokhin, L.N.; Mokrov, A.P.; Shivrin, O.N.; Khanina, N.I.

    1986-01-01

    A method is proposed for determining thermodynamical coefficients according to short-range order parameters. The method approbation for Mo-W alloys has shown a good agreement between the thermodynamical and diffusion data. The Mo-W system in the concentration range under study is close to the ideal one. The calculated relative error of determination of interdiffusion coefficients in alloys of the Mo-W system does not exceed 16%

  13. Probing the short range behavior of nuclei with high PT photo- and electro-nuclear reactions

    International Nuclear Information System (INIS)

    Laget, J.M.

    1990-01-01

    The short range behavior of the nucleus and the use of the nucleus as a filter are studied. Special emphasis is given to photon and hadron induced reactions. The components of the nuclear wave function are described. The evidences of hard scattering processes in reactions induced by real photons as well as by hadrons on free nucleus are reviewed. The spin observables are also investigated. The perspectives opened by these studies in the nuclear environment are considered

  14. Short-range order of amorphous FeNiB alloy after neutron irradiation

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.; Baluch, S.; Cirak, J.; Lipka, J.

    1990-01-01

    Transmission Moessbauer spectroscopy was used to study irradiation-induced changes in the short-range order of an amorphous Fe 80-x Ni x B 20 alloy. Neutron irradiation led to an increase of the width of a hyperfine field distribution implying atomic rearrangement towards disordering. Changes in a mean value of a HFD and Moessbauer line areas can be associated with a reorientation of spins due to radiation damage. (orig.)

  15. Short range correlations in the pion s-wave self-energy of pionic atoms

    OpenAIRE

    Salcedo, L. L.; Holinde, K.; Oset, E.; Schütz, C.

    1995-01-01

    We evaluate the contribution of second order terms to the pion-nucleus s-wave optical potential of pionic atoms generated by short range nuclear correlation. The corrections are sizeable because they involve the isoscalar s-wave $\\pi N$ amplitude for half off-shell situations where the amplitude is considerably larger than the on-shell one. In addition, the s-wave optical potential is reanalyzed by looking at all the different conventional contributions together lowest order, Pauli corrected ...

  16. Directional and short-range ordering kinetics in metallic alloys, crystalline and amorphous

    International Nuclear Information System (INIS)

    Hillairet, J.

    1985-01-01

    This presentation describes the methods (resistometric and anelastic) based on analysis of stress-induced directional ordering and short-range ordering and their application to the study of metallic alloys, crystalline and amorphous. It focuses on the determination of the atomic mobility and point defect properties. It discusses also the structural information which can be gained by Zener relaxation studies about the order-disorder transition and self-induced directional ordering phenomena

  17. Short-range order in InSb amorphized under ion bombardment

    International Nuclear Information System (INIS)

    Pavlov, P.V.; Tetel'baum, D.I.; Gerasimov, A.I.

    1979-01-01

    The investigation of short-range order is carried out in polycrystal InSb films, irradiated with Ne + ions with E=150 keV and with the 2x10 15 ion/cm 2 dose. The data are obtained testifying to the film amorphization, the cause of which is the defect storage but not the local melting. Stability of the obtained amorphous phase at the room temperature is noted

  18. Particle simulation algorithms with short-range forces in MHD and fluid flow

    International Nuclear Information System (INIS)

    Cable, S.; Tajima, T.; Umegaki, K.

    1992-07-01

    Attempts are made to develop numerical algorithms for handling fluid flows involving liquids and liquid-gas mixtures. In these types of systems, the short-range intermolecular interactions are important enough to significantly alter behavior predicted on the basis of standard fluid mechanics and magnetohydrodynamics alone. We have constructed a particle-in-cell (PIC) code for the purpose of studying the effects of these interactions. Of the algorithms considered, the one which has been successfully implemented is based on a MHD particle code developed by Brunel et al. In the version presented here, short range forces are included in particle motion by, first, calculating the forces between individual particles and then, to prevent aliasing, interpolating these forces to the computational grid points, then interpolating the forces back to the particles. The code has been used to model a simple two-fluid Rayleigh-Taylor instability. Limitations to the accuracy of the code exist at short wavelengths, where the effects of the short-range forces would be expected to be most pronounced

  19. Angular correlation between short-range. cap alpha. particles and. gamma. quanta

    Energy Technology Data Exchange (ETDEWEB)

    Kul' chitskii, L A; Latyshev, G D; Bulyginskii, D G

    1949-01-01

    Chang (Phys. Rev. 69, 60(1946); 70, 632(1946)) has found that the intensities of short-range ..cap alpha.. rays of Po and Ra are considerably higher than the values given by the Geiger-Nuttall law. This can be explained by assuming surface vibrations of ..cap alpha..-radioactive nuclei, which produce deformations and corresponding lowerings of the potential barrier in certain directions. In this case an angular correlation should exist between the short-range ..cap alpha.. ray and the accompanying ..gamma.. quantum. The authors checked this conclusion by applying the coincidence method to the ..cap alpha.. and ..gamma.. radiations of a mixture of RdTh (/sup 228/Th) and ThC (/sup 212/Bi). Maxima of coincidence numbers occur at angles 45 and 135 deg., with lesser maxima at 0 and 180 deg. Theoretical considerations show that in cases (like the one investigated) where the nuclear spin before and after the ..cap alpha.. and ..gamma.. emissions is zero, the angular correlations are uniquely determined whatever the deformation caused by the vibration; in other cases, the correlation depends on the kind of deformation. Therefore, it would be interesting to investigate the case of Pa, whose nuclear spin is not zero and the decay exhibits intensive groups of short-range ..cap alpha.. particles.

  20. In-medium short-range dynamics of nucleons: Recent theoretical and experimental advances

    Energy Technology Data Exchange (ETDEWEB)

    Atti, Claudio Ciofi degli, E-mail: ciofi@pg.infn.it

    2015-08-14

    The investigation of in-medium short-range dynamics of nucleons, usually referred to as the study of short-range correlations (SRCs), is a key issue in nuclear and hadronic physics. As a matter of fact, even in the simplified assumption that the nucleus could be described as a system of protons and neutrons interacting via effective nucleon–nucleon (NN) interactions, several non trivial problems arise concerning the description of in-medium (NN short-range dynamics, namely: (i) the behavior of the NN interaction at short inter-nucleon distances in medium cannot be uniquely constrained by the experimental NN scattering phase shifts due to off-shell effects; (ii) by rigorous renormalization group (RG) techniques entire families of phase equivalent interactions differing in the short-range part can be derived; (iii) the in-medium NN interaction may be, in principle, different from the free one; (iv) when the short inter-nucleon separation is of the order of the nucleon size, the question arises of possible effects from quark and gluon degrees of freedom. For more than fifty years, experimental evidence of SRCs has been searched by means of various kinds of nuclear reactions, without however convincing results, mainly because the effects of SRCs arise from non observable quantities, like, e.g., the momentum distributions, and have been extracted from observable cross sections where short- and long-range effects, effects from nucleonic and non nucleonic degrees of freedom, and effects from final state interaction, could not be unambiguously separated out. Recent years, however, were witness of new progress in the field: from one side, theoretical and computational progress has allowed one to solve ab initio the many-nucleon non relativistic Schrödinger equation in terms of realistic NN interactions, obtaining realistic microscopic wave functions, unless the case of parametrized wave functions used frequently in the past, moreover the development of advanced

  1. A first-principles study of short range order in Cu-Zn

    International Nuclear Information System (INIS)

    Slutter, M.; Turchi, P.E.A.; Johnson, D.D.; Nicholson, D.M.; Stocks, G.M.; Pinski, F.J.

    1990-01-01

    Recently, measurements of short-range order (SRO) diffuse neutron scattering intensity have been performed on quenched Cu-Zn alloys with 22.4 to 31.1 atomic percent (a/o) Zn, and pair interactions were obtained by inverse Monte Carlo simulation. These results are compared to SRO intensities and effective pair interactions obtained from first-principles electronic structure calculations. The theoretical SRO intensities were calculated with the cluster variation method (CVM) in the tetrahedron-octahedron approximation with first-principles pain interactions as input. More generally, phase stability in the Cu-Zn alloy system is discussed, using ab-initio energetic properties

  2. Link Design Rules for Cost-Effective Short-Range Radio Over Multimode Fiber Systems

    DEFF Research Database (Denmark)

    Visani, Davide; Tartarini, Giovanni; Petersen, Martin Nordal

    2010-01-01

    Referring to short-range radio over multimode fiber links, we find out important guidelines for the realization of cost-effective intensity modulated directly detected systems. Since the quality of today's connectors is considerably higher than in the past, we demonstrate that two important...... parameters of the system are the finite detecting area of the photodiode and the laser frequency chirp. Furthemore, we show that the use of the central launch technique inherently determines a lower impact of modal noise fluctuations with respect to the offset launch one. This makes CL more convenient...

  3. Highly excited bound-state resonances of short-range inverse power-law potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)

    2017-11-15

    We study analytically the radial Schroedinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r) = -β{sub n}r{sup -n} with n > 2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E{sub l}{sup max} = E{sub l}{sup max}(n, β{sub n}, R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system. (orig.)

  4. Short-range order and local conservation of quantum numbers in multiparticle production

    International Nuclear Information System (INIS)

    Le Bellac, M.

    1976-01-01

    These lectures discuss the implications of the hypotheses of short-range order (SRO) and local conservation of quantum numbers (LCQN) for multiple production of elementary particles at high energies. The consequences of SRO for semi-inclusive correlations and the distribution of rapidity gaps are derived, essentially in the framework of the cluster model. Then the experimental status of local conservation of charge and transverse momentum is reviewed. Finally, by making use of the unitarity relation, it is shown that LCQN has important consequences for the elastic amplitude. The derivation is given both in a model-independent way, and in specific multiperiheral models. (Author)

  5. OTDM Networking for Short Range High-Capacity Highly Dynamic Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros

    This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... is on short range highly dynamic networks, catering to data center needs. The investigation concerns optical network scenarios, and experimental implementations of high bit rate serial data packet generation and reception, scalable optical packet labeling, simple optical label extraction and stable ultra...

  6. Perturbation theory for short-range weakly-attractive potentials in one dimension

    Energy Technology Data Exchange (ETDEWEB)

    Amore, Paolo, E-mail: paolo.amore@gmail.com [Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima (Mexico); Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar [INIFTA (UNLP, CONICET), Division Química Teórica, Blvd. 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)

    2017-03-15

    We have obtained the perturbative expressions up to sixth order for the energy of the bound state in a one dimensional, arbitrarily weak, short range finite well, applying a method originally developed by Gat and Rosenstein Ref. [1]. The expressions up to fifth order reproduce the results already known in the literature, while the sixth order had not been calculated before. As an illustration of our formulas we have applied them to two exactly solvable problems and to a nontrivial problem.

  7. The Spectrum of Particles with Short-Ranged Interactions in a Harmonic Trap

    Directory of Open Access Journals (Sweden)

    Metsch B. Ch.

    2010-04-01

    Full Text Available The possibility to control short-ranged interactions of cold gases in optical traps by Feshbachresonances makes these systems ideal candidates to study universal scaling properties and Efimov physics. The spectrum of particles in a trap, idealised by a harmonic oscillator potential, in the zero range limit with 2- and 3-particle contact interactions is studied numerically. The Hamiltonian is regularised by restricting the oscillator basis and the coupling constants are tuned such that the ground state energies of the 2- and 3-particle sector are reproduced [1],[2]. Results for 2-, 3-, and 4 particle systems are presented and compared to exact results [3],[4].

  8. Study of the short-range 3He structure from the dd→3Hen reaction

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Ladygina, N.V.

    1995-01-01

    An experiment on studying of the tensor analysing power C 0,NN,0,0 and spin correlation C N,N,0,0 due to the transverse polarization of both initial particles from the dd→ 3 Hen reaction has been proposed. Those polarization observables are very sensitive to the short-range 3 He structure. This experiment is proposed to be done at the LHE Accelerator Complex using both a polarized deuteron beam and a polarized deuterium target. 25 refs., 2 figs

  9. Influence of short range chemical order on density of states in α-ZrNi

    International Nuclear Information System (INIS)

    Duarte Junior, J.

    1986-01-01

    Calculations of the density of electronic states for amorphous alloys of ZrNi and ZrCu with different chemical order degrees, in order to verify the effect of chemical ordering on this property, are presented. The results obtained for ZrCu shown that the density of states at Fermi level do not vary significantly with the ordering. The results for ZrNi shown that the introduction of short range chemical order can decrease significantly the density of states at Fermi level, leading to better agreement with experimental results. (M.C.K.) [pt

  10. Measurement based scenario analysis of short-range distribution system planning

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Bak-Jensen, Birgitte; Chen, Zhe

    2009-01-01

    This paper focuses on short-range distribution system planning using a probabilistic approach. Empirical probabilistic distributions of load demand and distributed generations are derived from the historical measurement data and incorporated into the system planning. Simulations with various...... feasible scenarios are performed based on a local distribution system at Støvring in Denmark. Simulation results provide more accurate and insightful information for the decision-maker when using the probabilistic analysis than using the worst-case analysis, so that a better planning can be achieved....

  11. EXAFS study of short range order in Fe-Zr amorphous alloys

    International Nuclear Information System (INIS)

    Fernandez-Gubieda, M.L.; Gorria, P.; Barandiaran, J.M.; Barquin, L.F.

    1995-01-01

    Room temperature X-ray absorption spectra on Fe K-edge have been performed in Fe 100-x-y Zr x B y and Fe 86 Zr 7 Cu 1 B 6 alloys (x=7, 7.7, 9; y=0, 2, 4, 6). Fe-Fe coordination number and interatomic distances do not change in any sample. However, small changes in the Fe-Zr short range order, which could explain the evolution of the magnetic properties, have been observed. (orig.)

  12. Numerical study of the glass-glass transition in short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Zaccarelli, Emanuela; Sciortino, Francesco; Tartaglia, Piero

    2004-01-01

    We report extensive numerical simulations in the glass region for a simple model of short-ranged attractive colloids, the square well model. We investigate the behaviour of the density autocorrelation function and of the static structure factor in the region of temperatures and packing fractions where a glass-glass transition is expected according to theoretical predictions. We strengthen our observations by studying both waiting time and history dependence of the numerical results. We provide evidence supporting the possibility that activated bond-breaking processes destabilize the attractive glass, preventing the full observation of a sharp glass-glass kinetic transition

  13. Short Range Correlations in Nuclei at Large xbj through Inclusive Quasi-Elastic Electron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Zhihong [Univ. of Virginia, Charlottesville, VA (United States)

    2013-12-01

    The experiment, E08-014, in Hall-A at Jefferson Lab aims to study the short-range correlations (SRC) which are necessary to explain the nuclear strength absent in the mean field theory. The cross sections for 2H, 3He, 4He, 12C, 40Ca and 48Ca, were measured via inclusive quasi-elastic electron scattering from these nuclei in a Q2 range between 0.8 and 2.8 (GeV/c)2 for x>1. The cross section ratios of heavy nuclei to 2H were extracted to study two-nucleon SRC for 1

  14. Study of an Ising model with competing long- and short-range interactions

    International Nuclear Information System (INIS)

    Loew, U.; Emery, V.J.; Fabricius, K.; Kivelson, S.A.

    1994-01-01

    A classical spin-one lattice gas model is used to study the competition between short-range ferromagnetic coupling and long-range antiferromagnetic Coulomb interactions. The model is a coarse-grained representation of frustrated phase separation in high-temperature superconductors. The ground states are determined for the complete range of parameters by using a combination of numerical and analytical techniques. The crossover between ferromagnetic and antiferromagnetic states proceeds via a rich structure of highly symmetric striped and checkerboard phases. There is no devil's staircase behavior because mixtures of stripes with different period phase separate

  15. Characteristics of III-nitride based laser diode employed for short range underwater wireless optical communications

    Science.gov (United States)

    Xue, Bin; Liu, Zhe; Yang, Jie; Feng, Liangsen; Zhang, Ning; Wang, Junxi; Li, Jinmin

    2018-03-01

    An off-the-shelf green laser diode (LD) was measured to investigate its temperature dependent characteristics. Performance of the device was severely restricted by rising temperature in terms of increasing threshold current and decreasing modulation bandwidth. The observation reveals that dynamic characteristics of the LD is sensitive to temperature. Influence of light attenuation on the modulation bandwidth of the green LD was also studied. The impact of light attenuation on the modulation bandwidth of the LD in short and low turbid water channel was not obvious while slight difference in modulation bandwidth under same injection level was observed between water channel and free space even at short range.

  16. Distinct Short-Range Order Is Inherent to Small Amorphous Calcium Carbonate Clusters (<2 nm)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shengtong [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany; School of Chemical Engineering, State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road Shanghai 200237 P.R. China; Chevrier, Daniel M. [Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax Nova Scotia B3H 4R2 Canada; Zhang, Peng [Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax Nova Scotia B3H 4R2 Canada; Gebauer, Denis [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany; Cölfen, Helmut [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany

    2016-09-09

    Amorphous intermediate phases are vital precursors in the crystallization of many biogenic minerals. While inherent short-range orders have been found in amorphous calcium carbonates (ACCs) relating to different crystalline forms, it has never been clarified experimentally whether such orders already exist in very small clusters less than 2 nm in size. Here, we studied the stability and structure of 10,12-pentacosadiynoic acid (PCDA) protected ACC clusters with a core size of ca. 1.4 nm consisting of only seven CaCO3 units. Ligand concentration and structure are shown to be key factors in stabilizing the ACC clusters. More importantly, even in such small CaCO3 entities, a proto-calcite short-range order can be identified but with a relatively high degree of disorder that arises from the very small size of the CaCO3 core. Our findings support the notion of a structural link between prenucleation clusters, amorphous intermediates, and final crystalline polymorphs, which appears central to the understanding of polymorph selection.

  17. Intermediate- and short-range order in phosphorus-selenium glasses

    International Nuclear Information System (INIS)

    Bytchkov, Aleksei; Hennet, Louis; Price, David L.; Miloshova, Mariana; Bychkov, Eugene; Kohara, Shinji

    2011-01-01

    State-of-the-art neutron and x-ray diffraction measurements have been performed to provide a definitive picture of the intermediate- and short-range structures of P x Se 1-x glasses spanning two glass regions, x 0.025-0.54 and 0.64-0.84. Liquid P 4 Se 3 and amorphous red P and Se were also measured. Detailed information was obtained about the development with increasing phosphorous concentration of intermediate-range order on the length scale ∼6 A ring , based on the behavior of the first sharp diffraction peak. Attention is also paid to the feature in the structure factor at 7.5 A ring -1 , identified in earlier numerical simulations, provides further evidence of the existence of molecular units. The real-space transforms yield a reliable statistical picture of the changing short-range order as x increases, using the information about types and concentrations of local structural units provided by previous NMR measurements to interpret the trends observed.

  18. Short-range contacts govern the performance of industry-relevant battery cathodes

    Science.gov (United States)

    Morelly, Samantha L.; Alvarez, Nicolas J.; Tang, Maureen H.

    2018-05-01

    Fundamental understanding of how processing affects composite battery electrode structure and performance is still lacking, especially for industry-relevant electrodes with low fractions of inactive material. This work combines rheology, electronic conductivity measurements, and battery rate capability tests to prove that short-range electronic contacts are more important to cathode rate capability than either ion transport or long-range electronic conductivity. LiNi0.33Mn0.33Co0.33O2, carbon black, and polyvinylidene difluoride in 1-methyl-2-pyrrolidinone represent a typical commercial electrode with films. Improvements in battery rate capability at constant electrode porosity do not correlate to electronic conductivity, but rather show an optimum fraction of free carbon. Simple comparison of rate capability in electrodes with increased total carbon loading (3 wt%) shows improvement for all fractions of free carbon. These results clearly indicate that ion transport cannot be limiting and highlight the critical importance of short-range electronic contacts for controlling battery performance.

  19. CMOS Receiver Front-ends for Gigabit Short-Range Optical Communications

    CERN Document Server

    Aznar, Francisco; Calvo Lopez, Belén

    2013-01-01

    This book describes optical receiver solutions integrated in standard CMOS technology, attaining high-speed short-range transmission within cost-effective constraints.  These techniques support short reach applications, such as local area networks, fiber-to-the-home and multimedia systems in cars and homes. The authors show how to implement the optical front-end in the same technology as the subsequent digital circuitry, leading to integration of the entire receiver system in the same chip.  The presentation focuses on CMOS receiver design targeting gigabit transmission along a low-cost, standardized plastic optical fiber up to 50m in length.  This book includes a detailed study of CMOS optical receiver design – from building blocks to the system level. Reviews optical communications, including long-haul transmission systems and emerging applications focused on short-range; Explains necessary fundamentals, such as characteristics of a data signal, system requirements affecting receiver design and key par...

  20. Short range part of the NN interaction: Equivalent local potentials from quark exchange kernels

    International Nuclear Information System (INIS)

    Suzuk, Y.; Hecht, K.T.

    1983-01-01

    To focus on the nature of the short range part of the NN interaction, the intrinsically nonlocal interaction among the quark constituents of colorless nucleons is converted to an equivalent local potential using resonating group kernels which can be evaluated in analytic form. The WKB approximation based on the Wigner transform of the nonlocal kernels has been used to construct the equivalent potentials without recourse to the long range part of the NN interaction. The relative importance of the various components of the exchange kernels can be examined: The results indicate the importance of the color magnetic part of the exchange kernel for the repulsive part in the (ST) = (10), (01) channels, in particular since the energy dependence of the effective local potentials seems to be set by this term. Large cancellations of color Coulombic and quark confining contributions, together with the kinetic energy and norm exchange terms, indicate that the exact nature of the equivalent local potential may be sensitive to the details of the parametrization of the underlying quark-quark interaction. The equivalent local potentials show some of the characteristics of the phenomenological short range terms of the Paris potential

  1. Polyamorphism and substructure of short-range order in amorphous boron films

    International Nuclear Information System (INIS)

    Palatnik, L.S.; Nechitajlo, A.A.; Koz'ma, A.A.

    1981-01-01

    The structure and substructure of boron amorphous films are studied in detail. Amorphous condensate of Bsup(a) boron is built of the same (but only disorientedly located) 12 B icosahedrons as boron crystalline modifications: B 105 -equilibrium β-rhombic, metastable: B 50 -tetragonal, B 12 -α-rhombohedral Coordination number for Bsup(a) (Z 1 =6.4) is lower than in B 105 (Z 1 =6.6) but higher than in B 50 modification (Z 1 =6.1). In crystalline modifications B 105 , B 50 , B 12 coordination numbers ω in first coordination spheres of icosahedrons are equal to ν 105 =6+4.6=10.6; ν 50 =10+3=14; ν 12 =6 respectively. Both amorphous modifications of boron Bsub(1)sup(a) and Bsub(15)sup(a) are analogs to B 50 in respect of the short-range order of icosahedron location. The difference between them is in ''substructure'' of short-range order: part of boron atoms (approximately 12%) do not occupy the vertices (so that vacancies appear) and enter the emptinesses between icosahedrons. In other words, the structure B 50 is the model basis of both amorphous phases [ru

  2. Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces

    International Nuclear Information System (INIS)

    Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.

    2011-01-01

    The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both many-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.

  3. The effects of gender, level of co-contraction, and initial angle on elbow extensor muscle stiffness and damping under a step increase in elbow flexion moment.

    Science.gov (United States)

    Lee, Yunju; Ashton-Miller, James A

    2011-10-01

    Flexion buckling of an arm under the large ground reaction loads associated with arresting a fall to the ground increases the risk for head and thorax injuries. Yet, the factors that determine the arm buckling load remain poorly understood. We tested the hypothesis in 18 healthy young adults that neither gender, triceps co-contraction level (i.e., 25, 50, or 75% MVC) nor elbow angle would affect the rotational stiffness and damping resistance to step changes in elbow flexion loading. Data on the step response were gathered using optoelectronic markers (150 Hz) and myoelectric activity measurements (2 kHz), and an inverse dynamics analysis was used to estimate elbow extensor stiffness and damping coefficients. A repeated-measures analysis of variance showed that gender (p = 0.032), elbow flexion angle and co-contraction level (both p initial elbow flexion angle and maximum co-contraction, female stiffness and damping coefficients were 18 and 30% less, respectively, than male values after normalization by body height and weight. We conclude that the maximum extensor rotational stiffness and damping at the elbow is lower in women than in men of the same body size, and varies with triceps co-contraction level and initial elbow angle.

  4. Arterial stiffness

    Directory of Open Access Journals (Sweden)

    Ursula Quinn

    2012-09-01

    Full Text Available Measurements of biomechanical properties of arteries have become an important surrogate outcome used in epidemiological and interventional cardiovascular research. Structural and functional differences of vessels in the arterial tree result in a dampening of pulsatility and smoothing of blood flow as it progresses to capillary level. A loss of arterial elastic properties results a range of linked pathophysiological changes within the circulation including increased pulse pressure, left ventricular hypertrophy, subendocardial ischaemia, vessel endothelial dysfunction and cardiac fibrosis. With increased arterial stiffness, the microvasculature of brain and kidneys are exposed to wider pressure fluctuations and may lead to increased risk of stroke and renal failure. Stiffening of the aorta, as measured by the gold-standard technique of aortic Pulse Wave Velocity (aPWV, is independently associated with adverse cardiovascular outcomes across many different patient groups and in the general population. Therefore, use of aPWV has been proposed for early detection of vascular damage and individual cardiovascular risk evaluation and it seems certain that measurement of arterial stiffness will become increasingly important in future clinical care. In this review we will consider some of the pathophysiological processes that result from arterial stiffening, how it is measured and factors that may drive it as well as potential avenues for therapy. In the face of an ageing population where mortality from atheromatous cardiovascular disease is falling, pathology associated with arterial stiffening will assume ever greater importance. Therefore, understanding these concepts for all clinicians involved in care of patients with cardiovascular disease will become vital.

  5. Evidence for short range corelations from high Q2 (e,e') reactions

    International Nuclear Information System (INIS)

    Strikman, M.I.; Frankfurt, L.L.; Sargayan, M.M.

    1994-01-01

    For many years now short-range correlations (SRC) in nuclei have been considered as an essential feature of the nuclear wave function. At high energy (e,e') reactions, where Q 2 > 1 (GeV/c) 2 , x = Q 2 /2mq o > 1 and 1 GeV > q o > 300 ∼ 400 MeV the scattering from low momentum nucleons is kinematically suppressed and there the evidence of SRC expected to be more prominent. These reactions have been intensively investigated during the last decade or so at SLAC on both light and heavy nuclei. The above kinematics allows one to compute the cross section through the processes local in space. To explain this the authors analyse the representation of the cross section as a Fourier transform of the commutator of electromagnetic currents and see that the major contribution in the cross section is given by the region of integration

  6. Magnetic susceptibility as a method of investigation of short-range order in strongly nonstoichiometric carbides

    International Nuclear Information System (INIS)

    Nazarova, S.Z.; Gusev, A.I.

    2001-01-01

    Magnetic susceptibility in disordered and ordered carbides of transition metals (M = Ti, Zr, Hf, Nb, Ta) was studied, the results are generalized. It was ascertained that the change in carbide susceptibility induced by deviation from stoichiometry stems from specific features of electronic spectra of the compounds. The use of magnetic susceptibility for determining structural disorder-order transitions is discussed. It is shown that change in the contribution made by orbital paramagnetism, resulting from short-range order formation, is the reason of decrease in susceptibility of nonstoichiometric carbides during the ordering. Experimentally obtained data on susceptibility permitted evaluating short- and far-range order parameters in NbC y , TaC y , TiC y and HfC y carbides [ru

  7. Improving Short-Range Ensemble Kalman Storm Surge Forecasting Using Robust Adaptive Inflation

    KAUST Repository

    Altaf, Muhammad

    2013-08-01

    This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H∞ filter. By design, an H∞ filter is more robust than the common Kalman filter in the sense that the estimation error in the H∞ filter has, in general, a finite growth rate with respect to the uncertainties in assimilation. The computational hydrodynamical model used in this study is the Advanced Circulation (ADCIRC) model. The authors assimilate data obtained from Hurricanes Katrina and Ike as test cases. The results clearly show that the H∞-based SEIK filter provides more accurate short-range forecasts of storm surge compared to recently reported data assimilation results resulting from the standard SEIK filter.

  8. Unitarity corrections to short-range order long-range rapidity correlations

    CERN Document Server

    Capella, A

    1978-01-01

    Although the effective hadronic forces have short range in rapidity space, one nevertheless expects long-range dynamical correlations induced by unitarity constraints. This paper contains a thorough discussion of long-range rapidity correlations in high-multiplicity events. In particular, the authors analyze in detail the forward- backward multiplicity correlations, measured recently in the whole CERN ISR energy range. They find from these data that the normalized variance of the number n of exchanged cut Pomerons, ((n/(n)-1)/sup 2/) , is most probably in the range 0.32 to 0.36. They show that such a number is obtained from Reggeon theory in the eikonal approximation. The authors also predict a very specific violation of local compensation of charge in multiparticle events: The violation should appear in the fourth-order zone correlation function and is absent in the second-order correlation function, the only one measured until now. (48 refs).

  9. Higher-order glass-transition singularities in systems with short-ranged attractive potentials

    International Nuclear Information System (INIS)

    Goetze, W; Sperl, M

    2003-01-01

    Within the mode-coupling theory for the evolution of structural relaxation, the A 4 -glass-transition singularities are identified for systems of particles interacting with a hard-sphere repulsion complemented by different short-ranged potentials: Baxter's singular potential regularized by a large-wavevector cut-off, a model for the Asakura-Oosawa depletion attraction, a triangular potential, a Yukawa attraction, and a square-well potential. The regular potentials yield critical packing fractions, critical Debye-Waller factors, and critical amplitudes very close to each other. The elastic moduli and the particle localization lengths for corresponding states of the Yukawa system and the square-well system may differ by up to 20 and 10%, respectively

  10. Mass dependence of short-range correlations in nuclei and the EMC effect

    Directory of Open Access Journals (Sweden)

    Cosyn Wim

    2014-03-01

    Full Text Available We sketch an approximate method to quantify the number of correlated pairs in any nucleus A. It is based on counting independent-particle model (IPM nucleon-nucleon pairs in a relative S-state with no radial excitation. We show that IPM pairs with those quantum numbers are most prone to short-range correlations and are at the origin of the high-momentum tail of the nuclear momentum distributions. Our method allows to compute the a2 ratios extracted from inclusive electron scattering. Furthermore, our results reproduce the observed linear correlation between the number of correlated pairs and the magnitude of the EMC effect. We show that the width of the pair center-ofmass distribution in exclusive two-nucleon knockout yields information on the quantum numbers of the pairs.

  11. Short-Range Electron Transfer in Reduced Flavodoxin: Ultrafast Nonequilibrium Dynamics Coupled with Protein Fluctuations.

    Science.gov (United States)

    Kundu, Mainak; He, Ting-Fang; Lu, Yangyi; Wang, Lijuan; Zhong, Dongping

    2018-05-03

    Short-range electron transfer (ET) in proteins is an ultrafast process on the similar timescales as local protein-solvent fluctuations thus the two dynamics are coupled. Here, we use semiquinone flavodoxin and systematically characterized the photoinduced redox cycle with eleven mutations of different aromatic electron donors (tryptophan and tyrosine) and local residues to change redox properties. We observed the forward and backward ET dynamics in a few picoseconds, strongly following a stretched behavior resulting from a coupling between local environment relaxations and these ET processes. We further observed the hot vibrational-state formation through charge recombination and the subsequent cooling dynamics also in a few picoseconds. Combined with the ET studies in oxidized flavodoxin, these results coherently reveal the evolution of the ET dynamics from single to stretched exponential behaviors and thus elucidate critical timescales for the coupling. The observed hot vibration-state formation is robust and should be considered in all photoinduced back ET processes in flavoproteins.

  12. The dependence of the nuclear charge form factor on short range correlations and surface fluctuation effects

    International Nuclear Information System (INIS)

    Massen, S. E.; Garistov, V. P.; Grypeos, M. E.

    1996-01-01

    The effects of nuclear surface fluctuations on harmonic oscillator elastic charge form factor of light nuclei are investigated, simultaneously approximating the short-range correlations through a Jastrow correlation factor. Inclusion of the surface fluctuation effects within this description, by truncating the cluster expansion at the two-body part, is found to improve somewhat the fit to the elastic charge form-factor of 16 O and 40 Ca. However, the convergence of the cluster expansion is expected to deteriorate. An additional finding is that surface-fluctuation correlations produce a drastic change in the asymptotic behaviour of the point-proton form-factor, which now falls off quite slowly (i.e. as const.q -4 ) at large values of the momentum transfer q

  13. Thermal algebraic-decay charge liquid driven by competing short-range Coulomb repulsion

    Science.gov (United States)

    Kaneko, Ryui; Nonomura, Yoshihiko; Kohno, Masanori

    2018-05-01

    We explore the possibility of a Berezinskii-Kosterlitz-Thouless-like critical phase for the charge degrees of freedom in the intermediate-temperature regime between the charge-ordered and disordered phases in two-dimensional systems with competing short-range Coulomb repulsion. As the simplest example, we investigate the extended Hubbard model with on-site and nearest-neighbor Coulomb interactions on a triangular lattice at half filling in the atomic limit by using a classical Monte Carlo method, and find a critical phase, characterized by algebraic decay of the charge correlation function, belonging to the universality class of the two-dimensional XY model with a Z6 anisotropy. Based on the results, we discuss possible conditions for the critical phase in materials.

  14. Ionization induced by strong electromagnetic field in low dimensional systems bound by short range forces

    Energy Technology Data Exchange (ETDEWEB)

    Eminov, P.A., E-mail: peminov@mail.ru [Moscow State University of Instrument Engineering and Computer Sciences, 20 Stromynka Street, Moscow 2107996 (Russian Federation); National Research University Higher School of Economics, 3/12 Bolshoy Trekhsvyatskiy pereulok, Moscow 109028 (Russian Federation)

    2013-10-01

    Ionization processes for a two dimensional quantum dot subjected to combined electrostatic and alternating electric fields of the same direction are studied using quantum mechanical methods. We derive analytical equations for the ionization probability in dependence on characteristic parameters of the system for both extreme cases of a constant electric field and of a linearly polarized electromagnetic wave. The ionization probabilities for a superposition of dc and low frequency ac electric fields of the same direction are calculated. The impulse distribution of ionization probability for a system bound by short range forces is found for a superposition of constant and alternating fields. The total probability for this process per unit of time is derived within exponential accuracy. For the first time the influence of alternating electric field on electron tunneling probability induced by an electrostatic field is studied taking into account the pre-exponential term.

  15. Age differences in visual search for compound patterns: long- versus short-range grouping.

    Science.gov (United States)

    Burack, J A; Enns, J T; Iarocci, G; Randolph, B

    2000-11-01

    Visual search for compound patterns was examined in observers aged 6, 8, 10, and 22 years. The main question was whether age-related improvement in search rate (response time slope over number of items) was different for patterns defined by short- versus long-range spatial relations. Perceptual access to each type of relation was varied by using elements of same contrast (easy to access) or mixed contrast (hard to access). The results showed large improvements with age in search rate for long-range targets; search rate for short-range targets was fairly constant across age. This pattern held regardless of whether perceptual access to a target was easy or hard, supporting the hypothesis that different processes are involved in perceptual grouping at these two levels. The results also point to important links between ontogenic and microgenic change in perception (H. Werner, 1948, 1957).

  16. Structure factor of polymers interacting via a short range repulsive potential: Application to hairy wormlike micelles

    International Nuclear Information System (INIS)

    Massiera, Gladys; Ramos, Laurence; Ligoure, Christian; Pitard, Estelle

    2003-01-01

    We use the random phase approximation to compute the structure factor S(q) of a solution of chains interacting through a soft and short range repulsive potential V. Above a threshold polymer concentration, whose magnitude is essentially controlled by the range of the potential, S(q) exhibits a peak whose position depends on the concentration. We take advantage of the close analogy between polymers and wormlike micelles and apply our model, using a Gaussian function for V, to quantitatively analyze experimental small angle neutron scattering profiles of solutions of hairy wormlike micelles. These samples, which consist in surfactant self-assembled flexible cylinders decorated by amphiphilic copolymer, provide indeed an appropriate experimental model system to study the structure of sterically interacting polymer solutions

  17. Interlayer exchange coupling in Er|Tb superlattices mediated by short range incommensurate Er order

    International Nuclear Information System (INIS)

    Pfuhl, E; Brueckel, T; Voigt, J; Mattauch, S; Korolkov, D

    2010-01-01

    We study the magnetic correlations in Er|Tb superlattices by means of off-specular scattering of polarized neutrons. We show here the co-existence of inhomogeneous magnetic states: i) ferromagnetic order of moments within the Tb layers below 230 K (FM), correlation length of about 10 bilayer, ii) an incommensurate modulated magnetic order, restricted to single Er layers and iii) antiferromagnetic coupling of ferromagnetic layers below 70K (AFC). Polarised off-specular neutron scattering under grazing incidence reveals that i) magnetic fluctuations appear when the sample is cooled below 70 K, ii) these fluctuations lead to AFC, when the sample is cooled to 10 K, which iii) persists, when the sample is subsequently heated up to 45 K, while the order is not present during the cooling cycle. Also the short range incommensurate order changes accordingly, implying that the magnetic order in the Er layers mediates the interlayer coupling between ferromagnetic Tb layers.

  18. Short-range correlations in an extended time-dependent mean-field theory

    International Nuclear Information System (INIS)

    Madler, P.

    1982-01-01

    A generalization is performed of the time-dependent mean-field theory by an explicit inclusion of strong short-range correlations on a level of microscopic reversibility relating them to realistic nucleon-nucleon forces. Invoking a least action principle for correlated trial wave functions, equations of motion for the correlation functions and the single-particle model wave function are derived in lowest order of the FAHT cluster expansion. Higher order effects as well as long-range correlations are consider only to the extent to which they contribute to the mean field via a readjusted phenomenological effective two-body interaction. The corresponding correlated stationary problem is investigated and appropriate initial conditions to describe a heavy ion reaction are proposed. The singleparticle density matrix is evaluated

  19. A New Theoretical Analysis of the Effects of Short Range Correlations in Inclusive Lepton Scattering

    Science.gov (United States)

    Benedetta Mezzetti, Chiara; Ciofi Degli Atti, Claudio

    2009-05-01

    Recently, evidence of short range correlations (SRC) has been provided by experimental data on inclusive lepton A(e, e')X scattering by the observation of a scaling behavior of the ratios of the cross sections on heavy nuclei to those on the deuteron and ^3He. Other attempts to get information on SRC rely on the concept of Y-scaling, whose interest has been renewed by new Jlab data. A new approach to Y-scaling, relying on the definition of a new relativistic scaling variable which incorporates the momentum dependence of the excitation energy of the (A - 1) system is presented, with the resulting scaling function being closely related to the longitudinal momentum distributions. Taking into account final state interaction effects, the new analysis of experimental data on nuclei, ranging from ^3He to Nuclear Matter, provides unique information on the nucleon momentum distributions and confirms the analysis in terms of cross section ratios.

  20. Controlling Short-Range Interactions by Tuning Surface Chemistry in HDPE/Graphene Nanoribbon Nanocomposites.

    Science.gov (United States)

    Sadeghi, Soheil; Zehtab Yazdi, Alireza; Sundararaj, Uttandaraman

    2015-09-03

    Unique dispersion states of nanoparticles in polymeric matrices have the potential to create composites with enhanced mechanical, thermal, and electrical properties. The present work aims to determine the state of dispersion from the melt-state rheological behavior of nanocomposites based on carbon nanotube and graphene nanoribbon (GNR) nanomaterials. GNRs were synthesized from nitrogen-doped carbon nanotubes via a chemical route using potassium permanganate and some second acids. High-density polyethylene (HDPE)/GNR nanocomposite samples were then prepared through a solution mixing procedure. Different nanocomposite dispersion states were achieved using different GNR synthesis methods providing different surface chemistry, interparticle interactions, and internal compartments. Prolonged relaxation of flow induced molecular orientation was observed due to the presence of both carbon nanotubes and GNRs. Based on the results of this work, due to relatively weak interactions between the polymer and the nanofillers, it is expected that short-range interactions between nanofillers play the key role in the final dispersion state.

  1. Molecular dynamics simulations of short-range force systems on 1024-node hypercubes

    International Nuclear Information System (INIS)

    Plimpton, S.J.

    1990-01-01

    In this paper, two parallel algorithms for classical molecular dynamics are presented. The first assigns each processor to a subset of particles; the second assigns each to a fixed region of 3d space. The algorithms are implemented on 1024-node hypercubes for problems characterized by short-range forces, diffusion (so that each particle's neighbors change in time), and problem size ranging from 250 to 10000 particles. Timings for the algorithms on the 1024-node NCUBE/ten and the newer NCUBE 2 hypercubes are given. The latter is found to be competitive with a CRAY-XMP, running an optimized serial algorithm. For smaller problems the NCUBE 2 and CRAY-XMP are roughly the same; for larger ones the NCUBE 2 is up to twice as fast. Parallel efficiencies of the algorithms and communication parameters for the two hypercubes are also examined

  2. Short-range structure and thermal properties of lead tellurite glasses

    Science.gov (United States)

    Hirdesh, Kaur, Amarjot; Khanna, Atul; Gonzàlez, Fernando

    2017-05-01

    PbO-TeO2 glasses having composition: xPbO-(100 - x)TeO2 (x = 10, 15 and 20 mol%) were prepared by melt quenching and characterized by X-ray diffraction, density measurements, differential scanning calorimetry and Raman spectroscopy. Glass density increases from 5.89 to 6.22 g cm-3 with increase in PbO concentration from 10 to 20 mol%, due to the replacement of TeO2 by heavier PbO. DSC studies found that glass transition temperature (Tg) decreases from a value of 295°C to 281°C. Raman studies found that glass short-range structure consists of TeO4 and TeO3 structural units and that PbO modifies the network by the structural transformation: TeO4 to TeO3.

  3. Short-range structure and thermal properties of barium tellurite glasses

    Science.gov (United States)

    Kaur, Amarjot; Khanna, Atul; Gonzàlez, Fernando

    2017-05-01

    BaO-TeO2 glasses containing 10 to 20 BaO mol% were prepared and characterized by X-ray diffraction, density measurements, differential scanning calorimetry and Raman spectroscopy. Glass density decreases with increase in BaO concentration from 10 to 20 mol%, due to replacement of heavier TeO2 by lighter BaO, however glass transition temperature (Tg) increases significantly from a value of 318°C to 327°C due to increase in average single bond enthalpy of the tellurite network. Raman studies found that glass short-range structure consists of TeO4 and TeO3 structural units and BaO modifies the network by producing the structural transformation: TeO4→ TeO3.

  4. Polarizable embedding with a multiconfiguration short-range density functional theory linear response method

    DEFF Research Database (Denmark)

    Hedegård, Erik D.; Olsen, Jógvan Magnus Haugaard; Knecht, Stefan

    2015-01-01

    . To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality......We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE......-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory...

  5. Improving Short-Range Ensemble Kalman Storm Surge Forecasting Using Robust Adaptive Inflation

    KAUST Repository

    Altaf, Muhammad; Butler, T.; Luo, X.; Dawson, C.; Mayo, T.; Hoteit, Ibrahim

    2013-01-01

    This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H∞ filter. By design, an H∞ filter is more robust than the common Kalman filter in the sense that the estimation error in the H∞ filter has, in general, a finite growth rate with respect to the uncertainties in assimilation. The computational hydrodynamical model used in this study is the Advanced Circulation (ADCIRC) model. The authors assimilate data obtained from Hurricanes Katrina and Ike as test cases. The results clearly show that the H∞-based SEIK filter provides more accurate short-range forecasts of storm surge compared to recently reported data assimilation results resulting from the standard SEIK filter.

  6. Utilizing Context in Location-Aware Short-Range Wireless Communication

    Directory of Open Access Journals (Sweden)

    Vesa A. Korhonen

    2010-01-01

    Full Text Available We discuss how a short-range wireless communication service implemented for modern mobile communication devices can provide additional value for both the consumer and the service/product provider. When used as an information search tool, such systems allow services and products being promoted at the location they are available. For the customer, it may provide a “digitally augmented vision”, an enhanced view to the current environment. With data filtering and search rules, this may provide a self-manageable context, where the user's own personal environment and preferences to the features available in the current surroundings cooperate with a direct connection to the web-based social media. A preliminary design for such service is provided. The conclusion is that the method can generate additional revenue to the company and please the customers' buying process. In addition to the marketing, the principles described here are also applicable to other forms of human interaction.

  7. 79 GHz UWB automotive short range radar – Spectrum allocation and technology trends

    Directory of Open Access Journals (Sweden)

    H.-L. Bloecher

    2009-05-01

    Full Text Available Automotive UWB (Ultra-Wideband short range radar (SSR is on the market as a key technology for novel comfort and safety systems. SiGe based 79 GHz UWB SRR will be a definite candidate for the long term substitution of the 24 GHz UWB SRR. This paper will give an overview of the finished BMBF joint project KOKON and the recently started successing project RoCC, which concentrate on the development of this technology and sensor demonstrators. In both projects, the responsibilities of Daimler AG deal with application based sensor specification, test and evaluation of realized sensor demonstrators. Recent UWB SRR frequency regulation approaches and activitites will be introduced. Furthermore, some first results of Daimler activities within RoCC will be presented, dealing with the packaging and operation of these sensors within the complex car environment.

  8. Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration

    Science.gov (United States)

    Stupakov, G.

    2018-04-01

    In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been carried out in linear approximation, where the plasma perturbation can be assumed small and plasma equations of motion linearized. This approximation breaks down in the blowout regime where a high-density electron driver expels plasma electrons from its path and creates a cavity void of electrons in its wake. In this paper, we develop a technique that allows us to calculate short-range longitudinal and transverse wakes generated by a witness bunch being accelerated inside the cavity. Our results can be used for studies of the beam loading and the hosing instability of the witness bunch in plasma-wakefield and laser-wakefield acceleration.

  9. Multi-channel, passive, short-range anti-aircraft defence system

    Science.gov (United States)

    Gapiński, Daniel; Krzysztofik, Izabela; Koruba, Zbigniew

    2018-01-01

    The paper presents a novel method for tracking several air targets simultaneously. The developed concept concerns a multi-channel, passive, short-range anti-aircraft defence system based on the programmed selection of air targets and an algorithm of simultaneous synchronisation of several modified optical scanning seekers. The above system is supposed to facilitate simultaneous firing of several self-guided infrared rocket missiles at many different air targets. From the available information, it appears that, currently, there are no passive self-guided seekers that fulfil such tasks. This paper contains theoretical discussions and simulations of simultaneous detection and tracking of many air targets by mutually integrated seekers of several rocket missiles. The results of computer simulation research have been presented in a graphical form.

  10. Direct separation of short range order in intermixed nanocrystalline and amorphous phases

    International Nuclear Information System (INIS)

    Frenkel, Anatoly I.; Kolobov, Alexander V.; Robinson, Ian K.; Cross, Julie O.; Maeda, Yoshihito; Bouldin, Charles E.

    2002-01-01

    Diffraction anomalous fine-structure (DAFS) and extended x-ray absorption fine-structure (EXAFS) measurements were combined to determine short range order (SRO) about a single atomic type in a sample of mixed amorphous and nanocrystalline phases of germanium. EXAFS yields information about the SRO of all Ge atoms in the sample, while DAFS determines the SRO of only the ordered fraction. We determine that the first-shell distance distribution is bimodal; the nanocrystalline distance is the same as the bulk crystal, to within 0.01(2) A ring , but the mean amorphous Ge-Ge bond length is expanded by 0.076(19) Angstrom. This approach can be applied to many systems of mixed amorphous and nanocrystalline phases

  11. An Empirical Path-Loss Model for Wireless Channels in Indoor Short-Range Office Environment

    Directory of Open Access Journals (Sweden)

    Ye Wang

    2012-01-01

    Full Text Available A novel empirical path-loss model for wireless indoor short-range office environment at 4.3–7.3 GHz band is presented. The model is developed based on the experimental datum sampled in 30 office rooms in both line of sight (LOS and non-LOS (NLOS scenarios. The model is characterized as the path loss to distance with a Gaussian random variable X due to the shadow fading by using linear regression. The path-loss exponent n is fitted by the frequency using power function and modeled as a frequency-dependent Gaussian variable as the standard deviation σ of X. The presented works should be available for the research of wireless channel characteristics under universal indoor short-distance environments in the Internet of Things (IOT.

  12. Contribution of silicon recombination properties in resolution of short-range particle detectors

    International Nuclear Information System (INIS)

    Verbitskaya, E.M.; Eremin, V.K.; Malyarenko, A.M.; Strokan, N.B.; Sukhanov, V.L.

    1987-01-01

    Tracks of short-range particles represent dense clusters of electron-hole pairs 2-4 μm in diameter and 20-30 μm long. Thus, conditions for charge carrier transport in microscopic Si volume are discovered at registration of each particle. Statistical distribution by the specimen square of the main parameter - lifetime of charge carriers (τ) is disclosed as a result of particle chaotic hitting the detector. Analytical description for the shape of the spectral line of the detector is found in the assumption of Gauss distribution τ. The function is applied to the analysis of detector spectra with maximum energy resolution, for which contributions to the shape of the line of the fundamental factors and nonperfection of Si or of the detector structure as a whole are comparable. Excess fluctuations of α-particle energy transformation to the charge of electron-hole pairs are found relatively to adopted values

  13. Contribution of silicon recombination properties in resolution of short-range particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Verbitskaya, E M; Eremin, V K; Malyarenko, A M; Strokan, N B; Sukhanov, V L

    1987-10-01

    Tracks of short-range particles represent dense clusters of electron-hole pairs 2-4 ..mu..m in diameter and 20-30 ..mu..m long. Thus, conditions for charge carrier transport in microscopic Si volume are discovered at registration of each particle. Statistical distribution by the specimen square of the main parameter - lifetime of charge carriers (tau) is disclosed as a result of particle chaotic hitting the detector. Analytical description for the shape of the spectral line of the detector is found in the assumption of Gauss distribution tau. The function is applied to the analysis of detector spectra with maximum energy resolution, for which contributions to the shape of the line of the fundamental factors and nonperfection of Si or of the detector structure as a whole are comparable. Excess fluctuations of ..cap alpha..-particle energy transformation to the charge of electron-hole pairs are found relatively to adopted values.

  14. Dependence of Coulomb Sum Rule on the Short Range Correlation by Using Av18 Potential

    Science.gov (United States)

    Modarres, M.; Moeini, H.; Moshfegh, H. R.

    The Coulomb sum rule (CSR) and structure factor are calculated for inelastic electron scattering from nuclear matter at zero and finite temperature in the nonrelativistic limit. The effect of short-range correlation (SRC) is presented by using lowest order constrained variational (LOCV) method and the Argonne Av18 and Δ-Reid soft-core potentials. The effects of different potentials as well as temperature are investigated. It is found that the nonrelativistic version of Bjorken scaling approximately sets in at the momentum transfer of about 1.1 to 1.2 GeV/c and the increase of temperature makes it to decrease. While different potentials do not significantly change CSR, the SRC improves the Coulomb sum rule and we get reasonably close results to both experimental data and others theoretical predictions.

  15. n-p Short-Range Correlations from (p,2p+n) Measurements

    Science.gov (United States)

    Tang, A.; Watson, J. W.; Aclander, J.; Alster, J.; Asryan, G.; Averichev, Y.; Barton, D.; Baturin, V.; Bukhtoyarova, N.; Carroll, A.; Gushue, S.; Heppelmann, S.; Leksanov, A.; Makdisi, Y.; Malki, A.; Minina, E.; Navon, I.; Nicholson, H.; Ogawa, A.; Panebratsev, Yu.; Piasetzky, E.; Schetkovsky, A.; Shimanskiy, S.; Zhalov, D.

    2003-01-01

    We studied the 12C(p,2p+n) reaction at beam momenta of 5.9, 8.0, and 9.0 GeV/c. For quasielastic (p,2p) events pf, the momentum of the knocked-out proton before the reaction, was compared (event by event) with pn, the coincident neutron momentum. For |pn|>kF=0.220 GeV/c (the Fermi momentum) a strong back-to-back directional correlation between pf and pn was observed, indicative of short-range n-p correlations. From pn and pf we constructed the distributions of c.m. and relative motion in the longitudinal direction for correlated pairs. We also determined that 49±13% of events with |pf|>kF had directionally correlated neutrons with |pn|>kF.

  16. Observation of short range three-particle correlations in e+e- annihilations at LEP energies

    CERN Document Server

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barate, R; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Barrio, J A; Bartl, Walter; Barão, F; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bocci, V; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brunet, J M; Brückman, P; Bugge, L; Buran, T; Buys, A; Bärring, O; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chierici, R; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Da Silva, W; Dahl-Jensen, Erik; Dahm, J; Dam, M; Damgaard, G; Daum, A; Dauncey, P D; Davenport, Martyn; De Angelis, A; De Boeck, H; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Defoix, C; Della Ricca, G; Delpierre, P A; Demaria, N; Di Ciaccio, Lucia; Dijkstra, H; Djama, F; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Dönszelmann, M; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fischer, P A; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Föth, H; Fürstenau, H; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gibbs, M; Gillespie, D; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Gracco, Valerio; Graziani, E; Grosdidier, G; Gunnarsson, P; Guy, J; Guz, Yu; Górski, M; Günther, M; Haedinger, U; Hahn, F; Hahn, M; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Houlden, M A; Huet, K; Hultqvist, K; Ioannou, P; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Joram, Christian; Juillot, P; Jönsson, L B; Jönsson, P E; Kaiser, M; Kalmus, George Ernest; Kapusta, F; Karlsson, M; Karvelas, E; Katargin, A; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Królikowski, J; Kubinec, P; Kucewicz, W; Kurvinen, K L; Kuznetsov, O; Köhne, J H; Köne, B; La Vaissière, C de; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lokajícek, M; Loken, J G; Loukas, D; Lutz, P; Lyons, L; López, J M; López-Aguera, M A; López-Fernandez, A; Lörstad, B; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martí i García, S; Martínez-Rivero, C; Martínez-Vidal, F; Maréchal, B; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Meroni, C; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Monge, M R; Morettini, P; Mundim, L M; Murray, W J; Muryn, B; Myagkov, A; Myatt, Gerald; Mönig, K; Møller, R; Müller, H; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Némécek, S; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Rídky, J; Rückstuhl, W; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sannino, M; Schneider, H; Schyns, M A E; Sciolla, G; Scuri, F; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stepaniak, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Stäck, H; Szczekowski, M; Szeptycka, M; Sánchez, J; Tabarelli de Fatis, T; Tavernet, J P; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Ullaland, O; Valenti, G; Vallazza, E; Van Eldik, J; Van der Velde, C; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Wehr, A; Weierstall, M; Weilhammer, Peter; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zacharatou-Jarlskog, C; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G; de Boer, Wim; van Apeldoorn, G W; van Dam, P; Åsman, B; Österberg, K; Überschär, B; Überschär, S

    1995-01-01

    \\def\\tpc{three-particle correlation} \\def\\twopc{two-particle correlation} Measurements are presented of short range three-particle correlations in e^+ e^- annihilations at LEP using data collected by the DELPHI detector. %The jet structure is studied using three-particle correlation functions. At small values of the four-momentum difference, strong three-particle correlations are observed for like-sign (+++ and ---) and for unlike-sign (++- and +--) pion combinations which are not a consequence of two-particle correlations. A possible explanation of the observed effects in like-sign combinations is the existence of higher order Bose-Einstein interference, which significantly changes the particle distributions in jets.

  17. Searching for Short Range Correlations Using (e,e'NN) Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2003-02-01

    Electron induced two nucleon knockout reactions (e,e'pp) and (e,e'np) were performed for 3He, 4He, and 12C nuclei with incident energies of 2.261 GeV and 4.461 GeV using the CLAS detector at Jefferson Lab. Events with missing momenta lower than the Fermi level and missing energies smaller than the pion threshold were studied. The residual system was assumed to be a spectator and the process was considered as a quasi-free knockout of an NN pair. The data showed that the initial momentum extends up to 800 MeV/c with considerable strength. The cross sections for 3He(e,e'pp)n were compared to the calculations of J.M. Laget. It was found that the final state interactions (FSI) and the meson exchange currents (MEC) dominate the cross sections and the short range properties of the NN pair were substantially undermined. However, the node of the S state wave function of the pp pair at around 400 MeV/c initial momentum starts to be recognizable in the 4.461 GeV data. The data and the theory suggest that with higher momentum transfers, especially in the region xBj > 1, the competing processes such as FSI and MEC will be less important and the detailed study of the short-range properties of nucleons inside nuclei will be more desirable.

  18. Air defense planning for an area with the use of very short range air defense sets

    Directory of Open Access Journals (Sweden)

    Tadeusz Pietkiewicz

    2017-12-01

    Full Text Available This paper presents a heuristic method of planning the deployment of very short-range anti-air missile and artillery sets (VSHORAD around an area (‘protected area’ in order to protect it. A function dependent on the distance between the earliest feasible points of destroying targets and the centre of the protected area was taken as an objective function. This is a different indicator from those commonly used in the literature, and based on the likelihood of a defense zone penetration by means of an air attack (MAA: the kill probability of the MAA and the probability of area losses. The model constraints resulted directly from the restrictions imposed by real air defense systems and the nature of the area being defended. This paper assumes that the VSHORAD system operates as a part of a general, superordinate air defense command and control system based on the idea of network-centric warfare, which provides the VSHORAD system with a recognized air picture, air defense plans, and combat mission specifications. The presented method has been implemented. The final part of the paper presents the computational results. Keywords: optimal planning, air defense system, area installation protection, deployment of very short range anti-air missile and artillery sets (VSHORAD

  19. Effects of short range ΔN interaction on observables of the πNN system

    International Nuclear Information System (INIS)

    Alexandrou, C.; Blankleider, B.

    1990-01-01

    The inadequacy of standard few-body approaches in describing the πNN system has motivated searches for the responsible missing mechanism. In the case of πd scattering, it has recently been asserted that an additional short range ΔN interaction can account for essentially all the discrepancies between a few-body calculation and experimental data. This conclusion, however, has been based on calculations where a phenomenological ΔN interaction is added only in Born term to background few-body amplitudes. In the present work we investigate the effect of including such a ΔN interaction to all orders within a unitary few-body calculation of the πNN system. Besides testing the validity of adding the ΔN interaction in Born term in πd scattering, our fully coupled approach also enables us to see the influence of the same ΔN interaction on the processes NN→πd and NN→NN. For πd elastic scattering, we find that the higher order ΔN interaction terms can have as much influence on πd observables as the lowest order contribution alone. Moreover, we find that the higher order contributions tend to cancel the effect obtained by adding the ΔN interaction in Born term only. The effect of the same ΔN interaction on NN→πd and NN→NN appears to be as significant as in πd→πd, suggesting that future investigations of the short range ΔN interaction should be done in the context of the fully coupled πNN system

  20. Very-short range forecasting system for 2018 Pyeonchang Winter Olympic and Paralympic games

    Science.gov (United States)

    Nam, Ji-Eun; Park, Kyungjeen; Kim, Minyou; Kim, Changhwan; Joo, Sangwon

    2016-04-01

    The 23rd Olympic Winter and the 13th Paralympic Winter Games will be held in Pyeongchang, Republic of Korea respectively from 9 to 25 February 2018 and from 9 to 18 February 2018. The Korea Meteorological Administration (KMA) and the National Institute for Meteorological Science (NIMS) have the responsibility to provide weather information for the management of the Games and the safety of the public. NIMS will carry out a Forecast Demonstration Project (FDP) and a Research and Development Project (RDP) which will be called ICE-POP 2018. These projects will focus on intensive observation campaigns to understand severe winter weathers over the Pyeongchang region, and the research results from the RDP will be used to improve the accuracy of nowcasting and very short-range forecast systems during the Games. To support these projects, NIMS developed Very-short range Data Assimilation and Prediction System (VDAPS), which is run in real time with 1 hour cycling interval and up to 12 hour forecasts. The domain is covering Korean Peninsular and surrounding seas with 1.5km horizontal resolution. AWS, windprofiler, buoy, sonde, aircraft, scatwinds, and radar radial winds are assimilated by 3DVAR on 3km resolution inner domain. The rain rate is converted into latent heat and initialized via nudging. The visibility data are also assimilated with the addition of aerosol control variable. The experiments results show the improvement in rainfall over south sea of Korean peninsula. In order to reduce excessive rainfalls during first 2 hours due to the reduced cycling interval, the data assimilation algorithm is optimized.

  1. Study of short range order in alloy of glassy metals and effect of neutron irradiation on them

    International Nuclear Information System (INIS)

    Habibi, S.; Banaee, N.; Salman, M.; Gupta, A.; Principi, G.

    2000-04-01

    In this paper, we have studied a series of glassy metals with composition Fe 78-x Ni x Si 8 B 14 with x=0, 15, 25,38,53, 58. We have used Moessbauer spectroscopy to get information about short range order and local structure in these alloys. The specimens are exposed to neutron irradiation to perturb local structure and their short range order. The hyperfine parameters obtained from spectra before and after n-irradiation and are compared

  2. Short range order of Mg-Cd-alloys during the transition from the solid to the molten state

    International Nuclear Information System (INIS)

    Boos, A.; Steeb, S.

    1977-01-01

    Recently a method was published for the determination of short range order parameters in binary melts and also a method for the determination of the concentration of different structures which form such a melt. These methods are used in the present work to evaluate the atomic structure of Mg-Cd-melts and to reval the changes in short range order during the melting process. (orig.) [de

  3. The pitfalls of short-range endemism: high vulnerability to ecological and landscape traps

    Directory of Open Access Journals (Sweden)

    Leanda D. Mason

    2018-05-01

    Full Text Available Ecological traps attract biota to low-quality habitats. Landscape traps are zones caught in a vortex of spiralling degradation. Here, we demonstrate how short-range endemic (SRE traits may make such taxa vulnerable to ecological and landscape traps. Three SRE species of mygalomorph spider were used in this study: Idiommata blackwalli, Idiosoma sigillatum and an undescribed Aganippe sp. Mygalomorphs can be long-lived (>43 years and select sites for permanent burrows in their early dispersal phase. Spiderlings from two species, I. blackwalli (n = 20 and Aganippe sp. (n = 50, demonstrated choice for microhabitats under experimental conditions, that correspond to where adults typically occur in situ. An invasive veldt grass microhabitat was selected almost exclusively by spiderlings of I. sigillatum. At present, habitat dominated by veldt grass in Perth, Western Australia, has lower prey diversity and abundance than undisturbed habitats and therefore may act as an ecological trap for this species. Furthermore, as a homogenising force, veldt grass can spread to form a landscape trap in naturally heterogeneous ecosystems. Selection of specialised microhabitats of SREs may explain high extinction rates in old, stable landscapes undergoing (human-induced rapid change.

  4. Objectives for next generation of practical short-range atmospheric dispersion models

    International Nuclear Information System (INIS)

    Olesen, H.R.; Mikkelsen, T.

    1992-01-01

    The proceedings contains papers from the workshop ''Objectives for Next Generation of Practical Short-Range Atmospheric Dispersion Models''. They deal with two types of models, namely models for regulatory purposes and models for real-time applications. The workshop was the result of an action started in 1991 for increased cooperation and harmonization within atmospheric dispersion modelling. The focus of the workshop was on the management of model development and the definition of model objectives, rather than on detailed model contents. It was the intention to identify actions that can be taken in order to improve the development and use of atmospheric dispersion models. The papers in the proceedings deal with various topics within the broad spectrum of matters related to up-to-date practical models, such as their scientific basis, requirements for model input and output, meteorological preprocessing, standardisation within modelling, electronic information exchange as a potentially useful tool, model evaluation and data bases for model evaluation. In addition to the papers, the proceedings contain summaries of the discussions at the workshop. These summaries point to a number of recommended actions which can be taken in order to improve ''modelling culture''. (AB)

  5. Evidence for short range corelations from high Q{sup 2} (e,e{prime}) reactions

    Energy Technology Data Exchange (ETDEWEB)

    Strikman, M.I. [Pennsylvania State Univ., University Park, PA (United States); Frankfurt, L.L.; Sargayan, M.M. [Tel Aviv Univ. (Iceland)] [and others

    1994-04-01

    For many years now short-range correlations (SRC) in nuclei have been considered as an essential feature of the nuclear wave function. At high energy (e,e{prime}) reactions, where Q{sup 2} > 1 (GeV/c){sup 2}, x = Q{sup 2}/2mq{sub o} > 1 and 1 GeV > q{sub o}> 300 {approximately} 400 MeV the scattering from low momentum nucleons is kinematically suppressed and there the evidence of SRC expected to be more prominent. These reactions have been intensively investigated during the last decade or so at SLAC on both light and heavy nuclei. The above kinematics allows one to compute the cross section through the processes local in space. To explain this the authors analyse the representation of the cross section as a Fourier transform of the commutator of electromagnetic currents and see that the major contribution in the cross section is given by the region of integration.

  6. On the skill of various ensemble spread estimators for probabilistic short range wind forecasting

    Science.gov (United States)

    Kann, A.

    2012-05-01

    A variety of applications ranging from civil protection associated with severe weather to economical interests are heavily dependent on meteorological information. For example, a precise planning of the energy supply with a high share of renewables requires detailed meteorological information on high temporal and spatial resolution. With respect to wind power, detailed analyses and forecasts of wind speed are of crucial interest for the energy management. Although the applicability and the current skill of state-of-the-art probabilistic short range forecasts has increased during the last years, ensemble systems still show systematic deficiencies which limit its practical use. This paper presents methods to improve the ensemble skill of 10-m wind speed forecasts by combining deterministic information from a nowcasting system on very high horizontal resolution with uncertainty estimates from a limited area ensemble system. It is shown for a one month validation period that a statistical post-processing procedure (a modified non-homogeneous Gaussian regression) adds further skill to the probabilistic forecasts, especially beyond the nowcasting range after +6 h.

  7. Dissipative NEGF methodology to treat short range Coulomb interaction: Current through a 1D nanostructure.

    Science.gov (United States)

    Martinez, Antonio; Barker, John R; Di Prieto, Riccardo

    2018-06-13

    A methodology describing Coulomb blockade in the Non-equilibrium Green Function formalism is presented. We carried out ballistic and dissipative simulations through a 1D quantum dot using an Einstein phonon model. Inelastic phonons with different energies have been considered. The methodology incorporates the short-range Coulomb interaction between two electrons through the use of a two-particle Green's function. Unlike previous work, the quantum dot has spatial resolution i.e. it is not just parameterized by the energy level and coupling constants of the dot. Our method intends to describe the effect of electron localization while maintaining an open boundary or extended wave function. The formalism conserves the current through the nanostructure. A simple 1D model is used to explain the increase of mobility in semi-crystalline polymers as a function of the electron concentration. The mechanism suggested is based on the lifting of energy levels into the transmission window as a result of the local electron-electron repulsion inside a crystalline domain. The results are aligned with recent experimental findings. Finally, as a proof of concept, we present a simulation of a low temperature resonant structure showing the stability diagram in the Coulomb blockade regime. . © 2018 IOP Publishing Ltd.

  8. Short-range order clustering in BCC Fe-Mn alloys induced by severe plastic deformation

    Science.gov (United States)

    Shabashov, V. A.; Kozlov, K. A.; Sagaradze, V. V.; Nikolaev, A. L.; Lyashkov, K. A.; Semyonkin, V. A.; Voronin, V. I.

    2018-03-01

    The effect of severe plastic deformation, namely, high-pressure torsion (HPT) at different temperatures and ball milling (BM) at different time intervals, has been investigated by means of Mössbauer spectroscopy in Fe100-xMnx (x = 4.1, 6.8, 9) alloys. Deformation affects the short-range clustering (SRC) in BCC lattice. Two processes occur: destruction of SRC by moving dislocations and enhancement of the SRC by migration of non-equilibrium defects. Destruction of SRC prevails during HPT at 80-293 K; whereas enhancement of SRC dominates at 473-573 K. BM starts enhancing the SRC formation at as low as 293 K due to local heating at impacts. The efficiency of HPT in terms of enhancing SRC increases with increasing temperature. The authors suppose that at low temperatures, a significant fraction of vacancies are excluded from enhancing SRC because of formation of mobile bi- and tri-vacancies having low efficiency of enhancing SRC as compared to that of mono vacancies. Milling of BCC Fe100-xMnx alloys stabilises the BCC phase with respect to α → γ transition at subsequent isothermal annealing because of a high degree of work hardening and formation of composition inhomogeneity.

  9. Probing short-range correlations in asymmetric nuclei with quasi-free pair knockout reactions

    Science.gov (United States)

    Stevens, Sam; Ryckebusch, Jan; Cosyn, Wim; Waets, Andreas

    2018-02-01

    Short-range correlations (SRC) in asymmetric nuclei with an unusual neutron-to-proton ratio can be studied with quasi-free two-nucleon knockout processes following the collision between accelerated ions and a proton target. We derive an approximate factorized cross section for those SRC-driven p (A ,p‧N1N2) reactions. Our reaction model hinges on the factorization properties of SRC-driven A (e ,e‧N1N2) reactions for which strong indications are found in theory-experiment comparisons. In order to put our model to the test we compare its predictions with results of 12C (p ,p‧ pn) measurements conducted at Brookhaven National Laboratory (BNL) and find a fair agreement. The model can also reproduce characteristic features of SRC-driven two-nucleon knockout reactions, like back-to-back emission of the correlated nucleons. We study the asymmetry dependence of nuclear SRC by providing predictions for the ratio of proton-proton to proton-neutron knockout cross sections for the carbon isotopes 9-15C thereby covering neutron excess values (N - Z) / Z between -0.5 and +0.5.

  10. Current research efforts at JILA to test the equivalence principle at short ranges

    International Nuclear Information System (INIS)

    Faller, J.E.; Niebauer, T.M.; McHugh, M.P.; Van Baak, D.A.

    1988-01-01

    We are presently engaged in three different experiments to search for a possible breakdown of the equivalence principle at short ranges. The first of these experiments, which has been completed, is our so-called Galilean test in which the differential free-fall of two objects of differing composition was measured using laser interferometry. We observed that the differential acceleration of two test bodies was less than 5 parts in 10 billion. This experiment set new limits on a suggested baryon dependent ''Fifth Force'' at ranges longer than 1 km. With a second experiment, we are investigating substance dependent interactions primarily for ranges up to 10 meters using a fluid supported torsion balance; this apparatus has been built and is now undergoing laboratory tests. Finally, a proposal has been made to measure the gravitational signal associated with the changing water level at a large pumped storage facility in Ludington, Michigan. Measuring the gravitational signal above and below the pond will yield the value of the gravitational constant, G, at ranges from 10-100 m. These measurements will serve as an independent check on other geophysical measurements of G

  11. Performance analysis of dedicated short range communications technology and overview of the practicability for developing countries

    Directory of Open Access Journals (Sweden)

    Vandana Bassoo

    2015-12-01

    Full Text Available Vehicular communication is a widely researched field and aims at developing technologies that may complement systems such as the advanced driver assistance systems. It is therefore important to analyse and infer on the performance of vehicular technologies for different driving and on-road criteria. This study considers the dedicated short range communications technology and more precisely the IEEE 802.11p standard for a performance and practicability analysis. There is also the proposal of a new classification scheme for typical driving conditions, which includes the main categories of Emergency and Safety scenarios while sub-classifications of Critical and Preventive Safety also exist. The scheme is used to build up scenarios as well as related equations relevant to developing countries for practical network simulation. The results obtained indicate that the relative speed of nodes is a determining factor in the overall performance and effectiveness of wireless vehicular communication systems. Moreover, delay values of low order were observed while an effective communication range of about 800 m was calculated for highway scenarios. The research thus indicates suitability of the system for an active use in collision avoidance even though independent factors such as climatic conditions and driver behaviour may affect its effectiveness in critical situations.

  12. Short-range ferromagnetism in alloy ribbons of Fe-Cr-Si-Nb-(Ag, Cu)

    Energy Technology Data Exchange (ETDEWEB)

    THANH, P. Q.; HOA, N. Q.; CHAU, N. [Vietnam National University, Hanoi (Viet Nam); HUU, C. X. [Danang University of Technology, Danang (Viet Nam); NGO, D. T. [Technical University of Denmark, Kgs. Lyngby (Denmark); PHAN, T. L. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-04-15

    We have studied the magnetic properties of two amorphous alloy ribbons Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Ag{sub 1} (FCSNB-Ag) and Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Cu{sub 1} (FCSNB-Cu), prepared by using a melt-spinning technique. Magnetization (M) measurements for various temperatures (T) and magnetic fields (H) indicate that ferromagnetic-paramagnetic (FM-PM) phase transitions take place in FCSNB-Ag and FCSNB-Cu at Curie temperatures (T{sub C} ) of about 308.3 K and 322.5 K, respectively. Analyses of M - H data at different temperatures in the vicinity of the FM-PM phase transition based on the modified Arrott plot method and scaling hypothesis yielded the exponent values of β = 0.369 ± 0.005, γ = 1.359 ± 0.005 and δ = 4.7 ± 0.1 for FCSNB-Ag, and β = 0.376 ± 0.002, γ = 1.315 ± 0.006 and δ = 4.5 ± 0.1 for FCSNB-Cu. Compared with the values from theoretical models, these values are close to those expected for the 3D Heisenberg model, demonstrating the existence of short-range FM order in the amorphous alloy ribbons.

  13. Meta-heuristic CRPS minimization for the calibration of short-range probabilistic forecasts

    Science.gov (United States)

    Mohammadi, Seyedeh Atefeh; Rahmani, Morteza; Azadi, Majid

    2016-08-01

    This paper deals with the probabilistic short-range temperature forecasts over synoptic meteorological stations across Iran using non-homogeneous Gaussian regression (NGR). NGR creates a Gaussian forecast probability density function (PDF) from the ensemble output. The mean of the normal predictive PDF is a bias-corrected weighted average of the ensemble members and its variance is a linear function of the raw ensemble variance. The coefficients for the mean and variance are estimated by minimizing the continuous ranked probability score (CRPS) during a training period. CRPS is a scoring rule for distributional forecasts. In the paper of Gneiting et al. (Mon Weather Rev 133:1098-1118, 2005), Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is used to minimize the CRPS. Since BFGS is a conventional optimization method with its own limitations, we suggest using the particle swarm optimization (PSO), a robust meta-heuristic method, to minimize the CRPS. The ensemble prediction system used in this study consists of nine different configurations of the weather research and forecasting model for 48-h forecasts of temperature during autumn and winter 2011 and 2012. The probabilistic forecasts were evaluated using several common verification scores including Brier score, attribute diagram and rank histogram. Results show that both BFGS and PSO find the optimal solution and show the same evaluation scores, but PSO can do this with a feasible random first guess and much less computational complexity.

  14. Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms.

    Science.gov (United States)

    Nelayah, J; Kociak, M; Stéphan, O; Geuquet, N; Henrard, L; García de Abajo, F J; Pastoriza-Santos, I; Liz-Marzán, L M; Colliex, C

    2010-03-10

    We report on the nanometer scale spectral imaging of surface plasmons within individual silver triangular nanoprisms by electron energy loss spectroscopy and on related discrete dipole approximation simulations. A dependence of the energy and intensity of the three detected modes as function of the edge length is clearly identified both experimentally and with simulations. We show that for experimentally available prisms (edge lengths ca. 70 to 300 nm) the energies and intensities of the different modes show a monotonic dependence as function of the aspect ratio of the prisms. For shorter or longer prisms, deviations to this behavior are identified thanks to simulations. These modes have symmetric charge distribution and result from the strong coupling of the upper and lower triangular surfaces. They also form a standing wave in the in-plane direction and are identified as quasistatic short range surface plasmons of different orders as emphasized within a continuum dielectric model. This model explains in simple terms the measured and simulated energy and intensity changes as function of geometric parameters. By providing a unified vision of surface plasmons in platelets, such a model should be useful for engineering of the optical properties of metallic nanoplatelets.

  15. Interplay between short-range correlated disorder and Coulomb interaction in nodal-line semimetals

    Science.gov (United States)

    Wang, Yuxuan; Nandkishore, Rahul M.

    2017-09-01

    In nodal-line semimetals, Coulomb interactions and short-range correlated disorder are both marginal perturbations to the clean noninteracting Hamiltonian. We analyze their interplay using a weak-coupling renormalization group approach. In the clean case, the Coulomb interaction has been found to be marginally irrelevant, leading to Fermi liquid behavior. We extend the analysis to incorporate the effects of disorder. The nodal line structure gives rise to kinematical constraints similar to that for a two-dimensional Fermi surface, which plays a crucial role in the one-loop renormalization of the disorder couplings. For a twofold degenerate nodal loop (Weyl loop), we show that disorder flows to strong coupling along a unique fixed trajectory in the space of symmetry inequivalent disorder couplings. Along this fixed trajectory, all symmetry inequivalent disorder strengths become equal. For a fourfold degenerate nodal loop (Dirac loop), disorder also flows to strong coupling, however, the strengths of symmetry inequivalent disorder couplings remain different. We show that feedback from disorder reverses the sign of the beta function for the Coulomb interaction, causing the Coulomb interaction to flow to strong coupling as well. However, the Coulomb interaction flows to strong coupling asymptotically more slowly than disorder. Extrapolating our results to strong coupling, we conjecture that at low energies nodal line semimetals should be described by a noninteracting nonlinear sigma model. We discuss the relation of our results with possible many-body localization at zero temperatures in such materials.

  16. Short-range order studies in nonstoichiometric transition metal carbides and nitrides by neutron diffuse scattering

    International Nuclear Information System (INIS)

    Priem, Thierry

    1988-01-01

    Short-range order in non-stoichiometric transition metal carbides and nitrides (TiN 0.82 , TiC 0.64 , TiC 0.76 , NbC 0.73 and NbC 0.83 ) was investigated by thermal neutron diffuse scattering on G4-4 (L.L.B - Saclay) and D10 (I.L.L. Grenoble) spectrometers. From experimental measurements, we have found that metalloid vacancies (carbon or nitrogen) prefer the f.c.c. third neighbour positions. Ordering interaction energies were calculated within the Ising model framework by three approximations: mean field (Clapp and Moss formula), Monte-Carlo simulation, Cluster variation Method. The energies obtained by the two latter methods are very close, and in qualitative agreement with theoretical values calculated from the band structure. Theoretical phase diagrams were calculated from these ordering energies for TiN x and TiC x ; three ordered structures were predicted, corresponding to compositions Ti 6 N 5 Ti 2 C and Ti 3 C 2 . On the other hand, atomic displacements are induced by vacancies. The metal first neighbours were found to move away from a vacancy, whereas the second neighbours move close to it. Near neighbour atomic displacements were theoretically determined by the lattice statics formalism with results in good agreement with experiment. (author) [fr

  17. A UHF RFID system with on-chip-antenna tag for short range communication

    International Nuclear Information System (INIS)

    Peng Qi; Zhang Chun; Zhao Xijin; Wang Zhihua

    2015-01-01

    A UHF RF identification system based on the 0.18 μm CMOS process has been developed for short range and harsh size requirement applications, which is composed of a fully integrated tag and a special reader. The whole tag chip with the antenna takes up an area of 0.36 mm 2 , which is smaller than other reported tags with an on-chip antenna (OCA) using the standard CMOS process. A self-defined protocol is proposed to reduce the power consumption, and minimize the size of the tag. The specialized SOC reader system consists of the RF transceiver, digital baseband, MCU and host interface. Its power consumption is about 500 mW. Measurement results show that the system's reading range is 2 mm with 20 dBm reader output power. With an inductive antenna printed on a paper substrate around the OCA tag, the reading range can be extended from several centimeters to meters, depending on the shape and size of the inductive antenna. (paper)

  18. Influence of retardation effects on photodisintegration of a quantum system bound by short-range forces

    International Nuclear Information System (INIS)

    Preobrazhenskii, M.A.; Golovinskii, P.A.

    1996-01-01

    Expressions for cross sections for multiphonon disintegration of quantum systems bound by short-range forces are obtained in the plane-wave approximation taking into account retardation effects. It is shown that, in the region of nonrelativistic energies, their contribution is factored, and the resulting universal factor is expressed for an arbitrary degree of process nonlinearity n in terms of elementary functions. Arguments of functions are determined only by the mode ω, the radiation spectrum width β, and the bound-state energy of a system. The dependence of the contribution of retardation effects on ω, β, and n is studied in detail. Analytical expressions for cross sections for multiquantum disintegration in the first nonvanishing order with respect to correlation interaction, which exactly take into account retardation effects, are obtained. It is shown that for two-quantum processes, the contribution of correlation effects is expressed in terms of a function representing an extension of dipole polarizability, whereas for n>2, it can be described in the dipole approximation

  19. Demonstration of micro-projection enabled short-range communication system for 5G.

    Science.gov (United States)

    Chou, Hsi-Hsir; Tsai, Cheng-Yu

    2016-06-13

    A liquid crystal on silicon (LCoS) based polarization modulated image (PMI) system architecture using red-, green- and blue-based light-emitting diodes (LEDs), which offers simultaneous micro-projection and high-speed data transmission at nearly a gigabit, serving as an alternative short-range communication (SRC) approach for personal communication device (PCD) application in 5G, is proposed and experimentally demonstrated. In order to make the proposed system architecture transparent to the future possible wireless data modulation format, baseband modulation schemes such as multilevel pulse amplitude modulation (M-PAM), M-ary phase shift keying modulation (M-PSK) and M-ary quadrature amplitude modulation (M-QAM) which can be further employed by more advanced multicarrier modulation schemes (such as DMT, OFDM and CAP) were used to investigate the highest possible data transmission rate of the proposed system architecture. The results demonstrated that an aggregative data transmission rate of 892 Mb/s and 900 Mb/s at a BER of 10^(-3) can be achieved by using 16-QAM baseband modulation scheme when data transmission were performed with and without micro-projection simultaneously.

  20. Large magnetoelectric coupling in magnetically short-range ordered Bi₅Ti₃FeO₁₅ film.

    Science.gov (United States)

    Zhao, Hongyang; Kimura, Hideo; Cheng, Zhenxiang; Osada, Minoru; Wang, Jianli; Wang, Xiaolin; Dou, Shixue; Liu, Yan; Yu, Jianding; Matsumoto, Takao; Tohei, Tetsuya; Shibata, Naoya; Ikuhara, Yuichi

    2014-06-11

    Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. However, single-phase materials with such cross-coupling properties at room temperature exist rarely in nature; new design of nano-engineered thin films with a strong magneto-electric coupling is a fundamental challenge. Here we demonstrate a robust room-temperature magneto-electric coupling in a bismuth-layer-structured ferroelectric Bi₅Ti₃FeO₁₅ with high ferroelectric Curie temperature of ~1000 K. Bi₅Ti₃FeO₁₅ thin films grown by pulsed laser deposition are single-phase layered perovskit with nearly (00l)-orientation. Room-temperature multiferroic behavior is demonstrated by a large modulation in magneto-polarization and magneto-dielectric responses. Local structural characterizations by transmission electron microscopy and Mössbauer spectroscopy reveal the existence of Fe-rich nanodomains, which cause a short-range magnetic ordering at ~620 K. In Bi₅Ti₃FeO₁₅ with a stable ferroelectric order, the spin canting of magnetic-ion-based nanodomains via the Dzyaloshinskii-Moriya interaction might yield a robust magneto-electric coupling of ~400 mV/Oe·cm even at room temperature.

  1. Monte Carlo simulation of atomic short range order and cluster formation in two dimensional model alloys

    International Nuclear Information System (INIS)

    Rojas T, J.; Instituto Peruano de Energia Nuclear, Lima; Manrique C, E.; Torres T, E.

    2002-01-01

    Using monte Carlo simulation have been carried out an atomistic description of the structure and ordering processes in the system Cu-Au in a two-dimensional model. The ABV model of the alloy is a system of N atoms A and B, located in rigid lattice with some vacant sites. In the model we assume pair wise interactions between nearest neighbors with constant ordering energy J = 0,03 eV. The dynamics was introduced by means of a vacancy that exchanges of place with any atom of its neighbors. The simulations were carried out in a square lattice with 1024 and 4096 particles, using periodic boundary conditions to avoid border effects. We calculate the first two parameters of short range order of Warren-Cowley as function of the concentration and temperature. It was also studied the probabilities of formation of different atomic clusters that consist of 9 atoms as function of the concentration of the alloy and temperatures in a wide range of values. In some regions of temperature and concentration it was observed compositional and thermal polymorphism

  2. Short-Range-Order for fcc-based Binary Alloys Revisited from Microscopic Geometry

    Science.gov (United States)

    Yuge, Koretaka

    2018-04-01

    Short-range order (SRO) in disordered alloys is typically interpreted as competition between chemical effect of negative (or positive) energy gain by mixing constituent elements and geometric effects comes from difference in effective atomic radius. Although we have a number of theoretical approaches to quantitatively estimate SRO at given temperatures, it is still unclear to systematically understand trends in SRO for binary alloys in terms of geometric character, e.g., effective atomic radius for constituents. Since chemical effect plays significant role on SRO, it has been believed that purely geometric character cannot capture the SRO trends. Despite these considerations, based on the density functional theory (DFT) calculations on fcc-based 28 equiatomic binary alloys, we find that while conventional Goldschmidt or DFT-based atomic radius for constituents have no significant correlation with SRO, atomic radius for specially selected structure, constructed purely from information about underlying lattice, can successfully capture the magnitude of SRO. These facts strongly indicate that purely geometric information of the system plays central role to determine characteristic disordered structure.

  3. Electronic structure of disordered binary alloys with short range correlation in Bethe lattice

    International Nuclear Information System (INIS)

    Moreno, I.F.

    1987-01-01

    The determination of the electronic structure of a disordered material along the tight-binding model when applied to a Bethe lattice. The diagonal as well as off-diagonal disorder, are considered. The coordination number on the Bethe is fixed lattice to four (Z=4) that occurs in most compound semiconductors. The main proposal was to study the conditions under which a relatively simple model of a disordered material, i.e, a binary alloy, could account for the basic properties of transport or more specifically for the electronic states in such systems. By using a parametrization of the pair probability the behaviour of the electronic density of states (DOS) for different values of the short range order parameter, σ, which makes possible to treat the segregated, random and alternating cases, was analysed. In solving the problem via the Green function technique in the Wannier representation a linear chain of atoms was considered and using the solution of such a 1-D system the problem of the Bethe lattice which is constructed using such renormalized chains as elements, was solved. The results indicate that the obtained DOS are strongly dependent on the correlation assumed for the occupancy in the lattice. (author) [pt

  4. Short-range second order screened exchange correction to RPA correlation energies

    Science.gov (United States)

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-01

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  5. Structural study of liquids with strong short-range correlation in the atomic distribution

    International Nuclear Information System (INIS)

    Uzuki, Kenji

    1976-01-01

    Structure factors of liquids and amorphous solids having a relatively high degree of ordering in their short-range structures have been measured over a wide range of scattering vectors by means of the T-O-F neutron diffraction using epithermal pulsed neutrons generated by an electron linear accelerator. It has been shown in the case of liquid CS 2 that the size and shape of a molecule existing in the liquid phase are determined from the behaviour of the structure factor in the range of high scattering vectors, and that the structure factor in the region of low scattering vectors informs on inter-molecular orientational and center-center correlations in the liquid state. Moreover, based on highly resoluted radial distribution functions, a free rotating chain model has been discussed for chain molecules contained in liquid Se, and a splitting of the nearest neighbour Pd-Pd and Pd-Si correlation has been clearly found in the amorphous Pdsub(0.8) - Sisub(0.2) alloy. (orig./HK) [de

  6. Short-range order analysis and some physical properties of InxSe1-x glasses

    International Nuclear Information System (INIS)

    El-Kabany, N.

    2012-01-01

    Bulk In x Se 1-x (with x=5-25 at%) glasses were prepared using the melt-quench technique. Short range order(SRO) was examined by the X-ray diffraction using Cu(k α ) radiation in the wave vector interval 0.28≤k≤6.5 A 0-1 .The SRO parameters have been obtained from the radial distribution function. The inter-atomic distance obtained from the first and second peak are r 1 =0.263 and r 2 =0.460 nm, which is equivalent In-Se and Se-Se bond length. The fundamental structural unit for the studied glasses is In 2 Se 3 pyramid. Using the differential scanning calorimetry (DSC), the crystallization mechanism of In x Se 1-x chalcogenide glass has been studied. The glass transition activation energy (E g ) is 289±0.3 kj/mol.There is a correlation amongst the glass forming ability, bond strength and the number of lone pair electrons. The utility of the Gibbs-Di Marzio relation was achieved by estimating T g theoretically.

  7. Measurement of transparency ratios for protons from short-range correlated pairs

    Science.gov (United States)

    Hen, O.; Hakobyan, H.; Shneor, R.; Piasetzky, E.; Weinstein, L. B.; Brooks, W. K.; May-Tal Beck, S.; Gilad, S.; Korover, I.; Beck, A.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anefalos Pereira, S.; Arrington, J. R.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Harrison, N.; Heddle, D.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Mustapha, B.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vlassov, A.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zheng, X.; Zonta, I.

    2013-05-01

    Nuclear transparency, Tp (A), is a measure of the average probability for a struck proton to escape the nucleus without significant re-interaction. Previously, nuclear transparencies were extracted for quasi-elastic A (e ,e‧ p) knockout of protons with momentum below the Fermi momentum, where the spectral functions are well known. In this Letter we extract a novel observable, the transparency ratio, Tp (A) /Tp(12 C), for knockout of high-missing-momentum protons from the breakup of short-range correlated pairs (2N-SRC) in Al, Fe and Pb nuclei relative to C. The ratios were measured at momentum transfer Q2 ⩾ 1.5(GeV /c) 2 and xB ⩾ 1.2 where the reaction is expected to be dominated by electron scattering from 2N-SRC. The transparency ratios of the knocked-out protons coming from 2N-SRC breakup are 20-30% lower than those of previous results for low missing momentum. They agree with Glauber calculations and agree with renormalization of the previously published transparencies as proposed by recent theoretical investigations. The new transparencies scale as A - 1 / 3, which is consistent with dominance of scattering from nucleons at the nuclear surface.

  8. Short-Range-Order Mineral Physical Protection On Black Carbon Stabilization

    Science.gov (United States)

    Liang, B.; Weng, Y. T.; Wang, C. C.; Song, Y. F.; Lehmann, J.; Wang, C. H.

    2015-12-01

    Soil organic matter is one of the largest reservoirs in global carbon cycle, and black carbon (BC) represents a chemical resistant component. Black C plays an important role in global climate change. Generally considered recalcitrant due to high aromaticity, the reactive surface and functional groups of BC are crucial for carbon sequestration in soils. Mineral sorption and physical protection is an important mechanism for BC long term stabilization and sequestration in environments. Previous studies on mineral protection of BC were limited to analysis techniques in two-dimensions, for example, by SEM, TEM, and NanoSIMS. Little is known about the scope of organo-mineral association, the in-situ distribution and forms of minerals, and the ultimate interplay of BC and minerals. The aim of this study is to investigate the three-dimensional interaction of organic C and minerals in submicron scale using synchrotron-based Transmission X-ray Microcopy (TXM) and Fourier-Transform Infrared Spectroscopy (FTIR). Abundant poorly-crystallined nano-minerals particles were observed. These short-range-order (SRO) minerals also aggregate into clusters and sheets, and form envelops-like structures on the surface of BC. On top of large surface contact area, the intimate interplay between BC and minerals reinforces the stability of both organic C and minerals, resulting from chemical bonding through cation bridging and ligand exchange. The mineral protection enhances BC stabilization and sequestration and lowers its bioavailability in environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding.

  9. 2D fluorescence spectra measurement of six kinds of bioagents simulants by short range Lidar

    Science.gov (United States)

    Sanpedro, Man

    2018-02-01

    Pantoea agglomerans (Pan), Staphylococcus aureus (Sta), Bacillus globigii (BG) and Escherichia coli (EH), these four kinds of bioagents simulants of were cultured and then their growth curves were measured, the generation time was 0.99h, 0.835h, 1.07h and 1.909h, respectively. A small short range fluorescence lidar working at wavelengths of 266nm and 355nm was designed and used to measure the two-dimensional fluorescence spectra of bioagents simulants in the amino acid segment and NADH segment, respectively. In a controllable fluorescence measurement chamber, the two-dimensional fluorescence spectra of vegetative liquid bacterial aerosols as well as BSA and OVA, two protein toxinic simulants were measured with a resolution of 4nm. The two-dimensional fluorescence spectral shape of Pan, Sta, EH and BG, BSA and OVA were consistent with the standard fluorescent component tryptophan in the amino acid band with FWHM of 60nm, but the central wavelength of the fluorescence spectra of these simulants blue/purple shifted obviously as affected by the external biochemical environment, concentration and ratio of different bacterial internal fluorophores, so the energy level between the excited state and the ground state of the fluorescence molecule increased. Differently, weak NADH fluorescence spectra with 100nm FWHM inside the four vegetative bacteria aerosols were detected, but Rayleigh scattering, Raman scattering contribution of water, nitrogen in the fluorescence spectra could not be effectively extracted. The second - order derivative fluorescence spectra of four simulants showed that the high - order processing and recognition of the fluorescence spectra was feasible.

  10. Short-Range Prediction of Monsoon Precipitation by NCMRWF Regional Unified Model with Explicit Convection

    Science.gov (United States)

    Mamgain, Ashu; Rajagopal, E. N.; Mitra, A. K.; Webster, S.

    2018-03-01

    There are increasing efforts towards the prediction of high-impact weather systems and understanding of related dynamical and physical processes. High-resolution numerical model simulations can be used directly to model the impact at fine-scale details. Improvement in forecast accuracy can help in disaster management planning and execution. National Centre for Medium Range Weather Forecasting (NCMRWF) has implemented high-resolution regional unified modeling system with explicit convection embedded within coarser resolution global model with parameterized convection. The models configurations are based on UK Met Office unified seamless modeling system. Recent land use/land cover data (2012-2013) obtained from Indian Space Research Organisation (ISRO) are also used in model simulations. Results based on short-range forecast of both the global and regional models over India for a month indicate that convection-permitting simulations by the high-resolution regional model is able to reduce the dry bias over southern parts of West Coast and monsoon trough zone with more intense rainfall mainly towards northern parts of monsoon trough zone. Regional model with explicit convection has significantly improved the phase of the diurnal cycle of rainfall as compared to the global model. Results from two monsoon depression cases during study period show substantial improvement in details of rainfall pattern. Many categories in rainfall defined for operational forecast purposes by Indian forecasters are also well represented in case of convection-permitting high-resolution simulations. For the statistics of number of days within a range of rain categories between `No-Rain' and `Heavy Rain', the regional model is outperforming the global model in all the ranges. In the very heavy and extremely heavy categories, the regional simulations show overestimation of rainfall days. Global model with parameterized convection have tendency to overestimate the light rainfall days and

  11. Fungal biomineralization of montmorillonite and goethite to short-range-ordered minerals

    Science.gov (United States)

    Li, Huan; Hu, Shuijin; Polizzotto, Matthew L.; Chang, Xiaoli; Shen, Qirong; Ran, Wei; Yu, Guanghui

    2016-10-01

    Highly reactive nano-scale minerals, e.g., short-range-ordered minerals (SROs) and other nanoparticles, play an important role in soil carbon (C) retention. Yet, the mechanisms that govern biomineralization from bulk minerals to highly reactive nano-scale minerals remain largely unexplored, which critically hinders our efforts toward managing nano-scale minerals for soil C retention. Here we report the results from a study that explores structural changes during Aspergillus fumigatus Z5 transformation of montmorillonite and goethite to SROs. We examined the morphology and structure of nano-scale minerals, using high-resolution transmission electron microscopy, time-resolved solid-state 27Al and 29Si NMR, and Fe K-edge X-ray absorption fine structure spectroscopy combined with two dimensional correlation spectroscopy (2D COS) analysis. Our results showed that after a 48-h cultivation of montmorillonite and goethite with Z5, new biogenic intracellular and extracellular reactive nano-scale minerals with a size of 3-5 nm became abundant. Analysis of 2D COS further suggested that montmorillonite and goethite were the precursors of the dominant biogenic nano-scale minerals. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectra and their deconvolution results demonstrated that during fungus Z5 growth, carboxylic C (288.4-289.1 eV) was the dominant organic group, accounting for approximately 34% and 59% in the medium and aggregates, respectively. This result suggested that high percentage of the production of organic acids during the growth of Z5 was the driving factor for structural changes during biomineralization. This is, to the best of our knowledge, the first report of the structural characterization of nano-scale minerals by 2D COS, highlighting its potential to elucidate biomineralization pathways and thus identify the precursors of nano-scale minerals.

  12. Short-range structure of barium tellurite glasses and its correlation with stress-optic response

    Science.gov (United States)

    Kaur, Amarjot; Khanna, Atul; Fábián, Margit

    2018-06-01

    The atomic parameters of metal ion-oxygen speciation such as bond-lengths and nearest neighbor distances for Ba-O, Te-O and O-O pairs, co-ordination numbers and bond angle distributions for O-Ba-O, O-Te-O and O-O-O linkages are determined by neutron diffraction and Reverse Monte Carlo simulations on the series of xBaO-(100-x)TeO2 glasses containing 10, 15 and 20 mol% BaO. The glass network depolymerizes and the average Te-O co-ordination number decreases from 3.60 ± 0.02 to 3.48 ± 0.02 with increase in BaO concentration. Te-O bond lengths are in the range: 1.97 ± 0.01–1.92 ± 0.01 Å. Ba2+ is mostly in octahedral coordination and the Ba-O bond lengths are in the range: 2.73 ± 0.01 to 2.76 ± 0.03 Å. Te-O co-ordination number is also determined by Raman spectroscopy and it shows good agreement with the neutron data. The short-range structural properties i.e. metal ion coordination number (Nc) and bond lengths (d) were correlated with the stress-optic response. The bonding characteristic, Br values were determined from the structural data of xBaO-(100-x)TeO2 glasses and were used to predict the stress-induced birefringence properties.

  13. Limited-area short-range ensemble predictions targeted for heavy rain in Europe

    Directory of Open Access Journals (Sweden)

    K. Sattler

    2005-01-01

    Full Text Available Inherent uncertainties in short-range quantitative precipitation forecasts (QPF from the high-resolution, limited-area numerical weather prediction model DMI-HIRLAM (LAM are addressed using two different approaches to creating a small ensemble of LAM simulations, with focus on prediction of extreme rainfall events over European river basins. The first ensemble type is designed to represent uncertainty in the atmospheric state of the initial condition and at the lateral LAM boundaries. The global ensemble prediction system (EPS from ECMWF serves as host model to the LAM and provides the state perturbations, from which a small set of significant members is selected. The significance is estimated on the basis of accumulated precipitation over a target area of interest, which contains the river basin(s under consideration. The selected members provide the initial and boundary data for the ensemble integration in the LAM. A second ensemble approach tries to address a portion of the model-inherent uncertainty responsible for errors in the forecasted precipitation field by utilising different parameterisation schemes for condensation and convection in the LAM. Three periods around historical heavy rain events that caused or contributed to disastrous river flooding in Europe are used to study the performance of the LAM ensemble designs. The three cases exhibit different dynamic and synoptic characteristics and provide an indication of the ensemble qualities in different weather situations. Precipitation analyses from the Deutsche Wetterdienst (DWD are used as the verifying reference and a comparison of daily rainfall amounts is referred to the respective river basins of the historical cases.

  14. Short-range and long-range forces in quantum theory: selected topics

    International Nuclear Information System (INIS)

    Hiller, J.R.

    1980-01-01

    Short-range forces (SRF) are encountered when the effects of the parity-violating (PV) weak neutral current are considered in atomic systems. We consider these and other SRF that are associated with operators that contain delta functions. Identities which convert a delta-function matrix element to that of a global operator are reviewed. Past and possible future applications of such identities are described. It has been found that use of these identities can substantially improve the results obtained with less accurate wave functions. We present a further application to the hyperfine structure of the ground state of lithium where we again find that results are improved by the use of an identity. A long-range force (LRF) is here defined to be one that is associated with a potential V(r) that is asymptotically of the form lambda r - 1 (r 0 /r)/sup N-1/. We use a dispersion-theoretic approach to study LRF between hadrons due to two-glucon exchange within the framework of quantum chromodynamics. Such an LRF is usually related to the presence of a spectrum of physical states that extends to zero mass. A speculative scheme put forward by Feinberg and Sucher is used to avoid requiring the existence of massless gluons as observable particles. Semi-quantitative expressions for the two-glucon exchange potential between hadrons and, in particular, between two nucleons are obtained. Limits on two-gluon corrections to πp forward scattering dispersion relations are used to provide an upper bound for lambda, the coupling constant in the nucleon-nucleon potential. For N greater than or equal to 7, expected on heuristic grounds, we obtain the bound lambda less than or equal to 10 6 , which is very weak; gluon effects as treated here do not lead to significant effects in the dispersion-theoretic analysis of πp scattering

  15. Observer-Based Human Knee Stiffness Estimation.

    Science.gov (United States)

    Misgeld, Berno J E; Luken, Markus; Riener, Robert; Leonhardt, Steffen

    2017-05-01

    We consider the problem of stiffness estimation for the human knee joint during motion in the sagittal plane. The new stiffness estimator uses a nonlinear reduced-order biomechanical model and a body sensor network (BSN). The developed model is based on a two-dimensional knee kinematics approach to calculate the angle-dependent lever arms and the torques of the muscle-tendon-complex. To minimize errors in the knee stiffness estimation procedure that result from model uncertainties, a nonlinear observer is developed. The observer uses the electromyogram (EMG) of involved muscles as input signals and the segmental orientation as the output signal to correct the observer-internal states. Because of dominating model nonlinearities and nonsmoothness of the corresponding nonlinear functions, an unscented Kalman filter is designed to compute and update the observer feedback (Kalman) gain matrix. The observer-based stiffness estimation algorithm is subsequently evaluated in simulations and in a test bench, specifically designed to provide robotic movement support for the human knee joint. In silico and experimental validation underline the good performance of the knee stiffness estimation even in the cases of a knee stiffening due to antagonistic coactivation. We have shown the principle function of an observer-based approach to knee stiffness estimation that employs EMG signals and segmental orientation provided by our own IPANEMA BSN. The presented approach makes realtime, model-based estimation of knee stiffness with minimal instrumentation possible.

  16. OroSTIFF: Face-referenced measurement of perioral stiffness in health and disease.

    Science.gov (United States)

    Chu, Shin-Ying; Barlow, Steven M; Kieweg, Douglas; Lee, Jaehoon

    2010-05-28

    A new device and automated measurement technology known as OroSTIFF is described to characterize non-participatory perioral stiffness in healthy adults for eventual application to patients with orofacial movement disorders associated with neuromotor disease, traumatic injury, or congenital clefts of the upper lip. Previous studies of perioral biomechanics required head stabilization for extended periods of time during measurement, which precluded sampling patients with involuntary body/head movements (dyskinesias), or pediatric subjects. The OroSTIFF device is face-referenced and avoids the complications associated with head-restraint. Supporting data of non-participatory perioral tissue stiffness using OroSTIFF are included from 10 male and 10 female healthy subjects. The OroSTIFF device incorporates a pneumatic glass air cylinder actuator instrumented for pressure, and an integrated subminiature displacement sensor to encode lip aperture. Perioral electromyograms were simultaneously sampled to confirm passive muscle state for the superior and inferior divisions of the orbicularis oris muscles. Perioral stiffness, derived as a quotient from resultant force (DeltaF) and interangle span (DeltaX), was modeled with multilevel regression techniques. Real-time calculation of the perioral stiffness function demonstrated a significant quadratic relation between imposed interangle stretch and resultant force. This stiffness growth function also differed significantly between males and females. This study demonstrates the OroSTIFF 'proof-of-concept' for cost-effective non-invasive stimulus generation and derivation of perioral stiffness in a group of healthy unrestrained adults, and a case study to illustrate the dose-dependent effects of Levodopa on perioral stiffness in an individual with advanced Parkinson's disease who exhibited marked dyskinesia and rigidity. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Chiral approach to nuclear matter: Role of explicit short-range NN-terms

    International Nuclear Information System (INIS)

    Fritsch, S.; Kaiser, N.

    2004-01-01

    We extend a recent chiral approach to nuclear matter by including the most general (momentum-independent) NN-contact interaction. Iterating this two-parameter contact vertex with itself and with one-pion exchange the emerging energy per particle exhausts all terms possible up to and including fourth order in the small momentum expansion. Two (isospin-dependent) cut-offs Λ 0,1 are introduced to regularize the (linear) divergences of some three-loop in-medium diagrams. The equation of state of pure neutron matter, anti E n (k n ), can be reproduced very well up to quite high neutron densities of ρ n =0.5 fm -3 by adjusting the strength of a repulsive nn-contact interaction. Binding and saturation of isospin-symmetric nuclear matter is a generic feature of our perturbative calculation. Fixing the maximum binding energy per particle to - anti E(k f0 )=15.3 MeV we find that any possible equilibrium density ρ 0 lies below ρ 0 max =0.191 fm -3 . The additional constraint from the neutron matter equation of state leads however to a somewhat too low saturation density of ρ 0 =0.134 fm -3 . We also investigate the effects of the NN-contact interaction on the complex single-particle potential U(p,k f )+iW(p,k f ). We find that the effective nucleon mass at the Fermi surface is bounded from below by M * (k f0 ) ≥1.4 M. This property keeps the critical temperature of the liquid-gas phase transition at somewhat too high values T c ≥21 MeV. The downward bending of the asymmetry energy A(k f ) above nuclear-matter saturation density is a generic feature of the approximation to fourth order. We furthermore investigate the effects of the NN-contact interaction on the (vector-∇ρ) 2 -term in the nuclear energy density functional E[ρ,τ]. Altogether, there is within this complete fourth-order calculation no ''magic'' set of adjustable short-range parameters with which one could reproduce simultaneously and accurately all semi-empirical properties of nuclear matter. In

  18. Research of Short-range Missile Motion in Terms of Different Wind Loads

    Directory of Open Access Journals (Sweden)

    A. N. Klishin

    2015-01-01

    Full Text Available When modeling the aircraft motion it is advisable to choose a particular model of the Earth, depending both on the task and on the required accuracy of calculation. The article describes various models of the Earth, such as the flat Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a central gravitational field, spherical and non-rotating Earth, taking into account the polar flattening of the Earth, spherical Earth based compression and polar daily rotation. The article also considers the influence of these models on the motion of the selected aircraft.To date, there is technical equipment to provide highly accurate description of the Earthshape, gravitational field, etc. The improved accuracy of the Earth model description results in more correct description of the trajectory and motion parameters of a ballistic missile. However, for short ranges (10-20 km this accuracy is not essential, and, furthermore, it increases time of calculation. Therefore, there is a problem of choosing the optimal description of the Earth parameters.The motion in the model of the Earth, which takes into account a daily rotation of the planet and polar flattening, is discussed in more detail, and the geographical latitude impact on coordinates of the points of fall of a ballistic missile is analyzed on the basis of obtained graphs.The article individually considers a problem of the wind effect on the aircraft motion and defines dependences of the missile motion on the parameters of different wind loads, such as wind speed and height of its action.A mathematical model of the missile motion was built and numerically integrated, using the Runge-Kutta 4th order method, for implementation and subsequent analysis.Based on the analysis of the calculation results in the abovementioned models of the Earth, differences in impact of these models on the parameters of the

  19. Impacts of Amazonia biomass burning aerosols assessed from short-range weather forecasts

    Directory of Open Access Journals (Sweden)

    S. R. Kolusu

    2015-11-01

    Full Text Available The direct radiative impacts of biomass burning aerosols (BBA on meteorology are investigated using short-range forecasts from the Met Office Unified Model (MetUM over South America during the South American Biomass Burning Analysis (SAMBBA. The impacts are evaluated using a set of three simulations: (i no aerosols, (ii with monthly mean aerosol climatologies and (iii with prognostic aerosols modelled using the Coupled Large-scale Aerosol Simulator for Studies In Climate (CLASSIC scheme. Comparison with observations show that the prognostic CLASSIC scheme provides the best representation of BBA. The impacts of BBA are quantified over central and southern Amazonia from the first and second day of 2-day forecasts during 14 September–3 October 2012. On average, during the first day of the forecast, including prognostic BBA reduces the clear-sky net radiation at the surface by 15 ± 1 W m−2 and reduces net top-of-atmosphere (TOA radiation by 8 ± 1 W m−2, with a direct atmospheric warming of 7 ± 1 W m−2. BBA-induced reductions in all-sky radiation are smaller in magnitude: 9.0 ± 1 W m−2 at the surface and 4.0 ± 1 W m−2 at TOA. In this modelling study the BBA therefore exert an overall cooling influence on the Earth–atmosphere system, although some levels of the atmosphere are directly warmed by the absorption of solar radiation. Due to the reduction of net radiative flux at the surface, the mean 2 m air temperature is reduced by around 0.1 ± 0.02 °C. The BBA also cools the boundary layer (BL but warms air above by around 0.2 °C due to the absorption of shortwave radiation. The overall impact is to reduce the BL depth by around 19 ± 8 m. These differences in heating lead to a more anticyclonic circulation at 700 hPa, with winds changing by around 0.6 m s−1. Inclusion of climatological or prognostic BBA in the MetUM makes a small but significant improvement in forecasts of temperature and relative humidity, but improvements were

  20. Short Range-Ordered Minerals: Insight into Aqueous Alteration Processes on Mars

    Science.gov (United States)

    Ming, Douglas W.; Morris, R. V.; Golden, D. C.

    2011-01-01

    Short range-ordered (SRO) aluminosilicates (e.g., allophane) and nanophase ferric oxides (npOx) are common SRO minerals derived during aqueous alteration of basaltic materials. NpOx refers to poorly crystalline or amorphous alteration products that can be any combination of superparamagnetic hematite and/or goethite, akaganeite, schwertmannite, ferrihydrite, iddingsite, and nanometer-sized ferric oxide particles that pigment palagonitic tephra. Nearly 30 years ago, SRO phases were suggested as alteration phases on Mars based on similar spectral properties for altered basaltic tephra on the slopes of Mauna Kea in Hawaii and Martian bright regions measured by Earth-based telescopes. Detailed characterization of altered basaltic tephra on Mauna Kea have identified a variety of alteration phases including allophane, npOx, hisingerite, jarosite, alunite, hematite, goethite, ferrihydrite, halloysite, kaolinite, smectite, and zeolites. The presence of npOx and other Fe-bearing minerals (jarosite, hematite, goethite) was confirmed by the M ssbauer Spectrometer onboard the Mars Exploration Rovers. Although the presence of allophane has not been definitely identified on Mars robotic missions, chemical analysis by the Spirit and Opportunity rovers and thermal infrared spectral orbital measurements suggest the presence of allophane or allophane-like phases on Mars. SRO phases form under a variety of environmental conditions on Earth ranging from cold and arid to warm and humid, including hydrothermal conditions. The formation of SRO aluminosilicates such as allophane (and crystalline halloysite) from basaltic material is controlled by several key factors including activity of water, extent of leaching, Si activity in solution, and available Al. Generally, a low leaching index (e.g., wet-dry cycles) and slightly acidic to alkaline conditions are necessary. NpOx generally form under aqueous oxidative weathering conditions, although thermal oxidative alteration may occasional be

  1. Short range order and phase separation in Ti-rich Ti-Al alloys

    International Nuclear Information System (INIS)

    Liew, H.J.

    1999-01-01

    of the reaction over a range of scales, from the atomic level on which order occurs through to large scale precipitates. Ti-15at%Al displays a phase separation mechanism involving both ordering and chemical phase decomposition which occurs in a time and temperature range that is readily accessible experimentally. Hence this alloy is an appropriate model system on which to conduct fundamental investigations into a complex decomposition mechanism and its kinetics. Both experimental and modelling results show that short range order develops rapidly in the alloy, and is followed by the formation and growth of congruent long range ordered regions of DO 19 structure. At a later stage composition variations form and increase in amplitude through a spinodal mechanism. From these findings, it cannot be ruled out that the observed decomposition sequence is due solely to the kinetics of ordering being more rapid than those of chemical phase separation. However, there are some indications which suggest that a thermodynamic criterion is operating, such that the onset of chemical phase separation occurs only after ordering has been achieved to some extent. The observed mechanism is fully consistent in appearance with the class of reactions known as conditional spinodals. (author)

  2. Ab initio molecular dynamics model for density, elastic properties and short range order of Co-Fe-Ta-B metallic glass thin films

    International Nuclear Information System (INIS)

    Hostert, C; Music, D; Schneider, J M; Bednarcik, J; Keckes, J; Kapaklis, V; Hjörvarsson, B

    2011-01-01

    Density, elastic modulus and the pair distribution function of Co-Fe-Ta-B metallic glasses were obtained by ab initio molecular dynamics simulations and measured for sputtered thin films using x-ray reflectivity, nanoindentation and x-ray diffraction using high energy photons. The computationally obtained density of 8.19 g cm -3 for Co 43 Fe 20 Ta 5.5 B 31.5 and 8.42 g cm -3 for Co 45.5 Fe 24 Ta 6 B 24.5 , as well as the Young’s moduli of 273 and 251 GPa, respectively, are consistent with our experiments and literature data. These data, together with the good agreement between the theoretical and the experimental pair distribution functions, indicate that the model established here is useful to describe the density, elasticity and short range order of Co-Fe-Ta-B metallic glass thin films. Irrespective of the investigated variation in chemical composition, (Co, Fe)-B cluster formation and Co-Fe interactions are identified by density-of-states analysis. Strong bonds within the structural units and between the metallic species may give rise to the comparatively large stiffness. (paper)

  3. Control of strength and stability of emulsion-gels by a combination of long- and short-range interactions

    NARCIS (Netherlands)

    Blijdenstein, T.B.J.; Hendriks, W.P.G.; Linden, van der E.; Vliet, van T.; Aken, van G.A.

    2003-01-01

    This paper discusses the change in phase behavior and mechanical properties of oil-in-water emulsion gels brought about by variation of long- and short-range attractive interactions. The model system studied consisted of oil droplets stabilized by the protein -lactoglobulin (-lg). A long-range

  4. On-chip patch antenna on InP substrate for short-range wireless communication at 140 GHz

    DEFF Research Database (Denmark)

    Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2017-01-01

    This paper presents the design of an on-chip patch antenna on indium phosphide (InP) substrate for short-range wireless communication at 140 GHz. The antenna shows a simulated gain of 5.3 dBi with 23% bandwidth at 140 GHz and it can be used for either direct chip-to-chip communication or chip...

  5. Two-nucleon electromagnetic current in chiral effective field theory: One-pion exchange and short-range contributions

    International Nuclear Information System (INIS)

    Koelling, S.; Epelbaum, E.; Krebs, H.; Meissner, U.-G.

    2011-01-01

    We derive the leading one-loop contribution to the one-pion exchange and short-range two-nucleon electromagnetic current operator in the framework of chiral effective field theory. The derivation is carried out using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.

  6. Short-Range Correlated Magnetic Core-Shell CrO₂/Cr₂O₃ Nanorods: Experimental Observations and Theoretical Considerations.

    Science.gov (United States)

    Gandhi, Ashish C; Li, Tai-Yue; Chan, Ting Shan; Wu, Sheng Yun

    2018-05-09

    With the evolution of synthesis and the critical characterization of core-shell nanostructures, short-range magnetic correlation is of prime interest in employing their properties to develop novel devices and widespread applications. In this regard, a novel approach of the magnetic core-shell saturated magnetization (CSSM) cylinder model solely based on the contribution of saturated magnetization in one-dimensional CrO₂/Cr₂O₃ core-shell nanorods (NRs) has been developed and applied for the determination of core-diameter and shell-thickness. The nanosized effect leads to a short-range magnetic correlation of ferromagnetic core-CrO₂ extracted from CSSM, which can be explained using finite size scaling method. The outcome of this study is important in terms of utilizing magnetic properties for the critical characterization of core-shell nanomagnetic materials.

  7. Changes in structure of the short-range order of the InP melt when heated

    International Nuclear Information System (INIS)

    Glazov, V.M.; Dovletov, K.; Nashel'skij, A.Ya.; Mamedov, M.M.

    1977-01-01

    An investigation of the temperature dependence of the InP viscosity has indicated an ''after-melting'' effect similar to that observed in other A 3 V 5 compounds having a sphalerite structure. The termodynamic parameters of the viscous flow of indium phosphide melt have been calculated, and a suggestion has been made on the loosening of the short-range order structure of the melt during the period preceding solidification. With the similarity in the behaviour of InP and of A 3 Sb compound melts as a basis, a suggestion has been put forward that the influence of the thermal dissociation upon the character of the changes in the short-range order structure directly after transition from the solid to the liquid phase is negligible

  8. Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence

    International Nuclear Information System (INIS)

    Gori-Giorgi, Paola; Savin, Andreas

    2006-01-01

    The combination of density-functional theory with other approaches to the many-electron problem through the separation of the electron-electron interaction into a short-range and a long-range contribution is a promising method, which is raising more and more interest in recent years. In this work some properties of the corresponding correlation energy functionals are derived by studying the electron-electron coalescence condition for a modified (long-range-only) interaction. A general relation for the on-top (zero electron-electron distance) pair density is derived, and its usefulness is discussed with some examples. For the special case of the uniform electron gas, a simple parametrization of the on-top pair density for a long-range only interaction is presented and supported by calculations within the ''extended Overhauser model.'' The results of this work can be used to build self-interaction corrected short-range correlation energy functionals

  9. Introducing a new family of short-range potentials and their numerical solutions using the asymptotic iteration method

    Science.gov (United States)

    Assi, I. A.; Sous, A. J.

    2018-05-01

    The goal of this work is to derive a new class of short-range potentials that could have a wide range of physical applications, specially in molecular physics. The tridiagonal representation approach has been developed beyond its limitations to produce new potentials by requiring the representation of the Schrödinger wave operator to be multidiagonal and symmetric. This produces a family of Hulthén potentials that has a specific structure, as mentioned in the introduction. As an example, we have solved the nonrelativistic wave equation for the new four-parameter short-range screening potential numerically using the asymptotic iteration method, where we tabulated the eigenvalues for both s -wave and arbitrary l -wave cases in tables.

  10. Correlation of optical energy gap with the nearest neighbour short range order in amorphous V2O5 films

    International Nuclear Information System (INIS)

    Dhawan, Sahil; Vedeshwar, Agnikumar G; Tandon, R P

    2011-01-01

    The optical and structural properties of well characterized vacuum-evaporated amorphous V 2 O 5 films were studied in the thickness range 5-500 nm. The structural analyses show that V-O, O-O and V-V nearest neighbour distances defining the short range order vary nonlinearly with film thickness. The optical absorption shows thickness-dependent energy gap (E g ) and the nonlinear behaviour of thickness-dependent E g is similar to that of nearest neighbour distance with film thickness. The E g correlates linearly very well with all the three nearest neighbour distances. The variation of E g with film thickness is attributed to the residual stress in the film which causes the changes in short range order. The change in E g corresponding to the change in V-O distance was found to be 35 eV nm -1 . This change is almost three times of that with V-V distance.

  11. SHORT-RANGE WAKEFIELD IN A FLAT PILLBOX CAVITY GENERATED BY A SUB-RELATIVISTIC BEAM BUNCH

    International Nuclear Information System (INIS)

    WANG, H.; PALMER, R.B.; GALLARDO, J.

    2001-01-01

    The short-range wakefield between two parallel conducting plates generated by a sub-relativistic beam bunch has been solved analytically by the image charge method in time domain. Comparing with the traditional modal analysis in frequency domain, this algorithm simplifies the mathematics and reveals in greater details the physics of electromagnetic field generation, propagation, reflection and causality. The calculated results have an excellent agreement with MAFIA and ABC1 simulations in all range of beam velocities

  12. Investigation into short-range order, electric conductivity and optical absorption edge of indium selenide thin amorphous films

    International Nuclear Information System (INIS)

    Bilyj, M.N.; Didyk, G.V.; Stetsiv, Ya.I.; Yurechko, R.Ya.

    1980-01-01

    Thin amorphous films of InSe have been obtained by the method of discrete vacuum evaporation of about 10 -2 Pa. The short-range order is investigated according to the radial distribution curves. The temperature and film thickness are shown to affect the character of conductivity. The width of the forbidden band determined by the fundamental absorption edge is found to depend on the time of film annealing

  13. Electron irradiation effect on short-range ordering in Cu-Al and Ag-Al alloys

    International Nuclear Information System (INIS)

    Kulish, N.P.; Mel'nikova, N.A.; Petrenko, P.V.; Ryabishchuk, A.L.; Tatarov, A.A.

    1990-01-01

    Method of X-ray diffuse scattering is used to study short-range order variation in Cu-Al and Ag-Al alloys under radiation effect and the following heat treatment. Irradiation was carried out at -40 deg C by 1.6 MeV electrons, fluence of 5x10 7 cm -2 and 0.5 MeV gamma-rays, the dose being 10 7 pH

  14. Estimating Gear Teeth Stiffness

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The estimation of gear stiffness is important for determining the load distribution between the gear teeth when two sets of teeth are in contact. Two factors have a major influence on the stiffness; firstly the boundary condition through the gear rim size included in the stiffness calculation...... and secondly the size of the contact. In the FE calculation the true gear tooth root profile is applied. The meshing stiffness’s of gears are highly non-linear, it is however found that the stiffness of an individual tooth can be expressed in a linear form assuming that the contact length is constant....

  15. The link between exercise and titin passive stiffness.

    Science.gov (United States)

    Lalande, Sophie; Mueller, Patrick J; Chung, Charles S

    2017-09-01

    What is the topic of this review? This review focuses on how in vivo and molecular measurements of cardiac passive stiffness can predict exercise tolerance and how exercise training can reduce cardiac passive stiffness. What advances does it highlight? This review highlights advances in understanding the relationship between molecular (titin-based) and in vivo (left ventricular) passive stiffness, how passive stiffness modifies exercise tolerance, and how exercise training may be therapeutic for cardiac diseases with increased passive stiffness. Exercise can help alleviate the negative effects of cardiovascular disease and cardiovascular co-morbidities associated with sedentary behaviour; this may be especially true in diseases that are associated with increased left ventricular passive stiffness. In this review, we discuss the inverse relationship between exercise tolerance and cardiac passive stiffness. Passive stiffness is the physical property of cardiac muscle to produce a resistive force when stretched, which, in vivo, is measured using the left ventricular end diastolic pressure-volume relationship or is estimated using echocardiography. The giant elastic protein titin is the major contributor to passive stiffness at physiological muscle (sarcomere) lengths. Passive stiffness can be modified by altering titin isoform size or by post-translational modifications. In both human and animal models, increased left ventricular passive stiffness is associated with reduced exercise tolerance due to impaired diastolic filling, suggesting that increased passive stiffness predicts reduced exercise tolerance. At the same time, exercise training itself may induce both short- and long-term changes in titin-based passive stiffness, suggesting that exercise may be a treatment for diseases associated with increased passive stiffness. Direct modification of passive stiffness to improve exercise tolerance is a potential therapeutic approach. Titin passive stiffness itself may

  16. A NEUTRON DIFFRACTION DETERMINATION OF SHORT RANGE ORDER IN A Ni63.7Zr36.3 GLASS

    OpenAIRE

    Bellissent , R.; Bigot , J.; Calvayrac , Y.; Lefebvre , S.; Quivy , A.

    1985-01-01

    A precise determination of the three partial structure factors for the eutectic composition Ni63.7Zr36.3 has been carried out using neutron diffraction on three isotopically substituted glasses. The use of a "zero alloy" yields a direct determination of the Bhatia-Thornton structure factor SCC. Evidence for the existence of strong chemical short-range order and a clear size effect is obtained. Due to this chemical order, the partial structure factors cannot be consistent with the ones calcula...

  17. Assessment of oscillator strengths with multiconfigurational short-range density functional theory for electronic excitations in organic molecules

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan

    2017-01-01

    considered the large collection of organic molecules whose excited states were investigated with a range of electronic structure methods by Thiel et al. As a by-product of our calculations of oscillator strengths, we also obtain electronic excitation energies, which enable us to compare the performance......We have in a series of recent papers investigated electronic excited states with a hybrid between a complete active space self-consistent field (CASSCF) wave function and density functional theory (DFT). This method has been dubbed the CAS short-range DFT method (CAS–srDFT). The previous papers...

  18. A short-range weather prediction system for South Africa based on a multi-model approach

    CSIR Research Space (South Africa)

    Landman, S

    2012-10-01

    Full Text Available stream_source_info Landman5_2012.pdf.txt stream_content_type text/plain stream_size 44898 Content-Encoding ISO-8859-1 stream_name Landman5_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 1 A short... to be skillful. Moreover, the system outscores the forecast skill of the individual models. Keywords: short-range, ensemble, forecasting, precipitation, multi-model, verification Tel: +27 12 367 6054...

  19. Mean-Field Theory of Electrical Double Layer In Ionic Liquids with Account of Short-Range Correlations

    International Nuclear Information System (INIS)

    Goodwin, Zachary A.H.; Feng, Guang; Kornyshev, Alexei A.

    2017-01-01

    We develop the theory of the electrical double layer in ionic liquids as proposed earlier by Kornyshev (2007). In the free energy function we keep the so called ‘short-range correlation terms’ which were omitted there. With some simplifying assumptions, we arrive at a modified expression for differential capacitance, which makes differential capacitance curves less sharply depending on electrode potential and having smaller values at extrema than in the previous theory. This brings the results closer to typical experimental observations, and makes it appealing to use this formalism for treatment of experimental data. Implications on Debye length and the extent of ion paring in ionic liquids are then briefly discussed.

  20. Modeling Short-Range Soil Variability and its Potential Use in Variable-Rate Treatment of Experimental Plots

    Directory of Open Access Journals (Sweden)

    A Moameni

    2011-02-01

    Full Text Available Abstract In Iran, the experimental plots under fertilizer trials are managed in such a way that the whole plot area uniformly receives agricultural inputs. This could lead to biased research results and hence to suppressing of the efforts made by the researchers. This research was conducted in a selected site belonging to the Gonbad Agricultural Research Station, located in the semiarid region, northeastern Iran. The aim was to characterize the short-range spatial variability of the inherent and management-depended soil properties and to determine if this variation is large and can be managed at practical scales. The soils were sampled using a grid 55 m apart. In total, 100 composite soil samples were collected from topsoil (0-30 cm and were analyzed for calcium carbonate equivalent, organic carbon, clay, available phosphorus, available potassium, iron, copper, zinc and manganese. Descriptive statistics were applied to check data trends. Geostatistical analysis was applied to variography, model fitting and contour mapping. Sampling at 55 m made it possible to split the area of the selected experimental plot into relatively uniform areas that allow application of agricultural inputs with variable rates. Keywords: Short-range soil variability, Within-field soil variability, Interpolation, Precision agriculture, Geostatistics

  1. Evolution of short range order in Ar: Liquid to glass and solid transitions-A computational study

    Science.gov (United States)

    Shor, Stanislav; Yahel, Eyal; Makov, Guy

    2018-04-01

    The evolution of the short range order (SRO) as a function of temperature in a Lennard-Jones model liquid with Ar parameters was determined and juxtaposed with thermodynamic and kinetic properties obtained as the liquid was cooled (heated) and transformed between crystalline solid or glassy states and an undercooled liquid. The Lennard-Jones system was studied by non-equilibrium molecular dynamics simulations of large supercells (approximately 20000 atoms) rapidly cooled or heated at selected quenching rates and at constant pressure. The liquid to solid transition was identified by discontinuities in the atomic volume and molar enthalpy; the glass transition temperature range was identified from the temperature dependence of the self-diffusion. The SRO was studied within the quasi-crystalline model (QCM) framework and compared with the Steinhardt bond order parameters. Within the QCM it was found that the SRO evolves from a bcc-like order in the liquid through a bct-like short range order (c/a=1.2) in the supercooled liquid which persists into the glass and finally to a fcc-like ordering in the crystalline solid. The variation of the SRO that results from the QCM compares well with that obtained with Steinhardt's bond order parameters. The hypothesis of icosahedral order in liquids and glasses is not supported by our results.

  2. Decreased long- and short-range functional connectivity at rest in drug-naive major depressive disorder.

    Science.gov (United States)

    Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Zhang, Zhikun; Yu, Miaoyu; Xue, Zhimin; Zhao, Jingping

    2016-08-01

    Abnormal functional connectivity has been observed in major depressive disorder. Anatomical distance may affect functional connectivity in patients with major depressive disorder. However, whether and how anatomical distance affects functional connectivity at rest remains unclear in drug-naive patients with major depressive disorder. Forty-four patients with major depressive disorder, as well as 44 age-, sex- and education-matched healthy controls, underwent resting-state functional magnetic resonance imaging scanning. Regional functional connectivity strength was calculated for each voxel in the whole brain, which was further divided into short- and long-range functional connectivity strength. The patients showed decreased long-range positive functional connectivity strength in the right inferior parietal lobule, as well as decreased short-range positive functional connectivity strength in the right insula and right superior temporal gyrus relative to those of the controls. No significant correlations existed between abnormal functional connectivity strength and the clinical variables of the patients. The findings revealed that anatomical distance decreases long- and short-range functional connectivity strength in patients with major depressive disorder, which may underlie the neurobiology of major depressive disorder. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  3. Short-range order in the quantum XXZ honeycomb lattice material BaCo2(PO4)2

    Science.gov (United States)

    Nair, Harikrishnan S.; Brown, J. M.; Coldren, E.; Hester, G.; Gelfand, M. P.; Podlesnyak, A.; Huang, Q.; Ross, K. A.

    2018-04-01

    We present observations of highly frustrated quasi-two-dimensional (2D) magnetic correlations in the honeycomb lattice layers of the Seff =1 /2 compound γ -BaCo2(PO4)2 (γ -BCPO). Specific heat shows a broad peak comprised of two weak kink features at TN 1˜6 K and TN 2˜3.5 K, the relative weights of which can be modified by sample annealing. Neutron powder diffraction measurements reveal short range quasi-2D order that is established below TN 1 and TN 2, at which two separate, incompatible, short range magnetic orders onset: commensurate antiferromagnetic correlations with correlation length ξc=60 ±2 Å (TN 1) and in quasi-2D helical domains with ξh=350 ±11 Å (TN 2). The ac magnetic susceptibility response lacks frequency dependence, ruling out spin freezing. Inelastic neutron scattering data on γ -BCPO is compared with linear spin wave theory, and two separate parameter regions of the XXZ J1-J2-J3 model with ferromagnetic nearest-neighbor exchange J1 are favored, both near regions of high classical degeneracy. High energy coherent excitations (˜10 meV) persist up to at least 40 K, suggesting strong in-plane correlations persist above TN. These data show that γ -BCPO is a rare highly frustrated, quasi-2D Seff =1 /2 honeycomb lattice material which resists long range magnetic order and spin freezing.

  4. Ultra-low-power and ultra-low-cost short-range wireless receivers in nanoscale CMOS

    CERN Document Server

    Lin, Zhicheng; Martins, Rui Paulo

    2016-01-01

    This book provides readers with a description of state-of-the-art techniques to be used for ultra-low-power (ULP) and ultra-low-cost (ULC), short-range wireless receivers. Readers will learn what is required to deploy these receivers in short-range wireless sensor networks, which are proliferating widely to serve the internet of things (IoT) for “smart cities.” The authors address key challenges involved with the technology and the typical tradeoffs between ULP and ULC. Three design examples with advanced circuit techniques are described in order to address these trade-offs, which specially focus on cost minimization. These three techniques enable respectively, cascading of radio frequency (RF) and baseband (BB) circuits under an ultra-low-voltage (ULV) supply, cascoding of RF and BB circuits in current domain for current reuse, and a novel function-reuse receiver architecture, suitable for ULV and multi-band ULP applications such as the sub-GHz ZigBee. ·         Summarizes the state-of-the-art i...

  5. Short-range correlations control the G/K and Poisson ratios of amorphous solids and metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zaccone, Alessio; Terentjev, Eugene M. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2014-01-21

    The bulk modulus of many amorphous materials, such as metallic glasses, behaves nearly in agreement with the assumption of affine deformation, namely that the atoms are displaced just by the amount prescribed by the applied strain. In contrast, the shear modulus behaves as for nonaffine deformations, with additional displacements due to the structural disorder which induce a marked material softening to shear. The consequence is an anomalously large ratio of the bulk modulus to the shear modulus for disordered materials characterized by dense atomic packing, but not for random networks with point atoms. We explain this phenomenon with a microscopic derivation of the elastic moduli of amorphous solids accounting for the interplay of nonaffinity and short-range particle correlations due to excluded volume. Short-range order is responsible for a reduction of the nonaffinity which is much stronger under compression, where the geometric coupling between nonaffinity and the deformation field is strong, whilst under shear this coupling is weak. Predictions of the Poisson ratio based on this model allow us to rationalize the trends as a function of coordination and atomic packing observed with many amorphous materials.

  6. Posttraumatic stiff elbow

    Directory of Open Access Journals (Sweden)

    Ravi Mittal

    2017-01-01

    Full Text Available Posttraumatic stiff elbow is a frequent and disabling complication and poses serious challenges for its management. In this review forty studies were included to know about the magnitude of the problem, causes, pathology, prevention, and treatment of posttraumatic stiff elbow. These studies show that simple measures such as internal fixation, immobilization in extension, and early motion of elbow joint are the most important steps that can prevent elbow stiffness. It also supports conservative treatment in selected cases. There are no clear guidelines about the choice between the numerous procedures described in literature. However, this review article disproves two major beliefs-heterotopic ossification is a bad prognostic feature, and passive mobilization of elbow causes elbow stiffness.

  7. Substrate stiffness affects skeletal myoblast differentiation in vitro

    Directory of Open Access Journals (Sweden)

    Sara Romanazzo, Giancarlo Forte, Mitsuhiro Ebara, Koichiro Uto, Stefania Pagliari, Takao Aoyagi, Enrico Traversa and Akiyoshi Taniguchi

    2012-01-01

    Full Text Available To maximize the therapeutic efficacy of cardiac muscle constructs produced by stem cells and tissue engineering protocols, suitable scaffolds should be designed to recapitulate all the characteristics of native muscle and mimic the microenvironment encountered by cells in vivo. Moreover, so not to interfere with cardiac contractility, the scaffold should be deformable enough to withstand muscle contraction. Recently, it was suggested that the mechanical properties of scaffolds can interfere with stem/progenitor cell functions, and thus careful consideration is required when choosing polymers for targeted applications. In this study, cross-linked poly-ε-caprolactone membranes having similar chemical composition and controlled stiffness in a supra-physiological range were challenged with two sources of myoblasts to evaluate the suitability of substrates with different stiffness for cell adhesion, proliferation and differentiation. Furthermore, muscle-specific and non-related feeder layers were prepared on stiff surfaces to reveal the contribution of biological and mechanical cues to skeletal muscle progenitor differentiation. We demonstrated that substrate stiffness does affect myogenic differentiation, meaning that softer substrates can promote differentiation and that a muscle-specific feeder layer can improve the degree of maturation in skeletal muscle stem cells.

  8. Digital predistortion of 75–110 GHz W-band frequency multiplier for fiber wireless short range access systems

    DEFF Research Database (Denmark)

    Zhao, Ying; Deng, Lei; Pang, Xiaodan

    2011-01-01

    be effectively pre-compensated. Without using costly W-band components, a transmission system with 26km fiber and 4m wireless transmission operating at 99.6GHz is experimentally validated. Adjacent-channel power ratio (ACPR) improvements for IQ-modulated vector signals are guaranteed and transmission......We present a W-band fiber-wireless transmission system based on a nonlinear frequency multiplier for high-speed wireless short range access applications. By implementing a baseband digital signal predistortion scheme, intensive nonlinear distortions induced in a sextuple frequency multiplier can...... performances for fiber and wireless channels are studied. This W-band predistortion technique is a promising candidate for applications in high capacity wireless-fiber access systems....

  9. Analyses of kinetic glass transition in short-range attractive colloids based on time-convolutionless mode-coupling theory.

    Science.gov (United States)

    Narumi, Takayuki; Tokuyama, Michio

    2017-03-01

    For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant, the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the volume fraction. In addition, a schematic model of three control parameters is investigated analytically. It is thus confirmed that TMCT can describe the glass-glass transition and higher-order singularities even in such a schematic model.

  10. Relationship between Magnetic Anisotropy below Pseudogap Temperature and Short-Range Antiferromagnetic Order in High-Temperature Cuprate Superconductor

    Science.gov (United States)

    Morinari, Takao

    2018-06-01

    The central issue in high-temperature cuprate superconductors is the pseudogap state appearing below the pseudogap temperature T*, which is well above the superconducting transition temperature. In this study, we theoretically investigate the rapid increase of the magnetic anisotropy below the pseudogap temperature detected by the recent torque-magnetometry measurements on YBa2Cu3Oy [Y. Sato et al., 10.1038/nphys4205" xlink:type="simple">Nat. Phys. 13, 1074 (2017)]. Applying the spin Green's function formalism including the Dzyaloshinskii-Moriya interaction arising from the buckling of the CuO2 plane, we obtain results that are in good agreement with the experiment and find a scaling relationship. Our analysis suggests that the characteristic temperature associated with the magnetic anisotropy, which coincides with T*, is not a phase transition temperature but a crossover temperature associated with the short-range antiferromagnetic order.

  11. One-level modeling for diagnosing surface winds over complex terrain. II - Applicability to short-range forecasting

    Science.gov (United States)

    Alpert, P.; Getenio, B.; Zak-Rosenthal, R.

    1988-01-01

    The Alpert and Getenio (1988) modification of the Mass and Dempsey (1985) one-level sigma-surface model was used to study four synoptic events that included two winter cases (a Cyprus low and a Siberian high) and two summer cases. Results of statistical verification showed that the model is not only capable of diagnosing many details of surface mesoscale flow, but might also be useful for various applications which require operative short-range prediction of the diurnal changes of high-resolution surface flow over complex terrain, for example, in locating wildland fires, determining the dispersion of air pollutants, and predicting changes in wind energy or of surface wind for low-level air flights.

  12. Short-range order in ab initio computer generated amorphous and liquid Cu–Zr alloys: A new approach

    International Nuclear Information System (INIS)

    Galván-Colín, Jonathan; Valladares, Ariel A.; Valladares, Renela M.; Valladares, Alexander

    2015-01-01

    Using ab initio molecular dynamics and a new approach based on the undermelt-quench method we generated amorphous and liquid samples of Cu x Zr 100−x (x=64, 50, 36) alloys. We characterized the topology of our resulting structures by means of the pair distribution function and the bond-angle distribution; a coordination number distribution was also calculated. Our results for both amorphous and liquids agree well with experiment. Dependence of short-range order with the concentration is reported. We found that icosahedron-like geometry plays a major role whenever the alloys are Cu-rich or Zr-rich disregarding if the samples are amorphous or liquid. The validation of these results, in turn would let us calculate other properties so far disregarded in the literature

  13. Short-range order in ab initio computer generated amorphous and liquid Cu–Zr alloys: A new approach

    Energy Technology Data Exchange (ETDEWEB)

    Galván-Colín, Jonathan, E-mail: jgcolin@ciencias.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México, D.F. 04510, México (Mexico); Valladares, Ariel A., E-mail: valladar@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México, D.F. 04510, México (Mexico); Valladares, Renela M.; Valladares, Alexander [Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, México, D.F. 04510, México (Mexico)

    2015-10-15

    Using ab initio molecular dynamics and a new approach based on the undermelt-quench method we generated amorphous and liquid samples of Cu{sub x}Zr{sub 100−x} (x=64, 50, 36) alloys. We characterized the topology of our resulting structures by means of the pair distribution function and the bond-angle distribution; a coordination number distribution was also calculated. Our results for both amorphous and liquids agree well with experiment. Dependence of short-range order with the concentration is reported. We found that icosahedron-like geometry plays a major role whenever the alloys are Cu-rich or Zr-rich disregarding if the samples are amorphous or liquid. The validation of these results, in turn would let us calculate other properties so far disregarded in the literature.

  14. Role of long- and short-range hydrophobic, hydrophilic and charged residues contact network in protein’s structural organization

    Directory of Open Access Journals (Sweden)

    Sengupta Dhriti

    2012-06-01

    Full Text Available Abstract Background The three-dimensional structure of a protein can be described as a graph where nodes represent residues and the strength of non-covalent interactions between them are edges. These protein contact networks can be separated into long and short-range interactions networks depending on the positions of amino acids in primary structure. Long-range interactions play a distinct role in determining the tertiary structure of a protein while short-range interactions could largely contribute to the secondary structure formations. In addition, physico chemical properties and the linear arrangement of amino acids of the primary structure of a protein determines its three dimensional structure. Here, we present an extensive analysis of protein contact subnetworks based on the London van der Waals interactions of amino acids at different length scales. We further subdivided those networks in hydrophobic, hydrophilic and charged residues networks and have tried to correlate their influence in the overall topology and organization of a protein. Results The largest connected component (LCC of long (LRN-, short (SRN- and all-range (ARN networks within proteins exhibit a transition behaviour when plotted against different interaction strengths of edges among amino acid nodes. While short-range networks having chain like structures exhibit highly cooperative transition; long- and all-range networks, which are more similar to each other, have non-chain like structures and show less cooperativity. Further, the hydrophobic residues subnetworks in long- and all-range networks have similar transition behaviours with all residues all-range networks, but the hydrophilic and charged residues networks don’t. While the nature of transitions of LCC’s sizes is same in SRNs for thermophiles and mesophiles, there exists a clear difference in LRNs. The presence of larger size of interconnected long-range interactions in thermophiles than mesophiles, even at

  15. Competition between crystallization and glassification for particles with short-ranged attraction. Possible applications to protein crystallization

    Science.gov (United States)

    Zaccarelli, E.; Sciortino, F.; Tartaglia, P.; Foffi, G.; McCullagh, G. D.; Lawlor, A.; Dawson, K. A.

    2002-11-01

    We discuss the phase behaviour of spherical hard-core particles, with an attractive potential, as described by a hard-core Yukawa model. The ratio of the range of the attraction to the diameter of the particles is an important control parameter of the problem. Upon decreasing the range of the attraction, the phase diagram changes quite significantly, with the liquid-gas transition becoming metastable, and the crystal being in equilibrium with the fluid, with no intervening liquid. We also study the glass transition lines and, crucially, find that the situation, being very simple for pure repulsive potentials, becomes much richer in competition between glass and crystal phases for short-range attractions. Also a transition between attractive and repulsive glass appears somewhat in analogy with the isostructural equilibrium transition between two crystals.

  16. Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay.

    Directory of Open Access Journals (Sweden)

    J Matthew Mahoney

    Full Text Available Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation.

  17. Short-range order in alloys of nickel with the elements of group VIII of the periodic table

    International Nuclear Information System (INIS)

    Khwaja, F.A.

    1981-08-01

    Experimental measurements of the diffuse X-ray scattering intensity were performed on alloys of Ni with Rh and Os. The atomic short-range order (SRO) parameters αsub(i) and the size-effect parameters βsub(i) were calculated from these measurements. It is established that SRO and size-effect exist in Ni-Rh and Ni-Os alloys analogously as in a few other alloys of Ni with the elements of group VIII of the periodic table. The experimental data was interpreted theoretically by calculating the interaction energies from the pseudo-potentials and the effective valencies of the individual components of the systems studied. It was found that theoretically calculated values of the interaction energies for these alloys are inconsistent with the experimentally determined sign of the SRO parameter. (author)

  18. Analysis of long- and short-range contribution to adhesion work in cardiac fibroblasts: An atomic force microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Sbaizero, O., E-mail: sbaizero@units.it [Department of Engineering and Architecture, University of Trieste (Italy); University of Colorado Cardiovascular Institute, University of Colorado Denver, Aurora (United States); DelFavero, G. [Department of Engineering and Architecture, University of Trieste (Italy); Martinelli, V. [International Center for Genetic Engineering and Biotechnology, Trieste (Italy); Long, C.S.; Mestroni, L. [University of Colorado Cardiovascular Institute, University of Colorado Denver, Aurora (United States)

    2015-04-01

    Atomic force microscopy (AFM) for single-cell force spectroscopy (SCFS) and Poisson statistic were used to analyze the detachment work recorded during the removal of gold-covered microspheres from cardiac fibroblasts. The effect of Cytochalasin D, a disruptor of the actin cytoskeleton, on cell adhesion was also tested. The adhesion work was assessed using a Poisson analysis also derived from single-cell force spectroscopy retracting curves. The use of Poisson analysis to get adhesion work from AFM curves is quite a novel method, and in this case, proved to be effective to study the short-range and long-range contributions to the adhesion work. This method avoids the difficult identification of minor peaks in the AFM retracting curves by creating what can be considered an average adhesion work. Even though the effect of actin depolymerisation is well documented, its use revealed that control cardiac fibroblasts (CT) exhibit a work of adhesion at least 5 times higher than that of the Cytochalasin treated cells. However, our results indicate that in both cells short-range and long-range contributions to the adhesion work are nearly equal and the same heterogeneity index describes both cells. Therefore, we infer that the different adhesion behaviors might be explained by the presence of fewer membrane adhesion molecules available at the AFM tip–cell interface under circumstances where the actin cytoskeleton has been disrupted. - Highlights: • AFM force–deformation curve was used to characterize the cardiac fibroblast adhesion behavior. • The amount and nature of adhesion were assessed using a Poisson analysis applied to the AFM curve. • The work of adhesion for control cells was about four times higher than that of the Cyt-D treated cells. • Short- and long-range contributions to adhesion are nearly equal for both control and treated cells.

  19. Direct measurement of the intrinsic ankle stiffness during standing.

    Science.gov (United States)

    Vlutters, M; Boonstra, T A; Schouten, A C; van der Kooij, H

    2015-05-01

    Ankle stiffness contributes to standing balance, counteracting the destabilizing effect of gravity. The ankle stiffness together with the compliance between the foot and the support surface make up the ankle-foot stiffness, which is relevant to quiet standing. The contribution of the intrinsic ankle-foot stiffness to balance, and the ankle-foot stiffness amplitude dependency remain a topic of debate in the literature. We therefore developed an experimental protocol to directly measure the bilateral intrinsic ankle-foot stiffness during standing balance, and determine its amplitude dependency. By applying fast (40 ms) ramp-and-hold support surface rotations (0.005-0.08 rad) during standing, reflexive contributions could be excluded, and the amplitude dependency of the intrinsic ankle-foot stiffness was investigated. Results showed that reflexive activity could not have biased the torque used for estimating the intrinsic stiffness. Furthermore, subjects required less recovery action to restore balance after bilateral rotations in opposite directions compared to rotations in the same direction. The intrinsic ankle-foot stiffness appears insufficient to ensure balance, ranging from 0.93±0.09 to 0.44±0.06 (normalized to critical stiffness 'mgh'). This implies that changes in muscle activation are required to maintain balance. The non-linear stiffness decrease with increasing rotation amplitude supports the previous published research. With the proposed method reflexive effects can be ruled out from the measured torque without any model assumptions, allowing direct estimation of intrinsic stiffness during standing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effects of Age, Sex, and Body Position on Orofacial Muscle Tone in Healthy Adults

    Science.gov (United States)

    Dietsch, Angela M.; Clark, Heather M.; Steiner, Jessica N.; Solomon, Nancy Pearl

    2015-01-01

    Purpose: Quantification of tissue stiffness may facilitate identification of abnormalities in orofacial muscle tone and thus contribute to differential diagnosis of dysarthria. Tissue stiffness is affected by muscle tone as well as age-related changes in muscle and connective tissue. Method: The Myoton-3 measured tissue stiffness in 40 healthy…

  1. Short-range order in Fe-based metallic glasses: Wide-angle X-ray scattering studies

    International Nuclear Information System (INIS)

    Babilas, Rafał; Hawełek, Łukasz; Burian, Andrzej

    2014-01-01

    The local atomic structure of the Fe 80 B 20 , Fe 70 Nb 10 B 20 and Fe 62 Nb 8 B 30 glasses prepared in the form of ribbons has been studied by wide-angle X-ray scattering. Structural information about the amorphous ribbons has been derived from analysis of the radial distribution functions using the least-squares curve-fitting method. The obtained structural parameters indicate that Fe–Fe, Fe–B, Fe–Nb and Nb–B contributions are involved in the near-neighbor coordination spheres. The possible similarities of the local atomic arrangement in the investigated glasses and the crystalline Fe 3 B, Fe 23 B 6 and bcc Fe structures are also discussed. - Graphical abstract: Pair distribution functions (a) and best-fit model and experimental radial distribution functions for Fe 80 B 20 (b), Fe 70 Nb 10 B 20 (c) and Fe 62 Nb 8 B 30 (d) metallic glasses. - Highlights: • The short-range ordering in the Fe-based metallic glasses is presented. • The results of RDF function have been analyzed using the least-squares method. • The Fe–Fe, Fe–B, Fe–Nb or Nb–B contributions are involved in coordination spheres. • The structural unit is distorted triangular prism containing B, Fe or Nb atoms. • Similarities of atomic arrangement in glassy and crystalline structures are discussed

  2. Analog Circuit Design Low Voltage Low Power; Short Range Wireless Front-Ends; Power Management and DC-DC

    CERN Document Server

    Roermund, Arthur; Baschirotto, Andrea

    2012-01-01

    The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design.  Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of Low-Voltage Low-Power Data Converters - Chaired by Prof. Anderea Baschirotto, University of Milan-Bicocca Short Range Wireless Front-Ends - Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Power management and DC-DC - Chaired by Prof. M. Steyaert, Katholieke University Leuven Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.

  3. On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification

    International Nuclear Information System (INIS)

    Aziz, M.J.; Boettinger, W.J.

    1994-01-01

    Short-range diffusion-limited growth, collision-limited growth, and the transition between the two regimes are explained as natural consequences of a single model for the kinetics of alloy solidification. Analytical expressions are developed for the velocity-undercooling function of a planar interface during dilute alloy solidification, using Turnbull's collision-limited growth model and the Continuous Growth Solute Trapping Model of Aziz and Kaplan both with and without a solute drag effect. The interface mobility, -dv/dT, is shown to be very high (proportional to the speed of sound) if the alloy is sufficiently dilute or if the growth rate is sufficiently rapid for nearly complete solute trapping. The interface mobility is reduced by the three orders of magnitude (becoming proportional to the diffusive speed) at intermediate growth rates where partial solute trapping occurs. Differences in low velocity predictions of the models with and without solute drag are also discussed. Comparison of the results of the analytical expressions to numerical solutions of the non-dilute kinetic model for Al-Be alloys shows that the dilute approximation breaks down at melt compositions on the order of 10 at.%. Similar variations in the interface mobility are shown for the disorder-trapping model of Boettinger and Aziz

  4. Development and Short-Range Testing of a 100 kW Side-Illuminated Millimeter-Wave Thermal Rocket

    Science.gov (United States)

    Bruccoleri, Alexander; Eilers, James A.; Lambot, Thomas; Parkin, Kevin

    2015-01-01

    The objective of the phase described here of the Millimeter-Wave Thermal Launch System (MTLS) Project was to launch a small thermal rocket into the air using millimeter waves. The preliminary results of the first MTLS flight vehicle launches are presented in this work. The design and construction of a small thermal rocket with a planar ceramic heat exchanger mounted along the axis of the rocket is described. The heat exchanger was illuminated from the side by a millimeter-wave beam and fed propellant from above via a small tank containing high pressure argon or nitrogen. Short-range tests where the rocket was launched, tracked, and heated with the beam are described. The rockets were approximately 1.5 meters in length and 65 millimeters in diameter, with a liftoff mass of 1.8 kilograms. The rocket airframes were coated in aluminum and had a parachute recovery system activated via a timer and Pyrodex. At the rocket heat exchanger, the beam distance was 40 meters with a peak power intensity of 77 watts per square centimeter. and a total power of 32 kilowatts in a 30 centimeter diameter circle. An altitude of approximately 10 meters was achieved. Recommendations for improvements are discussed.

  5. Correlation between short-range order, optical properties and UV-absorption ability in tellurate glasses; Poster M7

    Energy Technology Data Exchange (ETDEWEB)

    Burger, H; Tews, W; Vogel, W; Kozhukharov, V [Jena Univ. (Germany)

    1989-01-01

    Tellurate glasses, with as second components Al[sub 2]O[sub 3], PbO, PbF[sub 2], PbCl[sub 2], PbBr[sub 2], PbSO[sub 4], ZnO, B[sub 2]O[sub 3], P[sub 2]O[sub 5], Li[sub 2]O, Na[sub 2]O, K[sub 2]O, MgO and BaO as well as some glasses from ternary TeO[sub 2]-P[sub 2]O[sub 5]-RO systems (R is Pb, Ba and Zn ions), have been investigated. Transmittance spectra in UV and VIS region of some selected glasses have been measured. A correlation between optical properties and UV absorption edge of the transmittance have been done. Using p[sup 31]-NMR spectroscopy the structural changes on short-range level order are studied. A strong influence on the refraction and dispersion values as well as UV-absorption ability of the glasses is established. For p[sup 31] -NMR spectroscopy investigations of crystalline phosphotellurites and related phosphotellurite glasses the TeO[sub 2]-P[sub 2]O[sub 5B]aO ternary system have been chosen. (author).

  6. Primer and short-range releaser pheromone properties of premolt female urine from the shore crab Carcinus maenas.

    Science.gov (United States)

    Ekerholm, Mattias; Hallberg, Eric

    2005-08-01

    The European shore crab Carcinus maenas is considered to rely on a female pheromone when mating. Evidence, however, is scarce on how the urine pheromone in itself affects males. We investigated male primer and releaser responses to female pheromones with methods that minimized effects from females, delivering female urine either as a pump-generated plume or deposited on a polyurethane sponge. We delivered the pheromone at different concentrations in far, near, and close/contact range to get a picture of how distance affects behavioral response. Our results show that substances in premolt female urine (PMU) function as primer and potent short-range releaser pheromones. Based on the olfactometer and sponge tests, we conclude that PMU stimulus in itself is sufficient to elicit increased search and mating-specific behaviors such as posing, posing search, cradle carrying, and stroking. Pheromone concentrations do not seem to be important for attenuating search and posing as long as the level is above a certain threshold concentration. Instead, pheromone levels seem to play a role in male acceptance of females, recruiting more males to respond, and generating better responses with increasing concentration.

  7. Short-range remote spectral sensor using mid-infrared semiconductor lasers with orthogonal code-division multiplexing approach

    Science.gov (United States)

    Morbi, Zulfikar; Ho, D. B.; Ren, H.-W.; Le, Han Q.; Pei, Shin Shem

    2002-09-01

    Demonstration of short-range multispectral remote sensing, using 3 to 4-micrometers mid- infrared Sb semiconductor lasers based on code-division multiplexing (CDM) architecture, is described. The system is built on a principle similar to intensity- modulated/direct-detection optical-CDMA for communications, but adapted for sensing with synchronous, orthogonal codes to distinguish different wavelength channels with zero interchannel correlation. The concept is scalable for any number of channels, and experiments with a two-wavelength system are conducted. The CDM-signal processing yielded a white-Gaussian-like system noise that is found to be near the theoretical level limited by the detector fundamental intrinsic noise. With sub-mW transmitter average power, the system was able to detect an open-air acetylene gas leak of 10-2 STP ft3/hr from 10-m away with time-varying, random, noncooperative backscatters. A similar experiment detected and positively distinguished hydrocarbon oil contaminants on water from bio-organic oils and detergents. Projection for more advanced systems suggests a multi-kilometer-range capability for watt-level transmitters, and hundreds of wavelength channels can also be accommodated for active hyperspectral remote sensing application.

  8. Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales?

    Science.gov (United States)

    Hewitt, Helene T.; Bell, Michael J.; Chassignet, Eric P.; Czaja, Arnaud; Ferreira, David; Griffies, Stephen M.; Hyder, Pat; McClean, Julie L.; New, Adrian L.; Roberts, Malcolm J.

    2017-12-01

    As the importance of the ocean in the weather and climate system is increasingly recognised, operational systems are now moving towards coupled prediction not only for seasonal to climate timescales but also for short-range forecasts. A three-way tension exists between the allocation of computing resources to refine model resolution, the expansion of model complexity/capability, and the increase of ensemble size. Here we review evidence for the benefits of increased ocean resolution in global coupled models, where the ocean component explicitly represents transient mesoscale eddies and narrow boundary currents. We consider lessons learned from forced ocean/sea-ice simulations; from studies concerning the SST resolution required to impact atmospheric simulations; and from coupled predictions. Impacts of the mesoscale ocean in western boundary current regions on the large-scale atmospheric state have been identified. Understanding of air-sea feedback in western boundary currents is modifying our view of the dynamics in these key regions. It remains unclear whether variability associated with open ocean mesoscale eddies is equally important to the large-scale atmospheric state. We include a discussion of what processes can presently be parameterised in coupled models with coarse resolution non-eddying ocean models, and where parameterizations may fall short. We discuss the benefits of resolution and identify gaps in the current literature that leave important questions unanswered.

  9. Short-ranged structural rearrangement and enhancement of mechanical properties of organosilicate glasses induced by ultraviolet radiation

    International Nuclear Information System (INIS)

    Iacopi, F.; Travaly, Y.; Eyckens, B.; Waldfried, C.; Abell, T.; Guyer, E.P.; Gage, D.M.; Dauskardt, R.H.; Sajavaara, T.; Houthoofd, K.; Grobet, P.; Jacobs, P.; Maex, K.

    2006-01-01

    The short-ranged bonding structure of organosilicate glasses can vary to a great extent and is directly linked to the mechanical properties of the thin film material. The combined action of ultraviolet (UV) radiation and thermal activation is shown to generate a pronounced rearrangement in the bonding structure of thin organosilicate glass films involving no significant compositional change or film densification. Nuclear magnetic resonance spectroscopy indicates loss of -OH groups and an increase of the degree of cross-linking of the organosilicate matrix for UV-treated films. Fourier transform infrared spectroscopy shows a pronounced enhancement of the Si-O-Si network bond structure, indicating the formation of more energetically stable silica bonds. Investigation with x-ray reflectivity and ellipsometric porosimetry indicated only minor film densification. As a consequence, the mechanical properties of microporous organosilicate dielectric films are substantially enhanced while preserving the organosilicate nature and pristine porosity of the films. UV-treated films show an increase in elastic modulus and hardness of more than 40%, and a similar improvement in fracture energy compared to untreated films. A minor increase in material dielectric constant from 3.0 to 3.15 was observed after UV treatment. This mechanism is of high relevance for the application of organosilicate glasses as dielectric materials for microelectronics interconnects, for which a high mechanical stability and a low dielectric constant are both essential film requirements

  10. Effect of short-range ordering on the electrical conductivity and superconducting properties of Nb6C5 single crystals

    International Nuclear Information System (INIS)

    Utkina, T.G.

    1995-01-01

    Niobium carbide, NbC x , belongs to the family of so called interstital phases. Metal atoms form a face-centered cubic lattice, whose octahedral interstices are occupied by carbon atoms. The fraction (1 - x) of interstices remain vacant, and this determines the nonstoichiometry of these phases: most of them are characterized by a wide homogeneity range, 0.70 m ≅ 3308 - 3886 K). In contrast, the metalloid atoms exhibit high mobility at relatively low temperatures. For compositions close to Nb 6 C 5 (0.81 O-D ≅ 1300 K. The presence of vacancies in the carbon sublattice considerably affects the physical properties of carbides, which depend not only on total vacancy concentration but also on their distribution, i.e., on the degree of ordering (both short-range and long-range order) in the metalloid sublattice. The purpose of this work is to study the effects of such ordering on the superconducting properties of Nb 6 C 5 single crystals

  11. Stiff quantum polymers

    OpenAIRE

    Kleinert, H.

    2009-01-01

    At ultralow temperatures, polymers exhibit quantum behavior, which is calculated here for the second and fourth moments of the end-to-end distribution in the large-stiffness regime. The result should be measurable for polymers in wide optical traps.

  12. Design of a Variable Stiffness Soft Dexterous Gripper

    Science.gov (United States)

    Nefti-Meziani, Samia; Davis, Steve

    2017-01-01

    Abstract This article presents the design of a variable stiffness, soft, three-fingered dexterous gripper. The gripper uses two designs of McKibben muscles. Extensor muscles that increase in length when pressurized are used to form the fingers of the gripper. Contractor muscles that decrease in length when pressurized are then used to apply forces to the fingers through tendons, which cause flexion and extension of the fingers. The two types of muscles are arranged to act antagonistically and this means that by raising the pressure in all of the pneumatic muscles, the stiffness of the system can be increased without a resulting change in finger position. The article presents the design of the gripper, some basic kinematics to describe its function, and then experimental results demonstrating the ability to adjust the bending stiffness of the gripper's fingers. It has been demonstrated that the fingers' bending stiffness can be increased by more than 150%. The article concludes by demonstrating that the fingers can be closed loop position controlled and are able to track step and sinusoidal inputs. PMID:29062630

  13. Triceps-surae musculotendinous stiffness: relative differences between obese and non-obese postmenopausal women.

    Science.gov (United States)

    Faria, Aurélio; Gabriel, Ronaldo; Abrantes, João; Brás, Rui; Moreira, Helena

    2009-12-01

    There is a lack of research into the relationship between obesity and muscle-tendon unit stiffness in postmenopausal women. Muscle-tendon unit stiffness appears to affect human motion performance and excessive and insufficient stiffness can increase the risk of bone and soft tissue injuries, respectively. The aim of this study was to investigate the relationship between muscle-tendon unit stiffness and obesity in postmenopausal women. 105 postmenopausal women (58 [SD 5.5] years) participated. Four groups (normal weight, pre-obese, obesity class I and obesity class II) were defined according World Health Organization classification of body mass index. The ankle muscle-tendon unit stiffness was assessed in vivo with a free oscillation technique using a load of 30% of maximal voluntary isometric contraction. ANOVA shows significant difference in muscle-tendon unit stiffness among the groups defined (Pnormal weight-pre-obese; normal weight-obesity class I and normal weight-obesity class II. The normal weight group had stiffness of 15789 (SD 2969) N/m, pre-obese of 19971 (SD 3678) N/m, obesity class I of 21435 (SD 4295) N/m, and obesity class II of 23497 (SD 1776) N/m. Obese subjects may have increased muscle-tendon unit stiffness because of fat infiltration in leg skeletal muscles, range of motion restrictions and stability/posture reasons and might be more predisposed to develop musculoskeletal injuries. Normal weight group had identical stiffness values to those reported in studies where subjects were not yet menopausal, suggesting that stiffness might not be influenced by menopause.

  14. Relationship between Static Stiffness and Modal Stiffness of Structures

    Directory of Open Access Journals (Sweden)

    Tianjian Ji Tianjian Ji

    2010-02-01

    Full Text Available This paper derives the relationship between the static stiffness and modal stiffness of a structure. The static stiffness and modal stiffness are two important concepts in both structural statics and dynamics. Although both stiffnesses indicate the capacity of the structure to resist deformation, they are obtained using different methods. The former is calculated by solving the equations of equilibrium and the latter can be obtained by solving an eigenvalue problem. A mathematical relationship between the two stiffnesses was derived based on the definitions of two stiffnesses. This relationship was applicable to a linear system and the derivation of relationships does not reveal any other limitations. Verification of the relationship was given by using several examples. The relationship between the two stiffnesses demonstrated that the modal stiffness of the fundamental mode was always larger than the static stiffness of a structure if the critical point and the maximum mode value are at the same node, i.e. for simply supported beam and seven storeys building are 1.5% and 15% respectively. The relationship could be applied into real structures, where the greater the number of modes being considered, the smaller the difference between the modal stiffness and the static stiffness of a structure.

  15. Simulation study of signal formation in position sensitive planar p-on-n silicon detectors after short range charge injection

    International Nuclear Information System (INIS)

    Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.

    2017-01-01

    Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20–25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30–60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p + implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO 2 interface charge densities ( Q f ) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p + implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Q f , that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.

  16. Simulation study of signal formation in position sensitive planar p-on-n silicon detectors after short range charge injection

    Science.gov (United States)

    Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.

    2017-09-01

    Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20-25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30-60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p+ implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO2 interface charge densities (Qf) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p+ implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Qf, that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.

  17. Thermal ageing and short-range ordering of Alloy 690 between 350 and 550 °C

    Energy Technology Data Exchange (ETDEWEB)

    Mouginot, Roman, E-mail: roman.mouginot@aalto.fi [Aalto University School of Engineering, Department of Mechanical Engineering, Otakaari 4, 02150 Espoo (Finland); Sarikka, Teemu [Aalto University School of Engineering, Department of Mechanical Engineering, Otakaari 4, 02150 Espoo (Finland); Heikkilä, Mikko [University of Helsinki, Laboratory of Inorganic Chemistry, A.I.Virtasen Aukio 1, 00560 Helsinki (Finland); Ivanchenko, Mykola; Ehrnstén, Ulla [VTT Technical Research Centre of Finland LTD, Kemistintie 3, 02150 Espoo (Finland); Kim, Young Suk; Kim, Sung Soo [Korea Atomic Energy Research Institute, Daedeok-Daero, 989-111, Yuseong, Daejeon, 34057 (Korea, Republic of); Hänninen, Hannu [Aalto University School of Engineering, Department of Mechanical Engineering, Otakaari 4, 02150 Espoo (Finland)

    2017-03-15

    Thermal ageing of Alloy 690 triggers an intergranular (IG) carbide precipitation and is known to promote an ordering reaction causing lattice contraction. It may affect the long-term primary water stress corrosion cracking (PWSCC) resistance of pressurized water reactor (PWR) components. Four conditions of Alloy 690 (solution annealed, cold-rolled and/or heat-treated) were aged between 350 and 550 °C for 10 000 h and characterized. Although no direct observation of ordering was made, variations in hardness and lattice parameter were attributed to the formation of short-range ordering (SRO) in all conditions with a peak level at 420 °C, consistent with the literature. Prior heat treatment induced ordering before thermal ageing. At higher temperatures, stress relaxation, recrystallization and α-Cr precipitation were observed in the cold-worked samples, while a disordering reaction was inferred in all samples based on a decrease in hardness. IG precipitation of M{sub 23}C{sub 6} carbides increased with increasing ageing temperature in all conditions, as well as diffusion-induced grain boundary migration (DIGM). - Highlights: • SRO was suggested in Alloy 690 with 9.18 wt% Fe after thermal ageing at 350, 420 and 475 °C. • Prior thermal treatment promoted SRO before ageing. • Cold work led to recrystallization and precipitation of α-Cr upon ageing at 550 °C. • Thermal ageing promoted IG precipitation of Cr-rich M{sub 23}C{sub 6} carbides and DIGM.

  18. Does an electronic continuum correction improve effective short-range ion-ion interactions in aqueous solution?

    Science.gov (United States)

    Bruce, Ellen E.; van der Vegt, Nico F. A.

    2018-06-01

    Non-polarizable force fields for hydrated ions not always accurately describe short-range ion-ion interactions, frequently leading to artificial ion clustering in bulk aqueous solutions. This can be avoided by adjusting the nonbonded anion-cation or cation-water Lennard-Jones parameters. This approach has been successfully applied to different systems, but the parameterization is demanding owing to the necessity of separate investigations of each ion pair. Alternatively, polarization effects may effectively be accounted for using the electronic continuum correction (ECC) of Leontyev et al. [J. Chem. Phys. 119, 8024 (2003)], which involves scaling the ionic charges with the inverse square-root of the water high-frequency dielectric permittivity. ECC has proven to perform well for monovalent salts as well as for divalent salts in water. Its performance, however, for multivalent salts with higher valency remains unexplored. The present work illustrates the applicability of the ECC model to trivalent K3PO4 and divalent K2HPO4 in water. We demonstrate that the ECC models, without additional tuning of force field parameters, provide an accurate description of water-mediated interactions between salt ions. This results in predictions of the osmotic coefficients of aqueous K3PO4 and K2HPO4 solutions in good agreement with experimental data. Analysis of ion pairing thermodynamics in terms of contact ion pair (CIP), solvent-separated ion pair, and double solvent-separated ion pair contributions shows that potassium-phosphate CIP formation is stronger with trivalent than with divalent phosphate ions.

  19. Elastic strain relaxation in interfacial dislocation patterns: II. From long- and short-range interactions to local reactions

    Science.gov (United States)

    Vattré, A.

    2017-08-01

    The long- and short-range interactions as well as planar reactions between two infinitely periodic sets of crossing dislocations are investigated using anisotropic elasticity theory in face- (fcc) and body- (bcc) centered cubic materials. Two preliminary cases are proposed to examine the substantial changes in the elastic stress states and the corresponding strain energies due to a slight rearrangement in the internal dislocation geometries and characters. In general, significant differences and discrepancies resulting from the considered cubic crystal structure and the approximation of isotropic elasticity are exhibited. In a third scenario, special attention is paid to connecting specific internal dislocation structures from the previous cases with non-equilibrium configurations predicted by the quantized Frank-Bilby equation for the (111) fcc and (110) bcc twist grain boundaries. The present solutions lead to the formation of energetically favorable dislocation junctions with non-randomly strain-relaxed configurations of lower energy. In particular, the local dislocation interactions and reactions form equilibrium hexagonal-shaped patterns with planar three-fold dislocation nodes without producing spurious far-field stresses.Numerical application results are presented from a selection of cubic metals including aluminum, copper, tantalum, and niobium. In contrast to the fcc materials, asymmetric dislocation nodes occur in the anisotropic bcc cases, within which the minimum-energy paths for predicting the fully strain-relaxed dislocation patterns depend on the Zener anisotropic factor with respect to unity. The associated changes in the dislocation structures as well as the removal of the elastic strain energy upon relaxations are quantified and also discussed.

  20. Interplay of long-range and short-range Coulomb interactions in an Anderson-Mott insulator

    Science.gov (United States)

    Baćani, Mirko; Novak, Mario; Orbanić, Filip; Prša, Krunoslav; Kokanović, Ivan; Babić, Dinko

    2017-07-01

    In this paper, we tackle the complexity of coexisting disorder and Coulomb electron-electron interactions (CEEIs) in solids by addressing a strongly disordered system with intricate CEEIs and a screening that changes both with charge carrier doping level Q and temperature T . We report on an experimental comparative study of the T dependencies of the electrical conductivity σ and magnetic susceptibility χ of polyaniline pellets doped with dodecylbenzenesulfonic acid over a wide range. This material is special within the class of doped polyaniline by exhibiting in the electronic transport a crossover between a low-T variable range hopping (VRH) and a high-T nearest-neighbor hopping (NNH) well below room temperature. Moreover, there is evidence of a soft Coulomb gap ΔC in the disorder band, which implies the existence of a long-range CEEI. Simultaneously, there is an onsite CEEI manifested as a Hubbard gap U and originating in the electronic structure of doped polyaniline, which consists of localized electron states with dynamically varying occupancy. Therefore, our samples represent an Anderson-Mott insulator in which long-range and short-range CEEIs coexist. The main result of the study is the presence of a crossover between low- and high-T regimes not only in σ (T ) but also in χ (T ) , the crossover temperature T* being essentially the same for both observables over the entire doping range. The relatively large electron localization length along the polymer chains results in U being small, between 12 and 20 meV for the high and low Q , respectively. Therefore, the thermal energy at T* is sufficiently large to lead to an effective closing of the Hubbard gap and the consequent appearance of NNH in the electronic transport within the disorder band. ΔC is considerably larger than U , decreasing from 190 to 30 meV as Q increases, and plays the role of an activation energy in the NNH.

  1. Single-Chip Fully Integrated Direct-Modulation CMOS RF Transmitters for Short-Range Wireless Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2013-08-01

    Full Text Available Ultra-low power radio frequency (RF transceivers used in short-range application such as wireless sensor networks (WSNs require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs in addition to a 2.0 GHz phase-locked loop (PLL based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of −122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of −120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications.

  2. Storm Identification, Tracking and Forecasting Using High-Resolution Images of Short-Range X-Band Radar

    Directory of Open Access Journals (Sweden)

    Sajid Shah

    2015-05-01

    Full Text Available Rain nowcasting is an essential part of weather monitoring. It plays a vital role in human life, ranging from advanced warning systems to scheduling open air events and tourism. A nowcasting system can be divided into three fundamental steps, i.e., storm identification, tracking and nowcasting. The main contribution of this work is to propose procedures for each step of the rain nowcasting tool and to objectively evaluate the performances of every step, focusing on two-dimension data collected from short-range X-band radars installed in different parts of Italy. This work presents the solution of previously unsolved problems in storm identification: first, the selection of suitable thresholds for storm identification; second, the isolation of false merger (loosely-connected storms; and third, the identification of a high reflectivity sub-storm within a large storm. The storm tracking step of the existing tools, such as TITANand SCIT, use only up to two storm attributes, i.e., center of mass and area. It is possible to use more attributes for tracking. Furthermore, the contribution of each attribute in storm tracking is yet to be investigated. This paper presents a novel procedure called SALdEdA (structure, amplitude, location, eccentricity difference and areal difference for storm tracking. This work also presents the contribution of each component of SALdEdA in storm tracking. The second order exponential smoothing strategy is used for storm nowcasting, where the growth and decay of each variable of interest is considered to be linear. We evaluated the major steps of our method. The adopted techniques for automatic threshold calculation are assessed with a 97% goodness. False merger and sub-storms within a cluster of storms are successfully handled. Furthermore, the storm tracking procedure produced good results with an accuracy of 99.34% for convective events and 100% for stratiform events.

  3. Stiff-Person Syndrome and Graves’ Disease

    Directory of Open Access Journals (Sweden)

    Lais Moreira Medeiros MD

    2016-12-01

    Full Text Available A 9-year-old female child presented with a history of falls, weight loss, diffuse leg pain, and progressive gait disorder, following 1 previous event described as a tonic–clonic seizure. She had increased thyroid volume, brisk symmetric reflexes, abnormal gait, and painful spasms of the paraspinal musculature. Thyroid function tests indicated biochemical hyperthyroidism, and thyrotropin receptor antibodies were positive. Her electromyography showed continuous activation of normal motor units of the paraspinal and proximal lower extremity muscles. The patient had a diagnosis of Graves’ disease with associated stiff-person syndrome, with elevated anti–glutamic acid decarboxylase antibody levels. After intravenous immunoglobulin therapy, her ambulation was substantially improved and the symptoms of stiff-person syndrome decreased dramatically.

  4. On gear tooth stiffness evaluation

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Jørgensen, Martin Felix

    2014-01-01

    The estimation of gear stiffness is important for determining the load distribution between the gear teeth when two sets of teeth are in contact. Two factors have a major influence on the stiffness; firstly the boundary condition through the gear rim size included in the stiffness calculation...

  5. High-energy X-ray study of short range order and phase transformations in titanium-vanadium

    International Nuclear Information System (INIS)

    Ramsteiner, I.B.

    2005-01-01

    This work presents a study of configurational correlations and phase transformations in the binary alloy Ti-V, using high-energy X-ray diffraction. The experiments have been performed at the European Synchrotron Radiation Facility (ESRF) in Grenoble. The high-energy (60-100 keV) technique developed recently allows in-situ measurements on bulk material in transmission geometry. The first part of the thesis discusses multiple scattering effects which might occur with this method. These effects are experimentally verified and discussed. Special emphasis is put on the questions, whether they affect the results obtained with this method, and how they can be avoided. Understanding alloys on the most fundamental level requires knowledge about the atomic interaction potentials. Competing with entropy, these potentials determine the configurational short range order in a disordered alloy, which generates together with static and dynamic distortions the diffuse scattering. The thesis presents measurements and calculations of the diffuse scattering patterns of Ti-V. The calculations, taking into account configurational correlations, static distortions induced by atomic size mismatch and thermal diffuse scattering, agree with the experimental data. Structural transformations in Ti-V are carefully characterized using high-energy x-ray diffraction in combination with the complementary transmission electron microscopy (TEM). While the first technique allows to study the phenomena in-situ and time-resolved, TEM yields real space images and chemical information about the phases. Ti-V near the equiatomic composition is a beta-Ti-alloy. The body centered cubic beta phase is retained at room temperature by fast quenching. Aging the material below the phase transformation temperature, however, leads to the precipitation of hexagonal alpha titanium. Another transformation process confusing earlier works is identified as TiC formation from carbon impurities in the material. In addition

  6. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams

    Science.gov (United States)

    Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.

    2016-09-01

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  7. 2H(p, pp) n reaction as a probe of the short-range nuclear force

    International Nuclear Information System (INIS)

    Haftel, M.I.; Petersen, E.L.; Wallace, J.M.

    1976-01-01

    We examine the feasibility of using the 2 H(p, pp) n reaction as a means of extracting information about the short-range behavior of the nuclear force not obtainable from N-N scattering experiments. To do this we use several separable potentials and examine the predicted cross section in various regions of phase space and for beam energies between 14 and 65 MeV. The questions that we address are likely to be insensitive to Coulomb effects. Both the form factor and the energy dependence of the potentials have been modified from the usual Yamaguchi form. The form of the energy dependence is chosen to obtain phase-shift equivalence for two different form factors while guaranteeing a unitary two-body scattering amplitude. The sensitivity of breakup results to the on-shell and off-shell aspects of the nuclear force is examined and discussed. Significant on-shell sensitivity occurs for breakup amplitudes in all states and for cross sections over all regions of phase space. Off-shell sensitivity appears only in the S = 1/2, L = 0 breakup amplitudes, with all S = 3/2 and all L > 0 amplitudes exhibiting negligible off-shell dependence. This result leads to only a very small (< or = 5%) off-shell sensitivity for quasifree scattering. However, cross sections far from quasifree scattering, and in particular cross sections in the final-state interaction region of phase space, exhibit as much as a 50% variation for phase-shift-equivalent potentials. This sensitivity is small at low beam energy and increases with increasing energy. The energy dependence at negative energies of one potential is also altered to adjust the triton binding energy. This enables us to compare phase-shift-equivalent potentials differing off shell but predicting the same triton binding energy. The energy dependence of this potential is somewhat unconventional. Fixing of the triton binding energy reduces the off-shell sensitivity appreciably only for E approximately-less-than 20 MeV

  8. The role of the form factor and short-range correlation in the relativistic Hartree-Fock model for nuclear matter

    International Nuclear Information System (INIS)

    Hu, J.; Toki, H.; Wen, W.; Shen, H.

    2010-01-01

    The role of the form factor and short-range correlation in nuclear matter is studied within the relativistic Hartree-Fock approximation. We take, first, the mean-field approximation for meson fields and obtain the fluctuation terms of mesons to be used for the Fock energies. We introduce form factors in the meson-nucleon coupling vertices to take into account the finite-size effect of the nucleon. We use further the unitary correlation operator method for the treatment of the short-range correlation. The form factors of the size (Λ∝1.0 -2.0 GeV) of the nucleon-nucleon interaction cut down largely the contribution of the ρ-meson in the Fock term. The short-range correlation effect is not large but has a significant effect on the pion and ρ-meson energies in the relativistic Hartree-Fock approximation for nuclear matter. (orig.)

  9. The role of the form factor and short-range correlation in the relativistic Hartree-Fock model for nuclear matter

    Science.gov (United States)

    Hu, J.; Toki, H.; Wen, W.; Shen, H.

    2010-03-01

    The role of the form factor and short-range correlation in nuclear matter is studied within the relativistic Hartree-Fock approximation. We take, first, the mean-field approximation for meson fields and obtain the fluctuation terms of mesons to be used for the Fock energies. We introduce form factors in the meson-nucleon coupling vertices to take into account the finite-size effect of the nucleon. We use further the unitary correlation operator method for the treatment of the short-range correlation. The form factors of the size ( Λ ˜ 1.0 -2.0GeV) of the nucleon-nucleon interaction cut down largely the contribution of the ρ -meson in the Fock term. The short-range correlation effect is not large but has a significant effect on the pion and ρ -meson energies in the relativistic Hartree-Fock approximation for nuclear matter.

  10. Anesthetic management of a patient with stiff-person syndrome and thymoma: a case report

    Institute of Scientific and Technical Information of China (English)

    QIN Xiang; WANG Dong-xin; WU Xin-min

    2006-01-01

    @@ Stiff-person syndrome (SPS, also called stiff-man syndrome) is a rare neurological disease with autoimmune features. It is characterized by fluctuating and progressive muscle rigidity, and episodic spasm that prominently involve axial and limb musculature.1,2 Herein we report a case of anesthetic management of a patient with SPS for thymectomy and review several other cases.

  11. Stiffness, resilience, compressibility

    Energy Technology Data Exchange (ETDEWEB)

    Leu, Bogdan M. [Argonne National Laboratory, Advanced Photon Source (United States); Sage, J. Timothy, E-mail: jtsage@neu.edu [Northeastern University, Department of Physics and Center for Interdisciplinary Research on Complex Systems (United States)

    2016-12-15

    The flexibility of a protein is an important component of its functionality. We use nuclear resonance vibrational spectroscopy (NRVS) to quantify the flexibility of the heme iron environment in the electron-carrying protein cytochrome c by measuring the stiffness and the resilience. These quantities are sensitive to structural differences between the active sites of different proteins, as illustrated by a comparative analysis with myoglobin. The elasticity of the entire protein, on the other hand, can be probed quantitatively from NRVS and high energy-resolution inelastic X-ray scattering (IXS) measurements, an approach that we used to extract the bulk modulus of cytochrome c.

  12. Electronic structure of disordered alloys - I: self-consistent cluster CPA incorporating off-diagonal disorder and short-range order

    International Nuclear Information System (INIS)

    Kumar, V.; Mookerjee, A.; Srivastava, V.K.

    1980-09-01

    We have developed here a self-consistent coherent potential approximation generalized to take into account effect of clusters. Off-diagonal disorder and short-range order are taken into account. A graphical method married to the recursion technique, enables us to work on realistic three-dimensional lattices. Calculations are shown for a binary alloy on a diamond lattice. (author)

  13. On the universality of the long-/short-range separation in multiconfigurational density-functional theory. II. Investigating f0 actinide species

    DEFF Research Database (Denmark)

    Fromager, Emmanuel; Réal, Florent; Wåhlin, Pernilla

    2009-01-01

    In a previous paper [Fromager , J. Chem. Phys. 126, 074111 (2007)], some of the authors proposed a recipe for choosing the optimal value of the mu parameter that controls the long-range/short-range separation of the two-electron interaction in hybrid multiconfigurational self-consistent field sho...

  14. Structure Factor of a Hard-core Fluid with Short-range Yukawa Attraction: Analytical FMSA Theory against Monte Carlo Simulations.

    Czech Academy of Sciences Publication Activity Database

    Melnyk, R.; Nezbeda, Ivo; Trokhymchuk, A.

    2016-01-01

    Roč. 114, 16-17 (2016), s. 2523-2529 ISSN 0026-8976 Institutional support: RVO:67985858 Keywords : hard-core fluid * reference system * short-range Yukawa attraction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.870, year: 2016

  15. Biomechanical constraints on the feedforward regulation of endpoint stiffness.

    Science.gov (United States)

    Hu, Xiao; Murray, Wendy M; Perreault, Eric J

    2012-10-01

    Although many daily tasks tend to destabilize arm posture, it is still possible to have stable interactions with the environment by regulating the multijoint mechanics of the arm in a task-appropriate manner. For postural tasks, this regulation involves the appropriate control of endpoint stiffness, which represents the stiffness of the arm at the hand. Although experimental studies have been used to evaluate endpoint stiffness control, including the orientation of maximal stiffness, the underlying neural strategies remain unknown. Specifically, the relative importance of feedforward and feedback mechanisms has yet to be determined due to the difficulty separately identifying the contributions of these mechanisms in human experiments. This study used a previously validated three-dimensional musculoskeletal model of the arm to quantify the degree to which the orientation of maximal endpoint stiffness could be changed using only steady-state muscle activations, used to represent feedforward motor commands. Our hypothesis was that the feedforward control of endpoint stiffness orientation would be significantly constrained by the biomechanical properties of the musculoskeletal system. Our results supported this hypothesis, demonstrating substantial biomechanical constraints on the ability to regulate endpoint stiffness throughout the workspace. The ability to regulate stiffness orientation was further constrained by additional task requirements, such as the need to support the arm against gravity or exert forces on the environment. Together, these results bound the degree to which slowly varying feedforward motor commands can be used to regulate the orientation of maximum arm stiffness and provide a context for better understanding conditions in which feedback control may be needed.

  16. Pharmacological modulation of arterial stiffness.

    LENUS (Irish Health Repository)

    Boutouyrie, Pierre

    2011-09-10

    Arterial stiffness has emerged as an important marker of cardiovascular risk in various populations and reflects the cumulative effect of cardiovascular risk factors on large arteries, which in turn is modulated by genetic background. Arterial stiffness is determined by the composition of the arterial wall and the arrangement of these components, and can be studied in humans non-invasively. Age and distending pressure are two major factors influencing large artery stiffness. Change in arterial stiffness with drugs is an important endpoint in clinical trials, although evidence for arterial stiffness as a therapeutic target still needs to be confirmed. Drugs that independently affect arterial stiffness include antihypertensive drugs, mostly blockers of the renin-angiotensin-aldosterone system, hormone replacement therapy and some antidiabetic drugs such as glitazones. While the quest continues for \\'de-stiffening drugs\\

  17. Water and Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Enrico Grazi

    2008-08-01

    Full Text Available The interaction between water and the protein of the contractile machinery as well as the tendency of these proteins to form geometrically ordered structures provide a link between water and muscle contraction. Protein osmotic pressure is strictly related to the chemical potential of the contractile proteins, to the stiffness of muscle structures and to the viscosity of the sliding of the thin over the thick filaments. Muscle power output and the steady rate of contraction are linked by modulating a single parameter, a viscosity coefficient. Muscle operation is characterized by working strokes of much shorter length and much quicker than in the classical model. As a consequence the force delivered and the stiffness attained by attached cross-bridges is much larger than usually believed.

  18. Dynamic stiffness of suction caissons

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten; Andersen, Lars

    The purpose of this report is to evaluate the dynamic soil-structure interaction of suction caissons for offshore wind turbines. The investigation is limited to a determination of the vertical dynamic stiffness of suction caissons. The soil surrounding the foundation is homogenous with linear...... viscoelastic properties. The dynamic stiffness of the suction caisson is expressed by dimensionless frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree of freedom. The dynamic stiffness coefficients for the foundations are evaluated by means of a dynamic three...

  19. Trabecular meshwork stiffness in glaucoma.

    Science.gov (United States)

    Wang, Ke; Read, A Thomas; Sulchek, Todd; Ethier, C Ross

    2017-05-01

    Alterations in stiffness of the trabecular meshwork (TM) may play an important role in primary open-angle glaucoma (POAG), the second leading cause of blindness. Specifically, certain data suggest an association between elevated intraocular pressure (IOP) and increased TM stiffness; however, the underlying link between TM stiffness and IOP remains unclear and requires further study. We here first review the literature on TM stiffness measurements, encompassing various species and based on a number of measurement techniques, including direct approaches such as atomic force microscopy (AFM) and uniaxial tension tests, and indirect methods based on a beam deflection model. We also briefly review the effects of several factors that affect TM stiffness, including lysophospholipids, rho-kinase inhibitors, cytoskeletal disrupting agents, dexamethasone (DEX), transforming growth factor-β 2 (TGF-β 2 ), nitric oxide (NO) and cellular senescence. We then describe a method we have developed for determining TM stiffness measurement in mice using a cryosection/AFM-based approach, and present preliminary data on TM stiffness in C57BL/6J and CBA/J mouse strains. Finally, we investigate the relationship between TM stiffness and outflow facility between these two strains. The method we have developed shows promise for further direct measurements of mouse TM stiffness, which may be of value in understanding mechanistic relations between outflow facility and TM biomechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Key Insights into Hand Biomechanics: Human Grip Stiffness Can Be Decoupled from Force by Cocontraction and Predicted from Electromyography

    Directory of Open Access Journals (Sweden)

    Hannes Höppner

    2017-05-01

    Full Text Available We investigate the relation between grip force and grip stiffness for the human hand with and without voluntary cocontraction. Apart from gaining biomechanical insight, this issue is particularly relevant for variable-stiffness robotic systems, which can independently control the two parameters, but for which no clear methods exist to design or efficiently exploit them. Subjects were asked in one task to produce different levels of force, and stiffness was measured. As expected, this task reveals a linear coupling between force and stiffness. In a second task, subjects were then asked to additionally decouple stiffness from force at these force levels by using cocontraction. We measured the electromyogram from relevant groups of muscles and analyzed the possibility to predict stiffness and force. Optical tracking was used for avoiding wrist movements. We found that subjects were able to decouple grip stiffness from force when using cocontraction on average by about 20% of the maximum measured stiffness over all force levels, while this ability increased with the applied force. This result contradicts the force–stiffness behavior of most variable-stiffness actuators. Moreover, we found the thumb to be on average twice as stiff as the index finger and discovered that intrinsic hand muscles predominate our prediction of stiffness, but not of force. EMG activity and grip force allowed to explain 72 ± 12% of the measured variance in stiffness by simple linear regression, while only 33 ± 18% variance in force. Conclusively the high signal-to-noise ratio and the high correlation to stiffness of these muscles allow for a robust and reliable regression of stiffness, which can be used to continuously teleoperate compliance of modern robotic hands.

  1. Whole-body vibration as a potential countermeasure for dynapenia and arterial stiffness

    Directory of Open Access Journals (Sweden)

    Arturo Figueroa

    2016-09-01

    Full Text Available Age-related decreases in muscle mass and strength are associated with decreased mobility, quality of life, and increased cardiovascular risk. Coupled with the prevalence of obesity, the risk of death becomes substantially greater. Resistance training (RT has a well-documented beneficial impact on muscle mass and strength in young and older adults, although the high-intensity needed to elicit these adaptations may have a detrimental or negligible impact on vascular function, specifically on arterial stiffness. Increased arterial stiffness is associated with systolic hypertension, left ventricular hypertrophy, and myocardial ischemia. Therefore, improvements of muscle strength and arterial function are important in older adults. Recently, whole-body vibration (WBV exercise, a novel modality of strength training, has shown to exhibit similar results on muscle strength as RT in a wide-variety of populations, with the greatest impact in elderly individuals with limited muscle function. Additionally, WBV training has been shown to have beneficial effects on vascular function by reducing arterial stiffness. This article reviews relevant publications reporting the effects of WBV on muscle strength and/or arterial stiffness. Findings from current studies suggest the use of WBV training as an alternative modality to traditional RT to countermeasure the age-related detriments in muscle strength and arterial stiffness in older adults.

  2. Whole-body vibration as a potential countermeasure for dynapenia and arterial stiffness.

    Science.gov (United States)

    Figueroa, Arturo; Jaime, Salvador J; Alvarez-Alvarado, Stacey

    2016-09-01

    Age-related decreases in muscle mass and strength are associated with decreased mobility, quality of life, and increased cardiovascular risk. Coupled with the prevalence of obesity, the risk of death becomes substantially greater. Resistance training (RT) has a well-documented beneficial impact on muscle mass and strength in young and older adults, although the high-intensity needed to elicit these adaptations may have a detrimental or negligible impact on vascular function, specifically on arterial stiffness. Increased arterial stiffness is associated with systolic hypertension, left ventricular hypertrophy, and myocardial ischemia. Therefore, improvements of muscle strength and arterial function are important in older adults. Recently, whole-body vibration (WBV) exercise, a novel modality of strength training, has shown to exhibit similar results on muscle strength as RT in a wide-variety of populations, with the greatest impact in elderly individuals with limited muscle function. Additionally, WBV training has been shown to have beneficial effects on vascular function by reducing arterial stiffness. This article reviews relevant publications reporting the effects of WBV on muscle strength and/or arterial stiffness. Findings from current studies suggest the use of WBV training as an alternative modality to traditional RT to countermeasure the age-related detriments in muscle strength and arterial stiffness in older adults.

  3. Stiff person case misdiagnosed as conversion disorder: A case report.

    Science.gov (United States)

    Razmeh, Saeed; Habibi, Amir Hasan; Sina, Farzad; Alizadeh, Elham; Eslami, Monireh

    2017-01-01

    Stiff person syndrome (SPS) is a rare neurological disease resulting in stiffness and spasm of muscles. It initially affects the axial muscles and then spread to limb muscles. Emotional stress exacerbated the symptoms and signs of the disease. The pathophysiology of the disease is caused by the decreased level of the glutamic acid decarboxylase (GAD) activity due to an autoantibody against GAD that decreases the level of gamma-aminobutyric acid (GABA). In this paper, we present a case of atypical presentation of SPS with lower limb stiffness misdiagnosed as conversion disorder. We report a patient with atypical presentation of SPS with lower limb stiffness and gait disorder misdiagnosed as conversion disorder for a year. Her antithyroid peroxidase antibody (anti-TPO Ab) level was 75 IU (normal value: 0-34 IU). Intravenous immunoglobulin (IVIG) was administered (2gr/kg, 5 days) for the patient that showed significant improvement in the follow-up visit. It is essential that in any patient with bizarre gait disorder and suspicious to conversion disorder due to the reversibility of symptoms, SPS and other movement disorder should be considered.

  4. Limit cycles and stiffness control with variable stiffness actuators

    NARCIS (Netherlands)

    Carloni, Raffaella; Marconi, L.

    2012-01-01

    Variable stiffness actuators realize highly dynamic systems, whose inherent mechanical compliance can be properly exploited to obtain a robust and energy-efficient behavior. The paper presents a control strategy for variable stiffness actuators with the primarily goal of tracking a limit cycle

  5. How Confinement-Induced Structures Alter the Contribution of Hydrodynamic and Short-Ranged Repulsion Forces to the Viscosity of Colloidal Suspensions

    Directory of Open Access Journals (Sweden)

    Meera Ramaswamy

    2017-10-01

    Full Text Available Confined systems ranging from the atomic to the granular are ubiquitous in nature. Experiments and simulations of such atomic and granular systems have shown a complex relationship between the microstructural arrangements under confinement, the short-ranged particle stresses, and flow fields. Understanding the same correlation between structure and rheology in the colloidal regime is important due to the significance of such suspensions in industrial applications. Moreover, colloidal suspensions exhibit a wide range of structures under confinement that could considerably modify such force balances and the resulting viscosity. Here, we use a combination of experiments and simulations to elucidate how confinement-induced structures alter the relative contributions of hydrodynamic and short-range repulsive forces to produce up to a tenfold change in the viscosity. In the experiments we use a custom-built confocal rheoscope to image the particle configurations of a colloidal suspension while simultaneously measuring its stress response. We find that as the gap decreases below 15 particle diameters, the viscosity first decreases from its bulk value, shows fluctuations with the gap, and then sharply increases for gaps below 3 particle diameters. These trends in the viscosity are shown to strongly correlate with the suspension microstructure. Further, we compare our experimental results to those from two different simulations techniques, which enables us to determine the relative contributions of hydrodynamic and short-range repulsive stresses to the suspension rheology. The first method uses the lubrication approximation to find the hydrodynamic stress and includes a short-range repulsive force between the particles while the second is a Stokesian dynamics simulation that calculates the full hydrodynamic stress in the suspension. We find that the decrease in the viscosity at moderate confinements has a significant contribution from both the

  6. Short-Range Correlated Magnetic Core-Shell CrO2/Cr2O3 Nanorods: Experimental Observations and Theoretical Considerations

    Directory of Open Access Journals (Sweden)

    Ashish C. Gandhi

    2018-05-01

    Full Text Available With the evolution of synthesis and the critical characterization of core-shell nanostructures, short-range magnetic correlation is of prime interest in employing their properties to develop novel devices and widespread applications. In this regard, a novel approach of the magnetic core-shell saturated magnetization (CSSM cylinder model solely based on the contribution of saturated magnetization in one-dimensional CrO2/Cr2O3 core-shell nanorods (NRs has been developed and applied for the determination of core-diameter and shell-thickness. The nanosized effect leads to a short-range magnetic correlation of ferromagnetic core-CrO2 extracted from CSSM, which can be explained using finite size scaling method. The outcome of this study is important in terms of utilizing magnetic properties for the critical characterization of core-shell nanomagnetic materials.

  7. Direct-Bandgap InAs Quantum-Dots Have Long-Range Electron--Hole Exchange Whereas Indirect Gap Si Dots Have Short-Range Exchange

    International Nuclear Information System (INIS)

    Juo, J.W.; Franceschetti, A.; Zunger, A.

    2009-01-01

    Excitons in quantum dots manifest a lower-energy spin-forbidden 'dark' state below a spin-allowed 'bright' state; this splitting originates from electron-hole (e-h) exchange interactions, which are strongly enhanced by quantum confinement. The e-h exchange interaction may have both a short-range and a long-range component. Calculating numerically the e-h exchange energies from atomistic pseudopotential wave functions, we show here that in direct-gap quantum dots (such as InAs) the e-h exchange interaction is dominated by the long-range component, whereas in indirect-gap quantum dots (such as Si) only the short-range component survives. As a result, the exciton dark/bright splitting scales as 1/R 2 in InAs dots and 1/R 3 in Si dots, where R is the quantum-dot radius.

  8. Three-dimensional short-range MR angiography and multiplanar reconstruction images in the evaluation of neurovascular compression in hemifacial spasm

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woo Suk; Kim, Eui Jong; Lee, Jae Gue; Rhee, Bong Arm [Kyunghee Univ. Hospital, Seoul (Korea, Republic of)

    1998-08-01

    To evaluate the diagnostic efficacy of three-dimensional(3D) short-range MR angiography(MRA) and multiplanar reconstruction(MPR) imaging in hemifacial spasm(HS). Materials and Methods : Two hundreds patients with HS were studied using a 1.5T MRI system with a 3D time-of-flight(TOF) MRA sequence. To reconstruct short-range MRA, 6-10 source images near the 7-8th cranial nerve complex were processed using a maximum-intensity projection technique. In addition, an MPR technique was used to investigate neurovascular compression. We observed the relationship between the root-exit zone(REZ) of the 7th cranial nerve and compressive vessel, and identified the compressive vessels on symptomatic sides. To investigate neurovascular contact, asymptomatic contralateral sides were also evaluated. Results : MRI showed that in 197 of 200 patients there was vascular compression or contact with the facial nerve REZ on symptomatic sides. One of the three remaining patients was suffering from acoustic neurinoma on the symptomatic side, while in two patients there were no definite abnormal findings.Compressive vessels were demonstrated in all 197 patients; 80 cases involved the anterior inferior cerebellar artery(AICA), 74 the posterior cerebellar artery(PICA), 13 the vertebral artery(VA), 16 the VA and AICA, eight the VA and PICA, and six the AICA and PICA. In all 197 patients, compressive vessels were reconstructed on one 3D short-range MRA image without discontinuation from vertebral or basilar arteries. 3D MPR studies provided additional information such as the direction of compression and course of the compressive vessel. In 31 patients there was neurovascular contact on the contralateral side at the 7-8th cranial nerve complex. Conclusion : Inpatients with HS, 3D short-range MRA and MPR images are excellent and very helpful for the investigation of neurovascular compression and the identification of compressive vessels.

  9. Mixed hyperfine interaction - a tool to investigate the short range order and the strange magnetic behaviour of amorphous Fe-based binary alloys

    International Nuclear Information System (INIS)

    Fries, S.M.; Crummenauer, J.; Gonser, U.; Schaaf, P.; Chien, C.L.

    1989-01-01

    The Moessbauer study of the mixed magnetic dipole and electric quadrupole interaction in the paramagnetic state of amorphous Fe-Zr and Fe-Hf alloys is presented. Strong evidence for chemical short range order of the iron-pure alloys is found. The hyperfine parameters of the iron-rich alloys are marked by a complex applied field and temperature dependence, suggesting a not negligible spin-correlation well above Tc. (orig.)

  10. Deuterium short-range order in Pd0.975Ag0.025D0.685 by diffuse neutron scattering

    DEFF Research Database (Denmark)

    Blaschko, O.; Klemencic, R.; Fratzl, P.

    1983-01-01

    By diffuse neutron scattering the D short-range order in a Pd0.975Ag0.025D0.685 crystal was investigated at 50 and 70K. The results are compared with the D ordering in the PdDx system previously investigated, and it is shown that the isointensity contours around the (1/2,1,0) point are similar...

  11. Altered Long- and Short-Range Functional Connectivity in Patients with Betel Quid Dependence: A Resting-State Functional MRI Study

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2016-12-01

    Full Text Available Objective: Addiction is a chronic relapsing brain disease. Brain structural abnormalities may constitute an abnormal neural network that underlies the risk of drug dependence. We hypothesized that individuals with Betel Quid Dependence (BQD have functional connectivity alterations that can be described by long- and short-range functional connectivity density(FCD maps. Methods: We tested this hypothesis using functional magnetic resonance imaging (fMRI data from subjects of the Han ethnic group in Hainan, China. Here, we examined BQD individuals (n = 33 and age-, sex-, and education-matched healthy controls (HCs (n = 32 in a rs-fMRI study to observe FCD alterations associated with the severity of BQD. Results: Compared with HCs, long-range FCD was decreased in the right anterior cingulate cortex (ACC and increased in the left cerebellum posterior lobe (CPL and bilateral inferior parietal lobule (IPL in the BQD group. Short-range FCD was reduced in the right ACC and left dorsolateral prefrontal cortex (dlPFC, and increased in the left CPL. The short-range FCD alteration in the right ACC displayed a negative correlation with the Betel Quid Dependence Scale (BQDS (r=-0.432, P=0.012, and the long-range FCD alteration of left IPL showed a positive correlation with the duration of BQD(r=0.519, P=0.002 in BQD individuals. Conclusions: fMRI revealed differences in long- and short- range FCD in BQD individuals, and these alterations might be due to BQ chewing, BQ dependency, or risk factors for developing BQD.

  12. Three-dimensional short-range MR angiography and multiplanar reconstruction images in the evaluation of neurovascular compression in hemifacial spasm

    International Nuclear Information System (INIS)

    Choi, Woo Suk; Kim, Eui Jong; Lee, Jae Gue; Rhee, Bong Arm

    1998-01-01

    To evaluate the diagnostic efficacy of three-dimensional(3D) short-range MR angiography(MRA) and multiplanar reconstruction(MPR) imaging in hemifacial spasm(HS). Materials and Methods : Two hundreds patients with HS were studied using a 1.5T MRI system with a 3D time-of-flight(TOF) MRA sequence. To reconstruct short-range MRA, 6-10 source images near the 7-8th cranial nerve complex were processed using a maximum-intensity projection technique. In addition, an MPR technique was used to investigate neurovascular compression. We observed the relationship between the root-exit zone(REZ) of the 7th cranial nerve and compressive vessel, and identified the compressive vessels on symptomatic sides. To investigate neurovascular contact, asymptomatic contralateral sides were also evaluated. Results : MRI showed that in 197 of 200 patients there was vascular compression or contact with the facial nerve REZ on symptomatic sides. One of the three remaining patients was suffering from acoustic neurinoma on the symptomatic side, while in two patients there were no definite abnormal findings.Compressive vessels were demonstrated in all 197 patients; 80 cases involved the anterior inferior cerebellar artery(AICA), 74 the posterior cerebellar artery(PICA), 13 the vertebral artery(VA), 16 the VA and AICA, eight the VA and PICA, and six the AICA and PICA. In all 197 patients, compressive vessels were reconstructed on one 3D short-range MRA image without discontinuation from vertebral or basilar arteries. 3D MPR studies provided additional information such as the direction of compression and course of the compressive vessel. In 31 patients there was neurovascular contact on the contralateral side at the 7-8th cranial nerve complex. Conclusion : Inpatients with HS, 3D short-range MRA and MPR images are excellent and very helpful for the investigation of neurovascular compression and the identification of compressive vessels

  13. STRETCHING EXERCISES - EFFECT ON PASSIVE EXTENSIBILITY AND STIFFNESS IN SHORT HAMSTRINGS OF HEALTHY-SUBJECTS

    NARCIS (Netherlands)

    HALBERTSMA, JPK; GOEKEN, LNH

    Passive muscle stretch tests are common practice in physical therapy and rehabilitation medicine. However, the effects of stretching exercises are not well known. With an instrumental straight-leg-raising set-up the extensibility, stiffness, and electromyographic activity of the hamstring muscles

  14. Arterial stiffness and cognitive impairment.

    Science.gov (United States)

    Li, Xiaoxuan; Lyu, Peiyuan; Ren, Yanyan; An, Jin; Dong, Yanhong

    2017-09-15

    Arterial stiffness is one of the earliest indicators of changes in vascular wall structure and function and may be assessed using various indicators, such as pulse-wave velocity (PWV), the cardio-ankle vascular index (CAVI), the ankle-brachial index (ABI), pulse pressure (PP), the augmentation index (AI), flow-mediated dilation (FMD), carotid intima media thickness (IMT) and arterial stiffness index-β. Arterial stiffness is generally considered an independent predictor of cardiovascular and cerebrovascular diseases. To date, a significant number of studies have focused on the relationship between arterial stiffness and cognitive impairment. To investigate the relationships between specific arterial stiffness parameters and cognitive impairment, elucidate the pathophysiological mechanisms underlying the relationship between arterial stiffness and cognitive impairment and determine how to interfere with arterial stiffness to prevent cognitive impairment, we searched PUBMED for studies regarding the relationship between arterial stiffness and cognitive impairment that were published from 2000 to 2017. We used the following key words in our search: "arterial stiffness and cognitive impairment" and "arterial stiffness and cognitive impairment mechanism". Studies involving human subjects older than 30years were included in the review, while irrelevant studies (i.e., studies involving subjects with comorbid kidney disease, diabetes and cardiac disease) were excluded from the review. We determined that arterial stiffness severity was positively correlated with cognitive impairment. Of the markers used to assess arterial stiffness, a higher PWV, CAVI, AI, IMT and index-β and a lower ABI and FMD were related to cognitive impairment. However, the relationship between PP and cognitive impairment remained controversial. The potential mechanisms linking arterial stiffness and cognitive impairment may be associated with arterial pulsatility, as greater arterial pulsatility

  15. Stiffness of desiccating insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Mittal, R

    2011-01-01

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 μN mm -1 h -1 . For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm -1 . (communication)

  16. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  17. Microscopic nucleon spectral function for finite nuclei featuring two- and three-nucleon short-range correlations: The model versus ab initio calculations for three-nucleon systems

    Science.gov (United States)

    Ciofi degli Atti, Claudio; Mezzetti, Chiara Benedetta; Morita, Hiko

    2017-04-01

    Background: Two-nucleon (2 N ) short-range correlations (SRC) in nuclei have been recently thoroughly investigated, both theoretically and experimentally and the study of three-nucleon (3 N ) SRC, which could provide important information on short-range hadronic structure, is underway. Novel theoretical ideas concerning 2 N and 3 N SRC are put forward in the present paper. Purpose: The general features of a microscopic one-nucleon spectral function which includes the effects of both 2 N and 3 N SRC and its comparison with ab initio spectral functions of the three-nucleon systems are illustrated. Methods: A microscopic and parameter-free one-nucleon spectral function expressed in terms of a convolution integral involving ab initio relative and center-of-mass (c.m.) momentum distributions of a 2 N pair and aimed at describing two- and three-nucleon short-range correlations, is obtained by using: (i) the two-nucleon momentum distributions obtained within ab initio approaches based upon nucleon-nucleon interactions of the Argonne family; (ii) the exact relation between one- and two-nucleon momentum distributions; (iii) the fundamental property of factorization of the nuclear wave function at short internucleon ranges. Results: The comparison between the ab initio spectral function of 3He and the one based upon the convolution integral shows that when the latter contains only two-nucleon short-range correlations the removal energy location of the peaks and the region around them exhibited by the ab initio spectral function are correctly predicted, unlike the case of the high and low removal energy tails; the inclusion of the effects of three-nucleon correlations brings the convolution model spectral function in much better agreement with the ab initio one; it is also found that whereas the three-nucleon short-range correlations dominate the high energy removal energy tail of the spectral function, their effects on the one-nucleon momentum distribution are almost one

  18. Running Economy: Neuromuscular and Joint Stiffness Contributions in Trained Runners.

    Science.gov (United States)

    Tam, Nicholas; Tucker, Ross; Santos-Concejero, Jordan; Prins, Danielle; Lamberts, Robert P

    2018-05-29

    It is debated whether running biomechanics make good predictors of running economy, with little known information about the neuromuscular and joint stiffness contributions to economical running gait. The aim of this study was to understand the relationship between certain neuromuscular and spatiotemporal biomechanical factors associated with running economy. Thirty trained runners performed a 6-minute constant-speed running set at 3.3 m∙s -1 , where oxygen consumption was assessed. Overground running trials were also performed at 3.3 m∙s -1 to assess kinematics, kinetics and muscle activity. Spatiotemporal gait variables, joint stiffness, pre-activation and stance phase muscle activity (gluteus medius; rectus femoris (RF); biceps femoris(BF); peroneus longus (PL); tibialis anterior (TA); gastrocnemius lateralis and medius (LG and MG) were variables of specific interest and thus determined. Additionally, pre-activation and ground contact of agonist:antagonist co-activation were calculated. More economical runners presented with short ground contact times (r=0.639, p<0.001) and greater strides frequencies (r=-0.630, p<0.001). Lower ankle and greater knee stiffness were associated with lower oxygen consumption (r=0.527, p=0.007 & r=0.384, p=0.043, respectively). Only LG:TA co-activation during stance were associated with lower oxygen cost of transport (r=0.672, p<0.0001). Greater muscle pre-activation and bi-articular muscle activity during stance were associated with more economical runners. Consequently, trained runners who exhibit greater neuromuscular activation prior to and during ground contact, in turn optimise spatiotemporal variables and joint stiffness, will be the most economical runners.

  19. Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior.

    Science.gov (United States)

    Oh, Se Heang; An, Dan Bi; Kim, Tae Ho; Lee, Jin Ho

    2016-04-15

    Although stiffness-controllable substrates have been developed to investigate the effect of stiffness on cell behavior and function, the use of separate substrates with different degrees of stiffness, substrates with a narrow range stiffness gradient, toxicity of residues, different surface composition, complex fabrication procedures/devices, and low cell adhesion are still considered as hurdles of conventional techniques. In this study, a cylindrical polyvinyl alcohol (PVA)/hyaluronic acid (HA) hydrogel with a wide-range stiffness gradient (between ∼20kPa and ∼200kPa) and cell adhesiveness was prepared by a liquid nitrogen (LN2)-contacting gradual freezing-thawing method that does not use any additives or specific devices to produce the stiffness gradient hydrogel. From an in vitro cell culture using the stiffness gradient PVA/HA hydrogel, it was observed that human bone marrow mesenchymal stem cells have favorable stiffness ranges for induction of differentiation into specific cell types (∼20kPa for nerve cell, ∼40kPa for muscle cell, ∼80kPa for chondrocyte, and ∼190kPa for osteoblast). The PVA/HA hydrogel with a wide range of stiffness spectrum can be a useful tool for basic studies related with the stem cell differentiation, cell reprogramming, cell migration, and tissue regeneration in terms of substrate stiffness. It is postulated that the stiffness of the extracellular matrix influences cell behavior. To prove this concept, various techniques to prepare substrates with a stiffness gradient have been developed. However, the narrow ranges of stiffness gradient and complex fabrication procedures/devices are still remained as limitations. Herein, we develop a substrate (hydrogel) with a wide-range stiffness gradient using a gradual freezing-thawing method which does not need specific devices to produce a stiffness gradient hydrogel. From cell culture experiments using the hydrogel, it is observed that human bone marrow mesenchymal stem cells have

  20. Comparison of short-range rapidity correlations in anti pp and pp interactions at √S = 53 GeV

    International Nuclear Information System (INIS)

    Breakstone, A.; Crawley, H.B.; Firestone, A.; Gorbics, M.; Lamsa, J.W.; Meyer, W.T.

    1982-01-01

    Measurements are presented of two-particle rapidity correlations in anti pp and pp at √S = 53 GeV. The data were recorded at the CERN-ISR using the Split Field Magnet spectrometer with a minimum bias trigger. Short range correlations in normal inelastic events with measured charged multiplicities nsub(ch) >= 4 are observed for pairs of charged particles in all charge combinations. Within the experimental errors no differences are observed between the analogous correlations in pp and anti pp interactions. (orig.)

  1. Intentionally Short Range Communications (ISRC)

    Science.gov (United States)

    1993-05-01

    molecular oxygen in the atmosphere at 60 GHz (figure 9 LIppolito, 1981]). The MMW range is similar to that of the UV links. 3.3.1 Variable Range Similar to...option also requires that the signal be strong enough to overcome the noise from the solar and background sources, although the molecular oxygen and... emisions . Lasing will occur only within the cavity when the alignment is correct and not lasing othem ise. Such a cavity is dcteclable only when an observer

  2. Long-range versus short-range correlations in the two-neutron transfer reaction 64Ni(18O,16O)66Ni

    Science.gov (United States)

    Paes, B.; Santagati, G.; Vsevolodovna, R. Magana; Cappuzzello, F.; Carbone, D.; Cardozo, E. N.; Cavallaro, M.; García-Tecocoatzi, H.; Gargano, A.; Ferreira, J. L.; Lenzi, S. M.; Linares, R.; Santopinto, E.; Vitturi, A.; Lubian, J.

    2017-10-01

    Recently, various two-neutron transfer studies using the (18O,16O) reaction were performed with a large success. This was achieved because of a combined use of the microscopic quantum description of the reaction mechanism and of the nuclear structure. In the present work we use this methodology to study the two-neutron transfer reaction of the 18O+64Ni system at 84 MeV incident energy, to the ground and first 2+ excited state of the residual 66Ni nucleus. All the experimental data were measured by the large acceptance MAGNEX spectrometer at the Instituto Nazionale di Fisica Nucleare -Laboratori Nazionali del Sud (Italy). We have performed exact finite range cross section calculations using the coupled channel Born approximation (CCBA) and coupled reaction channel (CRC) method for the sequential and direct two-neutron transfers, respectively. Moreover, this is the first time that the formalism of the microscopic interaction boson model (IBM-2) was applied to a two-neutron transfer reaction. From our results we conclude that for two-neutron transfer to the ground state of 66Ni, the direct transfer is the dominant reaction mechanism, whereas for the transfer to the first excited state of 66Ni, the sequential process dominates. A competition between long-range and short-range correlations is discussed, in particular, how the use of two different models (Shell model and IBM's) help to disentangle long- and short-range correlations.

  3. Short range charge/orbital ordering in La1-xSrxMn1-zBzO3 (B Cu,Zn) manganites

    International Nuclear Information System (INIS)

    Popovic, Z V; Cantarero, A; Thijssen, W H A; Paunovic, N; Dohcevic-Mitrovic, Z; Sapina, F

    2005-01-01

    We have measured the reflectivity spectra of La 1-x Sr x Mn 1-z B z O 3 (B = Cu, Zn; 0.17 ≤ x ≤ 0.30; 0 ≤ z ≤ 0.10) manganites over wide frequency (100-4000 cm -1 ) and temperature (80-300 K) ranges. Besides the previously observed infrared active modes or mode pairs at about 160 cm -1 (external mode), 350 cm -1 (bond bending mode) and 590 cm -1 (bond stretching mode), we have clearly observed two additional phonon modes at about 645 and 720 cm -1 below the temperature T 1 (T 1 C ), which coincides with the phase transition temperature when the system transforms from ferromagnetic metallic into a ferromagnetic insulator state. This transition is related to the formation of short range charge/orbitally ordered domains. The temperature T 1 of the phase transition is dependent on the doping concentration and for optimally doped samples we have found that T 1 ∼(0.93 ± 0.02) T C . Electrical resistivity and magnetization measurements versus temperature and magnetic field support the short range charge/orbital ordering scenario

  4. Statistical Short-Range Guidance for Peak Wind Speed Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station: Phase I Results

    Science.gov (United States)

    Lambert, Winifred C.; Merceret, Francis J. (Technical Monitor)

    2002-01-01

    This report describes the results of the ANU's (Applied Meteorology Unit) Short-Range Statistical Forecasting task for peak winds. The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The Keith Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A 7 year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. In all climatologies, the average and peak wind speeds were highly variable in time. This indicated that the development of a peak wind forecasting tool would be difficult. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. The climatologies and PDFs provide tools with which to make peak wind forecasts that are critical to safe operations.

  5. Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles.

    Science.gov (United States)

    Narth, Christophe; Lagardère, Louis; Polack, Étienne; Gresh, Nohad; Wang, Qiantao; Bell, David R; Rackers, Joshua A; Ponder, Jay W; Ren, Pengyu Y; Piquemal, Jean-Philip

    2016-02-15

    We propose a general coupling of the Smooth Particle Mesh Ewald SPME approach for distributed multipoles to a short-range charge penetration correction modifying the charge-charge, charge-dipole and charge-quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry-Adapted Perturbation Theory reference data. Various neutral molecular dimers have been tested and results on the complexes of mono- and divalent cations with a water ligand are also provided. Transferability of the correction is adressed in the context of the implementation of the AMOEBA and SIBFA polarizable force fields in the TINKER-HP software. As the choices of the multipolar distribution are discussed, conclusions are drawn for the future penetration-corrected polarizable force fields highlighting the mandatory need of non-spurious procedures for the obtention of well balanced and physically meaningful distributed moments. Finally, scalability and parallelism of the short-range corrected SPME approach are addressed, demonstrating that the damping function is computationally affordable and accurate for molecular dynamics simulations of complex bio- or bioinorganic systems in periodic boundary conditions. Copyright © 2016 Wiley Periodicals, Inc.

  6. Application of Short-Range LIDAR in Early Alerting for Low-Level Windshear and Turbulence at Hong Kong International Airport

    Directory of Open Access Journals (Sweden)

    K. K. Hon

    2014-01-01

    Full Text Available Hong Kong Observatory currently uses a series of meteorological instruments, including long-range LIDAR (light detection and ranging systems, to provide alerting services of low-level windshear and turbulence for Hong Kong International Airport. For some events that are smaller in spatial dimensions and are rapidly changing, such as low altitude windshear and turbulence associated with buildings or man-made structures, it would be necessary to involve meteorological instruments that offer greater spatial resolution. Therefore, the Observatory has set up a short-range LIDAR on the roof of the AsiaWorld-Expo during the summers over the past several years, conducting field research on the feasibility of strengthening early alerting for windshear and turbulence over the north runway’s eastern arrival runway (Runway 25RA and developing an automated early alerting algorithm. This paper takes the pilot reports for Runway 25RA during the 2013 field research as verification samples, using different thresholds for radial wind velocity spatial and temporal changes detected by the short-range LIDAR to calculate the relative operating characteristic (ROC curve, and analyzes its early alerting performance.

  7. Adaptive Blending of Model and Observations for Automated Short-Range Forecasting: Examples from the Vancouver 2010 Olympic and Paralympic Winter Games

    Science.gov (United States)

    Bailey, Monika E.; Isaac, George A.; Gultepe, Ismail; Heckman, Ivan; Reid, Janti

    2014-01-01

    An automated short-range forecasting system, adaptive blending of observations and model (ABOM), was tested in real time during the 2010 Vancouver Olympic and Paralympic Winter Games in British Columbia. Data at 1-min time resolution were available from a newly established, dense network of surface observation stations. Climatological data were not available at these new stations. This, combined with output from new high-resolution numerical models, provided a unique and exciting setting to test nowcasting systems in mountainous terrain during winter weather conditions. The ABOM method blends extrapolations in time of recent local observations with numerical weather predictions (NWP) model predictions to generate short-range point forecasts of surface variables out to 6 h. The relative weights of the model forecast and the observation extrapolation are based on performance over recent history. The average performance of ABOM nowcasts during February and March 2010 was evaluated using standard scores and thresholds important for Olympic events. Significant improvements over the model forecasts alone were obtained for continuous variables such as temperature, relative humidity and wind speed. The small improvements to forecasts of variables such as visibility and ceiling, subject to discontinuous changes, are attributed to the persistence component of ABOM.

  8. Ultra-stiff metallic glasses through bond energy density design.

    Science.gov (United States)

    Schnabel, Volker; Köhler, Mathias; Music, Denis; Bednarcik, Jozef; Clegg, William J; Raabe, Dierk; Schneider, Jochen M

    2017-07-05

    The elastic properties of crystalline metals scale with their valence electron density. Similar observations have been made for metallic glasses. However, for metallic glasses where covalent bonding predominates, such as metalloid metallic glasses, this relationship appears to break down. At present, the reasons for this are not understood. Using high energy x-ray diffraction analysis of melt spun and thin film metallic glasses combined with density functional theory based molecular dynamics simulations, we show that the physical origin of the ultrahigh stiffness in both metalloid and non-metalloid metallic glasses is best understood in terms of the bond energy density. Using the bond energy density as novel materials design criterion for ultra-stiff metallic glasses, we are able to predict a Co 33.0 Ta 3.5 B 63.5 short range ordered material by density functional theory based molecular dynamics simulations with a high bond energy density of 0.94 eV Å -3 and a bulk modulus of 263 GPa, which is 17% greater than the stiffest Co-B based metallic glasses reported in literature.

  9. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming.

    Science.gov (United States)

    Tytell, Eric D; Hsu, Chia-Yu; Williams, Thelma L; Cohen, Avis H; Fauci, Lisa J

    2010-11-16

    Animal movements result from a complex balance of many different forces. Muscles produce force to move the body; the body has inertial, elastic, and damping properties that may aid or oppose the muscle force; and the environment produces reaction forces back on the body. The actual motion is an emergent property of these interactions. To examine the roles of body stiffness, muscle activation, and fluid environment for swimming animals, a computational model of a lamprey was developed. The model uses an immersed boundary framework that fully couples the Navier-Stokes equations of fluid dynamics with an actuated, elastic body model. This is the first model at a Reynolds number appropriate for a swimming fish that captures the complete fluid-structure interaction, in which the body deforms according to both internal muscular forces and external fluid forces. Results indicate that identical muscle activation patterns can produce different kinematics depending on body stiffness, and the optimal value of stiffness for maximum acceleration is different from that for maximum steady swimming speed. Additionally, negative muscle work, observed in many fishes, emerges at higher tail beat frequencies without sensory input and may contribute to energy efficiency. Swimming fishes that can tune their body stiffness by appropriately timed muscle contractions may therefore be able to optimize the passive dynamics of their bodies to maximize peak acceleration or swimming speed.

  10. Gait training reduces ankle joint stiffness and facilitates heel strike in children with Cerebral Palsy.

    Science.gov (United States)

    Willerslev-Olsen, Maria; Lorentzen, Jakob; Nielsen, Jens Bo

    2014-01-01

    Foot drop and toe walking are frequent concerns in children with cerebral palsy (CP). Increased stiffness of the ankle joint muscles may contribute to these problems. Does four weeks of daily home based treadmill training with incline reduce ankle joint stiffness and facilitate heel strike in children with CP? Seventeen children with CP (4-14 years) were recruited. Muscle stiffness and gait ability were measured twice before and twice after training with an interval of one month. Passive and reflex-mediated stiffness were measured by a dynamometer which applied stretches below and above reflex threshold. Gait kinematics were recorded by 3-D video-analysis during treadmill walking. Foot pressure was measured by force-sensitive foot soles during treadmill and over-ground walking. Children with increased passive stiffness showed a significant reduction in stiffness following training (P = 0.01). Toe lift in the swing phase (P = 0.014) and heel impact (P = 0.003) increased significantly following the training during both treadmill and over-ground walking. Daily intensive gait training may influence the elastic properties of ankle joint muscles and facilitate toe lift and heel strike in children with CP. Intensive gait training may be beneficial in preventing contractures and maintain gait ability in children with CP.

  11. Muscular contribution to low-back loading and stiffness during standard and suspended push-ups.

    Science.gov (United States)

    Beach, Tyson A C; Howarth, Samuel J; Callaghan, Jack P

    2008-06-01

    Push-up exercises are normally performed to challenge muscles that span upper extremity joints. However, it is also recognized that push-ups provide an effective abdominal muscle challenge, especially when the hands are in contact with a labile support surface. The purpose of this study was to compare trunk muscle activation levels and resultant intervertebral joint (IVJ) loading when standard and suspended push-ups were performed, and to quantify and compare the contribution of trunk muscles to IVJ rotational stiffness in both exercises. Eleven recreationally trained male volunteers performed sets of standard and suspended push-ups. Upper body kinematic, kinetic, and EMG data were collected and input into a 3D biomechanical model of the lumbar torso to quantify lumbar IVJ loading and the contributions of trunk muscles to IVJ rotational stiffness. When performing suspended push-ups, muscles of the abdominal wall and the latissimus dorsi were activated to levels that were significantly greater than those elicited when performing standard push-ups (ppush-ups. Also directly resulting from the increased activation levels of the abdominal muscles and the latissimus dorsi during suspended push-ups was increased muscular contribution to lumbar IVJ rotational stiffness (ppush-ups appear to provide a superior abdominal muscle challenge. However, for individuals unable to tolerate high lumbar IVJ compressive loads, potential benefits gained by incorporating suspended push-ups into their resistance training regimen may be outweighed by the risk of overloading low-back tissues.

  12. Concentration and temperature dependence of short-range order in Ni-Ta solid solution using X-ray diffraction method

    International Nuclear Information System (INIS)

    Khwaja, F.A.; Alam, A.

    1980-09-01

    Diffuse X-ray scattering investigations about the existence of short-range order (SRO) have been carried out in the Ni-Ta system for different concentrations and annealing temperatures. It is observed that the values of the SRO parameters for the first co-ordination shell have anomalously large negative values for all the samples studied. These values of the α 1 depend upon the annealing temperatures and the concentration of Ta atoms in the Ni-Ta system. The results of the theoretical predictions of the ordering potential obtained using the formulae of the electronic theory of SRO, confirm the existence of very strong attractive correlation between the atoms of the different species in this system. (author)

  13. Applications of the KKR-DCA: A Finite-Temperature Density Functional Theory to Predict Chemical Short-Range Order Effects in Disordered Metallic Alloys

    Science.gov (United States)

    Biava, D. A.; Johnson, D. D.

    2009-03-01

    Short-range order (SRO) is ubiquitous in metallic alloys, affecting changes in their electronic, thermodynamic, mechanical, magnetic, and structural properties. For example, SRO is responsible for the yield-strength anomalies observed in Cu-Al at high temperatures, i.e., the materials is more resistant to dislocation motion at high temperature than it is at room temperature. Within the Korringa-Kohn-Rostorker (KKR) electronic-structure method, we present results using the dynamical cluster approximations (DCA) to obtain the temperature-dependent SRO in disordered alloys. We obtain the KKR-DCA SRO energetics versus local neighbor SRO parameters and minimize it at fixed temperature to predict the SRO. We show that the calculated SRO at fixed temperature compares well with available experimental results, and then correlate the results to the electronic structure. We discuss how an accurate analytic estimate can be made for the SRO in most metals due to the dependence of the grand potential on SRO.

  14. Short-range spatial variability of soil δ15N natural abundance – effects on symbiotic N2-fixation estimates in pea

    DEFF Research Database (Denmark)

    Holdensen, Lars; Hauggaard-Nielsen, Henrik; Jensen, Erik Steen

    2007-01-01

    abundance in spring barley and N2-fixing pea was measured within the 0.15-4 m scale at flowering and at maturity. The short-range spatial variability of soil δ15N natural abundance and symbiotic nitrogen fixation were high at both growth stages. Along a 4-m row, the δ15N natural abundance in barley......-abundance are that estimates of symbiotic N2-fixation can be obtained from the natural abundance method if at least half a square meter of crop and reference plants is sampled for the isotopic analysis. In fields with small amounts of representative reference crops (weeds) it might be necessary to sow in reference crop...

  15. Growth of epitaxially oriented Ag nanoislands on air-oxidized Si(1 1 1)-(7 × 7) surfaces: Influence of short-range order on the substrate

    International Nuclear Information System (INIS)

    Roy, Anupam; Bhattacharjee, K.; Ghatak, J.; Dev, B.N.

    2012-01-01

    Clean Si(1 1 1)-(7 × 7) surfaces, followed by air-exposure, have been investigated by reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM). Fourier transforms (FTs) of STM images show the presence of short-range (7 × 7) order on the air-oxidized surface. Comparison with FTs of STM images from a clean Si(1 1 1)-(7 × 7) surface shows that only the 1/7th order spots are present on the air-oxidized surface. The oxide layer is ∼2-3 nm thick, as revealed by cross-sectional transmission electron microscopy (XTEM). Growth of Ag islands on these air-oxidized Si(1 1 1)-(7 × 7) surfaces has been investigated by in situ RHEED and STM and ex situ XTEM and scanning electron microscopy. Ag deposition at room temperature leads to the growth of randomly oriented Ag islands while preferred orientation evolves when Ag is deposited at higher substrate temperatures. For deposition at 550 °C face centered cubic Ag nanoislands grow with a predominant epitaxial orientation [11 ¯ 0] Ag ||[11 ¯ 0] Si , (1 1 1) Ag || (1 1 1) Si along with its twin [1 ¯ 10] Ag ||[11 ¯ 0] Si , (1 1 1) Ag || (1 1 1) Si , as observed for epitaxial growth of Ag on Si(1 1 1) surfaces. The twins are thus rotated by a 180° rotation of the Ag unit cell about the Si[1 1 1] axis. It is intriguing that Ag nanoislands follow an epitaxial relationship with the Si(1 1 1) substrate in spite of the presence of a 2-3 nm thick oxide layer between Ag and Si. Apparently the short-range order on the oxide surface influences the crystallographic orientation of the Ag nanoislands.

  16. Solvent-shared pairs of densely charged ions induce intense but short-range supra-additive slowdown of water rotation.

    Science.gov (United States)

    Vila Verde, Ana; Santer, Mark; Lipowsky, Reinhard

    2016-01-21

    The question "Can ions exert supra-additive effects on water dynamics?" has had several opposing answers from both simulation and experiment. We address this ongoing controversy by investigating water reorientation in aqueous solutions of two salts with large (magnesium sulfate) and small (cesium chloride) effects on water dynamics using molecular dynamics simulations and classical, polarizable models. The salt models are reparameterized to reproduce properties of both dilute and concentrated solutions. We demonstrate that water rotation in concentrated MgSO4 solutions is unexpectedly slow, in agreement with experiment, and that the slowdown is supra-additive: the observed slowdown is larger than that predicted by assuming that the resultant of the extra forces induced by the ions on the rotating water molecules tilts the free energy landscape associated with water rotation. Supra-additive slow down is very intense but short-range, and is strongly ion-specific: in contrast to the long-range picture initially proposed based on experiment, we find that intense supra-additivity is limited to water molecules directly bridging two ions in solvent-shared ion pair configuration; in contrast to a non-ion-specific origin to supra-additive effects proposed from simulations, we find that the magnitude of supra-additive slowdown strongly depends on the identity of the cations and anions. Supra-additive slowdown of water dynamics requires long-lived solvent-shared ion pairs; long-lived ion pairs should be typical for salts of multivalent ions. We discuss the origin of the apparent disagreement between the various studies on this topic and show that the short-range cooperative slowdown scenario proposed here resolves the existing controversy.

  17. Identification of the same polyomavirus species in different African horseshoe bat species is indicative of short-range host-switching events.

    Science.gov (United States)

    Carr, Michael; Gonzalez, Gabriel; Sasaki, Michihito; Dool, Serena E; Ito, Kimihito; Ishii, Akihiro; Hang'ombe, Bernard M; Mweene, Aaron S; Teeling, Emma C; Hall, William W; Orba, Yasuko; Sawa, Hirofumi

    2017-10-06

    Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3-2.8E5) and 9.9E6 (4E6-18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6-15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.

  18. Comparison of the Tritium permeated from ITER Blanket in normal operation and its short range impact of HT over France, Swiss or Spain

    Energy Technology Data Exchange (ETDEWEB)

    Castro, P.; Velarde, M.; Ardao, J.; Perlado, J.; Sedano, L.; Xiberta, J.

    2015-07-01

    In this paper we assumes the hydrogen isotopes permeation from a liquid metal ITER breeder blanket (assuming normal operation and a LM as DCLL or HCLL blanket) as one of the possible sources of a leak and tritium release,mainly but not only. The paper presents a short range low impact of HT gas activity over France, Swiss or Spain from same cases in 2014 and 2015 releases from ITER. The permeation of hydrogen isotopes is an important experimental issue to take into account into the development of a Tritium Breeder Module for ITER [1]. Tritium cannot be confined -without an uncertainty of 5% in the flux permeation- and therefore HT can be detected (e.g. by ionization chamber) as permeates though the structure of RAFM steel towards the coolant [1]. HT from Pb15.7Li and permeated in Eurofer97 can contaminate the other parts of the system and may be delivered though the normal-vent detritiation system (NVDS). Real time forecast of transport of tritium in air from the fusion reactor towards off-site far downwind though extended tritium clouds into the low levels of the atmosphere is calculated for the short range (up to 24 hours) by the coupling of 2 models the European Centre for Medium Range Weather Forecast (ECMWF) [2] model and the FLEXPART lagrangian dispersion model [3] verified with NORMTRI simulation [4] and implemented in many different cases and scenarios [5, 6, 7]. As a function of daily weather conditions the release will affect just France or already can be delivered towards Swiss when cyclonic circulation, or towards the Iberian Peninsula or Balearic Islands (Spain) when high produce anticyclonic circulation of the air over the Mediterranean Sea. (Author)

  19. Matrix Stiffness Corresponding to Strictured Bowel Induces a Fibrogenic Response in Human Colonic Fibroblasts

    Science.gov (United States)

    Johnson, Laura A.; Rodansky, Eva S.; Sauder, Kay L.; Horowitz, Jeffrey C.; Mih, Justin D.; Tschumperlin, Daniel J.; Higgins, Peter D.

    2013-01-01

    Background Crohn’s disease is characterized by repeated cycles of inflammation and mucosal healing which ultimately progress to intestinal fibrosis. This inexorable progression towards fibrosis suggests that fibrosis becomes inflammation-independent and auto-propagative. We hypothesized that matrix stiffness regulates this auto-propagation of intestinal fibrosis. Methods The stiffness of fresh ex vivo samples from normal human small intestine, Crohn’s disease strictures, and the unaffected margin were measured with a microelastometer. Normal human colonic fibroblasts were cultured on physiologically normal or pathologically stiff matrices corresponding to the physiological stiffness of normal or fibrotic bowel. Cellular response was assayed for changes in cell morphology, α-smooth muscle actin (αSMA) staining, and gene expression. Results Microelastometer measurements revealed a significant increase in colonic tissue stiffness between normal human colon and Crohn’s strictures as well as between the stricture and adjacent tissue margin. In Ccd-18co cells grown on stiff matrices corresponding to Crohn’s strictures, cellular proliferation increased. Pathologic stiffness induced a marked change in cell morphology and increased αSMA protein expression. Growth on a stiff matrix induced fibrogenic gene expression, decreased matrix metalloproteinase and pro-inflammatory gene expression, and was associated with nuclear localization of the transcriptional cofactor MRTF-A. Conclusions Matrix stiffness, representative of the pathological stiffness of Crohn’s strictures, activates human colonic fibroblasts to a fibrogenic phenotype. Matrix stiffness affects multiple pathways suggesting the mechanical properties of the cellular environment are critical to fibroblast function and may contribute to autopropagation of intestinal fibrosis in the absence of inflammation, thereby contributing to the intractable intestinal fibrosis characteristic of Crohn’s disease. PMID

  20. Cell stiffness, contractile stress and the role of extracellular matrix

    International Nuclear Information System (INIS)

    An, Steven S.; Kim, Jina; Ahn, Kwangmi; Trepat, Xavier; Drake, Kenneth J.; Kumar, Sarvesh; Ling, Guoyu; Purington, Carolyn; Rangasamy, Tirumalai; Kensler, Thomas W.; Mitzner, Wayne; Fredberg, Jeffrey J.; Biswal, Shyam

    2009-01-01

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genes in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses.

  1. Cell stiffness, contractile stress and the role of extracellular matrix

    Energy Technology Data Exchange (ETDEWEB)

    An, Steven S., E-mail: san@jhsph.edu [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Kim, Jina [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Ahn, Kwangmi [Division of Biostatistics, Penn State College of Medicine, Hershey, PA 17033 (United States); Trepat, Xavier [CIBER, Enfermedades Respiratorias, 07110 Bunyola (Spain); Drake, Kenneth J. [Division of Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115 (United States); Kumar, Sarvesh; Ling, Guoyu; Purington, Carolyn; Rangasamy, Tirumalai; Kensler, Thomas W.; Mitzner, Wayne [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Fredberg, Jeffrey J. [Division of Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115 (United States); Biswal, Shyam [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 (United States)

    2009-05-15

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genes in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses.

  2. Tension-referenced measures of gastrocnemius slack length and stiffness in Parkinson's disease.

    Science.gov (United States)

    Tan, Benedict; Double, Kay L; Burne, John; Diong, Joanna

    2016-12-01

    It is not known how passive muscle length and stiffness contribute to rigidity in Parkinson's disease. The objective of this study was to compare passive gastrocnemius muscle-tendon slack length and stiffness at known tension in Parkinson's disease subjects with ankle rigidity and in able-bodied people. Passive ankle torque-angle curves were obtained from 15 Parkinson's disease subjects with rigidity and 15 control subjects. Torque-angle data were used to derive passive gastrocnemius length-tension data and calculate slack length and stiffness of the gastrocnemius muscle. Between-group comparisons were made with linear models. Gastrocnemius muscle-tendon slack lengths (adjusted between-group difference, 0.01 m; 95% CI, -0.02 to 0.04 m; P = 0.37) and stiffness (adjusted between-group difference, 15.7 m -1 ; 95% CI, -8.5 to 39.9 m -1 ; P = 0.19) were not significantly different between groups. Parkinson's disease subjects with ankle rigidity did not have significantly shorter or stiffer gastrocnemius muscles compared with control subjects. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  3. Delayed onset muscle soreness: No pain, no gain? The truth behind ...

    African Journals Online (AJOL)

    Delayed onset muscle soreness (DOMS) is muscle pain and stiffness that develops ... limited success in reducing the symptoms.1,4-6 The DOMS phenomenon ... Nutritional supplementation (antioxidants and L-carnitine) shows promise, but ...

  4. Effect of Simvastatin on Arterial Stiffness in Patients with Statin Myalgia

    Directory of Open Access Journals (Sweden)

    Kevin D. Ballard

    2015-01-01

    Full Text Available Statins reduce arterial stiffness but are also associated with mild muscle complaints. It is unclear whether individuals with muscle symptoms experience the same vascular benefit or whether statins affect striated and smooth muscle cells differently. We examined the effect of simvastatin treatment on arterial stiffness in patients who did versus those who did not exhibit muscle symptoms. Patients with a history of statin-related muscle complaints (n=115 completed an 8 wk randomized, double-blind, cross-over trial of daily simvastatin 20 mg and placebo. Serum lipids and pulse wave velocity (PWV were assessed before and after each treatment. Muscle symptoms with daily simvastatin treatment were reported by 38 patients (33%. Compared to baseline, central PWV decreased (P=0.01 following simvastatin treatment but not placebo (drug ∗ time interaction: P=0.047. Changes in central PWV with simvastatin treatment were not influenced by myalgia status or time on simvastatin (P≥0.15. Change in central PWV after simvastatin treatment was inversely correlated with age (r=-0.207, P=0.030, suggesting that advancing age is associated with enhanced statin-mediated arterial destiffening. In patients with a history of statin-related muscle complaints, the development of myalgia with short-term simvastatin treatment did not attenuate the improvement in arterial stiffness.

  5. Properties and determination of the interface stiffness

    International Nuclear Information System (INIS)

    Du Danxu; Zhang Hao; Srolovitz, David J.

    2007-01-01

    The chemical potential of a curved interface contains a term that is proportional to the product of the interface curvature and the interface stiffness. In crystalline materials, the interface stiffness is a tensor. This paper examines several basic issues related to the properties of the interface stiffness, especially the determination of the interface stiffness in particular directions (i.e. the commonly used scalar form of the interface stiffness). Of the five parameters that describe an arbitrary grain boundary, only those describing the inclination are crucial for the scalar stiffness. We also examine the influence of crystal symmetry on the stiffness tensor for both free surfaces and grain boundaries. This results in substantial simplifications for cases in which interfaces possess mirror or rotational symmetries. An efficient method for determining the interface stiffness tensor using atomistic simulations is proposed

  6. Stiff person syndrome (SPS: Literature review and case report

    Directory of Open Access Journals (Sweden)

    Erna Pretorius

    2013-11-01

    Full Text Available Stiff person syndrome (SPS is a rare, debilitating condition which presents with progressive and inconsistent neurological features. The main symptoms are stiffness and intermittent, painful muscle spasms, triggered and exacerbated by stressful and emotional stimuli. The fluctuating clinical nature of SPS, and otherwise normal neurological examination, often lead to a misdiagnosis of conversion disorder. Psychiatric symptoms frequently accompany this disorder and patients are often first seen by psychiatrists. SPS is autoimmune-based: antibodies are directed against glutamate decarboxylase, resulting in dysregulation of gamma-aminobutyric acid (GABA in the brain which is considered the cause of the neuropsychiatric symptomatology. SPS should be considered in the differential diagnosis of conversion disorder. Effective management requires early detection, a collaborative approach with GABA-ergic medication and intravenous immunoglobulins, and management of concomitant psychiatric disorders. We describe a patient with SPS. Only one other case has been reported in South Africa.

  7. Structure of short-range-ordered iron(III)-precipitates formed by iron(II) oxidation in water containing phosphate, silicate, and calcium

    Science.gov (United States)

    Voegelin, A.; Frommer, J.; Vantelon, D.; Kaegi, R.; Hug, S. J.

    2009-04-01

    The oxidation of Fe(II) in water leads to the formation of Fe(III)-precipitates that strongly affect the fate of nutrients and contaminants in natural and engineered systems. Examples include the cycling of As in rice fields irrigated with As-rich groundwater or the treatment of drinking water for As removal. Knowledge of the types of Fe(III)-precipitates forming in such systems is essential for the quantitative modeling of nutrient and contaminant dynamics and for the optimization of water purification techniques on the basis of a mechanistic understanding of the relevant biogeochemical processes. In this study, we investigated the local coordination of Fe, P, and Ca in Fe(III)-precipitates formed by aeration of synthetic Fe(II)-containing groundwater with variable composition (pH 7, 2-30 mg/L Fe(II), 2-20 mg/L phosphate-P, 2-20 mg/L silicate-Si, 8 mM Na-bicarbonate or 2.5 mM Ca-&1.5 mM Mg-bicarbonate). After 4 hours of oxidation, Fe(III)-precipitates were collected on 0.2 µm nylon filters and dried. The precipitates were analyzed by Fe K-edge EXAFS (XAS beamline, ANKA, Germany) and by P and Ca K-edge XANES spectroscopy (LUCIA beamline, SLS, Switzerland). The Fe K-edge EXAFS spectra indicated that local Fe coordination in the precipitates systematically shifted with water composition. As long as water contained P, mainly short-range-ordered Fe(III)-phosphate formed (with molar P/Fe ~0.5). In the absence of P, Fe(III) precipitated as hydrous ferric oxide at high Si/Fe>0.5, as ferrihydrite at intermediate Si/Fe, and mainly as lepidocrocite at Si/Fe<0.2. Analysis of the EXAFS by shell-fitting indicated that Fe(III)-phosphates mainly contained mono- or oligomeric (edge- or corner-sharing) Fe and that the linkage between neighboring Fe(III)-octahedra changed from predominantly edge-sharing in Si-rich hydrous ferric oxide to edge- and corner-sharing in ferrihydrite. Electron microscopic data showed that changes in local precipitate structure were systematically

  8. Search for a spin-dependent short-range force between nucleons with a 3He/129Xe clock-comparison experiment

    International Nuclear Information System (INIS)

    Tullney, Kathlynne

    2014-01-01

    The standard model (SM) of particle physics describes all known particles and their interactions. However, the SM leaves many issues unresolved. For example, it only includes three of the four fundamental forces and does not clarify the question why in the strong interaction CP symmetry is violated due to its non-trivial vacuum structure is predicted (Θ-term), but experimentally unverifiable. The latter one is known as the strong CP-problem of quantum chromodynamics (QCD) and is solved by the Peccei-Quinn-Weinberg-Wilczek theory. This theory predicts a new and almost massless boson which is known as the axion. The axion feebly interacts with matter and therefore it is a good candidate for cold dark matter, too. Axions are produced by the Primakoff-effect, i.e. by conversion of photons which are scattered in the electromagnetic field, e.g. of atoms. The inverse Primakoff-effect, which converts axions to photons again, can be used for direct detection of galactic, solar, or laboratory axions. Cosmological and astrophysical observations constrain the mass of the axion from a few μeV to some meV (''axion mass window''). If the axion exists, then it mediates a CP violating, spin-dependent, short-range interaction between a fermion and the spin of another fermion. By verification of this interaction, the axion can be detected indirectly. In the framework of the present thesis an experiment to search for this spindependent short-range interaction was performed in the magnetically shielded room BMSR-2 of the Physikalisch-Technische Bundesanstalt Berlin. An ultra-sensitive low-field co-magnetometer was employed which is based on the detection of free precession of 3 He and 129 Xe nuclear spins using SQUIDs as low-noise magnetic flux detectors. The two nuclear spin polarized gases are filled into a glass cell which is immersed in a low magnetic field of about B 0 = 0.35 μT with absolute field gradients in the order of pT/cm. The spin precession frequencies of 3 He and 129

  9. Shoulder Stiffness : Current Concepts and Concerns

    NARCIS (Netherlands)

    Itoi, Eiji; Arce, Guillermo; Bain, Gregory I.; Diercks, Ronald L.; Guttmann, Dan; Imhoff, Andreas B.; Mazzocca, Augustus D.; Sugaya, Hiroyuki; Yoo, Yon-Sik

    Shoulder stiffness can be caused by various etiologies such as immobilization, trauma, or surgical interventions. The Upper Extremity Committee of ISAKOS defined the term "frozen shoulder" as idiopathic stiff shoulder, that is, without a known cause. Secondary stiff shoulder is a term that should be

  10. Hypothyroidism leads to increased collagen-based stiffness and re-expression of large cardiac titin isoforms with high compliance.

    Science.gov (United States)

    Wu, Yiming; Peng, Jun; Campbell, Kenneth B; Labeit, Siegfried; Granzier, Henk

    2007-01-01

    Because long-term hypothyroidism results in diastolic dysfunction, we investigated myocardial passive stiffness in hypothyroidism and focused on the possible role of titin, an important determinant of diastolic stiffness. A rat model of hypothyroidism was used, obtained by administering propylthiouracil (PTU) for times that varied from 1 month (short-term) to 4 months (long-term). Titin expression was determined by transcript analysis, gel electrophoresis and immunoelectron microscopy. Diastolic function was measured at the isolated heart, skinned muscle, and cardiac myocyte levels. We found that hypothyroidism resulted in expression of a large titin isoform, the abundance of which gradually increased with time to become the most dominant isoform in long-term hypothyroid rats. This isoform co-migrates on high-resolution gels with fetal cardiac titin. Transcript analysis on myocardium of long-term PTU rats, provided evidence for expression of additional PEVK and Ig domain exons, similar to what has been described in fetal myocardium. Consistent with the expression of a large titin isoform, titin-based restoring and passive forces were significantly reduced in single cardiac myocytes and muscle strips of long-term hypothyroid rats. Overall muscle stiffness and LV diastolic wall stiffness were increased, however, due to increased collagen-based stiffness. We conclude that long term hypothyroidism triggers expression of a large cardiac titin isoform and that the ensuing reduction in titin-based passive stiffness functions as a compensatory mechanism to reduce LV wall stiffness.

  11. Contributions of Hamstring Stiffness to Straight-Leg-Raise and Sit-and-Reach Test Scores.

    Science.gov (United States)

    Miyamoto, Naokazu; Hirata, Kosuke; Kimura, Noriko; Miyamoto-Mikami, Eri

    2018-02-01

    The passive straight-leg-raise (PSLR) and the sit-and-reach (SR) tests have been widely used to assess hamstring extensibility. However, it remains unclear to what extent hamstring stiffness (a measure of material properties) contributes to PSLR and SR test scores. Therefore, we aimed to clarify the relationship between hamstring stiffness and PSLR and SR scores using ultrasound shear wave elastography. Ninety-eight healthy subjects completed the study. Each subject completed PSLR testing, and classic and modified SR testing of the right leg. Muscle shear modulus of the biceps femoris, semitendinosus, and semimembranosus was quantified as an index of muscle stiffness. The relationships between shear modulus of each muscle and PSLR or SR scores were calculated using Pearson's product-moment correlation coefficients. Shear modulus of the semitendinosus and semimembranosus showed negative correlations with the two PSLR and two SR scores (absolute r value≤0.484). Shear modulus of the biceps femoris was significantly correlated with the PSLR score determined by the examiner and the modified SR score (absolute r value≤0.308). The present findings suggest that PSLR and SR test scores are strongly influenced by factors other than hamstring stiffness and therefore might not accurately evaluate hamstring stiffness. © Georg Thieme Verlag KG Stuttgart · New York.

  12. A case of stiff-person syndrome due to secondary adrenal insufficiency.

    Science.gov (United States)

    Mizuno, Yuri; Yamaguchi, Hiroo; Uehara, Taira; Yamashita, Kenichiro; Yamasaki, Ryo; Kira, Jun-Ichi

    2017-06-28

    We report a case of flexion contractures in a patient's legs secondary to postpartum hypopituitarism. A 56-year-old woman presented with a 3-year history of worsening flexion contractures of the hips and knees. On admission, her hips and knees could not be extended, and she had muscle stiffness and tenderness to palpation of the lower extremities. We first suspected stiff-person syndrome or Isaacs' syndrome because of her muscle stiffness. However, multiple hormones did not respond to stimulation tests, and an MRI of the brain showed atrophy of the pituitary gland with an empty sella. A subsequent interview revealed that she had suffered a severe hemorrhage while delivering her third child. She was diagnosed with panhypopituitarism and started on cortisol replacement therapy. After 1 week of treatment with hydrocortisone (10 mg/day), her symptoms quickly improved. We then added 75 μg/day of thyroid hormone. During the course of her treatment, autoantibodies against VGKC complex were found to be weakly positive. However, we considered the antibodies to be unrelated to her disease, because her symptoms improved markedly with low-dose steroid treatment. There are a few reports describing flexion contractures of the legs in patients with primary and secondary adrenal insufficiency. As these symptoms are similar to those seen in stiff-person syndrome, adrenal and pituitary insufficiency should be taken into account to achieve the correct diagnosis and treatment in patients with flexion contractures and muscle stiffness.

  13. Dynamic stiffness of suction caissons

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten; Andersen, Lars

    This report concerns the dynamic soil-structure interaction of steel suction caissons applied as foundations for offshore wind turbines. An emphasis is put on torsional vibrations and coupled sliding/rocking motion, and the influence of the foundation geometry and the properties of the surrounding...... soil is examined. The soil is simplified as a homogenous linear viscoelastic material and the dynamic stiffness of the suction caisson is expressed in terms of dimensionless frequency-dependent coefficients corresponding to the different degrees of freedom. The dynamic stiffness coefficients...... for the skirted foundation are evaluated by means of a three-dimensional coupled boundary element/finite element model. Comparisons with known analytical and numerical solutions indicate that the static and dynamic behaviour of the foundation are predicted accurately with the applied model. The analysis has been...

  14. Relationships between central arterial stiffness, lean body mass, and absolute and relative strength in young and older men and women.

    Science.gov (United States)

    Fahs, Christopher A; Thiebaud, Robert S; Rossow, Lindy M; Loenneke, Jeremy P; Bemben, Debra A; Bemben, Michael G

    2017-08-16

    Relationships between muscular strength and arterial stiffness as well as between muscle mass and arterial stiffness have been observed suggesting a link between the neuromuscular system and vascular health. However, the relationship between central arterial stiffness and absolute and relative strength along with muscle mass has not been investigated in both sexes across a broad age range. The purpose of this study was to examine the relationship between central arterial stiffness and absolute and relative strength as well as between central arterial stiffness and lean body mass (LBM) in men and women across a broad age range. LBM, central arterial stiffness and strength were measured on 36 men and 35 women between the ages of 18 and 75 years. Strength was measured on five machine resistance exercises and summed as one measure of overall strength (absolute strength). Relative strength was calculated as total strength divided by LBM (relative strength). Central arterial stiffness was inversely related to both absolute (r = -0·230; P = 0·029) and relative strength (r = -0·484; P LBM (r = 0·097; P = 0·213). The relationship between central arterial stiffness and relative strength was attenuated but still present when controlling for either age, per cent body fat, LBM or mean arterial pressure. These results suggest that, across a wide age range, the expression of relative muscular strength has a stronger relationship with central arterial stiffness compared to either LBM or absolute strength. This suggests that muscle function more than muscle mass may be coupled with vascular health. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  15. Effects of short-range order on electronic properties of Zr-Ni glasses as seen from low-temperature specific heat

    International Nuclear Information System (INIS)

    Kroeger, D.M.; Koch, C.C.; Scarbrough, J.O.; McKamey, C.G.

    1984-01-01

    Measurements of the low-temperature specific heat C/sub p/ of liquid-quenched Zr-Ni glasses for a large number of compositions in the range from 55 to 74 at. % Zr revealed an unusual composition dependence of the density of states at the Fermi level, N(E/sub F/). Furthermore, for some compositions the variation of C/sub p/ near the superconducting transition temperature T/sub c/ indicated the presence of two superconducting phases, i.e., two superconducting transitions were detected. Comparison of the individual T/sub c/'s in phase-separated samples to the composition dependence of T/sub c/ for all of the samples suggests that amorphous phases with compositions near 60 and 66.7 at. % Zr occur. We discuss these results in terms of an ''association model'' for liquid alloys (due to Sommer), in which associations of unlike atoms with definite stoichiometries are assumed to exist in equilibrium with unassociated atoms. We conclude that in the composition range studied, associate clusters with the compositions Zr 3 Ni 2 and Zr 2 Ni occur. In only a few cases are the clusters sufficiently large, compared with the superconducting coherence length, for separate superconducting transitions to be observed. The variation of N(E/sub F/) with composition is discussed, as well as the effects of this chemical short-range ordering on the crystallization behavior and glass-forming tendency

  16. Effects of short-range order on electronic properties of Zr-Ni glasses as seen from low-temperature specific heat

    Science.gov (United States)

    Kroeger, D. M.; Koch, C. C.; Scarbrough, J. O.; McKamey, C. G.

    1984-02-01

    Measurements of the low-temperature specific heat Cp of liquid-quenched Zr-Ni glasses for a large number of compositions in the range from 55 to 74 at.% Zr revealed an unusual composition dependence of the density of states at the Fermi level, N(EF). Furthermore, for some compositions the variation of Cp near the superconducting transition temperature Tc indicated the presence of two superconducting phases, i.e., two superconducting transitions were detected. Comparison of the individual Tc's in phase-separated samples to the composition dependence of Tc for all of the samples suggests that amorphous phases with compositions near 60 and 66.7 at.% Zr occur. We discuss these results in terms of an "association model" for liquid alloys (due to Sommer), in which associations of unlike atoms with definite stoichiometries are assumed to exist in equilibrium with unassociated atoms. We conclude that in the composition range studied, associate clusters with the compositions Zr3Ni2 and Zr2Ni occur. In only a few cases are the clusters sufficiently large, compared with the superconducting coherence length, for separate superconducting transitions to be observed. The variation of N(EF) with composition is discussed, as well as the effects of this chemical short-range ordering on the crystallization behavior and glass-forming tendency.

  17. Traplining in bumblebees (Bombus impatiens): a foraging strategy's ontogeny and the importance of spatial reference memory in short-range foraging.

    Science.gov (United States)

    Saleh, Nehal; Chittka, Lars

    2007-04-01

    To test the relative importance of long-term and working spatial memories in short-range foraging in bumblebees, we compared the performance of two groups of bees. One group foraged in a stable array of six flowers for 40 foraging bouts, thereby enabling it to establish a long-term memory of the array, and adjust its spatial movements accordingly. The other group was faced with an array that changed between (but not within) foraging bouts, and thus had only access to a working memory of the flowers that had been visited. Bees in the stable array started out sampling a variety of routes, but their tendency to visit flowers in a repeatable, stable order ("traplining") increased drastically with experience. These bees used shorter routes and converged on four popular paths. However, these routes were mainly formed through linking pairs of flowers by near-neighbour movements, rather than attempting to minimize overall travel distance. Individuals had variations to a primary sequence, where some bees used a major sequence most often, followed by a minor less used route, and others used two different routes with equal frequency. Even though bees foraging in the spatially randomized array had access to both spatial working memory and scent marks, this manipulation greatly disrupted foraging efficiency, mainly via an increase in revisitation to previously emptied flowers and substantially longer search times. Hence, a stable reference frame greatly improves foraging even for bees in relatively small arrays of flowers.

  18. The invisible cues that guide king penguin chicks home: use of magnetic and acoustic cues during orientation and short-range navigation.

    Science.gov (United States)

    Nesterova, Anna P; Chiffard, Jules; Couchoux, Charline; Bonadonna, Francesco

    2013-04-15

    King penguins (Aptenodytes patagonicus) live in large and densely populated colonies, where navigation can be challenging because of the presence of many conspecifics that could obstruct locally available cues. Our previous experiments demonstrated that visual cues were important but not essential for king penguin chicks' homing. The main objective of this study was to investigate the importance of non-visual cues, such as magnetic and acoustic cues, for chicks' orientation and short-range navigation. In a series of experiments, the chicks were individually displaced from the colony to an experimental arena where they were released under different conditions. In the magnetic experiments, a strong magnet was attached to the chicks' heads. Trials were conducted in daylight and at night to test the relative importance of visual and magnetic cues. Our results showed that when the geomagnetic field around the chicks was modified, their orientation in the arena and the overall ability to home was not affected. In a low sound experiment we limited the acoustic cues available to the chicks by putting ear pads over their ears, and in a loud sound experiment we provided additional acoustic cues by broadcasting colony sounds on the opposite side of the arena to the real colony. In the low sound experiment, the behavior of the chicks was not affected by the limited sound input. In the loud sound experiment, the chicks reacted strongly to the colony sound. These results suggest that king penguin chicks may use the sound of the colony while orienting towards their home.

  19. Investigations of coal ignition in a short-range flame burner using optical measuring systems; Untersuchungen zur Kohlezuendung am Flachflammenbrenner unter Verwendung optischer Messtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Hackert, G.; Kremer, H.; Wirtz, S. [Bochum Univ. (Germany). Lehrstuhl fuer Energieanlagentechnik

    1999-09-01

    The short-range flame burner and the KOALA reactor of DMT are experimental facilities for realistic simulation of coal conversion processes at high temperatures and pressures in atmospheric conditions. The TOSCA system enable measurements of temperatures, sizes, shapes and velocities of the fuel particles, which serve as a basis for a three-dimensional simulation model of coal combustion. In the future, further parameter studies will deepen the present knowledge of coal dust combustion under pressure and enable optimisation of the numerical models for simulation of industrial-scale systems for coal dust combustion under pressure. [Deutsch] Mit dem Flachflammenbrenner und dem KOALA-Reaktor der DMT stehen Versuchsapparaturen zur Verfuegung, mit deren Hilfe die Kohleumwandlungsprozesse bei hohen Temperaturen unter Druck und unter atmosphaerischen Bedingungen realistisch wiedergegeben werden. Das TOSCA-System erlaubt dabei die Bestimmung von Temperaturen, Groessen, Formen und Geschwindigkeiten der Brennstoffpartikel. Diese Daten liefern die Grundlage fuer die Erstellung eines dreidimensionalen Simulationsmodells zur Modellierung der Kohleverbrennung. In Zukunft werden weitere Parameterstudien das Verstaendnis der Kohlenstaubdruckverbrennung vertiefen und ein Optimierung der numerischen Modelle ermoeglichen, so dass die Simulation grosstechnischer Kohlenstaubdruckverbrennungsanlagen realisiert werden kann. (orig.)

  20. BeP2: a tetrahedral structure of type order-disorder which obeys a coordination rule for short-range order

    International Nuclear Information System (INIS)

    L'Haridon, P.; David, J.; Lang, J.; Parthe, E.

    1976-01-01

    Single-crystal studies on BeP 2 indicate that this compound possesses an OD structure. The substructure has a tetragonal unit cell with: a = 3.546 A, c = 15.01 A, Z = 4, space group: I4 1 /amd. The final R factor has a value of 0.033. The atom sites in this substructure correspond to the sites of diamond if the latter is described with a tetragonal cell, where a = (2/sup 1/2//a/sub diamond/ and c = 3a/sub diamond/. A short-range order governs the occupation of these sites with Be and P atoms. Each Be has four tetrahedral P neighbors and every P has two Be and two P neighbors. Consideration of the maxima on the diffuse streaks between the sharp reflectins of the substructure leads to an intermediate unit cell with a = 7.09 A and c = 30.02 A. Coordination considerations allow a structure proposal to be formulated for this intermediate structure which is triclinic but pseudotetragonal. The true unit cell is also pseudotetragonal with a = 7.09 A and c = N . 15.01 A, where N is a large integer

  1. Gait training reduces ankle joint stiffness and facilitates heel strike in children with Cerebral Palsy

    DEFF Research Database (Denmark)

    Willerslev-Olsen, Maria; Lorentzen, Jakob; Nielsen, Jens Bo

    2014-01-01

    and facilitate heel strike in children with CP? METHODS: Seventeen children with CP (4-14 years) were recruited. Muscle stiffness and gait ability were measured twice before and twice after training with an interval of one month. Passive and reflex-mediated stiffness were measured by a dynamometer which applied...... in stiffness following training (P = 0.01). Toe lift in the swing phase (P = 0.014) and heel impact (P = 0.003) increased significantly following the training during both treadmill and over-ground walking. CONCLUSIONS: Daily intensive gait training may influence the elastic properties of ankle joint muscles...... and facilitate toe lift and heel strike in children with CP. Intensive gait training may be beneficial in preventing contractures and maintain gait ability in children with CP....

  2. [Metabolic syndrome and aortic stiffness].

    Science.gov (United States)

    Simková, A; Bulas, J; Murín, J; Kozlíková, K; Janiga, I

    2010-09-01

    The metabolic syndrome (MS) is a cluster of risk factors that move the patient into higher level of risk category of cardiovascular disease and the probability of type 2 diabetes mellitus manifestation. Definition of MS is s based on the presence of selected risk factors as: abdominal obesity (lager waist circumpherence), atherogenic dyslipidemia (low value of HDL-cholesterol and increased level of triglycerides), increased fasting blood glucose (or type 2 DM diagnosis), higher blood pressure or antihypertensive therapy. In 2009 there were created harmonizing criteria for MS definition; the condition for assignment of MS is the presence of any 3 criteria of 5 mentioned above. The underlying disorder of MS is an insulin resistance or prediabetes. The patients with MS more frequently have subclinical (preclinical) target organ disease (TOD) which is the early sings of atherosclerosis. Increased aortic stiffness is one of the preclinical diseases and is defined by pathologically increased carotidofemoral pulse wave velocity in aorta (PWV Ao). With the aim to assess the influence of MS on aortic stiffness we examined the group of women with arterial hypertension and MS and compare them with the group of women without MS. The aortic stiffness was examined by Arteriograph--Tensiomed, the equipment working on the oscillometric principle in detection of pulsations of brachial artery. This method determines the global aortic stiffness based on the analysis of the shape of pulse curve of brachial artery. From the cohort of 49 pts 31 had MS, the subgroups did not differ in age or blood pressure level. The mean number of risk factors per person in MS was 3.7 comparing with 1.7 in those without MS. In the MS group there was more frequently abdominal obesity present (87% vs 44%), increased fasting blood glucose (81% vs 22%) and low HDL-cholesterol level. The pulse wave velocity in aorta, PWV Ao, was significantly higher in patients with MS (mean value 10,19 m/s vs 8,96 m

  3. Stiffness control of a nylon twisted coiled actuator for use in mechatronic rehabilitation devices.

    Science.gov (United States)

    Edmonds, Brandon P R; Trejos, Ana Luisa

    2017-07-01

    Mechatronic rehabilitation devices, especially wearables, have been researched extensively and proven to be promising additions to physical therapy, but most designs utilize traditional actuators providing unnatural, robot-like movements. Therefore, many researchers have focused on the development of actuators that mimic biological properties to provide patients with improved results, safety, and comfort. Recently, a twisted-coiled actuator (TCA) made from nylon thread has been found to possess many of these important properties when heated, such as variable stiffness, flexibility, and high power density. So far, TCAs have been characterized in controlled environments to define their fundamental properties under simple loading configurations. However, for an actuator like this to be implemented in a biomimetic design such as an exoskeleton, it needs to be characterized and controlled as a biological muscle. One major control law that natural muscles exhibit is stiffness control, allowing humans to passively avoid injury from external forces, or move the limbs in a controlled or high impact motion. This type of control is created by the antagonistic muscle arrangement. In this paper, an antagonistic apparatus was developed to model the TCAs from a biological standpoint, the stiffness was characterized with respect to the TCA temperature, and a fully functional stiffness and position controller was implemented with an incorporated TCA thermal model. The stiffness was found to have a linear relationship to the TCA temperatures (R 2 =0.95). The controller performed with a stiffness accuracy of 98.95% and a position accuracy of 92.7%. A final trial with varying continuous position input and varying stepped stiffness input exhibited position control with R 2 =0.9638.

  4. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy

    NARCIS (Netherlands)

    De Gooijer-van de Groep, K.L.; De Vlugt, E.; De Groot, J.H.; Van der Heijden-Maessen, H.C.M.; Wielheesen, D.H.M.; Van Wijlen-Hempel, R.M.S.; Arendzen, J.H.; Meskers, C.G.M.

    2013-01-01

    Background Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: “spasticity” vs. “contracture”).

  5. Short-range forecast of Shershnevskoie (South Ural) water-storage algal blooms: preliminary results of predictors' choosing and membership functions' construction

    Science.gov (United States)

    Gayazova, Anna; Abdullaev, Sanjar

    2014-05-01

    Short-range forecasting of algal blooms in drinking water reservoirs and other waterbodies is an actual element of water treatment system. Particularly, Shershnevskoie reservoir - the source of drinking water for Chelyabinsk city (South Ural region of Russia) - is exposed to interannual, seasonal and short-range fluctuations of blue-green alga Aphanizomenon flos-aquae and other dominant species abundance, which lead to technological problems and economic costs and adversely affect the water treatment quality. Whereas the composition, intensity and the period of blooms affected not only by meteorological seasonal conditions but also by ecological specificity of waterbody, that's important to develop object-oriented forecasting, particularly, search for an optimal number of predictors for such forecasting. Thereby, firstly fuzzy logic and fuzzy artificial neural network patterns for blue-green alga Microcystis aeruginosa (M. aeruginosa) blooms prediction in nearby undrained Smolino lake were developed. These results subsequently served as the base to derive membership functions for Shernevskoie reservoir forecasting patterns. Time series with the total lenght about 138-159 days of dominant species seasonal abundance, water temperature, cloud cover, wind speed, mineralization, phosphate and nitrate concentrations were obtained through field observations held at Lake Smolino (Chelyabinsk) in the warm season of 2009 and 2011 with time resolution of 2-7 days. The cross-correlation analysis of the data revealed the potential predictors of M. aeruginosa abundance quasi-periodic oscillations: green alga Pediastrum duplex (P. duplex) abundance and mineralization for 2009, P. duplex abundance, water temperature and concentration of nitrates for 2011. According to the results of cross-correlation analysis one membership function "P. duplex abundance" and one rule linking M. aeruginosa and P. duplex abundances were set up for database of 2009. Analogically, for database of 2011

  6. Interplay of short-range correlations and nuclear symmetry energy in hard-photon production from heavy-ion reactions at Fermi energies

    Science.gov (United States)

    Yong, Gao-Chan; Li, Bao-An

    2017-12-01

    Within an isospin- and momentum-dependent transport model for nuclear reactions at intermediate energies, we investigate the interplay of the nucleon-nucleon short-range correlations (SRCs) and nuclear symmetry energy Esym(ρ ) on hard-photon spectra in collisions of several Ca isotopes on 112Sn and 124Sn targets at a beam energy of 45 MeV/nucleon. It is found that over the whole spectra of hard photons studied, effects of the SRCs overwhelm those owing to the Esym(ρ ) . The energetic photons come mostly from the high-momentum tails (HMTs) of single-nucleon momentum distributions in the target and projectile. Within the neutron-proton dominance model of SRCs based on the consideration that the tensor force acts mostly in the isosinglet and spin-triplet nucleon-nucleon interaction channel, there are equal numbers of neutrons and protons, thus a zero isospin asymmetry in the HMTs. Therefore, experimental measurements of the energetic photons from heavy-ion collisions at Fermi energies have the great potential to help us better understand the nature of SRCs without any appreciable influence by the uncertain Esym(ρ ) . These measurements will be complementary to but also have some advantages over the ongoing and planned experiments using hadronic messengers from reactions induced by high-energy electrons or protons. Because the underlying physics of SRCs and Esym(ρ ) are closely correlated, a better understanding of the SRCs will, in turn, help constrain the nuclear symmetry energy more precisely in a broad density range.

  7. Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory

    Science.gov (United States)

    Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas

    2018-02-01

    Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi

  8. Assessment of aerosol radiation environment in short-range region of ChNPP during building of the new safe confinment

    International Nuclear Information System (INIS)

    Garger, E.K.; Shynkarenko, V.K.; Kashpur, V.A.; Skoryak, G.G.; Kalinovsky, A.K.

    2017-01-01

    Variability of 137 Cs volume activity in a subsurface layer of the atmosphere of a short-range region of the object ''Shelter'' (object ''Ukryttya'') during the works on building of a new safety confinement in 2016 was investigated. Influence of the type and location of works, weather conditions, and sampling points was shown. Excess of medial permissible concentrations of 137 Cs in the air was not fixed during the observations. However, due to the averaging of the measured values of the volume activity for the exposure time of the filter and use of the stationary aerosol samplers, it cannot ensure the absence of excess of the permissible concentrations at the locations of works and on the propagation path of the local emission plumes. In 2016, as well as in 2013 - 2015, high levels of 137 Cs volume activity in the air were preferentially localized near to the machine hall of the 4th block and near to the places of ground works at the industrial site [ 1]. Concurrently the levels of volume activity essentially grew (practically by the order of magnitude) due to the intense works on the machine hall transformation. The conservative estimation of volume activity of isotopes of the plutonium, executed in the assumption of fuel composition of hot particles, showed the presence of substantial excess of permissible limits even for the average values within, at least, four weeks. Absence of reliable correlation (R = -0.09) of 137 Cs volume activity in the air near to the machine hall and near to the aerosol sampler 1,4 km remote from it testifies the localization of pollution within the industrial site.

  9. Coupling between the Output Force and Stiffness in Different Variable Stiffness Actuators

    Directory of Open Access Journals (Sweden)

    Amir Jafari

    2014-08-01

    Full Text Available The fundamental objective in developing variable stiffness actuators is to enable the actuator to deliberately tune its stiffness. This is done through controlling the energy flow extracted from internal power units, i.e., the motors of a variable stiffness actuator (VSA. However, the stiffness may also be unintentionally affected by the external environment, over which, there is no control. This paper analysis the correlation between the external loads, applied to different variable stiffness actuators, and their resultant output stiffness. Different types of variable stiffness actuators have been studied considering springs with different types of nonlinearity. The results provide some insights into how to design the actuator mechanism and nonlinearity of the springs in order to increase the decoupling between the load and stiffness in these actuators. This would significantly widen the application range of a variable stiffness actuator.

  10. Muscle channelopathies and electrophysiological approach

    Directory of Open Access Journals (Sweden)

    Cherian Ajith

    2008-01-01

    Full Text Available Myotonic syndromes and periodic paralyses are rare disorders of skeletal muscle characterized mainly by muscle stiffness or episodic attacks of weakness. Familial forms are caused by mutation in genes coding for skeletal muscle voltage ionic channels. Familial periodic paralysis and nondystrophic myotonias are disorders of skeletal muscle excitability caused by mutations in genes coding for voltage-gated ion channels. These diseases are characterized by episodic failure of motor activity due to muscle weakness (paralysis or stiffness (myotonia. Clinical studies have identified two forms of periodic paralyses: hypokalemic periodic paralysis (hypoKPP and hyperkalemic periodic paralysis (hyperKPP, based on changes in serum potassium levels during the attacks, and three distinct forms of myotonias: paramyotonia congenita (PC, potassium-aggravated myotonia (PAM, and myotonia congenita (MC. PC and PAM have been linked to missense mutations in the SCN4A gene, which encodes α subunit of the voltage-gated sodium channel, whereas MC is caused by mutations in the chloride channel gene (CLCN1. Exercise is known to trigger, aggravate, or relieve symptoms. Therefore, exercise can be used as a functional test in electromyography to improve the diagnosis of these muscle disorders. Abnormal changes in the compound muscle action potential can be disclosed using different exercise tests. Five electromyographic (EMG patterns (I-V that may be used in clinical practice as guides for molecular diagnosis are discussed.

  11. Short-range ensemble predictions based on convection perturbations in the Eta Model for the Serra do Mar region in Brazil

    Science.gov (United States)

    Bustamante, J. F. F.; Chou, S. C.; Gomes, J. L.

    2009-04-01

    The Southeast Brazil, in the coastal and mountain region called Serra do Mar, between Sao Paulo and Rio de Janeiro, is subject to frequent events of landslides and floods. The Eta Model has been producing good quality forecasts over South America at about 40-km horizontal resolution. For that type of hazards, however, more detailed and probabilistic information on the risks should be provided with the forecasts. Thus, a short-range ensemble prediction system (SREPS) based on the Eta Model is being constructed. Ensemble members derived from perturbed initial and lateral boundary conditions did not provide enough spread for the forecasts. Members with model physics perturbation are being included and tested. The objective of this work is to construct more members for the Eta SREPS by adding physics perturbed members. The Eta Model is configured at 10-km resolution and 38 layers in the vertical. The domain covered is most of Southeast Brazil, centered over the Serra do Mar region. The constructed members comprise variations of the cumulus parameterization Betts-Miller-Janjic (BMJ) and Kain-Fritsch (KF) schemes. Three members were constructed from the BMJ scheme by varying the deficit of saturation pressure profile over land and sea, and 2 members of the KF scheme were included using the standard KF and a momentum flux added to KF scheme version. One of the runs with BMJ scheme is the control run as it was used for the initial condition perturbation SREPS. The forecasts were tested for 6 cases of South America Convergence Zone (SACZ) events. The SACZ is a common summer season feature of Southern Hemisphere that causes persistent rain for a few days over the Southeast Brazil and it frequently organizes over Serra do Mar region. These events are particularly interesting because of the persistent rains that can accumulate large amounts and cause generalized landslides and death. With respect to precipitation, the KF scheme versions have shown to be able to reach the

  12. First-principles theory of short-range order in size-mismatched metal alloys: Cu-Au, Cu-Ag, and Ni-Au

    International Nuclear Information System (INIS)

    Wolverton, C.; Ozolins, V.; Zunger, A.

    1998-01-01

    We describe a first-principles technique for calculating the short-range order (SRO) in disordered alloys, even in the presence of large anharmonic atomic relaxations. The technique is applied to several alloys possessing large size mismatch: Cu-Au, Cu-Ag, Ni-Au, and Cu-Pd. We find the following: (i) The calculated SRO in Cu-Au alloys peaks at (or near) the left-angle 100 right-angle point for all compositions studied, in agreement with diffuse scattering measurements. (ii) A fourfold splitting of the X-point SRO exists in both Cu 0.75 Au 0.25 and Cu 0.70 Pd 0.30 , although qualitative differences in the calculated energetics for these two alloys demonstrate that the splitting in Cu 0.70 Pd 0.30 may be accounted for by T=0 K energetics while T≠0 K configurational entropy is necessary to account for the splitting in Cu 0.75 Au 0.25 . Cu 0.75 Au 0.25 shows a significant temperature dependence of the splitting, in agreement with recent in situ measurements, while the splitting in Cu 0.70 Pd 0.30 is predicted to have a much smaller temperature dependence. (iii) Although no measurements exist, the SRO of Cu-Ag alloys is predicted to be of clustering type with peaks at the left-angle 000 right-angle point. Streaking of the SRO peaks in the left-angle 100 right-angle and left-angle 1 (1) /(2) 0 right-angle directions for Ag- and Cu-rich compositions, respectively, is correlated with the elastically soft directions for these compositions. (iv) Even though Ni-Au phase separates at low temperatures, the calculated SRO pattern in Ni 0.4 Au 0.6 , like the measured data, shows a peak along the left-angle ζ00 right-angle direction, away from the typical clustering-type left-angle 000 right-angle point. (v) The explicit effect of atomic relaxation on SRO is investigated and it is found that atomic relaxation can produce significant qualitative changes in the SRO pattern, changing the pattern from ordering to clustering type, as in the case of Cu-Ag. copyright 1998 The American

  13. Short-Range Stacking Disorder in Mixed-Layer Compounds: A HAADF STEM Study of Bastnäsite-Parisite Intergrowths

    Directory of Open Access Journals (Sweden)

    Cristiana L. Ciobanu

    2017-11-01

    Full Text Available Atomic-scale high angle annular dark field scanning transmission electron microscopy (HAADF STEM imaging and electron diffractions are used to address the complexity of lattice-scale intergrowths of REE-fluorocarbonates from an occurrence adjacent to the Olympic Dam deposit, South Australia. The aims are to define the species present within the intergrowths and also assess the value of the HAADF STEM technique in resolving stacking sequences within mixed-layer compounds. Results provide insights into the definition of species and crystal-structural modularity. Lattice-scale intergrowths account for the compositional range between bastnäsite and parasite, as measured by electron probe microanalysis (at the µm-scale throughout the entire area of the intergrowths. These comprise rhythmic intervals of parisite and bastnäsite, or stacking sequences with gradational changes in the slab stacking between B, BBS and BS types (B—bastnäsite, S—synchysite. An additional occurrence of an unnamed B2S phase [CaCe3(CO34F3], up to 11 unit cells in width, is identified among sequences of parisite and bastnäsite within the studied lamellar intergrowths. Both B2S and associated parisite show hexagonal lattices, interpreted as 2H polytypes with c = 28 and 38 Å, respectively. 2H parisite is a new, short hexagonal polytype that can be added to the 14 previously reported polytypes (both hexagonal and rhombohedral for this mineral. The correlation between satellite reflections and the number of layers along the stacking direction (c* can be written empirically as: Nsat = [(m × 2 + (n × 4] − 1 for all BmSn compounds with S ≠ 0. The present study shows intergrowths characterised by short-range stacking disorder and coherent changes in stacking along perpendicular directions. Knowing that the same compositional range can be expressed as long-period stacking compounds in the group, the present intergrowths are interpreted as being related to disequilibrium

  14. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    Science.gov (United States)

    Fisher, Aileen

    The term infrasound describes atmospheric sound waves with frequencies below 20 Hz, while acoustics are classified within the audible range of 20 Hz to 20 kHz. Infrasound and acoustic monitoring in the scientific community is hampered by low signal-to-noise ratios and a limited number of studies on regional and short-range noise and source characterization. The JASON Report (2005) suggests the infrasound community focus on more broad-frequency, observational studies within a tactical distance of 10 km. In keeping with that recommendation, this paper presents a study of regional and short-range atmospheric acoustic and infrasonic noise characterization, at a desert site in West Texas, covering a broad frequency range of 0.2 to 100 Hz. To spatially sample the band, a large number of infrasound gauges was needed. A laboratory instrument analysis is presented of the set of low-cost infrasound sensors used in this study, manufactured by Inter-Mountain Laboratories (IML). Analysis includes spectra, transfer functions and coherences to assess the stability and range of the gauges, and complements additional instrument testing by Sandia National Laboratories. The IMLs documented here have been found reliably coherent from 0.1 to 7 Hz without instrument correction. Corrections were built using corresponding time series from the commercially available and more expensive Chaparral infrasound gauge, so that the corrected IML outputs were able to closely mimic the Chaparral output. Arrays of gauges are needed for atmospheric sound signal processing. Our West Texas experiment consisted of a 1.5 km aperture, 23-gauge infrasound/acoustic array of IMLs, with a compact, 12 m diameter grid-array of rented IMLs at the center. To optimize signal recording, signal-to-noise ratio needs to be quantified with respect to both frequency band and coherence length. The higher-frequency grid array consisted of 25 microphones arranged in a five by five pattern with 3 meter spacing, without

  15. Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking

    Science.gov (United States)

    Takahashi, Kota Z.; Gross, Michael T.; van Werkhoven, Herman; Piazza, Stephen J.; Sawicki, Gregory S.

    2016-07-01

    Previous studies of human locomotion indicate that foot and ankle structures can interact in complex ways. The structure of the foot defines the input and output lever arms that influences the force-generating capacity of the ankle plantar flexors during push-off. At the same time, deformation of the foot may dissipate some of the mechanical energy generated by the plantar flexors during push-off. We investigated this foot-ankle interplay during walking by adding stiffness to the foot through shoes and insoles, and characterized the resulting changes in in vivo soleus muscle-tendon mechanics using ultrasonography. Added stiffness decreased energy dissipation at the foot (p < 0.001) and increased the gear ratio (i.e., ratio of ground reaction force and plantar flexor muscle lever arms) (p < 0.001). Added foot stiffness also altered soleus muscle behaviour, leading to greater peak force (p < 0.001) and reduced fascicle shortening speed (p < 0.001). Despite this shift in force-velocity behaviour, the whole-body metabolic cost during walking increased with added foot stiffness (p < 0.001). This increased metabolic cost is likely due to the added force demand on the plantar flexors, as walking on a more rigid foot/shoe surface compromises the plantar flexors’ mechanical advantage.

  16. The influence of artificially increased trunk stiffness on the balance recovery after a trip.

    Science.gov (United States)

    van der Burg, J C E; Pijnappels, M; van Dieën, J H

    2007-07-01

    Falls occur frequently in the growing population of elderly. Since trunk control is critical for maintaining balance, the higher trunk stiffness in elderly people compared to the general population has been associated with their increased fall-risk. Theoretically, trunk stiffness may be beneficial for balance recovery in walking, i.e. after a trip. A stiff joint may provide a torque that restricts the perturbation effects and thereby reduces the probability of a fall. The aim of this study was to test whether trunk stiffness impaired or assisted balance recovery after a trip during walking. An orthopedic corset was used to simulate trunk stiffness in 11 young male adults. Subjects walked over a platform, with or without the corset on, and were occasionally tripped over a hidden obstacle. Kinematics of the tripping reaction were measured. Initial trunk accelerations were significantly attenuated by the corset, which indicates a positive effect of the stiffening corset. However, no subsequent effects on peak trunk inclination and on the peak moment arm of gravity on the trunk were found. The pattern of trunk motion allowed ample time for triggered or voluntary muscle responses to be generated, before a substantial inclination occurred. It appears that such active responses were sufficient in the young subjects tested to obtain a similar net effect with or without the increased trunk stiffness induced by the corset.

  17. A variable stiffness joint with electrospun P(VDF-TrFE-CTFE) variable stiffness springs

    NARCIS (Netherlands)

    Carloni, Raffaella; Lapp, Valerie I.; Cremonese, Andrea; Belcari, Juri; Zucchelli, Andrea

    This letter presents a novel rotational variable stiffness joint that relies on one motor and a set of variable stiffness springs. The variable stiffness springs are leaf springs with a layered design, i.e., an electro-active layer of electrospun aligned nanofibers of poly(vinylidene

  18. Load to Failure and Stiffness

    Science.gov (United States)

    Esquivel, Amanda O.; Duncan, Douglas D.; Dobrasevic, Nikola; Marsh, Stephanie M.; Lemos, Stephen E.

    2015-01-01

    Background: Rotator cuff tendinopathy is a frequent cause of shoulder pain that can lead to decreased strength and range of motion. Failures after using the single-row technique of rotator cuff repair have led to the development of the double-row technique, which is said to allow for more anatomical restoration of the footprint. Purpose: To compare 5 different types of suture patterns while maintaining equality in number of anchors. The hypothesis was that the Mason-Allen–crossed cruciform transosseous-equivalent technique is superior to other suture configurations while maintaining equality in suture limbs and anchors. Study Design: Controlled laboratory study. Methods: A total of 25 fresh-frozen cadaveric shoulders were randomized into 5 suture configuration groups: single-row repair with simple stitch technique; single-row repair with modified Mason-Allen technique; double-row Mason-Allen technique; double-row cross-bridge technique; and double-row suture bridge technique. Load and displacement were recorded at 100 Hz until failure. Stiffness and bone mineral density were also measured. Results: There was no significant difference in peak load at failure, stiffness, maximum displacement at failure, or mean bone mineral density among the 5 suture configuration groups (P row rotator cuff repair to be superior to the single-row repair; however, clinical research does not necessarily support this. This study found no difference when comparing 5 different repair methods, supporting research that suggests the number of sutures and not the pattern can affect biomechanical properties. PMID:26665053

  19. Stiffness and damping in mechanical design

    National Research Council Canada - National Science Library

    Rivin, Eugene I

    1999-01-01

    ... important conceptual issues are stiffness of mechanical structures and their components and damping in mechanical systems sensitive to and/or generating vibrations. Stiffness and strength are the most important criteria for many mechanical designs. However, although there are hundreds of books on various aspects of strength, and strength issues ar...

  20. Association between Urine Creatinine Excretion and Arterial Stiffness in Chronic Kidney Disease: Data from the KNOW-CKD Study

    Directory of Open Access Journals (Sweden)

    Young Youl Hyun

    2016-08-01

    Full Text Available Background/Aims: Previous studies have shown that low muscle mass is associated with arterial stiffness, as measured by pulse wave velocity (PWV, in a population without chronic kidney disease (CKD. This link between low muscle mass and arterial stiffness may explain why patients with CKD have poor cardiovascular outcomes. However, the association between muscle mass and arterial stiffness in CKD patients is not well known. Methods: Between 2011 and 2013, 1,529 CKD patients were enrolled in the prospective Korean Cohort Study for Outcome in Patients With Chronic Kidney Disease (KNOW-CKD. We analyzed 888 participants from this cohort who underwent measurements of 24-hr urinary creatinine excretion (UCr and brachial-ankle PWV (baPWV at baseline examination. The mean of the right and left baPWV (mPWV was used as a marker of arterial stiffness. Results: The baPWV values varied according to the UCr quartile (1,630±412, 1,544±387, 1,527±282 and 1,406±246 for the 1st to 4th quartiles of UCr, respectively, PConclusion: Low muscle mass estimated by low UCr was associated high baPWV in pre-dialysis CKD patients in Korea. Further studies are needed to confirm the causal relationship between UCR and baPWV, and the role of muscle mass in the development of cardiovascular disease in CKD.

  1. Extensibility and stiffness of the hamstrings in patients with nonspecific low back pain.

    Science.gov (United States)

    Halbertsma, J P; Göeken, L N; Hof, A L; Groothoff, J W; Eisma, W H

    2001-02-01

    To investigate the extensibility and stiffness of the hamstrings in patients with nonspecific low back pain (LBP). An experimental design. A university laboratory for human movement analysis in a department of rehabilitation medicine. Forty subjects, a patient group (20) and a healthy control group (20). Subjects laid supine on an examination table with a lift frame, with left leg placed in a sling at the ankle. Straight leg raising, pulling force, and activity of hamstring and back muscles were recorded with electrodes. Patients indicated when they experienced tension or pain. The lift force, leg excursion, pelvic-femoral angle, first sensation of pain, and the electromyogram of the hamstrings and back muscles measured in an experimental straight-leg raising set-up. The patient group showed a significant restriction in range of motion (ROM) and extensibility of the hamstrings compared with the control group. No significant difference in hamstring muscle stiffness can be assessed between both groups. The restricted ROM and the decreased extensibility of the hamstrings in patients with nonspecific LBP is not caused by increased muscle stiffness of the hamstrings, but determined by the stretch tolerance of the patients.

  2. Topology optimization under stochastic stiffness

    Science.gov (United States)

    Asadpoure, Alireza

    Topology optimization is a systematic computational tool for optimizing the layout of materials within a domain for engineering design problems. It allows variation of structural boundaries and connectivities. This freedom in the design space often enables discovery of new, high performance designs. However, solutions obtained by performing the optimization in a deterministic setting may be impractical or suboptimal when considering real-world engineering conditions with inherent variabilities including (for example) variabilities in fabrication processes and operating conditions. The aim of this work is to provide a computational methodology for topology optimization in the presence of uncertainties associated with structural stiffness, such as uncertain material properties and/or structural geometry. Existing methods for topology optimization under deterministic conditions are first reviewed. Modifications are then proposed to improve the numerical performance of the so-called Heaviside Projection Method (HPM) in continuum domains. Next, two approaches, perturbation and Polynomial Chaos Expansion (PCE), are proposed to account for uncertainties in the optimization procedure. These approaches are intrusive, allowing tight and efficient coupling of the uncertainty quantification with the optimization sensitivity analysis. The work herein develops a robust topology optimization framework aimed at reducing the sensitivity of optimized solutions to uncertainties. The perturbation-based approach combines deterministic topology optimization with a perturbation method for the quantification of uncertainties. The use of perturbation transforms the problem of topology optimization under uncertainty to an augmented deterministic topology optimization problem. The PCE approach combines the spectral stochastic approach for the representation and propagation of uncertainties with an existing deterministic topology optimization technique. The resulting compact representations

  3. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  4. Muscle Cramps

    Science.gov (United States)

    ... Talk to your provider about the risks and benefits of medicines. How can I prevent muscle cramps? To prevent muscle cramps, you can Stretch your muscles, especially before exercising. If you often get leg cramps at night, ...

  5. Big bang nucleosynthesis with a stiff fluid

    International Nuclear Information System (INIS)

    Dutta, Sourish; Scherrer, Robert J.

    2010-01-01

    Models that lead to a cosmological stiff fluid component, with a density ρ S that scales as a -6 , where a is the scale factor, have been proposed recently in a variety of contexts. We calculate numerically the effect of such a stiff fluid on the primordial element abundances. Because the stiff fluid energy density decreases with the scale factor more rapidly than radiation, it produces a relatively larger change in the primordial helium-4 abundance than in the other element abundances, relative to the changes produced by an additional radiation component. We show that the helium-4 abundance varies linearly with the density of the stiff fluid at a fixed fiducial temperature. Taking ρ S10 and ρ R10 to be the stiff fluid energy density and the standard density in relativistic particles, respectively, at T=10 MeV, we find that the change in the primordial helium abundance is well-fit by ΔY p =0.00024(ρ S10 /ρ R10 ). The changes in the helium-4 abundance produced by additional radiation or by a stiff fluid are identical when these two components have equal density at a 'pivot temperature', T * , where we find T * =0.55 MeV. Current estimates of the primordial 4 He abundance give the constraint on a stiff fluid energy density of ρ S10 /ρ R10 <30.

  6. Dynamic stiffness of suction caissons - vertical vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.; Andersen, Lars

    2006-12-15

    The dynamic response of offshore wind turbines are affected by the properties of the foundation and the subsoil. The purpose of this report is to evaluate the dynamic soil-structure interaction of suction caissons for offshore wind turbines. The investigation is limited to a determination of the vertical dynamic stiffness of suction caissons. The soil surrounding the foundation is homogenous with linear viscoelastic properties. The dynamic stiffness of the suction caisson is expressed by dimensionless frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree of freedom. The dynamic stiffness coefficients for the foundations are evaluated by means of a dynamic three-dimensional coupled Boundary Element/Finite Element model. Comparisons are made with known analytical and numerical solutions in order to evaluate the static and dynamic behaviour of the Boundary Element/Finite Element model. The vertical frequency dependent stiffness has been determined for different combinations of the skirt length, Poisson's ratio and the ratio between soil stiffness and skirt stiffness. Finally the dynamic behaviour at high frequencies is investigated. (au)

  7. The effects of resistance exercise training on arterial stiffness in metabolic syndrome.

    Science.gov (United States)

    DeVallance, E; Fournier, S; Lemaster, K; Moore, C; Asano, S; Bonner, D; Donley, D; Olfert, I M; Chantler, P D

    2016-05-01

    Arterial stiffness is a strong independent risk factor for cardiovascular disease and is elevated in individuals with metabolic syndrome (MetS). Resistance training is a popular form of exercise that has beneficial effects on muscle mass, strength, balance and glucose control. However, it is unknown whether resistance exercise training (RT) can lower arterial stiffness in patients with MetS. Thus, the aim of this study was to examine whether a progressive RT program would improve arterial stiffness in MetS. A total of 57 subjects (28 healthy sedentary subjects; 29 MetS) were evaluated for arterial structure and function, including pulse wave velocity (cfPWV: arterial stiffness), before and after an 8-week period of RT or continuation of sedentary lifestyle. We found that 8 weeks of progressive RT increased skeletal muscle strength in both Con and MetS, but did not change arterial stiffness in either MetS (cfPWV; Pre 7.9 ± 0.4 m/s vs. Post 7.7 ± 0.4 m/s) or healthy controls (cfPWV; Pre 6.9 ± 0.3 m/s vs. Post 7.0 ± 0.3 m/s). However, when cfPWV is considered as a continuous variable, high baseline measures of cfPWV tended to show a decrease in cfPWV following RT. Eight weeks of progressive RT did not decrease the group mean values of arterial stiffness in individuals with MetS or healthy controls.

  8. Evaluation of feedforward and feedback contributions to hand stiffness and variability in multijoint arm control.

    Science.gov (United States)

    He, Xin; Du, Yu-Fan; Lan, Ning

    2013-07-01

    The purpose of this study is to validate a neuromechanical model of the virtual arm (VA) by comparing emerging behaviors of the model to those of experimental observations. Hand stiffness of the VA model was obtained by either theoretical computation or simulated perturbations. Variability in hand position of the VA was generated by adding signal dependent noise (SDN) to the motoneuron pools of muscles. Reflex circuits of Ia, Ib and Renshaw cells were included to regulate the motoneuron pool outputs. Evaluation of hand stiffness and variability was conducted in simulations with and without afferent feedback under different patterns of muscle activations during postural maintenance. The simulated hand stiffness and variability ellipses captured the experimentally observed features in shape, magnitude and orientation. Steady state afferent feedback contributed significantly to the increase in hand stiffness by 35.75±16.99% in area, 18.37±7.80% and 16.15±7.15% in major and minor axes; and to the reduction of hand variability by 49.41±21.19% in area, 36.89±12.78% and 18.87±23.32% in major and minor axes. The VA model reproduced the neuromechanical behaviors that were consistent with experimental data, and it could be a useful tool for study of neural control of posture and movement, as well as for application to rehabilitation.

  9. A Subspace Approach to the Structural Decomposition and Identification of Ankle Joint Dynamic Stiffness.

    Science.gov (United States)

    Jalaleddini, Kian; Tehrani, Ehsan Sobhani; Kearney, Robert E

    2017-06-01

    The purpose of this paper is to present a structural decomposition subspace (SDSS) method for decomposition of the joint torque to intrinsic, reflexive, and voluntary torques and identification of joint dynamic stiffness. First, it formulates a novel state-space representation for the joint dynamic stiffness modeled by a parallel-cascade structure with a concise parameter set that provides a direct link between the state-space representation matrices and the parallel-cascade parameters. Second, it presents a subspace method for the identification of the new state-space model that involves two steps: 1) the decomposition of the intrinsic and reflex pathways and 2) the identification of an impulse response model of the intrinsic pathway and a Hammerstein model of the reflex pathway. Extensive simulation studies demonstrate that SDSS has significant performance advantages over some other methods. Thus, SDSS was more robust under high noise conditions, converging where others failed; it was more accurate, giving estimates with lower bias and random errors. The method also worked well in practice and yielded high-quality estimates of intrinsic and reflex stiffnesses when applied to experimental data at three muscle activation levels. The simulation and experimental results demonstrate that SDSS accurately decomposes the intrinsic and reflex torques and provides accurate estimates of physiologically meaningful parameters. SDSS will be a valuable tool for studying joint stiffness under functionally important conditions. It has important clinical implications for the diagnosis, assessment, objective quantification, and monitoring of neuromuscular diseases that change the muscle tone.

  10. Metacarpophalangeal joint stiffness. Still a challenge for the hand surgeon?

    Science.gov (United States)

    Jiménez, I; Muratore-Moreno, G; Marcos-García, A; Medina, J

    2016-01-01

    The aim of this study is to analyse the outcomes of the surgical treatment of metacarpophalangeal stiffness by dorsal teno-arthrolysis in our centre, and present a review the literature. This is a retrospective study of 21 cases of metacarpophalangeal stiffness treated surgically. Dorsal teno-arthrolysis was carried out on all patients. A rehabilitation programme was started ten days after surgery. An evaluation was performed on the aetiology, variation in pre- and post-operative active mobility, complications, DASH questionnaire, and a subjective satisfaction questionnaire. The mean age of the patients was 36.5 years and the mean follow-up was 6.5 years. Of the 21 cases, the most common cause was a metacarpal fracture (52.4%), followed by complex trauma of the forearm (19%). Improvement in active mobility was 30.5°, despite obtaining an intra-operative mobility 0-90° in 80% of cases. Mean DASH questionnaire score was 36.9 points. The outcome was described as excellent in 10% of our patients, good in 30%, poor in 40%, and bad in the remaining 20%. There was a complex regional pain syndrome in 9.5% of cases, and intrinsic muscle injury in 14.3%. Because of its difficult management and poor outcomes, surgical treatment of metacarpophalangeal stiffness in extension is highly complex, with dorsal teno-arthrolysis being a reproducible technique according to our results, and the results reported in the literature. Copyright © 2016 SECOT. Published by Elsevier Espana. All rights reserved.

  11. Observed variations of monopile foundation stiffness

    DEFF Research Database (Denmark)

    Kallehave, Dan; Thilsted, C.L.; Diaz, Alberto Troya

    2015-01-01

    full-scale measurements obtained from one offshore wind turbine structure located within Horns Reef II offshore wind farm. Data are presented for a 2.5 years period and covers normal operating conditions and one larger storm event. A reduction of the pile-soil stiffness was observed during the storm...... events, followed by a complete regain to a pre-storm level when the storm subsided. In additional, no long term variations of the pile-soil stiffness was observed. The wind turbine is located in dense to very dense sand deposits.......The soil-structure stiffness of monopile foundations for offshore wind turbines has a high impact on the fatigue loading during normal operating conditions. Thus, a robust design must consider the evolution of pile-soil stiffness over the lifetime of the wind farm. This paper present and discuss...

  12. A Discrete-Time Algorithm for Stiffness Extraction from sEMG and Its Application in Antidisturbance Teleoperation

    Directory of Open Access Journals (Sweden)

    Peidong Liang

    2016-01-01

    Full Text Available We have developed a new discrete-time algorithm of stiffness extraction from muscle surface electromyography (sEMG collected from human operator’s arms and have applied it for antidisturbance control in robot teleoperation. The variation of arm stiffness is estimated from sEMG signals and transferred to a telerobot under variable impedance control to imitate human motor control behaviours, particularly for disturbance attenuation. In comparison to the estimation of stiffness from sEMG, the proposed algorithm is able to reduce the nonlinear residual error effect and to enhance robustness and to simplify stiffness calibration. In order to extract a smoothing stiffness enveloping from sEMG signals, two enveloping methods are employed in this paper, namely, fast linear enveloping based on low pass filtering and moving average and amplitude monocomponent and frequency modulating (AM-FM method. Both methods have been incorporated into the proposed stiffness variance estimation algorithm and are extensively tested. The test results show that stiffness variation extraction based on the two methods is sensitive and robust to attenuation disturbance. It could potentially be applied for teleoperation in the presence of hazardous surroundings or human robot physical cooperation scenarios.

  13. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy.

    Science.gov (United States)

    de Gooijer-van de Groep, Karin L; de Vlugt, Erwin; de Groot, Jurriaan H; van der Heijden-Maessen, Hélène C M; Wielheesen, Dennis H M; van Wijlen-Hempel, Rietje M S; Arendzen, J Hans; Meskers, Carel G M

    2013-07-23

    Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: "spasticity" vs. "contracture"). Differentiation between these components is hard to achieve by common manual tests. We applied an assessment instrument to obtain quantitative measures of neural and non-neural contributions to ankle joint stiffness in CP. Twenty-three adolescents with CP and eleven healthy subjects were seated with their foot fixated to an electrically powered single axis footplate. Passive ramp-and-hold rotations were applied over full ankle range of motion (RoM) at low and high velocities. Subject specific tissue stiffness, viscosity and reflexive torque were estimated from ankle angle, torque and triceps surae EMG activity using a neuromuscular model. In CP, triceps surae reflexive torque was on average 5.7 times larger (p = .002) and tissue stiffness 2.1 times larger (p = .018) compared to controls. High tissue stiffness was associated with reduced RoM (p therapy.

  14. Model-Based Estimation of Ankle Joint Stiffness

    Directory of Open Access Journals (Sweden)

    Berno J. E. Misgeld

    2017-03-01

    Full Text Available We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model’s inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements.

  15. Model-Based Estimation of Ankle Joint Stiffness.

    Science.gov (United States)

    Misgeld, Berno J E; Zhang, Tony; Lüken, Markus J; Leonhardt, Steffen

    2017-03-29

    We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model's inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements.

  16. Model-Based Estimation of Ankle Joint Stiffness

    Science.gov (United States)

    Misgeld, Berno J. E.; Zhang, Tony; Lüken, Markus J.; Leonhardt, Steffen

    2017-01-01

    We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model’s inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements. PMID:28353683

  17. Damper modules with adapted stiffness ratio

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenburg, R.; Stretz, A. [ZF Sachs AG, Entwicklungszentrum, Schweinfurt (Germany)

    2011-07-15

    A mechanism for the excitation of piston rod vibrations in automotive damper modules is discussed by a simple model. An improved nonlinear model based on elasticity effects leads to good simulation results. It is shown theoretically and experimentally that the adaptation of the stiffness of the piston rod bushing to the ''stiffness'' of the damper force characteristic can eliminate the piston rod oscillations completely. (orig.)

  18. Stiffness of Railway Soil-Steel Structures

    Directory of Open Access Journals (Sweden)

    Machelski Czesław

    2015-12-01

    Full Text Available The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces, as in bridges. The analyzed cases show that the shell’s span, geometry (static scheme and the height of earth fill influence the stiffness of the structure. The soil-steel structure’s characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  19. Stiffness of Railway Soil-Steel Structures

    Science.gov (United States)

    Machelski, Czesław

    2015-12-01

    The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness) become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces), as in bridges. The analyzed cases show that the shell's span, geometry (static scheme) and the height of earth fill influence the stiffness of the structure. The soil-steel structure's characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  20. Muscle spindle autogenetic inhibition in the extraocular muscles of lamb.

    Science.gov (United States)

    Pettorossi, V E; Filippi, G M

    1981-09-01

    The role of extraocular muscle (EOM) proprioceptors on eye motility has been investigated in lambs on "encéphale isolé", by evaluating the tension of EOMs at various lengths and velocities of stretch before and after proprioceptive blocks. The EOM tension, in the absence of proprioceptive input, was higher than in normal conditions. Such an effect occurred at lengthening values greater than 3 mm of stretch from resting muscle length, corresponding to 18 degrees of eye deviation and was dependent on the velocity of the stretch, being more effective at high velocity. The muscle receptors responsible for this effect was determined by comparing the sensitivity to vibratory stimulation of spindles and tendon organs to the amount of inhibition provoked by the same stimulation on an EOM electromyographic activity. The tension inhibition appeared to be correlated to muscle spindle activation. Thus, the presence of muscle spindles can determine a reduction of the tension within the stretched muscles. This result suggests that the EOM length and velocity signals operate moment to moment reduction on the stiffness of the muscle which antagonizes eye displacement, thus facilitating the ocular movements.

  1. Microwave absorption measurements in the complex perovskite Pb(Fe{sub 0.5}Ta{sub 0.5})O{sub 3}: Detection of short-range orderly regions

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, G., E-mail: memodin@yahoo.com [Seccion de Estudios de Posgrado e Investigacion, ESFM-IPN, U.P. Adolfo Lopez Mateos Edificio 9, Av. Instituto Politecnico Nacional S/N, San Pedro Zacatenco, Mexico DF 07738 (Mexico); Montiel, H. [Departamento de Tecnociencias, Centro de Ciencias Aplicadas y Desarrollo Tecnologico de la Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, Mexico DF 04510 (Mexico); Castellanos, M.A. [Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Mexico DF 04510 (Mexico); Heiras, J. [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Km. 107, Carretera Tijuana Ensenada, Ensenada, Baja California 22860 (Mexico); Zamorano, R. [Seccion de Estudios de Posgrado e Investigacion, ESFM-IPN, U.P. Adolfo Lopez Mateos Edificio 9, Av. Instituto Politecnico Nacional S/N, San Pedro Zacatenco, Mexico DF 07738 (Mexico)

    2011-10-17

    Highlights: {yields} LFMA spectra showed straight lines with positive slope and non-hysteretic traces. {yields} The spectral changes for the plot of the slope vs. temperature give evidence of the formation of iron clusters. {yields} These small orderly regions of iron ions generate short-range magnetic correlations, and that they produce changes in dynamics of microwave absorption. - Abstract: An electron paramagnetic resonance (EPR) study of the complex perovskite Pb(Fe{sub 0.5}Ta{sub 0.5})O{sub 3} (PFT) at X-band (8.8-9.8 GHz) is presented. The EPR spectra show a single broad line in the 300-480 K temperature range, attributable to Fe{sup 3+} (S = 5/2) ions. The temperature dependence of the EPR parameters: the peak-to-peak linewidth ({Delta}H{sub pp}), the resonance field (H{sub res}) and the integrated intensity (I{sub EPR}), suggests the existence of short-range magnetic correlations; which are associated with the presence of small orderly regions of iron ions in B-sites of the perovskites-type structure, and that they give origin to formation of iron clusters. Low-field microwave absorption (LFMA) is used to give further knowledge on this material; where this technique also gives evidence of these short-range orderly regions.

  2. Comparison of plantar flexor musculotendinous stiffness, geometry, and architecture in male runners with and without a history of tibial stress fracture.

    Science.gov (United States)

    Pamukoff, Derek N; Blackburn, J Troy

    2015-02-01

    Greater lower extremity joint stiffness may be related to the development of tibial stress fractures in runners. Musculotendinous stiffness is the largest contributor to joint stiffness, but it is unclear what factors contribute to musculotendinous stiffness. The purpose of this study was to compare plantar flexor musculotendinous stiffness, architecture, geometry, and Achilles tendon stiffness between male runners with and without a history of tibial stress fracture. Nineteen healthy runners (age = 21 ± 2.7 years; mass = 68.2 ± 9.3 kg; height = 177.3 ± 6.0 cm) and 19 runners with a history of tibial stress fracture (age = 21 ± 2.9 years; mass = 65.3 ± 6.0 kg; height = 177.2 ± 5.2 cm) were recruited from community running groups and the university's varsity and club cross-country teams. Plantar flexor musculotendinous stiffness was estimated from the damped frequency of oscillatory motion about the ankle follow perturbation. Ultrasound imaging was used to measure architecture and geometry of the medial gastrocnemius. Dependent variables were compared between groups via one-way ANOVAs. Previously injured runners had greater plantar flexor musculotendinous stiffness (P < .001), greater Achilles tendon stiffness (P = .004), and lesser Achilles tendon elongation (P = .003) during maximal isometric contraction compared with healthy runners. No differences were found in muscle thickness, pennation angle, or fascicle length.

  3. Muscle ultrasound elastography and MRI in preschool children with Duchenne muscular dystrophy.

    Science.gov (United States)

    Pichiecchio, Anna; Alessandrino, Francesco; Bortolotto, Chandra; Cerica, Alessandra; Rosti, Cristina; Raciti, Maria Vittoria; Rossi, Marta; Berardinelli, Angela; Baranello, Giovanni; Bastianello, Stefano; Calliada, Fabrizio

    2018-06-01

    The aim of this study was to determine muscle tissue elasticity, measured with shear-wave elastography, in selected lower limb muscles of patients affected by Duchenne muscular dystrophy (DMD) and to correlate the values obtained with those recorded in healthy children and with muscle magnetic resonance imaging (MRI) data from the same DMD children, specifically the pattern on T1-weighted (w) and short-tau inversion recovery (STIR) sequences. Five preschool DMD children and five age-matched healthy children were studied with shear-wave elastography. In the DMD children, muscle stiffness was moderately higher compared with the muscle stiffness in HC, in the rectus femoris, vastus lateralis, adductor magnus and gluteus maximus muscles. On muscle MRI T1-w images showed fatty replacement in 3/5 patients at the level of the GM, while thigh and leg muscles were affected in 2/5; hyperintensity on STIR images was identified in 4/5 patients. No significant correlation was observed between stiffness values and MRI scoring. Our study demonstrated that lower limb muscles of preschool DMD patients show fatty replacement and patchy edema on muscle MRI and increased stiffness on shear-wave elastography. In conclusion, although further studies in larger cohorts are needed, shear-wave elastography could be considered a useful non-invasive tool to easily monitor muscle changes in early stages of the disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Alterations in walking knee joint stiffness in individuals with knee osteoarthritis and self-reported knee instability.

    Science.gov (United States)

    Gustafson, Jonathan A; Gorman, Shannon; Fitzgerald, G Kelley; Farrokhi, Shawn

    2016-01-01

    Increased walking knee joint stiffness has been reported in patients with knee osteoarthritis (OA) as a compensatory strategy to improve knee joint stability. However, presence of episodic self-reported knee instability in a large subgroup of patients with knee OA may be a sign of inadequate walking knee joint stiffness. The objective of this work was to evaluate the differences in walking knee joint stiffness in patients with knee OA with and without self-reported instability and examine the relationship between walking knee joint stiffness with quadriceps strength, knee joint laxity, and varus knee malalignment. Overground biomechanical data at a self-selected gait velocity was collected for 35 individuals with knee OA without self-reported instability (stable group) and 17 individuals with knee OA and episodic self-reported instability (unstable group). Knee joint stiffness was calculated during the weight-acceptance phase of gait as the change in the external knee joint moment divided by the change in the knee flexion angle. The unstable group walked with lower knee joint stiffness (p=0.01), mainly due to smaller heel-contact knee flexion angles (pknee flexion excursions (pknee stable counterparts. No significant relationships were observed between walking knee joint stiffness and quadriceps strength, knee joint laxity or varus knee malalignment. Reduced walking knee joint stiffness appears to be associated with episodic knee instability and independent of quadriceps muscle weakness, knee joint laxity or varus malalignment. Further investigations of the temporal relationship between self-reported knee joint instability and walking knee joint stiffness are warranted. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Single motor–variable stiffness actuator using bistable switching mechanisms for independent motion and stiffness control

    NARCIS (Netherlands)

    Groothuis, Stefan; Carloni, Raffaella; Stramigioli, Stefano

    This paper presents a proof of concept of a variable stiffness actuator (VSA) that uses only one (high power) input motor. In general, VSAs use two (high power) motors to be able to control both the output position and the output stiffness, which possibly results in a heavy, and bulky system. In

  6. Development of a stiffness-angle law for simplifying the measurement of human hair stiffness.

    Science.gov (United States)

    Jung, I K; Park, S C; Lee, Y R; Bin, S A; Hong, Y D; Eun, D; Lee, J H; Roh, Y S; Kim, B M

    2018-04-01

    This research examines the benefits of caffeine absorption on hair stiffness. To test hair stiffness, we have developed an evaluation method that is not only accurate, but also inexpensive. Our evaluation method for measuring hair stiffness culminated in a model, called the Stiffness-Angle Law, which describes the elastic properties of hair and can be widely applied to the development of hair care products. Small molecules (≤500 g mol -1 ) such as caffeine can be absorbed into hair. A common shampoo containing 4% caffeine was formulated and applied to hair 10 times, after which the hair stiffness was measured. The caffeine absorption of the treated hair was observed using Fourier-transform infrared spectroscopy (FTIR) with a focal plane array (FPA) detector. Our evaluation method for measuring hair stiffness consists of a regular camera and a support for single strands of hair. After attaching the hair to the support, the bending angle of the hair was observed with a camera and measured. Then, the hair strand was weighed. The stiffness of the hair was calculated based on our proposed Stiffness-Angle Law using three variables: angle, weight of hair and the distance the hair was pulled across the support. The caffeine absorption was confirmed by FTIR analysis. The concentration of amide bond in the hair certainly increased due to caffeine absorption. After caffeine was absorbed into the hair, the bending angle and weight of the hair changed. Applying these measured changes to the Stiffness-Angle Law, it was confirmed that the hair stiffness increased by 13.2% due to caffeine absorption. The theoretical results using the Stiffness-Angle Law agree with the visual examinations of hair exposed to caffeine and also the known results of hair stiffness from a previous report. Our evaluation method combined with our proposed Stiffness-Angle Law effectively provides an accurate and inexpensive evaluation technique for measuring bending stiffness of human hair. © 2018

  7. VARIABLE STIFFNESS HAND PROSTHESIS: A SYSTEMATIC REVIEW

    Directory of Open Access Journals (Sweden)

    S. Cecilia Tapia-Siles

    2017-06-01

    Full Text Available Prosthetics is an important field in engineering due to the large number of amputees worldwide and the associated problems such as limited functionality of the state of the art. An important functionality of the human hand is its capability of adjusting the stiffness of the joints depending on the currently performed task. For the development of new technology it is important to understand the limitations of existing resources. As part of our efforts to develop a variable stiffness grasper for developing countries a systematic review was performed covering technology of body powered and myoelectric hand prosthesis. Focus of the review is readiness of prosthetic hands regarding their capability of controlling the stiffness of the end effector. Publications sourced through three different digital libraries were systematically reviewed on the basis of the PRISMA standard. We present a search strategy as well as the PRISMA assessment of the resulting records which covered 321 publications. The records were assessed and the results are presented for the ability of devices to control their joint stiffness. The review indicates that body powered prosthesis are preferred to myoelectric hands due to the reduced cost, the simplicity of use and because of their inherent ability to provide feedback to the user. Stiffness control was identified but has not been fully covered in the current state of the art. In addition we summarise the identified requirements on prosthetic hands as well as related information which can support the development of new prosthetics.

  8. A Novel Variable Stiffness Mechanism Capable of an Infinite Stiffness Range and Unlimited Decoupled Output Motion

    Directory of Open Access Journals (Sweden)

    Stefan Groothuis

    2014-06-01

    Full Text Available In this paper, a novel variable stiffness mechanism is presented, which is capable of achieving an output stiffness with infinite range and an unlimited output motion, i.e., the mechanism output is completely decoupled from the rotor motion, in the zero stiffness configuration. The mechanism makes use of leaf springs, which are engaged at different positions by means of two movable supports, to realize the variable output stiffness. The Euler–Bernoulli leaf spring model is derived and validated through experimental data. By shaping the leaf springs, it is shown that the stiffness characteristic of the mechanism can be changed to fulfill different application requirements. Alternative designs can achieve the same behavior with only one leaf spring and one movable support pin.

  9. Can a Soft Robotic Probe Use Stiffness Control Like a Human Finger to Improve Efficacy of Haptic Perception?

    Science.gov (United States)

    Sornkarn, Nantachai; Nanayakkara, Thrishantha

    2017-01-01

    When humans are asked to palpate a soft tissue to locate a hard nodule, they regulate the stiffness, speed, and force of the finger during examination. If we understand the relationship between these behavioral variables and haptic information gain (transfer entropy) during manual probing, we can improve the efficacy of soft robotic probes for soft tissue palpation, such as in tumor localization in minimally invasive surgery. Here, we recorded the muscle co-contraction activity of the finger using EMG sensors to address the question as to whether joint stiffness control during manual palpation plays an important role in the haptic information gain. To address this question, we used a soft robotic probe with a controllable stiffness joint and a force sensor mounted at the base to represent the function of the tendon in a biological finger. Then, we trained a Markov chain using muscle co-contraction patterns of human subjects, and used it to control the stiffness of the soft robotic probe in the same soft tissue palpation task. The soft robotic experiments showed that haptic information gain about the depth of the hard nodule can be maximized by varying the internal stiffness of the soft probe.

  10. Plant fibre composites - porosity and stiffness

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2009-01-01

    Plant fibre composites contain typically a relatively large amount of porosity which influences their performance. A model, based on a modified rule of mixtures, is presented to include the influence of porosity on the composite stiffness. The model integrates the volumetric composition...... of the composites with their mechanical properties. The fibre weight fraction is used as an independent parameter to calculate the complete volumetric composition. A maximum obtainable stiffness of the composites is calculated at a certain transition fibre weight fraction, which is characterised by a best possible...... combination of high fibre volume fraction and low porosity. The model is validated with experimental data from the literature on several types of composites. A stiffness diagram is presented to demonstrate that the calculations can be used for tailoring and design of composites with a given profile...

  11. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study.

    Science.gov (United States)

    Bregman, D J J; van der Krogt, M M; de Groot, V; Harlaar, J; Wisse, M; Collins, S H

    2011-11-01

    In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot Orthoses are frequently prescribed. However, it is unknown what Ankle Foot Orthoses stiffness should be used to obtain the most efficient gait. The aim of this simulation study was to gain insights into the effect of variation in Ankle Foot Orthosis stiffness on the amount of energy stored in the Ankle Foot Orthosis and the energy cost of walking. We developed a two-dimensional forward-dynamic walking model with a passive spring at the ankle representing the Ankle Foot Orthosis and two constant torques at the hip for propulsion. We varied Ankle Foot Orthosis stiffness while keeping speed and step length constant. We found an optimal stiffness, at which the energy delivered at the hip joint was minimal. Energy cost decreased with increasing energy storage in the ankle foot orthosis, but the most efficient gait did not occur with maximal energy storage. With maximum storage, push-off occurred too late to reduce the impact of the contralateral leg with the floor. Maximum return prior to foot strike was also suboptimal, as push-off occurred too early and its effects were subsequently counteracted by gravity. The optimal Ankle Foot Orthosis stiffness resulted in significant push-off timed just prior to foot strike and led to greater ankle plantar-flexion velocity just before contralateral foot strike. Our results suggest that patient energy cost might be reduced by the proper choice of Ankle Foot Orthosis stiffness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Whole-body vibration exercise training reduces arterial stiffness in postmenopausal women with prehypertension and hypertension.

    Science.gov (United States)

    Figueroa, Arturo; Kalfon, Roy; Madzima, Takudzwa A; Wong, Alexei

    2014-02-01

    The purpose of this study was to examine the impact of whole-body vibration (WBV) exercise training on arterial stiffness (pulse wave velocity [PWV]), blood pressure (BP), and leg muscle function in postmenopausal women. Twenty-five postmenopausal women with prehypertension and hypertension (mean [SE]; age, 56 [1] y; systolic BP, 139 [2] mm Hg; body mass index, 34.7 [0.8] kg/m2) were randomized to 12 weeks of WBV exercise training (n = 13) or to the no-exercise control group. Systolic BP, diastolic BP, mean arterial pressure, heart rate, carotid-femoral PWV, brachial-ankle PWV, femoral-ankle PWV (legPWV), leg lean mass, and leg muscle strength were measured before and after 12 weeks. There was a group-by-time interaction (P exercise training compared with no change after control. Heart rate decreased (-3 [1] beats/min, P exercise training, but there was no interaction (P > 0.05). Leg lean mass and carotid-femoral PWV were not significantly (P > 0.05) affected by WBV exercise training or control. Our findings indicate that WBV exercise training improves systemic and leg arterial stiffness, BP, and leg muscle strength in postmenopausal women with prehypertension or hypertension. WBV exercise training may decrease cardiovascular and disability risks in postmenopausal women by reducing legPWV and increasing leg muscle strength.

  13. Variable stiffness and damping MR isolator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X Z; Wang, X Y; Li, W H; Kostidis, K [University of Wollongong, School of Mechanical, Materials and Mechatronic Engineering, NSW 2522 (Australia)], E-mail: weihuali@uow.edu.au

    2009-02-01

    This paper presents the development of a magnetorheological (MR) fluid-based variable stiffness and damping isolator for vibration suppressions. The MR fluid isolator used a sole MR control unit to achieve the variable stiffness and damping in stepless and relative large scope. A mathematical model of the isolator was derived, and a prototype of the MR fluid isolator was fabricated and its dynamic behavior was measured in vibration under various applied magnetic fields. The parameters of the model under various magnetic fields were identified and the dynamic performances of isolator were evaluated.

  14. Anisotropic and correlated emissions of short range charged particles in anti pAg/Br reactions at 1. 4 GeV/c incident momentum observed in photographic emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.

    1984-07-01

    Anti pAg/Br reactions at 1.4 GeV/c incident momentum are studied by means of the emulsion technique. A group of short range charged particles is observed. For the events with one short track, a backward and transversal emission is seen, which probably is due to some very fast process. For the events with two short tracks, a back-to-back emission is seen, indicating some two-body decay, where the target nucleus possibly behaves spectator-like.

  15. Anisotropic and correlated emissions of short range charged particles in anti pAg/Br reactions at 1.4 GeV/c incident momentum observed in photographic emulsions

    International Nuclear Information System (INIS)

    Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.

    1984-01-01

    Anti pAg/Br reactions at 1.4 GeV/c incident momentum are studied by means of the emulsion technique. A group of short range charged particles is observed. For the events with one short track, a backward and transversal emission is seen, which probably is due to some very fast process. For the events with two short tracks, a back-to-back emission is seen, indicating some two-body decay, where the target nucleus possibly behaves spectator-like. (Auth.)

  16. Anisotropic and correlated emissions of short range charged particles in anti pAg/Br reactions of 1.4 GeV/c incident momentum observed in photographic emulsions

    International Nuclear Information System (INIS)

    Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.

    1983-12-01

    Anti pAg/Br reactions at 1.4 GeV/c incident momentum were studied by means of the emulsion technique. A group of short range charged particles was observed. For the events with one short track, a backward and transversal emission was seen, probably due to some very fast process. For the events with two short tracks, a back-to-back emission was seen, indicating some two-body decay where the target nucleus possibly behaves spectator-like. The rates and forward collimations suggest that the same physical process causes the different multiplicities

  17. LSODE, 1. Order Stiff or Non-Stiff Ordinary Differential Equations System Initial Value Problems

    International Nuclear Information System (INIS)

    Hindmarsh, A.C.; Petzold, L.R.

    2005-01-01

    1 - Description of program or function: LSODE (Livermore Solver for Ordinary Differential Equations) solves stiff and non-stiff systems of the form dy/dt = f. In the stiff case, it treats the Jacobian matrix df/dy as either a dense (full) or a banded matrix, and as either user-supplied or internally approximated by difference quotients. It uses Adams methods (predictor-corrector) in the non-stiff case, and Backward Differentiation Formula (BDF) methods (the Gear methods) in the stiff case. The linear systems that arise are solved by direct methods (LU factor/solve). The LSODE source is commented extensively to facilitate modification. Both a single-precision version and a double-precision version are available. 2 - Methods: It is assumed that the ODEs are given explicitly, so that the system can be written in the form dy/dt = f(t,y), where y is the vector of dependent variables, and t is the independent variable. LSODE contains two variable-order, variable- step (with interpolatory step-changing) integration methods. The first is the implicit Adams or non-stiff method, of orders one through twelve. The second is the backward differentiation or stiff method (or BDF method, or Gear's method), of orders one through five. 3 - Restrictions on the complexity of the problem: The differential equations must be given in explicit form, i.e., dy/dt = f(y,t). Problems with intermittent high-speed transients may cause inefficient or unstable performance

  18. Distinguishing active from passive components of ankle plantar flexor stiffness in stroke, spinal cord injury and multiple sclerosis

    DEFF Research Database (Denmark)

    Lorentzen, Jakob; Grey, Michael James; Crone, Clarissa

    2010-01-01

    to distinguish the contribution of active reflex mechanisms from passive muscle properties to ankle joint stiffness in 31 healthy, 10 stroke, 30 multiple sclerosis and 16 spinal cord injured participants. The results were compared to routine clinical evaluation of spasticity. METHODS: A computer...... (Ashworth score1) showed normal reflex torque without normalization. With normalization this was only the case in 11 participants. Increased reflex mediated stiffness was detected in only 64% participants during clinical examination. CONCLUSION: The findings confirm that the clinical diagnosis of spasticity...

  19. Short-range order in irradiated diamonds

    International Nuclear Information System (INIS)

    Agafonov, S.S.; Glazkov, V.P.; Nikolaenko, V.A.; Somenkov, V.A.

    2005-01-01

    Structural changes in irradiated diamond with a change in its density were studied. Natural diamond powders with average particle size from 14-20 μm to 0.5 mm, irradiated in beryllium block of the MR reactor up to a fluence of 1.51 x 10 21 were used as samples. Using the neutron-diffraction method, it has been established that, when density in irradiated diamonds varies, a transition from a diamond-like amorphous structure to a graphite-like structure occurs. The transition occurs at a density ρ ∼ 2.7-2.9 g/cm 3 and is accompanied by a sharp change in resistivity [ru

  20. Short range order in amorphous polycondensates

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, C.; Richter, D.; Schweika, W. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Festkoerperforschung; Batoulis, J.; Sommer, K. [Bayer AG, Leverkusen (Germany); Cable, J.W. [Oak Ridge National Lab., TN (United States); Shapiro, S.M. [Brookhaven National Lab., Upton, NY (United States)

    1992-12-01

    The static coherent structure factors S(Q) of the polymer glass Bisphenol-A-Polycarbonate and its chemical variation Bisphenol-A- Polyctherkctone- both in differently deuterated versions- have been measured by spin polarized neutron scattering. The method of spin polarization analysis provided an experimental separation of coherent and incoherent scattering and a reliable intensity calibration. Results are compared to structure factors calculated for model structures which were obtained by ``amorphous cell`` computer simulations. In general reasonable agreement is found between experiment and simulation; however, certain discrepancies hint at an insufficient structural relaxation in the amorphous cell method. 15 refs, 1 fig, 1 tab.

  1. Short range order of selenite glasses

    Czech Academy of Sciences Publication Activity Database

    Neov, Dimitar; Gerasimova, I.; Yordanov, S.; Lakov, L.; Mikula, Pavol; Lukáš, Petr; Dimitriev, Y.

    1999-01-01

    Roč. 40, č. 2 (1999), s. 111-112 ISSN 0031-9090 R&D Projects: GA ČR GV202/97/K038; GA AV ČR KSK1048601 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.822, year: 1999

  2. QCD and short-range nuclear phenomena

    International Nuclear Information System (INIS)

    Frankfurt, L.L.; Strikman, M.I.

    1981-01-01

    In terms of pertubative QCD we estimate the shape of the high-momentum tail of the nucleus wave function. We derive QCD predictions for the yield of leading particles in nucleus fragmentation processes. The predicted yield is much larger than the expectations of the quark counting rules. Obtained formulae are in reasonable agreement with the momentum and angular dependence of cumulative particle production. We derive general expressions for deep inelastic lepton-nucleus scattering using the LSZ representation for the amplitude and use it to calculate the scaling violation in high Q 2 near threshold eD scattering at x >= 1. It is shown that the existence of few-nucleon correlations explains the large cross section of the deep inelastic process e + 3 He → e +... and leads to a larger effect for heavier nuclei. We demonstrate that the observed features of ν(anti ν) + A → μsup(+-) + backward proton + X data indicate the dominance of few-nucleon correlations in the nucleus wave function over average field configurations at momenta > 0.4 GeV/c. Implications of these data for the magnitude of smearing in deep inelastic processes are also considered. (orig.)

  3. Independent control of joint stiffness in the framework of the equilibrium-point hypothesis.

    Science.gov (United States)

    Latash, M L

    1992-01-01

    In the framework of the equilibrium-point hypothesis, virtual trajectories and joint stiffness patterns have been reconstructed during two motor tasks practiced against a constant bias torque. One task required a voluntary increase in joint stiffness while preserving the original joint position. The other task involved fast elbow flexions over 36 degrees. Joint stiffness gradually subsided after the termination of fast movements. In both tasks, the external torque could slowly and unexpectedly change. The subjects were required not to change their motor commands if the torque changed, i.e. "to do the same no matter what the motor did". In both tasks, changes in joint stiffness were accompanied by unchanged virtual trajectories that were also independent of the absolute value of the bias torque. By contrast, the intercept of the joint compliant characteristic with the angle axis, r(t)-function, has demonstrated a clear dependence upon both the level of coactivation and external load. We assume that a template virtual trajectory is generated at a certain level of the motor hierarchy and is later scaled taking into account some commonly changing dynamic factors of the movement execution, for example, external load. The scaling leads to the generation of commands to the segmental structures that can be expressed, according to the equilibrium-point hypothesis, as changes in the thresholds of the tonic stretch reflex for corresponding muscles.

  4. Serum 25-hydroxyvitamin D is associated with both arterial and ventricular stiffness in healthy subjects.

    Science.gov (United States)

    Şeker, Taner; Gür, Mustafa; Kuloğlu, Osman; Kalkan, Gülhan Yüksel; Şahin, Durmuş Yıldıray; Türkoğlu, Caner; Elbasan, Zafer; Baykan, Ahmet Oytun; Gözübüyük, Gökhan; Çaylı, Murat

    2013-12-01

    Vitamin D regulates the renin-angiotensin system, suppresses proliferation of vascular smooth muscle and improves endothelial cell dependent vasodilatation. These mechanisms may play a role on pathogenesis of arterial and left ventricular stiffness. We aimed to investigate the association between serum 25-hydroxyvitamin D with arterial and left ventricular stiffness in healthy subjects. We studied 125 healthy subjects without known cardiovascular risk factors or overt heart disease (mean age: 60.2 ± 11.9 years). Serum 25-hydroxyvitamin D was measured using a direct competitive chemiluminescent immunoassay. The subjects were divided into two groups according to the serum vitamin D level; vitamin D sufficient (≥ 20 ng/ml, n = 56) and vitamin D deficient (stiffness such as E/A and E/E' were measured. Pulse wave velocity (PWV), which reflects arterial stiffness, was calculated using the single-point method via the Mobil-O-Graph(®) ARC solver algorithm. Systolic blood pressure, level of serum calcium, PWV and E/E' values were higher and E/A values were lower in vitamin D deficient group compared with vitamin D sufficient group. Multiple linear regression analysis showed that vitamin D level was independently associated with E/E' (β = -0.364, pstiffness as well as systolic blood pressure in healthy subjects. Copyright © 2013 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  5. Elastin in large artery stiffness and hypertension

    Science.gov (United States)

    Wagenseil, Jessica E.; Mecham, Robert P.

    2012-01-01

    Large artery stiffness, as measured by pulse wave velocity (PWV), is correlated with high blood pressure and may be a causative factor in essential hypertension. The extracellular matrix components, specifically the mix of elastin and collagen in the vessel wall, determine the passive mechanical properties of the large arteries. Elastin is organized into elastic fibers in the wall during arterial development in a complex process that requires spatial and temporal coordination of numerous proteins. The elastic fibers last the lifetime of the organism, but are subject to proteolytic degradation and chemical alterations that change their mechanical properties. This review discusses how alterations in the amount, assembly, organization or chemical properties of the elastic fibers affect arterial stiffness and blood pressure. Strategies for encouraging or reversing alterations to the elastic fibers are addressed. Methods for determining the efficacy of these strategies, by measuring elastin amounts and arterial stiffness, are summarized. Therapies that have a direct effect on arterial stiffness through alterations to the elastic fibers in the wall may be an effective treatment for essential hypertension. PMID:22290157

  6. Diagram of state of stiff amphiphilic macromolecules

    NARCIS (Netherlands)

    Markov, Vladimir A.; Vasilevskaya, Valentina V.; Khalatur, Pavel G.; ten Brinke, Gerrit; Khokhlov, Alexei R.

    2007-01-01

    We studied coil-globule transitions in stiff-chain amphiphilic macromolecules via computer modeling and constructed phase diagrams for such molecules in terms of solvent quality and persistence length. We showed that the shape of the phase diagram essentially depends on the macromolecule degree of

  7. Advanced damper with negative structural stiffness elements

    International Nuclear Information System (INIS)

    Dong, Liang; Lakes, Roderic S

    2012-01-01

    Negative stiffness is understood as the occurrence of a force in the same direction as the imposed deformation. Structures and composites with negative stiffness elements enable a large amplification in damping. It is shown in this work, using an experimental approach, that when a flexible flat-ends column is aligned in a post-buckled condition, a negative structural stiffness and large hysteresis (i.e., high damping) can be achieved provided the ends of the column undergo tilting from flat to edge contact. Stable axial dampers with initial modulus equivalent to that of the parent material and with enhanced damping were designed and built using constrained negative stiffness effects entailed by post-buckled press-fit flat-ends columns. Effective damping of approximately 1 and an effective stiffness–damping product of approximately 1.3 GPa were achieved in such stable axial dampers consisting of PMMA columns. This is a considerable improvement for this figure of merit (i.e., the stiffness–damping product), which generally cannot exceed 0.6 GPa for currently used damping layers. (paper)

  8. Muscle Contraction.

    Science.gov (United States)

    Sweeney, H Lee; Hammers, David W

    2018-02-01

    SUMMARYMuscle cells are designed to generate force and movement. There are three types of mammalian muscles-skeletal, cardiac, and smooth. Skeletal muscles are attached to bones and move them relative to each other. Cardiac muscle comprises the heart, which pumps blood through the vasculature. Skeletal and cardiac muscles are known as striated muscles, because the filaments of actin and myosin that power their contraction are organized into repeating arrays, called sarcomeres, that have a striated microscopic appearance. Smooth muscle does not contain sarcomeres but uses the contraction of filaments of actin and myosin to constrict blood vessels and move the contents of hollow organs in the body. Here, we review the principal molecular organization of the three types of muscle and their contractile regulation through signaling mechanisms and discuss their major structural and functional similarities that hint at the possible evolutionary relationships between the cell types. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  9. Short range charge/orbital ordering in La{sub 1-x}Sr{sub x}Mn{sub 1-z}B{sub z}O{sub 3} (B Cu,Zn) manganites

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Z V [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Cantarero, A [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Thijssen, W H A [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Paunovic, N [Centre for Solid State Physics and New Materials, Institute of Physics, PO Box 68, 11080 Belgrade/Zemun (Serbia and Montenegro); Dohcevic-Mitrovic, Z [Centre for Solid State Physics and New Materials, Institute of Physics, PO Box 68, 11080 Belgrade/Zemun (Serbia and Montenegro); Sapina, F [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain)

    2005-01-19

    We have measured the reflectivity spectra of La{sub 1-x}Sr{sub x}Mn{sub 1-z}B{sub z}O{sub 3} (B = Cu, Zn; 0.17 {<=} x {<=} 0.30; 0 {<=} z {<=} 0.10) manganites over wide frequency (100-4000 cm{sup -1}) and temperature (80-300 K) ranges. Besides the previously observed infrared active modes or mode pairs at about 160 cm{sup -1} (external mode), 350 cm{sup -1} (bond bending mode) and 590 cm{sup -1} (bond stretching mode), we have clearly observed two additional phonon modes at about 645 and 720 cm{sup -1} below the temperature T{sub 1} (T{sub 1}short range charge/orbitally ordered domains. The temperature T{sub 1} of the phase transition is dependent on the doping concentration and for optimally doped samples we have found that T{sub 1} {approx}(0.93 {+-} 0.02) T{sub C}. Electrical resistivity and magnetization measurements versus temperature and magnetic field support the short range charge/orbital ordering scenario.

  10. Parametric study of roof diaphragm stiffness requirements

    International Nuclear Information System (INIS)

    Jones, W.D.; Tenbus, M.A.

    1991-01-01

    A common assumption made in performing a dynamic seismic analysis for a building is that the roof/floor system is open-quotes rigidclose quotes. This assumption would appear to be reasonable for many of the structures found in nuclear power plants, since many of these structures are constructed of heavily reinforced concrete having floor/roof slabs at least two feet in thickness, and meet the code requirements for structural detailing for seismic design. The roofs of many Department of Energy (DOE) buildings at the Oak Ridge Y-12 Plant in Oak Ridge, Tennessee, have roofs constructed of either metal, precast concrete or gypsum plank deck overlaid with rigid insulation, tar and gravel. In performing natural phenomena hazard assessments for one such facility, it was assumed that the existing roof performed first as a flexible diaphragm (zero stiffness) and then, rigid (infinitely stiff). For the flexible diaphragm model it was determined that the building began to experience significant damage around 0.09 g's. For the rigid diaphragm model it was determined that no significant damage was observed below 0.20 g's. A Conceptual Design Report has been prepared for upgrading/replacing the roof of this building. The question that needed to be answered here was, open-quotes How stiff should the new roof diaphragm be in order to satisfy the rigid diaphragm assumption and, yet, be cost effective?close quotes. This paper presents a parametric study of a very simple structural system to show that the design of roof diaphragms needs to consider both strength and stiffness (frequency) requirements. This paper shows how the stiffness of a roof system affects the seismically induced loads in the lateral, vertical load resisting elements of a building and provides guidance in determining how open-quotes rigidclose quotes a roof system should be in order to accomplish a cost effective design

  11. A quantitative method for evaluating inferior glenohumeral joint stiffness using ultrasonography.

    Science.gov (United States)

    Tsai, Wen-Wei; Lee, Ming-Yih; Yeh, Wen-Lin; Cheng, Shih-Chung; Soon, Kok-Soon; Lei, Kin Fong; Lin, Wen-Yen

    2013-02-01

    Subluxation of the affected shoulder in post-stroke patients is associated with nerve disorders and muscle fatigue. Clinicians must be able to accurately and reliably measure inferior glenohumeral subluxation in patients to provide appropriate treatment. However, quantitative methods for evaluating the laxity and stiffness of the glenohumeral joint (GHJ) are still being developed. The aim of this study was to develop a new protocol for evaluating the laxity and stiffness of the inferior GHJ using ultrasonography under optimal testing conditions and to investigate changes in the GHJ from a commercially available humerus brace and shoulder brace. Multistage inferior displacement forces were applied to create a glide between the most cephalad point on the visible anterosuperior surface of the humeral head and coracoid process in seven healthy volunteers. GHJ stiffness was defined as the slope of the linear regression line between the glides and different testing loads. The testing conditions were defined by different test loading mechanisms (n=2), shoulder constraining conditions (n=2), and loading modes (n=4). The optimal testing condition was defined as the condition with the least residual variance of measured laxity to the calculated stiffness under different testing loads. A paired t-test was used to compare the laxity and stiffness of the inferior GHJ using different braces. No significant difference was identified between the two test loading mechanisms (t=0.218, p=0.831) and two shoulder constraining conditions (t=-0.235, p=0.818). We concluded that ultrasonographic laxity measurements performed using a pulley set loading mechanism was as reliable as direct loading. Additionally, constraining the unloaded shoulder was proposed due to the lower mean residual variance value. Moreover, pulling the elbow downward with loading on the upper arm was suggested, as pulling the elbow downward with the elbow flexed and loading on the forearm may overestimate stiffness

  12. History-dependence of muscle slack length following contraction and stretch in the human vastus lateralis.

    Science.gov (United States)

    Stubbs, Peter W; Walsh, Lee D; D'Souza, Arkiev; Héroux, Martin E; Bolsterlee, Bart; Gandevia, Simon C; Herbert, Robert D

    2018-06-01

    In reduced muscle preparations, the slack length and passive stiffness of muscle fibres have been shown to be influenced by previous muscle contraction or stretch. In human muscles, such behaviours have been inferred from measures of muscle force, joint stiffness and reflex magnitudes and latencies. Using ultrasound imaging, we directly observed that isometric contraction of the vastus lateralis muscle at short lengths reduces the slack lengths of the muscle-tendon unit and muscle fascicles. The effect is apparent 60 s after the contraction. These observations imply that muscle contraction at short lengths causes the formation of bonds which reduce the effective length of structures that generate passive tension in muscles. In reduced muscle preparations, stretch and muscle contraction change the properties of relaxed muscle fibres. In humans, effects of stretch and contraction on properties of relaxed muscles have been inferred from measurements of time taken to develop force, joint stiffness and reflex latencies. The current study used ultrasound imaging to directly observe the effects of stretch and contraction on muscle-tendon slack length and fascicle slack length of the human vastus lateralis muscle in vivo. The muscle was conditioned by (a) strong isometric contractions at long muscle-tendon lengths, (b) strong isometric contractions at short muscle-tendon lengths, (c) weak isometric contractions at long muscle-tendon lengths and (d) slow stretches. One minute after conditioning, ultrasound images were acquired from the relaxed muscle as it was slowly lengthened through its physiological range. The ultrasound image sequences were used to identify muscle-tendon slack angles and fascicle slack lengths. Contraction at short muscle-tendon lengths caused a mean 13.5 degree (95% CI 11.8-15.0 degree) shift in the muscle-tendon slack angle towards shorter muscle-tendon lengths, and a mean 5 mm (95% CI 2-8 mm) reduction in fascicle slack length, compared to the

  13. Mixed, Nonsplit, Extended Stability, Stiff Integration of Reaction Diffusion Equations

    KAUST Repository

    Alzahrani, Hasnaa H.

    2016-01-01

    A tailored integration scheme is developed to treat stiff reaction-diffusion prob- lems. The construction adapts a stiff solver, namely VODE, to treat reaction im- plicitly together with explicit treatment of diffusion. The second-order Runge

  14. Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement.

    Science.gov (United States)

    Gomi, H; Kawato

    1996-04-05

    For the last 20 years, it has been hypothesized that well-coordinated, multijoint movements are executed without complex computation by the brain, with the use of springlike muscle properties and peripheral neural feedback loops. However, it has been technically and conceptually difficult to examine this "equilibrium-point control" hypothesis directly in physiological or behavioral experiments. A high-performance manipulandum was developed and used here to measure human arm stiffness, the magnitude of which during multijoint movement is important for this hypothesis. Here, the equilibrium-point trajectory was estimated from the measured stiffness, the actual trajectory, and the generated torque. Its velocity profile differed from that of the actual trajectory. These results argue against the hypothesis that the brain sends as a motor command only an equilibrium-point trajectory similar to the actual trajectory.

  15. The stable stiffness triangle - drained sand during deformation cycles

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2017-01-01

    Cyclic, drained sand stiffness was observed using the Danish triaxial appa- ratus. New, deformation dependant soil property (the stable stiffness triangle) was detected. Using the the stable stiffness triangle, secant stiffness of drained sand was plausible to predict (and control) even during ir...... findings can find application in off-shore, seismic and other engi- neering practice, or inspire new branches of research and modelling wherever dynamic, cyclic or transient loaded sand is encountered....

  16. Is chronic obstructive pulmonary disease associated with increased arterial stiffness?

    DEFF Research Database (Denmark)

    Janner, Julie H; McAllister, David A; Godtfredsen, Nina S

    2012-01-01

    We hypothesize that airflow limitation is associated with increasing arterial stiffness and that having COPD increases a non-invasive measure of arterial stiffness - the aortic augmentation index (AIx) - independently of other CVD risk factors.......We hypothesize that airflow limitation is associated with increasing arterial stiffness and that having COPD increases a non-invasive measure of arterial stiffness - the aortic augmentation index (AIx) - independently of other CVD risk factors....

  17. A Rapid Aeroelasticity Optimization Method Based on the Stiffness characteristics

    OpenAIRE

    Yuan, Zhe; Huo, Shihui; Ren, Jianting

    2018-01-01

    A rapid aeroelasticity optimization method based on the stiffness characteristics was proposed in the present study. Large time expense in static aeroelasticity analysis based on traditional time domain aeroelasticity method is solved. Elastic axis location and torsional stiffness are discussed firstly. Both torsional stiffness and the distance between stiffness center and aerodynamic center have a direct impact on divergent velocity. The divergent velocity can be adjusted by changing the cor...

  18. Interlimb symmetry of dynamic knee joint stiffness and co-contraction is maintained in early stage knee osteoarthritis.

    Science.gov (United States)

    Collins, A T; Richardson, R T; Higginson, J S

    2014-08-01

    Individuals with knee OA often exhibit greater co-contraction of antagonistic muscle groups surrounding the affected joint which may lead to increases in dynamic joint stiffness. These detrimental changes in the symptomatic limb may also exist in the contralateral limb, thus contributing to its risk of developing knee osteoarthritis. The purpose of this study is to investigate the interlimb symmetry of dynamic knee joint stiffness and muscular co-contraction in knee osteoarthritis. Muscular co-contraction and dynamic knee joint stiffness were assessed in 17 subjects with mild to moderate unilateral medial compartment knee osteoarthritis and 17 healthy control subjects while walking at a controlled speed (1.0m/s). Paired and independent t-tests determined whether significant differences exist between groups (pknees compared to the healthy group (p=0.051). Subjects with mild to moderate knee osteoarthritis maintain symmetric control strategies during gait. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A novel energy-efficient rotational variable stiffness actuator

    NARCIS (Netherlands)

    Rao, S.; Carloni, Raffaella; Stramigioli, Stefano

    This paper presents the working principle, the design and realization of a novel rotational variable stiffness actuator, whose stiffness can be varied independently of its output angular position. This actuator is energy-efficient, meaning that the stiffness of the actuator can be varied by keeping

  20. Direct measurement of the intrinsic ankle stiffness during standing

    NARCIS (Netherlands)

    Vlutters, Mark; Vlutters, M.; Boonstra, Tjitske; Schouten, Alfred Christiaan; van der Kooij, Herman

    2015-01-01

    Ankle stiffness contributes to standing balance, counteracting the destabilizing effect of gravity. The ankle stiffness together with the compliance between the foot and the support surface make up the ankle-foot stiffness, which is relevant to quiet standing. The contribution of the intrinsic