WorldWideScience

Sample records for short-range atmospheric dispersion

  1. Objectives for next generation of practical short-range atmospheric dispersion models

    International Nuclear Information System (INIS)

    Olesen, H.R.; Mikkelsen, T.

    1992-01-01

    The proceedings contains papers from the workshop ''Objectives for Next Generation of Practical Short-Range Atmospheric Dispersion Models''. They deal with two types of models, namely models for regulatory purposes and models for real-time applications. The workshop was the result of an action started in 1991 for increased cooperation and harmonization within atmospheric dispersion modelling. The focus of the workshop was on the management of model development and the definition of model objectives, rather than on detailed model contents. It was the intention to identify actions that can be taken in order to improve the development and use of atmospheric dispersion models. The papers in the proceedings deal with various topics within the broad spectrum of matters related to up-to-date practical models, such as their scientific basis, requirements for model input and output, meteorological preprocessing, standardisation within modelling, electronic information exchange as a potentially useful tool, model evaluation and data bases for model evaluation. In addition to the papers, the proceedings contain summaries of the discussions at the workshop. These summaries point to a number of recommended actions which can be taken in order to improve ''modelling culture''. (AB)

  2. A model for short and medium range dispersion of radionuclides released to the atmosphere

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1979-09-01

    A Working Group was established to give practical guidance on the estimation of the dispersion of radioactive releases to the atmosphere. The dispersion is estimated in the short and medium range, that is from about 100 m to a few tens of kilometres from the source, and is based upon a Gaussian plume model. A scheme is presented for categorising atmospheric conditions and values of the associated dispersion parameters are given. Typical results are presented for releases in specific meteorological conditions and a scheme is included to allow for durations of release of up to 24 hours. Consideration has also been given to predicting longer term average concentrations, typically annual averages, and results are presented which facilitate site specific calculations. The results of the models are extended to 100 km from the source, but the increasing uncertainty with which results may be predicted beyond a few tens of kilometres from the source is emphasised. Three technical appendices provide some of the rationale behind the decisions made in adopting the various models in the proposed dispersion scheme. (author)

  3. Meteorological perspective on intermediate range atmospheric dispersion

    International Nuclear Information System (INIS)

    Van der Hoven, I.

    1981-01-01

    The intermediate range of atmospheric transport and diffusion is defined as those dispersion processes which take place at downwind distances of 10 to 100 kilometers from pollutant sources. Meteorologists often define this range as the mesoscale. It is the range of distances where certain environmental assessments are of concern such as the determination of significant deterioration of visibility, the effect of effluent releases from tall stacks, and the effect of pollutant sources in rural settings upon the more distant urban centers. Atmospheric diffusion theory is based on steady state conditions and spatial homogeniety. Techniques must be developed to measure the inhomogenieties, models must be devised to account for the complexities, and a data base consisting of appropriate measured meteorological parameters concurrent with tracer gas concentrations should be collected

  4. An evaluation of dry deposition from the long range atmospheric dispersion

    International Nuclear Information System (INIS)

    Suh, K.S.; Kim, E.H.; Hwang, W.T.; Han, M.H.; Lee, H.S.; Lee, C.W.

    2003-01-01

    The dry deposition of pollutants released into the atmosphere must be evaluated to estimate the radiological dose of terrestrial plants and foodstuffs in the ecosystem. Especially, the atmospheric dispersion and dry deposition models have been widely developed to predict and minimize the radiological damage for the surrounding environment after the TMI-2 and the Chernobyl accidents. A Lagrangian particle model for the evaluation the long-range dispersion has been firstly developed in Korea since 2001. The particle tracking method was used for the estimation of the concentration distribution of the radioactive materials released into the atmosphere. The model is designed to estimate air concentration and ground deposition at distances up to some thousands of kilometers from the source point in the horizontal direction. The turbulent motion is considered to separate the treatment of particles within the mixing layer and above the mixing layer. Also, the dispersion model is designed to receive the results of the MM5 model being operated by KMA (Korea Meteorological Administration). The test run of the long-range dispersion model has been performed in the area which covered extends from 102.47deg E to 173.34deg E and from 12.27deg N to 53.72deg N in Northeast Asia. The release point of Cs-137 assumed in the east part of the China. The long range dispersion model has been firstly developed to estimate the radiological consequences against a nuclear accident. The model will be supplemented by the comparative study using the data of the ETEX experiments. (author)

  5. Nuclear risk from atmospheric dispersion in Northern Europe

    International Nuclear Information System (INIS)

    Lauritzen, B.

    2007-04-01

    The aim of the 2005-06 NKS-B NordRisk project has been to present practical methods for probabilistic risk assessment from long-range atmospheric transport and deposition of radioactive material. In this project an atlas of long-range atmospheric dispersion and deposition patterns derived from archived numerical weather prediction (NWP) model data coupled to an atmospheric dispersion model has been produced, and a PC-based software tool has been developed, based on a simplified description of the long-term, long-range atmospheric dispersion and deposition. The atlas and the software tool may allow for a rapid, first assessment of the risks following a nuclear emergency, when detailed information on the long-range atmospheric dispersion and deposition is not available. (au)

  6. A comparison of short-term dispersion estimates resulting from various atmospheric stability classification methods

    International Nuclear Information System (INIS)

    Mitchell, A.E. Jr.

    1982-01-01

    Four methods of classifying atmospheric stability class are applied at four sites to make short-term (1-h) dispersion estimates from a ground-level source based on a model consistent with U.S. Nuclear Regulatory Commission practice. The classification methods include vertical temperature gradient, standard deviation of horizontal wind direction fluctuations (sigma theta), Pasquill-Turner, and modified sigma theta which accounts for meander. Results indicate that modified sigma theta yields reasonable dispersion estimates compared to those produced using methods of vertical temperature gradient and Pasquill-Turner, and can be considered as a potential economic alternative in establishing onsite monitoring programs. (author)

  7. NKS NordRisk. Atlas of long-range atmospheric dispersion and deposition of radionuclides from selected risk sites in the Northern Hemisphere

    International Nuclear Information System (INIS)

    Havskov Soerensen, J.; Baklanov, A.; Mahura, A.; Lauritzen, Bent; Mikkelsen, Torben

    2008-07-01

    Within the NKS NordRisk project, 'Nuclear risk from atmospheric dispersion in Northern Europe', the NKS NordRisk Atlas has been developed. The atlas describes risks from hypothetical long-range atmospheric dispersion and deposition of radionuclides from selected nuclear risk sites in the Northern Hemisphere. A number of case studies of long-term long-range atmospheric transport and deposition of radionuclides has been developed, based on two years of meteorological data. Radionuclide concentrations in air and radionuclide depositions have been evaluated and examples of long-term averages of the dispersion and deposition and of the variability around these mean values are provided. (au)

  8. Ensemble atmospheric dispersion calculations for decision support systems

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Potempski, S.; Galkowski, A.; Zelazny, R.

    2003-01-01

    This document describes two approaches to long-range atmospheric dispersion of pollutants based on the ensemble concept. In the first part of the report some experiences related to the exercises undertaken under the ENSEMBLE project of the European Union are presented. The second part is devoted to the implementation of mesoscale numerical prediction models RAMS and atmospheric dispersion model HYPACT on Beowulf cluster and theirs usage for ensemble forecasting and long range atmospheric ensemble dispersion calculations based on available meteorological data from NCEO, NOAA (USA). (author)

  9. Modified ensemble Kalman filter for nuclear accident atmospheric dispersion: prediction improved and source estimated.

    Science.gov (United States)

    Zhang, X L; Su, G F; Yuan, H Y; Chen, J G; Huang, Q Y

    2014-09-15

    Atmospheric dispersion models play an important role in nuclear power plant accident management. A reliable estimation of radioactive material distribution in short range (about 50 km) is in urgent need for population sheltering and evacuation planning. However, the meteorological data and the source term which greatly influence the accuracy of the atmospheric dispersion models are usually poorly known at the early phase of the emergency. In this study, a modified ensemble Kalman filter data assimilation method in conjunction with a Lagrangian puff-model is proposed to simultaneously improve the model prediction and reconstruct the source terms for short range atmospheric dispersion using the off-site environmental monitoring data. Four main uncertainty parameters are considered: source release rate, plume rise height, wind speed and wind direction. Twin experiments show that the method effectively improves the predicted concentration distribution, and the temporal profiles of source release rate and plume rise height are also successfully reconstructed. Moreover, the time lag in the response of ensemble Kalman filter is shortened. The method proposed here can be a useful tool not only in the nuclear power plant accident emergency management but also in other similar situation where hazardous material is released into the atmosphere. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Kalman filtration of radiation monitoring data from atmospheric dispersion of radioactive materials

    DEFF Research Database (Denmark)

    Drews, M.; Lauritzen, B.; Madsen, H.

    2004-01-01

    A Kalman filter method using off-site radiation monitoring data is proposed as a tool for on-line estimation of the source term for short-range atmospheric dispersion of radioactive materials. The method is based on the Gaussian plume model, in which the plume parameters including the source term...

  11. NKS NordRisk. Atlas of long-range atmospheric dispersion and deposition of radionuclides from selected risk sites in the Northern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Havskov Soerensen, J.; Baklanov, A.; Mahura, A. (Danish Meteorological Institute, Copenhagen (Denmark)); Lauritzen, Bent; Mikkelsen, Torben (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2008-07-15

    Within the NKS NordRisk project, 'Nuclear risk from atmospheric dispersion in Northern Europe', the NKS NordRisk Atlas has been developed. The atlas describes risks from hypothetical long-range atmospheric dispersion and deposition of radionuclides from selected nuclear risk sites in the Northern Hemisphere. A number of case studies of long-term long-range atmospheric transport and deposition of radionuclides has been developed, based on two years of meteorological data. Radionuclide concentrations in air and radionuclide depositions have been evaluated and examples of long-term averages of the dispersion and deposition and of the variability around these mean values are provided. (au)

  12. Accident consequence assessments with different atmospheric dispersion models

    International Nuclear Information System (INIS)

    Panitz, H.J.

    1989-11-01

    An essential aim of the improvements of the new program system UFOMOD for Accident Consequence Assessments (ACAs) was to substitute the straight-line Gaussian plume model conventionally used in ACA models by more realistic atmospheric dispersion models. To identify improved models which can be applied in ACA codes and to quantify the implications of different dispersion models on the results of an ACA, probabilistic comparative calculations with different atmospheric dispersion models have been performed. The study showed that there are trajectory models available which can be applied in ACAs and that they provide more realistic results of ACAs than straight-line Gaussian models. This led to a completely novel concept of atmospheric dispersion modelling in which two different distance ranges of validity are distinguished: the near range of some ten kilometres distance and the adjacent far range which are assigned to respective trajectory models. (orig.) [de

  13. NKS NordRisk II: Atlas of long-range atmospheric dispersion and deposition of radionuclides from selected risk sites in the Northern Hemisphere

    DEFF Research Database (Denmark)

    Smith Korsholm, Ulrik; Astrup, Poul; Lauritzen, Bent

    The present atlas has been developed within the NKS/NordRisk-II project "Nuclear risk from atmospheric dispersion in Northern Europe". The atlas describes risks from hypothetical long-range dispersion and deposition of radionuclides from 16 nuclear risk sites on the Northern Hemisphere...... spanning the climate variability associated with the North Atlantic Oscillation, and corresponding time evolution of the ensemble mean atmospheric dispersion....

  14. Long-range transport of radioisotopes in the atmosphere and the calculation of collective dose

    International Nuclear Information System (INIS)

    Apsimon, H.M.; Goddard, A.J.H.; Wrigley, J.

    1980-01-01

    In estimating the long range (up to 1000 km) transport and dispersal of atmospheric pollutants, the meteorological conditions at the source become less relevant as the distance from the source increases, making it difficult to extrapolate to larger distances using short range modelling techniques. The MESOS model has therefore been developed to take into account the temporal and spatial changes in the atmospheric boundary layer along the trajectory of a pollutant release, including the effects of diurnal cycle and lateral dispersion in the synoptic scale windfield. The model is described together with the associated data base incorporating a year's meteorological data from synoptic stations and ships across Western Europe. A simulation of dispersal following the Windscale release of 1957 is compared with measurements. The use of the model is further illustrated by application to a hypothetical site both for routine continuous releases and short term accidental releases. This work has been carried out within the framework of a research contract between the EURATOM-CEA Association and Imperial College. (H.K.)

  15. NKS NordRisk II: Atlas of long-range atmospheric dispersion and deposition of radionuclides from selected risk sites in the Northern Hemisphere

    International Nuclear Information System (INIS)

    Smith Korsholm, U.; Havskov Soerensen, J.; Astrup, P.; Lauritzen, B.

    2011-04-01

    The present atlas has been developed within the NKS/NordRisk-II project 'Nuclear risk from atmospheric dispersion in Northern Europe'. The atlas describes risks from hypothetical long-range dispersion and deposition of radionuclides from 16 nuclear risk sites on the Northern Hemisphere. The atmospheric dispersion model calculations cover a period of 30 days following each release to ensure almost complete deposition of the dispersed material. The atlas contains maps showing the total deposition and time-integrated air concentration of Cs-137 and I-131 based on three years of meteorological data spanning the climate variability associated with the North Atlantic Oscillation, and corresponding time evolution of the ensemble mean atmospheric dispersion. (Author)

  16. NKS NordRisk II: Atlas of long-range atmospheric dispersion and deposition of radionuclides from selected risk sites in the Northern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Smith Korsholm, U.; Havskov Soerensen, J. (Danish Meteorological Institute (DMI), Copenhagen (Denmark)); Astrup, P.; Lauritzen, B. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Radiation Research Div., Roskilde (Denmark))

    2011-04-15

    The present atlas has been developed within the NKS/NordRisk-II project 'Nuclear risk from atmospheric dispersion in Northern Europe'. The atlas describes risks from hypothetical long-range dispersion and deposition of radionuclides from 16 nuclear risk sites on the Northern Hemisphere. The atmospheric dispersion model calculations cover a period of 30 days following each release to ensure almost complete deposition of the dispersed material. The atlas contains maps showing the total deposition and time-integrated air concentration of Cs-137 and I-131 based on three years of meteorological data spanning the climate variability associated with the North Atlantic Oscillation, and corresponding time evolution of the ensemble mean atmospheric dispersion. (Author)

  17. Improving practical atmospheric dispersion models

    International Nuclear Information System (INIS)

    Hunt, J.C.R.; Hudson, B.; Thomson, D.J.

    1992-01-01

    The new generation of practical atmospheric dispersion model (for short range ≤ 30 km) are based on dispersion science and boundary layer meteorology which have widespread international acceptance. In addition, recent improvements in computer skills and the widespread availability of small powerful computers make it possible to have new regulatory models which are more complex than the previous generation which were based on charts and simple formulae. This paper describes the basis of these models and how they have developed. Such models are needed to satisfy the urgent public demand for sound, justifiable and consistent environmental decisions. For example, it is preferable that the same models are used to simulate dispersion in different industries; in many countries at present different models are used for emissions from nuclear and fossil fuel power stations. The models should not be so simple as to be suspect but neither should they be too complex for widespread use; for example, at public inquiries in Germany, where simple models are mandatory, it is becoming usual to cite the results from highly complex computational models because the simple models are not credible. This paper is written in a schematic style with an emphasis on tables and diagrams. (au) (22 refs.)

  18. Inverse problems using ANN in long range atmospheric dispersion with signature analysis picked scattered numerical sensors from CFD

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Gera, B.; Ghosh, A.K.; Kushwaha, H.S.

    2010-01-01

    Scalar dispersion in the atmosphere is an important area wherein different approaches are followed in development of good analytical model. The analyses based on Computational Fluid Dynamics (CFD) codes offer an opportunity of model development based on first principles of physics and hence such models have an edge over the existing models. Both forward and backward calculation methods are being developed for atmospheric dispersion around NPPs at BARC Forward modeling methods, which describe the atmospheric transport from sources to receptors, use forward-running transport and dispersion models or computational fluid dynamics models which are run many times, and the resulting dispersion field is compared to observations from multiple sensors. Backward or inverse modeling methods use only one model run in the reverse direction from the receptors to estimate the upwind sources. Inverse modeling methods include adjoint and tangent linear models, Kalman filters, and variational data assimilation, and neural network. The present paper is aimed at developing a new approach where the identified specific signatures at receptor points form the basis for source estimation or inversions. This approach is expected to reduce the large transient data sets to reduced and meaningful data sets. In fact this reduces the inherently transient data set into a time independent mean data set. Forward computation were carried out with CFD code for various case to generate a large set of data to train the ANN. Specific signature analysis was carried out to find the parameters of interest for ANN training like peak concentration, time to reach peak concentration and time to fall, the ANN was trained with data and source strength and location were predicted from ANN. Inverse problem was performed using ANN approach in long range atmospheric dispersion. An illustration of application of CFD code for atmospheric dispersion studies for a hypothetical case is also included in the paper. (author)

  19. Development of a code to simulate dispersion of atmospheric released tritium gas in the environmental media and to evaluate doses. TRIDOSE

    International Nuclear Information System (INIS)

    Murata, Mikio; Noguchi, Hiroshi; Yokoyama, Sumi

    2000-11-01

    A computer code (TRIDOSE) was developed to assess the environmental impact of atmospheric released tritium gas (T 2 ) from nuclear fusion related facilities. The TRIDOSE simulates dispersion of T 2 and resultant HTO in the atmosphere, land, plant, water and foods in the environment, and evaluates contamination concentrations in the media and exposure doses. A part of the mathematical models in TRIDOSE were verified by comparison of the calculation with the results of the short range (400 m) dispersion experiment of HT gas performed in Canada postulating a short-time (30 minutes) accidental release. (author)

  20. Nuclear risk from atmospheric dispersion in Northern Europe - Summary Report

    DEFF Research Database (Denmark)

    Lauritzen, Bent

    The objective of the NordRisk II project has been to derive practical means for assessing the risks from long-range atmospheric dispersion of radioac-tive materials. An atlas over different atmospheric dispersion and deposi-tion scenarios has been developed using historical numerical weather pre......-diction (NWP) model data. The NWP model data covers three years span-ning the climate variability associated with the North Atlantic Oscillation, and the atlas considers radioactive releases from 16 release sites in and near the Nordic countries. A statistical analysis of the long-range disper......-sion and deposition patterns is undertaken to quantify the mean dispersion and deposition as well as the variability. Preliminary analyses show that the large-scale atmospheric dispersion and deposition is near-isotropic, irrespective of the release site and detailed climatology, and allows for a simple...

  1. Development of a code to simulate dispersion of atmospheric released tritium gas in the environmental media and to evaluate doses. TRIDOSE

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Mikio [Nuclear Engineering Co., Ltd., Hitachi, Ibaraki (Japan); Noguchi, Hiroshi; Yokoyama, Sumi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-11-01

    A computer code (TRIDOSE) was developed to assess the environmental impact of atmospheric released tritium gas (T{sub 2}) from nuclear fusion related facilities. The TRIDOSE simulates dispersion of T{sub 2} and resultant HTO in the atmosphere, land, plant, water and foods in the environment, and evaluates contamination concentrations in the media and exposure doses. A part of the mathematical models in TRIDOSE were verified by comparison of the calculation with the results of the short range (400 m) dispersion experiment of HT gas performed in Canada postulating a short-time (30 minutes) accidental release. (author)

  2. Atmospheric dispersion models for real-time application in the decision support system being developed within the CEC

    International Nuclear Information System (INIS)

    Mikkelsen, T.

    1992-01-01

    A number of Commission of the European Communities member states are presently coordinating their research and development of a ''Real-time On-line DecisiOn Support'' (RODOS) for emergency assistance in the event of nuclear accident. In addition to atmospheric dispersion, the system involves multiple other radiological disciplines. The ability to estimate a specific atmospheric dispersion scenarios in real-time becomes a first-priority task and is of uttermost importance for the subsequent success or failure of such a comprehensive decision support system to guide off-site emergency situations. No single dispersion model is at present able to cover all possible release-types and scales of dispersion. A hierarchy of atmospheric flow and dispersion models is presently being ranked for suitability to real-time calculate air and integrated-air concentrations. Starting at the short-range scale, models are discriminated with respect to principle, adequacy and flexibility, CPU-time constraints, experimental evaluation record, instantaneous or short-time release handling, deposition measures (wet and dry), input and output data flexibility and uncertainty-handling and model-interpretation. Additional features of particular importance are: Robustness in schemes for meteorological preprocessing of meteorological input data, and on-line backfitting and data-assimilation procedures. Models demonstrating practical and operational use, including real-time operational experience, have in this context the highest priority, as opposed to the more sophisticated and theoretical ''development-type'' models. Real-time methods founded on our present knowledge and data concerning flow and dispersion in the atmospheric boundary layer, are of primary interest. (au) (18 refs.)

  3. Meteorological uncertainty of atmospheric dispersion model results (MUD)

    International Nuclear Information System (INIS)

    Havskov Soerensen, J.; Amstrup, B.; Feddersen, H.

    2013-08-01

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario. However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for long-range atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent uncertainties of the meteorological model results. These uncertainties stem from e.g. limits in meteorological observations used to initialise meteorological forecast series. By perturbing e.g. the initial state of an NWP model run in agreement with the available observational data, an ensemble of meteorological forecasts is produced from which uncertainties in the various meteorological parameters are estimated, e.g. probabilities for rain. Corresponding ensembles of atmospheric dispersion can now be computed from which uncertainties of predicted radionuclide concentration and deposition patterns can be derived. (Author)

  4. Dispersion of effluents in the atmosphere; Dispersion des effluents dans l`atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    This conference day was organized by the `convection` section of the French association of thermal engineers with the support of the environment and energy mastery agency (ADEME). This book of proceedings contains 10 papers entitled: `physical modeling of atmospheric dispersion in wind tunnels. Some industrial examples`; `modeling of the noxious effects of a fire on the environment of an industrial site: importance of thermal engineering related hypotheses`; `atmospheric diffusion of a noxious cloud: fast evaluation method of safety areas around refrigerating installations that use ammonia`; `modeling of atmospheric flows in urban areas in order to study the dispersion of pollutants`; `use of a dispersion parameter to characterize the evolution of a diffusion process downstream of a linear source of passive contaminant placed inside a turbulent boundary layer`; `elements of reflexion around the development of an analytical methodology applied to the elaboration of measurement strategies of air quality in ambient and outdoor atmospheres around industrial sites`; `state-of-the-art about treatment techniques for VOC-rich gaseous effluents`; `characteristics of the time variation of the atmospheric pollution in the Paris region and visualization of its space distribution`; `mass-spectrometry for the measurement of atmospheric pollutants`; `volume variations in natural convection turbulence`. (J.S.)

  5. Dispersion of effluents in the atmosphere; Dispersion des effluents dans l`atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was organized by the `convection` section of the French association of thermal engineers with the support of the environment and energy mastery agency (ADEME). This book of proceedings contains 10 papers entitled: `physical modeling of atmospheric dispersion in wind tunnels. Some industrial examples`; `modeling of the noxious effects of a fire on the environment of an industrial site: importance of thermal engineering related hypotheses`; `atmospheric diffusion of a noxious cloud: fast evaluation method of safety areas around refrigerating installations that use ammonia`; `modeling of atmospheric flows in urban areas in order to study the dispersion of pollutants`; `use of a dispersion parameter to characterize the evolution of a diffusion process downstream of a linear source of passive contaminant placed inside a turbulent boundary layer`; `elements of reflexion around the development of an analytical methodology applied to the elaboration of measurement strategies of air quality in ambient and outdoor atmospheres around industrial sites`; `state-of-the-art about treatment techniques for VOC-rich gaseous effluents`; `characteristics of the time variation of the atmospheric pollution in the Paris region and visualization of its space distribution`; `mass-spectrometry for the measurement of atmospheric pollutants`; `volume variations in natural convection turbulence`. (J.S.)

  6. Meteorological uncertainty of atmospheric dispersion model results (MUD)

    Energy Technology Data Exchange (ETDEWEB)

    Havskov Soerensen, J.; Amstrup, B.; Feddersen, H. [Danish Meteorological Institute, Copenhagen (Denmark)] [and others

    2013-08-15

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario. However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for long-range atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent uncertainties of the meteorological model results. These uncertainties stem from e.g. limits in meteorological observations used to initialise meteorological forecast series. By perturbing e.g. the initial state of an NWP model run in agreement with the available observational data, an ensemble of meteorological forecasts is produced from which uncertainties in the various meteorological parameters are estimated, e.g. probabilities for rain. Corresponding ensembles of atmospheric dispersion can now be computed from which uncertainties of predicted radionuclide concentration and deposition patterns can be derived. (Author)

  7. 2.3. Global-scale atmospheric dispersion of microorganisms

    Science.gov (United States)

    Griffin, Dale W.; Gonzalez-Martin, Cristina; Hoose, C.; Smith, D.J.; Delort, Anne-Marie; Amato, Pierre

    2018-01-01

    This chapter addresses long-range dispersion and the survival of microorganisms across a wide range of altitudes in Earth's atmosphere. Topics include mechanisms of dispersion, survivability of microorganisms known to be associated with long-range transport, natural and artificial sources of bioaerosols, residence time estimation through the use of proxy aerosols, transport and emission models, and monitoring assays (both culture and molecular based). We conclude with a discussion of the known limits for Earth's biosphere boundary, relating aerobiology studies to planetary exploration given the large degree of overlapping requirements for in situ studies (including low biomass life detection and contamination control).

  8. Numerical methods of estimating the dispersion of radionuclides in atmosphere

    International Nuclear Information System (INIS)

    Vladu, Mihaela; Ghitulescu, Alina; Popescu, Gheorghe; Piciorea, Iuliana

    2007-01-01

    Full text: The paper presents the method of dispersion calculation, witch can be applied for the DLE calculation. This is necessary to ensure a secure performance of the Experimental Pilot Plant for Tritium and Deuterium Separation (using the technology for detritiation based upon isotope catalytic exchange between tritiated heavy water and deuterium followed by cryogenic distillation of the hydrogen isotopes). For the calculation of the dispersion of radioactivity effluents in the atmosphere, at a given distance between source and receiver, the Gaussian mathematical model was used. This model is currently applied for estimating the long-term results of dispersion in case of continuous or intermittent emissions as basic information for long-term radioprotection measures for areas of the order of kilometres from the source. We have considered intermittent or continuous emissions of intensity lower than 1% per day relative to the annual emission. It is supposed that the radioactive material released into environment presents a gaussian dispersion both in horizontal and vertical plan. The local dispersion parameters could be determined directly with turbulence measurements or indirectly by determination of atmospheric stability. Weather parameters for characterizing the atmospheric dispersion include: - direction of wind relative to the source; - the speed of the wind at the height of emission; - parameters of dispersion to different distances, depending on the atmospheric turbulence which characterizes the mixing of radioactive materials in the atmosphere; - atmospheric stability range; - the height of mixture stratum; - the type and intensity of precipitations. The choice of the most adequate version of Gaussian model depends on the relation among the height where effluent emission is in progress, H (m), and the height at which the buildings influence the air motion, HB (m). There were defined three zones of distinct dispersion. This zones can have variable lengths

  9. Improved atmospheric dispersion modelling in the new program system UFOMOD for accident consequence assessments

    International Nuclear Information System (INIS)

    Panitz, H.J.

    1988-01-01

    An essential aim of the improvements of the new program system UFOMOD for Accident Consequence Assessments (ACAs) was to substitute the straightline Gaussian plume model conventionally used in ACA models by more realistic atmospheric dispersion models. To identify improved models which can be applied in ACA codes and to quantify the implications of different concepts of dispersion modelling on the results of an ACA, probabilistic comparative calculations with different atmospheric dispersion models have been carried out. The study showed that there are trajectory models available which can be applied in ACAs and that these trajectory models provide more realistic results of ACAs than straight-line Gaussian models. This led to a completly novel concept of atmospheric dispersion modelling which distinguish between two different distance ranges of validity: the near range ( 50 km). The two ranges are assigned to respective trajectory models

  10. Atmospheric dispersion models of radioactivity releases

    International Nuclear Information System (INIS)

    Oza, R.B.

    2016-01-01

    In view of the rapid industrialization in recent time, atmospheric dispersion models have become indispensible 'tools' to ensure that the effects of releases are well within the acceptable limits set by the regulatory authority. In the case of radioactive releases from the nuclear facility, though negligible in quantity and many a times not even measurable, it is required to demonstrate the compliance of these releases to the regulatory limits set by the regulatory authority by carrying out radiological impact assessment. During routine operations of nuclear facility, the releases are so low that environmental impact is usually assessed with the help of atmospheric dispersion models as it is difficult to distinguish negligible contribution of nuclear facility to relatively high natural background radiation. The accidental releases from nuclear facility, though with negligible probability of occurrence, cannot be ruled out. In such cases, the atmospheric dispersion models are of great help to emergency planners for deciding the intervention actions to minimize the consequences in public domain and also to workout strategies for the management of situation. In case of accidental conditions, the atmospheric dispersion models are also utilized for the estimation of probable quantities of radionuclides which might have got released to the atmosphere. Thus, atmospheric dispersion models are an essential tool for nuclear facility during routine operation as well as in the case of accidental conditions

  11. Modelling of pollution dispersion in atmosphere

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Stankiewicz, R.

    1994-01-01

    The paper contains the review of the mathematical foundation of atmospheric dispersion models. The atmospheric phenomena relevant to atmospheric dispersion model are discussed. In particular the parametrization of processes with time and space scales smaller than numerical grid size, limited by available computer power, is presented. The special attention was devoted to similarity theory and parametrization of boundary layer. The numerical methods are analysed and the drawbacks of the method are presented. (author). 99 refs, 15 figs, 3 tabs

  12. Atmospheric dispersion calculations in a low mountain area

    International Nuclear Information System (INIS)

    Schmid, S.

    1987-01-01

    The applicability of the Gaussian model for assessing the short-range environmental exposure from an emission source in a topographically inhomogeneous terrain is tested. An atmospheric dispersion model of general applicability is used, which is based on results of hydrodynamic flow models. Approaches for turbulence and radiation parameterization are tested by means of a vertically one-dimensional flow model. In order to introduce the effects of the topography in the boundary-layer simulations, the three-dimensional mesoscale model (Ulrich) is applied. The two models are verified by way of episode simulation using wind profile measurements. The differences in the models' results are to show the topographic influence. The calculated flow fields serve as input to a randomwalk model applied for calculating ground-level concentration fields in the vicinity of an emission source. The Gaussian model underestimates the pollution under stable conditions. Convectivity conditions may change the effective source hight through vertical effects caused by orography which, depending on the direction of free flow, leads to an increase or decrease of pollutant concentration at ground level. Applying the more complex dispersion model, the concentration maxima under stable conditions are closer to the source by a factor five, and under unstable conditions about one and a half times more remote. (orig./HP) [de

  13. Modeling of atmospheric dispersion of radionuclides

    International Nuclear Information System (INIS)

    Baklouti, Nada

    2010-01-01

    This work is a prediction of atmospheric dispersion of radionuclide from a chronic rejection of the nuclear power generating plant that can be located in one of the Tunisian sites: Skhira or Bizerte. Also it contains a study of acute rejection 'Chernobyl accident' which was the reference for the validation of GENII the code of modeling of atmospheric dispersion.

  14. NKS-B NordRisk II: Nuclear risk from atmospheric dispersion in Northern Europe - Summary report

    International Nuclear Information System (INIS)

    Lauritzen, B.

    2011-05-01

    The objective of the NordRisk II project has been to derive practical means for assessing the risks from long-range atmospheric dispersion of radioactive materials. An atlas over different atmospheric dispersion and deposition scenarios has been developed using historical numerical weather prediction (NWP) model data. The NWP model data covers three years spanning the climate variability associated with the North Atlantic Oscillation, and the atlas considers radioactive releases from 16 release sites in and near the Nordic countries. A statistical analysis of the long-range dispersion and deposition patterns is undertaken to quantify the mean dispersion and deposition as well as the variability. Preliminary analyses show that the large-scale atmospheric dispersion and deposition is near-isotropic, irrespective of the release site and detailed climatology, and allows for a simple parameterization of the global dispersion and deposition patterns. The atlas and the underlying data are made available in a format compatible with the ARGOS decision support system, and have been implemented in ARGOS. (Author)

  15. NKS-B NordRisk II: Nuclear risk from atmospheric dispersion in Northern Europe - Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Radiation Research Div., Roskilde (Denmark))

    2011-05-15

    The objective of the NordRisk II project has been to derive practical means for assessing the risks from long-range atmospheric dispersion of radioactive materials. An atlas over different atmospheric dispersion and deposition scenarios has been developed using historical numerical weather prediction (NWP) model data. The NWP model data covers three years spanning the climate variability associated with the North Atlantic Oscillation, and the atlas considers radioactive releases from 16 release sites in and near the Nordic countries. A statistical analysis of the long-range dispersion and deposition patterns is undertaken to quantify the mean dispersion and deposition as well as the variability. Preliminary analyses show that the large-scale atmospheric dispersion and deposition is near-isotropic, irrespective of the release site and detailed climatology, and allows for a simple parameterization of the global dispersion and deposition patterns. The atlas and the underlying data are made available in a format compatible with the ARGOS decision support system, and have been implemented in ARGOS. (Author)

  16. Harmonisation within atmospheric dispersion modelling for regulatory purposes. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Suppan, P.

    2004-01-01

    Dispersion modelling has proved to be a very effective tool to assess the environmental impact of human activities on air quality already at the early planning stage. Environmental assessments during planning are required by the EU directive 85/337/EEC. Only models can give detailed information on the distribution of pollutants with high spatial and temporal resolution, while they allow the decision-maker to devise a range of scenarios, in which the various processes determining the environmental impact can be easily simulated and changed. In June 1991, the Joint Research Centre of the European Commission started an initiative on the sharing of information and possible harmonisation of new approaches to atmospheric dispersion modelling and model evaluation. This initiative has fostered a series of conferences that have been concerned with improvement of ''modelling culture'' in Europe. The 9 th International Conference on Harmonisation within atmospheric dispersion modelling for regulatory purposes in Garmisch-Partenkirchen, in Germany/ Bavaria, 1-4 June, 2004, will continue the efforts of the previous conferences. The conference has a role as a forum where users and decision-makers can bring their requirements to the attention of scientists. It is also a natural forum for discussing environmental issues related to the European union enlargement process. The scope of this conference is covered by the following topics: Validation and inter-comparison of models: Model evaluation methodology, experiences with implementation of EU directives; regulatory modelling, short distance dispersion modelling, urban scale and street canyon modelling: Meteorology and air quality, mesoscale meteorology and air quality modelling, environmental impact assessment: Air pollution management and decision support systems. (orig.)

  17. ENSEMBLE methods to reconcile disparate national long range dispersion forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, T; Galmarini, S; Bianconi, R; French, S [eds.

    2003-11-01

    ENSEMBLE is a web-based decision support system for real-time exchange and evaluation of national long-range dispersion forecasts of nuclear releases with cross-boundary consequences. The system is developed with the purpose to reconcile among disparate national forecasts for long-range dispersion. ENSEMBLE addresses the problem of achieving a common coherent strategy across European national emergency management when national long-range dispersion forecasts differ from one another during an accidental atmospheric release of radioactive material. A series of new decision-making 'ENSEMBLE' procedures and Web-based software evaluation and exchange tools have been created for real-time reconciliation and harmonisation of real-time dispersion forecasts from meteorological and emergency centres across Europe during an accident. The new ENSEMBLE software tools is available to participating national emergency and meteorological forecasting centres, which may choose to integrate them directly into operational emergency information systems, or possibly use them as a basis for future system development. (au)

  18. ENSEMBLE methods to reconcile disparate national long range dispersion forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, T.; Galmarini, S.; Bianconi, R.; French, S. (eds.)

    2003-11-01

    ENSEMBLE is a web-based decision support system for real-time exchange and evaluation of national long-range dispersion forecasts of nuclear releases with cross-boundary consequences. The system is developed with the purpose to reconcile among disparate national forecasts for long-range dispersion. ENSEMBLE addresses the problem of achieving a common coherent strategy across European national emergency management when national long-range dispersion forecasts differ from one another during an accidental atmospheric release of radioactive material. A series of new decision-making 'ENSEMBLE' procedures and Web-based software evaluation and exchange tools have been created for real-time reconciliation and harmonisation of real-time dispersion forecasts from meteorological and emergency centres across Europe during an accident. The new ENSEMBLE software tools is available to participating national emergency and meteorological forecasting centres, which may choose to integrate them directly into operational emergency information systems, or possibly use them as a basis for future system development. (au)

  19. A regulator's perspective on the use of atmospheric dispersion models

    International Nuclear Information System (INIS)

    Williams, C.R.

    1992-01-01

    On 1 April 1991 a new regime for industrial pollution control was introduced in England and Wales: Integrated Pollution Regulation (IPR). For those industrial processes which involve releases of pollutants into the atmosphere, the relevant primary legislation includes: the Environmental Protection Act 1990, which established a system of Integrated Pollution Control for those industries which have the greatest potential to cause pollution, and the Radioactive Substances Act 1960, which is concerned with the regulation of radioactive releases. There is a requirement for the operator of a process to make an application to HMIP for authorization to operate the process and dispose of waste arisings, and an environmental impact assessment must form part of that application. HMIP does not prescribe the type of assessment techniques that the applicant should use. But the Inspectorate will audit the applicant's assessment, and also carry out its own calculations if appropriate. The assessment standards used by HMIP are being published in the form of ''Chief Inspector's Guidance to Inspectors'', which can be referred to by applicants. HMIP makes use of both short-range and longer-range atmospheric dispersion models to fulfill its regulatory duties. Within the former category, the Inspectorate is one of the UK organisations which is sponsoring the development of the UK-ADMS model. (AB)

  20. Numerical simulation and variational data assimilation for atmospheric dispersion of pollutants

    International Nuclear Information System (INIS)

    Quelo, Denis

    2004-01-01

    This work has led to the development of a three-dimensional chemistry-transport model Polair3D which simulates photochemistry. Model-to-data comparison of ozone and nitrogen oxides measurements over Lille in 1998 has proven its reliability at regional scale. 4 D-var data assimilation has been implemented. It relies on the adjoint model of Polair3D obtained through automatic differentiation. An application of inverse modelling of emissions over Lille with real measurements has been performed. It has proven that the inversion of temporal parameters of nitrogen oxides emissions leads to a significant improvement of forecasts. The so-called second-order sensitivity allows to study the sensitivity of the inversion with respect to the data assimilation system itself by computing its conditioning. This is illustrated by two test cases: short-range dispersion of radionuclides and gas-phase atmospheric chemistry characterized by a wide range of timescales. (author) [fr

  1. Review of specific effects in atmospheric dispersion calculations

    International Nuclear Information System (INIS)

    Underwood, B.Y.; Cooper, P.J.; Holloway, N.J.; Kaiser, G.D.; Nixon, W.

    1984-01-01

    This report consists of a series of 7 individual review chapters -written between 1980 and 1983- together with a summary document linking and overviewing the work. The topics covered are as follows: ''atmospheric dispersion in urban environments''; ''topographical effects in nuclear safety studies''; coastal effects and transport over water''; ''time-varying meteorology in consequence assessment''; ''building effects in nuclear safety studies''; effect of variations in mixing height on atmospheric dispersion''; ''the effect of turning of the wind with height on lateral dispersion''. Although the reviews are, on the whole, general in approach, emphasis has been given where appropriate to the impact of various phenomena on the assessment of reactor accident consequences. In general the work focuses on the 0-100 km range of distance downwind of the source. The reviews fulfil several functions: they serve as introductions to the subject areas; they outline theoretical and experimental developments; they act as reference documents providing a copious source of references for more detailed investigation of particular points; they raise unresolved technical issues and attempt to indicate principal uncertainties; they point to areas requiring further development

  2. Comparison of the local-scale atmospheric dispersion model Cedrat with 85KR measurements

    International Nuclear Information System (INIS)

    Rennesson, M.; Devin, P.; Maro, D.; Fitamant, M.L.; Bouland, P.

    2004-01-01

    An accurate model of atmospheric dispersion of radionuclides over the complex terrain of the La Hague reprocessing plant (North Cotentin, France) has been developed by COGEMA, in partnership with Paris VI University. This model, called CEDRAT 1.0.1 (operational since October 2002), takes into account areas typically outside the validity limits of Gaussian models: relief and building influence, short-distance (beyond 500 m from the release point) and stable atmospheric conditions. The modelling tool is based on an original method: a 2D-meshed model for flow resolution at permanent rate in the prevailing wind direction, and a 3D description of the dispersion phenomena, taking into account wet and dry deposits, at permanent or transitory rate. This leads to an effective compromise between rapidity (45 min on a 6000 nodes grid, with a standard PC), robustness and accuracy, coupled with a user-friendly interface. Primarily the validation process consisted of a comparison with the 3D complex dispersion reference model MERCURE, developed by EDF. Then, MERCURE and CEDRAT results were compared on real release scenario basis, for which actual meteorological conditions and tracer data collected at monitoring stations around the site were known. To enlarge this validation process, a second level of comparison was made in collaboration with a IRSN Cherbourg team, through different field experiments, which provided both ground and elevated level measurements (collected with a captive balloon), for different stability classes of the atmosphere. The plume tracer is krypton 85, an inert gas released from a height of 100 m. Thus, the aim of this paper is to present the original method to describe short distance dispersion over complex terrain and its validation enrichment for stability conditions and areas not yet observed, through wind and cross-wind Atmospheric Transfer Coefficients comparisons, at both ground and elevated levels. (author)

  3. Chernobyl source term, atmospheric dispersion, and dose estimation

    International Nuclear Information System (INIS)

    Gudiksen, P.H.; Harvey, T.F.; Lange, R.

    1988-02-01

    The Chernobyl source term available for long-range transport was estimated by integration of radiological measurements with atmospheric dispersion modeling, and by reactor core radionuclide inventory estimation in conjunction with WASH-1400 release fractions associated with specific chemical groups. These analyses indicated that essentially all of the noble gases, 80% of the radioiodines, 40% of the radiocesium, 10% of the tellurium, and about 1% or less of the more refractory elements were released. Atmospheric dispersion modeling of the radioactive cloud over the Northern Hemisphere revealed that the cloud became segmented during the first day, with the lower section heading toward Scandinavia and the uppper part heading in a southeasterly direction with subsequent transport across Asia to Japan, the North Pacific, and the west coast of North America. The inhalation doses due to direct cloud exposure were estimated to exceed 10 mGy near the Chernobyl area, to range between 0.1 and 0.001 mGy within most of Europe, and to be generally less than 0.00001 mGy within the US. The Chernobyl source term was several orders of magnitude greater than those associated with the Windscale and TMI reactor accidents, while the 137 Cs from the Chernobyl event is about 6% of that released by the US and USSR atmospheric nuclear weapon tests. 9 refs., 3 figs., 6 tabs

  4. Numerical simulation and variational data assimilation for atmospheric dispersion of pollutants

    International Nuclear Information System (INIS)

    Quelo, D.

    2004-12-01

    This work has led to the development of a three-dimensional chemistry-transport model Polair3D which simulates photochemistry. Model-to-data comparison of ozone and nitrogen oxides measurements over the city of Lille in 1998 has proven its reliability at regional scale. 4-dimensional-variational data assimilation has been implemented. It relies on the adjoint model of Polair3D obtained through automatic differentiation. An application of inverse modelling of emissions over Lille city with real measurements has been performed. It has proven that the inversion of temporal parameters of nitrogen oxides emissions leads to a significant improvement of forecasts. The so-called second-order sensitivity allows the study of the sensitivity of the inversion with respect to the data assimilation system itself by computing its conditioning. This is illustrated by two test cases: short-range dispersion of radionuclides and gas-phase atmospheric chemistry characterized by a wide range of timescales. (author)

  5. Long wave dispersion relations for surface waves in a magnetically structured atmosphere

    International Nuclear Information System (INIS)

    Rae, I.C.; Roberts, B.

    1983-01-01

    A means of obtaining approximate dispersion relations for long wavelength magnetoacoustic surface waves propagating in a magnetically structured atmosphere is presented. A general dispersion relation applying to a wide range of magnetic profiles is obtained, and illustrated for the special cases of a single interface and a magnetic slab. In the slab geometry, for example, the dispersion relation contains both the even (sausage) and odd (kink) modes in one formalism

  6. A source term estimation method for a nuclear accident using atmospheric dispersion models

    DEFF Research Database (Denmark)

    Kim, Minsik; Ohba, Ryohji; Oura, Masamichi

    2015-01-01

    The objective of this study is to develop an operational source term estimation (STE) method applicable for a nuclear accident like the incident that occurred at the Fukushima Dai-ichi nuclear power station in 2011. The new STE method presented here is based on data from atmospheric dispersion...... models and short-range observational data around the nuclear power plants.The accuracy of this method is validated with data from a wind tunnel study that involved a tracer gas release from a scaled model experiment at Tokai Daini nuclear power station in Japan. We then use the methodology developed...... and validated through the effort described in this manuscript to estimate the release rate of radioactive material from the Fukushima Dai-ichi nuclear power station....

  7. Harmonisation within atmospheric dispersion modelling for regulatory purposes. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    Suppan, P.

    2004-01-01

    Dispersion modelling has proved to be a very effective tool to assess the environmental impact of human activities to be a very effective tool to assess the environmental impact of human activities on air quality already at the early planning stage. Environmental assessments during planning are required by the EU directive 85/337/EEC. Only models can give detailed information on the distribution of pollutants with high spatial and temporal resolution, while they allow the decision-maker to devise a range of scenarios, in which the various processes determining the environmental impact can be easily simulated and changed. In June 1991, the Joint Research Centre of the European Commission started an initiative on the sharing of information and possible harmonisation of new approaches to atmospheric disperion modelling and model evaluation. This initiative has fostered a series of conferences that have be concerned with improvement of ''modelling culture'' in Europe. The 9th International Conference on Harmonisation within Atmospheric dispersion Modelling for Regulatory Purposes in Garmisch-Partenkirchen, in Germany/Bavaria, 1-4 June, 2004, will continue the efforts of the previous conferences. The conference has a role as a forum where users and decision-makers can bring their requirements to the attention of scientists. It is also a natural forum for discussing environmental issues related to the European Union enlargement process. The scope of this conference is covered by the following topics: 1. Validation and inter-comparison of models: Model evaluation methodology - 2. Experiences with implementation of EU directives: regulatory modelling - 3. Short distance dispersion modelling - 4. Urban scale and street canyon modelling: Meteorology and air quality - 5. Mesoscale meteorology and air quality modelling - 6. Environmental impact assessment: Air pollution management and decision support systems. (orig.)

  8. Dispersion and transport of atmospheric pollutants

    International Nuclear Information System (INIS)

    Cieslik, S.

    1991-01-01

    This paper presents the physical mechanisms that govern the dispersion and transport of air pollutant; the influence of the state of the 'carrying fluid', i.e. the role of meteorology; and finally, outlines the different techniques of assessing the process. Aspects of physical mechanisms and meteorology covered include: fate of an air pollutant; turbulence and dispersion; transport; wind speed and direction; atmospheric stability; and the role of atmospheric water. Assessment techniques covered are: concentrations measurements; modelling meteorological observations; and tracer releases. It is concluded that the only way to reduce air pollution is to pollute less. 10 refs., 12 figs., 2 tabs

  9. Comparative Study on Atmospheric Dispersion Module of Level 3 PSA

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Dahye; Jang, Misuk; Kang, Hyun Sik; Kim, Seoung Rae [NESS, Daejeon (Korea, Republic of)

    2016-10-15

    Some regulation documents such as Regulatory Guides and NUREG publications from the U.S. Nuclear Regulatory Commission (NRC) have influences on domestic radiation environmental analyses. As renewal versions of NUREG-0800 and NUREG-1555 have issued lately, the assessment for Severe Accident (SA) with Probabilistic Safety Assessment (PSA) should be added to Safety Analysis Report (SAR) and Radiation Environmental Report (RER). Because these reports are the required documents for obtaining the construction permit and operating license, it is important to understand the PSA methodology and it needs to improve the site-specific input data of L3PSA codes for SA. First, our review focuses on the atmospheric dispersion and deposition related input data of L3PSA code in this paper. Then we will continue to review the improvements of other input data. Two atmospheric dispersion models, which are PAVAN developed for design basis accident and ATMOS of MACCS2 code developed for SA, were reviewed in this paper. L3PSA deals with the effects of severe accidents and basically includes the evaluation of both short- and long-term effects. Therefore, both the deposition effects and nuclide information(type, amount, and chemical characteristics of released radionuclide) would be considered as the input parameters of atmospheric dispersion model for L3PSA. Additionally, the meteorological data would be sampled randomly to meet the purpose of probabilistic method. However, the sampling method would be selected according to analysis purpose. After review, ATMOS module and its input data are suitably developed for the atmospheric dispersion analysis of L3PSA. However, ATMOS module was developed using the site-specific terrain and environment characteristics. For the domestic application, it needs to study the input data reflecting the Korean terrain and environment characteristics. It would be also continuously improved in response to the time- and site-specific changes of weather

  10. The brasimone study (brastud) an investigation of atmospheric dispersion over complex terrain

    International Nuclear Information System (INIS)

    Cagnetti, P.; Ocone, R.; Racalbuto, S.

    1988-01-01

    An investigation of atmospheric dispersion over complex terrain was carried out in September 1984 and in June 1985 at the Brasimone Energy Research Centre (B.E.R.C.). This place, where an experimental nuclear reactor is under construction, is located in the Tuscan-Emilian Appennine range approximately 50 km south of Bologna. The measuring campaigns, based on survey of wind and temperature parameters, tracer (SF 6 ) experiments and tracking of tetroons by radar, were performed with the purpose of assessing the atmospheric dispersion of pollutants under nocturnal drainage flow conditions. The three-dimensional MATHEW/ADPIC model was evaluated with the Brasimone data set and the results obtained are satisfactory

  11. Free cooling of hard-spheres with short and long range interactions

    NARCIS (Netherlands)

    Gonzalez Briones, Sebastián; Thornton, Anthony Richard; Luding, Stefan

    2015-01-01

    We study the stability, the clustering and the phase-diagram of free cooling granular gases. The systems consist of mono-disperse particles with additional non-contact (long-range) interactions, and are simulated here by the event-driven molecular dynamics algorithm with discrete (short-range

  12. Atmospheric dispersion modeling: Challenges of the Fukushima Daiichi response

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Gayle [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, Kevin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogt, Phil [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Aluzzi, Fernando [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homann, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-05-01

    In this research, the U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident including: daily Japanese weather forecasts and atmospheric transport predictions to inform planning for field monitoring operations and to provide U.S. government agencies with ongoing situational awareness of meteorological conditions; estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases to support protective action planning for U.S. citizens; predictions of possible plume arrival times and dose levels at U.S. locations; and source estimation and plume model refinement based on atmospheric dispersion modeling and available monitoring data.

  13. Effect of the Duration of Meteorological Data Collection on the Atmospheric Dispersion Assessment

    International Nuclear Information System (INIS)

    Choi, Yoo-mi; Kim, Eun-hee

    2017-01-01

    This study regards the duration of meteorological data record for a prospective assessment of the environmental impact of gas release from Kori nuclear power plant under normal operation. We compared the atmospheric dispersion factors obtained by employing the meteorological data from 2- and 5-year durations with the corresponding values obtained by employing yearly meteorological data in the period of 2001 to 2008. Influence of the duration of meteorological data collection on short-term atmospheric dispersion factors was previously studied. In this study, long-term dispersion factors were assessed to investigate the influence of the duration of meteorological data collection on the assessment of environmental impact by gas release from Kori nuclear power plant under normal operation. We counted how many yearly meteorological conditions would be represented by 2 or 5 years of long-term data collection. The distribution of shaded cells in Tables I and II indicated that some of the yearly meteorological condition could be properly represented by the conditions averaged over 2- or 5-year durations.

  14. Site-Specific Atmospheric Dispersion Characteristics of Korean Nuclear Power Plant Sites

    International Nuclear Information System (INIS)

    Han, M. H.; Kim, E. H.; Suh, K. S.; Hwang, W. T.; Choi, Y. G.

    2001-01-01

    Site-specific atmospheric dispersion characteristics have been analyzed. The northwest and the southwest wind prevail on nuclear sites of Korea. The annual isobaric surface averaged for twenty years around Korean peninsula shows that west wind prevails. The prevailing west wind is profitable in the viewpoint of radiation protection because three of four nuclear sites are located in the east side. Large scale field tracer experiments over nuclear sites have been conducted for the purpose of analyzing the atmospheric dispersion characteristics and validating a real-time atmospheric dispersion and dose assessment system FADAS. To analyze the site-specific atmospheric dispersion characteristics is essential for making effective countermeasures against a nuclear emergency

  15. An atmospheric dispersion index for prescribed burning

    Science.gov (United States)

    Leonidas G. Lavdas

    1986-01-01

    A numerical index that estimates the atmosphere's capacity to disperse smoke from prescribed burning is described. The physical assumptions and mathematical development of the index are given in detail. A preliminary interpretation of dispersion index values is offered. A FORTRAN subroutine package for computing the index is included.

  16. Ensemble atmospheric dispersion modeling for emergency response consequence assessments

    International Nuclear Information System (INIS)

    Addis, R.P.; Buckley, R.L.

    2003-01-01

    models. This provides a better understanding of the atmosphere and plume behavior than would a single model output. Atmospheric models often give the impression of greater accuracy than the science is capable of delivering. The ensemble approach is a powerful way to reassert the concept of having a family of equally valid solutions, while enabling outliers to be identified. The U.S. Department of Energy's Savannah River Technology Center (SRTC) has participated in RTMOD and ENSEMBLE. SRTC uses the Regional Atmospheric Modeling System (RAMS) and Lagrangian Particle Dispersion Model (LPDM) to provide plume forecasts in real-time for the European grid as described in the figure. The NOAA northern hemispheric model, Global Forecast System (a combination of the medium range forecast and aviation forecast models), is used to provide the initial and boundary conditions for RAMS. The model plume forecast data are sent to the ENSEMBLE WEB page in real-time where they may be compared with other model outputs. SRTC has participated in all the ENSEMBLE exercises in real-time. An example of the ensemble output is shown in the figure, which shows an overlay of the SRTC (crosshatched) initial 60-hour forecast for the plume overlaid on an ensemble of 5 other model outputs. The plume shadings show the level of consensus for a minimum threshold, enabling modelers to determine consensus between models and identify possible outliers. The traditional approach to provide atmospheric consequence assessment tools to aid decision-makers in response to a release from a nuclear facility is to provide a plume output from a particular model. However, the non-unique nature of solutions to the non-linear equations that govern the atmosphere, and the sensitivity of such equations to perturbations in the initial and boundary conditions, results in any single model output being simply one of many viable solutions. As such, the traditional approach does a disservice to decision-makers by inferring greater

  17. Meteorological Uncertainty of atmospheric Dispersion model results (MUD)

    DEFF Research Database (Denmark)

    Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario....

  18. Atmospheric dispersion of radionuclides released by a nuclear plant

    International Nuclear Information System (INIS)

    Barboza, A.A.

    1989-01-01

    A numerical model has been developed to simulate the atmospheric dispersion of radionuclides released by a nuclear plant operating under normal conditions. The model, based on gaussian plume representation, accouts for and evaluates several factors which affect the concentraction of effluents in the atmosphere, such as: ressuspension, deposition, radioactive decay, energy and type of the radiation emitted, among others. The concentraction of effluents in the atmosphere is calculated for a uniform mesh of points around the plant, allowing the equivalent doses to be then evaluated. Simulations of the atmosphere dispersion of radioactive plumes of Cs 137 and Ar 41 have been performed assuming a constant rate of release, as expected from the normal operation of a nuclear plant. Finally, this work analyzes the equivalent doses at ground level due to the dispersion of Cs 137 and Ar 41 , accumulated over one year and determines the isodose curves for a hypothetical site. (author) [pt

  19. Atmospheric tracer experiments for regional dispersion studies

    International Nuclear Information System (INIS)

    Heffter, J.L.; Ferber, G.J.

    1980-01-01

    Tracer experiments are being conducted to verify atmospheric transport and dispersion calculations at distances from tens to hundreds of km from pollutant sources. In one study, a 2 1/2 year sampling program has been carried out at 13 sites located 30 to 140 km from a source of 85 Kr at the Savannah River Plant in South Carolina. Average weekly concentrations as well as twice-daily concentrations were obtained. Sampling data and meteorological data, including surface, tower, and rawinsonde observations are available on magnetic tape for model verification studies. Some verification results for the Air Resources Laboratories Atmospheric Transort and Dispersion Model (ARL-ATAD) are shown for averaging periods from one week to two years

  20. Temporal variations in atmospheric dispersion at Hanford

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Burk, K.W.

    1990-01-01

    Climatological data are frequently used to estimate atmospheric dispersion factors for historical periods and for future releases for which adequate meteorological data are unavailable. This practice routinely leads to questions concerning the representativeness of data used. The work described here was performed to provide a basis for answering these questions at the U.S. Department of Energy's Hanford Site in eastern Washington. Atmospheric transport and diffusion near Hanford have been examined using a Lagrangian puff dispersion model and hourly meteorological data from the Hanford Meteorological Station and a network of 24 surface wind stations for a 5-yr period. Average normalized monthly concentrations were computed at 2.5-km intervals on a 31 by 31 grid from January 1983 through 1987, assuming an elevated release in the 200-East Area. Monthly average concentrations were used to determine 5-yr mean pattern and monthly mean patterns and the interannual variability about each pattern. Intra-annual and diurnal variations in dispersion factors are examined for six locations near Hanford

  1. Analysis on the atmospheric dispersion of radioactive materials

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2012-01-01

    JAEA has been developing a new prediction system of comprehensive movement, SPEEDI-MP (SPEEDI Multi-model Package), which can treat continuously and strictly with the migration behavior of radioactive materials at atmosphere, sea, and land region. JAEA has been further promoting the detail analysis of atmospheric migration of radioactive materials dispersed by an accident. Then, using a part of this system, the atmospheric-diversion prediction system, WSPEEDI-II, the atmospheric diversion mass and the atmospheric diffusion analysis were carried out. This issue reports the summary. (M.H.)

  2. radionuclides modelling dispersion of in the atmosphere for continuous discharges and accidental

    International Nuclear Information System (INIS)

    Teyeb, Malika

    2011-01-01

    The study of the dispersion of radionuclides in the atmosphere is the subject of a physical and numerical modeling of the phenomenon of dispersion. This work aims to study the atmospheric dispersion of accidental releases and continuous, from the possible establishment of a nuclear pressurized water reactor in the potential in Bizerte and Skhira.

  3. Atmospheric dispersion models help to improve air quality; Los modelos de dispersion atmosferica ayudan a mejorar la calidad del aire

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.

    2013-07-01

    One of the main challenges of the atmospheric sciences is to reproduce as well as possible the phenomena and processes of pollutants in the atmosphere. To do it, mathematical models based in this case on fluid dynamics and mass and energy conservation equations, equations that govern the atmospheric chemistry, etc., adapted to the spatial scales to be simulated, are developed. The dispersion models simulate the processes of transport, dispersion, chemical transformation and elimination by deposition that air pollutants undergo once they are emitted. Atmospheric dispersion models with their multiple applications have become essential tools for the air quality management. (Author)

  4. The Shoreline Environment Atmospheric Dispersion Experiment (SEADEX): Meteorological and gas tracer data

    International Nuclear Information System (INIS)

    Johnson, W.B.; Cantrell, B.K.; Morley, B.M.; Uthe, E.E.; Nitz, K.C.

    1987-10-01

    The SEADEX atmospheric dispersion field study was conducted during the period May 28 to June 8, 1982, in northeastern Wisconsin, the vicinity of the Kewaunee Power Plant on the western shore of Lake Michigan. The specific objectives of SEADEX were to characterize (1) the atmospheric dispersion and (2) the meteorological conditions influencing this dispersion as completely as possible during the test period. This field study included a series of controlled tracer tests utilizing state-of-the-art tracer measurement technology to determine horizontal and vertical dispersion over both land and water. Extensive meteorological measurements were obtained to thoroughly characterize the three-dimensional structure of the atmospheric boundary controlling the dispersion process. This volume presents the meteorological and gas tracer data collected during the field study. 391 figs., 32 tabs

  5. The study of atmospheric dispersion of radionuclide near nuclear power plant using CFD approach

    International Nuclear Information System (INIS)

    Nagrale, Dhanesh B.; Bera, Subrata; Deo, Anuj K.; Gaikwad, Avinash J.

    2015-01-01

    Most of the studies on atmospheric dispersion of radioactive material released from nuclear power plants are based on Gaussian plume models which fail to take account turbulence generated. The Fire Dynamic Simulator (FDS) code is one such flow model that uses a form of Navier-Stokes equation for low mach number applications. In the 0-2 km range near nuclear power plant, mainly near the source of emission of radionuclides, obstructions like natural draft cooling towers, plant building and structures are located. The stability class 'F' conditions and temperature of surrounding atmosphere, 15°C are considered in analysis. Main constituents of radionuclides released from stack mainly xenon, krypton. Two cases are carried out a) dispersion of gases without obstruction of cooling tower and b) dispersion of gases with obstruction of cooling tower. It is observed that mass fraction of radionuclides near the cooling tower ground increased to certain extent due to obstruction and wake effect. (author)

  6. Atmospherically dispersed radiocarbon at the Chalk River Laboratories

    International Nuclear Information System (INIS)

    Milton, G.M.; Brown, R.M.; Repta, C.J.W.; Selkirk, C.J.

    1996-01-01

    A small percentage of the total radiocarbon produced by the NRX and NRU experimental reactors at the Chalk River Laboratories has been vented from the main reactor stack and atmospherically dispersed across the site. Surveys conducted in 1982-83 and 1993-94 have shown that atmospheric levels more than 50 m from the stack are never greater than 600 Bq.kg -1 carbon above the natural background level, falling to near-global atmospheric levels at the site boundaries roughly 7 km away. A dispersion factor > 1.2 x 10 6 m 3 .s -1 at ∼ 0.75 km distance from the point of emission is calculated on the basis of recent in-stack monitoring. Analysis of growth rings in on-site trees has provided an opportunity to search for correlations of 14 C output summer power production and/or moderator losses. (author). 16 refs., 14 tabs., 11 figs

  7. ATMOSPHERIC DISPERSION COEFFICIENTS & RADIOLOGICAL & TOXICOLOGICAL EXPOSURE METHODOLOGY FOR USE IN TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    SANDGREN, K.R.

    2005-03-03

    This report presents the atmospheric dispersion coefficients used in Tank Farm safety analyses. The current revision also includes atmospheric dispersion coefficients used for analyses of the Demonstration Bulk Vitrification System. The basic equations for calculating radiological and toxicological exposures are also included.

  8. High-accuracy alignment based on atmospherical dispersion - technological approaches and solutions for the dual-wavelength transmitter

    International Nuclear Information System (INIS)

    Burkhard, Boeckem

    1999-01-01

    In the course of the progressive developments of sophisticated geodetic systems utilizing electromagnetic waves in the visible or near IR-range a more detailed knowledge of the propagation medium and coevally solutions of atmospherically induced limitations will become important. An alignment system based on atmospherical dispersion, called a dispersometer, is a metrological solution to the atmospherically induced limitations, in optical alignment and direction observations of high accuracy. In the dispersometer we are using the dual-wavelength method for dispersive air to obtain refraction compensated angle measurements, the detrimental impact of atmospheric turbulence notwithstanding. The principle of the dual-wavelength method utilizes atmospherical dispersion, i.e. the wavelength dependence of the refractive index. The difference angle between two light beams of different wavelengths, which is called the dispersion angle Δβ, is to first approximation proportional to the refraction angle: β IR ν(β blue - β IR ) = ν Δβ, this equation implies that the dispersion angle has to be measured at least 42 times more accurate than the desired accuracy of the refraction angle for the wavelengths used in the present dispersometer. This required accuracy constitutes one major difficulty for the instrumental performance in applying the dispersion effect. However, the dual-wavelength method can only be successfully used in an optimized transmitter-receiver combination. Beyond the above mentioned resolution requirement for the detector, major difficulties in instrumental realization arise in the availability of a suitable dual-wavelength laser light source, laser light modulation with a very high extinction ratio and coaxial emittance of mono-mode radiation at both wavelengths. Therefore, this paper focuses on the solutions of the dual-wavelength transmitter introducing a new hardware approach and a complete re-design of the in [1] proposed conception of the dual

  9. Atmospheric Dispersion Models for the Calculation of Environmental Impact: A Comparative Study

    International Nuclear Information System (INIS)

    Caputo, Marcelo; Gimenez, Marcelo; Felicelli, Sergio; Schlamp, Miguel

    2000-01-01

    In this paper some new comparisons are presented between the codes AERMOD, HPDM and HYSPLIT.The first two are Gaussian stationary plume codes and they were developed to calculate environmental impact produced by chemical contaminants.HYSPLIT is a hybrid code because it uses a Lagrangian reference system to describe the transport of a puff center of mass and uses an Eulerian system to describe the dispersion within the puff.The meteorological and topographic data used in the present work were obtained from runs of the prognostic code RAMS, provided by NOAA. The emission was fixed in 0.3 g/s , 284 K and 0 m/s .The surface rough was fixed in 0.1m and flat terrain was considered.In order to analyze separate effects and to go deeper in the comparison, the meteorological data was split into two, depending on the atmospheric stability class (F to B), and the wind direction was fixed to neglect its contribution to the contaminant dispersion.The main contribution of this work is to provide recommendations about the validity range of each code depending on the model used.In the case of Gaussian models the validity range is fixed by the distance in which the atmospheric condition can be consider homogeneous.In the other hand the validity range of HYSPLIT's model is determined by the spatial extension of the meteorological data.The results obtained with the three codes are comparable if the emission is in equilibrium with the environment.This means that the gases were emitted at the same temperature of the medium with zero velocity.There was an important difference between the dispersion parameters used by the Gaussian codes

  10. Stochastic models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2003-01-01

    Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... positions close to the boundaries. Different rules have been suggested in the literature with justifications based on simulation studies. Herein the relevant stochastic differential equation model is formulated in a particular way. The formulation is based on the marginal transformation of the position...... velocity distributions that depend on height above the ground both with respect to standard deviation and skewness are substituted into the stationary Fokker/Planck equation. The particle position distribution is taken to be uniform *the well/mixed condition( and also a given dispersion coefficient...

  11. The annual averaged atmospheric dispersion factor and deposition factor according to methods of atmospheric stability classification

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Sun; Jeong, Hyo Joon; Kim, Eun Han; Han, Moon Hee; Hwang, Won Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    This study analyzes the differences in the annual averaged atmospheric dispersion factor and ground deposition factor produced using two classification methods of atmospheric stability, which are based on a vertical temperature difference and the standard deviation of horizontal wind direction fluctuation. Daedeok and Wolsong nuclear sites were chosen for an assessment, and the meteorological data at 10 m were applied to the evaluation of atmospheric stability. The XOQDOQ software program was used to calculate atmospheric dispersion factors and ground deposition factors. The calculated distances were chosen at 400 m, 800 m, 1,200 m, 1,600 m, 2,400 m, and 3,200 m away from the radioactive material release points. All of the atmospheric dispersion factors generated using the atmospheric stability based on the vertical temperature difference were shown to be higher than those from the standard deviation of horizontal wind direction fluctuation. On the other hand, the ground deposition factors were shown to be same regardless of the classification method, as they were based on the graph obtained from empirical data presented in the Nuclear Regulatory Commission's Regulatory Guide 1.111, which is unrelated to the atmospheric stability for the ground level release. These results are based on the meteorological data collected over the course of one year at the specified sites; however, the classification method of atmospheric stability using the vertical temperature difference is expected to be more conservative.

  12. mathematical modelling of atmospheric dispersion of pollutants

    International Nuclear Information System (INIS)

    Mohamed, M.E.

    2002-01-01

    the main objectives of this thesis are dealing with environmental problems adopting mathematical techniques. in this respect, atmospheric dispersion processes have been investigated by improving the analytical models to realize the realistic physical phenomena. to achieve these aims, the skeleton of this work contained both mathematical and environmental topics,performed in six chapters. in chapter one we presented a comprehensive review study of most important informations related to our work such as thermal stability , plume rise, inversion, advection , dispersion of pollutants, gaussian plume models dealing with both radioactive and industrial contaminants. chapter two deals with estimating the decay distance as well as the decay time of either industrial or radioactive airborne pollutant. further, highly turbulent atmosphere has been investigated as a special case in the three main thermal stability classes namely, neutral, stable, and unstable atmosphere. chapter three is concerned with obtaining maximum ground level concentration of air pollutant. the variable effective height of pollutants has been considered throughout the mathematical treatment. as a special case the constancy of effective height has been derived mathematically and the maximum ground level concentration as well as its location have been established

  13. On-sky Closed-loop Correction of Atmospheric Dispersion for High-contrast Coronagraphy and Astrometry

    Science.gov (United States)

    Pathak, P.; Guyon, O.; Jovanovic, N.; Lozi, J.; Martinache, F.; Minowa, Y.; Kudo, T.; Kotani, T.; Takami, H.

    2018-02-01

    Adaptive optic (AO) systems delivering high levels of wavefront correction are now common at observatories. One of the main limitations to image quality after wavefront correction comes from atmospheric refraction. An atmospheric dispersion compensator (ADC) is employed to correct for atmospheric refraction. The correction is applied based on a look-up table consisting of dispersion values as a function of telescope elevation angle. The look-up table-based correction of atmospheric dispersion results in imperfect compensation leading to the presence of residual dispersion in the point spread function (PSF) and is insufficient when sub-milliarcsecond precision is required. The presence of residual dispersion can limit the achievable contrast while employing high-performance coronagraphs or can compromise high-precision astrometric measurements. In this paper, we present the first on-sky closed-loop correction of atmospheric dispersion by directly using science path images. The concept behind the measurement of dispersion utilizes the chromatic scaling of focal plane speckles. An adaptive speckle grid generated with a deformable mirror (DM) that has a sufficiently large number of actuators is used to accurately measure the residual dispersion and subsequently correct it by driving the ADC. We have demonstrated with the Subaru Coronagraphic Extreme AO (SCExAO) system on-sky closed-loop correction of residual dispersion to instruments which require sub-milliarcsecond correction.

  14. Environmental aspects: - Atmospheric, - aquatic, - terrestrial dispersion of radionuclides

    International Nuclear Information System (INIS)

    Kirchmann, R.

    1982-01-01

    After general introductory remarks the paper deals with the dispersion of radionuclides in the atmosphere and in the aquatic environment as well as with the transfer through the terrestrial environment. (RW)

  15. Plume dispersion and deposition processes of tracer gas and aerosols in short-distance experiments

    International Nuclear Information System (INIS)

    Taeschner, M.; Bunnenberg, C.

    1988-01-01

    Data used in this paper were extracted from field experiments carried out in France and Canada to study the pathway of elementary tritium after possible emissions from future fusion reactors and from short-range experiments with nutrient aerosols performed in a German forest in view of a therapy of damaged coniferous trees by foliar nutrition. Comparisons of dispersion parameters evaluated from the tritium field experiments show that in the case of the 30-min release the variations of the wind directions represent the dominant mechanism of lateral plume dispersion under unstable weather conditions. This corresponds with the observation that for the short 2-min emission the plume remains more concentrated during propagation, and the small lateral dispersion parameters typical for stable conditions have to be applied. The investigations on the dispersion of aerosol plumes into a forest boundary layer show that the Gaussian plume model can be modified by a windspeed factor to be valid for predictions on aerosol concentrations and depositions even in a structured topography like a forest

  16. Modelling of atmospheric dispersion in a complex medium and associated uncertainties

    International Nuclear Information System (INIS)

    Demael, Emmanuel

    2007-01-01

    This research thesis addresses the study of the digital modelling of atmospheric dispersions. It aimed at validating the Mercure-Saturne tool used with a RANS (Reynolds Averaged Navier-Stokes) approach within the frame of an impact study or of an accidental scenario on a nuclear site while taking buildings and ground relief into account, at comparing the Mercure-Saturne model with a more simple and less costly (in terms of computation time) Gaussian tool (the ADMS software, Atmospheric Dispersion Modelling System), and at quantifying uncertainties related to the use of the Mercure-Saturne model. The first part introduces theoretical elements of atmosphere physics and of the atmospheric dispersion in a boundary layer, presents the Gaussian model and the Mercure-Saturne tool and its associated RANS approach. The second part reports the comparison of the Mercure-Saturne model with conventional Gaussian plume models. The third part reports the study of the atmospheric flow and dispersion about the Bugey nuclear site, based on a study performed in a wind tunnel. The fourth part reports the same kind of study for the Flamanville site. The fifth part reports the use of different approaches for the study of uncertainties in the case of the Bugey site: application of the Morris method (a screening method), and of the Monte Carlo method (quantification of the uncertainty and of the sensitivity of each uncertainty source) [fr

  17. Atmospheric aerosol dispersion models and their applications to environmental risk assessment

    Directory of Open Access Journals (Sweden)

    Andrzej Mazur

    2014-03-01

    Full Text Available Introduction. Numerical models of dispersion of atmospheric pollutants are widely used to forecast the spread of contaminants in the air and to analyze the effects of this phenomenon. The aim of the study is to investigate the possibilities and the quality of diagnosis and prediction of atmospheric transport of aerosols in the air using the dispersion model of atmospheric pollutants, developed at the Institute of Meteorology and Water Management (IMWM in Warsaw. Material and methods. A model of the dispersion of atmospheric pollutants, linked with meteorological models in a diagnostic mode, was used to simulate the transport of the cloud of aerosols released during the crash near the town of Ożydiw (Ukraine and of volcanic ash – during the volcanic eruption of Eyjafjallajökull in Iceland. Results. Possible directions of dispersion of pollutants in the air and its concentration in the atmosphere and deposition to the soil were assessed. The analysis of temporal variability of concentrations of aerosols in the atmosphere confirmed that the model developed at IMWM is an effective tool for diagnosis of air quality in the area of Poland as well as for determination of exposure duration to the aerosol clouds for different weather scenarios. Conclusions. The results are a confirmation of the thesis, that because in the environmental risk assessment, an important element is not only current information on the level of pollution concentrations, but also the time of exposure to pollution and forecast of these elements, and consequently the predicted effects on man or the environment in general; so it is necessary to use forecasting tools, similar to presented application. The dispersion model described in the paper is an operational tool for description, analysis and forecasting of emergency situations in case of emissions of hazardous substances.

  18. The dynamics of short envelope solitons in media with controlled dispersion

    International Nuclear Information System (INIS)

    Aseeva, N.V.; Gromov, E.M.; Tyutin, V.V.

    2007-01-01

    The dynamics of short envelope solitons in media with controlled dispersion is investigated in the framework of the third-order nonlinear Schroedinger equation. Evolution of the solitons amplitude is analyzed in the adiabatic approximation. The existence of short envelope solitons independent from linear dispersion inhomogeneity is shown

  19. Development of scheme for predicting atmospheric dispersion of radionuclides during nuclear emergency by using atmospheric dynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Haruyasu; Chino, Masamichi; Yamazawa, Hiromi (Japan Atomic Energy Research Inst., Tokyo (Japan))

    1999-07-01

    The meteorological forecast models are critically important for the accuracy of predicting the atmospheric dispersion of radionuclides discharged into atmosphere during nuclear emergencies. Thus, this paper describes a new scheme for predicting environmental impacts due to accidental release of radionuclides by using an atmospheric dynamic model PHYSIC. The advantages of introducing PHYSIC are, (1) three-dimensional local meteorological forecasts can be conducted, (2) synoptic meteorological changes can be considered by inputting grid data of synoptic forecasts from Japan Meteorological Agency to PHYSIC as initial and boundary conditions, (3) forecasts can be improved by nudging method using local meteorological observations, and (4) atmospheric dispersion model can consider the variation of the mixed layer. (author)

  20. Development of scheme for predicting atmospheric dispersion of radionuclides during nuclear emergency by using atmospheric dynamic model

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Chino, Masamichi; Yamazawa, Hiromi

    1999-01-01

    The meteorological forecast models are critically important for the accuracy of predicting the atmospheric dispersion of radionuclides discharged into atmosphere during nuclear emergencies. Thus, this paper describes a new scheme for predicting environmental impacts due to accidental release of radionuclides by using an atmospheric dynamic model PHYSIC. The advantages of introducing PHYSIC are, (1) three-dimensional local meteorological forecasts can be conducted, (2) synoptic meteorological changes can be considered by inputting grid data of synoptic forecasts from Japan Meteorological Agency to PHYSIC as initial and boundary conditions, (3) forecasts can be improved by nudging method using local meteorological observations, and (4) atmospheric dispersion model can consider the variation of the mixed layer. (author)

  1. Short-range and long-range forces in quantum theory: selected topics

    International Nuclear Information System (INIS)

    Hiller, J.R.

    1980-01-01

    Short-range forces (SRF) are encountered when the effects of the parity-violating (PV) weak neutral current are considered in atomic systems. We consider these and other SRF that are associated with operators that contain delta functions. Identities which convert a delta-function matrix element to that of a global operator are reviewed. Past and possible future applications of such identities are described. It has been found that use of these identities can substantially improve the results obtained with less accurate wave functions. We present a further application to the hyperfine structure of the ground state of lithium where we again find that results are improved by the use of an identity. A long-range force (LRF) is here defined to be one that is associated with a potential V(r) that is asymptotically of the form lambda r - 1 (r 0 /r)/sup N-1/. We use a dispersion-theoretic approach to study LRF between hadrons due to two-glucon exchange within the framework of quantum chromodynamics. Such an LRF is usually related to the presence of a spectrum of physical states that extends to zero mass. A speculative scheme put forward by Feinberg and Sucher is used to avoid requiring the existence of massless gluons as observable particles. Semi-quantitative expressions for the two-glucon exchange potential between hadrons and, in particular, between two nucleons are obtained. Limits on two-gluon corrections to πp forward scattering dispersion relations are used to provide an upper bound for lambda, the coupling constant in the nucleon-nucleon potential. For N greater than or equal to 7, expected on heuristic grounds, we obtain the bound lambda less than or equal to 10 6 , which is very weak; gluon effects as treated here do not lead to significant effects in the dispersion-theoretic analysis of πp scattering

  2. Modelling of pollution dispersion in atmosphere; Modelowanie procesow propagacji skazen w atmosferze

    Energy Technology Data Exchange (ETDEWEB)

    Borysiewicz, M; Stankiewicz, R

    1994-12-31

    The paper contains the review of the mathematical foundation of atmospheric dispersion models. The atmospheric phenomena relevant to atmospheric dispersion model are discussed. In particular the parametrization of processes with time and space scales smaller than numerical grid size, limited by available computer power, is presented. The special attention was devoted to similarity theory and parametrization of boundary layer. The numerical methods are analysed and the drawbacks of the method are presented. (author). 99 refs, 15 figs, 3 tabs.

  3. Intermediate range atmospheric transport and technology assessments: nuclear pollutants

    International Nuclear Information System (INIS)

    Rohwer, P.S.; Hoffman, F.O.; Miller, C.W.

    1981-01-01

    Mathematical models have been used to assess potential impacts of radioactivity releases during all phases of our country's development of nuclear power. Experience to date has shown that in terms of potential dose to man, the most significant releases of radioactivity from nuclear fuel cycle facilities are those to the atmosphere. Our ability to predict atmospheric dispersion will, therefore, ultimately affect our capability to understand and assess the significance of both routine and accidental discharges of radionuclides. Assessment of potential radiological exposures from postulated routine and accidental releases of radionuclides from the fast-breeder reactor will require the use of atmospheric dispersion models, and the design, siting, and licensing of breeder reactor fuel cycle facilities will be influenced by the predictions made by these models

  4. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.

    Science.gov (United States)

    Basit, Abdul; Espinosa, Francisco; Avila, Ruben; Raza, S; Irfan, N

    2008-12-01

    In this paper we present an atmospheric dispersion scenario for a proposed nuclear power plant in Pakistan involving the hypothetical accidental release of radionuclides. For this, a concept involving a Lagrangian stochastic particle model (LSPM) coupled with an Eulerian regional atmospheric modelling system (RAMS) is used. The atmospheric turbulent dispersion of radionuclides (represented by non-buoyant particles/neutral traces) in the LSPM is modelled by applying non-homogeneous turbulence conditions. The mean wind velocities governed by the topography of the region and the surface fluxes of momentum and heat are calculated by the RAMS code. A moving least squares (MLS) technique is introduced to calculate the concentration of radionuclides at ground level. The numerically calculated vertical profiles of wind velocity and temperature are compared with observed data. The results obtained demonstrate that in regions of complex terrain it is not sufficient to model the atmospheric dispersion of particles using a straight-line Gaussian plume model, and that by utilising a Lagrangian stochastic particle model and regional atmospheric modelling system a much more realistic estimation of the dispersion in such a hypothetical scenario was ascertained. The particle dispersion results for a 12 h ground release show that a triangular area of about 400 km(2) situated in the north-west quadrant of release is under radiological threat. The particle distribution shows that the use of a Gaussian plume model (GPM) in such situations will yield quite misleading results.

  5. Review of specific effects in atmospheric dispersion calculations

    International Nuclear Information System (INIS)

    Underwood, B.Y.; Cooper, P.J.; Holloway, N.J.; Kaiser, G.D.; Nixon, W.

    1985-01-01

    This work consists of a series of ten individual review Chapters - written between 1980 and 1983 - together with a summary document linking and overviewing the work. The topics covered are as follows: 'Plume Rise in Nuclear Safety Studies'; 'Dry Deposition'; 'Wet Deposition'; 'Atmospheric Dispersion in Urban Environments'; 'Topographical Effects in Nuclear Safety Studies'; 'Coastal Effects and Transport over Water'; 'Time-Varying Meteorology in Consequence Assessment'; 'Building Effects in Nuclear Safety Studies'; 'Effect of Turning of the Wind with Height on Lateral Dispersion'. Although the reviews are, on the whole, general in approach, emphasis has been given where appropriate to the impact of various phenomena on th assessment of reactor accident consequences. In general the work focusses on the 0-100 km range of distance downwind of the source. The reviews fulfil several functions: they serve as introductions to the subject areas; they outline theoretical and experimental developments; they act as reference documents providing a copious source of references for more detailed investigation of particular points; they raise unresolved technical issues and attempt to indicate principal uncertainties; they point to areas requiring further development. (author)

  6. A random walk model to simulate the atmospheric dispersion of radionuclide

    Science.gov (United States)

    Zhuo, Jun; Huang, Liuxing; Niu, Shengli; Xie, Honggang; Kuang, Feihong

    2018-01-01

    To investigate the atmospheric dispersion of radionuclide in large-medium scale, a numerical simulation method based on random walk model for radionuclide atmospheric dispersion was established in the paper. The route of radionuclide migration and concentration distribution of radionuclide can be calculated out by using the method with the real-time or historical meteorological fields. In the simulation, a plume of radionuclide is treated as a lot of particles independent of each other. The particles move randomly by the fluctuations of turbulence, and disperse, so as to enlarge the volume of the plume and dilute the concentration of radionuclide. The dispersion of the plume over time is described by the variance of the particles. Through statistical analysis, the relationships between variance of the particles and radionuclide dispersion characteristics can be derived. The main mechanisms considered in the physical model are: (1) advection of radionuclide by mean air motion, (2) mixing of radionuclide by atmospheric turbulence, (3) dry and wet deposition, (4) disintegration. A code named RADES was developed according the method. And then, the European Tracer Experiment (ETEX) in 1994 is simulated by the RADES and FLEXPART codes, the simulation results of the concentration distribution of tracer are in good agreement with the experimental data.

  7. Short-range fundamental forces

    International Nuclear Information System (INIS)

    Antoniadis, I.; Baessler, S.; Buchner, M.; Fedorov, V.V.; Hoedl, S.; Nesvizhevsky, V.V.; Pignol, G.; Protasov, K.V.; Lambrecht, A.; Reynaud, S.; Sobolev, Y.

    2010-01-01

    We consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: 1) spin-independent forces; 2) spin-dependent axion-like forces. Different experimental techniques are sensitive in respective ranges of characteristic distances. The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experiments. We focus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments

  8. UFOMOD - atmospheric dispersion and deposition

    International Nuclear Information System (INIS)

    Panitz, H.J.; Matzerath, C.; Paesler-Sauer, J.

    1989-10-01

    The report gives an introduction into the modelling of atmospheric dispersion and deposition which has been implemented in the new program system UFOMOD for assessing the consequences after nuclear accidents. According to the new structure of UFOMOD, different trajectory models with ranges of validity near to the site and at far distances are applied. Emphasis is laid on the description of the segmented plume model MUSEMET and its affilated submodels, being the removal of activity from the cloud by dry and wet deposition, and special effects like plume rise and the behaviour of plumes released into building wakes. In addition, the evaluation of γ-dose correction factors to take account of the finite extent of the radioactive plume in the near range (up to about 20 km) are described. Only brief introductions are given into the principles of the other models available: the puff model RIMPUFF, the long-range puff model MESOS, and the special straight-line Gaussian model ISOLA which are used if low-level long-duration releases are considered. To define starting times of weather sequences and the probabilities of occurrence of these sequences, it is convenient to perform stratified sampling. Therefore, the preprocessing program package METSAM has been developed to perform for generic ACAs a random sampling of weather sequences out off a population of classified weather conditions. The sampling procedure and a detailed input/output (I/O) description is presented and an additional appendix, respectively. A general overview on the I/O structure of MUSEMET as well as a brief user guide to run the KfK version of the MESOS code are also given in the appendix. (orig.) [de

  9. Atmospheric Dispersion Assessment for Potential Accidental Releases at Yonggwang Nuclear Power Plants

    International Nuclear Information System (INIS)

    Na, Man Gyun; Sim, Young Rok; Jung, Chul Kee; Lee, Goung Jin; Kim, Soong Pyung; Chung, Sung Tai

    2000-01-01

    XOQ DW code is currently used to assess the atmospheric dispersion for the routine releases of radioactive gaseous effluents at Yonggwang nuclear power plants. This code was developed based on XOQDOQ code and an additional code is required to assess the atmospheric dispersion for potential accidental releases. In order to assess the atmospheric dispersion for the accidental releases, XOQAR code has been developed by using PAVAN code that is based on Reg. Guide 1.145. The terrain data of XOQ DW code inputs and the relative concentrations (X/Q) of XOQ DW code outputs are used as the inputs of the XOQAR code through the interface with XOQ DW code. By using this code, the maximum values of X/Q at exclusion area and low population zone boundaries except for sea areas were assessed as 1.33 x 10 -4 and 7.66 x 10 -6 sec/m 3 , respectively. Through the development of this code, a code system is prepared for assessing the atmospheric dispersion for the accidental releases as well as the routine releases. This developed code can be used for other domestic nuclear power plants by modifying the terrain input data

  10. Method for the instant approximation of atmospheric dispersion

    International Nuclear Information System (INIS)

    Doury, A.

    Mathematical evaluations of the radiologic impact of the transfer to man of radionuclides liberated into the environment are made with complex chains of models in which an early and essential link is always that of dispersion in air or water where the basic evaluations involve concentrations. In practice it often happens that the link of the concentration in the physical environment is overdeveloped in comparison to the other links and that the corresponding models are unnecessarily complicated. It appeared useful to develop a very simple basic primary model with few disagreements compatible with all of the existing models that it does not presume to replace. Naturally this model implies a certain number of stringent simplifying hypotheses, but at each point of space or time it only has a single parameter, the mixture thickness, real or equivalent, to characterize turbulent diffusion. A basic formula covering the short- and long-term situations, as well as transfers both within the atmosphere and to the ground (deposits) is supplied in the form of a single summary table. 4 references, 1 figure, 1 table

  11. Meteorological Uncertainty of atmospheric Dispersion model results (MUD)

    DEFF Research Database (Denmark)

    Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the ‘most likely’ di...

  12. The ability to use FLEXPART in simulation of the long-range radioactive materials dispersed from nuclear power plants near Vietnam border

    International Nuclear Information System (INIS)

    Pham Kim Long; Pham Duy Hien; Nguyen Hao Quang; Do Xuan Anh; Duong Duc Thang; Doan Quang Tuyen

    2016-01-01

    FLEXPART is a Lagrangian transport and dispersion model suitable for the simulation of a large range of atmospheric transport processes. FLEXPART has been researched and applied in simulation of the long-range dispersion of radioactive materials. It can be applicable to the problem of radioactive materials released from the nuclear power plants impact on Vietnam. This report presents simulation of radioactive dispersion from the accident assumed Fangchenggang and Changjiang nuclear power plants in China with the FLEXPART, using meteorological data from the National Centers for Environmental Prediction (NCEP). The results of simulations and analyzing showed good applicability of FLEXPART for a long-range radioactive materials dispersion. The preliminary simulation results show that the impact of the radioactive material dispersion in Vietnam varies by the well-known characteristics of the monsoon of our country. Winter is the time when the dominant northeast winds up radioactive dispersion most towards our country, its sphere of influence extends from the Northeast (Quang Ninh) to North Central (Da Nang). (author)

  13. Worldwide dispersion and deposition of radionuclides produced in atmospheric tests.

    Science.gov (United States)

    Bennett, Burton G

    2002-05-01

    Radionuclides produced in atmospheric nuclear tests were widely dispersed in the global environment. From the many measurements of the concentrations in air and the deposition amounts, much was learned of atmospheric circulation and environmental processes. Based on these results and the reported fission and total yields of individual tests, it has been possible to devise an empirical model of the movement and residence times of particles in the various atmospheric regions. This model, applied to all atmospheric weapons tests, allows extensive calculations of air concentrations and deposition amounts for the entire range of radionuclides produced throughout the testing period. Especially for the shorter-lived fission radionuclides, for which measurement results at the time of the tests are less extensive, a more complete picture of levels and isotope ratios can be obtained, forming a basis for improved dose estimations. The contributions to worldwide fallout can be inferred from individual tests, from tests at specific sites, or by specific countries. Progress was also made in understanding the global hydrological and carbon cycles from the tritium and 14C measurements. A review of the global measurements and modeling results is presented in this paper. In the future, if injections of materials into the atmosphere occur, their anticipated motions and fates can be predicted from the knowledge gained from the fallout experience.

  14. Numerical simulations of atmospheric dispersion of iodine-131 by different models.

    Directory of Open Access Journals (Sweden)

    Ádám Leelőssy

    Full Text Available Nowadays, several dispersion models are available to simulate the transport processes of air pollutants and toxic substances including radionuclides in the atmosphere. Reliability of atmospheric transport models has been demonstrated in several recent cases from local to global scale; however, very few actual emission data are available to evaluate model results in real-life cases. In this study, the atmospheric dispersion of 131I emitted to the atmosphere during an industrial process was simulated with different models, namely the WRF-Chem Eulerian online coupled model and the HYSPLIT and the RAPTOR Lagrangian models. Although only limited data of 131I detections has been available, the accuracy of modeled plume direction could be evaluated in complex late autumn weather situations. For the studied cases, the general reliability of models has been demonstrated. However, serious uncertainties arise related to low level inversions, above all in case of an emission event on 4 November 2011, when an important wind shear caused a significant difference between simulated and real transport directions. Results underline the importance of prudent interpretation of dispersion model results and the identification of weather conditions with a potential to cause large model errors.

  15. A user's guide to the atmospheric dispersion module NECTAR-ATMOS

    International Nuclear Information System (INIS)

    Barker, C.D.

    1982-02-01

    The NECTAR environmental computer code has been developed to meet the increasing demand for comprehensive calculations of the radiological consequences due to atmospheric releases of radioactivity. The code contains five calculational modules and this report presents a user's guide to the atmospheric dispersion and individual dose evaluation module NECTAR-ATMOS. The mathematical models employed in NECTAR-ATMOS are briefly described and a complete specification of the input data required for the module is given. The program includes facilities for reading in the source terms, for specifying the atmospheric dispersion parameters, for identifying the dose calculations required and for controlling output from the program to lineprinters and to output utility files. Three sample cases are included in an appendix to demonstrate some of the different ways in which the program may be used and also to provide examples for the prospective user. (author)

  16. Evaluation of three atmospheric dispersion models using tracer release experiment data

    International Nuclear Information System (INIS)

    Daoo, V.J.; Oza, R.B.; Pandit, G.G.; Sadasivan, S.; Venkat Raj, V.

    2004-01-01

    Performance of three atmospheric dispersion models viz: (1) Gaussian Plume Model (GPM), (2) Equi-Distance PUFF Model (EDPUFFM) and (3) Particle Trajectory Model (PTM) is evaluated using field data collected from a tracer (SF 6 ) release experiment. The experiment was conducted within the campus of the Bhabha Atomic Research Centre (BARC), located at Trombay, Mumbai, India. The three models used are currently in operation at the BARC. The first one is a standard, well-documented empirical model while the other two models have been developed at the Bhabha Atomic Research Centre. The PTM is a numerical model while the EDPUFFM is a hybrid model combining both the numerical and analytical techniques. The procedure for evaluation is as per the recommendations of 1980 AMS (American Meteorological Society) workshop on atmospheric dispersion models performance evaluation. In addition, linear regression analysis has also been carried out. The regression analysis reveals that on an average, the EDPUFFM and the GPM predictions are higher by a factor of about 1.5 while the PTM predictions are lower by a factor of about 4. Comparison of various performance measures reveals that the performance of the EDPUFFM is marginally better than that of the GPM while the PTM performance is comparatively poor. The uncertainty factors obtained in this study, especially for higher concentration range ( > 100 ppt) are similar to those obtained in other validation study carried out elsewhere to validate the GPM predictions. However, for lower concentration range and for the conditions after the source is switched off, all the three models perform poorly in predicting the concentration. (author)

  17. Attractive short-range interatomic potential in the lattice dynamics of niobium and tantalum

    International Nuclear Information System (INIS)

    Onwuagba, B.N.; Pal, S.

    1987-01-01

    It is shown in the framework of the pseudopotential approach that there is a sizable attractive short-range component of the interatomic potential due to the s-d interaction which has the same functional form in real space as the Born-Mayer repulsion due to the overlap of core electron wave functions centred on neighbouring ions. The magnitude of this attractive component is such as to completely cancel the conventional Born-Mayer repulsion, making the resultant short-range interatomic potential attractive rather than repulsive. Numerical calculations show that the attractive interatomics potential, which represents the local-field correction, leads to a better understanding of the occurrence of the soft modes in the phonon dispersion curves of niobium and tantalum

  18. Dispersive infrared spectroscopy measurements of atmospheric CO2 using a Fabry–Pérot interferometer sensor

    International Nuclear Information System (INIS)

    Chan, K.L.; Ning, Z.; Westerdahl, D.; Wong, K.C.; Sun, Y.W.; Hartl, A.; Wenig, M.O.

    2014-01-01

    In this paper, we present the first dispersive infrared spectroscopic (DIRS) measurement of atmospheric carbon dioxide (CO 2 ) using a new scanning Fabry–Pérot interferometer (FPI) sensor. The sensor measures the optical spectra in the mid infrared (3900 nm to 5220 nm) wavelength range with full width half maximum (FWHM) spectral resolution of 78.8 nm at the CO 2 absorption band (∼ 4280 nm) and sampling resolution of 20 nm. The CO 2 concentration is determined from the measured optical absorption spectra by fitting it to the CO 2 reference spectrum. Interference from other major absorbers in the same wavelength range, e.g., carbon monoxide (CO) and water vapor (H 2 O), was taken out by including their reference spectra in the fit as well. The detailed descriptions of the instrumental setup, the retrieval procedure, a modeling study for error analysis as well as laboratory validation using standard gas concentrations are presented. An iterative algorithm to account for the non-linear response of the fit function to the absorption cross sections due to the broad instrument function was developed and tested. A modeling study of the retrieval algorithm showed that errors due to instrument noise can be considerably reduced by using the dispersive spectral information in the retrieval. The mean measurement error of the prototype DIRS CO 2 measurement for 1 minute averaged data is about ± 2.5 ppmv, and down to ± 0.8 ppmv for 10 minute averaged data. A field test of atmospheric CO 2 measurements were carried out in an urban site in Hong Kong for a month and compared to a commercial non-dispersive infrared (NDIR) CO 2 analyzer. 10 minute averaged data shows good agreement between the DIRS and NDIR measurements with Pearson correlation coefficient (R) of 0.99. This new method offers an alternative approach of atmospheric CO 2 measurement featuring high accuracy, correction of non-linear absorption and interference of water vapor. - Highlights: • Dispersive infrared

  19. ENSEMBLE methods to reconcile disparate national long range dispersion forecasts

    DEFF Research Database (Denmark)

    Mikkelsen, Torben; Galmarini, S.; Bianconi, R.

    2003-01-01

    ENSEMBLE is a web-based decision support system for real-time exchange and evaluation of national long-range dispersion forecasts of nuclear releases with cross-boundary consequences. The system is developed with the purpose to reconcile among disparatenational forecasts for long-range dispersion...... emergency and meteorological forecasting centres, which may choose to integrate them directly intooperational emergency information systems, or possibly use them as a basis for future system development.......ENSEMBLE is a web-based decision support system for real-time exchange and evaluation of national long-range dispersion forecasts of nuclear releases with cross-boundary consequences. The system is developed with the purpose to reconcile among disparatenational forecasts for long-range dispersion....... ENSEMBLE addresses the problem of achieving a common coherent strategy across European national emergency management when national long-range dispersion forecasts differ from one another during an accidentalatmospheric release of radioactive material. A series of new decision-making “ENSEMBLE” procedures...

  20. ENSEMBLE methods to reconcile disparate national long range dispersion forecasts

    OpenAIRE

    Mikkelsen, Torben; Galmarini, S.; Bianconi, R.; French, S.

    2003-01-01

    ENSEMBLE is a web-based decision support system for real-time exchange and evaluation of national long-range dispersion forecasts of nuclear releases with cross-boundary consequences. The system is developed with the purpose to reconcile among disparatenational forecasts for long-range dispersion. ENSEMBLE addresses the problem of achieving a common coherent strategy across European national emergency management when national long-range dispersion forecasts differ from one another during an a...

  1. Evaluating the atmospheric dispersion characteristics of Suez Canal area

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Sabek, G.; Abd El-Aal, M.; El-Ghamry, M.

    1988-01-01

    The atmospheric dispersion characteristics of Suez Canal area were determined for subsequent estimation of the environmental impacts of transporting radioactive or hazardous material through the Suez Canal and for the study of environmental pollution resulting from fossil power plants. The atmospheric stability classes were determined at three stations: Port Said, Ismailia and Port Tawfiek (Suez). For achieving this purpose, a computer program was developed through which the atmospheric stability classes A - F and insolation were determined by combining the measured meteorological parameters and the sun elevation which was calculated by another developed computer program with the help of astronomical tables. The results show that the most frequent stability class at Port-Said and Suez is stability class D (neutral condition), whereas at Ismailia area the moderately stable class F, which is the inversion condition with unfavourable dispersion characteristics, is prevailing. The determination of the frequency of stability classes will make it possible to calculate the concentration of a pollutant at a given distance from the source and therefore will be used in dose assessment

  2. Climate change and climate systems influence and control the atmospheric dispersion of desert dust: implications for human health

    Science.gov (United States)

    Griffin, Dale W.; Ragaini, Richard C.

    2010-01-01

    The global dispersion of desert dust through Earth’s atmosphere is greatly influenced by temperature. Temporal analyses of ice core data have demonstrated that enhanced dust dispersion occurs during glacial events. This is due to an increase in ice cover, which results in an increase in drier terrestrial cover. A shorter temporal analysis of dust dispersion data over the last 40 years has demonstrated an increase in dust transport. Climate systems or events such as the North Atlantic Oscillation, the Indian Ocean subtropical High, Pacific Decadal Oscillation, and El Nino-Sothern Oscillation are known to influence global short-term dust dispersion occurrence and transport routes. Anthropogenic influences on dust transport include deforestation, harmful use of topsoil for agriculture as observed during the American Dust Bowl period, and the creation of dry seas (Aral Sea) and lakes (Lake Owens in California and Lake Chad in North Africa) through the diversion of source waters (for irrigation and drinking water supplies). Constituents of desert dust both from source regions (pathogenic microorganisms, organic and inorganic toxins) and those scavenged through atmospheric transport (i.e., industrial and agricultural emissions) are known to directly impact human and ecosystem health. This presentation will present a review of global scale dust storms and how these events can be both a detriment and benefit to various organisms in downwind environments.

  3. Dispersion under low wind speed conditions using Gaussian Plume approach

    International Nuclear Information System (INIS)

    Rakesh, P.T.; Srinivas, C.V.; Baskaran, R.; Venkatesan, R.; Venkatraman, B.

    2018-01-01

    For radioactive dose computation due to atmospheric releases, dispersion models are essential requirement. For this purpose, Gaussian plume model (GPM) is used in the short range and advanced particle dispersion models are used in all ranges. In dispersion models, other than wind speed the most influential parameter which determines the fate of the pollutant is the turbulence diffusivity. In GPM the diffusivity is represented using empirical approach. Studies show that under low wind speed conditions, the existing diffusivity relationships are not adequate in estimating the diffusion. An important phenomenon that occurs during the low wind speed is the meandering motions. It is found that under meandering motions the extent of plume dispersion is more than the estimated value using conventional GPM and particle transport models. In this work a set of new turbulence parameters for the horizontal diffusion of the plume is suggested and using them in GPM, the plume is simulated and is compared against observation available from Hanford tracer release experiment

  4. Electron density measurement of non-equilibrium atmospheric pressure plasma using dispersion interferometer

    Science.gov (United States)

    Yoshimura, Shinji; Kasahara, Hiroshi; Akiyama, Tsuyoshi

    2017-10-01

    Medical applications of non-equilibrium atmospheric plasmas have recently been attracting a great deal of attention, where many types of plasma sources have been developed to meet the purposes. For example, plasma-activated medium (PAM), which is now being studied for cancer treatment, has been produced by irradiating non-equilibrium atmospheric pressure plasma with ultrahigh electron density to a culture medium. Meanwhile, in order to measure electron density in magnetic confinement plasmas, a CO2 laser dispersion interferometer has been developed and installed on the Large Helical Device (LHD) at the National Institute for Fusion Science, Japan. The dispersion interferometer has advantages that the measurement is insensitive to mechanical vibrations and changes in neutral gas density. Taking advantage of these properties, we applied the dispersion interferometer to electron density diagnostics of atmospheric pressure plasmas produced by the NU-Global HUMAP-WSAP-50 device, which is used for producing PAM. This study was supported by the Grant of Joint Research by the National Institutes of Natural Sciences (NINS).

  5. Numerical models for computation of pollutant-dispersion in the atmosphere

    International Nuclear Information System (INIS)

    Leder, S.M.; Biesemann-Krueger, A.

    1985-04-01

    The report describes some models which are used to compute the concentration of emitted pollutants in the lower atmosphere. A dispersion model, developed at the University of Hamburg, is considered in more detail and treated with two different numerical methods. The convergence of the methods is investigated and a comparison of numerical results and dispersion experiments carried out at the Nuclear Research Center Karlsruhe is given. (orig.) [de

  6. Modelling and tracer studies of atmospheric dispersion and deposition in regions of complex topography

    International Nuclear Information System (INIS)

    Norden, C.E.

    1981-11-01

    An indium tracer aerosol generating apparatus based on an alcohol/oxygen burner, and an analytical procedure by which filter samples containing tracer material could be analysed quantitatively by means of neutron activation analysis, were developed for use in atmospheric dispersion and deposition studies. A number of series of atmospheric dispersion experiments were conducted in the Richards Bay and Koeberg- Cape Town areas. The results are given, comparing the airbone tracer concentrations measured at ground level with values predicted by means of a numerical model, utilising two to three schemes, varying in sophistication, for calculating the dispersion coefficients. Recommendations are given regarding a dispersion model and dispersion coefficients for regular use in the Koeberg area, and ways for estimating plume trajectories

  7. Controlling Short-Range Interactions by Tuning Surface Chemistry in HDPE/Graphene Nanoribbon Nanocomposites.

    Science.gov (United States)

    Sadeghi, Soheil; Zehtab Yazdi, Alireza; Sundararaj, Uttandaraman

    2015-09-03

    Unique dispersion states of nanoparticles in polymeric matrices have the potential to create composites with enhanced mechanical, thermal, and electrical properties. The present work aims to determine the state of dispersion from the melt-state rheological behavior of nanocomposites based on carbon nanotube and graphene nanoribbon (GNR) nanomaterials. GNRs were synthesized from nitrogen-doped carbon nanotubes via a chemical route using potassium permanganate and some second acids. High-density polyethylene (HDPE)/GNR nanocomposite samples were then prepared through a solution mixing procedure. Different nanocomposite dispersion states were achieved using different GNR synthesis methods providing different surface chemistry, interparticle interactions, and internal compartments. Prolonged relaxation of flow induced molecular orientation was observed due to the presence of both carbon nanotubes and GNRs. Based on the results of this work, due to relatively weak interactions between the polymer and the nanofillers, it is expected that short-range interactions between nanofillers play the key role in the final dispersion state.

  8. Dispersal Kernel Determines Symmetry of Spread and Geographical Range for an Insect

    International Nuclear Information System (INIS)

    Holland, J.D.

    2009-01-01

    The distance from a source patch that dispersing insects reach depends on the number of dispersers, or random draws from a probability density function called a dispersal kernel, and the shape of that kernel. This can cause asymmetrical dispersal between habitat patches that produce different numbers of dispersers. Spatial distributions based on these dynamics can explain several ecological patterns including mega populations and geographic range boundaries. I hypothesized that a locally extirpated long horned beetle, the sugar maple borer, has a new geographical range shaped primarily by probabilistic dispersal distances. I used data on occurrence from Ontario, Canada to construct a model of geographical range in Indiana, USA based on maximum dispersal distance scaled by habitat area. This model predicted the new range boundary within 500 m very accurately. This beetle may be an ideal organism for exploring spatial dynamics driven by dispersal.

  9. Numerical simulation of atmospheric dispersion in the vicinity of the Rocky Flats plant

    International Nuclear Information System (INIS)

    Bossert, J.E.; Poulos, G.S.

    1993-01-01

    The Atmospheric Studies in Complex Terrain (ASCOT) program sponsored a field experiment in the winter of 1991 near Rocky Flats, Colorado. Both meteorological and tracer dispersion measurements were taken. These two data sets provided an opportunity to investigate the influence of terrain-generated, radiatively-driven flows on the dispersion of the tracer. In this study, we use the Regional Atmospheric Modeling System (RAMS) to simulate meteorological conditions and tracer dispersion on the case night of 4--5 February 1991. The simulations were developed to examine the influence of nocturnal drainage flow from various topography regimes on the dispersion of tracer from the Rocky Flats plant. The simulation described herein demonstrates the extent to which Rocky Mountain drainage winds influence the flow at the mountain/plain interface for a particular case night, and shows the potential importance of canyon drainage on dispersion from the Rocky Flats area

  10. Range Reference Atmosphere 0-70 Km Altitude. Kwajalein Missile Range, Kwajalein, Marshall Islands

    Science.gov (United States)

    1982-01-01

    DOCUMENT 360-82 KWAJALEIN MISSILE RANGE KWAJALEIN, MARSHALL ISLANDS RANGE REFERENCE ATMOSPHERE 0-70 KM ALTITUDE, C00 L’’I METEOROLOGY GROUP .RANGE...34Reference Atmosphere (Part 1), Kwajale 4n Missile Range, Kwajalein, Marshall Islands ," ADA002664. * 19. KEY WORDS (Continue on revorsae d. If necoeewy...CLASSIFICATION OF TIlS PAGE (Whe~n Data EnterecD -v DOCUMENT 360-82 Vo- KWAJALEIN MISSILE RANGE KWAJALEIN, MARSHALL ISLANDS RANGE REFERENCE ATMOSPHERE 0-70 km

  11. Lithosphere-atmosphere-ionosphere coupling as governing mechanism for preseismic short-term events in atmosphere and ionosphere

    Directory of Open Access Journals (Sweden)

    O. Molchanov

    2004-01-01

    Full Text Available We present a general concept of mechanisms of preseismic phenomena in the atmosphere and ionosphere. After short review of observational results we conclude: 1. Upward migration of fluid substrate matter (bubble can lead to ousting of the hot water/gas near the ground surface and cause an earthquake (EQ itself in the strength-weakened area; 2. Thus, time and place of the bubble appearance could be random values, but EQ, geochemistry anomaly and foreshocks (seismic, SA and ULF electromagnetic ones are casually connected; 3. Atmospheric perturbation of temperature and density could follow preseismic hot water/gas release resulting in generation of atmospheric gravity waves (AGW with periods in a range of 6–60min; 4. Seismo-induced AGW could lead to modification of the ionospheric turbulence and to the change of over-horizon radio-wave propagation in the atmosphere, perturbation of LF waves in the lower ionosphere and ULF emission depression at the ground.

  12. EFFAIR: a computer program for estimating the dispersion of atmospheric emissions from a nuclear site

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Lyon, R.B.

    1978-11-01

    Analysis of the transport of material through the turbulent atmospheric boundary layer is an important part of environmental impact assessments for nuclear plants. Although this is a complex phenomenon, practical estimates of ground level concentrations downwind of release are usually obtained using a simple Gaussian formula whose coefficients are obtained from empirical correlations. Based on this formula, the computer program EFFAIR has been written to provide a flexible tool for atmospheric dispersion calculations. It is considered appropriate for calculating dilution factors at distances of 10 2 to 10 4 metres from an effluent source if reflection from the inversion lid is negligible in that range. (author)

  13. Modeling atmospheric dispersion for reactor accident consequence evaluation

    International Nuclear Information System (INIS)

    Alpert, D.J.; Gudiksen, P.H.; Woodard, K.

    1982-01-01

    Atmospheric dispersion models are a central part of computer codes for the evaluation of potential reactor accident consequences. A variety of ways of treating to varying degrees the many physical processes that can have an impact on the predicted consequences exists. The currently available models are reviewed and their capabilities and limitations, as applied to reactor accident consequence analyses, are discussed

  14. Simulation of atmospheric dispersion of radioactivity from the Chernobyl accident

    International Nuclear Information System (INIS)

    Lange, R.; Sullivan, T.J.; Gudiksen, P.H.

    1989-07-01

    Measurements of airborne radioactivity over Europe, Japan, and the United States indicated that the release from the Chernobyl reactor accident in the Soviet Union on April 26, 1986 contained a wide spectrum of fission up to heights of 7 km or more within a few days after the initial explosion. This high-altitude presence of radioactivity would in part be attributable to atmospheric dynamics factors other than the thermal energy released in the initial explosion. Indications were that two types of releases had taken place -- an initial powerful explosion followed by days of a less energetic reactor fire. The Atmospheric Release Advisory Capability (ARAC) at the Lawrence Livermore National Laboratory (LLNL) utilized three-dimensional atmospheric dispersion models to determine the characteristics of the source term (release) and the evolution of the spatial distributions of the airborne radioactivity as it was transported over Europe and subsequently over the northern hemisphere. This paper describes the ARAC involvement and the results of the hemispheric model calculations which graphically depict the extensive dispersal of radioactivity. 1 fig

  15. Magnetic short range order in Gd

    International Nuclear Information System (INIS)

    Child, H.R.

    1976-01-01

    Quasielastic neutron scattering has been used to investigate magnetic short range order in Gd for 80 0 K 0 K. Short range order exists throughout this range from well below T/sub C/ = 291 0 K to well above it and can be reasonably well described by an anisotropic Orstein-Zernike form for chi

  16. Dispersion-tailored, low-loss photonic crystal fibers for the THz range

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Adam, Aurèle J.L.

    2009-01-01

    We have fabricated a new type of photonic crystal fibers based on a cyclic olefin copolymer, transparent in the THz range. We characterize the propagation loss, dispersion, and spatial beam profile in fibers designed for low and high dispersion.......We have fabricated a new type of photonic crystal fibers based on a cyclic olefin copolymer, transparent in the THz range. We characterize the propagation loss, dispersion, and spatial beam profile in fibers designed for low and high dispersion....

  17. Comparative calculations and validation studies with atmospheric dispersion models

    International Nuclear Information System (INIS)

    Paesler-Sauer, J.

    1986-11-01

    This report presents the results of an intercomparison of different mesoscale dispersion models and measured data of tracer experiments. The types of models taking part in the intercomparison are Gaussian-type, numerical Eulerian, and Lagrangian dispersion models. They are suited for the calculation of the atmospherical transport of radionuclides released from a nuclear installation. For the model intercomparison artificial meteorological situations were defined and corresponding arithmetical problems were formulated. For the purpose of model validation real dispersion situations of tracer experiments were used as input data for model calculations; in these cases calculated and measured time-integrated concentrations close to the ground are compared. Finally a valuation of the models concerning their efficiency in solving the problems is carried out by the aid of objective methods. (orig./HP) [de

  18. Evaluation of atmospheric dispersion/consequence models supporting safety analysis

    International Nuclear Information System (INIS)

    O'Kula, K.R.; Lazaro, M.A.; Woodard, K.

    1996-01-01

    Two DOE Working Groups have completed evaluation of accident phenomenology and consequence methodologies used to support DOE facility safety documentation. The independent evaluations each concluded that no one computer model adequately addresses all accident and atmospheric release conditions. MACCS2, MATHEW/ADPIC, TRAC RA/HA, and COSYMA are adequate for most radiological dispersion and consequence needs. ALOHA, DEGADIS, HGSYSTEM, TSCREEN, and SLAB are recommended for chemical dispersion and consequence applications. Additional work is suggested, principally in evaluation of new models, targeting certain models for continued development, training, and establishing a Web page for guidance to safety analysts

  19. Forecasting the consequences of accidental releases of radionuclides in the atmosphere from ensemble dispersion modelling

    International Nuclear Information System (INIS)

    Galmarini, S.; Bianconi, R.; Bellasio, R.; Graziani, G.

    2001-01-01

    The RTMOD system is presented as a tool for the intercomparison of long-range dispersion models as well as a system for support of decision making. RTMOD is an internet-based procedure that collects the results of more than 20 models used around the world to predict the transport and deposition of radioactive releases in the atmosphere. It allows the real-time acquisition of model results and their intercomparison. Taking advantage of the availability of several model results, the system can also be used as a tool to support decision making in case of emergency. The new concept of ensemble dispersion modelling is introduced which is the basis for the decision-making application of RTMOD. New statistical parameters are presented that allow gathering the results of several models to produce a single dispersion forecast. The devised parameters are presented and tested on the results of RTMOD exercises

  20. Delayed shear enhancement in mesoscale atmospheric dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Moran, M.D. [Atmospheric Environment Service, Ontario (Canada); Pielke, R.A. [Colorado State Univ., Fort Collins, CO (United States)

    1994-12-31

    Mesoscale atmospheric dispersion (MAD) is more complicated than smaller-scale dispersion because the mean wind field can no longer be considered steady or horizontally homogeneous over mesoscale time and space scales. Wind shear also plays a much more important role on the mesoscale: horizontal dispersion can be enhanced and often dominated by vertical wind shear on these scales through the interaction of horizontal differential advection and vertical mixing. Just over 30 years ago, Pasquill suggested that this interaction need not be simultaneous and that the combination of differential horizontal advection with delayed or subsequent vertical mixing could maintain effective horizontal diffusion in spite of temporal or spatial reductions in boundary-layer turbulence intensity. This two-step mechanism has not received much attention since then, but a recent analysis of observations from and numerical simulations of two mesoscale tracer experiments suggests that delayed shear enhancement can play an important role in MAD. This paper presents an overview of this analysis, with particular emphasis on the influence of resolvable vertical shear on MAD in these two case studies and the contributions made by delayed shear enhancement.

  1. Coordination of atmospheric dispersion activities for the real-time decision support system RODOS

    International Nuclear Information System (INIS)

    Mikkelsen, T.

    1997-05-01

    This projects task has been to coordinate activities among the RODOS Atmospheric Dispersion sub-group A participants, with the overall objective of developing and integrating an atmospheric transport and dispersion module for the joint European Real-time On-line DecisiOn Support system RODOS headed by FZK (formerly KfK), Germany. The project's final goal is the establishment of a fully operational, system-integrated atmospheric transport module for the RODOS system by year 2000, capable of consistent now- and forecasting of radioactive airborne spread over all types of terrain and on all scales of interest, including in particular complex terrain and the different scales of operation, such as the local, the national and the European scale. (au)

  2. Can the confidence in long range atmospheric transport models be increased? The Pan-European experience of ENSEMBLE

    DEFF Research Database (Denmark)

    Galmarini, S.; Bianconi, R.; Klug, W.

    2004-01-01

    Is atmospheric dispersion forecasting an important asset of the early-phase nuclear emergency response management? Is there a 'perfect atmospheric dispersion model'? Is there a way to make the results of dispersion models more reliable and trustworthy? While seeking to answer these questions the ...

  3. Atmospheric Dispersion Simulation for Level 3 PSA at Ulchin Nuclear Site using a PUFF model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Han, Seok-Jung; Jeong, Hyojoon; Jang, Seung-Cheol [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Air dispersion prediction is a key in the level 3 PSA to predict radiation releases into the environment for preparing an effective strategy for an evacuation as a basis of the emergency preparedness. To predict the atmospheric dispersion accurately, the specific conditions of the radiation release location should be considered. There are various level 3 PSA tools and MACSS2 is one of the widely used level 3 PSA tools in many countries including Korea. Due to the characteristics of environmental conditions in Korea, it should be demonstrated that environmental conditions of Korea nuclear sites can be appropriately illustrated by the tool. In Korea, because all nuclear power plants are located on coasts, sea and land breezes might be a significant factor. The objectives of this work is to simulate the atmospheric dispersion for Ulchin nuclear site in Korea using a PUFF model and to generate the data which can be used for the comparison with that of PLUME model. A nuclear site has own atmospheric dispersion characteristics. Especially in Korea, nuclear sites are located at coasts and it is expected that see and land breeze effects are relatively high. In this work, the atmospheric dispersion at Ulchin nuclear site was simulated to evaluate the effect of see and land breezes in four seasons. In the simulation results, it was observed that the wind direction change with time has a large effect on atmospheric dispersion. If the result of a PLUME model is more conservative than most severe case of a PUFF model, then the PLUME model could be used for Korea nuclear sites in terms of safety assessment.

  4. Dispersive infrared spectroscopy measurements of atmospheric CO{sub 2} using a Fabry–Pérot interferometer sensor

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.L. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Ning, Z., E-mail: zhining@cityu.edu.hk [School of Energy and Environment, City University of Hong Kong (Hong Kong); Guy Carpenter Climate Change Centre, City University of Hong Kong (Hong Kong); Westerdahl, D. [Ability R and D Energy Research Centre, City University of Hong Kong (Hong Kong); Wong, K.C. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Sun, Y.W. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei (China); Hartl, A. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Wenig, M.O. [Meteorological Institute, Ludwig-Maximilians-Universität Munich (Germany)

    2014-02-01

    In this paper, we present the first dispersive infrared spectroscopic (DIRS) measurement of atmospheric carbon dioxide (CO{sub 2}) using a new scanning Fabry–Pérot interferometer (FPI) sensor. The sensor measures the optical spectra in the mid infrared (3900 nm to 5220 nm) wavelength range with full width half maximum (FWHM) spectral resolution of 78.8 nm at the CO{sub 2} absorption band (∼ 4280 nm) and sampling resolution of 20 nm. The CO{sub 2} concentration is determined from the measured optical absorption spectra by fitting it to the CO{sub 2} reference spectrum. Interference from other major absorbers in the same wavelength range, e.g., carbon monoxide (CO) and water vapor (H{sub 2}O), was taken out by including their reference spectra in the fit as well. The detailed descriptions of the instrumental setup, the retrieval procedure, a modeling study for error analysis as well as laboratory validation using standard gas concentrations are presented. An iterative algorithm to account for the non-linear response of the fit function to the absorption cross sections due to the broad instrument function was developed and tested. A modeling study of the retrieval algorithm showed that errors due to instrument noise can be considerably reduced by using the dispersive spectral information in the retrieval. The mean measurement error of the prototype DIRS CO{sub 2} measurement for 1 minute averaged data is about ± 2.5 ppmv, and down to ± 0.8 ppmv for 10 minute averaged data. A field test of atmospheric CO{sub 2} measurements were carried out in an urban site in Hong Kong for a month and compared to a commercial non-dispersive infrared (NDIR) CO{sub 2} analyzer. 10 minute averaged data shows good agreement between the DIRS and NDIR measurements with Pearson correlation coefficient (R) of 0.99. This new method offers an alternative approach of atmospheric CO{sub 2} measurement featuring high accuracy, correction of non-linear absorption and interference of water

  5. Pollutant Plume Dispersion in the Atmospheric Boundary Layer over Idealized Urban Roughness

    Science.gov (United States)

    Wong, Colman C. C.; Liu, Chun-Ho

    2013-05-01

    The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness.

  6. Method of instantaneous approximation of the atmospheric dispersion

    International Nuclear Information System (INIS)

    Doury, A.

    1983-12-01

    A basic primary modelling, very simple and compatible with all the existing models. The problem, the simplifying hypothesis being given, amounts to calculating a concentration chi determined by a fixed quantity Q released instantaneously in a quasi nil volume and uniformly distributed after the time t after the emission in a rectangular parallelepipedic volume. An atmospheric dilution coefficient and an atmospheric transfer coefficient are defined. From these elements, such defined, it is possible to establish of ''short term'' and ''long term'' transfer coefficients and also transfer coefficients ''in the atmosphere'' and to the ''ground''. They are presented in a tabular form [fr

  7. Short-range correlations with pseudopotentials

    International Nuclear Information System (INIS)

    Osman, A.

    1976-01-01

    Short-range correlations in nuclei are considered on an unitary-model operator approach. Short-range pseudopotentials have been added to achieve healing in the correlated wave functions. With the introduction of the pseudopotentials, correlated basis wave functions are constructed. The matrix element for effective interaction in nuclei is developed. The required pseudopotentials have been calculated for the Hamda-Johnston, Yale and Reid potentials and for the nuclear nucleon-nucleon potential A calculated by us according to meson exchange between nucleons. (Osman, A.)

  8. Integration of measurements with atmospheric dispersion models: Source term estimation for dispersal of (239)Pu due to non-nuclear detonation of high explosive

    Science.gov (United States)

    Edwards, L. L.; Harvey, T. F.; Freis, R. P.; Pitovranov, S. E.; Chernokozhin, E. V.

    1992-10-01

    The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on our knowledge of the source term characteristics and, in the case when the radioactivity is condensed on particles, the particle size distribution, all of which are generally poorly known. This paper reports on the development of a numerical technique that integrates the radiological measurements with atmospheric dispersion modeling. This results in a more accurate particle-size distribution and particle injection height estimation when compared with measurements of high explosive dispersal of (239)Pu. The estimation model is based on a non-linear least squares regression scheme coupled with the ARAC three-dimensional atmospheric dispersion models. The viability of the approach is evaluated by estimation of ADPIC model input parameters such as the ADPIC particle size mean aerodynamic diameter, the geometric standard deviation, and largest size. Additionally we estimate an optimal 'coupling coefficient' between the particles and an explosive cloud rise model. The experimental data are taken from the Clean Slate 1 field experiment conducted during 1963 at the Tonopah Test Range in Nevada. The regression technique optimizes the agreement between the measured and model predicted concentrations of (239)Pu by varying the model input parameters within their respective ranges of uncertainties. The technique generally estimated the measured concentrations within a factor of 1.5, with the worst estimate being within a factor of 5, very good in view of the complexity of the concentration measurements, the uncertainties associated with the meteorological data, and the limitations of the models. The best fit also suggest a smaller mean diameter and a smaller geometric standard deviation on the particle size as well as a slightly weaker particle to cloud coupling than previously reported.

  9. Integration of measurements with atmospheric dispersion models: Source term estimation for dispersal of 239Pu due to non- nuclear detonation of high explosive

    International Nuclear Information System (INIS)

    Edwards, L.L.; Harvey, T.F.; Freis, R.P.; Pitovranov, S.E.; Chernokozhin, E.V.

    1992-10-01

    The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on our knowledge of the source term characteristics and, in the case when the radioactivity is condensed on particles, the particle size distribution, all of which are generally poorly known. This paper reports on the development of a numerical technique that integrates the radiological measurements with atmospheric dispersion modeling. This results in a more accurate particle-size distribution and particle injection height estimation when compared with measurements of high explosive dispersal of 239 Pu. The estimation model is based on a non-linear least squares regression scheme coupled with the ARAC three-dimensional atmospheric dispersion models. The viability of the approach is evaluated by estimation of ADPIC model input parameters such as the ADPIC particle size mean aerodynamic diameter, the geometric standard deviation, and largest size. Additionally we estimate an optimal ''coupling coefficient'' between the particles and an explosive cloud rise model. The experimental data are taken from the Clean Slate 1 field experiment conducted during 1963 at the Tonopah Test Range in Nevada. The regression technique optimizes the agreement between the measured and model predicted concentrations of 239 Pu by varying the model input parameters within their respective ranges of uncertainties. The technique generally estimated the measured concentrations within a factor of 1.5, with the worst estimate being within a factor of 5, very good in view of the complexity of the concentration measurements, the uncertainties associated with the meteorological data, and the limitations of the models. The best fit also suggest a smaller mean diameter and a smaller geometric standard deviation on the particle size as well as a slightly weaker particle to cloud coupling than previously reported

  10. Measuring short distance dispersal of Alliaria petiolata and determining potential long distance dispersal mechanisms

    Directory of Open Access Journals (Sweden)

    Christopher A. Loebach

    2018-03-01

    Full Text Available Introduction Alliaria petiolata, an herbaceous plant, has invaded woodlands in North America. Its ecology has been thoroughly studied, but an overlooked aspect of its biology is seed dispersal distances and mechanisms. We measured seed dispersal distances in the field and tested if epizoochory is a potential mechanism for long-distance seed dispersal. Methods Dispersal distances were measured by placing seed traps in a sector design around three seed point sources, which consisted of 15 second-year plants transplanted within a 0.25 m radius circle. Traps were placed at intervals ranging from 0.25–3.25 m from the point source. Traps remained in the field until a majority of seeds were dispersed. Eight probability density functions were fitted to seed trap counts via maximum likelihood. Epizoochory was tested as a potential seed dispersal mechanism for A. petiolata through a combination of field and laboratory experiments. To test if small mammals transport A. petiolata seeds in their fur, experimental blocks were placed around dense A. petiolata patches. Each block contained a mammal inclusion treatment (MIT and control. The MIT consisted of a wood-frame (31 × 61× 31 cm covered in wire mesh, except for the two 31 × 31 cm ends, placed over a germination tray filled with potting soil. A pan filled with bait was placed in the center of the tray. The control frame (11 × 31 × 61 cm was placed over a germination tray and completely covered in wire mesh to exclude animal activity. Treatments were in the field for peak seed dispersal. In March, trays were moved to a greenhouse and A. petiolata seedlings were counted and then compared between treatments. To determine if A. petiolata seeds attach to raccoon (Procyon lotor and white-tailed deer (Odocoileus virginianus fur, wet and dry seeds were dropped onto wet and dry fur. Furs were rotated 180 degrees and the seeds that remained attached were counted. To measure seed retention, seeds

  11. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Katata, G.; Chino, M.; Kobayashi, T. [Japan Atomic Energy Agency (JAEA), Ibaraki (Japan); and others

    2015-07-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Daiichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate the detailed atmospheric releases during the accident using a reverse estimation method which calculates the release rates of radionuclides by comparing measurements of air concentration of a radionuclide or its dose rate in the environment with the ones calculated by atmospheric and oceanic transport, dispersion and deposition models. The atmospheric and oceanic models used are WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information) and SEA-GEARN-FDM (Finite difference oceanic dispersion model), both developed by the authors. A sophisticated deposition scheme, which deals with dry and fog-water depositions, cloud condensation nuclei (CCN) activation, and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I{sub 2} and CH{sub 3}I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The results revealed that the major releases of radionuclides due to the FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, midnight of 14 March when the SRV (safety relief valve) was opened three times at Unit 2, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of release rates. The simulation by WSPEEDI-II using the new source term reproduced the local and regional patterns of

  12. Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory

    Science.gov (United States)

    Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas

    2018-02-01

    Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi

  13. Atmospheric Error Correction of the Laser Beam Ranging

    Directory of Open Access Journals (Sweden)

    J. Saydi

    2014-01-01

    Full Text Available Atmospheric models based on surface measurements of pressure, temperature, and relative humidity have been used to increase the laser ranging accuracy by ray tracing. Atmospheric refraction can cause significant errors in laser ranging systems. Through the present research, the atmospheric effects on the laser beam were investigated by using the principles of laser ranging. Atmospheric correction was calculated for 0.532, 1.3, and 10.6 micron wavelengths through the weather conditions of Tehran, Isfahan, and Bushehr in Iran since March 2012 to March 2013. Through the present research the atmospheric correction was computed for meteorological data in base of monthly mean. Of course, the meteorological data were received from meteorological stations in Tehran, Isfahan, and Bushehr. Atmospheric correction was calculated for 11, 100, and 200 kilometers laser beam propagations under 30°, 60°, and 90° rising angles for each propagation. The results of the study showed that in the same months and beam emission angles, the atmospheric correction was most accurate for 10.6 micron wavelength. The laser ranging error was decreased by increasing the laser emission angle. The atmospheric correction with two Marini-Murray and Mendes-Pavlis models for 0.532 nm was compared.

  14. ATMOSPHERIC DISPERSION COEFFICIENTS & RADIOLOGICAL & TOXICOLOGICAL EXPOSURE METHODOLOGY FOR USE IN TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    COWLEY, W.L.

    2005-01-31

    This report presents the atmospheric dispersion coefficients used for Tank Farms safety analyses. The report also contains the necessary documentation for meeting Software QA requirements for the GXQ software. The basic equations for calculating radiological doses and chemical exposures are also included. Revision 3 adds information about Building Wakes and calculates dispersion coefficients that incorporate building wake for 222-S and 242-A.

  15. Assessment of the meteorological data and atmospheric dispersion estimates in the Ranger 1 Uranium Mining Environmental Impact Statement

    International Nuclear Information System (INIS)

    Clark, G.H.

    1977-03-01

    Wind records from Jabiru, Northern Territory, Australia have been re-analysed to give atmospheric dispersion estimates of sulphur dioxide and radioactive contaminants associated with a proposed uranium mining and milling operation. Revisions in the plume rise equations have led to lower annual average sulphur dioxide air concentrations than those presented in the Ranger 1 Uranium Mining Environmental Impact Statement. Likewise, the short term peak air concentrations of sulphur dioxide were all within the United States Environment Protection Agency air quality standards. Even though the radon gas inventory was revised upwards, predicted concentrations were only slightly higher than those in the RUMEIS. An attempt was made at a first estimate of the uranium dust source term caused by wind suspension from stockpiled ore and waste rock. In a preliminary analysis using a 'surface depletion' model, it was estimated that uranium dust air concentrations would be decreased by about an order of magnitude when dry deposition was included in the atmospheric dispersion model. Integrating over all sources, radionuclides and meteorological conditions, the annual radiation dose to members of the public in the Regional Centre is estimated to be a maximum of 5 per cent of the recommended annual limits. (author)

  16. Implicit coupling of turbulent diffusion with chemical reaction mechanisms for prognostic atmospheric dispersion models

    Energy Technology Data Exchange (ETDEWEB)

    Berlowitz, D.R.

    1996-11-01

    In the last few decades the negative impact by humans on the thin atmospheric layer enveloping the earth, the basis for life on this planet, has increased steadily. In order to halt, or at least slow down this development, the knowledge and study of these anthropogenic influence has to be increased and possible remedies have to be suggested. An important tool for these studies are computer models. With their help the atmospheric system can be approximated and the various processes, which have led to the current situation can be quantified. They also serve as an instrument to assess short or medium term strategies to reduce this human impact. However, to assure efficiency as well as accuracy, a careful analysis of the numerous processes involved in the dispersion of pollutants in the atmosphere is called for. This should help to concentrate on the essentials and also prevent excessive usage of sometimes scarce computing resources. The basis of the presented work is the EUMAC Zooming Model (ETM), and particularly the component calculating the dispersion of pollutants in the atmosphere, the model MARS. The model has two main parts: an explicit solver, where the advection and the horizontal diffusion of pollutants are calculated, and an implicit solution mechanism, allowing the joint computation of the change of concentration due to chemical reactions, coupled with the respective influence of the vertical diffusion of the species. The aim of this thesis is to determine particularly the influence of the horizontal components of the turbulent diffusion on the existing implicit solver of the model. Suggestions for a more comprehensive inclusion of the full three dimensional diffusion operator in the implicit solver are made. This is achieved by an appropriate operator splitting. A selection of numerical approaches to tighten the coupling of the diffusion processes with the calculation of the applied chemical reaction mechanisms are examined. (author) figs., tabs., refs.

  17. ATMOSPHERIC DYNAMICS OF AIR POLLUTION DISPERSION AND SUSTAINABLE ENVIRONMENT IN JOS-NIGERIA

    Directory of Open Access Journals (Sweden)

    Moses Eterigho Emetere

    2017-01-01

    Full Text Available The basic properties of chlorine were used to determine the dis persion patterns of the recent Jos explosion. The dynamic aerosols content model was us ed to affirm the eight kinds of dispersion patterns discussed in this text. The locati on of the victims showed that the dispersion at Jos was either linear or polynomial disp ersion. The dispersions are influenced by atmospheric ventilation, stagnation and recir culation. The last chlorine gas explosion follows the linear or polynomial dispers ion because of the current state of aerosol loadings in Jos. The aftermath effect of this kind of dispersion may be more threatening than the initial danger due to the chem ical formation of more dangerous compounds. The atmosphe ric conditions for the formati on of toxic compound were investigated using twelve years MERRA satellite o bservation. The degree of freedom of methane, carbon oxide and ozone was nearly uniform for the past five years. This means the next five years or more may be threa tening for life forms within the region. The installation of gas tracers within major locations in Jos was suggested to monitor the formation of dioxins in the atmosphere.

  18. Experimental and Numerical Modelling of CO2 Atmospheric Dispersion in Hazardous Gas Emission Sites.

    Science.gov (United States)

    Gasparini, A.; sainz Gracia, A. S.; Grandia, F.; Bruno, J.

    2015-12-01

    Under stable atmospheric conditions and/or in presence of topographic depressions, CO2 concentrations can reach high values resulting in lethal effect to living organisms. The distribution of denser than air gases released from the underground is governed by gravity, turbulence and dispersion. Once emitted, the gas distribution is initially driven by buoyancy and a gas cloud accumulates on the ground (gravitational phase); with time the density gradient becomes less important due to dispersion or mixing and gas distribution is mainly governed by wind and atmospheric turbulence (passive dispersion phase). Natural analogues provide evidences of the impact of CO2 leakage. Dangerous CO2 concentration in atmosphere related to underground emission have been occasionally reported although the conditions favouring the persistence of such a concentration are barely studied.In this work, the dynamics of CO2 in the atmosphere after ground emission is assessed to quantify their potential risk. Two approaches have been followed: (1) direct measurement of air concentration in a natural emission site, where formation of a "CO2 lake" is common and (2) numerical atmospheric modelling. Two sites with different morphology were studied: (a) the Cañada Real site, a flat terrain in the Volcanic Field of Campo de Calatrava (Spain); (b) the Solforata di Pomezia site, a rough terrain in the Alban Hills Volcanic Region (Italy). The comparison between field data and model calculations reveal that numerical dispersion models are capable of predicting the formation of CO2 accumulation over the ground as a consequence of underground gas emission. Therefore, atmospheric modelling could be included as a valuable methodology in the risk assessment of leakage in natural degassing systems and in CCS projects. Conclusions from this work provide clues on whether leakage may be a real risk for humans and under which conditions this risk needs to be included in the risk assessment.

  19. Local-scale high-resolution atmospheric dispersion model using large-eddy simulation. LOHDIM-LES

    International Nuclear Information System (INIS)

    Nakayama, Hiromasa; Nagai, Haruyasu

    2016-03-01

    We developed LOcal-scale High-resolution atmospheric DIspersion Model using Large-Eddy Simulation (LOHDIM-LES). This dispersion model is designed based on LES which is effective to reproduce unsteady behaviors of turbulent flows and plume dispersion. The basic equations are the continuity equation, the Navier-Stokes equation, and the scalar conservation equation. Buildings and local terrain variability are resolved by high-resolution grids with a few meters and these turbulent effects are represented by immersed boundary method. In simulating atmospheric turbulence, boundary layer flows are generated by a recycling turbulent inflow technique in a driver region set up at the upstream of the main analysis region. This turbulent inflow data are imposed at the inlet of the main analysis region. By this approach, the LOHDIM-LES can provide detailed information on wind velocities and plume concentration in the investigated area. (author)

  20. Comparative toxicity of two oil dispersants, superdispersant-25 and corexit 9527, to a range of coastal species.

    Science.gov (United States)

    Scarlett, Alan; Galloway, Tamara S; Canty, Martin; Smith, Emma L; Nilsson, Johanna; Rowland, Steven J

    2005-05-01

    The acute toxicity of the oil dispersant Corexit 9527 reported in the literature is highly variable. No peer-reviewed data exist for Superdispersant-25 (SD-25). This study compares the toxicity of the two dispersants to a range of marine species representing different phyla occupying a wide range of niches: The marine sediment-dwelling amphipod Corophium volutator (Pallas), the common mussel Mytilus edulis (L.), the symbiotic snakelocks anemone Anemonia viridis (Forskål), and the seagrass Zostera marina (L.). Organisms were exposed to static dispersant concentrations for 48-h and median lethal concentration (LC50), median effect concentration (EC50), and lowest-observable-effect concentration (LOEC) values obtained. The sublethal effects of 48-h exposures and the ability of species to recover for up to 72 h after exposure were quantified relative to the 48-h endpoints. Results indicated that the anemone lethality test was the most sensitive with LOECs of 20 ppm followed by mussel feeding rate, seagrass photosynthetic index and amphipod lethality, with mussel lethality being the least sensitive with LOECs of 250 ppm for both dispersants. The results were consistent with current theory that dispersants act physically and irreversibly on the respiratory organs and reversibly, depending on exposure time, on the nervous system. Superdispersant-25 was found overall to be less toxic than Corexit 9527 and its sublethal effects more likely to be reversible following short-term exposure.

  1. Fitness declines towards range limits and local adaptation to climate affect dispersal evolution during climate‐induced range shifts

    DEFF Research Database (Denmark)

    Hargreaves, Anna; Bailey, Susan; Laird, Robert

    2015-01-01

    Dispersal ability will largely determine whether species track their climatic niches during climate change, a process especially important for populations at contracting (low-latitude/low-elevation) range limits that otherwise risk extinction. We investigate whether dispersal evolution....... We simulate a species distributed continuously along a temperature gradient using a spatially explicit, individual-based model. We compare range-wide dispersal evolution during climate stability vs. directional climate change, with uniform fitness vs. fitness that declines towards range limits (RLs...... at contracting range limits is facilitated by two processes that potentially enable edge populations to experience and adjust to the effects of climate deterioration before they cause extinction: (i) climate-induced fitness declines towards range limits and (ii) local adaptation to a shifting climate gradient...

  2. Atmospheric dispersion modelling over complex terrain at small scale

    Science.gov (United States)

    Nosek, S.; Janour, Z.; Kukacka, L.; Jurcakova, K.; Kellnerova, R.; Gulikova, E.

    2014-03-01

    Previous study concerned of qualitative modelling neutrally stratified flow over open-cut coal mine and important surrounding topography at meso-scale (1:9000) revealed an important area for quantitative modelling of atmospheric dispersion at small-scale (1:3300). The selected area includes a necessary part of the coal mine topography with respect to its future expansion and surrounding populated areas. At this small-scale simultaneous measurement of velocity components and concentrations in specified points of vertical and horizontal planes were performed by two-dimensional Laser Doppler Anemometry (LDA) and Fast-Response Flame Ionization Detector (FFID), respectively. The impact of the complex terrain on passive pollutant dispersion with respect to the prevailing wind direction was observed and the prediction of the air quality at populated areas is discussed. The measured data will be used for comparison with another model taking into account the future coal mine transformation. Thus, the impact of coal mine transformation on pollutant dispersion can be observed.

  3. Numerical challenges of short range wake field calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Thomas; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder (TEMF)

    2011-07-01

    For present and future accelerator projects with ultra short bunches the accurate and reliable calculation of short range wake fields is an important issue. However, the numerical calculation of short range wake fields is a numerical challenging task. The presentation gives an overview over the numerical challenges and techniques for short range wake field calculations. Finally, some simulation results obtained by the program PBCI developed at the TU Darmstadt are presented.

  4. Long-range dispersion interactions. I. Formalism for two heteronuclear atoms

    International Nuclear Information System (INIS)

    Zhang, J.-Y.; Mitroy, J.

    2007-01-01

    A general procedure for systematically evaluating the long-range dispersion interaction between two heteronuclear atoms in arbitrary states is outlined. The C 6 dispersion parameter can always be written in terms of sum rules involving oscillator strengths only and formulas for a number of symmetry cases are given. The dispersion coefficients for excited alkali-metal atoms interacting with the ground-state H and He are tabulated

  5. Hard probes of short-range nucleon-nucleon correlations

    Energy Technology Data Exchange (ETDEWEB)

    J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian

    2012-10-01

    The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nuclei and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.

  6. Impact of atmospheric release in stable night meteorological conditions; can emergency models predict dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Connan, O.; Hebert, D.; Solier, L.; Voiseux, C.; Lamotte, M.; Laguionie, P.; Maro, D.; Thomas, L. [IRSN/PRP-ENV/SERIS/LRC (France)

    2014-07-01

    Atmospheric dispersion of pollutant or radionuclides in stratified meteorological condition, i.e. especially when weather conditions are very stable, mainly at night, is still poorly understood and not well apprehended by the operational atmospheric dispersion models. However, correctly predicting the dispersion of a radioactive plume, and estimating the radiological consequences for the population, following an unplanned atmospheric release of radionuclides are crucial steps in an emergency response. To better understand dispersion in these special weather conditions, IRSN performed a series of 22 air sampling campaigns between 2010 and 2013 in the vicinity of the La Hague nuclear reprocessing plant (AREVA - NC, France), at distances between 200 m and 3000 m from the facility. Krypton-85 ({sup 85}Kr), a b-and g-emitting radionuclide, released during the reprocessing of spent nuclear fuel was used as a non-reactive tracer of radioactive plumes. Experimental campaigns were realized in stability class stable or very stable (E or F according to Pasquill classification) 18 times, and in neutral conditions (D according to Pasquill classification) 4 times. During each campaign, Krypton-85 real time measurement were made to find the plume around the plant, and then integrated samples (30 min) were collected in bag perpendicularly to the assumed wind direction axis. After measurement by gamma spectrometry, we have, when it was possible, estimate the point of impact and the width of the plume. The objective was to estimate the horizontal dispersion (width) of the plume at ground level in function of the distance and be able to calculate atmospheric transfer coefficients. In a second step, objective was to conclude on the use of common model and on their uncertainties. The results will be presented in terms of impact on the near-field. They will be compared with data obtained in previous years in neutral atmospheric conditions, and finally the results will be confronted with

  7. Working document dispersion models

    International Nuclear Information System (INIS)

    Dop, H. van

    1988-01-01

    This report is a summary of the most important results from June 1985 of the collaboration of the RIVM (Dutch National Institute for Public Health and Environment Hygiene) and KNMI (Royal Dutch Meteorologic Institute) on the domain of dispersion models. It contains a short description of the actual SO x /NO x -model. Furthermore it contains recommendations for modifications of some numerical-mathematical aspects and an impulse to a more complete description of chemical processes in the atmosphere and the (wet) deposition process. A separate chapter is devoted to the preparation of meteorologic data which are relevant for dispersion as well as atmospheric chemistry and deposition. This report serves as working document for the final formulation of a acidifying- and oxidant-model. (H.W.). 69 refs.; 51 figs.; 13 tabs.; 3 schemes

  8. Turbulence and dispersion flow of radioisotopes in the atmospheric Boundary layer

    International Nuclear Information System (INIS)

    El Said, S.I.M.

    2013-01-01

    There is an increase in the study of atmospheric pollution and harmful impact on environment, in this work attention was forward to atmospheric diffusion equation to evaluate the concentration pollution with different methods under different stability conditions. The material in the present thesis is organized in six chapters in the following way: Chapter (1), it describe as. In section 1.1, General Introduction, In section 1.2, Turbulence, In section 1.3, Turbulence of the atmosphere. In section 1.4, Atmospheric stability. In section 1.5, Atmospheric pollution. In section 1.6, Behavior of effluent released to the atmosphere. In section 1.7, Source Types. In section 1.8, Atmospheric Dispersion Theories (Modeling). In section 1.9 Comparison between Some Models. In section 1.10, The Planetary Boundary Layer. Chapter (2), it describe as: In section 2.1 , Introduction. In section 2.2, Analytical Method. In section 2.3, Numerical Method. In section 2.4, Statistical method. In chapter (3), it describe as: In section 3.1, Introduction. In section 3.2, Analytical solution. In section 3.3, statically methods.Chapter (4), it contain following: In section 4.1, Introduction. In section 4.2, Proposed model structure. In section 4.3, the effective height. In section 4.4, Mathematical technique In section 4. 5, Case study. In section 4.6, Verification. Chapter (5), one can find as: In section 5.1, Introduction. In section 5.2, Gaussian distributions. In section 5.3, Dispersion parameters schemes. In section 5.4, Result and discussion. In section 5.5 Statistical methods. Chapter (6), it can be arranged in the following: In section 6.1, Introduction. In section 6.2, Model formulation. In section 6.3, Results and Discussion. In section 6.4, Statistical method.

  9. Long-range dispersion interactions. III: Method for two homonuclear atoms

    International Nuclear Information System (INIS)

    Mitroy, J.; Zhang, J.-Y.

    2007-01-01

    A procedure for systematically evaluating the long-range dispersion interaction between two homonuclear atoms in arbitrary LS coupled states is outlined. The method is then used to generate dispersion coefficients for a number of the low-lying states of the Na and Mg dimers

  10. Model calculating annual mean atmospheric dispersion factor for coastal site of nuclear power plant

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper describes an atmospheric dispersion field experiment performed on the coastal site of nuclear power plant in the east part of China during 1995 to 1996. The three-dimension joint frequency are obtained by hourly observation of wind and temperature on a 100m high tower; the frequency of the “event day of land and sea breezes” are given by observation of surface wind and land and sea breezes; the diffusion parameters are got from measurements of turbulent and wind tunnel simulation test.A new model calculating the annual mean atmospheric dispersion factor for coastal site of nuclear power plant is developed and established.This model considers not only the effect from mixing release and mixed layer but also the effect from the internal boundary layer and variation of diffusion parameters due to the distance from coast.The comparison between results obtained by the new model and current model shows that the ratio of annual mean atmospheric dispersion factor gained by the new model and the current one is about 2.0.

  11. Atmospheric dispersion of pollutants in an industrial area of Cuba

    International Nuclear Information System (INIS)

    Cruz Monte de Oca, Feliberto de la; Furet Bridon, Norma Raisa; Turtos Carbonell, Leonor; Lorente Vera, Mercedes

    2011-01-01

    Air pollution by different chemicals; take a great connotation in the world, given the adverse effects on ecosystems and particularly human health. The urban development, the modification of the land surface and the climate change, phenomena derived from a world population explosion, are altering the composition of the air. The atmosphere deposits pollutants in the water courses and in land, which harms not only the persons, but also to the animals and the plants of the ecosystem. To know as these pollutants are dispersed in the atmosphere it is very important in the establishment of better urban, regional and world predictions of the air quality. The present study aims to assess the local spread of sulphur dioxide, nitrogen oxides and particulate matter from an industrial zone. The study was done using the pollutant Gaussian Dispersion Models AERMOD. For the evaluation of contaminants were considered two modeling scenarios: urban and rural. The SO 2 concentrations (μg/m 3 ) were obtained for 1 h, 24 h and all period (1 year), exceeding the permissible limits (500, 50 y 20 μg/m 3 ). It was also recorded for each period the number of times SO 2 concentrations exceeded the reference values in each of the scenarios discussed (urban: 39, 61 y 39; rural: 99, 75 y 25). At the end of modeling in the urban setting, 39 recipients exceeded the reference value, occupying an area of 9.75 km 2 and 25 receivers in the case of the rural setting, for an area of 6.25 km 2 . For NOx and particulate matter concentrations estimated values were always below the reference values. The obtained results in this case show the potentiality of AERMOD system for the evaluation of atmospheric dispersion of pollutants

  12. Critical review of studies on atmospheric dispersion in coastal regions

    International Nuclear Information System (INIS)

    Shearer, D.L.; Kaleel, R.J.

    1982-09-01

    This study effort was required as a preliminary step prior to initiation of field measurements of atmospheric dispersion in coastal regions. The Nuclear Regulatory Commission (NRC) is in the process of planning an extensive field measurement program to generate data which will serve as improved data bases for licensing decisions, confirmation of regulations, standards, and guides, and for site characterizations. The study being reported here is an effort directed to obtaining as much information as is possible from existing studies that is relevant toward NRC's objectives. For this study, reports covering research and meteorological measurements conducted for industrial purposes, utility needs, military objectives, and academic studies were obtained and critically reviewed in light of NRC's current data needs. This report provides an interpretation of the extent of existing usable information, an indication of the potential for tailoring existing research toward current NRC information needs, and recommendations for several follow-on studies which could provide valuable additional information through reanalysis of the data. Recommendations are also offered regarding new measurement programs. Emphasis is placed on the identification and acquisition of data from atmospheric tracer studies conducted in coastal regions. A total of 225 references were identified which deal with the coastal atmosphere, including meteorological and tracer measurement programs, theoretical descriptions of the relevant processes, and dispersion models

  13. Coherent lidar modulated with frequency stepped pulse trains for unambiguous high duty cycle range and velocity sensing in the atmosphere

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Mohr, Johan Jacob

    2007-01-01

    Range unambiguous high duty cycle coherent lidars can be constructed based on frequency stepped pulse train modulation, even continuously emitting systems could be envisioned. Such systems are suitable for velocity sensing of dispersed targets, like the atmosphere, at fast acquisition rates....... The lightwave synthesized frequency sweeper is a suitable generator yielding fast pulse repetition rates and stable equidistant frequency steps. Theoretical range resolution profiles of modulated lidars are presented....

  14. Combining 2-m temperature nowcasting and short range ensemble forecasting

    Directory of Open Access Journals (Sweden)

    A. Kann

    2011-12-01

    Full Text Available During recent years, numerical ensemble prediction systems have become an important tool for estimating the uncertainties of dynamical and physical processes as represented in numerical weather models. The latest generation of limited area ensemble prediction systems (LAM-EPSs allows for probabilistic forecasts at high resolution in both space and time. However, these systems still suffer from systematic deficiencies. Especially for nowcasting (0–6 h applications the ensemble spread is smaller than the actual forecast error. This paper tries to generate probabilistic short range 2-m temperature forecasts by combining a state-of-the-art nowcasting method and a limited area ensemble system, and compares the results with statistical methods. The Integrated Nowcasting Through Comprehensive Analysis (INCA system, which has been in operation at the Central Institute for Meteorology and Geodynamics (ZAMG since 2006 (Haiden et al., 2011, provides short range deterministic forecasts at high temporal (15 min–60 min and spatial (1 km resolution. An INCA Ensemble (INCA-EPS of 2-m temperature forecasts is constructed by applying a dynamical approach, a statistical approach, and a combined dynamic-statistical method. The dynamical method takes uncertainty information (i.e. ensemble variance from the operational limited area ensemble system ALADIN-LAEF (Aire Limitée Adaptation Dynamique Développement InterNational Limited Area Ensemble Forecasting which is running operationally at ZAMG (Wang et al., 2011. The purely statistical method assumes a well-calibrated spread-skill relation and applies ensemble spread according to the skill of the INCA forecast of the most recent past. The combined dynamic-statistical approach adapts the ensemble variance gained from ALADIN-LAEF with non-homogeneous Gaussian regression (NGR which yields a statistical mbox{correction} of the first and second moment (mean bias and dispersion for Gaussian distributed continuous

  15. Assessment of radiological impact due to a hypothetical core disruptive accident for PFBR using an advanced atmospheric dispersion system

    International Nuclear Information System (INIS)

    Srinivas, C.V.; Venkatesan, R.; Natarajan, A.

    2004-01-01

    Radiological impact due to air borne effluent dispersion from a hypothetical Core Disruptive Accident (CDA) scenario for Prototype Fast Breeder Reactor (PFBR) at Kalpakkam coastal site is estimated using an advanced system consisting of a 3-d meso-scale atmospheric model and a random walk particle dispersion model. A simulation of dispersion for CDA carried out for a typical summer day on 24th May 2003 predicted development of land-sea breeze circulation and Thermal Internal Boundary Layer (TIBL) at Kalpakkam site, which have been confirmed by observations. Analysis of dose distribution corresponding to predicted atmospheric conditions shows maximum dose from stack releases beyond the site boundary at about 4 km during TIBL fumigation and stable conditions respectively. A multi mode spatial concentration distribution has been noticed with diurnal meandering of wind under land sea breeze circulation. Over a meso-scale range of 25 km, turning of plume under sea breeze and maximum concentration along plume centerline at distances of 3 to 10 km have been noticed. The study has enabled to simulate the more complex meteorological situation that is actually present at the site. (author)

  16. Atmospheric dispersion and the radiological consequences of normal airborne effluents from a nuclear power plant

    International Nuclear Information System (INIS)

    Fang, D.; Yang, L.; Sun, C.Z.

    1995-01-01

    The relationship between the consequences of the normal exhaust of radioactive materials in air from nuclear power plants and atmospheric dispersion is studied. Because the source terms of the exhaust from a nuclear power plant are relatively low and their radiological consequences are far less than the corresponding authoritative limits, the atmospheric dispersion models, their various modifications, and selections of relevant parameters have few effects on those consequences. In the environmental assessment and siting, the emphasis should not be placed on the consequence evaluation of routine exhaust of nuclear power plants, and the calculation of consequences of the exhaust and atmospheric field measurements should be appropriately, simplified. 12 refs., 5 figs., 7 tabs

  17. Atmospheric dispersion simulations of volcanic gas from Miyake Island by SPEEDI

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Furuno, Akiko; Terada, Hiroaki; Umeyama, Nobuaki; Yamazawa, Hiromi; Chino, Masamichi

    2001-03-01

    Japan Atomic Energy Research Institute is advancing the study for prediction of material circulation in the environment to cope with environmental pollution, based on SPEEDI (System for Prediction of Environmental Emergency Dose Information) and WSPEEDI (Worldwide version of SPEEDI), which are originally developed aiming at real-time prediction of atmospheric dispersion of radioactive substances accidentally released from nuclear facility. As a part of this study, dispersion simulation of volcanic gas erupted from Miyake Island is put into practice. After the stench incident at the west Kanto District on 28 August 2000 caused by volcanic gas from Miyake Island, the following simulations dealing with atmospheric dispersion of volcanic gas from Miyake Island have been carried out. (1) Retrospective simulation to analyze examine the mechanism of the transport of high concentration volcanic gas to the west Kanto District on 28 August and to estimate the release amount of volcanic gas. (2) Retrospective simulation to analyze the mechanism of the transport of volcanic gas to Tokai and Kansai districts in a case of stench incident on 13 September. (3) Automated real-time simulation from the acquisition of meteorological data to the output of figures for operational prediction of the transport of volcanic gas to Tokai and Kanto districts. This report describes the details of these studies. (author)

  18. The importance of long range atmospheric transport in probabilistic accident consequence assessment

    International Nuclear Information System (INIS)

    ApSimon, H.M.; Goddard, A.J.H.; Wilson, J.J.N.

    1988-01-01

    The disaster at the Chernobyl-4 reactor has demonstrated that severe nuclear accidents can give rise to significant radiological consequences several thousand kilometres from the source. The subsequent dispersion of the release over much of Western Europe further demonstrated the importance of synoptic scale weather patterns in determining the magnitude of the consequences of such accidents. A version of the MESOS-II European scale trajectory model, which is able to simulate large scale variations in weather conditions through the use of spatially and temporally variable meteorological input data, has been used to simulate the pattern of dispersion from Chernobyl with some success. This paper presents the results of probabilistic consequence assessments for a number of West European sites, made using the MESOS-II model. The results illustrate the effects, on probabilistic assessments, of using a more realistic treatment of long range atmospheric transport than the Gaussian plume model and also the spatial variation in the distributions of consequences arising from the variation in synoptic scale weather conditions across Western Europe

  19. Characterization of exoplanet atmospheres using high-dispersion spectroscopy with the E-ELT and beyond

    Directory of Open Access Journals (Sweden)

    Snellen Ignas

    2013-04-01

    Full Text Available Ground-based high-dispersion (R ∼ 100,000 spectroscopy provides unique information on exoplanet atmospheres, inaccessible from space - even using the JWST or other future space telescopes. Recent successes in transmission- and dayside spectroscopy using CRIRES on the Very Large Telescope prelude the enormous discovery potential of high-dispersion spectrographs on the E-ELT, such as METIS in the thermal infrared, and HIRES in the optical/near-infrared. This includes the orbital inclination and masses of hundred(s of non-transiting planets, line-by-line molecular band spectra, planet rotation and global wind patterns, longitudinal spectral variations, and possibly isotopologue ratios. Thinking beyond the E-ELT, we advocate that ultimately a systematic search for oxygen in atmospheres of nearby Earth-like planets can be conducted using large arrays of relatively low-cost flux collector telescopes equipped with high-dispersion spectrographs.

  20. Atmospheric dispersion estimates in the vicinity of buildings

    International Nuclear Information System (INIS)

    Ramsdell, J.V. Jr.; Fosmire, C.J.

    1995-01-01

    A model describing atmospheric dispersion in the vicinity of buildings was developed for the U.S. Nuclear Regulatory Commission (NRC) in the late 1980s. That model has recently undergone additional peer review. The reviewers identified four areas of concern related to the model and its application. This report describes revisions to the model in response to the reviewers concerns. Model revision involved incorporation of explicit treatment of enhanced dispersion at low wind speeds in addition to explicit treatment of enhanced dispersion at high speeds resulting from building wakes. Model parameters are evaluated from turbulence data. Experimental diffusion data from seven reactor sites are used for model evaluation. Compared with models recommended in current NRC guidance to licensees, the revised model is less biased and shows more predictive skill. The revised model is also compared with two non-Gaussian models developed to estimate maximum concentrations in building wakes. The revised model concentration predictions are nearly the same as the predictions of the non-Gaussian models. On the basis of these comparisons of the revised model concentration predictions with experimental data and the predictions of other models, the revised model is found to be an appropriate model for estimating concentrations in the vicinity of buildings

  1. Medium-Range Dispersion Experiments Downwind from a Shoreline in Near Neutral Conditions

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Lyck, E.

    1980-01-01

    Five atmospheric dispersion experiments, all assigned Pasquill stability class D, were performed at Risø National Laboratory. The tracer sulphurhexafluoride was released at a height of 60 m from the Risø meteorological tower, situated on a peninsula in the Roskilde Fjord, Denmark, and was sampled...

  2. Recent developments in the atmospheric dispersion models to be used for regulatory purposes and in risk evaluation

    International Nuclear Information System (INIS)

    Graziani, G.

    1996-01-01

    Climatological models and those most widely used for risk evaluation are generally based on the classification of atmospheric turbulence according to the Pasquill-Gifford categories, and use the Gaussian solution of the dispersion equation. One of their main limitations is that they deal only with continuous or instantaneous (puff) emission. Furthermore, a discretisation in the definition of atmospheric turbulence is performed according to the Pasquill-Gifford categories. This can generate uncertainties, since partial information on the state of the atmosphere at the time of emission can lead to the choice of one category rather than another and consequently to select wrong dispersion parameters. Some of these limits, such as the assumption of flat or slowly varying terrain, and the choice of constant atmospheric conditions during the duration of the release, are intrinsic to the schematization required by these models. Other limitations, such as the finite duration of the emissions and the continuous variation of the physical quantities describing the effect of turbulence on dispersion parameters, can be overcome. This paper describes the possible improvements which can be made in the dispersion models used in regulating emissions in the atmosphere and to calculate the associated risk. In particular the turbulence is based on the definition of some physical quantities varying with continuity which can be easily deduced from simple observations at the meteorological station at release site. It then analyses the application of this approach to a simple dispersion model, which can take into account the finite and non-zero durations of accidental emissions

  3. Characterizing short-range vs. long-range spatial correlations in dislocation distributions

    International Nuclear Information System (INIS)

    Chevy, Juliette; Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent; Bastie, Pierre; Duval, Paul

    2010-01-01

    Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.

  4. Characterizing short-range vs. long-range spatial correlations in dislocation distributions

    Energy Technology Data Exchange (ETDEWEB)

    Chevy, Juliette, E-mail: juliette.chevy@gmail.com [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)] [Laboratoire Science et Ingenierie des Materiaux et Procedes, Grenoble INP-CNRS-UJF, BP 75, 38402 St. Martin d' Heres Cedex (France); Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent [Laboratoire de Physique et Mecanique des Materiaux, Universite Paul Verlaine-Metz/CNRS, Ile du Saulcy, 57045 Metz Cedex (France); Bastie, Pierre [Laboratoire de Spectrometrie Physique, BP 87, 38402 St. Martin d' Heres Cedex (France)] [Institut Laue Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Duval, Paul [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)

    2010-03-15

    Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.

  5. Intentionally Short Range Communications (ISRC)

    Science.gov (United States)

    1993-05-01

    molecular oxygen in the atmosphere at 60 GHz (figure 9 LIppolito, 1981]). The MMW range is similar to that of the UV links. 3.3.1 Variable Range Similar to...option also requires that the signal be strong enough to overcome the noise from the solar and background sources, although the molecular oxygen and... emisions . Lasing will occur only within the cavity when the alignment is correct and not lasing othem ise. Such a cavity is dcteclable only when an observer

  6. A novel nuclear dependence of nucleon–nucleon short-range correlations

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Hongkai [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Rong, E-mail: rwang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Lanzhou University, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huang, Yin [Lanzhou University, Lanzhou 730000 (China); Chen, Xurong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-10

    A linear correlation is found between the magnitude of nucleon–nucleon short-range correlations and the nuclear binding energy per nucleon with pairing energy removed. By using this relation, the strengths of nucleon–nucleon short-range correlations of some unmeasured nuclei are predicted. Discussions on nucleon–nucleon pairing energy and nucleon–nucleon short-range correlations are made. The found nuclear dependence of nucleon–nucleon short-range correlations may shed some lights on the short-range structure of nucleus.

  7. Case study of the atmospheric dispersion of emissions from UPPR/CDTN, Brazil

    International Nuclear Information System (INIS)

    Barreto, Alberto A.; Cesar, Raisa H.S.; Maleta, Paulo G.M.; Grossi, Pablo A.

    2015-01-01

    This work presents a study of the atmospheric dispersion of emissions released during activities of production and research of radiopharmaceuticals in the Center of Nuclear Technology Development (CDTN), localized in Belo Horizonte, Minas Gerais - Brazil. The installation, 'Unidade de Producao e Pesquisa de Radiofarmacos' (UPPR), was considered operating full time during a year. The general goal was to evaluate the radiological environmental impact due to these atmospheric emissions. The pollutants studied were the radionuclides F-18, C-11 and N-13. The meteorological view evaluated was a period of 365 days, simulated from the dates of a typical meteorological year. It was applied the dispersion model ARTM (Atmospheric Radionuclide Transport Model). The atmospheric emissions from UPPR were estimated for the simulation based in an extremely conservative operation condition. Others important data raised and analyzed were: topography, obstacles (buildings) and the land occupation around the CDTN. Among the main results, it is important to emphasize the estimate of the radionuclide concentration and the dose value calculated from these concentration. These results were compared with the dose restriction limit set by the standard CNEN 3.01. Areas of higher concentration were identified and are being used as reference for the positioning of the concentration's monitor of the pollutant by the Radiological Environmental Monitoring Program (PMA). (author)

  8. Magnetic short-range order in Gd

    International Nuclear Information System (INIS)

    Child, H.R.

    1978-01-01

    The magnetic short-range order in a ferromagnetic, isotopically enriched 160 Gd metal single crystal has been investigated by quasielastic scattering of 81-meV neutrons. Since Gd behaves as an S-state ion in the metal, little anisotropy is expected in its magnetic behavior. However, the data show that there is anisotropic short-range order present over a large temperature interval both above and below T/sub C/. The data have been analyzed in terms of an Ornstein-Zernike Lorentzian form with anisotropic correlation ranges. These correlation ranges as deduced from the observed data behave normally above T/sub C/ but seem to remain constant over a fairly large interval below T/sub C/ before becoming unobservable at lower temperatures. These observations suggest that the magnetic ordering in Gd may be a more complicated phenomenon than first believed

  9. Operational mesoscale atmospheric dispersion prediction using high performance parallel computing cluster for emergency response

    International Nuclear Information System (INIS)

    Srinivas, C.V.; Venkatesan, R.; Muralidharan, N.V.; Das, Someshwar; Dass, Hari; Eswara Kumar, P.

    2005-08-01

    An operational atmospheric dispersion prediction system is implemented on a cluster super computer for 'Online Emergency Response' for Kalpakkam nuclear site. The numerical system constitutes a parallel version of a nested grid meso-scale meteorological model MM5 coupled to a random walk particle dispersion model FLEXPART. The system provides 48 hour forecast of the local weather and radioactive plume dispersion due to hypothetical air borne releases in a range of 100 km around the site. The parallel code was implemented on different cluster configurations like distributed and shared memory systems. Results of MM5 run time performance for 1-day prediction are reported on all the machines available for testing. A reduction of 5 times in runtime is achieved using 9 dual Xeon nodes (18 physical/36 logical processors) compared to a single node sequential run. Based on the above run time results a cluster computer facility with 9-node Dual Xeon is commissioned at IGCAR for model operation. The run time of a triple nested domain MM5 is about 4 h for 24 h forecast. The system has been operated continuously for a few months and results were ported on the IMSc home page. Initial and periodic boundary condition data for MM5 are provided by NCMRWF, New Delhi. An alternative source is found to be NCEP, USA. These two sources provide the input data to the operational models at different spatial and temporal resolutions and using different assimilation methods. A comparative study on the results of forecast is presented using these two data sources for present operational use. Slight improvement is noticed in rainfall, winds, geopotential heights and the vertical atmospheric structure while using NCEP data probably because of its high spatial and temporal resolution. (author)

  10. RETADDII: modeling long-range atmospheric transport of radionuclides

    International Nuclear Information System (INIS)

    Murphy, B.D.

    1982-01-01

    A versatile model is described which estimates atmospheric dispersion based on plume trajectories calculated for the mixed layer. This model allows the treatment of the dispersal from a source at an arbitrary height while taking account of plume depletion by dry and wet deposition together with the decay of material to successor species. The plume depletion, decay and growth equations are solved in an efficient manner which can accommodate up to eight pollutants (i.e. a parent and seven serial decay products). The code is particularly suitable for applications involving radioactive chain decay or for cases involving chemical species with successor decay products. Arbitrary emission rates can be specified for the members of the chain or, as is commonly the case, a sole emission rate can be specified for the first member. The code, in its current configuration, uses readily available upper-air wind data for the North American continent

  11. CRUNCH, Dispersion Model for Continuous Dense Vapour Release in Atmosphere

    International Nuclear Information System (INIS)

    Jagger, S.F.

    1987-01-01

    ambient atmospheric turbulence, and to follow the dispersion processes down to low concentrations, especially important for toxic gases, a virtual source passive dispersion model is fitted to the slumping plume. 2 - Restrictions on the complexity of the problem: Acceleration of the plume to the wind velocity is not considered, since an analysis of inertial effects has shown that the time for which these are important is short, compared to the dispersion time. Additionally, wind shear effects on cloud structure are not included; for a puff release producing a cloud of finite extent, this may not be valid but for a plume, extending to large downwind distances, they can be argued to have only a minor influence at the advancing front

  12. Magnetic short range order and the exchange coupling in magnets

    International Nuclear Information System (INIS)

    Antropov, V.P.

    2006-01-01

    We discuss our recent results of time-dependent density functional simulations of magnetic properties of Fe and Ni at finite temperatures. These results indicated that a strong magnetic short range order is responsible for the magnetic properties of elementary Ni and any itinerant magnet in general. We demonstrated that one can use the value of the magnetic short range order parameter to produce new quantitative classification of magnets. We also discuss the nature of the exchange coupling and its connection with the short range order. The spin-wave like propagating and diffusive excitations in paramagnetic localized systems with small short range order have been predicted while in the itinerant systems the short range order is more complicated. The possible smallness of the quantum factor in the itinerant magnets with short range order is discussed

  13. Can the confidence in long range atmospheric transport models be increased? The pan European experience of ensemble

    International Nuclear Information System (INIS)

    Galmarini, S.; Bianconi, R.; Mikkelsen, T.

    2003-01-01

    Full text: In the unfortunate event of an accidental release of radioactive material to the environment, the first concern for early-phase emergency response is atmospheric dispersion. For this purpose, several countries worldwide use operational Long Range Atmospheric Transport (LRAT) models to produce predictions of the event evolution over the continental scale to determine whether, when and how the radioactive cloud is going to hit their country. While presenting the multi-model ensemble dispersion forecast system (ENSEMBLE), the paper seeks to answer the following questions: is atmospheric dispersion forecasting an important asset of the early-phase emergency response management?; Is there a 'Perfect Atmospheric Dispersion Model'?; Is there a way to make the results of dispersion models more reliable and trustworthy? Several activities conducted during the 1990's, sought to estimate quantitatively the capability of LRAT models to forecast the atmospheric dispersion of radionuclides in the atmosphere. The results obtained clearly demonstrated that: the predictions of the various operational LRAT models used worldwide do not systematically agree (mainly due to conceptual differences in model structure and differences in the meteorological forecasts used to simulate the dispersion); none of the models used in the various countries is better than others under all circumstances and therefore there is no objective indication that shows one or few models to be the 'perfect model/s'. Given the realistic scenario that an accident can take place any time, any national authority is however faced with the practical need of managing the emergency and therefore with the dilemma: 'shall one rely an a LRAT model or only an the now cast provided by a monitoring network?' and 'to what extent are a model predictions going to be deceptive in the decision making process?' Since it goes without saying that even a vague idea an the future evolution of a dispersion process is better

  14. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    Science.gov (United States)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  15. Short-range/Long-range Integrated Target (SLIT) for Video Guidance Sensor Rendezvous and Docking

    Science.gov (United States)

    Roe, Fred D. (Inventor); Bryan, Thomas C. (Inventor)

    2009-01-01

    A laser target reflector assembly for mounting upon spacecraft having a long-range reflector array formed from a plurality of unfiltered light reflectors embedded in an array pattern upon a hemispherical reflector disposed upon a mounting plate. The reflector assembly also includes a short-range reflector array positioned upon the mounting body proximate to the long-range reflector array. The short-range reflector array includes three filtered light reflectors positioned upon extensions from the mounting body. The three filtered light reflectors retro-reflect substantially all incident light rays that are transmissive by their monochromatic filters and received by the three filtered light reflectors. In one embodiment the short-range reflector array is embedded within the hemispherical reflector,

  16. Dispersion microclimatology of the Whiteshell Nuclear Research Establishment: 1964-1976

    International Nuclear Information System (INIS)

    Davis, P.A.; Reimer, A.

    1980-10-01

    This report discusses the analysis of data collected on the meteorological tower at the Whiteshell Nuclear Research Establishment (WNRE) during the period 1964-1976. The time-averaged characteristics of wind speed, wind direction, temperature and atmospheric stability are described, and the implications which these chacteristics have for the dispersion of a contaminant released to the atmosphere from the WNRE site are discussed. A comparison of the present results with those of a previous two-year analysis of WNRE measurements suggests that a short-term climatology is sufficiently representative of long-term conditions to provide a reliable base for dispersion predictions. (auth)

  17. Improved scheme for parametrization of convection in the Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME)

    Science.gov (United States)

    Meneguz, Elena; Thomson, David; Witham, Claire; Kusmierczyk-Michulec, Jolanta

    2015-04-01

    NAME is a Lagrangian atmospheric dispersion model used by the Met Office to predict the dispersion of both natural and man-made contaminants in the atmosphere, e.g. volcanic ash, radioactive particles and chemical species. Atmospheric convection is responsible for transport and mixing of air resulting in a large exchange of heat and energy above the boundary layer. Although convection can transport material through the whole troposphere, convective clouds have a small horizontal length scale (of the order of few kilometres). Therefore, for large-scale transport the horizontal scale on which the convection exists is below the global NWP resolution used as input to NAME and convection must be parametrized. Prior to the work presented here, the enhanced vertical mixing generated by non-resolved convection was reproduced by randomly redistributing Lagrangian particles between the cloud base and cloud top with probability equal to 1/25th of the NWP predicted convective cloud fraction. Such a scheme is essentially diffusive and it does not make optimal use of all the information provided by the driving meteorological model. To make up for these shortcomings and make the parametrization more physically based, the convection scheme has been recently revised. The resulting version, presented in this paper, is now based on the balance equation between upward, entrainment and detrainment fluxes. In particular, upward mass fluxes are calculated with empirical formulas derived from Cloud Resolving Models and using the NWP convective precipitation diagnostic as closure. The fluxes are used to estimate how many particles entrain, move upward and detrain. Lastly, the scheme is completed by applying a compensating subsidence flux. The performance of the updated convection scheme is benchmarked against available observational data of passive tracers. In particular, radioxenon is a noble gas that can undergo significant long range transport: this study makes use of observations of

  18. Atmospheric dispersion in complex terrain: Angra-1 nuclear power plant

    International Nuclear Information System (INIS)

    Lima e Silva Filho, P.P. de

    1986-01-01

    The Angra 1 plant is located in a very complex terrain, what makes the environmental impact assessment very difficult, regarding to the atmospheric transport problem as well as to the diffusion problem. Three main characteristics are responsible for that situation: the location at the shoreline, the complex topography and the high roughness of the terrain. Those characteristics generate specific phenomena and utilization of parameters from other sites are not convenient. Considering financial and technical viabilities, we must look for the local parameters, disregarding the easy, although risky, attitude of applying parameters and models incovenient to the Angra site. Some of those aspects are more important, and among them we will discuss the Plume Rise, the Critical Height, the Drainage Flow and the Atmospheric Dispersion Coefficients. (Author) [pt

  19. Streak camera measurements of laser pulse temporal dispersion in short graded-index optical fibers

    International Nuclear Information System (INIS)

    Lerche, R.A.; Phillips, G.E.

    1981-01-01

    Streak camera measurements were used to determine temporal dispersion in short (5 to 30 meter) graded-index optical fibers. Results show that 50-ps, 1.06-μm and 0.53-μm laser pulses can be propagated without significant dispersion when care is taken to prevent propagation of energy in fiber cladding modes

  20. Measurements of short-range ordering in Ni3Al

    International Nuclear Information System (INIS)

    Okamoto, J.K.; Ahn, C.C.

    1992-01-01

    This paper reports on extended electron energy-loss fine structure (EXELFS) that has been used to measure short-range ordering in Ni 3 Al. Films of fcc Ni 3 Al with suppressed short-range order synthesized by vacuum evaporation of Ni 3 Al onto room temperature substrates. EXELFS data were taken from both Al K and Ni L 23 edges. The development of short-range order was observed after the samples were annealed for various times at temperatures below 350 degrees C. Upon comparison with ab initio planewave EXELFS calculations, it was found that the Warren-Cowley short-range order parameter a(1nn) changed by about -0.1 after 210 minutes of annealing at 150 degrees C

  1. Range expansion drives dispersal evolution in an equatorial three-species symbiosis.

    Science.gov (United States)

    Léotard, Guillaume; Debout, Gabriel; Dalecky, Ambroise; Guillot, Sylvain; Gaume, Laurence; McKey, Doyle; Kjellberg, Finn

    2009-01-01

    Recurrent climatic oscillations have produced dramatic changes in species distributions. This process has been proposed to be a major evolutionary force, shaping many life history traits of species, and to govern global patterns of biodiversity at different scales. During range expansions selection may favor the evolution of higher dispersal, and symbiotic interactions may be affected. It has been argued that a weakness of climate fluctuation-driven range dynamics at equatorial latitudes has facilitated the persistence there of more specialized species and interactions. However, how much the biology and ecology of species is changed by range dynamics has seldom been investigated, particularly in equatorial regions. We studied a three-species symbiosis endemic to coastal equatorial rainforests in Cameroon, where the impact of range dynamics is supposed to be limited, comprised of two species-specific obligate mutualists--an ant-plant and its protective ant--and a species-specific ant parasite of this mutualism. We combined analyses of within-species genetic diversity and of phenotypic variation in a transect at the southern range limit of this ant-plant system. All three species present congruent genetic signatures of recent gradual southward expansion, a result compatible with available regional paleoclimatic data. As predicted, this expansion has been accompanied by the evolution of more dispersive traits in the two ant species. In contrast, we detected no evidence of change in lifetime reproductive strategy in the tree, nor in its investment in food resources provided to its symbiotic ants. Despite the decreasing investment in protective workers and the increasing investment in dispersing females by both the mutualistic and the parasitic ant species, there was no evidence of destabilization of the symbiosis at the colonization front. To our knowledge, we provide here the first evidence at equatorial latitudes that biological traits associated with dispersal are

  2. Isobar configurations in nuclei and short range correlations

    CERN Document Server

    Weber, H J

    1979-01-01

    Recent results on short range correlations and isobar configurations are reviewed, and in particular a unitary version of the isobar model, coupling constants and rho -meson transition potentials, a comparison with experiments, the CERN N*-knockout from /sup 4/He, QCD and the NN interaction of short range. (42 refs).

  3. Home range size and breeding dispersal of a common buzzard (Buteo buteo

    Directory of Open Access Journals (Sweden)

    Väli Ülo

    2017-12-01

    Full Text Available Telemetric studies have provided ample information on threatened raptors, but still little is known about space use and dispersal of common species. Here I describe the home range and breeding dispersal of a GPS-tracked adult male common buzzard, studied in south-eastern Estonia in 2014–16. This buzzard’s home range covered 8.3 km2 (kernel 95% estimate with the core range being 2.1 km2 (kernel 50%. The home range increased in the course of the breeding season but decreased again before migration. Surprisingly, the nests in the two successive breeding years were located in the opposite margins of the home range, 1.7 km from each other.

  4. Estimation of the environmental impact of emissions from the La Reina NEC, by atmospheric dispersion modeling

    International Nuclear Information System (INIS)

    Bustamante C, Paula M.; Ortiz R, Marcela A.

    1996-01-01

    Based on a dispersion model, an accidental release of radioactive material to the atmosphere was simulated. To evaluate the consequences of the accidental release it was used the P C COSYMA program (KfK and NRPB). The atmospheric dispersion model was MUSEMET, a segmented Gaussian plume model which requires information on meteorological conditions for a period of one year. This study was carried out to determine the plume's behavior and path, and to define protective actions. The meteorological analysis shows an airflow from the WSW and a channeling flow from the S E at night, due to topographical influences. (author)

  5. User's manual for DWNWND: an interactive Gaussian plume atmospheric transport model with eight dispersion parameter options

    International Nuclear Information System (INIS)

    Fields, D.E.; Miller, C.W.

    1980-05-01

    The most commonly used approach for estimating the atmospheric concentration and deposition of material downwind from its point of release is the Gaussian plume atmospheric dispersion model. Two of the critical parameters in this model are sigma/sub y/ and sigma/sub z/, the horizontal and vertical dispersion parameters, respectively. A number of different sets of values for sigma/sub y/ and sigma/sub z/ have been determined empirically for different release heights and meteorological and terrain conditions. The computer code DWNWND, described in this report, is an interactive implementation of the Gaussian plume model. This code allows the user to specify any one of eight different sets of the empirically determined dispersion paramters. Using the selected dispersion paramters, ground-level normalized exposure estimates are made at any specified downwind distance. Computed values may be corrected for plume depletion due to deposition and for plume settling due to gravitational fall. With this interactive code, the user chooses values for ten parameters which define the source, the dispersion and deposition process, and the sampling point. DWNWND is written in FORTRAN for execution on a PDP-10 computer, requiring less than one second of central processor unit time for each simulation

  6. The European tracer experiment ETEX: a real-time long range atmospheric dispersion model exercise in different weather conditions

    International Nuclear Information System (INIS)

    Graziani, G.; )

    1998-01-01

    Two long-range tracer experiments were conducted. An inert, non-depositing tracer was being released at Rennes in France for 12 hours. The 168 sampling ground stations were run by the National Meteorological Services. Twenty-four institutions took part in the real-time forecasting of the cloud evolution using 28 long-range dispersion models. The horizontal projection of the cloud evolution over Europe was combined with real-time aerial chemical analysis. The results of the comparison indicate that a limited group of models (7-8) were capable of obtaining a good reproduction of the cloud movement throughout Europe for the first release. Large differences were, however, found in the predicted tracer concentration at a particular location. For the second release, there were large differences between the measured and calculated cloud, particularly after a front passage, which indicates that some efforts have still to be spent before consensus on the model reliability is achieved. (P.A.)

  7. ZZ SIESTA, Atmospheric Dispersion Experiment over Complex Terrain

    International Nuclear Information System (INIS)

    2000-01-01

    1 - Name of experiment: SIESTA. 2 - Computer for which program is designed and other machine version packages available: To request or retrieve programs click on the one of the active versions below. A password and special authorization is required. Explanation of the status codes. Program-name: ZZ-SIESTA; Package-ID Status: NEA-1617/01 Tested; Machines used: Package-ID: NEA-1617/01; Orig. Computer: DEC VAX 6000; Test Computer: DEC VAX 6000. 3 - Purpose and phenomena tested: The aim of the project was to obtain knowledge of the general nature of the turbulence, advection and atmospheric dispersion in the two flow regimes parallel to the Swiss Jura ridge, which represent the most frequent wind systems occurring on the Swiss Plain. 4 - Description of the experimental set-up used: The atmospheric dispersion process was investigated by carrying out SF 6 tracer experiments. The tracer was released about 6 m above ground level near the Goesgen meteo tower. Sampling units were placed on ellipses around the release point. Total sampling time was at least one hour. Tracer concentrations were determined after each experiment by Gas chromatography. 5 - Special features: Because of the uncertainty in the transport direction of the tracer plume, a mobile tracer analyzing system was used. 6 - Description of experiment and analysis: To investigate the flow field in the test region, the following measuring setups were used: (1) Three tethered balloon sounding systems to measure temperature, humidity, wind speed and direction; (2) a meteo tower to measure 10-minute averages of wind direction and velocity at two fixed heights; (3) sonic anemometers to measure heat flux, friction velocity, Monin-Obukhov length, and wind speed at the release point and at a certain distance; (4) 2-m masts to measure wind speed and direction continuously. The wind flow system was measured by radar-tracked tetroons

  8. Short-range communication system

    Science.gov (United States)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2012-01-01

    A short-range communication system includes an antenna, a transmitter, and a receiver. The antenna is an electrical conductor formed as a planar coil with rings thereof being uniformly spaced. The transmitter is spaced apart from the plane of the coil by a gap. An amplitude-modulated and asynchronous signal indicative of a data stream of known peak amplitude is transmitted into the gap. The receiver detects the coil's resonance and decodes same to recover the data stream.

  9. Short-range airborne transmission of expiratory droplets between two people

    DEFF Research Database (Denmark)

    Liu, Li; Li, Yuguo; Nielsen, Peter Vilhelm

    2017-01-01

    , ventilation, and breathing mode. Under the specific set of conditions studied, we found a substantial increase in airborne exposure to droplet nuclei exhaled by the source manikin when a susceptible manikin is within about 1.5 m of the source manikin, referred to as the proximity effect. The threshold...... distance of about 1.5 m distinguishes the two basic transmission processes of droplets and droplet nuclei, that is, short-range modes and the long-range airborne route. The short-range modes include both the conventional large droplet route and the newly defined short-range airborne transmission. We thus...... reveal that transmission occurring in close proximity to the source patient includes both droplet-borne (large droplet) and short-range airborne routes, in addition to the direct deposition of large droplets on other body surfaces. The mechanisms of the droplet-borne and short-range airborne routes...

  10. Physical model of the dispersion of a radioactive contaminant in the atmosphere above a heat island

    International Nuclear Information System (INIS)

    Toly, J.A.; Tenchine, D.

    1984-01-01

    The project deals with the impact of surface heating in urban areas on the dispersion of contaminants in the atmosphere. - The atmospheric boundary layer is simulated in a water flume. Ground heating is applied locally reproducing the heat flux of an urban region. Fission products for which internal heat source is neglected are simulated by horizontal plumes at pHs different from the original pH of the flume. - The main results of the study concern: the characterization of the internal boundary layer downstream of the leading edge of the heated ground; the comparison of the concentration distributions of pollutants with and without surface heating. - A transposition of the results, expressed in terms of global parameters, enables information on the heat island effect due to urban regions on the dispersion of contaminants in the atmosphere to be obtained

  11. Description and validation of ERAD: An atmospheric dispersion model for high explosive detonations

    Energy Technology Data Exchange (ETDEWEB)

    Boughton, B.A.; DeLaurentis, J.M.

    1992-10-01

    The Explosive Release Atmospheric Dispersion (ERAD) model is a three-dimensional numerical simulation of turbulent atmospheric transport and diffusion. An integral plume rise technique is used to provide a description of the physical and thermodynamic properties of the cloud of warm gases formed when the explosive detonates. Particle dispersion is treated as a stochastic process which is simulated using a discrete time Lagrangian Monte Carlo method. The stochastic process approach permits a more fundamental treatment of buoyancy effects, calm winds and spatial variations in meteorological conditions. Computational requirements of the three-dimensional simulation are substantially reduced by using a conceptualization in which each Monte Carlo particle represents a small puff that spreads according to a Gaussian law in the horizontal directions. ERAD was evaluated against dosage and deposition measurements obtained during Operation Roller Coaster. The predicted contour areas average within about 50% of the observations. The validation results confirm the model`s representation of the physical processes.

  12. Range expansion drives dispersal evolution in an equatorial three-species symbiosis.

    Directory of Open Access Journals (Sweden)

    Guillaume Léotard

    Full Text Available Recurrent climatic oscillations have produced dramatic changes in species distributions. This process has been proposed to be a major evolutionary force, shaping many life history traits of species, and to govern global patterns of biodiversity at different scales. During range expansions selection may favor the evolution of higher dispersal, and symbiotic interactions may be affected. It has been argued that a weakness of climate fluctuation-driven range dynamics at equatorial latitudes has facilitated the persistence there of more specialized species and interactions. However, how much the biology and ecology of species is changed by range dynamics has seldom been investigated, particularly in equatorial regions.We studied a three-species symbiosis endemic to coastal equatorial rainforests in Cameroon, where the impact of range dynamics is supposed to be limited, comprised of two species-specific obligate mutualists--an ant-plant and its protective ant--and a species-specific ant parasite of this mutualism. We combined analyses of within-species genetic diversity and of phenotypic variation in a transect at the southern range limit of this ant-plant system. All three species present congruent genetic signatures of recent gradual southward expansion, a result compatible with available regional paleoclimatic data. As predicted, this expansion has been accompanied by the evolution of more dispersive traits in the two ant species. In contrast, we detected no evidence of change in lifetime reproductive strategy in the tree, nor in its investment in food resources provided to its symbiotic ants.Despite the decreasing investment in protective workers and the increasing investment in dispersing females by both the mutualistic and the parasitic ant species, there was no evidence of destabilization of the symbiosis at the colonization front. To our knowledge, we provide here the first evidence at equatorial latitudes that biological traits associated

  13. Modelling the atmospheric dispersion of foot-and-mouth disease virus for emergency preparedness

    DEFF Research Database (Denmark)

    Sørensen, J.H.; Jensen, C.O.; Mikkelsen, T.

    2001-01-01

    A model system for simulating airborne spread of foot-and-mouth disease (FMD) is described. The system includes a virus production model and the local- and mesoscale atmospheric dispersion model RIMPUFF linked to the LINCOM local-scale Row model. LINCOM is used to calculate the sub-grid scale Row...

  14. Atmospheric dispersion of radioactive materials

    International Nuclear Information System (INIS)

    Chino, Masamichi

    1988-01-01

    The report describes currently available techniques for predicting the dispersion of accidentally released radioactive materials and techniques for visualization using computer graphics. A simulation study is also made on the dispersion of radioactive materials released from the Chernobyl plant. The simplest models include the Gauss plume model and the puff model, which cannot serve to analyze the effects of the topography, vertical wind shear, temperature inversion layer, etc. Numerical analysis methods using advection and dispersion equations are widely adopted for detailed evaluation of dispersion in an emergency. An objective analysis model or a hydrodynamical model is often used to calculate the air currents which are required to determine the advection. A small system based on the puff model is widely adopted in Europe, where the topography is considered to have only simple effects. A more sophisticated large-sized system is required in nuclear facilities located in an area with more complex topographic features. An emergency system for dispersion calculation should be equipped with a graphic display to serve for quick understanding of the radioactivity distribution. (Nogami, K.)

  15. Convergence monitoring of Markov chains generated for inverse tracking of unknown model parameters in atmospheric dispersion

    International Nuclear Information System (INIS)

    Kim, Joo Yeon; Ryu, Hyung Joon; Jung, Gyu Hwan; Lee, Jai Ki

    2011-01-01

    The dependency within the sequential realizations in the generated Markov chains and their reliabilities are monitored by introducing the autocorrelation and the potential scale reduction factor (PSRF) by model parameters in the atmospheric dispersion. These two diagnostics have been applied for the posterior quantities of the release point and the release rate inferred through the inverse tracking of unknown model parameters for the Yonggwang atmospheric tracer experiment in Korea. The autocorrelations of model parameters are decreasing to low values approaching to zero with increase of lag, resulted in decrease of the dependencies within the two sequential realizations. Their PSRFs are reduced to within 1.2 and the adequate simulation number recognized from these results. From these two convergence diagnostics, the validation of Markov chains generated have been ensured and PSRF then is especially suggested as the efficient tool for convergence monitoring for the source reconstruction in atmospheric dispersion. (author)

  16. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Yohai [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel); Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States)

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  17. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    International Nuclear Information System (INIS)

    Kaspi, Yohai; Showman, Adam P.

    2015-01-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate

  18. Some Observational and Modeling Studies of the Atmospheric Boundary Layer at Mississippi Gulf Coast for Air Pollution Dispersion Assessment

    Directory of Open Access Journals (Sweden)

    Anjaneyulu Yerramilli

    2008-12-01

    Full Text Available Coastal atmospheric conditions widely vary from those over inland due to the land-sea interface, temperature contrast and the consequent development of local circulations. In this study a field meteorological experiment was conducted to measure vertical structure of boundary layer during the period 25-29 June, 2007 at three locations Seabee base, Harrison and Wiggins sites in the Mississippi coast. A GPS Sonde along with slow ascent helium balloon and automated weather stations equipped with slow and fast response sensors were used in the experiment. GPS sonde were launched at three specific times (0700 LT, 1300 LT and 1800 LT during the experiment days. The observations indicate shallow boundary layer near the coast which gradually develops inland. The weather research and forecasting (WRF meso-scale atmospheric model and a Lagrangian particle dispersion model (HYSPLIT are used to simulate the lower atmospheric flow and dispersion in a range of 100 km from the coast for 28-30 June, 2007. The simulated meteorological parameters were compared with the experimental observations. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of development of sea breeze flow, its coupling with the large scale flow field and the ensuing alteration in the mixing depth across the coast. Simulated ground-level concentrations of SO2 from four elevated point sources located along the coast indicate diurnal variation and impact of the local sea-land breeze on the direction of the plume. Model concentration levels were highest during the stable morning condition and during the sea-breeze time in the afternoon. The highest concentrations were found up to 40 km inland during sea breeze time. The study illustrates the application of field meteorological observations for the validation of WRF which is coupled to HYSPLIT for dispersion assessment in the coastal region.

  19. Long-range dipolar order and dispersion forces in polar liquids

    Science.gov (United States)

    Besford, Quinn Alexander; Christofferson, Andrew Joseph; Liu, Maoyuan; Yarovsky, Irene

    2017-11-01

    Complex solvation phenomena, such as specific ion effects, occur in polar liquids. Interpretation of these effects in terms of structure and dispersion forces will lead to a greater understanding of solvation. Herein, using molecular dynamics, we probe the structure of polar liquids through specific dipolar pair correlation functions that contribute to the potential of mean force that is "felt" between thermally rotating dipole moments. It is shown that unique dipolar order exists at separations at least up to 20 Å for all liquids studied. When the structural order is compared with a dipolar dispersion force that arises from local co-operative enhancement of dipole moments, a strong agreement is found. Lifshitz theory of dispersion forces was compared with the structural order, where the theory is validated for all liquids that do not have significant local dipole correlations. For liquids that do have significant local dipole correlations, specifically liquid water, Lifshitz theory underestimates the dispersion force by a factor of 5-10, demonstrating that the force that leads to the increased structure in liquid water is missed by Lifshitz theory of van der Waals forces. We apply similar correlation functions to an ionic aqueous system, where long-range order between water's dipole moment and a single chloride ion is found to exist at 20 Å of separation, revealing a long-range perturbation of water's structure by an ion. Furthermore, we found that waters within the 1st, 2nd, and 3rd solvation shells of a chloride ion exhibit significantly enhanced dipolar interactions, particularly with waters at larger distances of separation. Our results provide a link between structures, dispersion forces, and specific ion effects, which may lead to a more robust understanding of solvation.

  20. Dispersion coefficients for coastal regions

    International Nuclear Information System (INIS)

    MacRae, B.L.; Kaleel, R.J.; Shearer, D.L.

    1983-03-01

    The Nuclear Regulatory Commission (NRC) has undertaken an extensive atmospheric dispersion research and measurement program from which it is intended will emerge improved predictive techniques for employment in licensing decisions and for emergency planning and response. Through this program the NRC has conducted field measurement programs over a wide range of geographic and topographic locations, and are using the acquired tracer and meteorological measurements to evaluate existing dispersion models and prediction techniques, and to develop new techniques when necessary

  1. Simulation of the atmospheric dispersion at local scale in the area of Cogema (la Hague) using PERLE system

    International Nuclear Information System (INIS)

    Sandu, Irina; Lac, Christine

    2003-01-01

    METEO-FRANCE is presently developing a new system named PERLE which permits real time evaluation of atmospheric dispersion at local scale. This system consists in a non-hydrostatic meteorological model at mezo-scale (Meso-NH) and a particular code for the dispersion of the chemically passive pollutants. As a result of several studies performed by DP/SERV/ENV at Meteo-France, two particular codes have been retained for the dispersion module of PERLE: DIFPAR (EDF) and SPRAY (Aria Technologies). In this study, the dispersion at local scale of Kr 85 in the area of the nuclear-wastes reprocessing plant COGEMA (La Hague) has been simulated with the two dispersion models, initialised with the meteorological fields provided by Meso-NH. The simulations concern the most complete sampling campaign of Kr 85 performed in this area on 18th and 19th september 2001. The evaluation the two models performances and of the PERLE system's results for this campaign has been done by using the CTA (Atmospherical Transfer Coefficient) measured values. (authors)

  2. Short range order of selenite glasses

    Czech Academy of Sciences Publication Activity Database

    Neov, S.; Gerasimova, I.; Yordanov, S.; Lakov, L.; Mikula, Pavol; Lukáš, Petr

    1999-01-01

    Roč. 40, č. 2 (1999), s. 111-112 ISSN 0031-9090 R&D Projects: GA AV ČR KSK1010104 Keywords : short range * selenite glasses Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.822, year: 1999

  3. MESOI, an interactive atmospheric dispersion model for emergency response applications

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Athey, G.F.; Glantz, C.S.

    1984-01-01

    MESOI is an interactive atmospheric dispersion model that has been developed for use by the U.S. Department of Energy, and the U.S. Nuclear Regulatory Commission in responding to emergencies at nuclear facilities. MESOI uses both straight-line Gaussian plume and Lagrangian trajectory Gaussian puff models to estimate time-integrated ground-level air and surface concentrations. Puff trajectories are determined from temporally and spatially varying horizontal wind fields that are defined in 3 dimensions. Other processes treated in MESOI include dry deposition, wet deposition and radioactive decay

  4. MESYST, Simulation of 3-D Tracer Dispersion in Atmosphere

    International Nuclear Information System (INIS)

    Mastrangelo, V.; Mehilli, I.

    2000-01-01

    1 - Description of program or function: Mesyst code is used for the simulation of 3D tracer dispersion in atmosphere. Three packages are part of this system: Cre-topo: prepares the terrain data for the Mesyst. Noabl: code calculates three- dimensional free divergence wind fields over complex terrain. Pas: Computing of tracer concentrations and depositions on a given domain. 2 - Method of solution: NOABL - Line Over Relaxation + Special adaptation of Gauss procedure. PAS - Monte Carlo Method. 3 - Restrictions on the complexity of the problem: Computations: Mesh size: variable from some meters to some hundreds meters Mesh number: variable depending on available real data (some hundreds points on each directions)

  5. Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales?

    Science.gov (United States)

    Hewitt, Helene T.; Bell, Michael J.; Chassignet, Eric P.; Czaja, Arnaud; Ferreira, David; Griffies, Stephen M.; Hyder, Pat; McClean, Julie L.; New, Adrian L.; Roberts, Malcolm J.

    2017-12-01

    As the importance of the ocean in the weather and climate system is increasingly recognised, operational systems are now moving towards coupled prediction not only for seasonal to climate timescales but also for short-range forecasts. A three-way tension exists between the allocation of computing resources to refine model resolution, the expansion of model complexity/capability, and the increase of ensemble size. Here we review evidence for the benefits of increased ocean resolution in global coupled models, where the ocean component explicitly represents transient mesoscale eddies and narrow boundary currents. We consider lessons learned from forced ocean/sea-ice simulations; from studies concerning the SST resolution required to impact atmospheric simulations; and from coupled predictions. Impacts of the mesoscale ocean in western boundary current regions on the large-scale atmospheric state have been identified. Understanding of air-sea feedback in western boundary currents is modifying our view of the dynamics in these key regions. It remains unclear whether variability associated with open ocean mesoscale eddies is equally important to the large-scale atmospheric state. We include a discussion of what processes can presently be parameterised in coupled models with coarse resolution non-eddying ocean models, and where parameterizations may fall short. We discuss the benefits of resolution and identify gaps in the current literature that leave important questions unanswered.

  6. Short-range second order screened exchange correction to RPA correlation energies

    Science.gov (United States)

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-01

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  7. Improving long-range dispersion predictions with ETEX real-time and a-posteriori model evaluations

    International Nuclear Information System (INIS)

    Desiato, F.

    1997-01-01

    The Italian environmental Protection Agency (ANPA), which is responsible for the evaluation of the consequences of accidental releases into the atmosphere, has participated to both the real-time (phase-1) and a-posteriori (phase-2) ETEX model evaluations. The double benchmark actually constituted an invaluable experience for better understanding the skill and limits of the present long-range dispersion modelling capabilities. In particular, the strong difference between phase-1 and phase-2 model performance emphasised the opportunity to modify, improve or tune a number of specific aspects of the overall simulation. ETEX model runs were carried out with the Lagrangian particle model APOLLO. The meteorological input was constituted by ECMWF fields. Three-hourly average concentrations paired in space and time and time-integrated concentrations were used in the evaluation of the results, based on a set of statistical indexes and concentration contour lines and scatter diagrams

  8. Post Blast Nuclear Forensics Of A Radiological Dispersion Device Scene

    International Nuclear Information System (INIS)

    Sharon, A.; Halevy, I; Sattinger, D; Admon, U; Banaim, P; Yaar, I.; Krantz, L.

    2014-01-01

    'Green Field' (GF) project conducting in Israel, between the years ’06-‘14, aimed at increasing the preparedness for outdoor terrorism events, where a radioactive (RA) material is dispersed by an explosive charge. Under the project framework a wide experimental program was established and conducted. The experimental plan included set of about 150 detonation tests that were done in order to close some gaps of knowledge mainly relating to the “source term” characterization. Experiments were done using wide range of different source term parameters. Among these are: explosive types, dispersed materials (both, stable simulants and short live radio isotopes), device geometries, ground surfaces, detonation heights and orientation, atmospheric stability situations etc. Field data collection and documentation used some of the “state of the art” detectors, cameras etc. Based on a comprehensive data analysis and complementary simulations, a methodology for post blast forensic using data collected from the close vicinity of the detention point was developed

  9. Field studies of transport and dispersion of atmospheric tracers in nocturnal drainage flows

    Science.gov (United States)

    Paul H. Gudiksen; Gilbert J. Ferber; Malcolm M. Fowler; Wynn L. Eberhard; Michael A. Fosberg; William R. Knuth

    1984-01-01

    A series of tracer experiments were carried out as part of the Atmospheric Studies in Complex Terrain (ASCOT) program to evaluate pollutant transport and dispersion characteristics of nocturnal drainage flows within a valley in northern California. The results indicate that the degree of interaction of the drainage flows with the larger scale regional flows are...

  10. A method of short range system analysis for nuclear utilities

    International Nuclear Information System (INIS)

    Eng, R.; Mason, E.A.; Benedict, M.

    1976-01-01

    An optimization procedure has been formulated and tested that is capable of solving for the optimal generation schedule of several nuclear power reactors in an electric power utility system, under short-range, resource-limited, conditions. The optimization procedure utilizes a new concept called the Opportunity Cost of Nuclear Power (OCNP) to optimally assign the resource-limited nuclear energy to the different weeks and hours in the short-range planning horizon. OCNP is defined as the cost of displaced energy when optimally distributed nuclear energy is marginally increased. Under resource-limited conditions, the short-range 'value' of nuclear power to a utility system is not its actual generation cost, but the cost of the next best alternative supply of energy, the OCNP. OCNP is a function of a week's system reserve capacity, the system's economic loading order, the customer demand function, and the nature of the available utility system generating units. The optimized OCNP value of the short-range planning period represents the utility's short-range energy replacement cost incurred when selling nuclear energy to a neighbouring utility. (author)

  11. Short-Chain Chlorinated Paraffins in Zurich, Switzerland--Atmospheric Concentrations and Emissions.

    Science.gov (United States)

    Diefenbacher, Pascal S; Bogdal, Christian; Gerecke, Andreas C; Glüge, Juliane; Schmid, Peter; Scheringer, Martin; Hungerbühler, Konrad

    2015-08-18

    Short-chain chlorinated paraffins (SCCPs) are of concern due to their potential for adverse health effects, bioaccumulation, persistence, and long-range transport. Data on concentrations of SCCPs in urban areas and underlying emissions are still scarce. In this study, we investigated the levels and spatial distribution of SCCPs in air, based on two separate, spatially resolved sampling campaigns in the city of Zurich, Switzerland. SCCP concentrations in air ranged from 1.8 to 17 ng·m(-3) (spring 2011) and 1.1 to 42 ng·m(-3) (spring 2013) with medians of 4.3 and 2.7 ng·m(-3), respectively. Both data sets show that atmospheric SCCP levels in Zurich can vary substantially and may be influenced by a number of localized sources within this urban area. Additionally, continuous measurements of atmospheric concentrations performed at one representative sampling site in the city center from 2011 to 2013 showed strong seasonal variations with high SCCP concentrations in summer and lower levels in winter. A long-term dynamic multimedia environmental fate model was parametrized to simulate the seasonal trends of SCCP concentrations in air and to back-calculate urban emissions. Resulting annual SCCP emissions in the city of Zurich accounted for 218-321 kg, which indicates that large SCCP stocks are present in urban areas of industrialized countries.

  12. Global atmospheric dispersion modelling after the Fukushima accident

    Energy Technology Data Exchange (ETDEWEB)

    Suh, K.S.; Youm, M.K.; Lee, B.G.; Min, B.I. [Korea Atomic Energy Research Institute (Korea, Republic of); Raul, P. [Universidad de Sevilla (Spain)

    2014-07-01

    A large amount of radioactive material was released to the atmosphere due to the Fukushima nuclear accident in March 2011. The radioactive materials released into the atmosphere were mostly transported to the Pacific Ocean, but some of them were fallen on the surface due to dry and wet depositions in the northwest area from the Fukushima nuclear site. Therefore, northwest part of the nuclear site was seriously contaminated and it was designated with the restricted zone within a radius of 20 ∼ 30 km around the Fukushima nuclear site. In the early phase of the accident from 11 March to 30 March, the radioactive materials were dispersed to an area of the inland and offshore of the nuclear site by the variations of the wind. After the Fukushima accident, the radionuclides were detected through the air monitoring in the many places over the world. The radioactive plume was transported to the east part off the site by the westerly jet stream. It had detected in the North America during March 17-21, in European countries during March 23-24, and in Asia during from March 24 to April 6, 2011. The radioactive materials were overall detected across the northern hemisphere passed by 15 ∼ 20 days after the accident. Three dimensional numerical model was applied to evaluate the dispersion characteristics of the radionuclides released into the air. Simulated results were compared with measurements in many places over the world. Comparative results had good agreements in some places, but they had a little differences in some locations. The difference between the calculations and measurements are due to the meteorological data and relatively coarse resolutions in the model. Some radioactive materials were measured in Philippines, Taiwan, Hon Kong and South Korea during from March 23-28. It inferred that it was directly transported from the Fukushima by the northeastern monsoon winds. This event was well represented in the numerical model. Generally, the simulations had a good

  13. Thermodynamic properties of short-range square well fluid

    Science.gov (United States)

    López-Rendón, R.; Reyes, Y.; Orea, P.

    2006-08-01

    The interfacial properties of short-range square well fluid with λ =1.15, 1.25, and 1.375 were determined by using single canonical Monte Carlo simulations. Simulations were carried out in the vapor-liquid region. The coexistence curves of these models were calculated and compared to those previously reported in the literature and good agreement was found among them. We found that the surface tension curves for any potential model of short range form a single master curve when we plot γ* vs T /Tc. It is demonstrated that the critical reduced second virial coefficient B2* as a function of interaction range or Tc* is not constant.

  14. Dispersion, deposition and resuspension of atmospheric contaminants

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The following topics are discussed: dry deposition, oil shale fugitive air emissions, particle resuspension and translocation, theoretical studies and applications, and processing of emissions by clouds and precipitation. The concentration of contaminant species in air is governed by the rate of input from sources, the rate of dilution or dispersion as a result of air turbulence, and the rate of removal to the surface by wet and dry deposition processes. Once on the surface, contaminants also may be resuspended, depending on meteorological and surface conditions. An understanding of these processes is necessary for accurate prediction of exposures of hazardous or harmful contaminants to humans, animals, and crops. In the field, plume dispersion and plume depletion by dry deposition were studied by the use of tracers. Dry deposition was investigated for particles of both respiration and inhalation interest. Complementary dry deposition studies of particles to rock canopies were conducted under controlled conditions in a wind tunnel. Because of increasing concern about hazardous, organic gases in the atmosphere some limited investigations of the dry deposition of nitrobenzene to a lichen mat were conducted in a stirred chamber. Resuspension was also studied using tracers and contaminated surfaces and in the wind tunnel. The objective of the resuspension studies was to develop and verify models for predicting the airborne concentrations of contaminants over areas with surface contamination, develop resuspension rate predictors for downwind transport, and develop predictors for resuspension input to the food chain. These models will be of particular relevance to the evaluation of deposition and resuspension of both radionuclides and chemical contaminants

  15. Estimation of the emission factors of PAHs by traffic with the model of atmospheric dispersion and deposition from heavy traffic road.

    Science.gov (United States)

    Ozaki, N; Tokumitsu, H; Kojima, K; Kindaichi, T

    2007-01-01

    In order to consider the total atmospheric loadings of the PAHs (polycyclic aromatic hydrocarbons) from traffic activities, the emission factors of PAHs were estimated and from the obtained emission factors and vehicle transportation statistics, total atmospheric loadings were integrated and the loadings into the water body were estimated on a regional scale. The atmospheric concentration of PAHs was measured at the roadside of a road with heavy traffic in the Hiroshima area in Japan. The samplings were conducted in summer and winter. Atmospheric particulate matters (fine particle, 0.6-7 microm; coarse particle, over 7 microm) and their PAH concentration were measured. Also, four major emission sources (gasoline and diesel vehicle emissions, tire and asphalt debris) were assumed for vehicle transportation activities, the chemical mass balance method was applied and the source partitioning at the roadside was estimated. Furthermore, the dispersion of atmospheric particles from the vehicles was modelled and the emission factors of the sources were determined by the comparison to the chemical mass balance results. Based on emission factors derived from the modelling, an atmospheric dispersion model of nationwide scale (National Institute of Advanced Industrial Science and Technology - Atmospheric Dispersion Model for Exposure and Risk assessment) was applied, and the atmospheric concentration and loading to the ground were calculated for the Hiroshima Bay watershed area.

  16. Dispersal Range of Anopheles sinensis in Yongcheng City, China by Mark-Release-Recapture Methods

    Science.gov (United States)

    Guo, Yuhong; Ren, Dongsheng; Zheng, Canjun; Wu, Haixia; Yang, Shuran; Liu, Jingli; Li, Hongsheng; Li, Huazhong; Li, Qun; Yang, Weizhong; Chu, Cordia

    2012-01-01

    Background Studying the dispersal range of Anopheles sinensis is of major importance for understanding the transition from malaria control to elimination. However, no data are available regarding the dispersal range of An. sinensis in China. The aim of the present study was to study the dispersal range of An. sinensis and provide the scientific basis for the development of effective control measures for malaria elimination in China. Methodology/Principal Findings Mark-Release-Recapture (MRR) experiments were conducted with 3000 adult wild An. sinensis in 2010 and 3000 newly emerged wild An. sinensis in 2011 in two villages of Yongcheng City in Henan Province. Marked An. sinensis were recaptured daily for ten successive days using light traps. The overall recapture rates were 0.83% (95% CI, 0.50%∼1.16%) in 2010 and 1.33% (95% CI, 0.92%∼1.74%) in 2011. There was no significant difference in the recapture rates of wild An. sinensis and newly emerged An. sinensis. The majority of An. sinensis were captured due east at study site I compared with most in the west at study site II. Eighty percent and 90% of the marked An. sinensis were recaptured within a radius of 100 m from the release point in study site I and II, respectively, with a maximum dispersal range of 400 m within the period of this study. Conclusions/Significance Our results indicate that local An. sinensis may have limited dispersal ranges. Therefore, control efforts should target breeding and resting sites in proximity of the villages. PMID:23226489

  17. Dispersion of aerosol particles in the free atmosphere using ensemble forecasts

    Directory of Open Access Journals (Sweden)

    T. Haszpra

    2013-10-01

    Full Text Available The dispersion of aerosol particle pollutants is studied using 50 members of an ensemble forecast in the example of a hypothetical free atmospheric emission above Fukushima over a period of 2.5 days. Considerable differences are found among the dispersion predictions of the different ensemble members, as well as between the ensemble mean and the deterministic result at the end of the observation period. The variance is found to decrease with the particle size. The geographical area where a threshold concentration is exceeded in at least one ensemble member expands to a 5–10 times larger region than the area from the deterministic forecast, both for air column "concentration" and in the "deposition" field. We demonstrate that the root-mean-square distance of any particle from its own clones in the ensemble members can reach values on the order of one thousand kilometers. Even the centers of mass of the particle cloud of the ensemble members deviate considerably from that obtained by the deterministic forecast. All these indicate that an investigation of the dispersion of aerosol particles in the spirit of ensemble forecast contains useful hints for the improvement of risk assessment.

  18. Topography and its effects on atmospheric dispersion in a risk study for nuclear facilities

    International Nuclear Information System (INIS)

    Wittek, P.

    1985-07-01

    In the consequence assessment model, applied in the German Reactor Risk Study (GRRS), atmospheric dispersion of radioactive substances is beeing treated with a straight line Gaussian dispersion model. But some of the German nuclear power plants are located in complex terrain. In this report, the 19 sites which are considered in the GRRS, are described and classified by two different methods in respect to terrain complexity. The relevant effects of the terrain on the dispersion are commented. Two modifications of the GRRS consequence assessment code UFOMOD take into account in a simple way the terrain elevation and the enhanced turbulence effected eventually by the terrain structure. Sample calculations for two release categories of the GRRS demonstrate the effect of these modifications on the calculated number of early fatalities. (orig.) [de

  19. Atmospheric transport and dispersion modeling for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1991-07-01

    Radiation doses that may have resulted from operations at the Hanford Site are being estimated in the Hanford Environmental Dose Reconstruction (HEDR) Project. One of the project subtasks, atmospheric transport, is responsible for estimating the transport, diffusion and deposition of radionuclides released to the atmosphere. This report discusses modeling transport and diffusion in the atmospheric pathway. It is divided into three major sections. The first section of the report presents the atmospheric modeling approach selected following discussion with the Technical Steering Panel that directs the HEDR Project. In addition, the section discusses the selection of the MESOI/MESORAD suite of atmospheric dispersion models that form the basis for initial calculations and future model development. The second section of the report describes alternative modeling approaches that were considered. Emphasis is placed on the family of plume and puff models that are based on Gaussian solution to the diffusion equations. The final portion of the section describes the performance of various models. The third section of the report discusses factors that bear on the selection of an atmospheric transport modeling approach for HEDR. These factors, which include the physical setting of the Hanford Site and the available meteorological data, serve as constraints on model selection. Five appendices are included in the report. 39 refs., 4 figs., 2 tabs

  20. A new formulation of the probability density function in random walk models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Falk, Anne Katrine Vinther; Gryning, Sven-Erik

    1997-01-01

    In this model for atmospheric dispersion particles are simulated by the Langevin Equation, which is a stochastic differential equation. It uses the probability density function (PDF) of the vertical velocity fluctuations as input. The PDF is constructed as an expansion after Hermite polynomials...

  1. Modelling of pollen dispersion in the atmosphere: evaluation with a continuous 1β+1δ lidar

    Science.gov (United States)

    Sicard, Michaël; Izquierdo, Rebeca; Jorba, Oriol; Alarcón, Marta; Belmonte, Jordina; Comerón, Adolfo; De Linares, Concepción; Baldasano, José Maria

    2018-04-01

    Pollen allergenicity plays an important role on human health and wellness. It is thus of large public interest to increase our knowledge of pollen grain behavior in the atmosphere (source, emission, processes involved during their transport, etc.) at fine temporal and spatial scales. First simulations with the Barcelona Supercomputing Center NMMB/BSC-CTM model of Platanus and Pinus dispersion in the atmosphere were performed during a 5-day pollination event observed in Barcelona, Spain, between 27 - 31 March, 2015. The simulations are compared to vertical profiles measured with the continuous Barcelona Micro Pulse Lidar system. First results show that the vertical distribution is well reproduced by the model in shape, but not in intensity, the model largely underestimating in the afternoon. Guidelines are proposed to improve the dispersion of airborne pollen by numerical prediction models.

  2. Unitarity corrections to short-range order long-range rapidity correlations

    CERN Document Server

    Capella, A

    1978-01-01

    Although the effective hadronic forces have short range in rapidity space, one nevertheless expects long-range dynamical correlations induced by unitarity constraints. This paper contains a thorough discussion of long-range rapidity correlations in high-multiplicity events. In particular, the authors analyze in detail the forward- backward multiplicity correlations, measured recently in the whole CERN ISR energy range. They find from these data that the normalized variance of the number n of exchanged cut Pomerons, ((n/(n)-1)/sup 2/) , is most probably in the range 0.32 to 0.36. They show that such a number is obtained from Reggeon theory in the eikonal approximation. The authors also predict a very specific violation of local compensation of charge in multiparticle events: The violation should appear in the fourth-order zone correlation function and is absent in the second-order correlation function, the only one measured until now. (48 refs).

  3. The nuclear contacts and short range correlations in nuclei

    Science.gov (United States)

    Weiss, R.; Cruz-Torres, R.; Barnea, N.; Piasetzky, E.; Hen, O.

    2018-05-01

    Atomic nuclei are complex strongly interacting systems and their exact theoretical description is a long-standing challenge. An approximate description of nuclei can be achieved by separating its short and long range structure. This separation of scales stands at the heart of the nuclear shell model and effective field theories that describe the long-range structure of the nucleus using a mean-field approximation. We present here an effective description of the complementary short-range structure using contact terms and stylized two-body asymptotic wave functions. The possibility to extract the nuclear contacts from experimental data is presented. Regions in the two-body momentum distribution dominated by high-momentum, close-proximity, nucleon pairs are identified and compared to experimental data. The amount of short-range correlated (SRC) nucleon pairs is determined and compared to measurements. Non-combinatorial isospin symmetry for SRC pairs is identified. The obtained one-body momentum distributions indicate dominance of SRC pairs above the nuclear Fermi-momentum.

  4. Methods for studying short-range order in solid binary solutions

    International Nuclear Information System (INIS)

    Beranger, Gerard

    1969-12-01

    The short range order definition and its characteristic parameters are first recalled. The different methods to study the short range order are then examined: X ray diffusion, electrical resistivity, specific heat and thermoelectric power, neutron diffraction, electron spin resonance, study of thermodynamic and mechanical properties. The theory of the X ray diffraction effects due to short range order and the subsequent experimental method are emphasized. The principal results obtained from binary Systems, by the different experimental techniques, are reported and briefly discussed. The Au-Cu, Li-Mg, Au-Ni and Cu-Zn Systems are moreover described. (author) [fr

  5. ATMOSPHERIC DISPERSION COEFFICIENTS AND RADIOLOGICAL AND TOXICOLOGICAL EXPOSURE METHODOLOGY FOR USE IN TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    GRIGSBY KM

    2011-04-07

    This report presents the atmospheric dispersion coefficients used in Tank Farms safety analysis. The basis equations for calculating radiological and toxicological exposures are also included. In this revision, the time averaging for toxicological consequence evaluations is clarified based on a review of DOE complex guidance and a review of tank farm chemicals.

  6. Sensitivity Analysis of Onsite Atmospheric Dispersion Factor in Westinghouse type NPP in KOREA

    International Nuclear Information System (INIS)

    Lee, Seung Chan; Yoon, Duk Joo; Song, Dong Soo

    2016-01-01

    ARCON96 is a NRC licensed air dispersion model to evaluate onsite atmospheric relative concentration X/Q. The purpose of this paper is to provide some results for checking and testing the functionalities of ARCON96. Specially, this code is optimized to estimate a habitability of control room. Since NUREG 0737 issue, the control room habitability has been studied for a FSAR (Final Safety Analysis Report). Some assumptions and methodology is used in this paper. Some methodology is introduced in this paper. The reason of the selection of 2-loop Westinghouse NPP is because of carrying out the study project for the 2-loop Westinghouse NPP in the condition of the defueled NPP condition. Onsite atmospheric dispersion factor sensitivity is performed. Key impact factor is reviewed. Some results are below: a. Time averaged effect of X/Q is timely increased. b. ARCON96 code is more conservative at the low wind speed conditions. c. Building wake impact is significant in the condition of unstable atmospheric class with more than 7m/sec of wind speed. d. Plume meander effect is strong when the distance from the release point is small. e. The other plume meander effect is strong when the meander duration time is accumulated Finally, these results show that the appropriate conservation of ARCON96 is appeared in some conditions. Also these results seem to be in good agreement with NRC Regulatory Guide and positions

  7. Sensitivity Analysis of Onsite Atmospheric Dispersion Factor in Westinghouse type NPP in KOREA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Chan; Yoon, Duk Joo; Song, Dong Soo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    ARCON96 is a NRC licensed air dispersion model to evaluate onsite atmospheric relative concentration X/Q. The purpose of this paper is to provide some results for checking and testing the functionalities of ARCON96. Specially, this code is optimized to estimate a habitability of control room. Since NUREG 0737 issue, the control room habitability has been studied for a FSAR (Final Safety Analysis Report). Some assumptions and methodology is used in this paper. Some methodology is introduced in this paper. The reason of the selection of 2-loop Westinghouse NPP is because of carrying out the study project for the 2-loop Westinghouse NPP in the condition of the defueled NPP condition. Onsite atmospheric dispersion factor sensitivity is performed. Key impact factor is reviewed. Some results are below: a. Time averaged effect of X/Q is timely increased. b. ARCON96 code is more conservative at the low wind speed conditions. c. Building wake impact is significant in the condition of unstable atmospheric class with more than 7m/sec of wind speed. d. Plume meander effect is strong when the distance from the release point is small. e. The other plume meander effect is strong when the meander duration time is accumulated Finally, these results show that the appropriate conservation of ARCON96 is appeared in some conditions. Also these results seem to be in good agreement with NRC Regulatory Guide and positions.

  8. HGSYSTEMUF6, Simulating Dispersion Due to Atmospheric Release of Uranium Hexafluoride (UF6)

    International Nuclear Information System (INIS)

    Hanna, G; Chang, J.C.; Zhang, J.X.; Bloom, S.G.; Goode, W.D. Jr; Lombardi, D.A.; Yambert, M.W.

    2001-01-01

    1 - Description of program or function: HGSYSTEMUF6 is a suite of models designed for use in estimating consequences associated with accidental, atmospheric release of Uranium Hexafluoride (UF 6 ) and its reaction products, namely Hydrogen Fluoride (HF), and other non-reactive contaminants which are either negatively, neutrally, or positively buoyant. It is based on HGSYSTEM Version 3.0 of Shell Research LTD., and contains specific algorithms for the treatment of UF 6 chemistry and thermodynamics. HGSYSTEMUF6 contains algorithms for the treatment of dense gases, dry and wet deposition, effects due to the presence of buildings (canyon and wake), plume lift-off, and the effects of complex terrain. The models components of the suite include (1) AEROPLUME/RK, used to model near-field dispersion from pressurized two-phase jet releases of UF6 and its reaction products, (2) HEGADAS/UF6 for simulating dense, ground based release of UF 6 , (3) PGPLUME for simulation of passive, neutrally buoyant plumes (4) UF6Mixer for modeling warm, potentially reactive, ground-level releases of UF 6 from buildings, and (5) WAKE, used to model elevated and ground-level releases into building wake cavities of non-reactive plumes that are either neutrally or positively buoyant. 2 - Methods: The atmospheric release and transport of UF 6 is a complicated process involving the interaction between dispersion, chemical and thermodynamic processes. This process is characterized by four separate stages (flash, sublimation, chemical reaction entrainment and passive dispersion) in which one or more of these processes dominate. The various models contained in the suite are applicable to one or more of these stages. For example, for modeling reactive, multiphase releases of UF 6 , the AEROPLUME/RK component employs a process-splitting scheme which numerically integrates the differential equations governing dispersion, UF 6 chemistry, and thermodynamics. This algorithm is based on the assumption that

  9. Tracer experiment data sets for the verification of local and meso-scale atmospheric dispersion models including topographic effects

    International Nuclear Information System (INIS)

    Sartori, E.; Schuler, W.

    1992-01-01

    Software and data for nuclear energy applications are acquired, tested and distributed by several information centres; in particular, relevant computer codes are distributed internationally by the OECD/NEA Data Bank (France) and by ESTSC and EPIC/RSIC (United States). This activity is coordinated among the centres and is extended outside the OECD area through an arrangement with the IAEA. This article proposes more specifically a scheme for acquiring, storing and distributing atmospheric tracer experiment data (ATE) required for verification of atmospheric dispersion models especially the most advanced ones including topographic effects and specific to the local and meso-scale. These well documented data sets will form a valuable complement to the set of atmospheric dispersion computer codes distributed internationally. Modellers will be able to gain confidence in the predictive power of their models or to verify their modelling skills. (au)

  10. High Explosive Radiological Dispersion Device: Time and Distance Multiscale Study

    International Nuclear Information System (INIS)

    Sharon, A.; Sattinger, I.; Halevy, D.; Banaim, P.; Yaar, I.; Krantz, L.

    2014-01-01

    A wide range of explosion tests imitates different explosive RDD scenarios were conducted and aimed at increasing the preparedness for possible terrorism events, where radioactive (RA) materials disperse via an explosive charge. About 20 atmospheric dispersion tests were conducted using6-8 Ci of 99mTc which were coupled to TNT charges within the range of 0.2525 kg. Tests performed above different typical urban ground surfaces (in order to study the surface effect on the activity ground deposition pattern due to different in particles size distribution). We have used an efficient aerosolizing devices, means that most of the RA particles were initially created within the size of fine aerosols, mostly respirable. Ground activity measurements were performed both, around the dispersion point and up to few hundred meters downwind. Micrometeorology parameters (wind intensity and direction, potential temperature, relative humidity, solar radiation and atmospheric stability) were collected allowing comparisons topredictions of existing atmospheric dispersion models’1. Based on the experimental results, new model parameterizations were performed. Improvements in the models’ predictions were achieved and a set of thumb rules for first responders was formulated. This paper describes the project objectives, some of the experimental setups and results obtained. Post detonation nuclear forensic considerations can be made based upon results achieved

  11. Amorphous photonic crystals with only short-range order.

    Science.gov (United States)

    Shi, Lei; Zhang, Yafeng; Dong, Biqin; Zhan, Tianrong; Liu, Xiaohan; Zi, Jian

    2013-10-04

    Distinct from conventional photonic crystals with both short- and long-range order, amorphous photonic crystals that possess only short-range order show interesting optical responses owing to their unique structural features. Amorphous photonic crystals exhibit unique light scattering and transport, which lead to a variety of interesting phenomena such as isotropic photonic bandgaps or pseudogaps, noniridescent structural colors, and light localization. Recent experimental and theoretical advances in the study of amorphous photonic crystals are summarized, focusing on their unique optical properties, artificial fabrication, bionspiration, and potential applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A description of the atmospheric tracer technology used at the J.R.C.-Ispra

    International Nuclear Information System (INIS)

    Gaglione, P.

    1988-01-01

    Atmospheric tracers are a versatile tool that can be used in conjunction with basic meteorological investigations and models to gain a better understanding of the dynamical behaviour of atmospheric pollutants on both the local and regional scales. The tracer activity was initiated at Ispra about ten years ago, with the aim of providing an experimental support to the research activity carried out in the field of air pollution modeling. At the time the area of interest was mainly related to the atmospheric dispersion on a local scale of pollutants released from stacks of power stations, therefore a technique using SF 6 as a tracer was implemented. In the last few years some efforts have been devoted also to the determination of the atmospheric dispersion parameters in the mesoscale and in the regional scale. Due to the limitations in the use of SF 6 over these distances, a new technique utilizing perfluorocarbons (C 7 F 14 and C 8 F 16 ) as tracers has been implemented and positively tested in the field, even though limited until now to a few short range experiments. The purpose of this presentation is to describe the tracer technology developments at the J.R.C.-Ispra including the main results obtained in different field studies

  13. Short-range components of nuclear forces: Experiment versus mythology

    International Nuclear Information System (INIS)

    Kukulin, V. I.; Platonova, M. N.

    2013-01-01

    The present-day situation around the description of various (central, spin-orbit, and tensor) components of short-range nuclear forces is discussed. A traditional picture of these interactions based on the idea of one-meson exchange is contrasted against numerous results of recent experiments. As is shown in the present study, these results often deviate strongly from the predictions of traditional models. One can therefore state that such models are inapplicable to describing short-range nuclear forces and that it is necessary to go over from a traditional description to some alternative QCD-based (or QCD-motivated) picture. This means that, despite the widespread popularity of traditional concepts of short-range nuclear forces and their applicability in many particular cases, these concepts are not more than scientific myths that show their inconsistency when analyzed from the viewpoint of the modern experiment

  14. Comparison of the Tritium permeated from ITER Blanket in normal operation and its short range impact of HT over France, Swiss or Spain

    Energy Technology Data Exchange (ETDEWEB)

    Castro, P.; Velarde, M.; Ardao, J.; Perlado, J.; Sedano, L.; Xiberta, J.

    2015-07-01

    In this paper we assumes the hydrogen isotopes permeation from a liquid metal ITER breeder blanket (assuming normal operation and a LM as DCLL or HCLL blanket) as one of the possible sources of a leak and tritium release,mainly but not only. The paper presents a short range low impact of HT gas activity over France, Swiss or Spain from same cases in 2014 and 2015 releases from ITER. The permeation of hydrogen isotopes is an important experimental issue to take into account into the development of a Tritium Breeder Module for ITER [1]. Tritium cannot be confined -without an uncertainty of 5% in the flux permeation- and therefore HT can be detected (e.g. by ionization chamber) as permeates though the structure of RAFM steel towards the coolant [1]. HT from Pb15.7Li and permeated in Eurofer97 can contaminate the other parts of the system and may be delivered though the normal-vent detritiation system (NVDS). Real time forecast of transport of tritium in air from the fusion reactor towards off-site far downwind though extended tritium clouds into the low levels of the atmosphere is calculated for the short range (up to 24 hours) by the coupling of 2 models the European Centre for Medium Range Weather Forecast (ECMWF) [2] model and the FLEXPART lagrangian dispersion model [3] verified with NORMTRI simulation [4] and implemented in many different cases and scenarios [5, 6, 7]. As a function of daily weather conditions the release will affect just France or already can be delivered towards Swiss when cyclonic circulation, or towards the Iberian Peninsula or Balearic Islands (Spain) when high produce anticyclonic circulation of the air over the Mediterranean Sea. (Author)

  15. Atmospherical experiment in Angra I plant for characterizing the effluent transport threw in the atmospheric

    International Nuclear Information System (INIS)

    Silva Lobo, M.A. da; Kronemberger, B.M.E.

    1989-01-01

    Available as short communication only. The Environmental Safety Division of the Nuclear Safety and Fuel Department from FURNAS Electric Station S.A. joint with the National Oceanic and Atmospheric Administration (NOAA), achieved a field experiment for characterizing the atmospheric transport and diffusion in the site complex of Angra I Nuclear Power Plant. The complex topography with the thick vegetation and the neighbour building bring problems for the modelling of the effluent transport and the dispersion. The actual meteorological measure system is automatic and compound with four towers. An intensive atmospheric measure with captive balloon is included, and the collected data shows that the site flux is strongly influenced by the topography and insolation. (C.G.C.). 2 figs

  16. Laser Meter of Atmospheric Inhomogeneity Properties in UV Spectral Range

    Directory of Open Access Journals (Sweden)

    S. E. Ivanov

    2015-01-01

    Full Text Available Development of laser systems designed to operate in conditions of the terrestrial atmosphere demands reliable information about the atmosphere condition. The aerosol lidars for operational monitoring of the atmosphere allow us to define remotely characteristics of atmospheric aerosol and cloudy formations in the atmosphere.Today the majority of aerosol lidars run in the visible range. However, in terms of safety (first of all to eyes also ultra-violet (UF range is of interest. A range of the wavelengths of the harmful effect on the eye retina is from 0.38 to 1.4 mμ. Laser radiation with the wavelengths less than 0.38 mμ and over 1.4 mμ influences the anterior ambient of an eye and is safer, than laser radiation with the wavelengths of 0.38 – 1.4 mμ.The paper describes a laser meter to measure characteristics of atmospheric inhomogeneity propertis in UF spectral range at the wavelength of 0.355 mμ.As a radiation source, the meter uses a semiconductor-pumped pulse solid-state Nd:YAG laser. As a receiving lens, Kassegren's scheme-implemented mirror lens with a socket to connect optical fibre is used in the laser meter. Radiation from the receiving lens is transported through the optical fibre to the optical block. The optical block provides spectral selection of useful signal and conversion of optical radiation into electric signal.To ensure a possibility for alignment of the optical axes of receiving lens and laser radiator the lens is set on the alignment platform that enables changing lens inclination and turn with respect to the laser.The software of the laser meter model is developed in the NI LabVIEW 2012 graphic programming environment.The paper gives the following examples: a typical laser echo signal, which is back scattered by the atmosphere and spatiotemporal distribution of variation coefficient of the volumetric factor of the back scattered atmosphere. Results of multi-day measurements show that an extent of the recorded aerosol

  17. Atmospheric mercury dispersion modelling from two nearest hypothetical point sources

    Energy Technology Data Exchange (ETDEWEB)

    Al Razi, Khandakar Md Habib; Hiroshi, Moritomi; Shinji, Kambara [Environmental and Renewable Energy System (ERES), Graduate School of Engineering, Gifu University, Yanagido, Gifu City, 501-1193 (Japan)

    2012-07-01

    The Japan coastal areas are still environmentally friendly, though there are multiple air emission sources originating as a consequence of several developmental activities such as automobile industries, operation of thermal power plants, and mobile-source pollution. Mercury is known to be a potential air pollutant in the region apart from SOX, NOX, CO and Ozone. Mercury contamination in water bodies and other ecosystems due to deposition of atmospheric mercury is considered a serious environmental concern. Identification of sources contributing to the high atmospheric mercury levels will be useful for formulating pollution control and mitigation strategies in the region. In Japan, mercury and its compounds were categorized as hazardous air pollutants in 1996 and are on the list of 'Substances Requiring Priority Action' published by the Central Environmental Council of Japan. The Air Quality Management Division of the Environmental Bureau, Ministry of the Environment, Japan, selected the current annual mean environmental air quality standard for mercury and its compounds of 0.04 ?g/m3. Long-term exposure to mercury and its compounds can have a carcinogenic effect, inducing eg, Minamata disease. This study evaluates the impact of mercury emissions on air quality in the coastal area of Japan. Average yearly emission of mercury from an elevated point source in this area with background concentration and one-year meteorological data were used to predict the ground level concentration of mercury. To estimate the concentration of mercury and its compounds in air of the local area, two different simulation models have been used. The first is the National Institute of Advanced Science and Technology Atmospheric Dispersion Model for Exposure and Risk Assessment (AIST-ADMER) that estimates regional atmospheric concentration and distribution. The second is the Hybrid Single Particle Lagrangian Integrated trajectory Model (HYSPLIT) that estimates the atmospheric

  18. Atmospheric dispersion and individual exposure of hazardous materials

    International Nuclear Information System (INIS)

    Efthimiou, G.C.; Bartzis, J.G.

    2011-01-01

    In this work a new approach for CFD RANS modelling of dispersion of airborne point source releases is presented. The key feature of this approach is the model capability to predict concentration time scales that are functions not only of the flow turbulence scales but also of the pollutant travel time. This approach has been implemented for the calculation of the concentration fluctuation dissipation time scale and the maximum individual exposure at short time intervals. For the estimation of travel time in the Eulerian grid the new 'radioactive tracer method' is introduced. The new approaches were incorporated in the CFD code ADREA. The capabilities of the new approaches are validated against the Mock Urban Setting Trial field experiment data under neutral conditions. The comparisons of model and observations gave quite satisfactory results.

  19. High-Capacity Short-Range Optical Communication Links

    DEFF Research Database (Denmark)

    Tatarczak, Anna

    Over the last decade, we have observed a tremendous spread of end-user mobile devices. The user base of a mobile application can grow or shrink by millions per day. This situation creates a pressing need for highly scalable server infrastructure; a need nowadays satisfied through cloud computing...... offered by data centers. As the popularity of cloud computing soars, the demand for high-speed, short-range data center links grows. Vertical cavity surface emitting lasers (VCSEL) and multimode fibers (MMF) prove especially well-suited for such scenarios. VCSELs have high modulation bandwidths......, we achieve 10 Gbps over 400 m and then conrm the approach in an optimized system at 25 Gbps over 300 m. The techniques described in this thesis leverage additional degrees of freedom to better utilize the available resources of short-range links. The proposed schemes enable higher speeds and longer...

  20. Effects of different dispersal patterns on the presence-absence of multiple species

    Science.gov (United States)

    Mohd, Mohd Hafiz; Murray, Rua; Plank, Michael J.; Godsoe, William

    2018-03-01

    Predicting which species will be present (or absent) across a geographical region remains one of the key problems in ecology. Numerous studies have suggested several ecological factors that can determine species presence-absence: environmental factors (i.e. abiotic environments), interactions among species (i.e. biotic interactions) and dispersal process. While various ecological factors have been considered, less attention has been given to the problem of understanding how different dispersal patterns, in interaction with other factors, shape community assembly in the presence of priority effects (i.e. where relative initial abundances determine the long-term presence-absence of each species). By employing both local and non-local dispersal models, we investigate the consequences of different dispersal patterns on the occurrence of priority effects and coexistence in multi-species communities. In the case of non-local, but short-range dispersal, we observe agreement with the predictions of local models for weak and medium dispersal strength, but disagreement for relatively strong dispersal levels. Our analysis shows the existence of a threshold value in dispersal strength (i.e. saddle-node bifurcation) above which priority effects disappear. These results also reveal a co-dimension 2 point, corresponding to a degenerate transcritical bifurcation: at this point, the transcritical bifurcation changes from subcritical to supercritical with corresponding creation of a saddle-node bifurcation curve. We observe further contrasting effects of non-local dispersal as dispersal distance changes: while very long-range dispersal can lead to species extinctions, intermediate-range dispersal can permit more outcomes with multi-species coexistence than short-range dispersal (or purely local dispersal). Overall, our results show that priority effects are more pronounced in the non-local dispersal models than in the local dispersal models. Taken together, our findings highlight

  1. Positional short-range order in the nematic phase of n BABAs

    Science.gov (United States)

    Usha Deniz, K.; Pepy, G.; Parette, G.; Keller, P.

    1991-10-01

    The positional short-range order, SRO ⊥, perpendicular to the nematic director n̂ has been studied in the fibre-type nematics, nBABAs, by neutron diffraction. SRO ⊥ is found to be dependent on other types of nematic short-range order but not on the orientational long-range order.

  2. Improved Meteorological Input for Atmospheric Release Decision support Systems and an Integrated LES Modeling System for Atmospheric Dispersion of Toxic Agents: Homeland Security Applications

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, E; Simpson, M; Larsen, S; Gash, J; Aluzzi, F; Lundquist, J; Sugiyama, G

    2010-04-26

    When hazardous material is accidently or intentionally released into the atmosphere, emergency response organizations look to decision support systems (DSSs) to translate contaminant information provided by atmospheric models into effective decisions to protect the public and emergency responders and to mitigate subsequent consequences. The Department of Homeland Security (DHS)-led Interagency Modeling and Atmospheric Assessment Center (IMAAC) is one of the primary DSSs utilized by emergency management organizations. IMAAC is responsible for providing 'a single piont for the coordination and dissemination of Federal dispersion modeling and hazard prediction products that represent the Federal position' during actual or potential incidents under the National Response Plan. The Department of Energy's (DOE) National Atmospheric Release Advisory Center (NARAC), locatec at the Lawrence Livermore National Laboratory (LLNL), serves as the primary operations center of the IMAAC. A key component of atmospheric release decision support systems is meteorological information - models and data of winds, turbulence, and other atmospheric boundary-layer parameters. The accuracy of contaminant predictions is strongly dependent on the quality of this information. Therefore, the effectiveness of DSSs can be enhanced by improving the meteorological options available to drive atmospheric transport and fate models. The overall goal of this project was to develop and evaluate new meteorological modeling capabilities for DSSs based on the use of NASA Earth-science data sets in order to enhance the atmospheric-hazard information provided to emergency managers and responders. The final report describes the LLNL contributions to this multi-institutional effort. LLNL developed an approach to utilize NCAR meteorological predictions using NASA MODIS data for the New York City (NYC) region and demonstrated the potential impact of the use of different data sources and data

  3. Atmospheric dispersion characteristics of radioactive materials according to the local weather and emission conditions

    Energy Technology Data Exchange (ETDEWEB)

    An, Hye Yeon; Kang, Yoon Hee; Kim, Yoo Keun [Pusan National University, Busan (Korea, Republic of); Song, Sang Keun [Jeju National University, Jeju (Korea, Republic of)

    2016-12-15

    This study evaluated the atmospheric dispersion of radioactive material according to local weather conditions and emission conditions. Local weather conditions were defined as 8 patterns that frequently occur around the Kori Nuclear Power Plant and emission conditions were defined as 6 patterns from a combination of emission rates and the total number of particles of the {sup 137}Cs, using the WRF/HYSPLIT modeling system. The highest mean concentration of {sup 137}Cs occurred at 0900 LST under the ME4{sub 1} (main wind direction: SSW, daily average wind speed: 2.8 ms{sup -1}), with a wide region of its high concentration due to the continuous wind changes between 0000 and 0900 LST; under the ME3 (NE, 4.1 ms{sup -1}), the highest mean concentration of {sup 137}Cs occurred at 1500 and 2100 LST with a narrow dispersion along a strong northeasterly wind. In the case of ME4{sub 4} (S, 2.7 ms{sup -1}), the highest mean concentration of {sup 137}Cs occurred at 0300 LST because {sup 137}Cs stayed around the KNPP under low wind speed and low boundary layer height. As for the emission conditions, EM1{sub 3} and EM2{sub 3} that had the maximum total number of particles showed the widest dispersion of {sup 137}Cs, while its highest mean concentration was estimated under the EM1{sub 1} considering the relatively narrow dispersion and high emission rate. This study showed that even though an area may be located within the same radius around the Kori Nuclear Power Plant, the distribution and levels of {sup 137}Cs concentration vary according to the change in time and space of weather conditions (the altitude of the atmospheric boundary layer, the horizontal and vertical distribution of the local winds, and the precipitation levels), the topography of the regions where {sup 137}Cs is dispersed, the emission rate of {sup 137}Cs, and the number of emitted particles.

  4. Atmospheric dispersion models for environmental pollution applications

    International Nuclear Information System (INIS)

    Gifford, F.A.

    1976-01-01

    Pollutants are introduced into the air by many of man's activities. The potentially harmful effects these can cause are, broadly speaking, of two kinds: long-term, possibly large-scale and wide-spread chronic effects, including long-term effects on the earth's climate; and acute, short-term effects such as those associated with urban air pollution. This section is concerned with mathematical cloud or plume models describing the role of the atmosphere, primarily in relation to the second of these, the acute effects of air pollution, i.e., those arising from comparatively high concentration levels. The need for such air pollution modeling studies has increased spectacularly as a result of the National Environmental Policy Act of 1968 and, especially, two key court decisions; the Calvert Cliffs decision, and the Sierra Club ruling on environmental non-degradation

  5. Evaluation of radioxenon releases in Australia using atmospheric dispersion modelling tools

    International Nuclear Information System (INIS)

    Tinker, Rick; Orr, Blake; Grzechnik, Marcus; Hoffmann, Emmy; Saey, Paul; Solomon, Stephen

    2010-01-01

    The origin of a series of atmospheric radioxenon events detected at the Comprehensive Test Ban Treaty Organisation (CTBTO) International Monitoring System site in Melbourne, Australia, between November 2008 and February 2009 was investigated. Backward tracking analyses indicated that the events were consistent with releases associated with hot commission testing of the Australian Nuclear Science Technology Organisation (ANSTO) radiopharmaceutical production facility in Sydney, Australia. Forward dispersion analyses were used to estimate release magnitudes and transport times. The estimated 133 Xe release magnitude of the largest event (between 0.2 and 34 TBq over a 2 d window), was in close agreement with the stack emission releases estimated by the facility for this time period (between 0.5 and 2 TBq). Modelling of irradiation conditions and theoretical radioxenon emission rates were undertaken and provided further evidence that the Melbourne detections originated from this radiopharmaceutical production facility. These findings do not have public health implications. This is the first comprehensive study of atmospheric radioxenon measurements and releases in Australia.

  6. Gas and aerosol radionuclide transfers in complex environments: experimental studies of atmospheric dispersion and interfaces exchanges

    International Nuclear Information System (INIS)

    Maro, Denis

    2011-01-01

    In situations of chronic or accidental releases, the atmosphere is the main pathway of radioactive releases from nuclear facilities to the environment and, consequently, to humans. It is therefore necessary to have sufficient information on this pathway to accurately assess the radiological impact on man and his environment. Institute for Radioprotection and Nuclear Safety develops its own tools of dispersion and atmospheric transfer for its expertise, under normal operation conditions of a facility, but especially in crisis or post-accident. These tools must have a national and international recognition in particular through scientific validation against benchmark experiments performed internationally, nationally or within the IRSN. The Radioecology Laboratory of Cherbourg-Octeville provides, and will increasingly make, a significant contribution to the scientific influence of the Institute in this field. The work presented in this report has contributed to the development or improvement of experimental techniques in the fields of atmospheric dispersion of radionuclides and transfer at interfaces, in complex environments (complex topography, urban area). These experimental techniques, applied during field campaigns, have allowed to acquire new data in order to get a better understanding of radionuclide transfers in the form of gases and aerosols. (author)

  7. Evaluating the Effect of Nuclear Power Plant Buildings on the Atmospheric Dispersion Behavior of Released Radioactive Materials

    International Nuclear Information System (INIS)

    Nassar, N.N.; Tawfik, F.S.; Agamy, S.A.; Nagla, T.F.

    2017-01-01

    One of the most important principles in air pollution is to minimize the release of pollutants to the atmosphere, deposition on the ground and promote sufficient dilution of released pollutants within the atmosphere. Building down wash describes the effect that wind flowing over or around buildings create a cavity of reticulating winds in the are a near the buildings. These cavities cause increased vertical dispersion of plumes emitted from stacks on or near the buildings . Often it leads to elevated concentrations downwind of affected stacks. The aim of this work is to evaluate the effect of the building down wash phenomena on the atmospheric dispersion behavior of released radioactive materials from NPP. In this study, a hypothetical scenario is presented involving a point source with varying stack parameters and rectangular shaped buildings (Mille stone Nuclear Power Plant) using meteorological parameters of a chosen day. The concentrations of assumed released radionuclides, taking into consideration the building down wash effect and without are calculated using the AERMOD Model taking into consideration the effect of the type of atmospheric stability class. Also the analysis includes the model predictions for the highest 1-hour cavity concentration. The results show that the size of the cavity zone is not affected by the type of stability class, but is affected by the stack location and buildings shape. On other hand, the distance at which the plume touches the ground is affected by the type of stability class, the stack location and buildings shape. So, strategies for locating buildings need to be considered to maximize dispersion when planning for constructing several reactors and accessory buildings at a nuclear site

  8. Some discussions on micrometeorology and atmospheric diffusion of classic and radioactive industrial pollutions. 5

    International Nuclear Information System (INIS)

    Veverka, O.; Valenta, V.; Vlachovsky, K.

    1976-01-01

    The formulae are given expressing the atmospheric dispersion of industrial emissions released from the stacks of industrial plants and power plants. Gaussian distribution of the emissions is assumed. The behaviour of the plume is discussed and the concepts of lofting and fumigation are explained. Generalized relations are derived for the calculation of the atmospheric dispersion of gaseous wastes applicable to both high and short stack disposal and to the leakage from buildings, assuming that the source of emissions is of a point type and emissions are released continuously. (L.O.)

  9. Magnetism and atomic short-range order in Ni-Rh alloys

    Science.gov (United States)

    Carnegie, D. W., Jr.; Claus, H.

    1984-07-01

    Low-field ac susceptibility measurements of Ni-Rh samples of various concentrations are presented. Giant effects of the metallurgical state on the magnetic ordering temperature are associated with changes in the degree of atomic short-range order. By careful control of this degree of short-range order, it is possible to demonstrate the existence of a spin-glass state in Ni-Rh alloys.

  10. A short-range ensemble prediction system for southern Africa

    CSIR Research Space (South Africa)

    Park, R

    2012-10-01

    Full Text Available system for southern Africa R PARK, WA LANDMAN AND F ENGELBRECHT CSIR, PO Box 395, Pretoria, South Africa, 0001 Email: xxxxxxxxxxxxxx@csir.co.za ? www.csir.co.za INTRODUCTION This research has been conducted in order to develop a short-range ensemble... stream_source_info Park_2012.pdf.txt stream_content_type text/plain stream_size 7211 Content-Encoding ISO-8859-1 stream_name Park_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 A short-range ensemble prediction...

  11. Dispersion analysis of the Pn -Pn-1DG mixed finite element pair for atmospheric modelling

    Science.gov (United States)

    Melvin, Thomas

    2018-02-01

    Mixed finite element methods provide a generalisation of staggered grid finite difference methods with a framework to extend the method to high orders. The ability to generate a high order method is appealing for applications on the kind of quasi-uniform grids that are popular for atmospheric modelling, so that the method retains an acceptable level of accuracy even around special points in the grid. The dispersion properties of such schemes are important to study as they provide insight into the numerical adjustment to imbalance that is an important component in atmospheric modelling. This paper extends the recent analysis of the P2 - P1DG pair, that is a quadratic continuous and linear discontinuous finite element pair, to higher polynomial orders and also spectral element type pairs. In common with the previously studied element pair, and also with other schemes such as the spectral element and discontinuous Galerkin methods, increasing the polynomial order is found to provide a more accurate dispersion relation for the well resolved part of the spectrum but at the cost of a number of unphysical spectral gaps. The effects of these spectral gaps are investigated and shown to have a varying impact depending upon the width of the gap. Finally, the tensor product nature of the finite element spaces is exploited to extend the dispersion analysis into two-dimensions.

  12. One-level modeling for diagnosing surface winds over complex terrain. II - Applicability to short-range forecasting

    Science.gov (United States)

    Alpert, P.; Getenio, B.; Zak-Rosenthal, R.

    1988-01-01

    The Alpert and Getenio (1988) modification of the Mass and Dempsey (1985) one-level sigma-surface model was used to study four synoptic events that included two winter cases (a Cyprus low and a Siberian high) and two summer cases. Results of statistical verification showed that the model is not only capable of diagnosing many details of surface mesoscale flow, but might also be useful for various applications which require operative short-range prediction of the diurnal changes of high-resolution surface flow over complex terrain, for example, in locating wildland fires, determining the dispersion of air pollutants, and predicting changes in wind energy or of surface wind for low-level air flights.

  13. RETADD-II: a long-range atmospheric trajectory model with consistent treatment of deposition loss and species growth and decay

    International Nuclear Information System (INIS)

    Murphy, B.D.; Ohr, S.Y.; Begovich, C.L.

    1984-08-01

    A versatile model is described which estimates long-range atmospheric dispersion based on plume trajectories. This model allows the treatment of the dispersal from a source at an arbitrary height while taking account of plume depletion by dry and wet deposition together with the decay of material to successor species. The plume depletion, decay and growth equations are solved in an efficient manner which can accommodate up to eight pollutants (i.e., a parent and seven serial decay products). The code is particularly suitable for applications involving radioactive chain decay or for cases involving chemical species with successor decay products. Arbitrary emission rates can be specified for the members of the chain or, as is commonly the case, a sole emission rate can be specified for the first member. The code uses readily available upper-air wind data for the North American continent and it is therefore intended for the estimation of regional or continental scale dispersion patterns. This code is one of a group of codes, the Computerized Radiological Risk Investigation System (Baes and Miller, 1981), designed to simulate the transport of radionuclides through environmental pathways. 24 references, 5 figures

  14. Lagrangian modeling of atmospheric dispersion of radionuclides and geographical information systems as tools to support emergency planning in area of influence of nuclear complex of Angra dos Reis, RJ, Brazil

    International Nuclear Information System (INIS)

    Silva, Corbiniano

    2013-01-01

    Industrial accidents generally endanger structures and the set of environmental influence area where the enterprises are located, especially when affected by atmospheric dispersion of their pollutants, whose concern with the evacuation of the population is the main goal in emergency situations. Considering the nuclear complex Angra dos Reis - RJ, based on computer modeling analysis of the mechanisms of pollutant dispersion in conjunction with geographic information systems were developed. Thus, information about the dispersion of radionuclides - from simulations performed on the HYSPLIT; meteorological data (direction, intensity and calm on the wind regime and analysis of the wind field in the region using WRF), occurrence of landslides and data on the environmental study area were integrated into a GIS database using ArcGIS platform. Aiming at the identification and definition of escape routes in case of evacuation from accidental events in CNAAA, the results point solutions for long-term planning, based on weather and landslides, and short-term, supported by simulations of the dispersion radionuclides, in order to support actions that assist local emergency planning. (author)

  15. Selfing ability and dispersal are positively related, but not affected by range position: a multispecies study on southern African Asteraceae.

    Science.gov (United States)

    de Waal, C; Rodger, J G; Anderson, B; Ellis, A G

    2014-05-01

    Dispersal and breeding system traits are thought to affect colonization success. As species have attained their present distribution ranges through colonization, these traits may vary geographically. Although several theories predict associations between dispersal ability, selfing ability and the relative position of a population within its geographic range, there is little theoretical or empirical consensus on exactly how these three variables are related. We investigated relationships between dispersal ability, selfing ability and range position across 28 populations of 13 annual, wind-dispersed Asteraceae species from the Namaqualand region of South Africa. Controlling for phylogeny, relative dispersal ability--assessed from vertical fall time of fruits--was positively related to an index of autofertility--determined from hand-pollination experiments. These findings support the existence of two discrete syndromes: high selfing ability associated with good dispersal and obligate outcrossing associated with lower dispersal ability. This is consistent with the hypothesis that selection for colonization success drives the evolution of an association between these traits. However, no general effect of range position on dispersal or breeding system traits was evident. This suggests selection on both breeding system and dispersal traits acts consistently across distribution ranges. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  16. Comparison of results from dispersion models for regulatory purposes based on Gaussian-and Lagrangian-algorithms: an evaluating literature study

    International Nuclear Information System (INIS)

    Walter, H.

    2004-01-01

    Powerful tools to describe atmospheric transport processes for radiation protection can be provided by meteorology; these are atmospheric flow and dispersion models. Concerning dispersion models, Gaussian plume models have been used since a long time to describe atmospheric dispersion processes. Advantages of the Gaussian plume models are short computation time, good validation and broad acceptance worldwide. However, some limitations and their implications on model result interpretation have to be taken into account, as the mathematical derivation of an analytic solution of the equations of motion leads to severe constraints. In order to minimise these constraints, various dispersion models for scientific and regulatory purposes have been developed and applied. Among these the Lagrangian particle models are of special interest, because these models are able to simulate atmospheric transport processes close to reality, e.g. the influence of orography, topography, wind shear and other meteorological phenomena. Within this study, the characteristics and computational results of Gaussian dispersion models as well as of Lagrangian models have been compared and evaluated on the base of numerous papers and reports published in literature. Special emphasis has been laid on the intention that dispersion models should comply with EU requests (Richtlinie 96/29/Euratom, 1996) on a more realistic assessment of the radiation exposure to the population. (orig.)

  17. Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence

    International Nuclear Information System (INIS)

    Gori-Giorgi, Paola; Savin, Andreas

    2006-01-01

    The combination of density-functional theory with other approaches to the many-electron problem through the separation of the electron-electron interaction into a short-range and a long-range contribution is a promising method, which is raising more and more interest in recent years. In this work some properties of the corresponding correlation energy functionals are derived by studying the electron-electron coalescence condition for a modified (long-range-only) interaction. A general relation for the on-top (zero electron-electron distance) pair density is derived, and its usefulness is discussed with some examples. For the special case of the uniform electron gas, a simple parametrization of the on-top pair density for a long-range only interaction is presented and supported by calculations within the ''extended Overhauser model.'' The results of this work can be used to build self-interaction corrected short-range correlation energy functionals

  18. Application of data assimilation to improve the forecasting capability of an atmospheric dispersion model for a radioactive plume

    International Nuclear Information System (INIS)

    Jeong, H.J.; Han, M.H.; Hwang, W.T.; Kim, E.H.

    2008-01-01

    Modeling an atmospheric dispersion of a radioactive plume plays an influential role in assessing the environmental impacts caused by nuclear accidents. The performance of data assimilation techniques combined with Gaussian model outputs and measurements to improve forecasting abilities are investigated in this study. Tracer dispersion experiments are performed to produce field data by assuming a radiological emergency. Adaptive neuro-fuzzy inference system (ANFIS) and linear regression filter are considered to assimilate the Gaussian model outputs with measurements. ANFIS is trained so that the model outputs are likely to be more accurate for the experimental data. Linear regression filter is designed to assimilate measurements similar to the ANFIS. It is confirmed that ANFIS could be an appropriate method for an improvement of the forecasting capability of an atmospheric dispersion model in the case of a radiological emergency, judging from the higher correlation coefficients between the measured and the assimilated ones rather than a linear regression filter. This kind of data assimilation method could support a decision-making system when deciding on the best available countermeasures for public health from among emergency preparedness alternatives

  19. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part I: Source term estimation and local-scale atmospheric dispersion in early phase of the accident

    International Nuclear Information System (INIS)

    Katata, Genki; Ota, Masakazu; Terada, Hiroaki; Chino, Masamichi; Nagai, Haruyasu

    2012-01-01

    The atmospheric release of 131 I and 137 Cs in the early phase of the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident from March 12 to 14, 2011 was estimated by combining environmental data with atmospheric dispersion simulations under the assumption of a unit release rate (1 Bq h −1 ). For the simulation, WSPEEDI-II computer-based nuclear emergency response system was used. Major releases of 131 I (>10 15 Bq h −1 ) were estimated when air dose rates increased in FNPP1 during the afternoon on March 12 after the hydrogen explosion of Unit 1 and late at night on March 14. The high-concentration plumes discharged during these periods flowed to the northwest and south–southwest directions of FNPP1, respectively. These plumes caused a large amount of dry deposition on the ground surface along their routes. Overall, the spatial pattern of 137 Cs and the increases in the air dose rates observed at the monitoring posts around FNPP1 were reproduced by WSPEEDI-II using estimated release rates. The simulation indicated that air dose rates significantly increased in the south–southwest region of FNPP1 by dry deposition of the high-concentration plume discharged from the night of March 14 to the morning of March 15. - Highlights: ► Source term during the Fukushima Dai-ichi Nuclear Power Plant accident was estimated. ► Atmospheric dispersion simulation was carried out for estimation. ► Major releases were estimated in the afternoon on March 12 and the night on March 14. ► Air dose rate increased due to dry deposition during the night of March 14.

  20. Short-range correlations in quark and nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Froemel, Frank

    2007-06-15

    In the first part of this thesis, the role of short-range correlations in quark matter is explored within the framework of the Nambu-Jona-Lasinio model. Starting from a next-to-leading order expansion in the inverse number of the quark colors, a fully self-consistent model constructed that employs the close relations between spectral functions and self-energies. In contrast to the usual quasiparticle approximations, this approach allows the investigation of the collisional broadening of the quark spectral function. Numerical calculations at various chemical potentials and zero temperature show that the short-range correlations do not only induce a finite width of the spectral function but also have some influence on the structure of the chiral phase transition. In the second part of this thesis, the temperature and density dependence of the nucleon spectral function in symmetric nuclear matter is investigated. The short-range correlations can be well described by a simple, self-consistent model on the one-particle-two-hole and two-particle-one-hole level (1p2h, 2p1h). The thermodynamically consistent description of the mean-field properties of the nucleons is ensured by incorporating a Skyrme-type potential. Calculations at temperatures and densities that can also be found in heavy-ion collisions or supernova explosions and the formation of neutron stars show that the correlations saturate at high temperatures and densities. (orig.)

  1. Conditions for the formation and atmospheric dispersion of a toxic, heavy gas layer during thermal metamorphism of coal and evaporite deposits by sill intrusion

    Science.gov (United States)

    Storey, Michael; Hankin, Robin K. S.

    2010-05-01

    There is compelling evidence for massive discharge of volatiles, including toxic species, into the atmosphere at the end of the Permian. It has been argued that most of the gases were produced during thermal metamorphism of coal and evaporite deposits in the East Siberia Tunguska basin following sill intrusion (Retallack and Jahren, 2008; Svensen et al., 2009). The release of the volatiles has been proposed as a major cause of environmental and extinction events at the end of the Permian, with venting of carbon gases and halocarbons to the atmosphere leading to global warming and atmospheric ozone depletion (Svensen et al., 2009) Here we consider the conditions required for the formation and dispersion of toxic, heavier than air, gas plumes, made up of a mixture of CO2, CH4, H2S and SO2 and formed during the thermal metamorphism of C- and S- rich sediments. Dispersion models and density considerations within a range of CO2/CH4 ratios and volatile fluxes and temperatures, for gas discharge by both seepage and from vents, allow the possibility that following sill emplacement much of the vast East Siberia Tunguska basin was - at least intermittently - covered by a heavy, toxic gas layer that was unfavorable for life. Dispersion scenarios for a heavy gas layer beyond the Siberian region during end-Permian times will be presented. REFERENCES G. J. Retallack and A. H. Jahren, Methane release from igneous intrusion of coal during Late Permian extinction events, Journal of Geology, volume 116, 1-20, 2008 H. Svensen et al., Siberian gas venting and the end-Permian environmental crisis, Earth and Planetary Science Letters, volume 277, 490-500, 2009

  2. Atmospheric Dispersion of Various Types of Iodine in UAE in February and August

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungyeop; Beeley, Philip A. [Khalifa Univ. of Science, Abu Dhabi (United Arab Emirates); Kim, Sungyeop; Chang, Soonheung; Lee, Kunjai [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The distribution ratio of these three types of iodine being released to the atmosphere under accident scenario is still not clearly reported because of its complex kinetics of chemical and physical process in the accidental condition. In this research, the dispersion behaviors of three kinds of iodine in the atmosphere have been considered in the UAE environment in winter and summer situations. Higher ground level concentration on the same downwind distance from the source appears in summer because of lower wind speed than that of winter. More lateral spreading of vertical downwind direction in summer has been confirmed because of less stable air than that of winter. Higher ground level concentrations have been appeared in order of particle type, organic gas type and elemental gas type of I-131 with given assumptions.

  3. Probabilistic siting analysis of nuclear power plants emphasizing atmospheric dispersion of radioactive releases and radiation-induced health effects

    International Nuclear Information System (INIS)

    Savolainen, Ilkka

    1980-01-01

    A presentation is made of probabilistic evaluation schemes for nuclear power plant siting. Effects on health attributable to ionizing radiation are reviewed, for the purpose of assessment of the numbers of the most important health effect cases in light-water reactor accidents. The atmospheric dispersion of radioactive releases from nuclear power plants is discussed, and there is presented an environmental consequence assessment model in which the radioactive releases and atmospheric dispersion of the releases are treated by the application of probabilistic methods. In the model, the environmental effects arising from exposure to radiation are expressed as cumulative probability distributions and expectation values. The probabilistic environmental consequence assessment model has been applied to nuclear power plant site evaluation, including risk-benefit and cost-benefit analyses, and the comparison of various alternative sites. (author)

  4. Tailoring of the free spectral range and geometrical cavity dispersion of a microsphere by a coating layer.

    Science.gov (United States)

    Ristić, Davor; Mazzola, Maurizio; Chiappini, Andrea; Rasoloniaina, Alphonse; Féron, Patrice; Ramponi, Roberta; Righini, Giancarlo C; Cibiel, Gilles; Ivanda, Mile; Ferrari, Maurizio

    2014-09-01

    The modal dispersion of a whispering gallery mode (WGM) resonator is a very important parameter for use in all nonlinear optics applications. In order to tailor the WGM modal dispersion of a microsphere, we have coated a silica microsphere with a high-refractive-index coating in order to study its effect on the WGM modal dispersion. We used Er(3+) ions as a probe for a modal dispersion assessment. We found that, by varying the coating thickness, the geometrical cavity dispersion can be used to shift overall modal dispersion in a very wide range in both the normal and anomalous dispersion regime.

  5. Atmospheric Transport Modeling with 3D Lagrangian Dispersion Codes Compared with SF6 Tracer Experiments at Regional Scale

    Directory of Open Access Journals (Sweden)

    François Van Dorpe

    2007-01-01

    Full Text Available The results of four gas tracer experiments of atmospheric dispersion on a regional scale are used for the benchmarking of two atmospheric dispersion modeling codes, MINERVE-SPRAY (CEA, and NOSTRADAMUS (IBRAE. The main topic of this comparison is to estimate the Lagrangian code capability to predict the radionuclide atmospheric transfer on a large field, in the case of risk assessment of nuclear power plant for example. For the four experiments, the results of calculations show a rather good agreement between the two codes, and the order of magnitude of the concentrations measured on the soil is predicted. Simulation is best for sampling points located ten kilometers from the source, while we note a divergence for more distant points results (difference in concentrations by a factor 2 to 5. This divergence may be explained by the fact that, for these four experiments, only one weather station (near the point source was used on a field of 10 000 km2, generating the simulation of a uniform wind field throughout the calculation domain.

  6. Level shifts induced by a short-range potential

    International Nuclear Information System (INIS)

    Karnakov, B.M.; Mur, V.D.

    1984-01-01

    Formulas are derived which express the shifts of levels with energies Esub(n)sup((0)) << rsub(c)sup(-2) in a field Vsub(f)(r) induced by a short-range potential U(r) of radius rsub(c) in terms of the low energy scattering parameters (scattering length and effective radius) with a moment l in the potential. If the interaction between the particle and center is nonresonant, the method developed is identical to perturbation theory on the scattering length. The theory is extended to systems with random degeneracy (Vsub(f) is the Coulomb potential). Formulas describing quasi-intersection of terms are obtained for the case of resonance interaction with the center in a partial wave with l not equal to 0 when energetically close levels are present in both U and Vsub(f). Some features of the level shift are mentioned for the case when the level possesses an anomalously small coupling energy and its coresponding wave function becomes delocalized with decrease of the coupling energy to zero. The problem is discussed of the level shift when the potential Vsub(f) is a potential well surrounded by a weaklyt penetrable barrier. Some applications of the theory to a particle in the field of two short-range potentials or in the field of a short-range and Coulomb centers are considered. Formulas are also obtained for the shifts and widths of the Landau levels and of the shallow level with an arbitrary moment which perturbs the Landau levels

  7. Distributed emergency response system to model dispersion and deposition of atmospheric releases

    International Nuclear Information System (INIS)

    Taylor, S.S.

    1985-04-01

    Aging hardware and software and increasing commitments by the Departments of Energy and Defense have led us to develop a new, expanded system to replace the existing Atmospheric Release Advisory Capability (ARAC) system. This distributed, computer-based, emergency response system is used by state and federal agencies to assess the environmental health hazards resulting from an accidental release of radioactive material into the atmosphere. Like its predecessor, the expanded system uses local meteorology (e.g., wind speed and wind direction), as well as terrain information, to simulate the transport and dispersion of the airborne material. The system also calculates deposition and dose and displays them graphically over base maps of the local geography for use by on-site authorities. This paper discusses the limitations of the existing ARAC system. It also discusses the components and functionality of the new system, the technical difficulties encountered and resolved in its design and implementation, and the software methodologies and tools employed in its development

  8. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model

    Science.gov (United States)

    Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.; Kajino, M.; Draxler, R.; Hort, M. C.; Malo, A.; Torii, T.; Sanada, Y.

    2014-06-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Dai-ichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate a detailed time trend of atmospheric releases during the accident by combining environmental monitoring data with atmospheric model simulations from WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information), and simulations from the oceanic dispersion model SEA-GEARN-FDM, both developed by the authors. A sophisticated deposition scheme, which deals with dry and fogwater depositions, cloud condensation nuclei (CCN) activation and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The fallout to the ocean surface calculated by WSPEEDI-II was used as input data for the SEA-GEARN-FDM calculations. Reverse and inverse source-term estimation methods based on coupling the simulations from both models was adopted using air dose rates and concentrations, and sea surface concentrations. The results revealed that the major releases of radionuclides due to FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, the morning of 13 March after the venting event at Unit 3, midnight of 14 March when the SRV (Safely Relief Valve) at Unit 2 was opened three times, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of

  9. Fine-scale population genetic structure and short-range sex-biased dispersal in a solitary carnivore, Lutra lutra

    Czech Academy of Sciences Publication Activity Database

    Quaglietta, L.; Fonseca, V. C.; Hájková, Petra; Mira, A.; Boitani, L.

    2013-01-01

    Roč. 94, č. 3 (2013), s. 561-571 ISSN 0022-2372 Institutional support: RVO:68081766 Keywords : conservation genetics * dispersal distances * Eurasian otter * isolation by distance * radiotracking * restricted gene flow * spatial relatedness structure * spatiotemporal scale Subject RIV: EG - Zoology Impact factor: 2.225, year: 2013

  10. Summer–winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting

    International Nuclear Information System (INIS)

    Wang Thanh; Han Shanlong; Yuan Bo; Zeng Lixi; Li Yingming; Wang Yawei; Jiang Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9–33.0 ng/m 3 during wintertime. Significantly higher levels were found during the summer (range 112–332 ng/m 3 ). The average fraction of total SCCPs in the particle phase (φ) was 0.67 during wintertime but decreased significantly during the summer (φ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol–air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge–Pankow adsorption and K oa -based absorption models. - Highlights: ► Short chain chlorinated paraffins were investigated in air samples from Beijing. ► Higher levels of SCCPs were found in air during summertime than wintertime. ► Relevant physical–chemical properties were estimated by SPARC and EPI Suite. ► Obtained data were used to model the gas-particle partitioning of SCCPs. - Atmospheric levels and gas-particle partitioning of SCCPs in Beijing, China.

  11. Dispersion prognoses and consequences in the environment. A Nordic development and harmonization effort

    International Nuclear Information System (INIS)

    Tveten, U.

    1994-01-01

    The project 'BER-1, Dispersion prognoses and environmental consequences' is described. The report describes the work performed and the results obtained. The bulk of the report is concerned with the first subject area, atmospheric dispersion models. The world-wide status of long-range atmospheric dispersion models at the start of the project period is described, descriptions are given of the models in use at the Nordic meteorological institutes, and validation/verification and intercomparison efforts that have been performed within the project are described. The main results of this work have been published separately. All aspects of environmental impact of releases to the atmosphere have been treated, and the end product of this part of the project is a computerized 'handbook' giving easy access to data on e.g. deposition, shielding, filtering, weathering, radionuclide transfer via all possible exposure pathways. (au)

  12. The effect of short-range spatial variability on soil sampling uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Perk, Marcel van der [Department of Physical Geography, Utrecht University, P.O. Box 80115, 3508 TC Utrecht (Netherlands)], E-mail: m.vanderperk@geo.uu.nl; De Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici (APAT), Servizio Laboratori, Misure ed Attivita di Campo, Via di Castel Romano, 100-00128 Roma (Italy); Fajgelj, Ales; Sansone, Umberto [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-1400 Vienna (Austria); Jeran, Zvonka; Jacimovic, Radojko [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2008-11-15

    This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.

  13. The effect of short-range spatial variability on soil sampling uncertainty.

    Science.gov (United States)

    Van der Perk, Marcel; de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Sansone, Umberto; Jeran, Zvonka; Jaćimović, Radojko

    2008-11-01

    This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.

  14. PAVAN, Atmospheric Dispersion of Radioactive Releases from Nuclear Power Plants

    International Nuclear Information System (INIS)

    2001-01-01

    1 - Description of program or function: PAVAN estimates down-wind ground-level air concentrations for potential accidental releases of radioactive material from nuclear facilities. Options can account for variation in the location of release points, additional plume dispersion due to building wakes, plume meander under low wind speed conditions, and adjustments to consider non-straight trajectories. It computes an effective plume height using the physical release height which can be reduced by inputted terrain features. 2 - Method of solution: Using joint frequency distributions of wind direction and wind speed by atmospheric stability, the program provides relative air concentration (X/Q) values as functions of direction for various time periods at the exclusion area boundary (EAB) and the outer boundary of the low population zone (LPZ). Calculations of X/Q values can be made for assumed ground-level releases or evaluated releases from free-standing stacks. The X/Q calculations are based on the theory that material released to the atmosphere will be normally distributed (Gaussian) about the plume centerline. A straight-line trajectory is assumed between the point of release and all distances for which X/Q values are calculated. 3 - Restrictions on the complexity of the problem: - The code cannot handle multiple emission sources

  15. Dependability investigation of wireless short range embedded systems: hardware platform oriented approach

    NARCIS (Netherlands)

    Senouci, B.; Kerkhoff, Hans G.; Annema, Anne J.; Bentum, Marinus Jan

    2015-01-01

    A new direction in short-range wireless applications has appeared in the form of high-speed data communication devices for distances of hundreds meters. Behind these embedded applications, a complex heterogeneous architecture is built. Moreover, these short range communications are introduced into

  16. Narrow resonances and short-range interactions

    International Nuclear Information System (INIS)

    Gelman, Boris A.

    2009-01-01

    Narrow resonances in systems with short-range interactions are discussed in an effective field theory (EFT) framework. An effective Lagrangian is formulated in the form of a combined expansion in powers of a momentum Q 0 | 0 --a resonance peak energy. At leading order in the combined expansion, a two-body scattering amplitude is the sum of a smooth background term of order Q 0 and a Breit-Wigner term of order Q 2 (δε) -1 which becomes dominant for δε 3 . Such an EFT is applicable to systems in which short-distance dynamics generates a low-lying quasistationary state. The EFT is generalized to describe a narrow low-lying resonance in a system of charged particles. It is shown that in the case of Coulomb repulsion, a two-body scattering amplitude at leading order in a combined expansion is the sum of a Coulomb-modified background term and a Breit-Wigner amplitude with parameters renormalized by Coulomb interactions.

  17. Atmospheric dispersion and deposition of 131I released from the Hanford Site

    International Nuclear Information System (INIS)

    Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.; Stage, S.A.

    1996-01-01

    Approximately 2.6 x 10 4 TBq (700,000 Ci) of 131 I were released to the air from reactor fuel processing plants on the Hanford Site in southcentral Washington State from December 1944 through December 1949. The Hanford Environmental Dose Reconstruction Project developed a suite of codes to estimate the doses that might have resulted from these releases. The Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET) computer code is part of this suite. The RATCHET code implements a Lagrangian-trajectory, Gaussian-puff dispersion model that uses hourly meterological and release rate data to estimate daily time-integrated air concentrations and surface contamination for use, in dose estimates. In this model, iodine is treated as a mixture of three species (inorganic gases, organic gases, and particles). Model deposition parameters are functions of the mixture and meterological conditions. A resistance model is used to calculate dry deposition velocities. Equilibrium between concentrations in the precipitation and the air near the ground is assumed in calculating wet deposition of gases, and irreversible washout of the particles is assumed. RATCHET explicitly treats the uncertainties in model parameters and meteorological conditions. Uncertainties in 131 I release rates and partitioning among the nominal species are treated by varying model input. The results of 100 model runs for December 1944 through December 1949 indicate that monthly average air concentrations and deposition have uncertainties ranging from a factor of two near the center of the time-integrated plume to more than an order of magnitude near the edge. These results indicate that ∼10% of the 131 I released to the atmosphere decayed during transit in the study area, ∼56% was deposited within the study area, and the remaining 34% was transported out of the study area while still in the air

  18. Dispersal limitation at the expanding range margin of an evergreen tree in urban habitats?

    DEFF Research Database (Denmark)

    Møller, Linda Agerbo; Skou, Anne-Marie Thonning; Kollmann, Johannes Christian

    2012-01-01

    Dispersal limitations contribute to shaping plant distribution patterns and thus are significant for biodiversity conservation and urban ecology. In fleshy-fruited plants, for example, any preference of frugivorous birds affects dispersal capacities of certain fruit species. We conducted a removal...... landscapes. The results should be included in urban forestry and planting of potentially invasive ornamental species. © 2011 Elsevier GmbH. All rights reserved....... experiment with fruits of Ilex aquifolium, a species that is currently expanding its range margin in northern Europe in response to climate change. The species is also a popular ornamental tree and naturalization has been observed in many parts of its range. Fruits of native I. aquifolium and of three...

  19. Modeling the generation and dispersion of odors from mushroom composting facilities

    International Nuclear Information System (INIS)

    Heinemann, P.; Wahanik, D.

    1998-01-01

    An odor source generation model and an odor dispersion model were developed to predict the local distribution of odors emanating from mushroom composting facilities. The odor source generation model allowed for simulation of various composting wharf configurations and odor source strengths. This model was linked to a Gaussian plume diffusion model that predicted odor dispersion. Dimethyl disulfide production at a rate of 1760 micrograms/h was simulated by the source generation model and six different atmospheric conditions were analyzed to demonstrate the effect of wind speed, atmospheric stability, and source generation on the dispersion of this odor producing compound. Detectable levels of dimethyl disulfide were predicted to range from less than 100 m from the source during very unstable conditions to almost 5000 m during very stable conditions

  20. Estimation of NH3 emissions from a naturally ventilated livestock farm using local-scale atmospheric dispersion modelling

    Czech Academy of Sciences Publication Activity Database

    Hensen, A.; Loubet, B.; Mosquera, J.; van den Bulk, W. C. M.; Erisman, J. W.; Daemmgen, U.; Milford, C.; Loepmeier, F. J.; Cellier, P.; Mikuška, Pavel; Sutton, M. A.

    2009-01-01

    Roč. 6, č. 12 (2009), s. 2847-2860 ISSN 1726-4170 Institutional research plan: CEZ:AV0Z40310501 Keywords : NH3 livestock farm emissions * concentration measurement * atmospheric dispersion Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.246, year: 2009 http://www.biogeosciences.net/6/2847/2009/

  1. Brownian motion in short range random potentials

    International Nuclear Information System (INIS)

    Romero, A.H.; Romero, A.H.; Sancho, J.M.

    1998-01-01

    A numerical study of Brownian motion of noninteracting particles in random potentials is presented. The dynamics are modeled by Langevin equations in the high friction limit. The random potentials are Gaussian distributed and short ranged. The simulations are performed in one and two dimensions. Different dynamical regimes are found and explained. Effective subdiffusive exponents are obtained and commented on. copyright 1998 The American Physical Society

  2. Schroedinger operators with point interactions and short range expansions

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoeegh-Krohn, R.; Oslo Univ.

    1984-01-01

    We give a survey of recent results concerning Schroedinger operators with point interactions in R 3 . In the case where the point interactions are located at a discrete set of points we discuss results about the resolvent, the spectrum, the resonances and the scattering quantities. We also discuss the approximation of point interactions by short range local potentials (short range or low energy expansions) and the one electron model of a 3-dimensional crystal. Moreover we discuss Schroedinger operators with Coulomb plus point interactions, with applications to the determination of scattering lengths and of level shifts in mesic atoms. Further applications to the multiple well problem, to multiparticle systems, to crystals with random impurities, to polymers and quantum fields are also briefly discussed. (orig.)

  3. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Jeng-Da; Head-Gordon, Martin

    2008-06-14

    We report re-optimization of a recently proposed long-range corrected (LC) hybrid density functionals [J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008)] to include empirical atom-atom dispersion corrections. The resulting functional, {omega}B97X-D yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions. Tests show that for non-covalent systems, {omega}B97X-D shows slight improvement over other empirical dispersion-corrected density functionals, while for covalent systems and kinetics, it performs noticeably better. Relative to our previous functionals, such as {omega}B97X, the new functional is significantly superior for non-bonded interactions, and very similar in performance for bonded interactions.

  4. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    Science.gov (United States)

    Bonasia, Rosanna; Scaini, Chiara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2014-01-01

    Popocatépetl is one of Mexico's most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene-Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl's reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the "Ochre Pumice" Plinian eruption (4965 14C yr BP

  5. Intermediate- and short-range order in phosphorus-selenium glasses

    International Nuclear Information System (INIS)

    Bytchkov, Aleksei; Hennet, Louis; Price, David L.; Miloshova, Mariana; Bychkov, Eugene; Kohara, Shinji

    2011-01-01

    State-of-the-art neutron and x-ray diffraction measurements have been performed to provide a definitive picture of the intermediate- and short-range structures of P x Se 1-x glasses spanning two glass regions, x 0.025-0.54 and 0.64-0.84. Liquid P 4 Se 3 and amorphous red P and Se were also measured. Detailed information was obtained about the development with increasing phosphorous concentration of intermediate-range order on the length scale ∼6 A ring , based on the behavior of the first sharp diffraction peak. Attention is also paid to the feature in the structure factor at 7.5 A ring -1 , identified in earlier numerical simulations, provides further evidence of the existence of molecular units. The real-space transforms yield a reliable statistical picture of the changing short-range order as x increases, using the information about types and concentrations of local structural units provided by previous NMR measurements to interpret the trends observed.

  6. Real time analysis for atmospheric dispersions for Fukushima nuclear accident: Mobile phone based cloud computing assessment

    International Nuclear Information System (INIS)

    Woo, Tae Ho

    2014-01-01

    Highlights: • Possible nuclear accident is simulated for the atmospheric contaminations. • The simulations results give the relative importance of the fallouts. • The cloud computing of IT is performed successfully. • One can prepare for the possible damages of such a NPP accident. • Some other variables can be considered in the modeling. - Abstract: The radioactive material dispersion is investigated by the system dynamics (SD) method. The non-linear complex algorithm could give the information about the hazardous material behavior in the case of nuclear accident. The prevailing westerlies region is modeled for the dynamical consequences of the Fukushima nuclear accident. The event sequence shows the scenario from earthquake to dispersion of the radionuclides. Then, the dispersion reaches two cities in Korea. The importance of the radioactive dispersion is related to the fast and reliable data processing, which could be accomplished by cloud computing concept. The values of multiplications for the wind, plume concentrations, and cloud computing factor are obtained. The highest value is 94.13 in the 206th day for Seoul. In Pusan, the highest value is 15.48 in the 219th day. The source is obtained as dispersion of radionuclide multiplied by 100. The real time safety assessment is accomplished by mobile phone

  7. Analysis of a Kalman filter based method for on-line estimation of atmospheric dispersion parameters using radiation monitoring data

    DEFF Research Database (Denmark)

    Drews, Martin; Lauritzen, Bent; Madsen, Henrik

    2005-01-01

    A Kalman filter method is discussed for on-line estimation of radioactive release and atmospheric dispersion from a time series of off-site radiation monitoring data. The method is based on a state space approach, where a stochastic system equation describes the dynamics of the plume model...... parameters, and the observables are linked to the state variables through a static measurement equation. The method is analysed for three simple state space models using experimental data obtained at a nuclear research reactor. Compared to direct measurements of the atmospheric dispersion, the Kalman filter...... estimates are found to agree well with the measured parameters, provided that the radiation measurements are spread out in the cross-wind direction. For less optimal detector placement it proves difficult to distinguish variations in the source term and plume height; yet the Kalman filter yields consistent...

  8. Radionuclide dispersion in the atmosphere

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Amorim, E.S. do; Panetta, J.

    1979-05-01

    The instantaneous liberation of radionuclides in the atmosphere is studied in three dimensions, according to the formalism of the diffusion theory. The analytical solution, expose to gravitational and an atmospherical effects, is combined with the discretization of space and time in the calculation of levels of exposure. A typical inventory (for a PWR) was considered in the calculation of immersion doses, and the results permitted a comparative analysis among the different existing models. (Author) [pt

  9. Universal dispersion model for characterization of optical thin films over wide spectral range: Application to magnesium fluoride

    Science.gov (United States)

    Franta, Daniel; Nečas, David; Giglia, Angelo; Franta, Pavel; Ohlídal, Ivan

    2017-11-01

    Optical characterization of magnesium fluoride thin films is performed in a wide spectral range from far infrared to extreme ultraviolet (0.01-45 eV) utilizing the universal dispersion model. Two film defects, i.e. random roughness of the upper boundaries and defect transition layer at lower boundary are taken into account. An extension of universal dispersion model consisting in expressing the excitonic contributions as linear combinations of Gaussian and truncated Lorentzian terms is introduced. The spectral dependencies of the optical constants are presented in a graphical form and by the complete set of dispersion parameters that allows generating tabulated optical constants with required range and step using a simple utility in the newAD2 software package.

  10. Atmospheric and dispersion modeling in areas of highly complex terrain employing a four-dimensional data assimilation technique

    International Nuclear Information System (INIS)

    Fast, J.D.; O'Steen, B.L.

    1994-01-01

    The results of this study indicate that the current data assimilation technique can have a positive impact on the mesoscale flow fields; however, care must be taken in its application to grids of relatively fine horizontal resolution. Continuous FDDA is a useful tool in producing high-resolution mesoscale analysis fields that can be used to (1) create a better initial conditions for mesoscale atmospheric models and (2) drive transport models for dispersion studies. While RAMS is capable of predicting the qualitative flow during this evening, additional experiments need to be performed to improve the prognostic forecasts made by RAMS and refine the FDDA procedure so that the overall errors are reduced even further. Despite the fact that a great deal of computational time is necessary in executing RAMS and LPDM in the configuration employed in this study, recent advances in workstations is making applications such as this more practical. As the speed of these machines increase in the next few years, it will become feasible to employ prognostic, three-dimensional mesoscale/transport models to routinely predict atmospheric dispersion of pollutants, even to highly complex terrain. For example, the version of RAMS in this study could be run in a ''nowcasting'' model that would continually assimilate local and regional observations as soon as they become available. The atmospheric physics in the model would be used to determine the wind field where no observations are available. The three-dimensional flow fields could be used as dynamic initial conditions for a model forecast. The output from this type of modeling system will have to be compared to existing diagnostic, mass-consistent models to determine whether the wind field and dispersion forecasts are significantly improved

  11. Dispersant trial at ANO-2: Results from a short-term trial prior to SG replacement

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Frattini, P.; Robbins, P.; Miller, A.; Varrin, R.; Kreider, M.

    2002-01-01

    Corrosion products in the secondary side of pressurized water reactor (PWR) steam generators (SGs) primarily deposit on the SG tubes. These deposits can inhibit heat transfer, lead to thermal-hydraulic instabilities through blockage of tube supports, and create occluded regions where corrosive species can concentrate along tubes and in tube-to-tube support plate crevices. The performance of the SGs is compromised not only by formation of an insulating scale, but by the removal of tubes from service due to corrosion. A potential strategy for minimizing deposition of corrosion products on SG internal surfaces is to use an online dispersant to help prevent the corrosion products from adhering to the steam generator surfaces. By inhibiting the deposition of the corrosion products, the dispersant can facilitate more effective removal from the SGs via blowdown. This type of strategy has been employed at fossil boilers for many decades. However, due to the use of inorganic (sulfur and other impurities) polymerization initiators, polymeric dispersants had not been utilized in the nuclear industry. Only recently has a poly-acrylic acid dispersant, developed by BetzDearborn (PAA), been available that meets the criteria for nuclear application. This paper summarizes the results of the short-term PAA dispersant trial in Winter/Spring 2000, lasting approximately 3 months, performed at Arkansas nuclear one unit 2 (ANO-2)-including the chronology of the trial, the increase in blowdown iron removal efficiency with use of the dispersant, and observed effects on SG performance. (authors)

  12. Dispersant trial at ANO-2: Results from a short-term trial prior to SG replacement

    Energy Technology Data Exchange (ETDEWEB)

    Fruzzetti, K.; Frattini, P. [Electric Power Research Inst., Palo Alto, CA (United States); Robbins, P. [Entergy Operations, Arkansas Nuclear One, Russellville, AR (United States); Miller, A. [Pedro Point Technology, Inc., Pacifica, CA (United States); Varrin, R.; Kreider, M. [Dominion Engineering Inc., McLean, VA (United States)

    2002-07-01

    Corrosion products in the secondary side of pressurized water reactor (PWR) steam generators (SGs) primarily deposit on the SG tubes. These deposits can inhibit heat transfer, lead to thermal-hydraulic instabilities through blockage of tube supports, and create occluded regions where corrosive species can concentrate along tubes and in tube-to-tube support plate crevices. The performance of the SGs is compromised not only by formation of an insulating scale, but by the removal of tubes from service due to corrosion. A potential strategy for minimizing deposition of corrosion products on SG internal surfaces is to use an online dispersant to help prevent the corrosion products from adhering to the steam generator surfaces. By inhibiting the deposition of the corrosion products, the dispersant can facilitate more effective removal from the SGs via blowdown. This type of strategy has been employed at fossil boilers for many decades. However, due to the use of inorganic (sulfur and other impurities) polymerization initiators, polymeric dispersants had not been utilized in the nuclear industry. Only recently has a poly-acrylic acid dispersant, developed by BetzDearborn (PAA), been available that meets the criteria for nuclear application. This paper summarizes the results of the short-term PAA dispersant trial in Winter/Spring 2000, lasting approximately 3 months, performed at Arkansas nuclear one unit 2 (ANO-2)-including the chronology of the trial, the increase in blowdown iron removal efficiency with use of the dispersant, and observed effects on SG performance. (authors)

  13. Switching between bistable states in a discrete nonlinear model with long-range dispersion

    DEFF Research Database (Denmark)

    Johansson, Magnus; Gaididei, Yuri B.; Christiansen, Peter Leth

    1998-01-01

    In the framework of a discrete nonlinear Schrodinger equation with long-range dispersion, we propose a general mechanism for obtaining a controlled switching between bistable localized excitations. We show that the application of a spatially symmetric kick leads to the excitation of an internal...

  14. Validation of the Canadian atmospheric dispersion model for the CANDU reactor complex at Wolsong, Korea

    International Nuclear Information System (INIS)

    Klukas, M.H.; Davis, P.A.

    2000-01-01

    AECL is undertaking the validation of ADDAM, an atmospheric dispersion and dose code based on the Canadian Standards Association model CSA N288.2. The key component of the validation program involves comparison of model predicted and measured vertical and lateral dispersion parameters, effective release height and air concentrations. A wind tunnel study of the dispersion of exhaust gases from the CANDU complex at Wolsong, Korea provides test data for dispersion over uniform and complex terrain. The test data are for distances close enough to the release points to evaluate the model for exclusion area boundaries (EAB) as small as 500 m. Lateral and vertical dispersion is described well for releases over uniform terrain but the model tends to over-predict these parameters for complex terrain. Both plume rise and entrainment are modelled conservatively and the way they are combined in the model produces conservative estimates of the effective release height for low and high wind speeds. Estimates for the medium wind speed case (50-m wind speed, 3.8 ms -1 ) are conservative when the correction for entrainment is made. For the highest ground-level concentrations, those of greatest interest in a safety analysis, 82% of the predictions were within a factor 2 of the observed values. The model can be used with confidence to predict air concentrations of exhaust gases at the Wolsong site for neutral conditions, even for flows over the hills to the west, and is unlikely to substantially under-predict concentrations. (author)

  15. Determination of atmospheric dispersion factors in emergency situations in Almirante Alvaro Alberto nuclear power plant - unit 1

    International Nuclear Information System (INIS)

    Leao, I.L.B.

    1987-08-01

    The necessity of Knowing the atmospheric dispersion factor, used to obtain the first estimation dose in the public case for accidents with releasing of radioactive material to atmosphere in Almirante Alvaro Alberto nuclear power plant - unit I, lead to the development of a fast and efficient method to determine the dilution factors, in a pre-determined distance from the source, to be used in the dose estimate. The ACID computer program for pocket calculation allow to obtain the meteorological information to evaluate the dose. In this work the mathemathical models used and the program developed are described. (Author) [pt

  16. Validation and comparison of dispersion models of RTARC DSS

    International Nuclear Information System (INIS)

    Duran, J.; Pospisil, M.

    2004-01-01

    RTARC DSS (Real Time Accident Release Consequences - Decision Support System) is a computer code developed at the VUJE Trnava, Inc. (Stubna, M. et al, 1993). The code calculations include atmospheric transport and diffusion, dose assessment, evaluation and displaying of the affected zones, evaluation of the early health effects, concentration and dose rate time dependence in the selected sites etc. The simulation of the protective measures (sheltering, iodine administration) is involved. The aim of this paper is to present the process of validation of the RTARC dispersion models. RTARC includes models for calculations of release for very short (Method Monte Carlo - MEMOC), short (Gaussian Straight-Line Model) and long distances (Puff Trajectory Model - PTM). Validation of the code RTARC was performed using the results of comparisons and experiments summarized in the Table 1.: 1. Experiments and comparisons in the process of validation of the system RTARC - experiments or comparison - distance - model. Wind tunnel experiments (Universitaet der Bundeswehr, Muenchen) - Area of NPP - Method Monte Carlo. INEL (Idaho National Engineering Laboratory) - short/medium - Gaussian model and multi tracer atmospheric experiment - distances - PTM. Model Validation Kit - short distances - Gaussian model. STEP II.b 'Realistic Case Studies' - long distances - PTM. ENSEMBLE comparison - long distances - PTM (orig.)

  17. Dispersion - does it degrade a pulse envelope

    International Nuclear Information System (INIS)

    Deighton, M.O.

    1985-01-01

    In hostile environments, transmitting information as ultrasonic Lamb wave pulses has advantages, since the stainless steel strip serving as a waveguide is very durable. Besides attenuation, velocity dispersion (inherent in Lamb waves) can be important even in fairly short guides. Theory shows that unlimited propagation of a pulsed r.f. envelope is possible, even with dispersion present. The constant group velocity needed would favour asub(o)-mode pulses over other modes, provided ordinary attenuation is small. An approximate formula indicates the useful range of a pulse, when group velocity does vary. (author)

  18. Mirage, a food chain transfer and dosimetric impact code in relation with atmospheric and liquid dispersion codes

    International Nuclear Information System (INIS)

    Van Dorpe, F.; Jourdain, F.

    2006-01-01

    Full text: The numerical code M.I.R.A.G.E. (Module of Radiological impact calculations on the Environment due to accidental or chronic nuclear releases through Aqueous and Gas media) has been developed to simulate the radionuclides transfer in the biosphere and food chains, as well as the dosimetric impact on man, after accidental or chronic releases in the environment by nuclear installations. The originality of M.I.R.A.G.E. is to propose a single tool chained downstream with various atmospheric and liquid dispersion codes. The code M.I.R.A.G.E. is a series of modules which makes it possible to carry out evaluations on the transfers in food chains and human dose impact. Currently, M.I.R.A.G.E. is chained with a Gaussian atmospheric dispersion code H.A.R.M.A.T.T.A.N. (Cea), a 3 D atmospheric dispersion code with Lagrangian model named M.I.N.E.R.V.E.-S.P.R.A.Y. (Aria Technology) and a 3 D groundwater transfer code named M.A.R.T.H.E. (B.R.G.M.). M.I.R.A.G.E. uses concentration or activity result files as initial data input for its calculations. The application initially calculates the concentrations in the various compartments of the environment (soils, plants, animals). The results are given in the shape of concentration and dose maps and also on a particular place called a reference group for dosimetric impact (like a village or a specific population group located around a nuclear installation). The input and output data of M.I.R.A.G.E. can have geographic coordinates and thus readable by a G.I.S. M.I.R.A.G. E.is an opened system with which it is easy to chain other codes of dispersion that those currently used. The calculations uncoupled with dispersion calculations are also possible by manual seizure of the dispersion data (contamination of a tablecloth, particular value in a point, etc.). M.I.R.A.G.E. takes into account soil deposits and resuspension phenomenon, transfers in plants and animals (choice of agricultural parameters, types of plants and animals, etc

  19. Short versus long range interactions and the size of two-body weakly bound objects

    International Nuclear Information System (INIS)

    Lombard, R.J.; Volpe, C.

    2003-01-01

    Very weakly bound systems may manifest intriguing ''universal'' properties, independent of the specific interaction which keeps the system bound. An interesting example is given by relations between the size of the system and the separation energy, or scaling laws. So far, scaling laws have been investigated for short-range and long-range (repulsive) potentials. We report here on scaling laws for weakly bound two-body systems valid for a larger class of potentials, i.e. short-range potentials having a repulsive core and long-range attractive potentials. We emphasize analogies and differences between the short- and the long-range case. In particular, we show that the emergence of halos is a threshold phenomenon which can arise when the system is bound not only by short-range interactions but also by long-range ones, and this for any value of the orbital angular momentum l. These results enlarge the image of halo systems we are accustomed to. (orig.)

  20. Impact of additional surface observation network on short range ...

    Indian Academy of Sciences (India)

    Stations (AWS) surface observations (temperature and moisture) on the short range forecast over the Indian ... models, which are able to resolve mesoscale fea- ... J. Earth Syst. Sci. ..... terization of the snow field in a cloud model; J. Climate.

  1. Turbulent Plume Dispersion over Two-dimensional Idealized Urban Street Canyons

    Science.gov (United States)

    Wong, C. C. C.; Liu, C. H.

    2012-04-01

    Human activities are the primary pollutant sources which degrade the living quality in the current era of dense and compact cities. A simple and reasonably accurate pollutant dispersion model is helpful to reduce pollutant concentrations in city or neighborhood scales by refining architectural design or urban planning. The conventional method to estimate the pollutant concentration from point/line sources is the Gaussian plume model using empirical dispersion coefficients. Its accuracy is pretty well for applying to rural areas. However, the dispersion coefficients only account for the atmospheric stability and streamwise distance that often overlook the roughness of urban surfaces. Large-scale buildings erected in urban areas significantly modify the surface roughness that in turn affects the pollutant transport in the urban canopy layer (UCL). We hypothesize that the aerodynamic resistance is another factor governing the dispersion coefficient in the UCL. This study is thus conceived to study the effects of urban roughness on pollutant dispersion coefficients and the plume behaviors. Large-eddy simulations (LESs) are carried out to examine the plume dispersion from a ground-level pollutant source over idealized 2D street canyons in neutral stratification. Computations with a wide range of aspect ratios (ARs), including skimming flow to isolated flow regimes, are conducted. The vertical profiles of pollutant distribution for different values of friction factor are compared that all reach a self-similar Gaussian shape. Preliminary results show that the pollutant dispersion is closely related to the friction factor. For relatively small roughness, the factors of dispersion coefficient vary linearly with the friction factor until the roughness is over a certain level. When the friction factor is large, its effect on the dispersion coefficient is less significant. Since the linear region covers at least one-third of the full range of friction factor in our empirical

  2. Recent results on short-range gravity experiment

    International Nuclear Information System (INIS)

    Hata, Maki; Akiyama, Takashi; Ikeda, Yuki; Kawamura, Hirokazu; Narita, Keigo; Ninomiya, Kazufumi; Ogawa, Naruya; Sato, Toshiaki; Seitaibashi, Etsuko; Sekiguchi, Yuta; Tsutsui, Ryosuke; Yazawa, Kazumasa; Murata, Jiro

    2009-01-01

    According to the ADD model, deviation from Newton's inverse square law is expected at below sub-millimeter scale. Present study is an experimental investigation of the Newton's gravitational law at a short range scale. We have developed an experimental setup using torsion balance bar, and succeeded to confirm the inverse square law at a centimeter scale. In addition, composition dependence of gravitational constant G is also tested at the centimeter scale, motivated to test the weak equivalence principle.

  3. CMOS Receiver Front-ends for Gigabit Short-Range Optical Communications

    CERN Document Server

    Aznar, Francisco; Calvo Lopez, Belén

    2013-01-01

    This book describes optical receiver solutions integrated in standard CMOS technology, attaining high-speed short-range transmission within cost-effective constraints.  These techniques support short reach applications, such as local area networks, fiber-to-the-home and multimedia systems in cars and homes. The authors show how to implement the optical front-end in the same technology as the subsequent digital circuitry, leading to integration of the entire receiver system in the same chip.  The presentation focuses on CMOS receiver design targeting gigabit transmission along a low-cost, standardized plastic optical fiber up to 50m in length.  This book includes a detailed study of CMOS optical receiver design – from building blocks to the system level. Reviews optical communications, including long-haul transmission systems and emerging applications focused on short-range; Explains necessary fundamentals, such as characteristics of a data signal, system requirements affecting receiver design and key par...

  4. Harmonization of French and German calculation procedures for atmospheric dispersion following accidental releases from nuclear power plants

    International Nuclear Information System (INIS)

    Crabol, B.; Romeo, E.; Nester, K.

    1992-01-01

    In case of an accident in a nuclear power plant near the French-German border different schemes for dispersion calculations in both countries will currently be applied. An intercomparison of these schemes initiated from the German-French Commission for the safety of nuclear installations (DFK) revealed in some meteorological situations large differences in the resulting concentrations for radionuclides. An ad hoc working group was installed by the DFK with the mandate to analyse the reasons for the different model results and also to consider new theoretical concepts. The working group has agreed to apply a Gaussian puff model for emergency response calculations. The results of the model based on turbulence parameterization via similarity approach or spectral theory - have been compared with tracer experiments for different emission heights and atmospheric stability regimes. As a reference the old modelling approaches have been included in the study. The simulations with the similarity approach and the spectral theory show a slightly better agreement to the measured concentration data than the schemes used in the past. Instead of diffusion categories both new approaches allow a continuous characterization of the atmospheric dispersion conditions. Because the spectral approach incorporates the sampling time of the meteorological data as an adjustable parameter thereby offering the possibility to adjust the dispersion model to different emission scenarios this turbulence parameterization scheme will be foreseen as the basis for a joint French-German puff model

  5. Dutch distribution zones of stable iodine tablets based on atmospheric dispersion modelling of accidental releases from nuclear power plants.

    NARCIS (Netherlands)

    Kok-Palma, Y.S.; Leenders, M.; Meulenbelt, J.

    2010-01-01

    Rapid administration of stable iodine is essential for the saturation and subsequent protection of the thyroid gland against the potential harm caused by radioiodines. This paper proposes the Dutch risk analysis that uses an atmospheric dispersion model to calculate the size of the zones around

  6. Potential health impacts from range fires at Aberdeen Proving Ground, Maryland

    International Nuclear Information System (INIS)

    Willians, G.P.; Hermes, A.M.; Policastro, A.J.; Hartmann, H.M.; Tomasko, D.

    1998-03-01

    This study uses atmospheric dispersion computer models to evaluate the potential for human health impacts from exposure to contaminants that could be dispersed by fires on the testing ranges at Aberdeen Proving Ground, Maryland. It was designed as a screening study and does not estimate actual human health risks. Considered are five contaminants possibly present in the soil and vegetation from past human activities at APG--lead, arsenic, trichloroethylene (TCE), depleted uranium (DU), and dichlorodiphenyltrichloroethane (DDT); and two chemical warfare agents that could be released from unexploded ordnance rounds heated in a range fire--mustard and phosgene. For comparison, dispersion of two naturally occurring compounds that could be released by burning of uncontaminated vegetation--vinyl acetate and 2-furaldehyde--is also examined. Data from previous studies on soil contamination at APG are used in conjunction with conservative estimates about plant uptake of contaminants, atmospheric conditions, and size and frequency of range fires at APG to estimate dispersion and possible human exposure. The results are compared with US Environmental Protection Agency action levels. The comparisons indicate that for all of the anthropogenic contaminants except arsenic and mustard, exposure levels would be at least an order of magnitude lower than the corresponding action levels. Because of the compoundingly conservative nature of the assumptions made, they conclude that the potential for significant human health risks from range fires is low. The authors recommend that future efforts be directed at fire management and control, rather than at conducting additional studies to more accurately estimate actual human health risk from range fires

  7. Potential health impacts from range fires at Aberdeen Proving Ground, Maryland.

    Energy Technology Data Exchange (ETDEWEB)

    Willians, G.P.; Hermes, A.M.; Policastro, A.J.; Hartmann, H.M.; Tomasko, D.

    1998-03-01

    This study uses atmospheric dispersion computer models to evaluate the potential for human health impacts from exposure to contaminants that could be dispersed by fires on the testing ranges at Aberdeen Proving Ground, Maryland. It was designed as a screening study and does not estimate actual human health risks. Considered are five contaminants possibly present in the soil and vegetation from past human activities at APG--lead, arsenic, trichloroethylene (TCE), depleted uranium (DU), and dichlorodiphenyltrichloroethane (DDT); and two chemical warfare agents that could be released from unexploded ordnance rounds heated in a range fire--mustard and phosgene. For comparison, dispersion of two naturally occurring compounds that could be released by burning of uncontaminated vegetation--vinyl acetate and 2-furaldehyde--is also examined. Data from previous studies on soil contamination at APG are used in conjunction with conservative estimates about plant uptake of contaminants, atmospheric conditions, and size and frequency of range fires at APG to estimate dispersion and possible human exposure. The results are compared with US Environmental Protection Agency action levels. The comparisons indicate that for all of the anthropogenic contaminants except arsenic and mustard, exposure levels would be at least an order of magnitude lower than the corresponding action levels. Because of the compoundingly conservative nature of the assumptions made, they conclude that the potential for significant human health risks from range fires is low. The authors recommend that future efforts be directed at fire management and control, rather than at conducting additional studies to more accurately estimate actual human health risk from range fires.

  8. Effective quantum theories with short- and long-range forces

    International Nuclear Information System (INIS)

    Koenig, Sebastian

    2013-01-01

    At low energies, nonrelativistic quantum systems are essentially governed by their wave functions at large distances. For this reason, it is possible to describe a wide range of phenomena with short- or even finite-range interactions. In this thesis, we discuss several topics in connection with such an effective description and consider, in particular, modifications introduced by the presence of additional long-range potentials. In the first part we derive general results for the mass (binding energy) shift of bound states with angular momentum L ≥ 1 in a periodic cubic box in two and three spatial dimensions. Our results have applications to lattice simulations of hadronic molecules, halo nuclei, and Feshbach molecules. The sign of the mass shift can be related to the symmetry properties of the state under consideration. We verify our analytical results with explicit numerical calculations. Moreover, we discuss the case of twisted boundary conditions that arise when one considers moving bound states in finite boxes. The corresponding finite-volume shifts in the binding energies play an important role in the study of composite-particle scattering on the lattice, where they give rise to topological correction factors. While the above results are derived under the assumption of a pure finite-range interaction - and are still true up to exponentially small correction in the short-range case - in the second part we consider primarily systems of charged particles, where the Coulomb force determines the long-range part of the potential. In quantum systems with short-range interactions, causality imposes nontrivial constraints on low-energy scattering parameters. We investigate these causality constraints for systems where a long-range Coulomb potential is present in addition to a short-range interaction. The main result is an upper bound for the Coulomb-modified effective range parameter. We discuss the implications of this bound to the effective feld theory (EFT) for

  9. Short-range order in amorphous thin films of indium selenides

    International Nuclear Information System (INIS)

    Zakharov, V.P.; Poltavtsev, Yu.G.; Sheremet, G.P.

    1982-01-01

    A structure of the short-range order and a character of interatomic interactions in indium selenides Insub(1-x)Sesub(x) with 0.333 <= x <= 0.75, obtained in the form of amorphous films 0.05-0.80 μm thick are studied using electron diffraction method. It is found out that mostly tetrahedrical coordination of nearest neighbours in the vicinity of indium atoms is characteristic for studied amorphous films, and coordination of selenium atoms is different. Amorphous film with x=0.75 posesses a considereably microheterogeneous structure of the short-range order, which is characterized by the presence of microunclusions of amorphous selenium and atoms of indium, octohedrically coordinated by selenium atoms

  10. Short-range wireless communication fundamentals of RF system design and application

    CERN Document Server

    Bensky, Alan

    2004-01-01

    The Complete "Tool Kit” for the Hottest Area in RF/Wireless Design!Short-range wireless-communications over distances of less than 100 meters-is the most rapidly growing segment of RF/wireless engineering. Alan Bensky is an internationally recognized expert in short-range wireless, and this new edition of his bestselling book is completely revised to cover the latest developments in this fast moving field.You'll find coverage of such cutting-edge topics as: architectural trends in RF/wireless integrated circuits compatibility and conflict issues between differen

  11. Double scattering of light from Biophotonic Nanostructures with short-range order

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O.; Mochrie, Simon G.J.; Dufresne, Eric R.; Cao, Hui (Yale)

    2010-07-28

    We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.

  12. Fluctuations in substitution type alloys and their analyses. Short-range order structures

    International Nuclear Information System (INIS)

    Iwasaki, Hiroshi; Ohshima, Ken-ichi

    2010-01-01

    This article is the fifth of the serial lecture, microstructures and fluctuations, in this magazine. The formula of X-ray diffuse scattering intensity was derived for binary alloys by introducing short-range order parameters. Diffuse scattering intensities for a single crystal Cu 3 Au were measured above critical temperature for ordering. The short-range parameters were obtained by a three-dimensional Fourier analysis. The long-range pair interaction between atoms was originated from the indirect screening interaction due to conduction electrons. A detailed study was made on short-range-order diffuse scattering from Cu 3 Au in the disordered state by electron diffraction. Fourfold splitting of the diffuse scattering was observed at 110 in the reciprocal lattice, and this result was attributed to the reflection of the form of the Fermi surface. The X-ray diffuse scattering intensity was measured at room temperature for disordered Cu-Pd alloys for the six composition of Pd. Twofold and fourfold splitting of diffuse scattering due to the short-range order (SRO) were observed at 100, 110 and equivalent positions respectively from alloys with more than 13.0at% Pd. The SRO parameters were determined from all the six alloys. For Cu-Pt alloys, the diffuse scattering originated from the correlation between Cu and Pt layers in direction was observed in addition to the one due to the reflection of the Fermi surface imaging. (author)

  13. A study on atmospheric dispersion around Kalpakkam coastal site using a non-hydrostatic model and comparison with field data

    International Nuclear Information System (INIS)

    Jamima, P.; Lakshminarasimhan, J.; Venkatesan, R.

    2002-01-01

    Study of the sea breeze characteristics and Thermal Internal Boundary Layer (TIBL) is very important to understand the dispersion characteristics of air pollutants near coastal area. In the present paper, dispersion characteristics near Kalpakkam coastal area are studied and discussed by simulating sea breeze characteristics and TIBL using a non-hydrostatic mesoscale model in its two dimensional form. The model is run with surface physics, simplified radiation physics and turbulent kinetic energy (TKE) closure scheme for diffusion. A joint meteorological field experiment was carried out by IITM-Pune at Kalpakkam by deploying state of art sensors and tether balloon systems for observing the height profiles of meteorological parameters. The data taken from the field experiment is used here to compare the simulations. Results shows that the onset of sea breeze is one hour before as observed from the field experiment. Slight difference is also seen in wind speed and temperature. Spatial variation of the dispersion pattern could be understood from the simulated TKE profile. From the study, it is shown that the model gives only a over all picture of the real scenario and successful simulations require the inclusion of more atmospheric dynamics such as microphysics, cumulus parameterization and atmospheric radiation. (author)

  14. High-resolution modelling of atmospheric dispersion of dense gas using TWODEE-2.1: application to the 1986 Lake Nyos limnic eruption

    Science.gov (United States)

    Folch, Arnau; Barcons, Jordi; Kozono, Tomofumi; Costa, Antonio

    2017-06-01

    Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities if the terrain and meteorological conditions favour its accumulation in topographic depressions, thereby reaching toxic concentration levels. Numerical modelling of atmospheric gas dispersion constitutes a useful tool for gas hazard assessment studies, essential for planning risk mitigation actions. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behaviour, potentially leading to inaccurate results if not captured by coarser-scale modelling. We introduce a methodology for microscale wind field characterisation based on transfer functions that couple a mesoscale numerical weather prediction model with a microscale computational fluid dynamics (CFD) model for the atmospheric boundary layer. The resulting time-dependent high-resolution microscale wind field is used as input for a shallow-layer gas dispersal model (TWODEE-2.1) to simulate the time evolution of CO2 gas concentration at different heights above the terrain. The strategy is applied to review simulations of the 1986 Lake Nyos event in Cameroon, where a huge CO2 cloud released by a limnic eruption spread downslopes from the lake, suffocating thousands of people and animals across the Nyos and adjacent secondary valleys. Besides several new features introduced in the new version of the gas dispersal code (TWODEE-2.1), we have also implemented a novel impact criterion based on the percentage of human fatalities depending on CO2 concentration and exposure time. New model results are quantitatively validated using the reported percentage of fatalities at several locations. The comparison with previous simulations that assumed coarser-scale steady winds and topography illustrates the importance of high-resolution modelling in complex terrains.

  15. Atmospheric Dispersion Modeling of the February 2014 Waste Isolation Pilot Plant Release

    Energy Technology Data Exchange (ETDEWEB)

    Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Piggott, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lobaugh, Megan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tai, Lydia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yu, Kristen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-22

    This report presents the results of a simulation of the atmospheric dispersion and deposition of radioactivity released from the Waste Isolation Pilot Plant (WIPP) site in New Mexico in February 2014. These simulations were made by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL), and supersede NARAC simulation results published in a previous WIPP report (WIPP, 2014). The results presented in this report use additional, more detailed data from WIPP on the specific radionuclides released, radioactivity release amounts and release times. Compared to the previous NARAC simulations, the new simulation results in this report are based on more detailed modeling of the winds, turbulence, and particle dry deposition. In addition, the initial plume rise from the exhaust vent was considered in the new simulations, but not in the previous NARAC simulations. The new model results show some small differences compared to previous results, but do not change the conclusions in the WIPP (2014) report. Presented are the data and assumptions used in these model simulations, as well as the model-predicted dose and deposition on and near the WIPP site. A comparison of predicted and measured radionuclide-specific air concentrations is also presented.

  16. Pair-Wise and Many-Body Dispersive Interactions Coupled to an Optimally Tuned Range-Separated Hybrid Functional.

    Science.gov (United States)

    Agrawal, Piyush; Tkatchenko, Alexandre; Kronik, Leeor

    2013-08-13

    We propose a nonempirical, pair-wise or many-body dispersion-corrected, optimally tuned range-separated hybrid functional. This functional retains the advantages of the optimal-tuning approach in the prediction of the electronic structure. At the same time, it gains accuracy in the prediction of binding energies for dispersively bound systems, as demonstrated on the S22 and S66 benchmark sets of weakly bound dimers.

  17. The influence of short-term concentration peaks on exposure risks in the vicinity of an episodic release of hydrogen sulphide

    International Nuclear Information System (INIS)

    1981-01-01

    In order to propose a methodology by which the influence of short-term concentration peaks on exposure risks could be estimated in the vicinity of an atmospheric release of hydrogen sulphide (H 2 S), an extensive and up-to-date review of H 2 S toxicity was conducted, with emphasis on acute and sub-acute poisoning. The literature on animal studies and cases of human exposure were used to derive a lethal dose relationship(concentration-exposure time) appropriate for the general population. A statistical model was developed which calculates the probability of short-term concentrations exceeding the lethal level given the downwind range from the release, the short-term averaging time of interest, the long-term average concentration, and metereological and terrain conditions . Results were obtained for passive releases of H 2 S under a range of hypothetical conditions. Interpretation of these results is given in terms of the overall probability of lethal exposure during a 30-minute episode. The likely influence of heavy water plant gas dispersion systems is also addressed. (author)

  18. Particle simulation algorithms with short-range forces in MHD and fluid flow

    International Nuclear Information System (INIS)

    Cable, S.; Tajima, T.; Umegaki, K.

    1992-07-01

    Attempts are made to develop numerical algorithms for handling fluid flows involving liquids and liquid-gas mixtures. In these types of systems, the short-range intermolecular interactions are important enough to significantly alter behavior predicted on the basis of standard fluid mechanics and magnetohydrodynamics alone. We have constructed a particle-in-cell (PIC) code for the purpose of studying the effects of these interactions. Of the algorithms considered, the one which has been successfully implemented is based on a MHD particle code developed by Brunel et al. In the version presented here, short range forces are included in particle motion by, first, calculating the forces between individual particles and then, to prevent aliasing, interpolating these forces to the computational grid points, then interpolating the forces back to the particles. The code has been used to model a simple two-fluid Rayleigh-Taylor instability. Limitations to the accuracy of the code exist at short wavelengths, where the effects of the short-range forces would be expected to be most pronounced

  19. Vortex-homogenized matrix solid-phase dispersion for the extraction of short chain chlorinated paraffins from indoor dust samples.

    Science.gov (United States)

    Chen, Yu-Hsuan; Chang, Chia-Yu; Ding, Wang-Hsien

    2016-11-11

    A simple and effective method for determining short chain chlorinated paraffins (SCCPs) in indoor dust is presented. The method employed a modified vortex-homogenized matrix solid-phase dispersion (VH-MSPD) prior to its detection by gas chromatography - electron-capture negative-ion mass spectrometry (GC-ECNI-MS) operating in the selected-ion-monitoring (SIM) mode. Under the best extraction conditions, 0.1-g of dust sample was dispersed with 0.1-g of silica gel by using vortex (2min) instead of using a mortar and pestle (3min). After that step, the blend was transferred to a glass column containing 3-g acidic silica gel, 2-g basic silica gel, and 2-g of deactivated silica gel, used as clean-up co-sorbents. Then, target analytes were eluted with 5mL of n-hexane/dichloromethane (2:1, v/v) mixture. The extract was evaporated to dryness under a gentle stream of nitrogen. The residue was then re-dissolved in n-hexane (10μL), and subjected to GC-ECNI-MS analysis. The limits of quantitation (LOQs) ranged from 0.06 to 0.25μg/g for each SCCP congener. Precision was less than 7% for both intra- and inter-day analysis. Trueness was above 89%, which was calculated by mean extraction recovery. The VH-MSPD combined with GC-ECNI-MS was successfully applied to quantitatively detect SCCPs from various indoor dust samples, and the concentrations ranged from 1.2 to 31.2μg/g. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    Science.gov (United States)

    Bonasia, Rosanna; Scaini, Chirara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2013-01-01

    Popocatépetl is one of Mexico’s most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene–Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl’s reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the “Ochre Pumice” Plinian eruption (4965 14C

  1. The use of nonlinear regression analysis for integrating pollutant concentration measurements with atmospheric dispersion modeling for source term estimation

    International Nuclear Information System (INIS)

    Edwards, L.L.; Freis, R.P.; Peters, L.G.; Gudiksen, P.H.; Pitovranov, S.E.

    1993-01-01

    The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on the knowledge of the source term characteristics, which are generally poorly known. The development of an automated numerical technique that integrates the radiological measurements with atmospheric dispersion modeling for more accurate source term estimation is reported. Often, this process of parameter estimation is performed by an emergency response assessor, who takes an intelligent first guess at the model parameters, then, comparing the model results with whatever measurements are available, makes an intuitive, informed next guess of the model parameters. This process may be repeated any number of times until the assessor feels that the model results are reasonable in terms of the measured observations. A new approach, based on a nonlinear least-squares regression scheme coupled with the existing Atmospheric Release Advisory Capability three-dimensional atmospheric dispersion models, is to supplement the assessor's intuition with automated mathematical methods that do not significantly increase the response time of the existing predictive models. The viability of the approach is evaluated by estimation of the known SF 6 tracer release rates associated with the Mesoscale Atmospheric Transport Studies tracer experiments conducted at the Savannah River Laboratory during 1983. These 19 experiments resulted in 14 successful, separate tracer releases with sampling of the tracer plumes along the cross-plume arc situated ∼30 km from the release site

  2. In-medium short-range dynamics of nucleons: Recent theoretical and experimental advances

    Energy Technology Data Exchange (ETDEWEB)

    Atti, Claudio Ciofi degli, E-mail: ciofi@pg.infn.it

    2015-08-14

    The investigation of in-medium short-range dynamics of nucleons, usually referred to as the study of short-range correlations (SRCs), is a key issue in nuclear and hadronic physics. As a matter of fact, even in the simplified assumption that the nucleus could be described as a system of protons and neutrons interacting via effective nucleon–nucleon (NN) interactions, several non trivial problems arise concerning the description of in-medium (NN short-range dynamics, namely: (i) the behavior of the NN interaction at short inter-nucleon distances in medium cannot be uniquely constrained by the experimental NN scattering phase shifts due to off-shell effects; (ii) by rigorous renormalization group (RG) techniques entire families of phase equivalent interactions differing in the short-range part can be derived; (iii) the in-medium NN interaction may be, in principle, different from the free one; (iv) when the short inter-nucleon separation is of the order of the nucleon size, the question arises of possible effects from quark and gluon degrees of freedom. For more than fifty years, experimental evidence of SRCs has been searched by means of various kinds of nuclear reactions, without however convincing results, mainly because the effects of SRCs arise from non observable quantities, like, e.g., the momentum distributions, and have been extracted from observable cross sections where short- and long-range effects, effects from nucleonic and non nucleonic degrees of freedom, and effects from final state interaction, could not be unambiguously separated out. Recent years, however, were witness of new progress in the field: from one side, theoretical and computational progress has allowed one to solve ab initio the many-nucleon non relativistic Schrödinger equation in terms of realistic NN interactions, obtaining realistic microscopic wave functions, unless the case of parametrized wave functions used frequently in the past, moreover the development of advanced

  3. The pitfalls of short-range endemism: high vulnerability to ecological and landscape traps

    Directory of Open Access Journals (Sweden)

    Leanda D. Mason

    2018-05-01

    Full Text Available Ecological traps attract biota to low-quality habitats. Landscape traps are zones caught in a vortex of spiralling degradation. Here, we demonstrate how short-range endemic (SRE traits may make such taxa vulnerable to ecological and landscape traps. Three SRE species of mygalomorph spider were used in this study: Idiommata blackwalli, Idiosoma sigillatum and an undescribed Aganippe sp. Mygalomorphs can be long-lived (>43 years and select sites for permanent burrows in their early dispersal phase. Spiderlings from two species, I. blackwalli (n = 20 and Aganippe sp. (n = 50, demonstrated choice for microhabitats under experimental conditions, that correspond to where adults typically occur in situ. An invasive veldt grass microhabitat was selected almost exclusively by spiderlings of I. sigillatum. At present, habitat dominated by veldt grass in Perth, Western Australia, has lower prey diversity and abundance than undisturbed habitats and therefore may act as an ecological trap for this species. Furthermore, as a homogenising force, veldt grass can spread to form a landscape trap in naturally heterogeneous ecosystems. Selection of specialised microhabitats of SREs may explain high extinction rates in old, stable landscapes undergoing (human-induced rapid change.

  4. Nonlocality and short-range wetting phenomena.

    Science.gov (United States)

    Parry, A O; Romero-Enrique, J M; Lazarides, A

    2004-08-20

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  5. Nonlocality and Short-Range Wetting Phenomena

    Science.gov (United States)

    Parry, A. O.; Romero-Enrique, J. M.; Lazarides, A.

    2004-08-01

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  6. Short-range clustering and decomposition in copper-nickel and copper-nickel-iron alloys

    International Nuclear Information System (INIS)

    Aalders, T.J.A.

    1982-07-01

    The thermodynamic equilibrium state of short-range clustering and the kinetics of short-range clustering and decomposition has been studied for a number of CuNi(Fe)-alloys by means of neutron scattering. The validity of the theories, which are usually applied to describe spinodal decomposition, nucleation and growth, coarsening etc., was investigated. It was shown that for the investigated substances the conventional theory of spinodal decomposition is valid for the relaxation of short-range clustering only for the case that the initial and final states do not differ too much. The dynamical scaling procedure described by Lebowitz et al. did not lead to a time-independent scaled function F(x) for the relaxation of short-range clustering, for the early stages of decomposition and for the case that an alloy, which was already decomposed at the quench temperature T 1 , was annealed at a temperature T 2 (T 1 ). For the later stages of decomposition, however, the scaling procedure was indeed successful. The coarsening of the alloys could, except for the later stages, be described by the Lifshitz-Slyozov theory. (Auth.)

  7. Energy Dispersive Spectrometry and Quantitative Analysis Short Course. Introduction to X-ray Energy Dispersive Spectrometry and Quantitative Analysis

    Science.gov (United States)

    Carpenter, Paul; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.

  8. Atmospheric dispersion prediction and source estimation of hazardous gas using artificial neural network, particle swarm optimization and expectation maximization

    Science.gov (United States)

    Qiu, Sihang; Chen, Bin; Wang, Rongxiao; Zhu, Zhengqiu; Wang, Yuan; Qiu, Xiaogang

    2018-04-01

    Hazardous gas leak accident has posed a potential threat to human beings. Predicting atmospheric dispersion and estimating its source become increasingly important in emergency management. Current dispersion prediction and source estimation models cannot satisfy the requirement of emergency management because they are not equipped with high efficiency and accuracy at the same time. In this paper, we develop a fast and accurate dispersion prediction and source estimation method based on artificial neural network (ANN), particle swarm optimization (PSO) and expectation maximization (EM). The novel method uses a large amount of pre-determined scenarios to train the ANN for dispersion prediction, so that the ANN can predict concentration distribution accurately and efficiently. PSO and EM are applied for estimating the source parameters, which can effectively accelerate the process of convergence. The method is verified by the Indianapolis field study with a SF6 release source. The results demonstrate the effectiveness of the method.

  9. Small Device For Short-Range Antenna Measurements Using Optics

    DEFF Research Database (Denmark)

    Yanakiev, Boyan Radkov; Nielsen, Jesper Ødum; Christensen, Morten

    2011-01-01

    This paper gives a practical solution for implementing an antenna radiation pattern measurement device using optical fibers. It is suitable for anechoic chambers as well as short range channel sounding. The device is optimized for small size and provides a cheap and easy way to make optical antenna...

  10. Dynamic characteristic of intense short microwave propagation in an atmosphere

    International Nuclear Information System (INIS)

    Yee, J.H.; Alvarez, R.A.; Mayhall, D.J.; Madsen, N.K.; Cabayan, H.S.

    1983-07-01

    The dynamic behavior of an intense microwave pulse which propagates through the atmosphere will be presented. Our theoretical results are obtained by solving Maxwell's equations, together with the electron fluid equations. Our calculations show that although large portions of the initial energy are absorbed by the electrons that are created through the avalanche process, a significant amount of energy is still able to reach the earth's surface. The amount of energy that reaches the earth's surface as a function of initial energy and wave shape after having propagated through 100 km in the atmosphere are investigated. Results for the air breakdown threshold intensity as a function of the pressure for different pulse widths and different frequencies will also be presented. In addition, we will present a comparison between the theoretical and the experimental results for the pulse shape of a short microwave pulse after it has traveled through a rectangular wave guide which contains a section of air. 23 references, 9 figures

  11. Unsupervised learning in neural networks with short range synapses

    Science.gov (United States)

    Brunnet, L. G.; Agnes, E. J.; Mizusaki, B. E. P.; Erichsen, R., Jr.

    2013-01-01

    Different areas of the brain are involved in specific aspects of the information being processed both in learning and in memory formation. For example, the hippocampus is important in the consolidation of information from short-term memory to long-term memory, while emotional memory seems to be dealt by the amygdala. On the microscopic scale the underlying structures in these areas differ in the kind of neurons involved, in their connectivity, or in their clustering degree but, at this level, learning and memory are attributed to neuronal synapses mediated by longterm potentiation and long-term depression. In this work we explore the properties of a short range synaptic connection network, a nearest neighbor lattice composed mostly by excitatory neurons and a fraction of inhibitory ones. The mechanism of synaptic modification responsible for the emergence of memory is Spike-Timing-Dependent Plasticity (STDP), a Hebbian-like rule, where potentiation/depression is acquired when causal/non-causal spikes happen in a synapse involving two neurons. The system is intended to store and recognize memories associated to spatial external inputs presented as simple geometrical forms. The synaptic modifications are continuously applied to excitatory connections, including a homeostasis rule and STDP. In this work we explore the different scenarios under which a network with short range connections can accomplish the task of storing and recognizing simple connected patterns.

  12. Experimental study of the propgation and dispersion of internal atmospheric gravity waves

    International Nuclear Information System (INIS)

    Ballard, K.A.

    1981-01-01

    Traveling ionospheric disturbances (TID's) appear as large-scale transverse waves in the F-region (150 to 1000 km altitude), with frequencies on the order of 0.005 to 0.005 cycles per minute, which propagate horizontally over hundreds or even thousands of kilometers. These disturbances have been observed by various radiowave techniques over the past thirty-five years and are now generally accepted as being the manifestation, in the ionized medium, of internal atmospheric gravity waves. A model describing the propagation of gravity waves in an isothermal atmosphere is presented here. The dispersion relation is derived from fundamental principles, and the relation between phase velocity and group velocity is examined. The effects of the Coriolis force and horizontally stratified winds on wave propagation are also analyzed. Conservation of energy in the gravity wave requires increasing amplitude with increasing altitude, inasmuch as the atmospheric density decreases with height. However, this is counteracted by dissipation of wave energy by ion drag, thermal conductivity, and viscous damping. The production of TID's (in the ionized medium) by gravity waves (in the neutral medium) is discussed in quantitative terms, and the vertical predictive function is derived. Dartmouth College has operated a three-station ionosonde network in northern New Hampshire and Vermont on an intermittent basis since 1968. Seven large TID's, found in the 1969 data, are reexamined here in an exhaustive and successful comparison with the gravity wave model. Iso-true-height contours of electron density are used to determine several pertinent TID wave parameters as a function of height

  13. How disturbance, competition and dispersal interact to prevent tree range boundaries from keeping pace with climate change

    Science.gov (United States)

    Liang, Y.; Duveneck, M.; Gustafson, E. J.; Serra-Diaz, J. M.; Thompson, J. R.

    2017-12-01

    Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change, disturbance and competitive interactions to produce range shifts are poorly understood. We used a physiologically-based mechanistic landscape model to study these interactions in the northeastern United States. We designed a series of disturbance scenarios to represent varied disturbance regimes in terms of both disturbance extent and intensity. We simulated forest succession by incorporating climate change under a high emissions future, disturbances, seed dispersal, and competition using the landscape model parameterized with forest inventory data. Tree species range boundary shifts in the next century were quantified as the change in the location of the 5th (the trailing edge) and 95th (the leading edge) percentiles of the spatial distribution of simulated species. Simulated tree species range boundary shifts in New England over the next century were far below (usually Disturbances may expedite species` recruitment into new sites, but they had little effect on the velocity of simulated range boundary shifts. Range shifts at the trailing edge tended to be associated with photosynthetic capacity, competitive ability for light and seed dispersal ability, whereas shifts at the leading edge were associated only with photosynthetic capacity and competition for light. This study underscores the importance of understanding the role of interspecific competition and disturbance when studying tree range shifts.

  14. Atmospheric dispersion modeling and radiological safety analysis for a hypothetical accident of Ghana Research Reactor -1 (GHARR-1)

    International Nuclear Information System (INIS)

    Lunguya, J. M.

    2013-06-01

    This work presents the environmental impact analysis of some selected radionuclides released from the Ghana Research Reactor- 1 (GHARR-1) after a hypothetical postulated accidents scenario. The source term was identified and generated from an inventory of radioisotopes released during the accident. Atmospheric transport model was then applied to calculate the total effective dose and how it would be distributed to different organs of the human body as a function of distance downwind. All accident scenarios were selected from GHARR-1 Safety Analysis Report. After the source term was identified the MCNPX code was used to perform the core burnup/depletion analysis. The assumption was made that the activities were released to the atmosphere under a horse design basis accident scenario. The gaussian dose calculation method was applied, coded in Hotspot, a Healthy Physics computer code. This served as the computational tool to perform the atmospheric dispersion modeling and was used to calculate radionuclide concentration at downwind location. Based upon predominant meteorological conditions at the site, the adopted strategy was to use site-specific meteorological data and dispersion modeling to analyze the hypothetical release to the environment of radionuclides and evaluate to what extent such a release may have radiological effects on the public. Final data were processed and presented as Total Effective Dose Equivalent as a function of time and distance of deposition. The results indicate that all the values of Effective dose obtained are far below the regulatory limits, making the use of the reactor safe, even in the case of worst accident scenario where all the fission products were released into the atmosphere. (au)

  15. Short range order in liquid pnictides

    International Nuclear Information System (INIS)

    Mayo, M; Makov, G; Yahel, E; Greenberg, Y

    2013-01-01

    Liquid pnictides have anomalous physical properties and complex radial distribution functions. The quasi-crystalline model of liquid structure is applied to interpret the three-dimensional structure of liquid pnictides. It is shown that all the column V elements can be characterized by a short range order lattice symmetry similar to that of the underlying solid, the A7 structure, which originates from a Peierls distorted simple cubic lattice. The evolution of the liquid structure down the column as well as its temperature and pressure dependence is interpreted by means of the effect of thermodynamic parameters on the Peierls distortion. Surprisingly, it is found that the Peierls effect increases with temperature and the nearest neighbour distances exhibit negative thermal expansion. (paper)

  16. PIV Measurements of Atmospheric Turbulence and Pollen Dispersal Above a Corn Canopy

    Science.gov (United States)

    Zhu, W.; van Hout, R.; Luznik, L.; Katz, J.

    2003-12-01

    Dispersal of pollen grains by wind and gravity (Anemophilous) is one of the oldest means of plant fertilization available in nature. Recently, the growth of genetically modified foods has raised questions on the range of pollen dispersal in order to limit cross-fertilization between organically grown and transgenic crops. The distance that a pollen grain can travel once released from the anther is determined, among others, by the aerodynamic parameters of the pollen and the characteristics of turbulence in the atmosphere in which it is released. Turbulence characteristics of the flow above a pollinating corn field were measured using Particle Image Velocimetry (PIV). The measurements were performed on the eastern shore of the Chesapeake Bay, in Maryland, during July 2003. Two PIV systems were used simultaneously, each with an overall sample area of 18x18 cm. The spacing between samples was about equal to the field of view. The PIV instrumentation, including CCD cameras, power supply and laser sheets forming optics were mounted on a measurement platform, consisting of a hydraulic telescopic arm that could be extended up to 10m. The whole system could be rotated in order to align it with the flow. The flow was seeded with smoke generated about 30m upstream of the sample areas. Measurements were carried out at several elevations, from just below canopy height up to 1m above canopy. The local meteorological conditions around the test site were monitored by other sensors including sonic anemometers, Rotorod pollen counters and temperature sensors. Each processed PIV image provides an instantaneous velocity distribution containing 64x64 vectors with a vector spacing of ~3mm. The pollen grains (~100mm) can be clearly distinguished from the smoke particles (~1mm) based on their size difference. The acquired PIV data enables calculation of the mean flow and turbulence characteristics including Reynolds stresses, spectra, turbulent kinetic energy and dissipation rate. Data

  17. Development of matrix solid-phase dispersion method for the extraction of short-chain chlorinated paraffins in human placenta.

    Science.gov (United States)

    Wang, Ying; Gao, Wei; Wu, Jing; Liu, Huijin; Wang, Yingjun; Wang, Yawei; Jiang, Guibin

    2017-12-01

    Chlorinated paraffins (SCCPs) are widely used worldwide, and they can be released into the environment during their production, transport, usage and disposal, which pose potential risks for human health. In this work, an efficient, reliable and rapid pretreatment method based on matrix solid-phase dispersion (MSPD) was developed for the analysis of short-chain CPs (SCCPs) in human placenta by gas chromatograph-electron capture negative ion low-resolution mass spectrometry (GC-ECNI-LRMS) and gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOF-HRMS). The MSPD-relevant parameters including dispersing sorbent, sample-to-sorbent mass ratio, and elution solvent were optimized using the orthogonal test. Silica gel was found to be the optimal dispersing sorbent among the selected matrices. Under the optimal conditions, 44% acidic silica gel can be used as the co-sorbent to remove lipid and eluted by the mixture of hexane and dichloromethane (7:3, V/V). The spiked recoveries of the optimized method were 77.4% and 91.4% for analyzing SCCPs in human placenta by GC-ECNI-LRMS and GC-QTOF-HRMS, and the corresponding relative standard deviations were 10.2% and 5.6%, respectively. The method detection limit for the total SCCPs was 36.8ng/g (dry weight, dw) and 19.2ng/g (dw) as measured by GC-ECNI-LRMS and GC-QTOF-HRMS, respectively. The concentrations of SCCPs in four human placentas were in the range of

  18. Meteorology and dispersion forecast in nuclear emergency in Argentina

    International Nuclear Information System (INIS)

    Kunst, Juan J.; Boutet, Luis I.; Jordan, Osvaldo D.; Hernandez, Daniel G.; Guichandut, M.E.; Chiappesoni, H.

    2008-01-01

    The 'Nuclear Regulatory Authority (NRA) (ARN in Spanish)' and the 'National Meteorological Office (NMO) (SMN in Spanish)' of Argentine has been working together on the improvement of both meteorological forecasting and dispersion prediction. In the pre-release phase of a nuclear emergency, it is very important to know the wind direction and the forecast of it, to establish the area, around the installation, where the emergency state is declared and to foresee the modification of this area. Information is also needed about deterministic effects, to begin the evacuation. At this time, meteorological forecast of wind direction and speed, and the real time meteorological information is available in the nuclear power plant (NPP) and in the Nuclear Emergency Control Centre at the ARN headquarters, together with the short-range dose calculation provided by our dispersion code, SEDA. By means of the SEDA code, we can estimate the optimum place to measure the radioactive material concentration in air, needed do to reduce evaluation uncertainties due, among others, to poor knowledge of the source term. The SEDA code allows considering atmospheric condition, and the need to reduced doses of the measuring team in charge of the measurements. For the evaluation in the medium range, we participate in the project IXP, which provides four hours and about 50 kilometres forecast. In the long-range movement of air borne radioactivity, the World Meteorological Organization (WMO), whose contact point in Argentina is the SMN, can assist us. We have developed together, with the SMN, a detailed procedure to request assistance from the WMO. In this work, we describe the combined tasks that were carried out with the SMN to define the procedures and the concepts for their application during a real emergency. The results of an application exercise carried out in 2006 are also described. (author)

  19. Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for Modern Human dispersal.

    Science.gov (United States)

    Obreht, Igor; Hambach, Ulrich; Veres, Daniel; Zeeden, Christian; Bösken, Janina; Stevens, Thomas; Marković, Slobodan B; Klasen, Nicole; Brill, Dominik; Burow, Christoph; Lehmkuhl, Frank

    2017-07-19

    Understanding the past dynamics of large-scale atmospheric systems is crucial for our knowledge of the palaeoclimate conditions in Europe. Southeastern Europe currently lies at the border between Atlantic, Mediterranean, and continental climate zones. Past changes in the relative influence of associated atmospheric systems must have been recorded in the region's palaeoarchives. By comparing high-resolution grain-size, environmental magnetic and geochemical data from two loess-palaeosol sequences in the Lower Danube Basin with other Eurasian palaeorecords, we reconstructed past climatic patterns over Southeastern Europe and the related interaction of the prevailing large-scale circulation modes over Europe, especially during late Marine Isotope Stage 3 (40,000-27,000 years ago). We demonstrate that during this time interval, the intensification of the Siberian High had a crucial influence on European climate causing the more continental conditions over major parts of Europe, and a southwards shift of the Westerlies. Such a climatic and environmental change, combined with the Campanian Ignimbrite/Y-5 volcanic eruption, may have driven the Anatomically Modern Human dispersal towards Central and Western Europe, pointing to a corridor over the Eastern European Plain as an important pathway in their dispersal.

  20. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    C. Harrington

    2004-01-01

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to

  1. On the universality of the long-/short-range separation in multiconfigurational density-functional theory

    Science.gov (United States)

    Fromager, Emmanuel; Toulouse, Julien; Jensen, Hans Jørgen Aa.

    2007-02-01

    In many cases, the dynamic correlation can be calculated quite accurately and at a fairly low computational cost in Kohn-Sham density-functional theory (KS-DFT), using current standard approximate functionals. However, in general, KS-DFT does not treat static correlation effects (near degeneracy) adequately which, on the other hand, can be described in wave-function theory (WFT), for example, with a multiconfigurational self-consistent field (MCSCF) model. It is therefore of high interest to develop a hybrid model which combines the best of both WFT and DFT approaches. The merge of WFT and DFT can be achieved by splitting the two-electron interaction into long-range and short-range parts. The long-range part is then treated by WFT and the short-range part by DFT. In this work the authors consider the so-called "erf" long-range interaction erf(μr12)/r12, which is based on the standard error function, and where μ is a free parameter which controls the range of the long-/short-range decomposition. In order to formulate a general method, they propose a recipe for the definition of an optimal μopt parameter, which is independent of the approximate short-range functional and the approximate wave function, and they discuss its universality. Calculations on a test set consisting of He, Be, Ne, Mg, H2, N2, and H2O yield μopt≈0.4a.u.. A similar analysis on other types of test systems such as actinide compounds is currently in progress. Using the value of 0.4a.u. for μ, encouraging results are obtained with the hybrid MCSCF-DFT method for the dissociation energies of H2, N2, and H2O, with both short-range local-density approximation and PBE-type functionals.

  2. An analytical model for dispersion of material in the atmospheric planetary boundary layer in presence of precipitation

    International Nuclear Information System (INIS)

    Mayhoub, A.B.; Etman, S.M.

    1985-05-01

    An analytical model for the dispersion of particulates and finely divided material released into the atmosphere near the ground is presented. The possible precipitation when the particles are dense enough and large enough to have deposition velocity, is taken into consideration. The model is derived analytically in the mixing layer or Ekman boundary layer where the mixing process is a direct consequence of turbulent and convective motions generated in the boundary layer. (author)

  3. Atmospheric dispersion experiments over complex terrain in a spanish valley site (Guardo-90)

    International Nuclear Information System (INIS)

    Ibarra, J.I.

    1991-01-01

    An intensive field experimental campaign was conducted in Spain to quantify atmospheric diffusion within a deep, steep-walled valley in rough, mountainous terrain. The program has been sponsored by the spanish companies of electricity and is intended to validate existing plume models and to provide the scientific basis for future model development. The atmospheric dispersion and transport processes in a 40x40 km domain were studied in order to evaluate SO 2 and SF 6 releases from an existing 185 m chimney and ground level sources in a complex terrain valley site. Emphasis was placed on the local mesoscale flows and light wind stable conditions. Although the measuring program was intensified during daytime for dual tracking of SO 2 /SF 6 from an elevated source, nighttime experiments were conducted for mountain-valley flows characterization. Two principle objectives were pursued: impaction of plumes upon elevated terrain, and diffusion of gases within the valley versus diffusion over flat, open terrain. Artificial smoke flows visualizations provided qualitative information: quantitative diffusion measurements were obtained using sulfur hexafluoride gas with analysis by highly sensitive electron capture gas chromatographs systems. Fourteen 2 hours gaseous tracer releases were conducted

  4. Atmospheric Dispersion Modeling of 137Cs generated from Nuclear Spent Fuel under Hypothetic Accidental Condition in the BNPP Area

    Science.gov (United States)

    Lee, Jongkuk; Lee, Kwan-Hee; Yook, Daesik; Kim, Sung Il; Lee, Byung Soo

    2016-04-01

    of surface conditions were selected, including city area, hedge area, cut grass, and desert area. Four cases of simulations were performed under the same conditions except for surface the roughness factor. The results indicated that relatively high concentrations were found at the high surface roughness near the origin of the source point. The city area contained approximately four times 137Cs concentration than that of desert area. The atmospheric dispersion of 137Cs was affected by the surface condition in the proximal area. Moreover, movement of the radioactive material had a tendency to be dispersed in a relatively wide range in the desert areas compared to in the higher surface roughness areas. The results of these study offer useful information for developing environmental radiation monitoring systems (ERMSs) and evacuation plan under unexpected emergency condition for the BNPP and can be used to assess the environmental effects of new nuclear power plant. This work was supported by the Nuclear Safety Research Program through the Korea Nuclear Safety Foundation(KORSAFe), granted financial resource from the Nuclear Safety and Security Commission(NSSC), Republic of Korea (No. 1503003).

  5. New methods of generation of ultrashort laser pulses for ranging

    Science.gov (United States)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  6. Angular correlation between short-range. cap alpha. particles and. gamma. quanta

    Energy Technology Data Exchange (ETDEWEB)

    Kul' chitskii, L A; Latyshev, G D; Bulyginskii, D G

    1949-01-01

    Chang (Phys. Rev. 69, 60(1946); 70, 632(1946)) has found that the intensities of short-range ..cap alpha.. rays of Po and Ra are considerably higher than the values given by the Geiger-Nuttall law. This can be explained by assuming surface vibrations of ..cap alpha..-radioactive nuclei, which produce deformations and corresponding lowerings of the potential barrier in certain directions. In this case an angular correlation should exist between the short-range ..cap alpha.. ray and the accompanying ..gamma.. quantum. The authors checked this conclusion by applying the coincidence method to the ..cap alpha.. and ..gamma.. radiations of a mixture of RdTh (/sup 228/Th) and ThC (/sup 212/Bi). Maxima of coincidence numbers occur at angles 45 and 135 deg., with lesser maxima at 0 and 180 deg. Theoretical considerations show that in cases (like the one investigated) where the nuclear spin before and after the ..cap alpha.. and ..gamma.. emissions is zero, the angular correlations are uniquely determined whatever the deformation caused by the vibration; in other cases, the correlation depends on the kind of deformation. Therefore, it would be interesting to investigate the case of Pa, whose nuclear spin is not zero and the decay exhibits intensive groups of short-range ..cap alpha.. particles.

  7. Diverse range dynamics and dispersal routes of plants on the Tibetan Plateau during the late Quaternary.

    Directory of Open Access Journals (Sweden)

    Haibin Yu

    Full Text Available Phylogeographical studies have suggested that several plant species on the Tibetan Plateau (TP underwent recolonization during the Quaternary and may have had distinct range dynamics in response to the last glacial. To further test this hypothesis and locate the possible historical dispersal routes, we selected 20 plant species from different parts of the TP and modeled their geographical distributions over four time periods using species distribution models (SDMs. Furthermore, we applied the least-cost path method together with SDMs and shared haplotypes to estimate their historical dispersal corridors. We identified three general scenarios of species distribution change during the late Quaternary: the 'contraction-expansion' scenario for species in the northeastern TP, the 'expansion-contraction' scenario for species in the southeast and the 'stable' scenario for widespread species. During the Quaternary, we identified that these species were likely to recolonize along the low-elevation valleys, huge mountain ranges and flat plateau platform (e.g. the Yarlung Zangbo Valley and the Himalaya. We inferred that Quaternary cyclic glaciations along with the various topographic and climatic conditions of the TP could have resulted in the diverse patterns of range shift and dispersal of Tibetan plant species. Finally, we believe that this study would provide valuable insights for the conservation of alpine species under future climate change.

  8. How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change.

    Science.gov (United States)

    Liang, Yu; Duveneck, Matthew J; Gustafson, Eric J; Serra-Diaz, Josep M; Thompson, Jonathan R

    2018-01-01

    Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change, disturbance and competitive interactions to produce range shifts are poorly understood. We used a physiologically based mechanistic landscape model to study these interactions in the northeastern United States. We designed a series of disturbance scenarios to represent varied disturbance regimes in terms of both disturbance extent and intensity. We simulated forest succession by incorporating climate change under a high-emissions future, disturbances, seed dispersal, and competition using the landscape model parameterized with forest inventory data. Tree species range boundary shifts in the next century were quantified as the change in the location of the 5th (the trailing edge) and 95th (the leading edge) percentiles of the spatial distribution of simulated species. Simulated tree species range boundary shifts in New England over the next century were far below (usually change (usually more than 110 km over 100 years) under a high-emissions scenario. Simulated species` ranges shifted northward at both the leading edge (northern boundary) and trailing edge (southern boundary). Disturbances may expedite species' recruitment into new sites, but they had little effect on the velocity of simulated range boundary shifts. Range shifts at the trailing edge tended to be associated with photosynthetic capacity, competitive ability for light and seed dispersal ability, whereas shifts at the leading edge were associated only with photosynthetic capacity and competition for light. This study underscores the importance of understanding the role of interspecific competition and disturbance when studying tree range

  9. A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes

    Science.gov (United States)

    Delort, Anne-Marie; Vaïtilingom, Mickael; Amato, Pierre; Sancelme, Martine; Parazols, Marius; Mailhot, Gilles; Laj, Paolo; Deguillaume, Laurent

    2010-11-01

    Recent studies showed that living microorganisms, including bacteria, fungi and yeasts, are present in the atmospheric water phase (fog and clouds) and their role in chemical processes may have been underestimated. At the interface between atmospheric science and microbiology, information about this field of science suffers from the fact that not all recent findings are efficiently conveyed to both scientific communities. The purpose of this paper is therefore to provide a short overview of recent work linked to living organisms in the atmospheric water phase, from their activation to cloud droplets and ice crystal, to their potential impact on atmospheric chemical processes. This paper is focused on the microorganisms present in clouds and on the role they could play in atmospheric chemistry and nucleation processes. First, the life cycle of microorganisms via the atmosphere is examined, including their aerosolization from sources, their integration into clouds and their wet deposition on the ground. Second, special attention is paid to the possible impacts of microorganisms on liquid and ice nucleation processes. Third, a short description of the microorganisms that have been found in clouds and their variability in numbers and diversity is presented, emphasizing some specific characteristics that could favour their occurrence in cloud droplets. In the last section, the potential role of microbial activity as an alternative route to photochemical reaction pathways in cloud chemistry is discussed.

  10. Atmospheric chemistry of short-chain haloolefins: photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs).

    Science.gov (United States)

    Wallington, T J; Sulbaek Andersen, M P; Nielsen, O J

    2015-06-01

    Short-chain haloolefins are being introduced as replacements for saturated halocarbons. The unifying chemical feature of haloolefins is the presence of a CC double bond which causes the atmospheric lifetimes to be significantly shorter than for the analogous saturated compounds. We discuss the atmospheric lifetimes, photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs) of haloolefins. The commercially relevant short-chain haloolefins CF3CFCH2 (1234yf), trans-CF3CHCHF (1234ze(Z)), CF3CFCF2 (1216), cis-CF3CHCHCl (1233zd(Z)), and trans-CF3CHCHCl (1233zd(E)) have short atmospheric lifetimes (days to weeks), negligible POCPs, negligible GWPs, and ODPs which do not differ materially from zero. In the concentrations expected in the environment their atmospheric degradation products will have a negligible impact on ecosystems. CF3CFCH2 (1234yf), trans-CF3CHCHF (1234ze(Z)), CF3CFCF2 (1216), cis-CF3CHCHCl (1233zd(Z)), and trans-CF3CHCHCl (1233zd(E)) are environmentally acceptable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Mixing height derived from the DMI-HIRLAM NWP model, and used for ETEX dispersion modelling

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, J.H.; Rasmussen, A. [Danish Meteorological Inst., Copenhagen (Denmark)

    1997-10-01

    For atmospheric dispersion modelling it is of great significance to estimate the mixing height well. Mesoscale and long-range diffusion models using output from numerical weather prediction (NWP) models may well use NWP model profiles of wind, temperature and humidity in computation of the mixing height. This is dynamically consistent, and enables calculation of the mixing height for predicted states of the atmosphere. In autumn 1994, the European Tracer Experiment (ETEX) was carried out with the objective to validate atmospheric dispersion models. The Danish Meteorological Institute (DMI) participates in the model evaluations with the Danish Emergency Response Model of the Atmosphere (DERMA) using NWP model data from the DMI version of the High Resolution Limited Area Model (HIRLAM) as well as from the global model of the European Centre for Medium-Range Weather Forecast (ECMWF). In DERMA, calculation of mixing heights are performed based on a bulk Richardson number approach. Comparing with tracer gas measurements for the first ETEX experiment, a sensitivity study is performed for DERMA. Using DMI-HIRLAM data, the study shows that optimum values of the critical bulk Richardson number in the range 0.15-0.35 are adequate. These results are in agreement with recent mixing height verification studies against radiosonde data. The fairly large range of adequate critical values is a signature of the robustness of the method. Direct verification results against observed missing heights from operational radio-sondes released under the ETEX plume are presented. (au) 10 refs.

  12. Chernobyl and Fukushima nuclear accidents: what has changed in the use of atmospheric dispersion modeling?

    International Nuclear Information System (INIS)

    Benamrane, Y.; Wybo, J.-L.; Armand, P.

    2013-01-01

    The threat of a major accidental or deliberate event that would lead to hazardous materials emission in the atmosphere is a great cause of concern to societies. This is due to the potential large scale of casualties and damages that could result from the release of explosive, flammable or toxic gases from industrial plants or transport accidents, radioactive material from nuclear power plants (NPPs), and chemical, biological, radiological or nuclear (CBRN) terrorist attacks. In order to respond efficiently to such events, emergency services and authorities resort to appropriate planning and organizational patterns. This paper focuses on the use of atmospheric dispersion modeling (ADM) as a support tool for emergency planning and response, to assess the propagation of the hazardous cloud and thereby, take adequate counter measures. This paper intends to illustrate the noticeable evolution in the operational use of ADM tools over 25 y and especially in emergency situations. This study is based on data available in scientific publications and exemplified using the two most severe nuclear accidents: Chernobyl (1986) and Fukushima (2011). It appears that during the Chernobyl accident, ADM were used few days after the beginning of the accident mainly in a diagnosis approach trying to reconstruct what happened, whereas 25 y later, ADM was also used during the first days and weeks of the Fukushima accident to anticipate the potentially threatened areas. We argue that the recent developments in ADM tools play an increasing role in emergencies and crises management, by supporting stakeholders in anticipating, monitoring and assessing post-event damages. However, despite technological evolutions, its prognostic and diagnostic use in emergency situations still arise many issues. -- Highlights: • Study of atmospheric dispersion modeling use during nuclear accidents. • ADM tools were mainly used in a diagnosis approach during Chernobyl accident. • ADM tools were also used

  13. SPRAYTRAN 1.0 User’s Guide: A GIS-Based Atmospheric Spray Droplet Dispersion Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K Jerry; Rutz, Frederick C.; Droppo, James G.; Rishel, Jeremy P.; Chapman, Elaine G.; Bird, S. L.; Thistle, Harold W.

    2006-09-20

    SPRAY TRANsport (SPRAYTRAN) is a comprehensive dispersion modeling system that is used to simulate the offsite drift of pesticides from spray applications. SPRAYTRAN functions as a console application within Environmental System Research Institute’s ArcMap Geographic Information System (Version 9.x) and integrates the widely-used, U.S. Environmental Protection Agency (EPA)-approved CALifornia PUFF (CALPUFF) dispersion model and model components to simulate longer-range transport and diffusion in variable terrain and spatially/temporally varying meteorological (e.g., wind) fields. Area sources, which are used to define spray blocks in SPRAYTRAN, are initialized using output files generated from a separate aerial-spray-application model called AGDISP (AGricultural DISPersal). The AGDISP model is used for estimating the amount of pesticide deposited to the spray block based on spraying characteristics (e.g., pesticide type, spray nozzles, and aircraft type) and then simulating the near-field (less than 300-m) drift from a single pesticide application. The fraction of pesticide remaining airborne from the AGDISP near-field simulation is then used by SPRAYTRAN for simulating longer-range (greater than 300 m) drift and deposition of the pesticide.

  14. Method to characterize directional changes in Arctic sea ice drift and associated deformation due to synoptic atmospheric variations using Lagrangian dispersion statistics

    Directory of Open Access Journals (Sweden)

    J. V. Lukovich

    2017-07-01

    Full Text Available A framework is developed to assess the directional changes in sea ice drift paths and associated deformation processes in response to atmospheric forcing. The framework is based on Lagrangian statistical analyses leveraging particle dispersion theory which tells us whether ice drift is in a subdiffusive, diffusive, ballistic, or superdiffusive dynamical regime using single-particle (absolute dispersion statistics. In terms of sea ice deformation, the framework uses two- and three-particle dispersion to characterize along- and across-shear transport as well as differential kinematic parameters. The approach is tested with GPS beacons deployed in triplets on sea ice in the southern Beaufort Sea at varying distances from the coastline in fall of 2009 with eight individual events characterized. One transition in particular follows the sea level pressure (SLP high on 8 October in 2009 while the sea ice drift was in a superdiffusive dynamic regime. In this case, the dispersion scaling exponent (which is a slope between single-particle absolute dispersion of sea ice drift and elapsed time changed from superdiffusive (α ∼ 3 to ballistic (α ∼ 2 as the SLP was rounding its maximum pressure value. Following this shift between regimes, there was a loss in synchronicity between sea ice drift and atmospheric motion patterns. While this is only one case study, the outcomes suggest similar studies be conducted on more buoy arrays to test momentum transfer linkages between storms and sea ice responses as a function of dispersion regime states using scaling exponents. The tools and framework developed in this study provide a unique characterization technique to evaluate these states with respect to sea ice processes in general. Application of these techniques can aid ice hazard assessments and weather forecasting in support of marine transportation and indigenous use of near-shore Arctic areas.

  15. Short-range contacts govern the performance of industry-relevant battery cathodes

    Science.gov (United States)

    Morelly, Samantha L.; Alvarez, Nicolas J.; Tang, Maureen H.

    2018-05-01

    Fundamental understanding of how processing affects composite battery electrode structure and performance is still lacking, especially for industry-relevant electrodes with low fractions of inactive material. This work combines rheology, electronic conductivity measurements, and battery rate capability tests to prove that short-range electronic contacts are more important to cathode rate capability than either ion transport or long-range electronic conductivity. LiNi0.33Mn0.33Co0.33O2, carbon black, and polyvinylidene difluoride in 1-methyl-2-pyrrolidinone represent a typical commercial electrode with films. Improvements in battery rate capability at constant electrode porosity do not correlate to electronic conductivity, but rather show an optimum fraction of free carbon. Simple comparison of rate capability in electrodes with increased total carbon loading (3 wt%) shows improvement for all fractions of free carbon. These results clearly indicate that ion transport cannot be limiting and highlight the critical importance of short-range electronic contacts for controlling battery performance.

  16. RECG maintains plastid and mitochondrial genome stability by suppressing extensive recombination between short dispersed repeats.

    Directory of Open Access Journals (Sweden)

    Masaki Odahara

    2015-03-01

    Full Text Available Maintenance of plastid and mitochondrial genome stability is crucial for photosynthesis and respiration, respectively. Recently, we have reported that RECA1 maintains mitochondrial genome stability by suppressing gross rearrangements induced by aberrant recombination between short dispersed repeats in the moss Physcomitrella patens. In this study, we studied a newly identified P. patens homolog of bacterial RecG helicase, RECG, some of which is localized in both plastid and mitochondrial nucleoids. RECG partially complements recG deficiency in Escherichia coli cells. A knockout (KO mutation of RECG caused characteristic phenotypes including growth delay and developmental and mitochondrial defects, which are similar to those of the RECA1 KO mutant. The RECG KO cells showed heterogeneity in these phenotypes. Analyses of RECG KO plants showed that mitochondrial genome was destabilized due to a recombination between 8-79 bp repeats and the pattern of the recombination partly differed from that observed in the RECA1 KO mutants. The mitochondrial DNA (mtDNA instability was greater in severe phenotypic RECG KO cells than that in mild phenotypic ones. This result suggests that mitochondrial genomic instability is responsible for the defective phenotypes of RECG KO plants. Some of the induced recombination caused efficient genomic rearrangements in RECG KO mitochondria. Such loci were sometimes associated with a decrease in the levels of normal mtDNA and significant decrease in the number of transcripts derived from the loci. In addition, the RECG KO mutation caused remarkable plastid abnormalities and induced recombination between short repeats (12-63 bp in the plastid DNA. These results suggest that RECG plays a role in the maintenance of both plastid and mitochondrial genome stability by suppressing aberrant recombination between dispersed short repeats; this role is crucial for plastid and mitochondrial functions.

  17. Atmospheric dispersion and environmental consequences

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.

    1992-11-01

    Methods are described for assessing early radiation doses due to atmospheric releases of radionuclides, i.e. inhalation and external exposure from the plume and from deposited activity. Data to be used in these assessments are presented. The purpose of the present work is to evaluate methods and data that could be used in emergency situations as well as for emergency planning purposes. The most important direct pathways following a release of airborne radionuclides to the atmosphere are the inhalation pathway and the external exposure pathway from ground-deposited activity. For long-lived radionuclides like 134 Cs and 137 Cs the committed effective external dose from deposited acitivity is 1-2 orders of magnitude larger than the committed effective dose from inhalation. Similarly, the committed effective dose from inhalation is 1-2 orders of magnitude larger than the external γ-dose originating directly from the plume. (au) (21 tabs., 2 ills., 37 refs.)

  18. Atmospheric dispersion modeling at the Rocky Flats Plant. Progress report, December 1981-December 1985

    International Nuclear Information System (INIS)

    Hodgin, C.R.

    1986-01-01

    The Rocky Flats Plant applies atmospheric dispersion modeling as a tool for Emergency Response, Risk Assessment, and Regulatory Compliance. Extreme variations in terrain around the facility have necessitated the development of an advanced modeling approach. The Terrain-Responsive Atmospheric Code (TRAC) was developed to treat realistically the changing wind, stability, dispersion, and deposition patterns that are experienced in mountainous areas. The result is a detailed picture of dose and deposition patterns associated with postulated or actual releases. A unified approach was taken to modeling needs at Rocky Flats. This produces consistent dose projections for all applications. A Risk Assessment version of TRAC is now operational. A high-speed version of the code is being implemented for Emergency Response, and development of a regulatory version is under way. Public, scientific, and governmental acceptance of TRAC is critical to successful applications at the Rocky Flats Plant. A program of peer review and regulatory approval was initiated to provide a full outside evaluation of our techniques. Full field validation (tracer testing) is key to demonstrating reliability of the TRAC model. A validation study was planned for implementation beginning in early CY-1986. The necessary funding ($500,000) is being sought. Although the TRAC model development and approval program was developed for site-specific needs at the Rocky Flats Plant, potential exists for wider application within the Department of Energy (DOE). The TRAC model can be easily applied at other sites in complex terrain. A coordinated approach to model validation throughout the Albquerque Operations Office (AL) or DOE complexes could prove more cost effective than site-by-site evaluations. Finally, the model approval procedure developed jointly by Rocky Flats and the Environmental Protection Agency (EPA) is general and could be applied to other models or as the basis for a DOE-wide program

  19. Dispersion of aircraft exhaust in the late wake

    Energy Technology Data Exchange (ETDEWEB)

    Duerbeck, T; Gerz, T; Doernbrack, A [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    The dispersion of aircraft emissions is investigated at cruising levels, i.e. in the free, stably stratified atmosphere near the tropopause. The study is based on large-eddy simulations in a domain of size 4.3 x 1.1{sup 2} km{sup 3} where the combined effects of typical atmospheric stratification, shear and turbulence are considered. The effect of a breaking gravity wave on the dispersion of the exhaust is analyzed. The mixing processes during the late wake flow are evaluated, i.e. in the dispersion and diffusion regimes when the organized flow by the wing tip vortices has ceased and the atmospheric motions gradually dominate the events. (R.P.) 7 refs.

  20. Dispersion of aircraft exhaust in the late wake

    Energy Technology Data Exchange (ETDEWEB)

    Duerbeck, T.; Gerz, T.; Doernbrack, A. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    The dispersion of aircraft emissions is investigated at cruising levels, i.e. in the free, stably stratified atmosphere near the tropopause. The study is based on large-eddy simulations in a domain of size 4.3 x 1.1{sup 2} km{sup 3} where the combined effects of typical atmospheric stratification, shear and turbulence are considered. The effect of a breaking gravity wave on the dispersion of the exhaust is analyzed. The mixing processes during the late wake flow are evaluated, i.e. in the dispersion and diffusion regimes when the organized flow by the wing tip vortices has ceased and the atmospheric motions gradually dominate the events. (R.P.) 7 refs.

  1. Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes.

    Science.gov (United States)

    Bourne, A J; Abbott, P M; Albert, P G; Cook, E; Pearce, N J G; Ponomareva, V; Svensson, A; Davies, S M

    2016-07-21

    Widespread ash dispersal poses a significant natural hazard to society, particularly in relation to disruption to aviation. Assessing the extent of the threat of far-travelled ash clouds on flight paths is substantially hindered by an incomplete volcanic history and an underestimation of the potential reach of distant eruptive centres. The risk of extensive ash clouds to aviation is thus poorly quantified. New evidence is presented of explosive Late Pleistocene eruptions in the Pacific Arc, currently undocumented in the proximal geological record, which dispersed ash up to 8000 km from source. Twelve microscopic ash deposits or cryptotephra, invisible to the naked eye, discovered within Greenland ice-cores, and ranging in age between 11.1 and 83.7 ka b2k, are compositionally matched to northern Pacific Arc sources including Japan, Kamchatka, Cascades and Alaska. Only two cryptotephra deposits are correlated to known high-magnitude eruptions (Towada-H, Japan, ca 15 ka BP and Mount St Helens Set M, ca 28 ka BP). For the remaining 10 deposits, there is no evidence of age- and compositionally-equivalent eruptive events in regional volcanic stratigraphies. This highlights the inherent problem of under-reporting eruptions and the dangers of underestimating the long-term risk of widespread ash dispersal for trans-Pacific and trans-Atlantic flight routes.

  2. Corrective Action Investigation Plan for Corrective Action Unit 414: Clean Slate III Plutonium Dispersion (TTR) Tonopah Test Range, Nevada, Revision 1

    International Nuclear Information System (INIS)

    Matthews, Patrick

    2016-01-01

    Corrective Action Unit (CAU) 414 is located on the Tonopah Test Range, which is approximately 130 miles northwest of Las Vegas, Nevada, and approximately 40 miles southeast of Tonopah, Nevada. The CAU 414 site consists of the release of radionuclides to the surface and shallow subsurface from the conduct of the Clean Slate III (CSIII) storage transportation test conducted on June 9, 1963. CAU 414 includes one corrective action site (CAS), TA-23-03CS (Pu Contaminated Soil). The known releases at CAU 414 are the result of the atmospheric dispersal of contamination from the 1963 CSIII test. The CSIII test was a nonnuclear detonation of a nuclear device located inside a reinforced concrete bunker covered with 8 feet of soil. This test dispersed radionuclides, primarily uranium and plutonium, on the ground surface. The presence and nature of contamination at CAU 414 will be evaluated based on information collected from a corrective action investigation (CAI). The investigation is based on the data quality objectives (DQOs) developed on June 7, 2016, by representatives of the Nevada Division of Environmental Protection; the U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective action alternatives for CAU 414.

  3. Corrective Action Investigation Plan for Corrective Action Unit 414: Clean Slate III Plutonium Dispersion (TTR) Tonopah Test Range, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2016-09-01

    Corrective Action Unit (CAU) 414 is located on the Tonopah Test Range, which is approximately 130 miles northwest of Las Vegas, Nevada, and approximately 40 miles southeast of Tonopah, Nevada. The CAU 414 site consists of the release of radionuclides to the surface and shallow subsurface from the conduct of the Clean Slate III (CSIII) storage–transportation test conducted on June 9, 1963. CAU 414 includes one corrective action site (CAS), TA-23-03CS (Pu Contaminated Soil). The known releases at CAU 414 are the result of the atmospheric dispersal of contamination from the 1963 CSIII test. The CSIII test was a nonnuclear detonation of a nuclear device located inside a reinforced concrete bunker covered with 8 feet of soil. This test dispersed radionuclides, primarily uranium and plutonium, on the ground surface. The presence and nature of contamination at CAU 414 will be evaluated based on information collected from a corrective action investigation (CAI). The investigation is based on the data quality objectives (DQOs) developed on June 7, 2016, by representatives of the Nevada Division of Environmental Protection; the U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective action alternatives for CAU 414.

  4. Short-range disorder in pseudobinary ionic alloys

    International Nuclear Information System (INIS)

    Di Cicco, Andrea; Principi, Emiliano; Filipponi, Adriano

    2002-01-01

    The short-range distribution functions of the RbBr 1-x I x solid and molten ionic alloys have been accurately measured using multiple-edge refinement of the K-edge extended x-ray absorption fine structure spectra (EXAFS). The local structure is characterized by two well-defined first-neighbor peaks associated with the Rb-I and Rb-Br distributions, both for solid and liquid alloys. The distribution of distances in solid alloys gives experimental evidence to available theoretical models. In the liquid, the two distance distributions are found to be practically independent of the concentration x. The effect of different effective charge screening of the ions is observed in the molten systems for limiting concentrations

  5. Modeling the atmospheric chemistry of TICs

    Science.gov (United States)

    Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John

    2009-05-01

    An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.

  6. Short- and Medium-term Atmospheric Effects of Very Large Solar Proton Events

    Science.gov (United States)

    Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Fleming, Eric L.; Labow, Gordon J.; Randall, Cora E.; Lopez-Puertas, Manuel; Funke, Bernd

    2007-01-01

    Long-term variations in ozone have been caused by both natural and humankind related processes. In particular, the humankind or anthropogenic influence on ozone from chlorofluorocarbons and halons (chlorine and bromine) has led to international regulations greatly limiting the release of these substances. These anthropogenic effects on ozone are most important in polar regions and have been significant since the 1970s. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the short- and medium-term (days to a few months) influences of solar proton events between 1963 and 2005 on stratospheric ozone. The four largest events in the past 45 years (August 1972; October 1989; July 2000; and October-November 2003) caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen- containing compounds, which led to the polar ozone destruction. The hydrogen-containing compounds have very short lifetimes and lasted for only a few days (typically the duration of the solar proton event). On the other hand, the nitrogen-containing compounds lasted much longer, especially in the Winter. The nitrogen oxides were predicted

  7. Chemical and topological short-range order in metallic glasses

    International Nuclear Information System (INIS)

    Vincze, I.; Schaafsma, A.S.; Van der Woude, F.; Kemeny, T.; Lovas, A.

    1980-10-01

    Moessbauer spectroscopy is applied to the study of chemical short-range order in (Fe,Ni)B metallic glasses. It is found that the atomic arrangement in melt-quenched glasses closely resembles that of the crystalline counterparts (Fe 3 B is tetragonal, Ni 3 B is orthorombic). The distribution of transition metal atoms is not random at high Ni concentrations: Ni atoms prefer a neighbourhood with a higher boron coordination. (P.L.)

  8. Comprehensive Measurement of Atmospheric Aerosols with a Wide Range Aerosol Spectrometer

    International Nuclear Information System (INIS)

    Keck, L; Pesch, M; Grimm, H

    2011-01-01

    A wide range aerosol spectrometer (WRAS) was used for comprehensive long term measurements of aerosol size distributions. The system combines the results of an optical aerosol spectrometer with the results of a Scanning Mobility Particle Sizer (SMPS) to record essentially the full size range (5 nm - 32 μm) of atmospheric particles in 72 channels. Measurements were carried out over one year (2009) at the Global Atmospheric Watch (GAW)-Station Hohenpeissenberg, Bavaria. Total particle number concentrations obtained from the aerosol size distributions were compared to the total number concentrations measured by a Condensation Particle Counter (CPC). The comparison showed an excellent agreement of the data. The high time resolution of 5 minutes allows the combination of the measured size distributions with meteorological data and correlations to gaseous pollutants (CO, NOx and SO2). A good correlation of particle number and CO concentrations was found for long distance transported small particles, which were probably mainly soot particles. Correlations to NOx were observed for aerosols from local sources such as traffic emissions. The formation of secondary aerosols from gaseous precursors was also observed. Episodes of relatively high concentration of particles in the range of 2-3 μm were probably caused by pollen.

  9. Improving the low temperature dyeability of polyethylene terephthalate fabric with dispersive dyes by atmospheric pressure plasma discharge

    International Nuclear Information System (INIS)

    Elabid, Amel E.A.; Zhang, Jie; Shi, Jianjun; Guo, Ying; Ding, Ke; Zhang, Jing

    2016-01-01

    Graphical abstract: - Highlights: • Atmospheric pressure glow-like plasma with fine and uniform filament discharge has been successfully applied to the low temperature dyeing (95 °C) of PET fabric. • Simultaneously the dye uptake was increased as twice as much and the color strength rate was increased by about 20% for less than 3 min plasma treated PET. • Dyeing mechanism research showed the significance of surface roughing and functional group introduction by this kind of discharge. • Results highlight a novel environmentally friendly dyeing process for one of the largest commodity in polymer fabric. - Abstract: Polyethylene terephthalate (PET) fiber and textile is one of the largest synthetic polymer commodity in the world. The great energy consumption and pollution caused by the high temperature and pressure dyeing of PET fibers and fabrics with disperse dyes has been caused concern these years. In this study, an atmospheric pressure plasma with fine and uniform filament discharge operated at 20 kHz has been used to improve the low temperature dyeability of PET fabric at 95 °C with three cation disperse dyes: Red 73, Blue 183 and Yellow 211. The dyes uptake percentage of the treated PET fabrics was observed to increase as twice as much of untreated fabric. The color strength rate was increased more than 20%. The reducing of the water contact angle and the raising of the capillary height of treated PET fabric strip indicate its hydrophilicity improvement. Scanning electron microscope (SEM) results display nano to micro size of etching pits appeared uniformly on the fiber surface of the treated PET. Simultaneously, X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of the oxygen content in the surface caused by the introduction of polar groups such as C=O and COOH. The rough surface with improved polar oxygen groups showed hydrophilicity and affinity to C.I. dispersive dyes and is believed to be caused by the strong and very fine

  10. Atmospherical experiment in Angra I plant for characterizing the effluent transport threw in the atmospheric; Experimento atmosferico no local da Usina Angra I para caracterizar o transporte de efluentes lancados na atmosfera

    Energy Technology Data Exchange (ETDEWEB)

    Silva Lobo, M.A. da [FURNAS, Rio de Janeiro, RJ (Brazil); Kronemberger, B M.E.

    1990-12-31

    Available as short communication only. The Environmental Safety Division of the Nuclear Safety and Fuel Department from FURNAS Electric Station S.A. joint with the National Oceanic and Atmospheric Administration (NOAA), achieved a field experiment for characterizing the atmospheric transport and diffusion in the site complex of Angra I Nuclear Power Plant. The complex topography with the thick vegetation and the neighbour building bring problems for the modelling of the effluent transport and the dispersion. The actual meteorological measure system is automatic and compound with four towers. An intensive atmospheric measure with captive balloon is included, and the collected data shows that the site flux is strongly influenced by the topography and insolation. (C.G.C.). 2 figs.

  11. Electronically driven short-range lattice instability: Cluster effects in superconductors

    International Nuclear Information System (INIS)

    Szasz, A.

    1991-01-01

    In the first part of this series, short- and medium-range interactions in superconductors were investigated. In this paper a discussion is made on the cluster-mass dependence of the superconductive transition temperature and the relevant phenomenon of electron localization. A comparison with experiments is given; the predictions fit well to the observations

  12. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    C. Harrington

    2004-10-25

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit

  13. A real case simulation of the air-borne effluent dispersion on a typical summer day under CDA scenario for PFBR using an advanced meteorological and dispersion model

    International Nuclear Information System (INIS)

    Srinivas, C.V; Venkatesan, R.; Bagavath Singh, A.; Somayaji, K.M.

    2003-11-01

    Environmental concentrations and radioactive doses within and beyond the site boundary for the CDA situation of PFBR have been estimated using an Advanced Radiological Impact Prediction system for a real atmospheric situation on a typical summer day in the month of May 2003. The system consists of a meso-scale atmospheric prognostic model MM5 coupled with a random walk Lagrangian particle dispersion model FLEXPART for the simulation of transport, diffusion and deposition of radio nuclides. The details of the modeling system, its capabilities and various features are presented. The model has been validated for the simulated coastal atmospheric features of land-sea breeze, development of TIBL etc., with site and regional meteorological observations from IMD. Analysis of the dose distribution in a situation that corresponds to the atmospheric conditions on the chosen day shows that the doses for CDA through different pathways are 8 times less than the earlier estimations made according to regulatory requirements using the Gaussian Plume Model (GPM) approach. However for stack releases a higher dose than was reported earlier occurred beyond the site boundary at 2-4 km range under stable and fumigation conditions. The doses due to stack releases under these conditions maintained almost the same value in 3 to 10 km range and decreased there after. Deposition velocities computed from radionuclide species, wind speed, surface properties were 2 orders lower than the values used earlier and hence gave more realistic estimates of ground deposited activity. The study has enabled to simulate the more complex meteorological situation that actually is present at the site of interest and the associated spatial distribution of radiological impact around Kalpakkam. In order to draw meaningful conclusion that can be compared with regulatory estimates future study would be undertaken to simulate the dispersion under extreme meteorological situations which could possibly be worse than

  14. Results and analysis of reactor-material experiments on ex-vessel corium quench and dispersal

    International Nuclear Information System (INIS)

    Spencer, B.W.; McUmber, L.M.; Sienicki, J.J.; Squarer, D.

    1984-01-01

    The results of reactor material experiments and related analysis are described in which molten corium is injected into a mock-up of the reactor cavity region of a PWR. The experiments address exvessel interactions such as steam generation (for those cases in which water is present), water and corium dispersal from the cavity, hydrogen generation, direct atmosphere heating by dispersed corium, and debrids characterization. Test results indicate efficiencies of steam generation by corium quench ranging up to 65%. Corium sweepout of up to 62% of the injected material was found for those conditions in which steam generation flowrate was augmented by vessel blowdown. The dispersed corium caused very little direct heating of the atmosphere for the configuration employing a trap at the exit of the cavity-to-containment pathway. Corium sweepout phenomena were modeled for high-pressure blowdown conditions, and the results applied to the full-size reactor system predict essentially complete sweepout of corium from the reactor cavity. (orig.)

  15. Results and analysis of reactor-material experiments on ex-vessel corium quench and dispersal

    International Nuclear Information System (INIS)

    Spencer, B.W.; McUmber, L.M.; Sienicki, J.J.; Squarer, D.

    1984-01-01

    Results of reactor-material experiments and related analysis are described in which molten corium is injected into a mock-up of the reactor cavity region of a PWR. The experiments address ex-vessel interactions such as steam generation (for those cases in which water is present), water and corium dispersal from the cavity, hydrogen generation, direct atmosphere heating by dispersed corium, and debris characterization. Test results indicate efficiencies of steam generation by corium quench ranging up to 65%. Corium sweepout of up to 62% of the injected material was found for those conditions in which steam generation flowrate was augmented by vessel blowdown. The dispersed corium caused very little direct heating of the atmosphere for the configuration employing a trap at the exit of the cavity-to-containment pathway. Corium sweepout phenomena were modeled for high-pressure blowdown conditions, and the results applied to the full-size reactor system predict essentially complete sweepout of corium from the reactor cavity

  16. Direct-Bandgap InAs Quantum-Dots Have Long-Range Electron--Hole Exchange Whereas Indirect Gap Si Dots Have Short-Range Exchange

    International Nuclear Information System (INIS)

    Juo, J.W.; Franceschetti, A.; Zunger, A.

    2009-01-01

    Excitons in quantum dots manifest a lower-energy spin-forbidden 'dark' state below a spin-allowed 'bright' state; this splitting originates from electron-hole (e-h) exchange interactions, which are strongly enhanced by quantum confinement. The e-h exchange interaction may have both a short-range and a long-range component. Calculating numerically the e-h exchange energies from atomistic pseudopotential wave functions, we show here that in direct-gap quantum dots (such as InAs) the e-h exchange interaction is dominated by the long-range component, whereas in indirect-gap quantum dots (such as Si) only the short-range component survives. As a result, the exciton dark/bright splitting scales as 1/R 2 in InAs dots and 1/R 3 in Si dots, where R is the quantum-dot radius.

  17. Marine atmospheric corrosion of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Morcillo, M.; Alcantara, J.; Diaz, I.; Chico, B.; Simancas, J.; Fuente, D. de la

    2015-07-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  18. Dynamical arrest in dense short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Foffi, G; Sciortino, F; Zaccarelli, E; Tartaglia, P

    2004-01-01

    We study thermodynamic and dynamic properties of model colloidal systems interacting with a hard core repulsion and a short-range attraction, and provide an overall picture of their phase diagrams which shows a very rich phenomenology. We focus on the slow dynamic properties of this model, investigating in detail the glass transition lines (both repulsive and attractive), the glass-glass transitions and the location of the higher order singularities. We discuss the relative location of the glass lines and of the metastable liquid-gas binodal, an issue relevant for the understanding of low density arrested states of matter

  19. Assessment of impact distances for particulate matter dispersion: A stochastic approach

    Energy Technology Data Exchange (ETDEWEB)

    Godoy, S.M.; Mores, P.L.; Santa Cruz, A.S.M. [CAIMI - Centro de Aplicaciones Informaticas y Modelado en Ingenieria, Universidad Tecnologica Nacional-Facultad Regional Rosario, Zeballos 1341-S2000 BQA Rosario, Santa Fe (Argentina); Scenna, N.J. [CAIMI - Centro de Aplicaciones Informaticas y Modelado en Ingenieria, Universidad Tecnologica Nacional-Facultad Regional Rosario, Zeballos 1341-S2000 BQA Rosario, Santa Fe (Argentina); INGAR - Instituto de Desarrollo y Diseno (Fundacion ARCIEN - CONICET), Avellaneda 3657, S3002 GJC Santa Fe (Argentina)], E-mail: nscenna@santafe-conicet.gov.ar

    2009-10-15

    It is known that pollutants can be dispersed from the emission sources by the wind, or settled on the ground. Particle size, stack height, topography and meteorological conditions strongly affect particulate matter (PM) dispersion. In this work, an impact distance calculation methodology considering different particulate sizes is presented. A Gaussian-type dispersion model for PM that handles size particles larger than 0.1 {mu}m is used. The model considers primary particles and continuous emissions. PM concentration distribution at every affected geographical point defined by a grid is computed. Stochastic uncertainty caused by the natural variability of atmospheric parameters is taken into consideration in the dispersion model by applying a Monte Carlo methodology. The prototype package (STRRAP) that takes into account the stochastic behaviour of atmospheric variables, developed for risk assessment and safe distances calculation [Godoy SM, Santa Cruz ASM, Scenna NJ. STRRAP SYSTEM - A software for hazardous materials risk assessment and safe distances calculation. Reliability Engineering and System Safety 2007;92(7):847-57] is enlarged for the analysis of the PM air dispersion. STRRAP computes distances from the source to every affected receptor in each trial and generates the impact distance distribution for each particulate size. In addition, a representative impact distance value to delimit the affected area can be obtained. Fuel oil stack effluents dispersion in Rosario city is simulated as a case study. Mass concentration distributions and impact distances are computed for the range of interest in environmental air quality evaluations (PM{sub 2.5}-PM{sub 10})

  20. Assessment of impact distances for particulate matter dispersion: A stochastic approach

    International Nuclear Information System (INIS)

    Godoy, S.M.; Mores, P.L.; Santa Cruz, A.S.M.; Scenna, N.J.

    2009-01-01

    It is known that pollutants can be dispersed from the emission sources by the wind, or settled on the ground. Particle size, stack height, topography and meteorological conditions strongly affect particulate matter (PM) dispersion. In this work, an impact distance calculation methodology considering different particulate sizes is presented. A Gaussian-type dispersion model for PM that handles size particles larger than 0.1 μm is used. The model considers primary particles and continuous emissions. PM concentration distribution at every affected geographical point defined by a grid is computed. Stochastic uncertainty caused by the natural variability of atmospheric parameters is taken into consideration in the dispersion model by applying a Monte Carlo methodology. The prototype package (STRRAP) that takes into account the stochastic behaviour of atmospheric variables, developed for risk assessment and safe distances calculation [Godoy SM, Santa Cruz ASM, Scenna NJ. STRRAP SYSTEM - A software for hazardous materials risk assessment and safe distances calculation. Reliability Engineering and System Safety 2007;92(7):847-57] is enlarged for the analysis of the PM air dispersion. STRRAP computes distances from the source to every affected receptor in each trial and generates the impact distance distribution for each particulate size. In addition, a representative impact distance value to delimit the affected area can be obtained. Fuel oil stack effluents dispersion in Rosario city is simulated as a case study. Mass concentration distributions and impact distances are computed for the range of interest in environmental air quality evaluations (PM 2.5 -PM 10 ).

  1. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition

    Science.gov (United States)

    Stohl, A.; Seibert, P.; Wotawa, G.; Arnold, D.; Burkhart, J. F.; Eckhardt, S.; Tapia, C.; Vargas, A.; Yasunari, T. J.

    2012-04-01

    This presentation will show the results of a paper currently under review in ACPD and some additional new results, including more data and with an independent box modeling approach to support some of the findings of the ACPD paper. On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant (FD-NPP) developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions of two isotopes, the noble gas xenon-133 (133Xe) and the aerosol-bound caesium-137 (137Cs), which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined the first guess with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for 137Cs, measurements of bulk deposition. Regarding 133Xe, we find a total release of 16.7 (uncertainty range 13.4-20.0) EBq, which is the largest radioactive noble gas release in history not associated with nuclear bomb testing. There is strong evidence that the first strong 133Xe release started early, before active venting was performed. The entire noble gas inventory of reactor units 1-3 was set free into the atmosphere between 11 and 15 March 2011. For 137Cs, the inversion results give a total emission of 35.8 (23.3-50.1) PBq, or about 42% of the estimated Chernobyl emission. Our results indicate that 137Cs emissions peaked on 14-15 March but were generally high from 12 until 19 March, when they

  2. Electronically driven short-range lattice instability: Possible role in superconductive pairing

    International Nuclear Information System (INIS)

    Szasz, A.

    1991-01-01

    A superconducting pairing mechanism is suggested, mediating by collective and coherent cluster fluctuations in the materials. The model, based on a geometrical frustration, proposes a dynamic effect driven by a special short-range electronic instability. Experimental support for this model is discussed

  3. Modelling Pollutant Dispersion in a Street Network

    Science.gov (United States)

    Salem, N. Ben; Garbero, V.; Salizzoni, P.; Lamaison, G.; Soulhac, L.

    2015-04-01

    This study constitutes a further step in the analysis of the performances of a street network model to simulate atmospheric pollutant dispersion in urban areas. The model, named SIRANE, is based on the decomposition of the urban atmosphere into two sub-domains: the urban boundary layer, whose dynamics is assumed to be well established, and the urban canopy, represented as a series of interconnected boxes. Parametric laws govern the mass exchanges between the boxes under the assumption that the pollutant dispersion within the canopy can be fully simulated by modelling three main bulk transfer phenomena: channelling along street axes, transfers at street intersections, and vertical exchange between street canyons and the overlying atmosphere. Here, we aim to evaluate the reliability of the parametrizations adopted to simulate these phenomena, by focusing on their possible dependence on the external wind direction. To this end, we test the model against concentration measurements within an idealized urban district whose geometrical layout closely matches the street network represented in SIRANE. The analysis is performed for an urban array with a fixed geometry and a varying wind incidence angle. The results show that the model provides generally good results with the reference parametrizations adopted in SIRANE and that its performances are quite robust for a wide range of the model parameters. This proves the reliability of the street network approach in simulating pollutant dispersion in densely built city districts. The results also show that the model performances may be improved by considering a dependence of the wind fluctuations at street intersections and of the vertical exchange velocity on the direction of the incident wind. This opens the way for further investigations to clarify the dependence of these parameters on wind direction and street aspect ratios.

  4. Local study of pollutants dispersion by a real time tracer method

    International Nuclear Information System (INIS)

    Faivre-Pierret, R.X.; Sestier-Carlin, R.; Berne, P.

    1992-01-01

    It is possible to use a Gaussian mathematical model of atmospheric dispersion for calculating atmospheric transfer coefficient (ATC) in long range model, but for proximity models, an experimental model using a tracer technic has to take in account ground effects and natural or artificial obstacles. SF 6 tracer method gives the true plume ground trace in real time. The measured ATC shows a larger ground trace, lower concentration in the axis, and a displacement of the maximum concentration with regard to wind axis in comparison with the calculated ATC. (A.B.). 14 refs., 4 figs., 1 tab

  5. Dispersion prognosis and consequences in the environment in emergency management context. A Nordic harmonization effort 1991-94

    International Nuclear Information System (INIS)

    Tveten, U.

    1998-01-01

    Neighbour countries have often chosen different atmospheric dispersion prognosis models for use in emergency situations. In a Nordic project in the Nordic Nuclear Safety Research Programme a worldwide survey of long-range atmospheric dispersion models was carried out. On the basis of this survey, each of the meteorological institutes of Denmark, Finland and Norway chose systems upon which future development would be based. The Swedish Meteorological and Hydrological Institute had already developed a model. These and some other available models were subsequently utilised in Nordic 'functional' emergency exercises. The exercises also served as program intercomparison exercises, whereby some programming errors were actually discovered. The exercises also revealed that the currently used graphical presentations of the results may be difficult to understand properly in an emergency situation. The authorities responsible for emergency preparedness use the predictions from the atmospheric dispersion models to evaluate radiation doses to the population. In order to provide decision makers with more readily accessible information, a computerised 'handbook' containing all pertinent information has therefore been developed. (R.P.)

  6. Atmospheric Dispersal and Dispostion of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Keating; W.Statham

    2004-02-12

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model.

  7. MET-RODOS: A comprehensive atmospheric dispersion module

    DEFF Research Database (Denmark)

    Mikkelsen, T.; Thykier-Nielsen, S.; Astrup, P.

    1997-01-01

    A comprehensive meteorological dispersion module called MET-RODOS is being developed to serve the real-time RODOS(1-3) decision support system with an integrated prediction capability for airborne radioactive spread, deposition and gamma radiation exposure on all scales. Deposition, ground level ...

  8. Short, intermediate and long range order in amorphous ices

    Science.gov (United States)

    Martelli, Fausto; Torquato, Salvatore; Giovanbattista, Nicolas; Car, Roberto

    Water exhibits polyamorphism, i.e., it exists in more than one amorphous state. The most common forms of glassy water are the low-density amorphous (LDA) and the high-density amorphous (HDA) ices. LDA, the most abundant form of ice in the Universe, transforms into HDA upon isothermal compression. We model the transformation of LDA into HDA under isothermal compression with classical molecular dynamics simulations. We analyze the molecular structures with a recently introduced scalar order metric to measure short and intermediate range order. In addition, we rank the structures by their degree of hyperuniformity, i.e.,the extent to which long range density fluctuations are suppressed. F.M. and R.C. acknowledge support from the Department of Energy (DOE) under Grant No. DE-SC0008626.

  9. Atmospheric turbulence and diffusion research

    International Nuclear Information System (INIS)

    Hosker, R.P. Jr.

    1993-01-01

    The Atmospheric Turbulence and Diffusion Division (well known in the atmospheric dispersion community as the Atmospheric Turbulence and Diffusion Laboratory, ATDL) is one of several field facilities of NOAAs Air Resources Laboratory, headquartered in Silver Spring, Maryland. The laboratory conducts research on matters of atmospheric diffusion and turbulent exchange, concerning air quality. ATDD focuses attention on the physics of the lower atmosphere, with special emphasis on the processes contributing to atmospheric transport, dispersion, deposition, and air-surface exchange, and on the development of predictive capabilities using the results of this research. Research is directed toward issues of national and global importance related to the missions of DOE, to DOE's Oak Ridge Field Office, and to NOAA. The program is divided into four major projects: plume transport and diffusion in the planetary boundary layer, complex topography, canopy micrometeorology, and air-surface exchange

  10. Atmospheric dispersion of sodium aerosol due to a sodium leak in a fast breeder reactor complex

    International Nuclear Information System (INIS)

    Punitha, G.; Sudha, A. Jasmin; Kasinathan, N.; Rajan, M.

    2008-01-01

    Liquid sodium at high temperatures (470 K to 825 K) is used as the primary and secondary coolant in Liquid Metal cooled Fast Breeder Reactors (LMFBR). In the event of a postulated sodium leak in the Steam Generator Building (SGB) of a LMFBR, sodium readily combusts in the ambient air, especially at temperatures above 523 K. Intense sodium fire results and sodium oxide fumes are released as sodium aerosols. Sodium oxides are readily converted to sodium hydroxide in air due to the presence of moisture in it. Hence, sodium aerosols are invariably in the form of particulate sodium hydroxide. These aerosols damage not only the equipment and instruments due to their corrosive nature but also pose health hazard to humans. Hence, it is essential to estimate the concentration of sodium aerosols within the plant boundary for a sodium leak event. The Gaussian Plume Dispersion Model can obtain the atmospheric dispersion of sodium aerosols in an open terrain. However, this model dose not give accurate results for dispersion in spaces close to the point of release and with buildings in between. The velocity field due to the wind is altered to a large extent by the intervening buildings and structures. Therefore, a detailed 3-D estimation of the velocity field and concentration has to be obtained through rigorous computational fluid dynamics (CFD) approach. PHOENICS code has been employed to determine concentration of sodium aerosols at various distances from the point of release. The dispersion studies have been carried out for the release of sodium aerosols at different elevations from the ground and for different wind directions. (author)

  11. An Early-Warning System for Volcanic Ash Dispersal: The MAFALDA Procedure

    Science.gov (United States)

    Barsotti, S.; Nannipieri, L.; Neri, A.

    2006-12-01

    Forecasts of the dispersal of volcanic ash is a fundamental goal in order to mitigate its potential impact on urbanized areas and transport routes surrounding explosive volcanoes. To this aim we developed an early- warning procedure named MAFALDA (Modeling And Forecasting Ash Loading and Dispersal in the Atmosphere). Such tool is able to quantitatively forecast the atmospheric concentration of ash as well as the ground deposition as a function of time over a 3D spatial domain.\\The main features of MAFALDA are: (1) the use of the hybrid Lagrangian-Eulerian code VOL-CALPUFF able to describe both the rising column phase and the atmospheric dispersal as a function of weather conditions, (2) the use of high-resolution weather forecasting data, (3) the short execution time that allows to analyse a set of scenarios and (4) the web-based CGI software application (written in Perl programming language) that shows the results in a standard graphical web interface and makes it suitable as an early-warning system during volcanic crises.\\MAFALDA is composed by a computational part that simulates the ash cloud dynamics and a graphical interface for visualizing the modelling results. The computational part includes the codes for elaborating the meteorological data, the dispersal code and the post-processing programs. These produces hourly 2D maps of aerial ash concentration at several vertical levels, extension of "threat" area on air and 2D maps of ash deposit on the ground, in addition to graphs of hourly variations of column height.\\The processed results are available on the web by the graphical interface and the users can choose, by drop-down menu, which data to visualize. \\A first partial application of the procedure has been carried out for Mt. Etna (Italy). In this case, the procedure simulates four volcanological scenarios characterized by different plume intensities and uses 48-hrs weather forecasting data with a resolution of 7 km provided by the Italian Air Force.

  12. Short range spread-spectrum radiolocation system and method

    Science.gov (United States)

    Smith, Stephen F.

    2003-04-29

    A short range radiolocation system and associated methods that allow the location of an item, such as equipment, containers, pallets, vehicles, or personnel, within a defined area. A small, battery powered, self-contained tag is provided to an item to be located. The tag includes a spread-spectrum transmitter that transmits a spread-spectrum code and identification information. A plurality of receivers positioned about the area receive signals from a transmitting tag. The position of the tag, and hence the item, is located by triangulation. The system employs three different ranging techniques for providing coarse, intermediate, and fine spatial position resolution. Coarse positioning information is provided by use of direct-sequence code phase transmitted as a spread-spectrum signal. Intermediate positioning information is provided by the use of a difference signal transmitted with the direct-sequence spread-spectrum code. Fine positioning information is provided by use of carrier phase measurements. An algorithm is employed to combine the three data sets to provide accurate location measurements.

  13. Summer-winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting.

    Science.gov (United States)

    Wang, Thanh; Han, Shanlong; Yuan, Bo; Zeng, Lixi; Li, Yingming; Wang, Yawei; Jiang, Guibin

    2012-12-01

    Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9-33.0 ng/m(3) during wintertime. Significantly higher levels were found during the summer (range 112-332 ng/m(3)). The average fraction of total SCCPs in the particle phase (ϕ) was 0.67 during wintertime but decreased significantly during the summer (ϕ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol-air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge-Pankow adsorption and K(oa)-based absorption models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Short Range Air Defense in Army Divisions: Do We Really Need It

    National Research Council Canada - National Science Library

    Anderson, Charles

    2000-01-01

    Ever since the Soviet threat collapsed, coupled with the demonstrated, overwhelming, capability of our air forces during numerous operations in the 1990s, the relevance of the Short Range Air Defense (SHORAD...

  15. Surface plasmon polaritons in a semi-bounded degenerate plasma: Role of spatial dispersion and collisions

    International Nuclear Information System (INIS)

    Tyshetskiy, Yu.; Kompaneets, R.; Vladimirov, S. V.

    2012-01-01

    Surface plasmon polaritons (SPPs) in a semi-bounded degenerate plasma (e.g., a metal) are studied using the quasiclassical mean-field kinetic model, taking into account the spatial dispersion of the plasma (due to quantum degeneracy of electrons) and electron-ion (electron-lattice, for metals) collisions. SPP dispersion and damping are obtained in both retarded (ω/k z ∼c) and non-retarded (ω/k z ≪c) regions, as well as in between. It is shown that the plasma spatial dispersion significantly affects the properties of SPPs, especially at short wavelengths (less than the collisionless skin depth, λ ≲ c/ω pe ). Namely, the collisionless (Landau) damping of SPPs (due to spatial dispersion) is comparable to the purely collisional (Ohmic) damping (due to electron-lattice collisions) in a wide range of SPP wavelengths, e.g., from λ∼20 nm to λ∼0.8 nm for SPP in gold at T = 293 K and from λ∼400 nm to λ∼0.7 nm for SPPs in gold at T = 100 K. The spatial dispersion is also shown to affect, in a qualitative way, the dispersion of SPPs at short wavelengths λ ≲ c/ω pe .

  16. A hybrid plume model for local-scale dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Nikmo, J.; Tuovinen, J.P.; Kukkonen, J.; Valkama, I.

    1997-12-31

    The report describes the contribution of the Finnish Meteorological Institute to the project `Dispersion from Strongly Buoyant Sources`, under the `Environment` programme of the European Union. The project addresses the atmospheric dispersion of gases and particles emitted from typical fires in warehouses and chemical stores. In the study only the `passive plume` regime, in which the influence of plume buoyancy is no longer important, is addressed. The mathematical model developed and its numerical testing is discussed. The model is based on atmospheric boundary-layer scaling theory. In the vicinity of the source, Gaussian equations are used in both the horizontal and vertical directions. After a specified transition distance, gradient transfer theory is applied in the vertical direction, while the horizontal dispersion is still assumed to be Gaussian. The dispersion parameters and eddy diffusivity are modelled in a form which facilitates the use of a meteorological pre-processor. Also a new model for the vertical eddy diffusivity (K{sub z}), which is a continuous function of height in the various atmospheric scaling regions is presented. The model includes a treatment of the dry deposition of gases and particulate matter, but wet deposition has been neglected. A numerical solver for the atmospheric diffusion equation (ADE) has been developed. The accuracy of the numerical model was analysed by comparing the model predictions with two analytical solutions of ADE. The numerical deviations of the model predictions from these analytic solutions were less than two per cent for the computational regime. The report gives numerical results for the vertical profiles of the eddy diffusivity and the dispersion parameters, and shows spatial concentration distributions in various atmospheric conditions 39 refs.

  17. EXAFS, Determination of Short Range Order and Local Structures in Materials

    NARCIS (Netherlands)

    Koningsberger, D.C.; Prins, R.

    1981-01-01

    Extended X-ray Absorption Fine Structure (EXAFS) is a powerful method of determining short range order and local structures in materials using X-ray photons produced by a synchrotron light source, or in-house by a high intensity rotating anode X-ray generator. The technique has provided valuable

  18. Investigations of multiphoton excitation and ionization in a short range potential

    International Nuclear Information System (INIS)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a δ-function potential. 9 refs., 3 figs

  19. Investigations of multiphoton excitation and ionization in a short range potential

    Energy Technology Data Exchange (ETDEWEB)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a delta-function potential. 9 refs., 3 figs.

  20. Neutrino-Nucleus Interactions and the Short-Range Structure of Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Cavanna, F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palamara, O. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schiavilla, R. [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wiringa, R. B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-08

    Improvements in theoretical modeling of Short Range structures and phenomena, and comparisons with data, will require sustained collaboration between nuclear theorists and neutrino experimentalists. The extensive history of studying this area of nuclear physics in electron- and hadron-scattering experiments, coupled with the transformative capabilities of LArTPCs to identify neutrinos, will provide a ripe opportunity for new discoveries that will further our understanding of the nucleus.

  1. Age differences in visual search for compound patterns: long- versus short-range grouping.

    Science.gov (United States)

    Burack, J A; Enns, J T; Iarocci, G; Randolph, B

    2000-11-01

    Visual search for compound patterns was examined in observers aged 6, 8, 10, and 22 years. The main question was whether age-related improvement in search rate (response time slope over number of items) was different for patterns defined by short- versus long-range spatial relations. Perceptual access to each type of relation was varied by using elements of same contrast (easy to access) or mixed contrast (hard to access). The results showed large improvements with age in search rate for long-range targets; search rate for short-range targets was fairly constant across age. This pattern held regardless of whether perceptual access to a target was easy or hard, supporting the hypothesis that different processes are involved in perceptual grouping at these two levels. The results also point to important links between ontogenic and microgenic change in perception (H. Werner, 1948, 1957).

  2. Application of CFD dispersion calculation in risk based inspection for release of H2S

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Vinod, Gopika; Singh, R.K.; Rao, V.V.S.S.; Vaze, K.K.

    2011-01-01

    In atmospheric dispersion both deterministic and probabilistic approached have been used for addressing design and regulatory concerns. In context of deterministic calculations the amount of pollutants dispersion in the atmosphere is an important area wherein different approaches are followed in development of good analytical model. The analysis based on Computational Fluid Dynamics (CFD) codes offer an opportunity of model development based on first principles of physics and hence such models have an edge over the existing models. In context of probabilistic methods applying risk based inspection (wherein consequence of failure from each component needs to be assessed) are becoming popular. Consequence evaluation in a process plant is a crucial task. Often the number of components considered for life management will be too huge. Also consequence evaluation of all the components proved to be laborious task. The present paper is the results of joint collaborative work from deterministic and probabilistic modelling group working in the field of atmospheric dispersion. Even though API 581 has simplified qualitative approach, regulators find the some of the factors, in particular, quantity factor, not suitable for process plants. Often dispersion calculations for heavy gas are done with very simple model which can not take care of density based atmospheric dispersion. This necessitates a new approach with a CFD based technical basis is proposed, so that the range of quantity considered along with factors used can be justified. The present paper is aimed at bringing out some of the distinct merits and demerits of the CFD based models. A brief account of the applications of such CFD codes reported in literature is also presented in the paper. This paper describes the approach devised and demonstrated for the said issue with emphasis of CFD calculations. (author)

  3. Remote sensing of atmospheric particulates: Technological innovation and physical limitations in applications to short-range weather prediction

    Science.gov (United States)

    Curran, R. J.; Kropfil, R.; Hallett, J.

    1984-01-01

    Techniques for remote sensing of particles, from cloud droplet to hailstone size, using optical and microwave frequencies are reviewed. The inherent variability of atmospheric particulates is examined to delineate conditions when the signal can give information to be effectively utilized in a forecasting context. The physical limitations resulting from the phase, size, orientation and concentration variability of the particulates are assessed.

  4. Assessment of the announced North Korean nuclear test using long-range atmospheric transport and dispersion modelling.

    Science.gov (United States)

    De Meutter, Pieter; Camps, Johan; Delcloo, Andy; Termonia, Piet

    2017-08-18

    On 6 January 2016, the Democratic People's Republic of Korea announced to have conducted its fourth nuclear test. Analysis of the corresponding seismic waves from the Punggye-ri nuclear test site showed indeed that an underground man-made explosion took place, although the nuclear origin of the explosion needs confirmation. Seven weeks after the announced nuclear test, radioactive xenon was observed in Japan by a noble gas measurement station of the International Monitoring System. In this paper, atmospheric transport modelling is used to show that the measured radioactive xenon is compatible with a delayed release from the Punggye-ri nuclear test site. An uncertainty quantification on the modelling results is given by using the ensemble method. The latter is important for policy makers and helps advance data fusion, where different nuclear Test-Ban-Treaty monitoring techniques are combined.

  5. Uranium Dispersion and Dosimetry (UDAD) Code

    International Nuclear Information System (INIS)

    Momeni, M.H.; Yuan, Y.; Zielen, A.J.

    1979-05-01

    The Uranium Dispersion and Dosimetry (UDAD) Code provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility. The UDAD Code incorporates the radiation dose from the airborne release of radioactive materials, and includes dosimetry of inhalation, ingestion, and external exposures. The removal of raioactive particles from a contaminated area by wind action is estimated, atmospheric concentrations of radioactivity from specific sources are calculated, and source depletion as a result of deposition, fallout, and ingrowth of radon daughters are included in a sector-averaged Gaussian plume dispersion model. The average air concentration at any given receptor location is assumed to be constant during each annual release period, but to increase from year to year because of resuspension. Surface contamination and deposition velocity are estimated. Calculation of the inhalation dose and dose rate to an individual is based on the ICRP Task Group Lung Model. Estimates of the dose to the bronchial epithelium of the lung from inhalation of radon and its short-lived daughters are calculated based on a dose conversion factor from the BEIR report. External radiation exposure includes radiation from airborne radionuclides and exposure to radiation from contaminated ground. Terrestrial food pathways include vegetation, meat, milk, poultry, and eggs. Internal dosimetry is based on ICRP recommendations. In addition, individual dose commitments, population dose commitments, and environmental dose commitments are computed. This code also may be applied to dispersion of any other pollutant

  6. A study of the atmospheric dispersion of a high release of krypton-85 above a complex coastal terrain, comparison with the predictions of Gaussian models (Briggs, Doury, ADMS4).

    Science.gov (United States)

    Leroy, C; Maro, D; Hébert, D; Solier, L; Rozet, M; Le Cavelier, S; Connan, O

    2010-11-01

    Atmospheric releases of krypton-85, from the nuclear fuel reprocessing plant at the AREVA NC facility at La Hague (France), were used to test Gaussian models of dispersion. In 2001-2002, the French Institute for Radiological Protection and Nuclear Safety (IRSN) studied the atmospheric dispersion of 15 releases, using krypton-85 as a tracer for plumes emitted from two 100-m-high stacks. Krypton-85 is a chemically inert radionuclide. Krypton-85 air concentration measurements were performed on the ground in the downwind direction, at distances between 0.36 and 3.3 km from the release, by neutral or slightly unstable atmospheric conditions. The standard deviation for the horizontal dispersion of the plume and the Atmospheric Transfer Coefficient (ATC) were determined from these measurements. The experimental results were compared with calculations using first generation (Doury, Briggs) and second generation (ADMS 4.0) Gaussian models. The ADMS 4.0 model was used in two configurations; one takes account of the effect of the built-up area, and the other the effect of the roughness of the surface on the plume dispersion. Only the Briggs model correctly reproduced the measured values for the width of the plume, whereas the ADMS 4.0 model overestimated it and the Doury model underestimated it. The agreement of the models with measured values of the ATC varied according to distance from the release point. For distances less than 2 km from the release point, the ADMS 4.0 model achieved the best agreement between model and measurement; beyond this distance, the best agreement was achieved by the Briggs and Doury models.

  7. ARANO - a computer program for the assessment of radiological consequences of atmospheric radioactive releases

    International Nuclear Information System (INIS)

    Savolainen, I.; Vuori, S.

    1980-09-01

    A short description of the calculation possibilities, methods and of the structure of the computer code system ARANO is given, in addition to the input quide. The code can be employed in the calculation of environmental radiological consequences caused by radioactive materials released to atmosphere. Results can be individual doses for different organs at given distances from the release point, collective doses, numbers of persons exceeding given dose limits, numbers of casualties, areas polluted by deposited activity and losses of investments or production due to radioactive contamination. Both a case with a single release and atmospheric dispersion situation and a group of radioactive release and dispersions with discrete probability distributions can be considered. If the radioactive releases or the dispersion conditions are described by probability distributions, the program assesses the magnitudes of the specified effects in all combinations of the release and dispersion situations and then calculates the expectation values and the cumulative probability distributions of the effects. The vertical mixing in the atmosphere is described with a Ksub(Z)-model. In the lateral direction the plume is assumed to be Gaussian, and the release duration can be taken into account in the σsub(y)-values. External gamma dose from the release plume is calculated on the basis of a data file which has been created by 3-dimensional integration. Dose due to inhalation and due to gamma radiation from the contaminated ground are calculated by using appropriate dose conversion factors, which are collected into two mutually alternative block data subprograms. (author)

  8. Impacts of Amazonia biomass burning aerosols assessed from short-range weather forecasts

    Directory of Open Access Journals (Sweden)

    S. R. Kolusu

    2015-11-01

    Full Text Available The direct radiative impacts of biomass burning aerosols (BBA on meteorology are investigated using short-range forecasts from the Met Office Unified Model (MetUM over South America during the South American Biomass Burning Analysis (SAMBBA. The impacts are evaluated using a set of three simulations: (i no aerosols, (ii with monthly mean aerosol climatologies and (iii with prognostic aerosols modelled using the Coupled Large-scale Aerosol Simulator for Studies In Climate (CLASSIC scheme. Comparison with observations show that the prognostic CLASSIC scheme provides the best representation of BBA. The impacts of BBA are quantified over central and southern Amazonia from the first and second day of 2-day forecasts during 14 September–3 October 2012. On average, during the first day of the forecast, including prognostic BBA reduces the clear-sky net radiation at the surface by 15 ± 1 W m−2 and reduces net top-of-atmosphere (TOA radiation by 8 ± 1 W m−2, with a direct atmospheric warming of 7 ± 1 W m−2. BBA-induced reductions in all-sky radiation are smaller in magnitude: 9.0 ± 1 W m−2 at the surface and 4.0 ± 1 W m−2 at TOA. In this modelling study the BBA therefore exert an overall cooling influence on the Earth–atmosphere system, although some levels of the atmosphere are directly warmed by the absorption of solar radiation. Due to the reduction of net radiative flux at the surface, the mean 2 m air temperature is reduced by around 0.1 ± 0.02 °C. The BBA also cools the boundary layer (BL but warms air above by around 0.2 °C due to the absorption of shortwave radiation. The overall impact is to reduce the BL depth by around 19 ± 8 m. These differences in heating lead to a more anticyclonic circulation at 700 hPa, with winds changing by around 0.6 m s−1. Inclusion of climatological or prognostic BBA in the MetUM makes a small but significant improvement in forecasts of temperature and relative humidity, but improvements were

  9. Short-range order in InSb amorphized under ion bombardment

    International Nuclear Information System (INIS)

    Pavlov, P.V.; Tetel'baum, D.I.; Gerasimov, A.I.

    1979-01-01

    The investigation of short-range order is carried out in polycrystal InSb films, irradiated with Ne + ions with E=150 keV and with the 2x10 15 ion/cm 2 dose. The data are obtained testifying to the film amorphization, the cause of which is the defect storage but not the local melting. Stability of the obtained amorphous phase at the room temperature is noted

  10. Short-range quantitative precipitation forecasting using Deep Learning approaches

    Science.gov (United States)

    Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.

    2017-12-01

    Predicting short-range quantitative precipitation is very important for flood forecasting, early flood warning and other hydrometeorological purposes. This study aims to improve the precipitation forecasting skills using a recently developed and advanced machine learning technique named Long Short-Term Memory (LSTM). The proposed LSTM learns the changing patterns of clouds from Cloud-Top Brightness Temperature (CTBT) images, retrieved from the infrared channel of Geostationary Operational Environmental Satellite (GOES), using a sophisticated and effective learning method. After learning the dynamics of clouds, the LSTM model predicts the upcoming rainy CTBT events. The proposed model is then merged with a precipitation estimation algorithm termed Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) to provide precipitation forecasts. The results of merged LSTM with PERSIANN are compared to the results of an Elman-type Recurrent Neural Network (RNN) merged with PERSIANN and Final Analysis of Global Forecast System model over the states of Oklahoma, Florida and Oregon. The performance of each model is investigated during 3 storm events each located over one of the study regions. The results indicate the outperformance of merged LSTM forecasts comparing to the numerical and statistical baselines in terms of Probability of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), RMSE and correlation coefficient especially in convective systems. The proposed method shows superior capabilities in short-term forecasting over compared methods.

  11. Verification of atmospheric diffusion models using data of long term atmospheric diffusion experiments

    International Nuclear Information System (INIS)

    Tamura, Junji; Kido, Hiroko; Hato, Shinji; Homma, Toshimitsu

    2009-03-01

    Straight-line or segmented plume models as atmospheric diffusion models are commonly used in probabilistic accident consequence assessment (PCA) codes due to cost and time savings. The PCA code, OSCAAR developed by Japan Atomic Energy Research Institute (Present; Japan Atomic Energy Agency) uses the variable puff trajectory model to calculate atmospheric transport and dispersion of released radionuclides. In order to investigate uncertainties involved with the structure of the atmospheric dispersion/deposition model in OSCAAR, we have introduced the more sophisticated computer codes that included regional meteorological models RAMS and atmospheric transport model HYPACT, which were developed by Colorado State University, and comparative analyses between OSCAAR and RAMS/HYPACT have been performed. In this study, model verification of OSCAAR and RAMS/HYPACT was conducted using data of long term atmospheric diffusion experiments, which were carried out in Tokai-mura, Ibaraki-ken. The predictions by models and the results of the atmospheric diffusion experiments indicated relatively good agreements. And it was shown that model performance of OSCAAR was the same degree as it of RAMS/HYPACT. (author)

  12. A tracer investigation of the atmospheric dispersion in the Dyrnaes Valley, Greenland

    International Nuclear Information System (INIS)

    Gryning, S.-E.; Lyck, E.

    1983-02-01

    Mining at Kvanefjeld, Greenland, will result in releases of air pollution gases. In order to measure the dilution of these gases tracer experiments were carried out in July-August 1981. Results from these experiments are described. The Kvanefjeld constitutes the northwestern side of a valley. The tracer was released at the Kvanefjeld during the night and sampled in the valley. The measured tracer concentrations were compared with those calculated by use of a conventional model of the dispersion of plumes. The dilution of the tracer was found to correspond to the dilution at ground level of a plume from a stack of 100-200 m height in atmospheric neutral conditions (wind speed 5 m/s). General aspects of the flow-field in the valley are discussed. It was observed that the flow direction in the valley shifts between downvalley and upvalley with a period of approximately 1 hour. It is suggested that this behaviour is caused by the interplay of a drainage flow and a sea-breeze. (author)

  13. Mid-latitude summer response of the middle atmosphere to short-term solar UV changes

    Directory of Open Access Journals (Sweden)

    P. Keckhut

    1995-06-01

    Full Text Available Temperature and wind data obtained with Rayleigh lidar since 1979 and Russian rockets since 1964 are analyzed to deduce the summer response of the middle atmosphere to short-term solar UV changes. The equivalent width of the 1083 nm He I line is used as a proxy to monitor the short-term UV flux changes. Spectral analyses are performed on 108-day windows to extract the 27-day component from temperature, wind and solar data sets. Linear regressions between these spectral harmonics show some significant correlations around 45 km at mid-latitudes. For large 27-day solar cycles, amplitudes of 2 K and 6 m s-1 are calculated for temperature data series over the south of France (44°N, and on wind data series over Volgograd (49°N, respectively. Cross-spectrum analyses have indicated correlations between these atmospheric parameters and the solar proxy with a phase lag of less than 2 days. These statistically correlative results, which provide good qualitative agreement with numerical simulations, are both obtained at mid-latitude. However, the observed amplitudes are larger than expected, with numerical models suggesting that dynamical processes such as equatorial or gravity waves may be responsible.

  14. Mid-latitude summer response of the middle atmosphere to short-term solar UV changes

    Directory of Open Access Journals (Sweden)

    P. Keckhut

    Full Text Available Temperature and wind data obtained with Rayleigh lidar since 1979 and Russian rockets since 1964 are analyzed to deduce the summer response of the middle atmosphere to short-term solar UV changes. The equivalent width of the 1083 nm He I line is used as a proxy to monitor the short-term UV flux changes. Spectral analyses are performed on 108-day windows to extract the 27-day component from temperature, wind and solar data sets. Linear regressions between these spectral harmonics show some significant correlations around 45 km at mid-latitudes. For large 27-day solar cycles, amplitudes of 2 K and 6 m s-1 are calculated for temperature data series over the south of France (44°N, and on wind data series over Volgograd (49°N, respectively. Cross-spectrum analyses have indicated correlations between these atmospheric parameters and the solar proxy with a phase lag of less than 2 days. These statistically correlative results, which provide good qualitative agreement with numerical simulations, are both obtained at mid-latitude. However, the observed amplitudes are larger than expected, with numerical models suggesting that dynamical processes such as equatorial or gravity waves may be responsible.

  15. A model for the calculation of dispersion, advection and deposition of polluants in the atmosphere

    International Nuclear Information System (INIS)

    Doron, E.

    1981-08-01

    A numerical model for the prediction of atmospheric pollutants concentrations as a function of time and location is described. The model includes effects of dispersion, advection and deposition of the pollutant. Topographic influences are included through the introduction of a terrain following vertical coordinate. The wind field, needed for the calculation of the advection, is obtained from a time series of objective analysis of actual wind measurements. A unique feature of the model is the use of the logarithm of the concentration as the predicted variable. For a concentration distribution close to Gaussian, the distribution of this variable is close to parabolic. Thus, a polynomial of low order can be fitted to the distribution and then used for the calculation of derivatives of the advection and diffusion terms with great accuracy. The fitting method used was the cubic splines method. Initial experiments with the method included tests of the interpolation methods, which were found to be very accurate, and a few dispersion and advection experiments designed for an initial check of the influence of vertical wind shear, topography and changes of wind speed and direction with time. The results of these experiments show that the model has a marked advantage over the Gaussian model but its use requires more advanced computing facilities. (author)

  16. Freely cooling granular gases with short-ranged attractive potentials

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Eric; Subramaniam, Shankar, E-mail: shankar@iastate.edu [Department of Mechanical Engineering, Center for Multiphase Flow Research, Iowa State University, Ames, Iowa 50011 (United States)

    2015-04-15

    We treat the case of an undriven gas of inelastic hard-spheres with short-ranged attractive potentials via an extension of the pseudo-Liouville operator formalism. New evolution equations for the granular temperature and coordination number are obtained. The granular temperature exhibits deviation from both Haff’s law and the case of long-ranged potentials. We verify this departure using soft-sphere discrete element method simulations. Excellent agreement is found for the duration of the simulation even beyond where exclusively binary collisions are expected. Simulations show the emergence of strong spatial-velocity correlations on the length scale of the last peak in the pair-correlation function but do not show strong correlations beyond this length scale. We argue that molecular chaos may remain an adequate approximation if the system is modelled as a Smoluchowski type equation with aggregation and break-up processes.

  17. Study of an Ising model with competing long- and short-range interactions

    International Nuclear Information System (INIS)

    Loew, U.; Emery, V.J.; Fabricius, K.; Kivelson, S.A.

    1994-01-01

    A classical spin-one lattice gas model is used to study the competition between short-range ferromagnetic coupling and long-range antiferromagnetic Coulomb interactions. The model is a coarse-grained representation of frustrated phase separation in high-temperature superconductors. The ground states are determined for the complete range of parameters by using a combination of numerical and analytical techniques. The crossover between ferromagnetic and antiferromagnetic states proceeds via a rich structure of highly symmetric striped and checkerboard phases. There is no devil's staircase behavior because mixtures of stripes with different period phase separate

  18. Wind tunnel testing to predict control room atmospheric dispersion factors

    International Nuclear Information System (INIS)

    Holmquist, L.J.; Harden, P.A.; Muraida, J.E.

    1993-01-01

    Recent concerns at Palisades about control room habitability in the event of a loss-of-coolant accident have led to an extensive effort to increase control room habitability margin. The heating, ventilating and air-conditioning (HVAC) system servicing the control room has the potential for unfiltered in-leakage through its normal outside air intake louvered isolation dampers during emergency mode. The current limiting control room habitability analysis allows for 1.2 x 10 -2 m 3 /s (25 ft 3 /min) unfiltered in-leakage into the control room envelope. This leakage value was not thought to be achievable with the existing as-built configuration. Repairing the system was considered as a potential solution; however, this would be costly and could negatively affect plant operation. In addition, the system would still be required to meet the low specified unfiltered in-leakage. A second approach to this problem was to determine the atmospheric dispersion factors (x/Q's) through a wind tunnel test using a scale model of Palisades. The results of the wind tunnel testing could yield more realistic x/Q's for control room habitability than previously employed methods. Palisades selected the wind tunnel study option based on its ease of implementation, realistic results, and low cost. More importantly, the results of the study could increase the allowable unfiltered in-leakage

  19. Effect on the annual atmospheric dispersion factor of different diffusion parameters and meteorological data at nuclear power plant

    International Nuclear Information System (INIS)

    Hu Erbang; Yan Jiangyu; Wang Han; Xin Cuntian

    2003-01-01

    Based on the hourly metrological observing data of 100 m high tower during 1997-1999 at Tianwan Nuclear Power Plant (NPP) site and 1995-1997 in Fujian Huian NPP site, the effect on the annual atmospheric dispersion factor (AADF) of four different diffusion parameters (on-site measuring values, IAEA's, Briggs's and Pasquill's) are estimated. The analysis shows that the deviation between the results from IAEA's, Briggs's and on-site measured diffusion parameters is less than 20%. The effect on the AADF from different years' meteorological data also is estimated. (authors)

  20. Long-range transmission of pollutants simulated by a two-dimensional pseudospectral dispersion model

    International Nuclear Information System (INIS)

    Prahm, L.P.; Christensen, O.

    1977-01-01

    The pseudospectral dispersion model (Christensen and Prahm, 1976) is adapted for simulation of the long-range transmission of sulphur pollutants in the European region, covering an area of about 4000 km x 4000 km. Regional ''background'' concentrations of sulphur oxides are found to be highly dependent on distant sources and to correlate poorly with local source strength during the considered three- and four-day episodes. The simulation is based on emission data, given in squares of about 50 km x 50 km and on synoptic wind fields derived from observed wind velocities of the 850 mb level and the surface level. The two-dimensional model includes a constant vertical mixing depth. Appropriate values for the deposition and the transformation rates of SO 2 and SO/sup 4 are used. The concentration of pollutants computed from the two-dimensional pseudospectral dispersion model reflects the variable meteorological conditions. Computed concentrations are compared with measurements, giving spatial correlations between 0.4 and 0.8 for more than 400 ground-based 24 h mean values, and a spatial correlation of 0.9 for eight aircraft samples averaged over approx.30 min. A discussion of the influence of different sources of error in the model simulation is given. The high numerical accuracy of the pseudospectral model is combined with a modest consumption of CPU computer time. This study is the first application of the pseudospectral dispersion model which compares computed concentrations with measured field data. The model has possible applications as a tool for assessment of the impact of both national and international emission regulation strategies

  1. Assessment of wind characteristics and atmospheric dispersion modeling of 137Cs on the Barakah NPP area in the USA

    International Nuclear Information System (INIS)

    Lee, Jong Kuk; Lee, Kun Jai; Yun, Jong IL; Kim, Jae Chul; Belorid, Miloslav; Beeley, Philip A.

    2014-01-01

    This paper presents the results of an analysis of wind characteristics and atmosphere dispersion modeling that are based on computational simulation and part of a preliminary study evaluating environmental radiation monitoring system (ERMS) positions within the Barakah nuclear power plant (BNPP). The return period of extreme wind speed was estimated using the Weibull distribution over the life time of the BNPP. In the annual meteorological modeling, the winds from the north and west accounted for more than 90 % of the wind directions. Seasonal effects were not represented. However, a discrepancy in the tendency between daytime and nighttime was observed. Six variations of cesium-137 ( 137 Cs) dispersion test were simulated under severe accident condition. The 137 Cs dispersion was strongly influenced by the direction and speed of the main wind. A virtual receptor was set and calculated for observation of the 137 Cs movement and accumulation. The results of the surface roughness effect demonstrated that the deposition of 137 Cs was affected by surface condition. The results of these studies offer useful information for developing environmental radiation monitoring systems (ERMSs) for the BNPP and can be used to assess the environmental effects of new nuclear power plant.

  2. Diagnosis of a short-pulse dielectric barrier discharge at atmospheric pressure in helium with hydrogen-methane admixtures

    Science.gov (United States)

    Nastuta, A. V.; Pohoata, V.; Mihaila, I.; Topala, I.

    2018-04-01

    In this study, we present results from electrical, optical, and spectroscopic diagnosis of a short-pulse (250 ns) high-power impulse (up to 11 kW) dielectric barrier discharge at atmospheric pressure running in a helium/helium-hydrogen/helium-hydrogen-methane gas mixture. This plasma source is able to generate up to 20 cm3 of plasma volume, pulsed in kilohertz range. The plasma spatio-temporal dynamics are found to be developed in three distinct phases. All the experimental observations reveal a similar dynamic to medium power microsecond barrier discharges, although the power per pulse and current density are up to two orders of magnitude higher than the case of microsecond barrier discharges. This might open the possibility for new applications in the field of gas or surface processing, and even life science. These devices can be used in laboratory experiments relevant for molecular astrophysics.

  3. Global risk from the atmospheric dispersion of radionuclides by nuclear power plant accidents in the coming decades

    Energy Technology Data Exchange (ETDEWEB)

    Christoudias, T.; Proestos, Y. [The Cyprus Institute, Nicosia (Cyprus); Lelieveld, J. [The Cyprus Institute, Nicosia (Cyprus); Max Planck Institute for Chemistry, Mainz (Germany)

    2014-07-01

    We estimate the global risk from the release and atmospheric dispersion of radionuclides from nuclear power plant accidents using the EMAC atmospheric chemistry-general circulation model. We included all nuclear reactors that are currently operational, under construction and planned or proposed. We implemented constant continuous emissions from each location in the model and simulated atmospheric transport and removal via dry and wet deposition processes over 20 years (2010-2030), driven by boundary conditions based on the IPCC A2 future emissions scenario. We present global overall and seasonal risk maps for potential surface layer concentrations and ground deposition of radionuclides, and estimate potential doses to humans from inhalation and ground-deposition exposures to radionuclides. We find that the risk of harmful doses due to inhalation is typically highest in the Northern Hemisphere during boreal winter, due to relatively shallow boundary layer development and limited mixing. Based on the continued operation of the current nuclear power plants, we calculate that the risk of radioactive contamination to the citizens of the USA will remain to be highest worldwide, followed by India and France. By including stations under construction and those that are planned and proposed, our results suggest that the risk will become highest in China, followed by India and the USA.

  4. Dispersant trial at ANO-2: Qualification for a short-term trial prior to SG replacement

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Frattini, P.; Robbins, P.; Miller, A.; Varrin, R.; Kreider, M.

    2002-01-01

    initiators, polymeric dispersants had not been utilized in the nuclear industry. Only recently has a poly-acrylic acid dispersant, developed by BetzDearborn (PAA), been available off the shelf that meets the criteria for nuclear application. This paper summarizes the qualification program designed to qualify the PAA dispersant for the short-term trial at ANO-2 prior to SG replacement. (authors)

  5. Dispersant trial at ANO-2: Qualification for a short-term trial prior to SG replacement

    Energy Technology Data Exchange (ETDEWEB)

    Fruzzetti, K.; Frattini, P. [Electric Power Research Inst., Palo Alto, CA (United States); Robbins, P. [Entergy Operations, Arkansas Nuclear One, Russellville, AR (United States); Miller, A. [Pedro Point Technology, Inc., Pacifica, CA (United States); Varrin, R.; Kreider, M. [Dominion Engineering Inc., McLean, VA (United States)

    2002-07-01

    initiators, polymeric dispersants had not been utilized in the nuclear industry. Only recently has a poly-acrylic acid dispersant, developed by BetzDearborn (PAA), been available off the shelf that meets the criteria for nuclear application. This paper summarizes the qualification program designed to qualify the PAA dispersant for the short-term trial at ANO-2 prior to SG replacement. (authors)

  6. The Lagrangian particle dispersion model FLEXPART-WRF VERSION 3.1

    Energy Technology Data Exchange (ETDEWEB)

    Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, Don; Seibert, P.; Angevine, W. M.; Evan, S.; Dingwell, A.; Fast, Jerome D.; Easter, Richard C.; Pisso, I.; Bukhart, J.; Wotawa, G.

    2013-11-01

    The Lagrangian particle dispersion model FLEXPART was originally designed for cal- culating long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. This multiscale need from the modeler community has encouraged new developments in FLEXPART. In this document, we present a version that works with the Weather Research and Forecasting (WRF) mesoscale meteoro- logical model. Simple procedures on how to run FLEXPART-WRF are presented along with special options and features that differ from its predecessor versions. In addition, test case data, the source code and visualization tools are provided to the reader as supplementary material.

  7. Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review

    Directory of Open Access Journals (Sweden)

    Changzhan Gu

    2016-07-01

    Full Text Available Short-range noncontact sensors are capable of remotely detecting the precise movements of the subjects or wirelessly estimating the distance from the sensor to the subject. They find wide applications in our day lives such as noncontact vital sign detection of heart beat and respiration, sleep monitoring, occupancy sensing, and gesture sensing. In recent years, short-range noncontact sensors are attracting more and more efforts from both academia and industry due to their vast applications. Compared to other radar architectures such as pulse radar and frequency-modulated continuous-wave (FMCW radar, Doppler radar is gaining more popularity in terms of system integration and low-power operation. This paper reviews the recent technical advances in Doppler radars for healthcare applications, including system hardware improvement, digital signal processing, and chip integration. This paper also discusses the hybrid FMCW-interferometry radars and the emerging applications and the future trends.

  8. Opo lidar sounding of trace atmospheric gases in the 3 - 4 μm spectral range

    Science.gov (United States)

    Romanovskii, Oleg A.; Sadovnikov, Sergey A.; Kharchenko, Olga V.; Yakovlev, Semen V.

    2018-04-01

    The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3-4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG) is based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using a PD38-03-PR photodiode for the DIAL gas analysis of the atmosphere is shown.

  9. Short and long periodic atmospheric variations between 25 and 200 km

    Science.gov (United States)

    Justus, C. G.; Woodrum, A.

    1973-01-01

    Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of gravity wave and planetary wave atmospheric variations are presented. Time structure of the gravity wave variations were determined by the analysis of residuals from harmonic analysis of time series data. Planetary wave contributions in the 25-85 km range were discovered and found to have significant height and latitudinal variation. Long period planetary waves, and seasonal variations were also computed by harmonic analysis. Revised height variations of the gravity wave contributions in the 25 to 85 km height range were computed. An engineering method and design values for gravity wave magnitudes and wave lengths are given to be used for such tasks as evaluating the effects on the dynamical heating, stability and control of spacecraft such as the space shuttle vehicle in launch or reentry trajectories.

  10. Application of numerical environment system to regional atmospheric radioactivity transport simulations

    International Nuclear Information System (INIS)

    Yamazawa, H.; Ohkura, T.; Iida, T.; Chino, M.; Nagai, H.

    2003-01-01

    Main functions of the Numerical Environment System (NES), as a part of the Information Technology Based Laboratory (ITBL) project implemented by Japan Atomic Energy Research Institute, became available for test use purposes although the development of the system is still underway. This system consists of numerical models of meteorology and atmospheric dispersion, database necessary for model simulations, post- and pre-processors such as data conversion and visualization, and a suite of system software which provide the users with system functions through a web page access. The system utilizes calculation servers such as vector- and scalar-parallel processors for numerical model execution, a EWS which serves as a hub of the system. This system provides users in the field of nuclear emergency preparedness and atmospheric environment with easy-to-use functions of atmospheric dispersion simulations including input meteorological data preparation and visualization of simulation results. The performance of numerical models in the system was examined with observation data of long-range transported radon-222. The models in the system reproduced quite well temporal variations in the observed radon-222 concentrations in air which were caused by changes in the meteorological field in the synoptic scale. By applying the NES models in combination with the idea of backward-in-time atmospheric dispersion simulation, seasonal shift of source areas of radon-222 in the eastern Asian regions affecting the concentrations in Japan was quantitatively illustrated. (authors)

  11. Hybrid gesture recognition system for short-range use

    Science.gov (United States)

    Minagawa, Akihiro; Fan, Wei; Katsuyama, Yutaka; Takebe, Hiroaki; Ozawa, Noriaki; Hotta, Yoshinobu; Sun, Jun

    2012-03-01

    In recent years, various gesture recognition systems have been studied for use in television and video games[1]. In such systems, motion areas ranging from 1 to 3 meters deep have been evaluated[2]. However, with the burgeoning popularity of small mobile displays, gesture recognition systems capable of operating at much shorter ranges have become necessary. The problems related to such systems are exacerbated by the fact that the camera's field of view is unknown to the user during operation, which imposes several restrictions on his/her actions. To overcome the restrictions generated from such mobile camera devices, and to create a more flexible gesture recognition interface, we propose a hybrid hand gesture system, in which two types of gesture recognition modules are prepared and with which the most appropriate recognition module is selected by a dedicated switching module. The two recognition modules of this system are shape analysis using a boosting approach (detection-based approach)[3] and motion analysis using image frame differences (motion-based approach)(for example, see[4]). We evaluated this system using sample users and classified the resulting errors into three categories: errors that depend on the recognition module, errors caused by incorrect module identification, and errors resulting from user actions. In this paper, we show the results of our investigations and explain the problems related to short-range gesture recognition systems.

  12. Short-arc orbit determination using coherent X-band ranging data

    Science.gov (United States)

    Thurman, S. W.; Mcelrath, T. P.; Pollmeier, V. M.

    1992-01-01

    The use of X-band frequencies in ground-spacecraft and spacecraft-ground telecommunication links for current and future robotic interplanetary missions makes it possible to perform ranging measurements of greater accuracy than previously obtained. It is shown that ranging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft. The application of high-accuracy S/X-band and X-band ranging to orbit determination with relatively short data arcs is investigated in planetary approach and encounter scenarios. Actual trajectory solutions for the Ulysses spacecraft constructed from S/X-band ranging and Doppler data are presented; error covariance calculations are used to predict the performance of X-band ranging and Doppler data. The Ulysses trajectory solutions indicate that the aim point for the spacecraft's February 1992 Jupiter encounter was predicted to a geocentric accuracy of 0.20 to 0.23/microrad. Explicit modeling of range bias parameters for each station pass is shown to largely remove systematic ground system calibration errors and transmission media effects from the Ulysses range measurements, which would otherwise corrupt the angle finding capabilities of the data. The Ulysses solutions were found to be reasonably consistent with the theoretical results, which suggest that angular accuracies of 0.08 to 0.1/microrad are achievable with X-band ranging.

  13. Supplementary investigations on the validation of the atmospheric radionuclide transport model (ARTM)

    International Nuclear Information System (INIS)

    Richter, Cornelia; Thielen, Harald; Sogalla, Martin

    2015-09-01

    In the medium-term time scale the Gaussian plume model used so far for atmospheric dispersion calculations in the General Administrative Provision (AVV) relating to Section 47 of the Radiation Protection Ordinance (StrISchV) as well as in the Incident Calculation Bases (SBG) relating to Section 49 StrISchV is to be replaced by a Lagrangian particle model. Meanwhile the Atmospheric Radionuclide Transportation Model (ARTM) is available, which allows the simulation of the atmospheric dispersion of operational releases from nuclear installations. ARTM is based on the program package AUSTAL2000 which is designed for the simulation of atmospheric dispersion of non-radioactive operational releases from industrial plants and was adapted to the application of airborne radioactive releases. The research project 3612S50007 serves, on the one hand, to validate ARTM systematically. On the other hand, the development of science and technology were investigated and, if reasonable and possible, were implemented to the program system. The dispersion model and the user interface were advanced and optimized. The program package was provided to the users as a free download. Notably t he work program comprises the validation of the approach used in ARTM to model short emission periods, which are of interest in view of the SBG. The simulation results of the diagnostic wind and turbulence model TALdia, which is part of the GO-ARTM program package, were evaluated with focus on the influence of buildings on the flow field. The user interface was upgraded with a wind field viewer. To simplify the comparison with the model still in use, a Gaussian plum e model was implemented into the graphical user interface. The ARTM web page was maintained, user questions and feedback were answered and analysed concerning possible improvements and further developments of the program package. Numerous improvements were implemented. An ARTM user workshop was hosted by the Federal Office for Radiation

  14. Implementation of meso-scale radioactive dispersion model for GPU

    Energy Technology Data Exchange (ETDEWEB)

    Sunarko [National Nuclear Energy Agency of Indonesia (BATAN), Jakarta (Indonesia). Nuclear Energy Assessment Center; Suud, Zaki [Bandung Institute of Technology (ITB), Bandung (Indonesia). Physics Dept.

    2017-05-15

    Lagrangian Particle Dispersion Method (LPDM) is applied to model atmospheric dispersion of radioactive material in a meso-scale of a few tens of kilometers for site study purpose. Empirical relationships are used to determine the dispersion coefficient for various atmospheric stabilities. Diagnostic 3-D wind-field is solved based on data from one meteorological station using mass-conservation principle. Particles representing radioactive pollutant are dispersed in the wind-field as a point source. Time-integrated air concentration is calculated using kernel density estimator (KDE) in the lowest layer of the atmosphere. Parallel code is developed for GTX-660Ti GPU with a total of 1 344 scalar processors using CUDA. A test of 1-hour release discovers that linear speedup is achieved starting at 28 800 particles-per-hour (pph) up to about 20 x at 14 4000 pph. Another test simulating 6-hour release with 36 000 pph resulted in a speedup of about 60 x. Statistical analysis reveals that resulting grid doses are nearly identical in both CPU and GPU versions of the code.

  15. Atmospheric pollution. From processes to modelling

    International Nuclear Information System (INIS)

    Sportisse, B.

    2008-01-01

    Air quality, greenhouse effect, ozone hole, chemical or nuclear accidents.. All these phenomena are tightly linked to the chemical composition of atmosphere and to the atmospheric dispersion of pollutants. This book aims at supplying the main elements of understanding of 'atmospheric pollutions': stakes, physical processes involved, role of scientific expertise in decision making. Content: 1 - classifications and scales: chemical composition of the atmosphere, vertical structure, time scales (transport, residence); 2 - matter/light interaction: notions of radiative transfer, application to the Earth's atmosphere; 3 - some elements about the atmospheric boundary layer: notion of scales in meteorology, atmospheric boundary layer (ABL), thermal stratification and stability, description of ABL turbulence, elements of atmospheric dynamics, some elements about the urban climate; 4 - notions of atmospheric chemistry: characteristics, ozone stratospheric chemistry, ozone tropospheric chemistry, brief introduction to indoor air quality; 5 - aerosols, clouds and rains: aerosols and particulates, aerosols and clouds, acid rains and leaching; 6 - towards numerical simulation: equation of reactive dispersion, numerical methods for chemistry-transport models, numerical resolution of the general equation of aerosols dynamics (GDE), modern simulation chains, perspectives. (J.S.)

  16. The MOLDY short-range molecular dynamics package

    Science.gov (United States)

    Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.

    2011-12-01

    We describe a parallelised version of the MOLDY molecular dynamics program. This Fortran code is aimed at systems which may be described by short-range potentials and specifically those which may be addressed with the embedded atom method. This includes a wide range of transition metals and alloys. MOLDY provides a range of options in terms of the molecular dynamics ensemble used and the boundary conditions which may be applied. A number of standard potentials are provided, and the modular structure of the code allows new potentials to be added easily. The code is parallelised using OpenMP and can therefore be run on shared memory systems, including modern multicore processors. Particular attention is paid to the updates required in the main force loop, where synchronisation is often required in OpenMP implementations of molecular dynamics. We examine the performance of the parallel code in detail and give some examples of applications to realistic problems, including the dynamic compression of copper and carbon migration in an iron-carbon alloy. Program summaryProgram title: MOLDY Catalogue identifier: AEJU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 382 881 No. of bytes in distributed program, including test data, etc.: 6 705 242 Distribution format: tar.gz Programming language: Fortran 95/OpenMP Computer: Any Operating system: Any Has the code been vectorised or parallelized?: Yes. OpenMP is required for parallel execution RAM: 100 MB or more Classification: 7.7 Nature of problem: Moldy addresses the problem of many atoms (of order 10 6) interacting via a classical interatomic potential on a timescale of microseconds. It is designed for problems where statistics must be gathered over a number of equivalent runs, such as

  17. Dispersion Modeling Using Ensemble Forecasts Compared to ETEX Measurements.

    Science.gov (United States)

    Straume, Anne Grete; N'dri Koffi, Ernest; Nodop, Katrin

    1998-11-01

    Numerous numerical models are developed to predict long-range transport of hazardous air pollution in connection with accidental releases. When evaluating and improving such a model, it is important to detect uncertainties connected to the meteorological input data. A Lagrangian dispersion model, the Severe Nuclear Accident Program, is used here to investigate the effect of errors in the meteorological input data due to analysis error. An ensemble forecast, produced at the European Centre for Medium-Range Weather Forecasts, is then used as model input. The ensemble forecast members are generated by perturbing the initial meteorological fields of the weather forecast. The perturbations are calculated from singular vectors meant to represent possible forecast developments generated by instabilities in the atmospheric flow during the early part of the forecast. The instabilities are generated by errors in the analyzed fields. Puff predictions from the dispersion model, using ensemble forecast input, are compared, and a large spread in the predicted puff evolutions is found. This shows that the quality of the meteorological input data is important for the success of the dispersion model. In order to evaluate the dispersion model, the calculations are compared with measurements from the European Tracer Experiment. The model manages to predict the measured puff evolution concerning shape and time of arrival to a fairly high extent, up to 60 h after the start of the release. The modeled puff is still too narrow in the advection direction.

  18. Long range transport and air quality impacts of SO2 emissions from Holuhraun (Bárdarbunga, Iceland)

    Science.gov (United States)

    Schmidt, Anja; Witham, Claire; Leadbetter, Susan; Theys, Nicholas; Hort, Matthew; Thordarson, Thorvaldur; Stevenson, John; Shepherd, Janet; Sinnott, Richard; Kenny, Patrick; Barsotti, Sara

    2015-04-01

    Gas emissions from the Holuhraun eruption site in Iceland resulted in increases in observed ground level concentrations of sulphur dioxide (SO2) in the UK and Ireland during two occasions in September 2014. We present data from the Irish and UK monitoring networks along with satellite imagery which describes the temporal and spatial evolution of these pollution episodes. During both events increases in concentration were significant compared to ambient levels. The peaks were short lived, 6-12 hours, and below the World Health Organisation's 10-minute air quality standard for SO2 of 500 µg/m3, but these events show that gas from relatively low altitude volcanic emissions in Iceland can pose a hazard to north west Europe. The two pollution events serve as excellent case studies and observations from the events provide us with a unique dataset for the verification of atmospheric dispersion models. We use the atmospheric dispersion model NAME to simulate the long-range transport, removal and chemical conversion of the volcanic SO2 during September 2014. We evaluate a range of model simulations, using varying model input and physical parameters, against ground based measurements and satellite retrievals of SO2. Simulations demonstrate that the long-range ground concentrations are strongly dependent on the emission flux and the height of emission at source. This relationship is well known from similar studies of other pollution events. However this work also demonstrates a dependence on the model's vertical turbulence parameterisation and the height of the boundary layer determined from the input Numerical Weather Prediction meteorological data. For the pollution events in September 2014, we find that using a mass flux of 40 kilotons per day of SO2 gives best agreement with vertical column retrievals of SO2 from the Ozone Monitoring Instrument, which is in good agreement with initial estimates made by the Icelandic Meteorological Office. "This work is distributed under

  19. Kernel optimization for short-range molecular dynamics

    Science.gov (United States)

    Hu, Changjun; Wang, Xianmeng; Li, Jianjiang; He, Xinfu; Li, Shigang; Feng, Yangde; Yang, Shaofeng; Bai, He

    2017-02-01

    To optimize short-range force computations in Molecular Dynamics (MD) simulations, multi-threading and SIMD optimizations are presented in this paper. With respect to multi-threading optimization, a Partition-and-Separate-Calculation (PSC) method is designed to avoid write conflicts caused by using Newton's third law. Serial bottlenecks are eliminated with no additional memory usage. The method is implemented by using the OpenMP model. Furthermore, the PSC method is employed on Intel Xeon Phi coprocessors in both native and offload models. We also evaluate the performance of the PSC method under different thread affinities on the MIC architecture. In the SIMD execution, we explain the performance influence in the PSC method, considering the "if-clause" of the cutoff radius check. The experiment results show that our PSC method is relatively more efficient compared to some traditional methods. In double precision, our 256-bit SIMD implementation is about 3 times faster than the scalar version.

  20. Super-ranging. A new ranging strategy in European badgers.

    Directory of Open Access Journals (Sweden)

    Aoibheann Gaughran

    Full Text Available We monitored the ranging of a wild European badger (Meles meles population over 7 years using GPS tracking collars. Badger range sizes varied seasonally and reached their maximum in June, July and August. We analysed the summer ranging behaviour, using 83 home range estimates from 48 individuals over 6974 collar-nights. We found that while most adult badgers (males and females remained within their own traditional social group boundaries, several male badgers (on average 22% regularly ranged beyond these traditional boundaries. These adult males frequently ranged throughout two (or more social group's traditional territories and had extremely large home ranges. We therefore refer to them as super-rangers. While ranging across traditional boundaries has been recorded over short periods of time for extraterritorial mating and foraging forays, or for pre-dispersal exploration, the animals in this study maintained their super-ranges from 2 to 36 months. This study represents the first time such long-term extra-territorial ranging has been described for European badgers. Holding a super-range may confer an advantage in access to breeding females, but could also affect local interaction networks. In Ireland & the UK, badgers act as a wildlife reservoir for bovine tuberculosis (TB. Super-ranging may facilitate the spread of disease by increasing both direct interactions between conspecifics, particularly across social groups, and indirect interactions with cattle in their shared environment. Understanding super-ranging behaviour may both improve our understanding of tuberculosis epidemiology and inform future control strategies.

  1. Comparative study of radiological assessment impact of nuclear power plant and coal-fired power plant: the atmospheric dispersion factor (χ/Q) in Muria Peninsula, Jepara

    International Nuclear Information System (INIS)

    Umbara, H.; Syahrir; Yatim, S.

    1997-01-01

    The atmospheric dispersion factor (χ/Q) in Muria Peninsula, Jepara was carried out to calculate the exposure dose to public from nuclear power plant and coal-fired plant. The dispersion factor (χ/Q) value was calculated with mathematical model and diffusion equation. Parameter used as the input data was taken from meteorological data of Ujung Watu site within one year (August 1994 - July 1995) to obtain joint frequency distribution data which were the percentage of wind speed and stability class for 16 sector within one year. The results indicated that the highest dispersion factor (χ/Q) within 300 - 700 m radius from point of release is 4.750E-07 - 8.238E-07 second/m 3 for north west direction (author)

  2. Decreased long- and short-range functional connectivity at rest in drug-naive major depressive disorder.

    Science.gov (United States)

    Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Zhang, Zhikun; Yu, Miaoyu; Xue, Zhimin; Zhao, Jingping

    2016-08-01

    Abnormal functional connectivity has been observed in major depressive disorder. Anatomical distance may affect functional connectivity in patients with major depressive disorder. However, whether and how anatomical distance affects functional connectivity at rest remains unclear in drug-naive patients with major depressive disorder. Forty-four patients with major depressive disorder, as well as 44 age-, sex- and education-matched healthy controls, underwent resting-state functional magnetic resonance imaging scanning. Regional functional connectivity strength was calculated for each voxel in the whole brain, which was further divided into short- and long-range functional connectivity strength. The patients showed decreased long-range positive functional connectivity strength in the right inferior parietal lobule, as well as decreased short-range positive functional connectivity strength in the right insula and right superior temporal gyrus relative to those of the controls. No significant correlations existed between abnormal functional connectivity strength and the clinical variables of the patients. The findings revealed that anatomical distance decreases long- and short-range functional connectivity strength in patients with major depressive disorder, which may underlie the neurobiology of major depressive disorder. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  3. PAVAN: an atmospheric-dispersion program for evaluating design-basis accidental releases of radioactive materials from nuclear power stations

    International Nuclear Information System (INIS)

    Bander, T.J.

    1982-11-01

    This report provides a user's guide for the NRC computer program, PAVAN, which is a program used by the US Nuclear Regulatory Commission to estimate downwind ground-level air concentrations for potential accidental releases of radioactive material from nuclear facilities. Such an assessment is required by 10 CFR Part 100 and 10 CFR Part 50. The program implements the guidance provided in Regulatory Guide 1.145, Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants. Using joint frequency distributions of wind direction and wind speed by atmospheric stability, the program provides relative air concentration (X/Q) values as functions of direction for various time periods at the exclusion area boundary (EAB) and the outer boundary of the low population zone (LPZ). Calculations of X/Q values can be made for assumed ground-level releases (e.g., through building penetrations and vents) or elevated releases from free-standing stacks. Various options may be selected by the user. They can account for variation in the location of release points, additional plume dispersion due to building wakes, plume meander under low wind speed conditions, and adjustments to consider non-straight trajectories. It computes an effective plume height using the physical release height which can be reduced by inputted terrain features. It cannot handle multiple emission sources. A description of the main program and all subroutines is provided. Also included as appendices are a complete listing of the program and two test cases with the required data inputs and the resulting program outputs

  4. Correlation between short-range order, optical properties and UV-absorption ability in tellurate glasses; Poster M7

    Energy Technology Data Exchange (ETDEWEB)

    Burger, H; Tews, W; Vogel, W; Kozhukharov, V [Jena Univ. (Germany)

    1989-01-01

    Tellurate glasses, with as second components Al[sub 2]O[sub 3], PbO, PbF[sub 2], PbCl[sub 2], PbBr[sub 2], PbSO[sub 4], ZnO, B[sub 2]O[sub 3], P[sub 2]O[sub 5], Li[sub 2]O, Na[sub 2]O, K[sub 2]O, MgO and BaO as well as some glasses from ternary TeO[sub 2]-P[sub 2]O[sub 5]-RO systems (R is Pb, Ba and Zn ions), have been investigated. Transmittance spectra in UV and VIS region of some selected glasses have been measured. A correlation between optical properties and UV absorption edge of the transmittance have been done. Using p[sup 31]-NMR spectroscopy the structural changes on short-range level order are studied. A strong influence on the refraction and dispersion values as well as UV-absorption ability of the glasses is established. For p[sup 31] -NMR spectroscopy investigations of crystalline phosphotellurites and related phosphotellurite glasses the TeO[sub 2]-P[sub 2]O[sub 5B]aO ternary system have been chosen. (author).

  5. How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change

    Science.gov (United States)

    Yu Liang; Matthew J. Duveneck; Eric J. Gustafson; Josep M. Serra-Diaz; Jonathan R. Thompson

    2018-01-01

    Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change,...

  6. Structure of the short-range atomic order of WO3 amorphous films

    International Nuclear Information System (INIS)

    Olevskij, S.S.; Sergeev, M.S.; Tolstikhina, A.L.; Avilov, A.S.; Shkornyakov, S.M.; Semiletov, S.A.

    1984-01-01

    To study the causes of electrochromism manifestation in thin tungsten oxide films, the structure of WO 3 amorphous films has been investigated. The films were obtained by three different methods: by W(CO) 6 tungsten carbonyl pyrolysis, by high-frequency ion-plasma sputtering of a target prepared by WO 3 powder sintering, and by WO 3 powder thermal evaporation. Monocrystalline wafers of silicon and sodium chloride were used as substrates. The structure of short-range order in WO 3 amorphous films varies versus, the method of preparation in compliance with the type of polyhedral elements, (WO 6 , WO 5 ) and with the character of their packing (contacts via edges or vertices). Manifestation of electroc ro mism in WO 3 films prepared by varions methods and having different structure of short-range order is supposed to be realized through various mechanisms. One cannot exclude a potential simultaneous effect of the two coloration mechanisms

  7. Development of regional atmospheric dynamic and air pollution models for nuclear emergency response system WSPEEDI

    International Nuclear Information System (INIS)

    Furuno, Akiko; Yamazawa, Hiromi; Lee, Soon-Hwan; Tsujita, Yuichi; Takemiya, Hiroshi; Chino, Masamichi

    2000-01-01

    WSPEEDI (Worldwide version of System for Prediction of Environmental Emergency Dose Information) is a computer-based emergency response system to predict long-range atmospheric dispersion of radionuclides discharged into the atmosphere due to a nuclear accident. WSPEEDI has been applied to several international exercises and real events. Through such experiences, the new version of WSPEEDI aims to employ a combination of an atmospheric dynamic model and a particle random walk model for more accurate predictions. This paper describes these models, improvement of prediction and computational techniques for quick responses. (author)

  8. Dense gas dispersion in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Morten

    1998-09-01

    Dense gas dispersion is characterized by buoyancy induced gravity currents and reduction of the vertical mixing. Liquefied gas releases from industrial accidents are cold because of the heat of evaporation which determines the density for a given concentration and physical properties. The temperature deficit is moderated by the heat flux from the ground, and this convection is an additional source of turbulence which affects the mixing. A simple model as the soil heat flux is used to estimate the ability of the ground to sustain the heat flux during release. The initial enthalpy, release rate, initial entrainment and momentum are discussed for generic source types and the interaction with obstacles is considered. In the MTH project BA experiments source with and without momentum were applied. The continuously released propane gas passed a two-dimensional removable obstacle perpendicular to the wind direction. Ground-level gas concentrations and vertical profiles of concentration, temperature, wind speed and turbulence were measured in front of and behind the obstacle. Ultrasonic anemometers providing fast velocity and concentration signals were mounted at three levels on the masts. The observed turbulence was influenced by the stability and the initial momentum of the jet releases. Additional information were taken from the `Dessert tortoise` ammonia jet releases, from the `Fladis` experiment with transition from dense to passive dispersion, and from the `Thorney Island` continuous releases of isothermal freon mixtures. The heat flux was found to moderate the negative buoyancy in both the propane and ammonia experiments. The heat flux measurements are compared to an estimate by analogy with surface layer theory. (au) 41 tabs., 146 ills., 189 refs.

  9. Modelling the dispersion of radionuclides following short duration releases to rivers

    International Nuclear Information System (INIS)

    Smith, J.T.; Bowes, M.; Denison, F.H.

    2003-01-01

    This project develops a model for assessing short duration liquid discharges of radionuclides to rivers. The assessment of doses arising from discharges to rivers is normally carried out by considering annual average discharge rates. Actual authorised discharges, however, may occur unevenly during the year or relatively high short-term discharges could occur in the unlikely event of an incident. Short term radionuclide releases could potentially result in temporary increases in radionuclide activity concentrations in water and fish which are greater than those resulting from a continuous discharge. The purpose of this project is to develop a model to assess short term releases from these sites, and where possible develop generic methods of assessing short term releases. An advection-dispersion model was developed to predict the concentrations of radionuclides in the river environment, ie in river water, river bed sediment and in predatory fish. Uptake of radionuclides to fish was modelled by estimating rates of uptake of radionuclides via the aquatic food chain or across the gill, as appropriate. The model was used to predict the concentrations of the radionuclides in the river Thames and its tributaries as a result of short duration discharges into stretches of the Thames and River Colne. Model output is given as a series of graphs of activity concentration and time integrated activity concentration resulting from a 1 MBq discharge for the following release durations: 5 minutes, 1 h, 3 h, 12 h and 24 h. The five locations for which predictions are given were 100m, 300m, 1000m, 3000m and 10000m downstream. The river volumetric flow rate was shown to be the most important environmental variable determining activity concentrations in water, fish and sediments following a release. In general, the maximum and integrated activity concentrations in water and fish will be in inverse proportion to the river volumetric flow rate, for a given amount and duration of release

  10. Validation of techniques for simulating long range dispersal and deposition of atmospheric pollutants based upon measurements after the Chernobyl accident

    International Nuclear Information System (INIS)

    Tveten, U.

    1987-02-01

    Problem specifications and a time schedule for an international study of computerized simulation of transfrontier atmospheric contamination are presented. Started on the initiative of the Nordic Liaison Committee for Atomic Energy, the study will be based on international measurements after the Chernobyl accident

  11. Polyamorphism and substructure of short-range order in amorphous boron films

    International Nuclear Information System (INIS)

    Palatnik, L.S.; Nechitajlo, A.A.; Koz'ma, A.A.

    1981-01-01

    The structure and substructure of boron amorphous films are studied in detail. Amorphous condensate of Bsup(a) boron is built of the same (but only disorientedly located) 12 B icosahedrons as boron crystalline modifications: B 105 -equilibrium β-rhombic, metastable: B 50 -tetragonal, B 12 -α-rhombohedral Coordination number for Bsup(a) (Z 1 =6.4) is lower than in B 105 (Z 1 =6.6) but higher than in B 50 modification (Z 1 =6.1). In crystalline modifications B 105 , B 50 , B 12 coordination numbers ω in first coordination spheres of icosahedrons are equal to ν 105 =6+4.6=10.6; ν 50 =10+3=14; ν 12 =6 respectively. Both amorphous modifications of boron Bsub(1)sup(a) and Bsub(15)sup(a) are analogs to B 50 in respect of the short-range order of icosahedron location. The difference between them is in ''substructure'' of short-range order: part of boron atoms (approximately 12%) do not occupy the vertices (so that vacancies appear) and enter the emptinesses between icosahedrons. In other words, the structure B 50 is the model basis of both amorphous phases [ru

  12. Study of short atmospheric pressure dc glow microdischarge in air

    Science.gov (United States)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  13. Applications of airborne remote sensing in atmospheric sciences research

    Science.gov (United States)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.

    1984-01-01

    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  14. Short range order in FeCo-X alloys

    International Nuclear Information System (INIS)

    Fultz, B.

    1988-01-01

    Moessbauer spectrometry was used to study the kinetics of chemical ordering in FeCo and in FeCo alloyed with ternary solutes. With respect to the binary FeCo alloy, the kinetics of B2 ordering were slowed when 2% of 4d- or 5d-series ternary solute atoms were present, but 3p- and 3d-series ternary solutes had little effect on ordering kinetics. The relaxation of order around the ternary solute atoms could be discerned in Moessbauer spectra, and it seems that the development of B2 short range order is influenced by structural relaxations around the ternary solute atoms. Different thermal treatments were shown to cause different relaxations of and correlations, suggesting that Moessbauer spectrometry can be used to identify different kinetic paths of ordering in ternary alloys. (orig.)

  15. Limited-area short-range ensemble predictions targeted for heavy rain in Europe

    Directory of Open Access Journals (Sweden)

    K. Sattler

    2005-01-01

    Full Text Available Inherent uncertainties in short-range quantitative precipitation forecasts (QPF from the high-resolution, limited-area numerical weather prediction model DMI-HIRLAM (LAM are addressed using two different approaches to creating a small ensemble of LAM simulations, with focus on prediction of extreme rainfall events over European river basins. The first ensemble type is designed to represent uncertainty in the atmospheric state of the initial condition and at the lateral LAM boundaries. The global ensemble prediction system (EPS from ECMWF serves as host model to the LAM and provides the state perturbations, from which a small set of significant members is selected. The significance is estimated on the basis of accumulated precipitation over a target area of interest, which contains the river basin(s under consideration. The selected members provide the initial and boundary data for the ensemble integration in the LAM. A second ensemble approach tries to address a portion of the model-inherent uncertainty responsible for errors in the forecasted precipitation field by utilising different parameterisation schemes for condensation and convection in the LAM. Three periods around historical heavy rain events that caused or contributed to disastrous river flooding in Europe are used to study the performance of the LAM ensemble designs. The three cases exhibit different dynamic and synoptic characteristics and provide an indication of the ensemble qualities in different weather situations. Precipitation analyses from the Deutsche Wetterdienst (DWD are used as the verifying reference and a comparison of daily rainfall amounts is referred to the respective river basins of the historical cases.

  16. A survey of atmospheric dispersion models applicable to risk studies for nuclear facilities in complex terrain

    International Nuclear Information System (INIS)

    Wittek, P.

    1985-09-01

    Atmospheric dispersion models are reviewed with respect to their application to the consequence assessment within risk studies for nuclear power plants located in complex terrain. This review comprises: seven straight-line Gaussian models, which have been modified in order to take into account in a crude way terrain elevations, enhanced turbulence and some others effects; three trajectory/puff-models, which can handle wind direction changes and the resulting plume or puff trajectories; five three-dimensional wind field models, which calculate the wind field in complex terrain for the application in a grid model; three grid models; one Monte-Carlo-model. The main features of the computer codes are described, along with some informations on the necessary computer time and storage capacity. (orig.) [de

  17. Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction

    NARCIS (Netherlands)

    Kern, N.; Frenkel, D.

    2003-01-01

    We present a systematic numerical study of the phase behavior of square-well fluids with a "patchy" short-ranged attraction. In particular, we study the effect of the size and number of attractive patches on the fluid–fluid coexistence. The model that we use is a generalization of the hard sphere

  18. Towards highest peak intensities for ultra-short MeV-range ion bunches

    OpenAIRE

    Simon Busold; Dennis Schumacher; Christian Brabetz; Diana Jahn; Florian Kroll; Oliver Deppert; Ulrich Schramm; Thomas E. Cowan; Abel Blažević; Vincent Bagnoud; Markus Roth

    2015-01-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on ?m scale, with energies ranging up to 28.4?MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven so...

  19. Iterative ensemble Kalman filter for atmospheric dispersion in nuclear accidents: An application to Kincaid tracer experiment.

    Science.gov (United States)

    Zhang, X L; Su, G F; Chen, J G; Raskob, W; Yuan, H Y; Huang, Q Y

    2015-10-30

    Information about atmospheric dispersion of radionuclides is vitally important for planning effective countermeasures during nuclear accidents. Results of dispersion models have high spatial and temporal resolutions, but they are not accurate enough due to the uncertain source term and the errors in meteorological data. Environmental measurements are more reliable, but they are scarce and unable to give forecasts. In this study, our newly proposed iterative ensemble Kalman filter (EnKF) data assimilation scheme is used to combine model results and environmental measurements. The system is thoroughly validated against the observations in the Kincaid tracer experiment. The initial first-guess emissions are assumed to be six magnitudes underestimated. The iterative EnKF system rapidly corrects the errors in the emission rate and wind data, thereby significantly improving the model results (>80% reduction of the normalized mean square error, r=0.71). Sensitivity tests are conducted to investigate the influence of meteorological parameters. The results indicate that the system is sensitive to boundary layer height. When the heights from the numerical weather prediction model are used, only 62.5% of reconstructed emission rates are within a factor two of the actual emissions. This increases to 87.5% when the heights derived from the on-site observations are used. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Dispersion factors - tables and diagrams for the Karlsruhe site

    International Nuclear Information System (INIS)

    Papadopoulos, D.; Baer, M.; Honcu, S.

    1984-02-01

    Dispersion experiments were performed at the Nuclear Research Center for the Karlsruhe site. The evaluation of these experiments allowed to determine the parameters of lateral or vertical atmospheric dispersions. This report is a compilation of tables and diagrams showing the dispersion factors calculated with the help of the dispersion parameters. These dispersion factors are valid for the Karlsruhe site. They have been normalized to 1 m/s wind speed and to 1 g/s (or 1 Bq/s) source strength. (orig.) [de

  1. Towards highest peak intensities for ultra-short MeV-range ion bunches

    Science.gov (United States)

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-01-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches. PMID:26212024

  2. Towards highest peak intensities for ultra-short MeV-range ion bunches

    Science.gov (United States)

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-07-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.

  3. Measurement based scenario analysis of short-range distribution system planning

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Bak-Jensen, Birgitte; Chen, Zhe

    2009-01-01

    This paper focuses on short-range distribution system planning using a probabilistic approach. Empirical probabilistic distributions of load demand and distributed generations are derived from the historical measurement data and incorporated into the system planning. Simulations with various...... feasible scenarios are performed based on a local distribution system at Støvring in Denmark. Simulation results provide more accurate and insightful information for the decision-maker when using the probabilistic analysis than using the worst-case analysis, so that a better planning can be achieved....

  4. Experimental study of a model and parameters calculating annual mean atmospheric dispersion factor for a nuclear power plant to be build in coastal site

    International Nuclear Information System (INIS)

    Hu Erbang; Chen Jiayi; Zhang Maoshuan; Gao Zhanrong; Yao Rentai; Jia Peirong; Qiao Qingdang

    1999-01-01

    The author tries to develop a new model calculating annual mean atmospheric dispersion factor for a nuclear power plant to be build in coastal site based on field experiments. This model considers not only the difference between shore ward and off-shore but also the comprehensive effect of following factors: mixed layer and thermal internal boundary layer, mixing release and variation of diffusion parameters due to the distance from coast and so on. The various parameters needed in the model are obtained from the field atmospheric experiments done on the NPP site during 1995∼1996. There dimension joint frequency is got from wind and temperature measurements at 4 heights of a tower of 100 m; diffusion parameters shore ward and off-shore from turbulent measurement and wind tunnel simulation test; the parameters relative to sea and land breeze and thermal internal boundary layer are obtained from tests with low altitude radiosonde and lost balloon at 3 sites during two periods of Summer and Winter. Finally a comparison of the results given by this model and commonly used model provided by relative guides is done. The comparison shows that about 1 times under estimation is found for the maximum of annual mean atmospheric dispersion factor in common model because the effect from thermal internal boundary layer and other factors are neglected

  5. A Comparative Study of Dispersion Characteristics Determination of a Trapezoidally Corrugated Slow Wave Structure Using Different Techniques

    International Nuclear Information System (INIS)

    Saber, Md. Ghulam; Sagor, Rakibul Hasan; Amin, Md. Ruhul

    2016-01-01

    The linear dispersion relation of a trapezoidally corrugated slow wave structure (TCSWS) is analyzed and presented. The size parameters of the TCSWS are chosen in such a way that they operate in the x-band frequency range. The dispersion relation is solved by utilizing the Rayleigh–Fourier method by expressing the radial function in terms of the Fourier series. A highly accurate synthetic technique is also applied to determine the complete dispersion characteristics from experimentally measured resonances (cold test). Periodic structures resonate at specific frequencies when the terminals are shorted appropriately. The dispersion characteristics obtained from numerical calculation, synthetic technique and cold test are compared, and an excellent agreement is achieved. (paper)

  6. Comparative analysis of three atmospheric dispersion coefficient systems at the Angra dos Reis, RJ, region

    International Nuclear Information System (INIS)

    Biagio, Rosa Maria de Souza

    1982-01-01

    A comparative analysis was made in this work among Pasquill-Gifford (PG) atmospheric dispersion coefficients and those determined at the Juelich and Karlsruhe sites with the purpose of suggesting which one would be the most applicable to the Angra site. Each one of the three systems was determined by different experiments, carried out over sites with diversified features. The systems of Juelich and Karlsruhe were obtained over sites with high surface roughness and from stacks (elevated releases), while the PG system was obtained over sites with a small surface roughness and from ground level releases. The results of the application of these systems at a complex site like Angra,which has a highly diversified structure encompassing sea, vegetation, predominance of light winds and stable stability classes, show that the PG system, the most used in the world, is still the best choice. (author)

  7. Human Dispersals Along the African Rift Valley in the Late Quaternary

    Science.gov (United States)

    Tryon, C. A.; Faith, J. T.; Peppe, D. J.

    2014-12-01

    Climate- and tectonic-driven environmental dynamics of the East African Rift System (EARS) during the Quaternary played an important role in the demographic history of early Homo sapiens, including expansions of modern humans across and out of Africa. Human forager population size, geographic range, and behaviors such as hunting strategies and residential mobility likely varied in response to changes in the local and regional environment. Throughout the Quaternary, floral and faunal change was linked at least in part to variations in moisture availability, temperature, and atmospheric CO2, which in addition to uplift and faulting, contributed to the expansion and contraction of a number of large lakes that served as biogeographic barriers to many taxa. This is particularly clear for the Lake Victoria basin, where biogeographic, geological, and paleontological evidence documents repeated expansion and contraction of the ranges of species in response to lake level and vegetation change. Across much of eastern Africa, the topography of the rift facilitated north-south dispersals, the timing of which may have depended in part on the expansion and contraction of the equatorial forest belt. Dispersal potential likely increased during the more arid periods of the late Quaternary, when the roles of lakes and forests as dispersal barriers was reduced and the extent of low net primary productivity dry grasslands increased, the latter requiring large home ranges for human foragers, conditions suitable for range expansions within H. sapiens.

  8. Dispersal of the invasive pasture pest Heteronychus arator into areas of low population density: effects of sex and season, and implications for pest management

    Directory of Open Access Journals (Sweden)

    Sarah Mansfield

    2016-08-01

    Full Text Available African black beetle, Heteronychus arator (Scarabaeidae, is an exotic pest of pastures in northern New Zealand. Both adults and larvae feed on pasture grasses. Adults disperse by walking (short range or flying (long range. Dispersal flights are triggered by warm night temperatures in spring and autumn. Short range adult dispersal in search of mates, food or oviposition sites is poorly understood. This study investigated walking activity of H. arator adults over three seasons in New Zealand pastures. Adult walking activity was monitored using pitfall traps along fence lines and in pasture plots on a dairy farm in Waikato, New Zealand, in spring 2013, spring 2014 and autumn 2015. Beetle populations were reduced by application of a biopesticide bait to compare walking activity between treated and control plots for up to 26 days post-treatment. Marked beetles were released into the pasture plots to measure the distance travelled by recaptured individuals. Trap catches along the fence lines were correlated with air temperatures in 2013. Trap catches were male biased in spring 2014 compared with autumn 2015. Trap numbers in the control plots were nearly double that of treated plots in both seasons. More beetles were caught in the pitfall traps at the edges of the treated plots than in the centre. Trap catches were consistent throughout the control plot in spring 2014, but in autumn 2015 more beetles were caught in the centre of the control plot than at the edges. Few marked beetles were recaptured with dispersal rates estimated as <0.5m per day. Warmer temperatures encouraged short range dispersal in H. arator. Males were more active than females during the spring mating season. Edge effects were strong and should be considered in the design of field experiments.

  9. Data assimilation on atmospheric dispersion of radioactive materials

    DEFF Research Database (Denmark)

    Drews, Martin

    a new method for on-line estimation of the radionuclide source term, i.e. the amount and composition of the released radionuclides, and the main dispersion parameters, based on radiation monitoring data obtained in the vicinity of the release. The method is based on the extended Kalman filter (EKF...

  10. Determination of equivalent mixing height and atmospheric stability assessment

    International Nuclear Information System (INIS)

    Simon, J.; Bulko, M.; Holy, K.

    2007-01-01

    Atmospheric stability is an indicator that reflects the intensity of boundary layer mixing processes. This feature of the atmosphere is especially important since it defines dispersive atmospheric conditions and provides information on how effectively the anthropogenic pollution will be transferred to the higher levels of the atmosphere. The assessment of atmospheric dispersiveness plays a crucial role in the protection of air quality and public health in big cities. The presented paper deals with determination of atmospheric stability via so called Equivalent Mixing Height (EMH) quantity using a radioactive noble gas 222 Rn. A method of deriving a link between 222 Rn activity concentration, eddy diffusion coefficient and EMH using fluid mechanics is also outlined in this work. (authors)

  11. Modelling the observed vertical transport of {sup 7}Be in specific soils with advection dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Torres Astorga, Romina; Velasco, Hugo; Valladares, Diego L.; Lohaiza, Flavia; Ayub, Jimena Juri; Rizzotto, Marcos [Grupo de Estudios Ambientales. Instituto de Matematica Aplicada San Luis - Universidad Nacional de San Luis - CONICET, San Luis (Argentina)

    2014-07-01

    {sup 7}Be is a short-lived environmental radionuclide, produced in the upper atmosphere by spallation of nitrogen and oxygen by cosmic rays. After of the production by the nuclear reaction, {sup 7}Be diffuses through the atmosphere until it attaches to atmospheric aerosols. Subsequently, it is deposited on the earth surface mainly as wet fallout. The main physical processes which transport {sup 7}Be in soil are diffusion and advection by water. Migration parameters and measurements confirm that sorption is the main physical process, which confines {sup 7}Be concentration to soil surface. The literature data show that in soils, {sup 7}Be is concentrated near the surface (0-2 cm) as it is adsorbed onto clay minerals after its deposition on the soil surface and does not penetrate deeper into soils due to its short half-life. The maximum mass activity density of {sup 7}Be is found at the point of input of the radionuclide, i.e. at the surface of the soil column, showing a exponential distribution profile typical of a purely diffusive transport. Many studies applying the advection dispersion models have been reported in the literature in order to modelling the transport of {sup 137}Cs in soils. On them, the models are used to achieve information of the mechanisms that govern the transport, i. e. the model is used to explain the soil profile of radionuclide. The effective dispersion coefficient and the apparent advection velocity of radionuclide in soil are also obtained by fitting the analytical solution of the model equation to measured depth distributions of the radionuclide. In this work, the advective dispersive transport model with linear sorption is used to analyze the vertical migration process of {sup 7}Be in soils of undisturbed or reference sites. The deposition history is approximated by pulse-like input functions and time dependent analytical solution of equation model is obtained. The values of dispersion coefficient and apparent advection velocity obtained

  12. Status of the dedicated short-range communications technology and applications : report to Congress.

    Science.gov (United States)

    2015-07-01

    This report responds to a Congressional request for an assessment of the 5.9 Gigahertz (GHz) Dedicated Short Range : Communications (DSRC) in accordance with the requirements provided by Congress in the Moving Ahead for Progress in the : 21st Century...

  13. Testing the atmospheric dispersion model of CSA N288.1 with site-specific data

    CERN Document Server

    Chouhan, S L

    2001-01-01

    The atmospheric dispersion component of CSA Standard N288. 1, which provides guidelines for calculating derived release limits, has been tested. Long-term average concentrations of tritium in air were predicted using site-specific release rates and meteorological data and compared with measured concentrations at 43 monitoring sites at all CANDU stations in Canada. The predictions correlate well with the observations but were found to be conservative, overestimating by about 50% on average. The model overpredicted 84% of the time, with the highest prediction lying a factor of 5.5 above the corresponding observation. The model underpredicted the remaining 16% of the time, with the lowest prediction about one-half of the corresponding measurement. Possible explanations for this bias are discussed but no single reason appears capable of accounting for the discrepancy. Rather, the tendency to overprediction seems to result from the cumulative effects of a number of small conservatisms in the model. The model predi...

  14. Validation Study for an Atmospheric Dispersion Model, Using Effective Source Heights Determined from Wind Tunnel Experiments in Nuclear Safety Analysis

    Directory of Open Access Journals (Sweden)

    Masamichi Oura

    2018-03-01

    Full Text Available For more than fifty years, atmospheric dispersion predictions based on the joint use of a Gaussian plume model and wind tunnel experiments have been applied in both Japan and the U.K. for the evaluation of public radiation exposure in nuclear safety analysis. The effective source height used in the Gaussian model is determined from ground-level concentration data obtained by a wind tunnel experiment using a scaled terrain and site model. In the present paper, the concentrations calculated by this method are compared with data observed over complex terrain in the field, under a number of meteorological conditions. Good agreement was confirmed in near-neutral and unstable stabilities. However, it was found to be necessary to reduce the effective source height by 50% in order to achieve a conservative estimation of the field observations in a stable atmosphere.

  15. Short range order of Mg-Cd-alloys during the transition from the solid to the molten state

    International Nuclear Information System (INIS)

    Boos, A.; Steeb, S.

    1977-01-01

    Recently a method was published for the determination of short range order parameters in binary melts and also a method for the determination of the concentration of different structures which form such a melt. These methods are used in the present work to evaluate the atomic structure of Mg-Cd-melts and to reval the changes in short range order during the melting process. (orig.) [de

  16. Long-term atmospheric corrosion of mild steel

    International Nuclear Information System (INIS)

    Fuente, D. de la; Diaz, I.; Simancas, J.; Chico, B.; Morcillo, M.

    2011-01-01

    Research highlights: → Atmospheric corrosion rate stabilises after the first 4-6 years of exposure. → Great compaction of the rust layers in rural and urban atmospheres. → Corrosion (in rural and urban) deviates from common behaviour of bilogarithmic law. → Typical structures of lepidocrocite, goethite and akaganeite are identified. → Formation of hematite (industrial atmosphere) and ferrihydrite (marine atmosphere). - Abstract: A great deal of information is available on the atmospheric corrosion of mild steel in the short, mid and even long term, but studies of the structure and morphology of corrosion layers are less abundant and generally deal with those formed in just a few years. The present study assesses the structure and morphology of corrosion product layers formed on mild steel after 13 years of exposure in five Spanish atmospheres of different types: rural, urban, industrial and marine (mild and severe). The corrosion layers have been characterised by X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). Long-term corrosion is seen to be more severe in the industrial and marine atmospheres, and less so in the rural and urban atmospheres. In all cases the corrosion rate is seen to decrease with exposure time, stabilising after the first 4-6 years of exposure. The most relevant aspects to be noted are (a) the great compaction of the rust layers formed in the rural and urban atmospheres, (b) the formation of hematite and ferrihydrite phases (not commonly found) in the industrial and marine atmospheres, respectively and (c) identification of the typical morphological structures of lepidocrocite (sandy crystals and flowery plates), goethite (cotton balls structures) and akaganeite (cotton balls structures and cigar-shaped crystals).

  17. Influence of short range ordering and clustering on transport properties

    International Nuclear Information System (INIS)

    Vigier, G.; Pelletier, J.M.

    1982-01-01

    The influence of short range ordering and clustering phenomena on the electrical resistivity p and the thermopower S is investigated both theoretically and experimentally. According to the considered alloys either increases or decreases of transport properties may be observed when deviations from a random distribution of solute atoms occur. These observations are explained with a model based on free electrons and Born approximations the importance of the potential choice is underlined; two kinds of description of the structure factor are investigated. A good semiquantitative agreement is obtained between computed results and experimental observations

  18. OTDM Networking for Short Range High-Capacity Highly Dynamic Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros

    This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... is on short range highly dynamic networks, catering to data center needs. The investigation concerns optical network scenarios, and experimental implementations of high bit rate serial data packet generation and reception, scalable optical packet labeling, simple optical label extraction and stable ultra...

  19. Short-range solar radiation forecasts over Sweden

    Directory of Open Access Journals (Sweden)

    T. Landelius

    2018-04-01

    Full Text Available In this article the performance for short-range solar radiation forecasts by the global deterministic and ensemble models from the European Centre for Medium-Range Weather Forecasts (ECMWF is compared with an ensemble of the regional mesoscale model HARMONIE-AROME used by the national meteorological services in Sweden, Norway and Finland. Note however that only the control members and the ensemble means are included in the comparison. The models resolution differs considerably with 18 km for the ECMWF ensemble, 9 km for the ECMWF deterministic model, and 2.5 km for the HARMONIE-AROME ensemble.The models share the same radiation code. It turns out that they all underestimate systematically the Direct Normal Irradiance (DNI for clear-sky conditions. Except for this shortcoming, the HARMONIE-AROME ensemble model shows the best agreement with the distribution of observed Global Horizontal Irradiance (GHI and DNI values. During mid-day the HARMONIE-AROME ensemble mean performs best. The control member of the HARMONIE-AROME ensemble also scores better than the global deterministic ECMWF model. This is an interesting result since mesoscale models have so far not shown good results when compared to the ECMWF models.Three days with clear, mixed and cloudy skies are used to illustrate the possible added value of a probabilistic forecast. It is shown that in these cases the mesoscale ensemble could provide decision support to a grid operator in terms of forecasts of both the amount of solar power and its probabilities.

  20. Organochlorine pesticides in the atmosphere of Guangzhou and Hong Kong: Regional sources and long-range atmospheric transport

    Science.gov (United States)

    Li, Jun; Zhang, Gan; Guo, Lingli; Xu, Weihai; Li, Xiangdong; Lee, Celine S. L.; Ding, Aijun; Wang, Tao

    Organochlorine pesticides (OCPs) were measured in the atmosphere over the period of December 2003-December 2004 at four sampling sites in Guangzhou and Hong Kong. Gas phase and particle phase concentrations of 8 OCP species, including trans-chlordane ( t-CHL), cis-chlordane ( c-CHL), p, p'-DDT, p, p'-DDE, o, p'-DDT, α-endosulfan, α- and γ-hexachlorocyclohexane (HCH), were studied. OCPs were found predominantly in the gas phase in all seasons. t-CHL, c-CHL, o, p'-DDT, p, p'-DDT and α-endosulfan had significantly ( pGuangzhou could be attributed to the present usage of lindane and dicofol in the Pearl River Delta (PRD) region. The very high concentrations of p, p'-DDT and α-endosulfan were observed at all sampling sites. The results of 7 days air back trajectory analysis indicated that the unusual high p, p'-DDT levels in summer in both cities could be related to the seasonal usage of DDT containing antifouling paints for fishing ships in the upwind seaports of the region. The high concentrations of α-endosulfan in winter in the study area suggested an atmospheric transport by the winter monsoon from the East China, where endosulfan is being used as insecticide in cotton fields. The consistency of the seasonal variation of concentrations and isomeric ratios of DDTs and α-endosulfan with the alternation of winter monsoon and summer monsoon suggested that the Asian monsoon plays an important role in the long-range atmospheric transport of OCPs.

  1. Assessment of the dispersion of fission products in the atmosphere following a reactor accident under meteorological conditions of low wind speed

    International Nuclear Information System (INIS)

    Crabol, B.

    1984-11-01

    The aim of the study is the assessment of the dispersion in a low speed situation and the validation of the computer code ICAIR3 by means of SF6 tracing experiments carried out on the CADARACHE site under different stability conditions. The results show clearly some characteristic features of the dispersion. In particular, high concentrations are found in the experimental field several hours after the end of the release. Large differences of the plume width are observed depending on the atmospheric stability. The flow seems well organized under stable conditions, probably in relation with a topographic effect (CADARACHE is situated in a valley), while there is a much larger spread out of the plume in neutral or unstable conditions. A reasonable agreement with the values predicted by the calculation code is found for the maximum concentration

  2. Interplay of long-range and short-range Coulomb interactions in an Anderson-Mott insulator

    Science.gov (United States)

    Baćani, Mirko; Novak, Mario; Orbanić, Filip; Prša, Krunoslav; Kokanović, Ivan; Babić, Dinko

    2017-07-01

    In this paper, we tackle the complexity of coexisting disorder and Coulomb electron-electron interactions (CEEIs) in solids by addressing a strongly disordered system with intricate CEEIs and a screening that changes both with charge carrier doping level Q and temperature T . We report on an experimental comparative study of the T dependencies of the electrical conductivity σ and magnetic susceptibility χ of polyaniline pellets doped with dodecylbenzenesulfonic acid over a wide range. This material is special within the class of doped polyaniline by exhibiting in the electronic transport a crossover between a low-T variable range hopping (VRH) and a high-T nearest-neighbor hopping (NNH) well below room temperature. Moreover, there is evidence of a soft Coulomb gap ΔC in the disorder band, which implies the existence of a long-range CEEI. Simultaneously, there is an onsite CEEI manifested as a Hubbard gap U and originating in the electronic structure of doped polyaniline, which consists of localized electron states with dynamically varying occupancy. Therefore, our samples represent an Anderson-Mott insulator in which long-range and short-range CEEIs coexist. The main result of the study is the presence of a crossover between low- and high-T regimes not only in σ (T ) but also in χ (T ) , the crossover temperature T* being essentially the same for both observables over the entire doping range. The relatively large electron localization length along the polymer chains results in U being small, between 12 and 20 meV for the high and low Q , respectively. Therefore, the thermal energy at T* is sufficiently large to lead to an effective closing of the Hubbard gap and the consequent appearance of NNH in the electronic transport within the disorder band. ΔC is considerably larger than U , decreasing from 190 to 30 meV as Q increases, and plays the role of an activation energy in the NNH.

  3. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Workman, Jared, E-mail: kevin.heng@csh.unibe.ch, E-mail: jworkman@coloradomesa.edu [Colorado Mesa University, 1260 Kennedy Avenue, Grand Junction, CO 81501 (United States)

    2014-08-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.

  4. Sensitivity of numerical dispersion modeling to explosive source parameters

    International Nuclear Information System (INIS)

    Baskett, R.L.; Cederwall, R.T.

    1991-01-01

    The calculation of downwind concentrations from non-traditional sources, such as explosions, provides unique challenges to dispersion models. The US Department of Energy has assigned the Atmospheric Release Advisory Capability (ARAC) at the Lawrence Livermore National Laboratory (LLNL) the task of estimating the impact of accidental radiological releases to the atmosphere anywhere in the world. Our experience includes responses to over 25 incidents in the past 16 years, and about 150 exercises a year. Examples of responses to explosive accidents include the 1980 Titan 2 missile fuel explosion near Damascus, Arkansas and the hydrogen gas explosion in the 1986 Chernobyl nuclear power plant accident. Based on judgment and experience, we frequently estimate the source geometry and the amount of toxic material aerosolized as well as its particle size distribution. To expedite our real-time response, we developed some automated algorithms and default assumptions about several potential sources. It is useful to know how well these algorithms perform against real-world measurements and how sensitive our dispersion model is to the potential range of input values. In this paper we present the algorithms we use to simulate explosive events, compare these methods with limited field data measurements, and analyze their sensitivity to input parameters. 14 refs., 7 figs., 2 tabs

  5. Large-eddy simulation and Lagrangian stochastic modelling of solid particle and droplet dispersion and mixing. Application to atmospheric pollution; Dispersion et melange turbulents de particules solides et de gouttelettes par une simulation des grandes echelles et une modelisation stochastique lagrangienne. Application a la pollution de l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vinkovic, I.

    2005-07-15

    In order to study atmospheric pollution and the dispersion of industrial stack emissions, a large eddy simulation with the dynamic Smagorinsky-Germano sub-grid-scale model is coupled with Lagrangian tracking of fluid particles containing scalar, solid particles and droplets. The movement of fluid particles at a sub-grid level is given by a three-dimensional Langevin model. The stochastic model is written in terms of sub-grid-scale statistics at a mesh level. By introducing a diffusion model, the coupling between the large-eddy simulation and the modified three-dimensional Langevin model is applied to passive scalar dispersion. The results are validated by comparison with the wind-tunnel experiments of Fackrell and Robins (1982). The equation of motion of a small rigid sphere in a turbulent flow is introduced. Solid particles and droplets are tracked in a Lagrangian way. The velocity of solid particles and droplets is considered to have a large scale component (directly computed by the large-eddy simulation) and a sub-grid scale part. Because of inertia and gravity effects, solid particles and droplets, deviate from the trajectories of the surrounding fluid particles. Therefore, a modified Lagrangian correlation timescale is introduced into the Langevin model previously developed for the sub-grid velocity of fluid particles. Two-way coupling and collisions are taken into account. The results of the large-eddy simulation with solid particles are compared with the wind-tunnel experiments of Nalpanis et al. (1993) and of Taniere et al. (1997) on sand particles in saltation and in modified saltation, respectively. A model for droplet coalescence and breakup is implemented which allows to predict droplet interactions under turbulent flow conditions in the frame of the Euler/Lagrange approach. Coalescence and breakup are considered as a stochastic process with simple scaling symmetry assumption for the droplet radius, initially proposed by Kolmogorov (1941). At high

  6. Experimental and numerical study of atmospheric turbulence and dispersion in stable conditions and in near field at a complex site

    International Nuclear Information System (INIS)

    Wei, Xiao

    2016-01-01

    - ε closure adapted for atmospheric flows and a canopy model for the forest. These simulations are shown to reproduce correctly the characteristics of the mean flow on the measurements site, especially the impact of the forest for different wind directions, in both neutral and stable conditions. Simulation results also show the directional wind shear and the turbulent kinetic energy increase induced by the forest. A sensitivity study has been made for various values of forest density and shows that the typical features of canopy flow become more pronounced as canopy density increases. Pollutant dispersion study is made for several IOPs. Concentration data analysis shows a consistency with previous measurements made in a near-source region where the plume scale is smaller than the large-scale turbulence eddies. Concentration fluctuations are characterized through concentration time series, histogram and statistical analysis. The inertial sub-range can be observed in the concentration spectra. Next, pollutant dispersion is modelled by transport equations for concentration and its variance. The mean concentrations show a good agreement with measurements in values for all the IOPs studied, except that the position of the concentration peak depends on the accuracy of simulated wind rotation below the forest height. The concentration fluctuations obtained from simulations seem to be affected significantly by the condition at the source and the modelling of the dissipation term. A sensitivity study to the parameterization is then presented. (author) [fr

  7. Experimental and numerical study of atmospheric turbulence and dispersion in stable conditions and in near field at a complex site

    International Nuclear Information System (INIS)

    Wei, Xiao

    2016-01-01

    -ε closure adapted for atmospheric flows and a canopy model for the forest. These simulations are shown to reproduce correctly the characteristics of the mean flow on the measurements site, especially the impact of the forest for different wind directions, in both neutral and stable stratification. Simulations results also show the directional wind shear and the turbulent kinetic energy increase induced by the forest. A sensitivity study has been made for various values of forest density and shows that the typical features of canopy flow become more pronounced as canopy density increases. Pollutants dispersion study are made for several IOPs. Concentration data analysis shows a consistency with previous measurements made in a near-source region where the plume scale is smaller than the large-scale turbulence eddies. Concentration fluctuations are characterized through concentration time series, histogram and statistical analysis. The internal sub-range can be observed in the concentration spectra. Next, pollutants dispersion are modelled by transport equations for concentration and its variance. The mean concentrations show a good agreement with measurements in values for all the IOPs studied, except that the position of the concentration peak depends on the accuracy of simulated wind rotation below the forest height. The concentration fluctuations obtained from simulations seem to be affected significantly by the initial condition and the modelling of the dissipation term. A sensitivity study to the parameterization is then presented. (author)

  8. Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jie [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, Mikkeli FI 50130 (Finland); Kang, Shichang, E-mail: shichang.kang@lzb.ac.cn [State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Tian, Lide [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Junming [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Qianggong; Cong, Zhiyuan [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, Mikkeli FI 50130 (Finland); and others

    2016-10-01

    Monsoon circulation is an important process that affects long-range transboundary transport of anthropogenic contaminants such as mercury (Hg). During the Indian monsoon season of 2013, a total of 92 and 26 atmospheric water vapor samples were collected at Lhasa, the largest city of the Tibet, for Hg and major ions analysis, respectively. The relatively low pH/high electronic conductivity values, together with the fact that NH{sub 4}{sup +} in atmospheric water vapor was even higher than that determined in precipitation of Lhasa, indicated the effects of anthropogenic perturbations through long-range transboundary atmospheric transport. Concentrations of Hg in atmospheric water vapor ranged from 2.5 to 73.7 ng L{sup −1}, with an average of 12.5 ng L{sup −1}. The elevated Hg and major ions concentrations, and electronic conductivity values were generally associated with weak acidic samples, and Hg mainly loaded with anthropogenic ions such as NH{sub 4}{sup +}. The results of principal component analysis and trajectory analysis suggested that anthropogenic emissions from the Indian subcontinent may have largely contributed to the determined Hg in atmospheric water vapor. Furthermore, our study reconfirmed that below-cloud scavenging contribution was significant for precipitation Hg in Lhasa, and evaluated that on average 74.1% of the Hg in precipitation could be accounted for by below-cloud scavenging. - Highlights: • The low pH/high electronic conductivity was found in atmospheric water vapor. • Anthropogenic NH{sub 4}{sup +} was higher than that determined in precipitation of Lhasa. • Elevated Hg and major ions levels were usually associated with weak acidic samples. • Hg in atmospheric water vapor was largely influenced by transboundary transport. • Below-cloud scavenging accounted for most Hg in precipitation.

  9. Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet

    International Nuclear Information System (INIS)

    Huang, Jie; Kang, Shichang; Tian, Lide; Guo, Junming; Zhang, Qianggong; Cong, Zhiyuan; Sillanpää, Mika

    2016-01-01

    Monsoon circulation is an important process that affects long-range transboundary transport of anthropogenic contaminants such as mercury (Hg). During the Indian monsoon season of 2013, a total of 92 and 26 atmospheric water vapor samples were collected at Lhasa, the largest city of the Tibet, for Hg and major ions analysis, respectively. The relatively low pH/high electronic conductivity values, together with the fact that NH_4"+ in atmospheric water vapor was even higher than that determined in precipitation of Lhasa, indicated the effects of anthropogenic perturbations through long-range transboundary atmospheric transport. Concentrations of Hg in atmospheric water vapor ranged from 2.5 to 73.7 ng L"−"1, with an average of 12.5 ng L"−"1. The elevated Hg and major ions concentrations, and electronic conductivity values were generally associated with weak acidic samples, and Hg mainly loaded with anthropogenic ions such as NH_4"+. The results of principal component analysis and trajectory analysis suggested that anthropogenic emissions from the Indian subcontinent may have largely contributed to the determined Hg in atmospheric water vapor. Furthermore, our study reconfirmed that below-cloud scavenging contribution was significant for precipitation Hg in Lhasa, and evaluated that on average 74.1% of the Hg in precipitation could be accounted for by below-cloud scavenging. - Highlights: • The low pH/high electronic conductivity was found in atmospheric water vapor. • Anthropogenic NH_4"+ was higher than that determined in precipitation of Lhasa. • Elevated Hg and major ions levels were usually associated with weak acidic samples. • Hg in atmospheric water vapor was largely influenced by transboundary transport. • Below-cloud scavenging accounted for most Hg in precipitation.

  10. Long-range dispersion interactions. II. Alkali-metal and rare-gas atoms

    International Nuclear Information System (INIS)

    Mitroy, J.; Zhang, J.-Y.

    2007-01-01

    The dispersion coefficients for the van der Waals interactions between the rare gases Ne, Ar, Kr, and Xe and the low-lying states of Li, Na, K, and Rb are estimated using a combination of ab initio and semiempirical methods. The rare-gas oscillator strength distributions for the quadrupole and octupole transitions were derived by using high-quality calculations of rare-gas polarizabilities and dispersion coefficients to tune Hartree-Fock single-particle energies and expectation values

  11. Opo lidar sounding of trace atmospheric gases in the 3 – 4 μm spectral range

    Directory of Open Access Journals (Sweden)

    Romanovskii Oleg A.

    2018-01-01

    Full Text Available The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO generation to lidar sounding of the atmosphere in the spectral range 3–4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG is based on differential absorption lidar (DIAL method and differential optical absorption spectroscopy (DOAS. The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using a PD38-03-PR photodiode for the DIAL gas analysis of the atmosphere is shown.

  12. Studies of the long-range transport of atmospheric pollutant using nuclear-related analytical techniques. Appendix 7

    International Nuclear Information System (INIS)

    Yang Shaojin

    1995-01-01

    Atmospheric aerosol and rainwater samples collected in the different Western Pacific areas were analyzed by instrumental neutron activation and proton induced x-ray emission to (1) determine the atmospheric concentrations of trace elements over the Western Pacific and (2) to estimate the atmospheric deposition of trace elements and dust-soil material to this region. High abundance of pollutant and crustal elements relative to oceanic sources was observed. Some characteristics of marine atmosphere relating to long-range transport of crustal and anthropogenic elements from continent to the remote ocean are discussed. The total dust-soil particle mass is estimated to be 0.066-1.2 μg/m 3 over the Western Pacific Ocean areas. Atmospheric inputs of dust-soil particles control the marine particle concentrations of crustal elements. A total of 99 atmospheric samples with the 'Gent' filter unit were collected during October 1993 and September 1994 at a western suburb of Beijing, China (40 deg. N,116 deg. E), and completed the analysis of these filters by both INAA and PIXE. (author)

  13. Dust Plume Modeling from Ranges and Maneuver Areas on Fort Bliss and the White Sands Missile Range: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Elaine G.; Barnard, James C.; Rutz, Frederick C.; Pekour, Mikhail S.; Rishel, Jeremy P.; Shaw, William J.

    2009-05-04

    The potential for air quality impacts from heavy mechanized vehicles operating on and between the unpaved main supply routes at Fort Bliss and White Sands Missile Range was investigated. This report details efforts by the staff of Pacific Northwest National Laboratory for the Fort Bliss Directorate of Environment in this investigation. Dust emission and dispersion from typical move-out activities occurring on the installations were simulated using the atmospheric modeling system DUSTRAN. Major assumptions associated with designing the modeling scenarios are summarized and results of simulations conducted under these assumptions are presented for four representative meteorological periods.

  14. Source-receptor probability of atmospheric long-distance dispersal of viruses to Israel from the eastern Mediterranean area.

    Science.gov (United States)

    Klausner, Z; Klement, E; Fattal, E

    2018-02-01

    Viruses that affect the health of humans and farm animals can spread over long distances via atmospheric mechanisms. The phenomenon of atmospheric long-distance dispersal (LDD) is associated with severe consequences because it may introduce pathogens into new areas. The introduction of new pathogens to Israel was attributed to LDD events numerous times. This provided the motivation for this study which is aimed to identify all the locations in the eastern Mediterranean that may serve as sources for pathogen incursion into Israel via LDD. This aim was achieved by calculating source-receptor relationship probability maps. These maps describe the probability that an infected vector or viral aerosol, once airborne, will have an atmospheric route that can transport it to a distant location. The resultant probability maps demonstrate a seasonal tendency in the probability of specific areas to serve as sources for pathogen LDD into Israel. Specifically, Cyprus' season is the summer; southern Turkey and the Greek islands of Crete, Karpathos and Rhodes are associated with spring and summer; lower Egypt and Jordan may serve as sources all year round, except the summer months. The method used in this study can easily be implemented to any other geographic region. The importance of this study is the ability to provide a climatologically valid and accurate risk assessment tool to support long-term decisions regarding preparatory actions for future outbreaks long before a specific outbreak occurs. © 2017 Blackwell Verlag GmbH.

  15. Wind field and dispersion modelling in complex terrain

    International Nuclear Information System (INIS)

    Bartzis, J.G.; Varvayanni, M.; Catsaros, N.; Konte, K.; Amanatidis, G.

    1991-01-01

    Dispersion of airborne radioactive material can have an important environmental impact. Its prediction remains a difficult problem, especially over complex and inhomogeneous terrain, or under complicated atmospheric conditions. The ADREA-I code, a three-dimensional transport code especially designed for terrains of high complexity can be considered as contribution to the solution of the above problem. The code development has been initiated within the present CEC Radiation Program. New features are introduced into the code to describe the anomalous topography, the turbulent diffusion and numerical solution procedures. In this work besides a brief presentation of the main features of the code, a number of applications will be presented with the aim on one hand to illustrate the capability and reliability of the code and on the other hand to clarify the effects on windfield and dispersion in special cases of interest. Within the framework of ADREA-I verification studies, a I-D simulation of the experimental Wangara Day-33 mean boundary layer was attempted, reproducing the daytime wind speeds, temperatures, specific humidities and mixing depths. In order to address the effect of surface irregularities and inhomogeneities on contamination patterns, the flow field and dispersion were analyzed over a 2-D, 1000m high mountain range, surrounded by sea, with a point source assumed 40km offshore from one coastline. This terrain was studied as representing a greater Athens area idealization. The effects of a 2-D, 1000m high mountain range of Gaussian shape on long range transport has also been studied in terms of influence area, wind and concentration profile distortions and dry deposition patterns

  16. Vagrant western red-shouldered hawks: origins, natal dispersal patterns, and survival

    Science.gov (United States)

    Bloom, Peter H.; Scott, J. Michael; Papp, Joseph M.; Thomas, Scott E.; Kidd, Jeff W.

    2011-01-01

    We report the results of a 40-year study of the western Red-shouldered Hawk (Buteo lineatus elegans) involving the banding of 2742 nestlings in southern California from 1970 to 2009 (this study) plus 127 nestlings banded in other California studies (1956–2008) and the analyses of 119 records of subsequent recovery from the Bird Banding Laboratory (1957–2009). Of the Red-shouldered Hawks recovered, 109 (91.6%) moved 100 km (long-distance dispersers). Three (2.5%), all long-distance dispersers, were vagrants (recovered outside the species' range of residency), and were found 374 to 843 km northeast and south of their banding locations in the Mojave, Great Basin, and Vizcaino deserts. The distribution of directions of short-distance dispersal was bipolar, closely corresponding with the northwest—southeast orientation of the species' range in southern California, while that of long-distance dispersers was mainly to the north. One of 10 long-distance dispersers, a nonvagrant, survived well into the age of breeding (103.0 months), whereas eight of the other nine perished before 14.5 months. The implications of vagrancy for conservation of this resident subspecies are that a relatively small source area can contribute genetic material over a vastly larger receiving area but rarely does so because of high mortality rates. Nonetheless, the movements of vagrants we documented provide evidence for the species' potential to populate new landscapes in response to changing environmental conditions and to maintain genetic heterogeneity within existing populations.

  17. Highly excited bound-state resonances of short-range inverse power-law potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)

    2017-11-15

    We study analytically the radial Schroedinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r) = -β{sub n}r{sup -n} with n > 2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E{sub l}{sup max} = E{sub l}{sup max}(n, β{sub n}, R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system. (orig.)

  18. EXAFS study of short range order in Fe-Zr amorphous alloys

    International Nuclear Information System (INIS)

    Fernandez-Gubieda, M.L.; Gorria, P.; Barandiaran, J.M.; Barquin, L.F.

    1995-01-01

    Room temperature X-ray absorption spectra on Fe K-edge have been performed in Fe 100-x-y Zr x B y and Fe 86 Zr 7 Cu 1 B 6 alloys (x=7, 7.7, 9; y=0, 2, 4, 6). Fe-Fe coordination number and interatomic distances do not change in any sample. However, small changes in the Fe-Zr short range order, which could explain the evolution of the magnetic properties, have been observed. (orig.)

  19. Long-range versus short-range correlations in the two-neutron transfer reaction 64Ni(18O,16O)66Ni

    Science.gov (United States)

    Paes, B.; Santagati, G.; Vsevolodovna, R. Magana; Cappuzzello, F.; Carbone, D.; Cardozo, E. N.; Cavallaro, M.; García-Tecocoatzi, H.; Gargano, A.; Ferreira, J. L.; Lenzi, S. M.; Linares, R.; Santopinto, E.; Vitturi, A.; Lubian, J.

    2017-10-01

    Recently, various two-neutron transfer studies using the (18O,16O) reaction were performed with a large success. This was achieved because of a combined use of the microscopic quantum description of the reaction mechanism and of the nuclear structure. In the present work we use this methodology to study the two-neutron transfer reaction of the 18O+64Ni system at 84 MeV incident energy, to the ground and first 2+ excited state of the residual 66Ni nucleus. All the experimental data were measured by the large acceptance MAGNEX spectrometer at the Instituto Nazionale di Fisica Nucleare -Laboratori Nazionali del Sud (Italy). We have performed exact finite range cross section calculations using the coupled channel Born approximation (CCBA) and coupled reaction channel (CRC) method for the sequential and direct two-neutron transfers, respectively. Moreover, this is the first time that the formalism of the microscopic interaction boson model (IBM-2) was applied to a two-neutron transfer reaction. From our results we conclude that for two-neutron transfer to the ground state of 66Ni, the direct transfer is the dominant reaction mechanism, whereas for the transfer to the first excited state of 66Ni, the sequential process dominates. A competition between long-range and short-range correlations is discussed, in particular, how the use of two different models (Shell model and IBM's) help to disentangle long- and short-range correlations.

  20. A high resolution complex terrain dispersion study in the Rocky Flats, Colorado vicinity

    International Nuclear Information System (INIS)

    Poulos, G.S.; Bossert, J.E.

    1992-01-01

    In January/February, 1991 an intensive set of measurements was taken around Rocky Flats near Denver, CO under the auspices of the Department of Energy Atmospheric Studies over Complex Terrain (ASCOT) program. This region of the country is known as the Front Range, and is characterized by a transition from the relatively flat terrain of the Great Plains to the highly varied terrain of the Rocky Mountains. One goal of the ASCOT 1991 program was to gain insight into multi-scale meteorological interaction by observing wintertime drainage conditions at the mountain-valley-plains interface. ASCOT data included surface and upper air measurements on approximately a 50km 2 scale. Simultaneously, an SF 6 tracer release study was being conducted around Rocky Flats, a nuclear materials production facility. Detailed surface concentration measurements were completed for the SF 6 plume. This combination of meteorological and tracer concentration data provided a unique data set for comparisons of mesoscale and dispersion modeling results with observations and for evaluating our capability to predict pollutant transport. Our approach is to use the Regional Atmospheric Modeling System (RAMS) mesoscale model to simulate atmospheric conditions and the Lagrangian Particle Dispersion Model (LPDM), a component of the RAMS system, to model the dispersion of the SF 6 . We have chosen the 4--5 February, 1991 overnight period as our case study. This night was characterized by strong drainage flows from the Rocky Mountains to the west of Rocky Flats, southerly winds in a layer about lkm thick above the drainage flows, and northwesterly winds above that layer extending to the tropopause