WorldWideScience

Sample records for short wavelength fel

  1. Short wavelength FELS

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs

  2. Short wavelength FELS

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  3. Towards short wavelengths FELs workshop

    Ben-Zvi, I.; Winick, H.

    1993-01-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FELs offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FELs will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program

  4. Towards short wavelengths FELs workshop

    Ben-Zvi, I.; Winick, H.

    1993-11-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FEL's offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FEL's will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program.

  5. Short wavelength FELs using the SLAC linac

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops

  6. Introduction: a short-wavelength-FEL/storage-ring complex

    Sessler, A.M.

    1984-01-01

    We believe that, in view of the present state of FEL understanding, it is now proper to construct a research facility devoted to the use of coherent radiation and the advancement of FEL physics technology at wavelengths shorter than 1000 A. We show a possible layout of such a facility, which will be referred to as a Coherent xuv Facility (CXF), where research can be conducted on several techniques for generating coherent radiation. Undulators are already well understood and will generate broadly tunable, spatially coherent radiation of bandwidth lambda /Δlambda approx. = 10 2 . A crossed undulator system will extend the undulator capability to include variable polarization. For full coherence, in spatial as well as in longitudinal directions, it is necessary to induce and exploit density modulation in electron beams, as is the case in the transverse optical klystrons (TOKs) and FELs. In TOKs, coherent radiation is generated at harmonics of an input laser frequency, with the electron beam playing the role of a nonlinear medium. Ultimately, FELS would deliver intense, tunable x rays and vuv radiation of extremely narrow spectral width. There are two possible routes to an FEL, one based on feedback by end mirrors, the other based on development of a high-gain, single-pass device. It can be seen, from this paper, that the photon flux increases monotonically, or the wavelength decreases monotonically, as one goes through (1) undulator radiation, (2) TOK radiation, (3) FEL oscillator radiation, to (4) FEL single-pass radiation. Each of these will demand considerable quality development effort. Each will result in photon fluxes of increased value to the users

  7. Beam dynamics simulations for linacs driving short-wavelength FELs

    Ferrario, M.; Tazzioli, F.

    1999-01-01

    The fast code HOMDYN has been recently developed, in the framework of the TTF (Tesla test facility) collaboration, in order to study the beam dynamics of linacs delivering high brightness beams as those needed for short wavelength Fel experiments. These linacs are typically driven by radio-frequency photo-injectors, where correlated time dependent space charge effects are of great relevance: these effects cannot be studied by standard beam optics codes (TRACE3D, etc.) and they have been modeled so far by means of multi-particle (Pic or quasistatic) codes requiring heavy cpu time and memory allocations. HOMDYN is able to describe the beam generation at the photo-cathode and the emittance compensation process in the injector even running on a laptop with very modest running rimes (less than a minute). In this paper it is showed how this capability of the code is exploited so to model a whole linac up to the point where the space charge dominated regime is of relevance (200 MeV)

  8. Electron beam acceleration and compression for short wavelength FELs

    Raubenheimer, T.O.

    1994-11-01

    A single pass UV or X-ray FEL will require a low emittance electron beam with high peak current and relatively high beam energy, a few hundred MeV to many GeV. To achieve the necessary peak current and beam energy, the beams must be bunch compressed and they must be accelerated in long transport lines where dispersive and wakefield emittance dilutions are important. In this paper, we will describe the sources and significance of the dilutions during acceleration, bunch compression, and transport through the undulator. In addition, we will discuss sources of jitter, especially effects arising from the bunch compressions, and the possible cancellation techniques

  9. Design study of a longer wavelength FEL for FELIX

    Lin, L.; Oepts, D.; Meer, A.F.G. van der

    1995-01-01

    We present a design study of FEL3, which will extend the FELIX spectral range towards a few hundred microns. A rectangular waveguide will be used to reduce diffraction losses. Calculations show that with a waveguide gap of 1 cm, only one sinusoidal mode along the guided direction can exist within the FEL gain bandwidth, thus excluding group velocity dispersion and lengthening of short radiation pulses. To incorporate FEL3 in the existing FELIX facility, two options are being considered: to combine FEL3 with FEL1 by insertion of a waveguide into FEL1, and to build a dedicated third beam line for FEL3 after the two linacs. Expected FEL performance: gain, spectrum, power, pulse shape, etc., will be presented based on numerical simulations

  10. Wavelength dependent delay in the onset of FEL tissue ablation

    Tribble, J.A.; Edwards, G.S.; Lamb, J.A.

    1995-01-01

    We are investigating the wavelength dependence of the onset of laser tissue ablation in the IR Visible and UV ranges. Toward this end, we have made simultaneous measurements of the ejected material (using a HeNe probe beam tangential to the front surface) and the residual stress transient in the tissue (using traditional piezoelectric detection behind the thin samples). For the IR studies we have used the Vanderbilt FEL and for the UV and Vis range we have used a Q-switched ND:Yag with frequency doubling and quadrupling. To satisfy the conditions of the near field limit for the detection of the stress transient, the duration of the IR FEL macropulse must be as short as possible. We have obtained macropulses as short as 100 ns using Pockels Cell technology. The recording of the signals from both the photodiode monitoring the HeNe probe beam and the acoustic detector are synchronized with the arrival of the 100 ns macropulse. With subablative intensities, the resulting stress transient is bipolar with its positive peak separated from its negative peak by 100 ns in agreement with theory. Of particular interest is the comparison of ablative results using 3 μm and 6.45 μm pulses. Both the stress transient and the ejection of material suffer a greater delay (with respect to the arrival of the 100 ns pulse) when the FEL is tuned to 3 μm as compared to 6.45 μm. A comparison of IR Vis and UV data will be discussed in terms of microscopic mechanisms governing the laser ablation process

  11. Short wavelength sources and atoms and ions

    Kennedy, E.T.

    2008-01-01

    The interaction of ionizing radiation with atoms and ions is a key fundamental process. Experimental progress has depended in particular on the development of short wavelength light sources. Laser-plasma and synchrotron sources have been exploited for several decades and most recently the development of short wavelength Free Electron Laser (FEL) sources is revolutionizing the field. This paper introduces laser plasma and synchrotron sources through examples of their use in studies of the interaction of ionizing radiation with atoms and ions, ranging from few-electron atomic and ionic systems to the many-electron high atomic number actinides. The new FEL source (FLASH) at DESY is introduced. (author)

  12. Study on wavelength shortening and upgrading of the free electron laser (FEL)

    Yamazaki, Tetsuo; Yamada, Kawakatsu; Sei, Norihiro; Ohgaki, Hideaki; Sugiyama, Suguru; Mikado, Tomohisa

    1997-01-01

    This study is a task of ''Comprehensive study'' in ''nuclear energy basic technology research'', which is promoted under cooperation of four research institutes. The Electrotechnical Laboratory conducted, in 1991 in the first period of colaboration, on successful oscillation at visible region (598 nm) as the first case in Japan, construction of small type accumulation ring NIJI-IV for FEL, successful oscillation of visible range from 595 to 488 nm by installing optical krystron with maximum frequency in the world, and successful emittance lowering of accumulation beam by wide improvement of the ring. In the optical resonator, studies on minute loss measuring technique and on recovery from mirror deterioration were promoted. In the second period started from fiscal year of 1994, studies on FEL oscillation technique in short wavelength and upgrading of FEL corresponding to a frontier area were started, to succeed an oscillation experiment at 350 nm in ultraviolet area on April, 1994. Then, studies on generation of high luminescence x-ray owing to laser Compton scattering using FEL as a future plan, on design of a new accumulation ring and on the others as well as studies on further quality improvement of electron beam and on optical resonator have been promoted. (G.K.)

  13. Observation of superradiance in a short-pulse FEL oscillator

    Jaroszynski, D. A.; Chaix, P.; Piovella, N.; Oepts, D.; Knippels, G.M.H.; van der Meer, A. F. G.; Weits, H. H.

    1997-01-01

    Superradiance has been experimentally studied, in a short-pulse free-electron laser (FEL) oscillator. Superradiance is the optimal way of extracting optical radiation from an FEL and can be characterised by the following scale laws: peak optical power P, scales as the square of electron charge, Q,

  14. Certain features of FELs with short bunches

    Lebedev, A.N.

    2006-01-01

    The report is devoted to physics of free electron lasers operating in the short-wave domain where the bunch length could be less than the undulator length in the proper frame. Then the current component of the signal is locked within the bunch as in a cavity, while the electromagnetic component propagates freely. In contrast with gyrotrons where this regime can be of interest only for wavelengths comparable with the bunch length, we consider short waves in a bunch of arbitrary profile. Both amplification of an external harmonic signal and SASE regime, i.e. selective amplification of proper noises, are investigated

  15. Short-wavelength free-electron laser sources and science: a review

    Seddon, E. A.; Clarke, J. A.; Dunning, D. J.; Masciovecchio, C.; Milne, C. J.; Parmigiani, F.; Rugg, D.; Spence, J. C. H.; Thompson, N. R.; Ueda, K.; Vinko, S. M.; Wark, J. S.; Wurth, W.

    2017-11-01

    This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area. Dedicated to John M J Madey (1943-2016) and Rodolfo Bonifacio (1940-2016) whose perception, drive and perseverance paved the way for the realisation and development of short-wavelength free-electron lasers.

  16. GINGER simulations of short-pulse effects in the LEUTL FEL

    Huang, Z.; Fawley, W.M.

    2001-01-01

    While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon Source has recently lased and nominally saturated in both visible and near-ultraviolet wavelength regions with a sub-ps pulse length that is somewhat shorter than the total slippage length in the 22-m undulator system. In this paper we explore several characteristics of the short pulse regime for SASE FELs with the multidimensional, time-dependent simulation code GINGER, concentrating on making a direct comparison with the experimental results from LEUTL. Items of interest include the radiation gain length, pulse energy, saturation position, and spectral bandwidth. We address the importance of short-pulse effects when scaling the LEUTL results to proposed x-ray FELs and also briefly discuss the possible importance of coherent spontaneous emission at startup

  17. Wavelength and power stability measurements of the Stanford SCA/FEL

    van der Geer, B.; de Loos, M.J.; Conde, M.E.; Leemans, W.P.

    1994-08-01

    Wavelength and power stability of the Stanford infrared SCA/FEL operating with the TRW wiggler have been measured using a high-resolution spectrometer and an image dissector system. The image dissector is capable of reading the spectrum of every single micropulse at 12 MHz throughout a macropulse of up to 2 ms duration. The intrinsic wavelength and power stability of the SCA/FEL are found to be δλ/λ=0.035% and δP/P=18%. The use of a feedback control system to stabilize the wavelength, and an acousto-optic modulator for output power smoothing, improves the performance to δλ/λ=0.012% and δP/P=7%

  18. FEL-principles, techniques and its progress

    Zhao Xiaofeng; Yang Fujia

    1992-01-01

    The basic principles of free electron laser (FEL) and its operation modes are presented. The state of the art is described for accelerator technology and laser systems. Some comparisons are made between FEL and conventional laser with regard to power capability, short-wavelength operation, and tunability. The application prospects of FEL are discussed

  19. Bunching phase evolution of short-pulse FEL oscillator system

    Song, S B; Choi, D I

    2000-01-01

    We studied numerically the short-pulse FEL oscillator system using properly defined bunching phase theta sub B and PSI sub B. In stable operation, we have found that the optical field 'locks' the phase to pi/2 at the trailing edge, which gives the maximum gain. Moreover, electrons can be detrapped from ponderomotive bucket due to the spatial variation of the optical field, and this detrapping effect is a major cause of the limit cycle oscillation of the system. The 'bump' of the output power during the amplification usually exists at the near-perfect cavity synchronism regime, which can be explained as the change of the matching condition between electron micropulse and optical pulse.

  20. Review of short wavelength lasers

    Hagelstein, P.L.

    1985-01-01

    There has recently been a substantial amount of research devoted to the development of short wavelength amplifiers and lasers. A number of experimental results have been published wherein the observation of significant gain has been claimed on transitions in the EUV and soft x-ray regimes. The present review is intended to discuss the main approaches to the creation of population inversions and laser media in the short wavelength regime, and hopefully aid workers in the field by helping to provide access to a growing literature. The approaches to pumping EUV and soft x-ray lasers are discussed according to inversion mechanism. The approaches may be divided into roughly seven categories, including collisional excitation pumping, recombination pumping, direct photoionization and photoexcitation pumping, metastable state storage plus optical pumping, charge exchange pumping, and finally, the extension of free electron laser techniques into the EUV and soft x-ray regimes. 250 references

  1. Review of short wavelength lasers

    Hagelstein, P.L.

    1985-03-18

    There has recently been a substantial amount of research devoted to the development of short wavelength amplifiers and lasers. A number of experimental results have been published wherein the observation of significant gain has been claimed on transitions in the EUV and soft x-ray regimes. The present review is intended to discuss the main approaches to the creation of population inversions and laser media in the short wavelength regime, and hopefully aid workers in the field by helping to provide access to a growing literature. The approaches to pumping EUV and soft x-ray lasers are discussed according to inversion mechanism. The approaches may be divided into roughly seven categories, including collisional excitation pumping, recombination pumping, direct photoionization and photoexcitation pumping, metastable state storage plus optical pumping, charge exchange pumping, and finally, the extension of free electron laser techniques into the EUV and soft x-ray regimes. 250 references.

  2. Enhancement of Permeation in Transdermal Drug Delivery System by 6μm Wavelength Area Using an MIR-FEL

    Uchizono, T.; Ishii, K.; Iwao, Y.; Itou, Y.; Maruo, H.; Hori, M.; Awazu, K.

    2005-03-01

    Ablation of the stratum corneum (SC) by pulsed-laser irradiation is one method of enhancing transdermal drug delivery (TD). For non-invasive laser TD treatment, we have tried to enhance TD without ablation of the SC using an MIR-FEL (6-μm wavelength) (FEL : free electron laser). Lidocaine was used as the drug in this study. The enhancement of TD was measured by HPLC. It was found that the lidocaine TD of the sample irradiated by MIR-FEL was enhanced 10 fold faster than the non-irradiated sample with a flux at 0.5 μg/cm2/h, measured by HPLC. We have demonstrated the effectiveness of TD enhancement by an MIR-FEL (6-μm wavelength) irradiation.

  3. A high-average power tapered FEL amplifier at submillimeter frequencies using sheet electron beams and short-period wigglers

    Bidwell, S.W.; Radack, D.J.; Antonsen, T.M. Jr.; Booske, J.H.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Latham, P.E.; Zhang, Z.X.

    1990-01-01

    A high-average-power FEL amplifier operating at submillimeter frequencies is under development at the University of Maryland. Program goals are to produce a CW, ∼1 MW, FEL amplifier source at frequencies between 280 GHz and 560 GHz. To this end, a high-gain, high-efficiency, tapered FEL amplifier using a sheet electron beam and a short-period (superconducting) wiggler has been chosen. Development of this amplifier is progressing in three stages: (1) beam propagation through a long length (∼1 m) of short period (λ ω = 1 cm) wiggler, (2) demonstration of a proof-of-principle amplifier experiment at 98 GHz, and (3) designs of a superconducting tapered FEL amplifier meeting the ultimate design goal specifications. 17 refs., 1 fig., 1 tab

  4. Optical Detection in Ultrafast Short Wavelength Science

    Fullagar, Wilfred K.; Hall, Chris J.

    2010-01-01

    A new approach to coherent detection of ionising radiation is briefly motivated and recounted. The approach involves optical scattering of coherent light fields by colour centres in transparent solids. It has significant potential for diffractive imaging applications that require high detection dynamic range from pulsed high brilliance short wavelength sources. It also motivates new incarnations of Bragg's X-ray microscope for pump-probe studies of ultrafast molecular structure-dynamics.

  5. Short wavelength striations on expanding plasma clouds

    Winske, D.; Gary, S.P.

    1989-01-01

    The growth and evolution of short wavelength (< ion gyroradius) flute modes on a plasma expanding across an ambient magnetic field have been actively studied in recent years, both by means of experiments in the laboratory as well as in space and through numerical simulations. We review the relevant observations and simulations results, discuss the instability mechanism and related linear theory, and describe recent work to bring experiments and theory into better agreement. 30 refs., 6 figs

  6. A superconducting short period undulator for a harmonic generation FEL experiment

    Ingold, G.; Solomon, L.; Ben-Zvi, I.; Krinsky, S.; Li, D.; Lynch, D.; Sheehan, J.; Woodle, M.; Qiu, X.Z.; Yu, L.H.

    1993-01-01

    A three stage superconducting (SC) undulator for a high gain harmonic generation (HGE) FEL experiment in the infrared is under construction at the NSLS in collaboration with Grumman Corporation. A novel undulator technology suitable for short period (6-40mm) undulators will be employed for all three stages, the modulator, the dispersive section and the radiator. The undulator triples the frequency of a 10.4μm CO 2 seed laser. So far a 27 period (one third of the final radiator) prototype radiator has been designed, built and tested

  7. Nonlinear harmonic generation and proposed experimental verification in SASE FELs

    Freund, H P; Milton, S V

    2000-01-01

    Recently, a 3D, polychromatic, nonlinear simulation code was developed to study the growth of nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs). The simulation was applied to the parameters for each stage of the Advanced Photon Source (APS) SASE FEL, intended for operation in the visible, UV, and short UV wavelength regimes, respectively, to study the presence of nonlinear harmonic generation. Significant nonlinear harmonic growth is seen. Here, a discussion of the code development, the APS SASE FEL, the simulations and results, and, finally, the proposed experimental procedure for verification of such nonlinear harmonic generation at the APS SASE FEL will be given.

  8. RF linacs for FELs

    Schwettman, H.A.

    1992-01-01

    There are twenty rf linac-driven Free Electron Lasers (FELs) existing or under construction throughout the world and proposals for several more. A number of these FELs have recently been established as facilities to produce coherent optical beams for materials and biomedical research. Both short pulse low duty factor and long pulse high duty factor linac-driven FELs will be discussed. Accelerator issues that influence the performance of an FEL as a scientific instrument will be indicated. (Author) 6 refs., 6 figs., 2 tabs

  9. JAERI FEL applications in nuclear energy industries

    Minehara, Eisuke J.

    2005-01-01

    The JAERI FEL has first discovered the new FEL lasing of 255fs ultra fast pulse, 6-9% high efficiency, 1GW high peak power, a few kilowatts average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing and energy-recovery linac technology, we could extend a more powerful and more efficient free-electron laser (FEL) than 10kW and 25%, respectively, for nuclear energy industries, and others. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the FEL will cover the application of non-thermal peeling, cutting, and drilling to prevent cold-worked stress-corrosion cracking failures in nuclear energy and other heavy industries. (author)

  10. Self-amplified spontaneous emission for short wavelength coherent radiation

    Kim, K.J.; Xie, M.

    1992-09-01

    We review the recent progress in our understanding of the self-amplified spontaneous emission (SASE), emphasizing the application to short wavelength generation. Simple formulae are given for the start-up, exponential gain and the saturation of SASE. Accelerator technologies producing high brightness electron beams required for short wavelength SASE are discussed. An example utilizing electron beams from a photocathode-linac system to produce 4nm SASE in the multigigawatt range is presented

  11. Optics-free x-ray FEL oscillator

    Litvinenko, V.N.; Hao, Y.; Kayran, D.; Trbojevic, D.

    2011-01-01

    There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide (∼0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.

  12. Optics-free x-ray FEL oscillator

    Litvinenko, V.N.; Hao, Y.; Kayran, D.; Trbojevic, D.

    2011-03-28

    There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide ({approx}0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.

  13. Estimates of SASE power in the short wavelength region

    Kim, Kwang-Je.

    1992-03-01

    Given a sufficiently bright electron beam, the self-amplified-spontaneous emission (SASE) can provide gigawatts of short wavelength coherent radiation. The advantages of SASE approach are that is requires neither optical cavity nor an imput seed laser. In this note, we estimate the peak power performance of SASE for wavelengths shorter than 1000 Angstrom. At each wavelength, we calculate the saturated power from a uniform parameter undulator and the enhanced power from a tapered undulator. The method described here is an adaptation of that discussed by L.H. Yu, who discussed the harmonic generation scheme with seeded laser, to the case of SASE

  14. FEL induced molecular operation on cultured fibroblast and cholesterol ester

    Awazu, Kunio; Ogino, Seiji; Nishimura, Eiichi; Tomimasu, Takio; Yasumoto, Masato.

    1997-01-01

    Free Electron Lasers can be used to molecular operation such as the delivery of a number of molecules into cells or the separation of cholesterol ester. First, cultured NIH3T3 cells are exposed to high-intensity short pulse Free Electron Laser (FEL). The FEL is tuned to an absorption maximum wavelength, 6.1 μm, which was measured by microscopic FTIR. A fluorescence dye in the cell suspension is more absorbed into the cell with the FEL exposure due to the FEL-induced mechanical stress to the cell membrane. A quantitative fluorescence microscopy is used to determine the efficiency of delivery. Second, as a compound in a lipid cell, cholesterol ester was exposed to 5.75 μm FEL. FTIR measurement was done to evaluate the modification of the cholesterol ester. The result showed that the fluorescence intensity of sample cells were higher than that of control cells, and there was significant difference between the control and the sample group. Blebbing and the colony formation of the cells were observed for cells with mechanical stress. As for the cholesterol ester, it can be modified by the FEL irradiation. These results showed that FEL can be used as a molecular operational tool by photo-chemical and photo-mechanical interaction. (author)

  15. Nonlinear propagation of short wavelength drift-Alfven waves

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens

    1986-01-01

    Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two-dim...

  16. OMEGA: a short-wavelength laser for fusion experiments

    Soures, J.M.; Hutchison, R.J.; Jacobs, S.D.; Lund, L.D.; McCrory, R.L.; Richardson, M.C.

    1983-01-01

    The OMEGA, Nd:glass laser facility was constructed for the purpose of investigating the feasibility of direct-drive laser fusion. With 24 beams producing a total energy of 4 kJ or a peak power of 12 TW, OMEGA is capable of nearly uniform illumination of spherical targets. Six of the OMEGA beams have recently been converted to short-wavelength operation (351 nm). In this paper, we discuss details of the system design and performance, with particular emphasis on the frequency-conversion system and multi-wavelength diagnostic system

  17. Relativistic acceleration and retardation effects on photoemission of intense electron short pulses, in RF-FEL photoinjectors

    Dolique, J.M.; Coacolo, M.

    1991-01-01

    In high-power free electron lasers, self-field effects in the electron beam are often the most important phenomenon on which the beam quality depends. These effects are generally conceived as space-charge effects, and described by a Poisson equation in a beam frame. In RF-FEL photoinjectors, the electrons of the intense short pulse produced by laser irradiation are submitted, just after their photoemission, to such a strong acceleration that relativistic acceleration and retardation effects are discussed, from the rigorous calculation of the Lienard-Wiechert velocity- and acceleration electric and magnetic fields, as a function of RF-electric field and beam parameters. The beam pulse is assumed to be axisymmetric, with a constant photoemitted current density. Consequences for the maximum current density that can be extracted are considered (the 'self-field limit,' a name more appropriate than 'space-charge limit' for the present conditions where electro-dynamic phenomena play an important role)

  18. Influence of the partial temporal coherence of short FEL pulses on two-colour photoionization and photoinduced Auger decay of atoms

    Kazansky, A K; Sazhina, I P; Kabachnik, N M

    2013-01-01

    The influence of the partial temporal coherence of free electron laser (FEL) radiation on the sidebands arising in the electron spectra of laser-assisted photoionization and photoinduced Auger decay of atoms is theoretically analysed. A simple model is developed which describes the inner-shell photoionization by a short (femtosecond) FEL pulse and the following Auger decay in a strong field of an infrared laser. The model is based on the time-dependent approach and uses the strong field approximation for both photo- and Auger electrons. Particular calculations have been carried out for Ne 1s photoionization and KLL Auger emission. We demonstrate that the temporal coherence of FEL pulses influences the line widths in the photoelectron spectrum. For a small coherence time the sidebands in this spectrum cannot be resolved. On the other hand, our calculations show that in the Auger electron spectrum the sidebands are practically independent of the coherence time of the ionizing pulse.

  19. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing

  20. Local Analysis Approach for Short Wavelength Geopotential Variations

    Bender, P. L.

    2009-12-01

    The value of global spherical harmonic analyses for determining 15 day to 30 day changes in the Earth's gravity field has been demonstrated extensively using data from the GRACE mission and previous missions. However, additional useful information appears to be obtainable from local analyses of the data. A number of such analyses have been carried out by various groups. In the energy approximation, the changes in the height of the satellite altitude geopotential can be determined from the post-fit changes in the satellite separation during individual one-revolution arcs of data from a GRACE-type pair of satellites in a given orbit. For a particular region, it is assumed that short wavelength spatial variations for the arcs crossing that region during a time T of interest would be used to determine corrections to the spherical harmonic results. The main issue in considering higher measurement accuracy in future missions is how much improvement in spatial resolution can be achieved. For this, the shortest wavelengths that can be determined are the most important. And, while the longer wavelength variations are affected by mass distribution changes over much of the globe, the shorter wavelength ones hopefully will be determined mainly by more local changes in the mass distribution. Future missions are expected to have much higher accuracy for measuring changes in the satellite separation than GRACE. However, how large an improvement in the derived results in hydrology will be achieved is still very much a matter of study, particularly because of the effects of uncertainty in the time variations in the atmospheric and oceanic mass distributions. To be specific, it will be assumed that improving the spatial resolution in continental regions away from the coastlines is the objective, and that the satellite altitude is in the range of roughly 290 to 360 km made possible for long missions by drag-free operation. The advantages of putting together the short wavelength

  1. Short wavelength limits of current shot noise suppression

    Nause, Ariel; Dyunin, Egor; Gover, Avraham

    2014-01-01

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect

  2. Short wavelength limits of current shot noise suppression

    Nause, Ariel, E-mail: arielnau@post.tau.ac.il [Faculty of Exact Sciences, Department of Physics, Tel Aviv University, Tel Aviv (Israel); Dyunin, Egor; Gover, Avraham [Faculty of Engineering, Department of Physical Electronics, Tel Aviv University, Tel Aviv (Israel)

    2014-08-15

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect.

  3. A high-power rf linear accelerator for FELS [free-electron lasers

    Sheffield, R.L.; Watson, J.M.

    1987-01-01

    This paper describes the design of a high average current rf linear accelerator suitable for driving short-wavelength free-electron lasers (FEL). It is concluded that the design of a room-temperature rf linear acelerator that can meet the stringent requirements of a high-power short-wavelength FEL appears possible. The accelerator requires the use of an advanced photoelectric injector that is under development; the accelerator components, however, do not require appreciable development. At these large beam currents, low-frequency, large-bore room-temperature cavities can be highly efficient and give all specified performance with minimal risk. 20 refs

  4. Short-wavelength magnetic recording new methods and analyses

    Ruigrok, JJM

    2013-01-01

    Short-wavelength magnetic recording presents a series of practical solutions to a wide range of problems in the field of magnetic recording. It features many new and original results, all derived from fundamental principles as a result of up-to-date research.A special section is devoted to the playback process, including the calculations of head efficiency and head impedance, derived from new theorems.Features include:A simple and fast method for measuring efficiency; a simple method for the accurate separation of the read and write behaviour of magnetic heads; a new concept - the bandpass hea

  5. Experimental tests of induced spatial incoherence using short laser wavelength

    Obenschain, S.P.; Grun, J.; Herbst, M.J.

    1986-01-01

    The authors have developed a laser beam smoothing technique called induced spatial incoherence (ISI), which can produce the highly uniform focal profiles required for direct-drive laser fusion. Uniform well-controlled focal profiles are required to obtain the highly symmetric pellet implosions needed for high-energy gain. In recent experiments, the authors' tested the effects of ISI on high-power laser-target interaction. With short laser wavelength, the coupling physics dramatically improved over that obtained with an ordinary laser beam

  6. Stability of short wavelength tearing and twisting modes

    Waelbroeck, F.L.

    1998-01-01

    The stability and mutual interaction of tearing and twisting modes in a torus is governed by matrices that generalize the well-known Δ' stability index. The diagonal elements of these matrices determine the intrinsic stability of modes that reconnect the magnetic field at a single resonant surface. The off-diagonal elements indicate the strength of the coupling between the different modes. The author shows how the elements of these matrices can be evaluated, in the limit of short wavelength, from the free energy driving radially extended ballooning modes. The author applies the results by calculating the tearing and twisting Δ' for a model high-beta equilibrium with circular flux surfaces

  7. Research with high-power short-wavelength lasers

    Holzrichter, J.F.; Campbell, E.M.; Lindl, J.D.; Storm, E.

    1985-01-01

    Three important high-temperature, high-density experiments were conducted recently using the 10-TW, short-wavelength Novette laser system at the Lawrence Livermore National Laboratory. These experiments demonstrated successful solutions to problems that arose during previous experiments with long wavelength lasers (lambda greater than or equal to 1μm) in which inertial confinement fusion (ICF), x-ray laser, and other high-temperature physics concepts were being tested. The demonstrations were: (1) large-scale plasmas (typical dimensions of up to 1000 laser wavelengths) were produced in which potentially deleterious laser-plasma instabilities were collisionally damped. (2) Deuterium-tritium fuel was imploded to a density of 20 g/cm 3 and a pressure of 10 10 atm. (3) A 700-fold amplification of soft x rays by stimulated emission at 206 and 209 A (62 eV) from Se +24 ions was observed in a laser-generated plasma. Isoelectronic scaling to 155 A (87 eV) in Y +29 was also demonstrated

  8. FEL system with homogeneous average output

    Douglas, David R.; Legg, Robert; Whitney, R. Roy; Neil, George; Powers, Thomas Joseph

    2018-01-16

    A method of varying the output of a free electron laser (FEL) on very short time scales to produce a slightly broader, but smooth, time-averaged wavelength spectrum. The method includes injecting into an accelerator a sequence of bunch trains at phase offsets from crest. Accelerating the particles to full energy to result in distinct and independently controlled, by the choice of phase offset, phase-energy correlations or chirps on each bunch train. The earlier trains will be more strongly chirped, the later trains less chirped. For an energy recovered linac (ERL), the beam may be recirculated using a transport system with linear and nonlinear momentum compactions M.sub.56, which are selected to compress all three bunch trains at the FEL with higher order terms managed.

  9. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS

    2005-01-01

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  10. Workshop on scientific applications of short wavelength coherent light sources

    Spicer, W.; Arthur, J.; Winick, H.

    1993-02-01

    This report contains paper on the following topics: A 2 to 4nm High Power FEL On the SLAC Linac; Atomic Physics with an X-ray Laser; High Resolution, Three Dimensional Soft X-ray Imaging; The Role of X-ray Induced Damage in Biological Micro-imaging; Prospects for X-ray Microscopy in Biology; Femtosecond Optical Pulses?; Research in Chemical Physics Surface Science, and Materials Science, with a Linear Accelerator Coherent Light Source; Application of 10 GeV Electron Driven X-ray Laser in Gamma-ray Laser Research; Non-Linear Optics, Fluorescence, Spectromicroscopy, Stimulated Desorption: We Need LCLS' Brightness and Time Scale; Application of High Intensity X-rays to Materials Synthesis and Processing; LCLS Optics: Selected Technological Issues and Scientific Opportunities; Possible Applications of an FEL for Materials Studies in the 60 eV to 200 eV Spectral Region

  11. FERMI(at)Elettra FEL Design Technical Optimization Final Report

    Fawley, William; Penn, Gregory; Allaria, Enrico; De Ninno, Giovanni; Graves, William

    2006-01-01

    This is the final report of the FEL Design Group for the Technical Optimization Study for the FERMI(at)ELETTRA project. The FERMI(at)ELETTRA project is based on the principle of harmonic upshifting of an initial ''seed'' signal in a single pass, FEL amplifier employing multiple undulators. There are a number of FEL physics principles which underlie this approach to obtaining short wavelength output: (1) the energy modulation of the electron beam via the resonant interaction with an external laser seed (2) the use of a chromatic dispersive section to then develop a strong density modulation with large harmonic overtones (3) the production of coherent radiation by the microbunched beam in a downstream radiator. Within the context of the FERMI project, we discuss each of these elements in turn

  12. FEL components and diagnostics

    Carr, R.

    1997-01-01

    FEL hardware includes undulators, alignment systems, electron beam diagnostics, and mechanical and vacuum systems. While most FEL close-quote s employ conventional undulators, there is some interest in novel types, particularly where conventional designs cannot be used, as at very short periods and high fields. For these areas, superconducting technology is indicated. The most serious issue facing long FEL undulators is that of alignment; mechanical techniques may not be accurate enough, and beam-based strategies must be considered. To maintain alignment and control the electron trajectory, beam position monitors with micron precision are required. Beam size monitors are also required to assure control of emittance. The talks given in the working group sessions touch on undulators, alignment, and electron beam diagnostics, and they are summarized here. copyright 1997 American Institute of Physics

  13. Observation of magnon-phonon interaction at short wavelengths

    Dolling, G.; Cowley, R.A.

    1966-01-01

    Measurements have been made of the magnon and phonon dispersion relations in uranium dioxide at 9 o K. These measurements provide evidence of a strong interaction between the magnon and phonon excitations and enable a value to be deduced for the coupling constant. The interaction of long-wavelength magnons in ferromagnetic materials has been studied previously with ultrasonic techniques; however, inelastic scattering of slow neutrons enables both the magnon and phonon dispersion relations to be determined for short wavelengths. In those magnetic materials which have been studied by earlier workers, the magnons and phonons either interacted with one another very weakly or else their frequencies were very different. The results could then be understood without introducing any magnon-phonon interaction. In this note we report measurements of both the magnon and the phonon spectra of antiferromagnetic uranium dioxide, which lead to a magnon-phonon coupling constant of 9.6 ± 1.6 o K. Since the Neel temperature is 30.8 o K, this coupling constant is of a similar magnitude to the direct magnetic interactions. (author)

  14. Self Referencing Heterodyne Transient Grating Spectroscopy with Short Wavelength

    Jakob Grilj

    2015-04-01

    Full Text Available Heterodyning by a phase stable reference electric field is a well known technique to amplify weak nonlinear signals. For short wavelength, the generation of a reference field in front of the sample is challenging because of a lack of suitable beamsplitters. Here, we use a permanent grating which matches the line spacing of the transient grating for the creation of a phase stable reference field. The relative phase among the two can be changed by a relative translation of the permanent and transient gratings in direction orthogonal to the grating lines. We demonstrate the technique for a transient grating on a VO2 thin film and observe constructive as well as destructive interference signals.

  15. A photocathode rf gun design for a mm-wave linac-based FEL

    Nassiri, A.; Berenc, T,; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-07-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths ({approximately}300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell {pi}-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure.

  16. A photocathode rf gun design for a mm-wave linac-based FEL

    Nassiri, A.; Berenc, T.; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-01-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths (∼300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell π-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure

  17. Theoretical analysis of saturation and limit cycles in short pulse FEL oscillators

    Piovella, N.; Chaix, P.; Jaroszynski, D. [Commissariat a l`Energie Atomique, Bruyeres-le-Chatel (France)] [and others

    1995-12-31

    We derive a model for the non linear evolution of a short pulse oscillator from low signal up to saturation in the small gain regime. This system is controlled by only two independent parameters: cavity detuning and losses. Using a closure relation, this model reduces to a closed set of 5 non linear partial differential equations for the EM field and moments of the electron distribution. An analysis of the linearised system allows to define and calculate the eigenmodes characterising the small signal regime. An arbitrary solution of the complete nonlinear system can then be expanded in terms of these eigenmodes. This allows interpreting various observed nonlinear behaviours, including steady state saturation, limit cycles, and transition to chaos. The single mode approximation reduces to a Landau-Ginzburg equation. It allows to obtain gain, nonlinear frequency shift, and efficiency as functions of cavity detuning and cavity losses. A generalisation to two modes allows to obtain a simple description of the limit cycle behaviour, as a competition between these two modes. An analysis of the transitions to more complex dynamics is also given. Finally, the analytical results are compared to the experimental data from the FELIX experiment.

  18. Review of High Gain FELs

    Shintake, Tsumoru

    2007-01-01

    For understanding on basic radiation mechanism of the high-gain FEL based on SASE, the author presents electron-crystal interpretation of FEL radiation. In the electron-crystal, electrons are localized at regularly spaced multi-layers, which represents micro-bunching, whose spacing is equal to the radiation wavelength, and the multi-layers are perpendicular to beam axis, thus, diffracted wave creates Bragg's spots in forward and backward directions. Due to the Doppler's effect, frequency of the back-scattered wave is up-converted, generates forwardly focused X-ray. The Bragg's effect contributes focusing the X-ray beam into a spot, thus peak power becomes extremely higher by factor of typically 107. This is the FEL radiation. As well known, the total numbers of scattered photons in Bragg's spots is equal to the total elastic scattering photons from the atoms contained in the crystal. Therefore, total power in the FEL laser is same as the spontaneous radiation power from the undulator for the same beam parameter. The FEL radiation phenomenon is simple interference effect. In today's presentations, we use the laser pointer, and we frequently experience difficulty in pointing precisely or steadily in one place on the screen, since the laser spot is very small and does not spread. Exactly same to this, X-ray FEL is a highly focused beam, and pointing stability dominates productivity of experiment, thus we need special care on beam stability from linear accelerator

  19. Interferometry on small quantum systems at short wavelength

    Usenko, Sergey

    2017-01-01

    The present work concentrates on prototypical studies of light-induced correlated many-body dynamics in complex systems. In its course a reflective split-and-delay unit (SDU) for phase-resolved one-color pump-probe experiments with gas phase samples using VUV-XUV laser pulses was built. The collinear propagation of pump and probe pulses is ensured by the special geometry of the SDU and allows to perform phase-resolved (coherent) autocorrelation measurements. The control of the pump-probe delay with attosecond precision is established by a specially developed diagnostic tool based on an in-vacuum white light interferometer that allows to monitor the relative displacement of the SDU reflectors with nanometer resolution. Phase-resolved (interferometric) pump-probe experiments with developed SDU require spatially-resolved imaging of the ionization volume. For this an electron-ion coincidence spectrometer was built. The spectrometer enables coincident detection of photoionization products using velocity map imaging (VMI) technique for electrons and VMI or spatial imaging for ions. In first experiments using the developed SDU and the spectrometer in the ion spatial-imaging mode linear field autocorrelation of free-electron laser pulses at the central wavelength of 38 nm was recorded. A further focus of the work were energy- and time-resolved resonant two-photon ionization experiments using short tunable UV laser pulses on C_6_0 fullerene. The experiments demonstrated that dipole-selective excitation on a timescale faster than the characteristic intramolecular energy dissipation limits the number of accessible excitation pathways and thus results in a narrow resonance. Time-dependent one-color pump-probe study showed that nonadiabatic (vibron) coupling is the dominant energy dissipation mechanism for high-lying electronic excited states in C_6_0.

  20. Interferometry on small quantum systems at short wavelength

    Usenko, Sergey

    2017-01-15

    The present work concentrates on prototypical studies of light-induced correlated many-body dynamics in complex systems. In its course a reflective split-and-delay unit (SDU) for phase-resolved one-color pump-probe experiments with gas phase samples using VUV-XUV laser pulses was built. The collinear propagation of pump and probe pulses is ensured by the special geometry of the SDU and allows to perform phase-resolved (coherent) autocorrelation measurements. The control of the pump-probe delay with attosecond precision is established by a specially developed diagnostic tool based on an in-vacuum white light interferometer that allows to monitor the relative displacement of the SDU reflectors with nanometer resolution. Phase-resolved (interferometric) pump-probe experiments with developed SDU require spatially-resolved imaging of the ionization volume. For this an electron-ion coincidence spectrometer was built. The spectrometer enables coincident detection of photoionization products using velocity map imaging (VMI) technique for electrons and VMI or spatial imaging for ions. In first experiments using the developed SDU and the spectrometer in the ion spatial-imaging mode linear field autocorrelation of free-electron laser pulses at the central wavelength of 38 nm was recorded. A further focus of the work were energy- and time-resolved resonant two-photon ionization experiments using short tunable UV laser pulses on C{sub 60} fullerene. The experiments demonstrated that dipole-selective excitation on a timescale faster than the characteristic intramolecular energy dissipation limits the number of accessible excitation pathways and thus results in a narrow resonance. Time-dependent one-color pump-probe study showed that nonadiabatic (vibron) coupling is the dominant energy dissipation mechanism for high-lying electronic excited states in C{sub 60}.

  1. Scientific opportunities for FEL amplifier based VUV and X-ray research

    Johnson, E.D.

    1994-01-01

    It has become increasingly clear to a wide cross section of the synchrotron radiation research community that FELs will be the cornerstone of Fourth Generation Radiation Sources. Through the coherent generation of radiation, they provide as much as 12 orders of magnitude increase in peak power over the third generation storage ring machines of today. Facilities have been proposed which will extend the operating wavelength of these devices well beyond the reach of existing solid state laser technology. In addition, it appears possible to generate pulses of unprecedented brevity, down to a few femtoseconds, with mJ pulse energies. The combination of these attributes has stimulated considerable interest in short wavelength FELs for experiments in chemical, surface, and solid state physics, biology and materials science. This paper provides a brief overview of how the features of these FEL's relate to the experimental opportunities

  2. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    Awazu, K; Tamiya, E

    2002-01-01

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm sup 2. FEL irradiation at a wavelength of 5.75 and 6.1 mu m, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 mu m. The maximum transfer efficiency was about 0.5%.

  3. THE VISA FEL UNDULATOR

    CARR, R.; CORNACCHIA, M.; EMMA, P.; NUHN, H.D.; FULAND, R.; JOHNSON, E.; RAKOWSKY, G.; LIDIA, S.; BERTOLINI, L.; LIBKIND, M.; FRIGOLA, P.; PELLEGRINI, C.; ROSENZWEIG, J.

    1998-01-01

    The Visible-Infrared SASE Amplifier (VISA) FEL is an experimental device designed to show Self Amplified Spontaneous Emission (SASE) to saturation in the visible light energy range. It will generate a resonant wavelength output from 800--600 nm, so that silicon detectors may be used to characterize the optical properties of the FEL radiation. VISA is the first SASE FEL designed to reach saturation, and its diagnostics will provide important checks of theory. This paper includes a description of the VISA undulator, the magnet measuring and shimming system, and the alignment strategy. VISA will have a 4 m pure permanent magnet undulator comprising four 99 cm segments, each with 55 periods of 18 mm length. The undulator has distributed focusing built into it, to reduce the average beta function of the 70--85 MeV electron beam to about 30 cm. There are four FODO cells per segment. The permanent magnet focusing lattice consists of blocks mounted on either side of the electron beam, in the undulator gap. The most important undulator error parameter for a free electron laser is the trajectory walkoff or lack of overlap of the photon and electron beams. Using pulsed wire magnet measurements and magnet shimming, the authors expect to be able to control trajectory walkoff to less than ±50 pm per field gain length

  4. Towards attosecond X-ray pulses from the FEL

    Zholents, Alexander A.; Fawley, William M.

    2004-01-01

    The ability to study ultrafast phenomena has been recently advanced by the demonstrated production and measurement of a single, 650-attosecond (10 18 sec), VUV x-ray pulse[1] and, latter, a 250-attosecond pulse[2]. The next frontier is a production of the x-ray pulses with shorter wavelengths and in a broader spectral range. Several techniques for a generation of an isolated, attosecond duration, short-wavelength x-ray pulse based upon the ponderomotive laser acceleration [3], SASE and harmonic cascade FELs ([4] - [6]) had been already proposed. In this paper we briefly review a technique proposed in [5] and present some new results

  5. Generation and characterization of ultra-short electron beams for single spike infrared FEL radiation at SPARC_LAB

    Villa, F.; Anania, M. P.; Artioli, M.; Bacci, A.; Bellaveglia, M.; Bisesto, F. G.; Biagioni, A.; Carpanese, M.; Cardelli, F.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Croia, M.; Curcio, A.; Dattoli, G.; Gallo, A.; Di Giovenale, D.; Di Palma, E.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Giannessi, L.; Giribono, A.; Marocchino, A.; Massimo, F.; Mostacci, A.; Petralia, A.; Petrarca, M.; Petrillo, V.; Piersanti, L.; Pioli, S.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.

    2017-09-01

    The technique for producing and measuring few tens of femtosecond electron beams, and the consequent generation of few tens femtoseconds single spike FEL radiation pulses at SPARC_LAB is presented. The undulator has been used in the double role of radiation source and diagnostic tool for the characterization of the electron beam. The connection between the electron bunch length and the radiation bandwidth is analyzed.

  6. Observation of Rayleigh - Taylor growth to short wavelengths on Nike

    Pawley, C.J.; Bodner, S.E.; Dahlburg, J.P.; Obenschain, S.P.; Schmitt, A.J.; Sethian, J.D.; Sullivan, C.A.; Gardner, J.H.; Aglitskiy, Y.; Chan, Y.; Lehecka, T.

    1999-01-01

    The uniform and smooth focal profile of the Nike KrF laser [S. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to ablatively accelerate 40 μm thick polystyrene planar targets with pulse shaping to minimize shock heating of the compressed material. The foils had imposed small-amplitude sinusoidal wave perturbations of 60, 30, 20, and 12.5 μm wavelength. The shortest wavelength is near the ablative stabilization cutoff for Rayleigh - Taylor growth. Modification of the saturated wave structure due to random laser imprint was observed. Excellent agreement was found between the two-dimensional simulations and experimental data for most cases where the laser imprint was not dominant. copyright 1999 American Institute of Physics

  7. FULL ELECTROMAGNETIC FEL SIMULATION VIA THE LORENTZ-BOOSTED FRAME TRANSFORMATION

    Fawley, William; Vay, Jean-Luc

    2010-01-01

    Numerical electromagnetic simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame. A particularly good application for calculation in a boosted frame isthat of short wavelength free-electron lasers (FELs) where a high energy electron beam with small fractional energy spread interacts with a static magnetic undulator. In the optimal boost frame (i.e., the ponderomotive rest frame), the red-shifted FEL radiation and blue-shifted undulator field have identical wavelengths and the number of required longitudinal grid cells and time-steps for fully electromagnetic simulation (relative to the laboratory frame) decrease by factors of gamma 2 each. In theory, boosted frame EM codes permit direct study of FEL problems for which the eikonal approximation for propagation of the radiation field and wiggler-period-averaging for the particle-field interaction may be suspect. We have adapted the WARP code to apply this method to several electromagnetic FEL problems including spontaneous emission, strong exponential gain in a seeded, single pass amplifier configuration, and emission from e-beams in undulators with multiple harmonic components. WARP has a standard relativistic macroparticle mover and a fully 3-D electromagnetic field solver. We discuss our boosted frame results and compare with those obtained using the 'standard' eikonal FEL simulation approach.

  8. The Harmonically Coupled 2-Beam FEL

    McNeil, Brian W J

    2004-01-01

    A 1-D model of a 2-beam Free Electron Laser amplifier is presented. The two co-propagating electron beams have different energies, chosen so that the fundamental resonant FEL interaction of the higher energy beam is at an harmonic of the lower energy beam. In this way, a coupling between the FEL interactions of the two beams occurs via the harmonic components of the electron bunching and radiation emission of the lower energy interaction. Such resonantly coupled FEL interactions may offer potential benefits over existing single beam FEL schemes. A simple example is presented where the lower energy FEL interaction only is seeded with radiation at its fundamental resonant wavelength. It is predicted that the coherence properties of this seed field are transfered via the resonantly coupled FEL interaction to the un-seeded higher energy FEL interaction, thereby improving its coherence properties over that of a SASE interaction alone. This method may offer an alternative seeding scheme for FELs operating in the XU...

  9. Cavity-mirror degradation in the deep-UV FEL

    Yamada, K.; Yamazaki, T.; Sei, N. [Electrotechnical Lab., Ibaraki (Japan)] [and others

    1995-12-31

    It is known that the degradation of dielectric multilayer mirrors used in short wavelength free-electron lasers (FELs) is caused by the carbon contamination on the mirror surface and the defects inside the dielectrics. We reported last year that the degraded dielectric multilayer mirrors can be repaired with both surface treatment by RF-induced oxygen plasma and thermal annealing. However, such a mirror degradation is still one of the most critical issues in the deep ultraviolet (UV) FELs, because the fundamental undulator radiation resonating in the laser cavity, the intensity of which is much higher than that of higher harmonics, can be sufficiently energetic to cause the mirror degradation through photochemical reactions. We are investigating the mirror degradation mainly in the deep UV region down to 240 nm. The experimental results will be shown. The mirror degradation mechanism will be discussed.

  10. Single Mode Fiber Optic Transceiver Using Short Wavelength Active Devices In Long Wavelength Fiber

    Gillham, Frederick J.; Campbell, Daniel R.; Corke, Michael; Stowe, David W.

    1990-01-01

    Presently, single mode optical fiber technology is being utilized in systems to supply telephone service to the subscriber. However, in an attempt to be competitive with copper based systems, there are many development programs underway to determine the most cost effective solution while still providing a service that will either satisfy or be upgradeable to satisfy the demands of the consumer for the next 10 to 20 years. One such approach is to combine low cost laser transmitters and silicon receivers, which have been developed for the "compact disc" industry, with fiber that operates in the single mode regime at 1300 nm. In this paper, an optical transceiver will be presented, consisting of a compact disc laser, a silicon detector and a single mode coupler at 1300 nm. A possible system layout is presented which operates at 780 nm bi-directionally for POTS and upgradeable to 1300 nm for video services. There are several important design criteria that have to be considered in the development of such a system which will be addressed. These include: 1. Optimization of coupled power from laser to fiber while maintaining stable launched conditions over a wide range of environmental conditions. 2. Consideration of the multimode operation of the 1300 nm single mode fiber while operating in the 780 nm wavelength region. 3. Development of a low cost pseudo-wavelength division multiplexer for 1300 nm single mode/780 nm multimode operation and a low cost dual mode 50/50, 780 nm splitter using 1300 nm fiber. Details will be given of the design criteria and solution in terms of optimized design. Results of the performance of several prototype devices will be given with indications of the merits of this approach and where further development effort should be applied.

  11. Sexual dimorphism of short-wavelength photoreceptors in the small white butterfly, Pieris rapae crucivora

    Arikawa, K; Wakakuwa, M; Qiu, XD; Kurasawa, M; Stavenga, DG; Qiu, Xudong

    2005-01-01

    The eyes of the female small white butterfly, Pieris rapae crucivora, are furnished with three classes of short-wavelength photoreceptors, with sensitivity peaks in the ultraviolet (UV) (lambda(max) = 360 nm), violet (V) (lambda max = 425 nm), and blue (B) (lambda(max) = 453 nm) wavelength range.

  12. Short-wavelength electrostatic waves in the earth's magnetosheath

    Gallagher, D.L.

    1985-01-01

    Recent observations with the ISEE 1 spacecraft have found electric field emissions in the dayside magnetosheath whose frequency spectrum is modulated at twice the spacecraft spin period. The upper frequency cutoff in the frequency-time spectrum of the emission has a characteristic parabola shape or ''festoon'' shape. The low-frequency cutoff ranges from 100 to 400 Hz, while the high-frequency limit ranges from about 1 to 4 kHz. The bandwidth is found to minimize for antenna orientations parallel to the wave vectors. The wave vector does not appear to be related to the local magnetic field, the plasma flow velocity, or the spacecraft-sun directions. The spacecraft observed frequency spectrum results from the spacecraft antenna response to the Doppler-shifted wave vector spectrum which exists in the plasma. Imposed constraints on the plasma rest frame wave vectors and frequencies indicate that emissions occur within the frequency range from about 150 Hz to 1 kHz, with wavelengths between about 40 and 600 m. These constraints strongly suggest that the festoon-shaped emissions are ion-acoustic waves. The small group velocity and k direction of the ion-acoustic mode are consistent with wave generation upstream at the bow shock and convection downstream to locations within the outer dayside magnetosheath

  13. Short wavelength electrostatic waves in the earth's magnetosheath

    Gallagher, D.L.

    1982-01-01

    Recent observations with the ISEE-1 spacecraft have found electric field emissions in the dayside magnetosheath whose frequency spectrum is modulated at twice the spacecraft spin period. The upper frequency cutoff in the frequency-time spectrum of the emissions has a characteristic parabola shape or ''festoon'' shape. The low frequency cutoff ranges from 100 Hz to 400 Hz, while the high frequency limit ranges from about 1kHz to 4kHz. The bandwidth is found to minimize for antenna orientations parallel to these wave number vectors, requiring the confinement of those vectors to a plane which contains the geocentric solar eclilptic coordinate z-axis. The spacecraft observed frequency spectrum results from the spacecraft antenna response to the Doppler shifted wave vector spectrum which exists in the plasma. Imposed constraints on the plasma rest-frame wave vectors and frequencies indicate that the emissions occur within the frequency range from about 150 Hz to 1 kHz, with wavelengths between about 30 meters and 600 meters. These constraints strongly suggest that the festoon-shaped emissions are ion-acoustic waves. The small group velocity and k vector direction of the ion-acoustic mode are consistent with wave generation upstream at the bow shock and convection downstream to locations within the outer dayside magnetosheath

  14. Agility of Felix Regarding Wavelength and Micropulse Shape

    Bakker, R. J.; van der Geer, C. A. J.; Jaroszynski, D. A.; van der Meer, A. F. G.; Oepts, D.; van Amersfoort, P. W.; Anderegg, V.; van Son, P. C.

    1993-01-01

    The user-facility FELIX employs two FELs together covering the spectral range from 6.5 to 110 mum. Adjustment of the undulator strength permits wavelength tuning over a factor of two within two minutes while continuously providing several kilowatts of output power. As FELIX combines short electron

  15. Technological Challenges to X-Ray FELs

    Nuhn, Heinz-Dieter

    1999-09-16

    There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I at 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.

  16. Tunability and Power Characteristics of the LEBRA Infrared FEL

    Tanaka, Toshinari; Hayakawa, Yasushi; Mori, Akira; Nogami, Kyoko; Sato, Isamu; Yokoyama, Kazue

    2004-01-01

    Application of the infrared (IR) Free-Electron Laser (FEL) was started in October 2003 at the Laboratory for Electron Beam Research and Application (LEBRA) of Nihon University. The FEL system consisted of silver-coated copper mirrors has demonstrated wavelength tunability ranged from 940 to 6100 nm as a function of the electron energy and the undulator K-value. Wavelength dependence of the FEL output power has been measured in term of different electron beam currents, electron energies and the undulator K-values. Approximate 25 mJ/macropulse has been obtained in the range 2 to 3 microns, which corresponds to peak power of 2 MW, provided that the FEL pulse length is 0.4 ps as resulted from the measurement by an interferometric method. The power decrease observed in the longer wavelength range is due to a large diffraction loss in the FEL guiding optics and the vacuum ducts.

  17. Influence of wavelength on transient short-circuit current in polycrystalline silicon solar cells

    Ba, B.; Kane, M.

    1993-10-01

    The influence of the wavelength of a monochromatic illumination on transient short-circuit current in an n/p polycrystalline silicon part solar cell junction is investigated. A wavelength dependence in the initial part of the current decay is observed in the case of cells with moderate grain boundary effects. This influence is attenuated in polycrystalline cells with strong grain boundary activity. (author). 10 refs, 6 figs

  18. Proposed uv-FEL user facility at BNL

    Ben-Zvi, I.; Di Mauro, L.F.; Krinsky, S.; White, M.G.; Yu, L.H.; Batchelor, K.; Friedman, A.; Fisher, A.S.; Halama, H.; Ingold, G.; Johnson, E.D.; Kramer, S.; Rogers, J.T.; Solomon, L.; Wachtel, J.; Zhang, X.

    1991-01-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of a UV-FEL operating in the wavelength range from visible to 750 Angstrom. Nano-Coulomb electron pulses will be generated at a laser photo-cathode RF gun at a repetition rate of 10 KHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL output will serve four stations with independent wavelength tuning, using two wigglers and two rotating mirror beam switches. Seed radiation for the FEL amplifiers will be provided by conventional tunable lasers, and the final frequency multiplication from the visible or near UV to the VUV will be carried out in the FEL itself. Each FEL will comprise of an initial wiggler resonant to the seed wavelength, a dispersion section, and a second wiggler resonant to the output wavelength. The facility will provide pump probe capability, FEL or FEL, and FEL on synchrotron light from an insersion device on the NSLS X-Ray ring. 15 refs., 2 figs., 3 tabs

  19. SOFT X-RAY FEL BY CASCADING STAGES OF HIGH GAIN HARMONIC GENERATION.

    YU,L.H.

    2003-04-17

    Short wavelength Free-Electron Lasers are perceived as the next generation of synchrotron light sources. In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical VUV FELs and make x-ray FELs possible. Self-Amplified Spontaneous Emission (SASE) and High Gain Harmonic Generation (HGHG)[17-19] are the two leading candidates for x-ray FELs. The first lasing of HGHG proof-of-principle experiment succeeded in August, 1999 in Brookhaven National Laboratory. The experimental results agree with the theory prediction. Compared with SASE FEL, the following advantages of HGHG FEL were confirmed; (1) Better longitudinal coherence, and hence, much narrower bandwidth than SASE. (2) More stable central wavelength, (3) More stable output energy. In this introduction, we will first briefly describe the principle of HGHG in Section A. Then in Section B, we give a general description about how to produce soft x-ray by cascading HGHG scheme. In section 2, we give a detailed description of the system design. Then, in section 3, we give a description of an analytical estimate for the HGHG process, and the calculation of the parameters of different parts of the system. The estimate is found to agree with simulation within about a factor 2 for most cases we studied. The stability issue, the sensitivity to parameter variation, the harmonic contents of the final output, and the noise degradation issue of such HGHG scheme are discussed in Section 4. The results are presented in Section 4. Finally, in Section 5, we will give some discussion of the challenges in development of the system. The conclusion is given in Section 6.

  20. FEL diagnostics and user control

    Knippels, G.M.H.; Meer, A.F.G. van der

    1998-01-01

    The most recent upgrades and improvements to the free-electron laser (FEL) facility FELIX are presented. Special attention is paid to the improved beam-handling and diagnostic station. In this evacuated beam station a device is implemented that is capable of selecting single micropulses with measured efficiencies of more than 50% over the whole wavelength range of FELIX (5-110 μm). Furthermore, the broadband autocorrelator for micropulse length measurements and the planned continuous polarization rotator based on reflective optics are discussed. Recent additions to the ancillary equipment available to FEL users are presented briefly. The most important ones are the mirror-dispersion-controlled 10-fs Ti:sapphire laser and the 40-T magnet. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. An advanced UV optical cavity for the European FEL project

    Poole, M W; Chesworth, A A; Clarke, J A; Fell, B; Hill, C; Marl, R; Mullacrane, I D; Reid, R J

    2000-01-01

    A European collaboration is constructing a short wavelength FEL for the ELETTRA storage ring. The optical cavity has been designed and constructed at Daresbury Laboratory for delivery to Sincrotrone Trieste in Autumn 1999, following commissioning tests over the Summer. Initial FEL operation will be at 350 nm but subsequently down to 200 nm or less and mirrors will be 40 mm diameter. The 32 m optical cavity is controllable to 0.01 mu rad in mirror pitch and yaw using digital piezo translators. A novel feature is the simultaneous presence of three remotely interchangeable mirrors to extend the tuning range and also to interchange damaged mirrors immediately. In addition, a transfer arm and load-lock arrangement will permit a mirror to be withdrawn from the chamber and replaced without disruption to the UHV system. The FEL is designed to operate at high power (1-10 W) and multi-watt spontaneous emission is also present: power loading has been investigated by FEA analysis and has necessitated specification of a w...

  2. A helical optical for circular polarized UV-FEL project at the UVSOR

    Hama, Hiroyuki [Institute for Molecular Science, Okazaki (Japan)

    1995-12-31

    Most of existing storage ring free electron lasers (SRFEL) are restricted those performances by degradation of mirrors in optical cavities. In general, the SRFEL gain at the short wavelength region with high energy electrons is quite low, and the high reflectivity mirrors such as dielectric multilayer mirrors are therefore required. The mirror degradation is considered as a result of irradiation of higher harmonic photons that are simultaneously emitted from planar optical klystron (OK) type undulators, which are commonly used in SRFEL. This problem is getting severer as the lasing wavelength becomes shorter. The UVSOR-FEL had been originally scheduled to be shutdown by 1996 because another undulator project for spectroscopic studies with circular polarized photon would take the FEL`s place. According to suggestion of the insertion device group of the SPring-8, we have designed a helical undulator that is able to vary degree and direction of the polarization easily. In addition, the undulator can be converted into a helical OK by replacing magnets at the center part of undulator in order to coexist with further FEL experiments. Using a calculated magnetic field for magnet configurations of the OK mode, the radiation spectrum at wide wavelength range was simulated by a Fourier transform of Lienard-Wiechert potentials. As a matter of course, some higher harmonics are radiated on the off-axis angle. However it was found out that the higher harmonics is almost negligible as far as inside a solid angle of the Gaussian laser mode. Moreover the gain at the UV region of 250 nm is expected to be much higher than our present FEL because of high brilliant fundamental radiation. The calculated spatial distribution of higher harmonics and the estimated instantaneous gain is presented. Advantages of the helical OK for SRFEL will be discussed in view of our experience, and a possibility of application two-color experiment with SR will be also mentioned.

  3. Femtosecond resolution timing jitter correction on a TW scale Ti:sapphire laser system for FEL pump-probe experiments.

    Csatari Divall, Marta; Mutter, Patrick; Divall, Edwin J; Hauri, Christoph P

    2015-11-16

    Intense ultrashort pulse lasers are used for fs resolution pump-probe experiments more and more at large scale facilities, such as free electron lasers (FEL). Measurement of the arrival time of the laser pulses and stabilization to the machine or other sub-systems on the target, is crucial for high time-resolution measurements. In this work we report on a single shot, spectrally resolved, non-collinear cross-correlator with sub-fs resolution. With a feedback applied we keep the output of the TW class Ti:sapphire amplifier chain in time with the seed oscillator to ~3 fs RMS level for several hours. This is well below the typical pulse duration used at FELs and supports fs resolution pump-probe experiments. Short term jitter and long term timing drift measurements are presented. Applicability to other wavelengths and integration into the timing infrastructure of the FEL are also covered to show the full potential of the device.

  4. Operational characteristics of the OMEGA short-wavelength laser fusion facility

    Soures, J.M.; Hutchison, R.; Jacobs, S.; McCrory, R.L.; Peck, R.; Seka, W.

    1984-01-01

    Twelve beams of the OMEGA, 24 beam direct-drive laser facility have been converted to 351-nm wavelength operation. The performance characteristics of this short-wavelength facility will be discussed. Beam-to-beam energy balance of +-2.3% and on-target energy, at 351-nm, in excess of 70 J per beam have been demonstrated. Long-term performance (>600 shots) of the system has been optimized by appropriate choice of index matching liquid, optical materials and coatings. The application of this system in direct-drive laser fusion experiments will be discussed

  5. Obtaining high degree of circular polarization at X-ray FELs via a reverse undulator taper

    Schneidmiller, E.A.; Yurkov, M.V.

    2013-08-15

    Baseline design of a typical X-ray FEL undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at X-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of non-tapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft X-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e. it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate. It can be used at different X-ray FEL facilities, in particular at LCLS after installation of the helical afterburner in the near future.

  6. Benefits from the BESSY FEL Higher Harmonic Radiation

    Goldammer, K

    2005-01-01

    In the FEL process, bunching and coherent radiation is produced at the fundamental frequency as well as its higher harmonics. BESSY proposes a linac-based cascaded High-Gain Harmonic-Generation (HGHG) free electron laser (FEL) multi-user facility. The BESSY soft X-ray FEL will be seeded by three lasers spanning the spectral range of 230nm to 460nm. Two to four HGHG stages downconvert the seed wavelength to the desired radiation range of 1.24nm to 51nm using higher harmonic bunching. As a surplus, higher harmonic radiation is intrinsically produced in each FEL stage. Radiation on a higher harmonic of the FEL frequency is of high interest because it yields the possibility to reduce the number of FEL stages. This paper details extensive studies of the higher harmonic content of the BESSY FEL radiation. Important aspects of FEL interaction on higher harmonics as resulting from theory and from numerical simulations are discussed. For the case of the BESSY FEL, methods for improving the harmonic content are present...

  7. Short-wavelength attenuated polychromatic white light during work at night : Limited melatonin suppression without substantial decline of alertness

    van de Werken, Maan; Giménez, Marina C; de Vries, Bonnie; Beersma, Domien G M; Gordijn, Marijke C M

    Exposure to light at night increases alertness, but light at night (especially short-wavelength light) also disrupts nocturnal physiology. Such disruption is thought to underlie medical problems for which shiftworkers have increased risk. In 33 male subjects we investigated whether short-wavelength

  8. Local instabilities in magnetized rotational flows: A short-wavelength approach

    Kirillov, Oleg N.; Stefani, Frank; Fukumoto, Yasuhide

    2014-01-01

    We perform a local stability analysis of rotational flows in the presence of a constant vertical magnetic field and an azimuthal magnetic field with a general radial dependence. Employing the short-wavelength approximation we develop a unified framework for the investigation of the standard, the helical, and the azimuthal version of the magnetorotational instability, as well as of current-driven kink-type instabilities. Considering the viscous and resistive setup, our main focus is on the cas...

  9. Nonlinear-optical generation of short-wavelength radiation controlled by laser-induced interference structures

    Popov, A K; Kimberg, V V

    1998-01-01

    A study is reported of the combined influence of laser-induced resonances in the energy continuum, of splitting of discrete resonances in the field of several strong radiations, and of absorption of the initial and generated radiations on totally resonant parametric conversion to the short-wavelength range. It is shown that the radiation power can be increased considerably by interference processes involving quantum transitions. (nonlinear optical phenomena and devices)

  10. A non-destructive electron beam diagnostic for a SASE FEL using coherent off-axis undulator radiation

    Neuman, C.P.; Ponds, M.L.; Barnett, G.A.; Madey, J.M.J.; O'Shea, P.G.

    1999-01-01

    We show that by observing coherent off-axis undulator radiation (COUR) from a short diagnostic wiggler, it may be possible to determine the length and structure of a short electron bunch. Typically the on-axis undulator radiation is incoherent, but at angles of a few degrees, the wavelength of the emitted radiation may be comparable to the length of a short electron bunch, and thus coherence effects emerge. Due to such coherence effects, the intensity of the emitted radiation may change by up to a factor of 10 9 as the angle of observation is increased. The radiation becomes coherent in a way which depends on the length and structure of the electron bunch. Observing COUR disturbs the electron bunch negligibly. Thus, COUR can be used as a non-destructive diagnostic which would allow for optimization of FEL performance while an FEL is operating. Such a diagnostic could be used for proposed SASE FELs, which use short electron bunches. We present two methods to describe the theory for COUR, and we use these methods to calculate the expected outcome of a COUR experiment. We propose an experiment to demonstrate COUR effects and their applications to SASE FELs

  11. Inverse Compton gamma-ray source for nuclear physics and related applications at the Duke FEL

    O'Shea, P.G.; Litvinenko, V.N.; Madey, J.M.J.

    1995-01-01

    In recent years the development of intense, short-wavelength FEL light sources has opened opportunities for the development new applications of high-energy Compton-backscattered photons. These applications range from medical imaging with X-ray photons to high-energy physics with γγ colliders. In this paper we discuss the possibilities for nuclear physics studies using polarized Compton backscattered γ-rays from the Duke storage-ring-driven UV-FEL. There are currently a number of projects that produce polarized γ-rays for nuclear physics studies. All of these facilities operate by scattering conventional laser-light against electrons circulating in a storage ring. In our scheme, intra-cavity scattering of the UV-FEL light will produce a γ-flux enhancement of approximately 10 3 over existing sources. The Duke ring can operate at energies up to 1.2 GeV and can produce FEL photons up to 12.5 eV. We plan to generate γ-rays up to 200 MeV in energy with an average flux in excess of 10 7 /s/MeV, using a modest scattering beam of 10-mA average stored current. The γ-ray energy may be tuned by varying the FEL wavelength or by adjusting the stored electron beam energy. Because of the intense flux, we can eliminate the need for photon energy tagging by collimating of the γ-ray beam. We will discuss the characteristics of the device and its research opportunities

  12. Short-Wavelength Light Enhances Cortisol Awakening Response in Sleep-Restricted Adolescents

    Mariana G. Figueiro

    2012-01-01

    Full Text Available Levels of cortisol, a hormone produced by the adrenal gland, follow a daily, 24-hour rhythm with concentrations reaching a minimum in the evening and a peak near rising time. In addition, cortisol levels exhibit a sharp peak in concentration within the first hour after waking; this is known as the cortisol awakening response (CAR. The present study is a secondary analysis of a larger study investigating the impact of short-wavelength (λmax≈470 nm light on CAR in adolescents who were sleep restricted. The study ran over the course of three overnight sessions, at least one week apart. The experimental sessions differed in terms of the light exposure scenarios experienced during the evening prior to sleeping in the laboratory and during the morning after waking from a 4.5-hour sleep opportunity. Eighteen adolescents aged 12–17 years were exposed to dim light or to 40 lux (0.401 W/m2 of 470-nm peaking light for 80 minutes after awakening. Saliva samples were collected every 20 minutes to assess CAR. Exposure to short-wavelength light in the morning significantly enhanced CAR compared to dim light. Morning exposure to short-wavelength light may be a simple, yet practical way to better prepare adolescents for an active day.

  13. Harmonic lasing in X-ray FELs

    Schneidmiller, E.A.; Yurkov, M.V.

    2012-05-15

    Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned X-ray FEL facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of X-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned X-ray FEL facilities. In particular, LCLS after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25-30 keV providing multi-gigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow to extend operating range (ultimately up to 100 keV), to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other X-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact X-ray FELs (driven by electron beams with a relatively low energy), allowing the use of the standard undulator technology instead of small-gap in-vacuum devices. Finally, in this paper we discover that in a part of the

  14. Extended short wavelength infrared HgCdTe detectors on silicon substrates

    Park, J. H.; Hansel, D.; Mukhortova, A.; Chang, Y.; Kodama, R.; Zhao, J.; Velicu, S.; Aqariden, F.

    2016-09-01

    We report high-quality n-type extended short wavelength infrared (eSWIR) HgCdTe (cutoff wavelength 2.59 μm at 77 K) layers grown on three-inch diameter CdTe/Si substrates by molecular beam epitaxy (MBE). This material is used to fabricate test diodes and arrays with a planar device architecture using arsenic implantation to achieve p-type doping. We use different variations of a test structure with a guarded design to compensate for the lateral leakage current of traditional test diodes. These test diodes with guarded arrays characterize the electrical performance of the active 640 × 512 format, 15 μm pitch detector array.

  15. Optical properties of infrared FELs from the FELI Facility II

    Saeki, K.; Okuma, S.; Oshita, E. [Free Electron Laser Institute, Osaka (Japan)] [and others

    1995-12-31

    The FELI Facility II has succeeded in infrared FEL oscillation at 1.91 {mu} m using a 68-MeV, 40-A electron beam from the FELI S-band linac in February 27, 1995. The FELI Facility II is composed of a 3-m vertical type undulator ({lambda}u=3.8cm, N=78, Km a x=1.4, gap length {ge}20mm) and a 6.72-m optical cavity. It can cover the wavelength range of 1-5{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 40-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, FEL macropulse, FEL transverse profile are reported.

  16. Status of the Novosibirsk high-power terahertz FEL

    Gavrilov, N.G.; Knyazev, B.A.; Kolobanov, E.I.; Kotenkov, V.V.; Kubarev, V.V.; Kulipanov, G.N.; Matveenko, A.N.; Medvedev, L.E.; Miginsky, S.V.; Mironenko, L.A.; Oreshkov, A.D.; Ovchar, V.K.; Popik, V.M.; Salikova, T.V.; Scheglov, M.A.; Serednyakov, S.S.; Shevchenko, O.A.; Skrinsky, A.N.; Tcheskidov, V.G.; Vinokurov, N.A.

    2007-01-01

    The first stage of Novosibirsk high-power free electron laser (FEL) was commissioned in 2003. It is based on the normal conducting CW energy recovery linac (ERL). Now the FEL provides electromagnetic radiation in the wavelength range 120-230 μm. The maximum average power is 400 W. The minimum measured linewidth is 0.3%, which is close to the Fourier-transform limit. Four user stations are in operation now. Manufacturing of the second stage of the FEL (based on the four-turn ERL) is in progress

  17. Optimization of a miniature short-wavelength infrared objective optics of a short-wavelength infrared to visible upconversion layer attached to a mobile-devices visible camera

    Kadosh, Itai; Sarusi, Gabby

    2017-10-01

    The use of dual cameras in parallax in order to detect and create 3-D images in mobile devices has been increasing over the last few years. We propose a concept where the second camera will be operating in the short-wavelength infrared (SWIR-1300 to 1800 nm) and thus have night vision capability while preserving most of the other advantages of dual cameras in terms of depth and 3-D capabilities. In order to maintain commonality of the two cameras, we propose to attach to one of the cameras a SWIR to visible upconversion layer that will convert the SWIR image into a visible image. For this purpose, the fore optics (the objective lenses) should be redesigned for the SWIR spectral range and the additional upconversion layer, whose thickness is mobile device visible range camera sensor (the CMOS sensor). This paper presents such a SWIR objective optical design and optimization that is formed and fit mechanically to the visible objective design but with different lenses in order to maintain the commonality and as a proof-of-concept. Such a SWIR objective design is very challenging since it requires mimicking the original visible mobile camera lenses' sizes and the mechanical housing, so we can adhere to the visible optical and mechanical design. We present in depth a feasibility study and the overall optical system performance of such a SWIR mobile-device camera fore optics design.

  18. Integral equation based stability analysis of short wavelength drift modes in tokamaks

    Hirose, A.; Elia, M.

    2003-01-01

    Linear stability of electron skin-size drift modes in collisionless tokamak discharges has been investigated in terms of electromagnetic, kinetic integral equations in which neither ions nor electrons are assumed to be adiabatic. A slab-like ion temperature gradient mode persists in such a short wavelength regime. However, toroidicity has a strong stabilizing influence on this mode. In the electron branch, the toroidicity induced skin-size drift mode previously predicted in terms of local kinetic analysis has been recovered. The mode is driven by positive magnetic shear and strongly stabilized for negative shear. The corresponding mixing length anomalous thermal diffusivity exhibits favourable isotope dependence. (author)

  19. Short wavelength laser-plasma interaction experiments in a spherical geometry

    Keck, R.L.

    1984-01-01

    Short wavelength (250 to 500 nm) lasers should provide reduced fast electron preheat and increased laser-pellet coupling efficiency when used as laser fusion drivers. As part of an ongoing effort to study short wavelength laser plasm interaction, six beams of the 24 beam OMEGA Nd-glass laser system have been converted to operation at the third harmonic. This system is capable of providing in excess of 250 Joules of 351 nm light on spherical targets at intensities up to 2 x 10/sup 15/ W/cm/sup 2/. To date, experiments have been performed to study the uniformity of irradiation, laser absorption, fast electron production and preheat, energy transport within the target and underdense plasma instabilities. Both x-ray continuum measurements and Kα line measurements indicate that the absorption is dominated by inverse bremsstrahlung. Electron energy transport has been studied using x-ray burn-through and charge collector measurements. The results show that with 351 nm irradiation ablation pressures of order 100 Mbars are generated at intensities of 10/sup 15/ W/cm/sup 2/

  20. The opto-cryo-mechanical design of the short wavelength camera for the CCAT Observatory

    Parshley, Stephen C.; Adams, Joseph; Nikola, Thomas; Stacey, Gordon J.

    2014-07-01

    The CCAT observatory is a 25-m class Gregorian telescope designed for submillimeter observations that will be deployed at Cerro Chajnantor (~5600 m) in the high Atacama Desert region of Chile. The Short Wavelength Camera (SWCam) for CCAT is an integral part of the observatory, enabling the study of star formation at high and low redshifts. SWCam will be a facility instrument, available at first light and operating in the telluric windows at wavelengths of 350, 450, and 850 μm. In order to trace the large curvature of the CCAT focal plane, and to suit the available instrument space, SWCam is divided into seven sub-cameras, each configured to a particular telluric window. A fully refractive optical design in each sub-camera will produce diffraction-limited images. The material of choice for the optical elements is silicon, due to its excellent transmission in the submillimeter and its high index of refraction, enabling thin lenses of a given power. The cryostat's vacuum windows double as the sub-cameras' field lenses and are ~30 cm in diameter. The other lenses are mounted at 4 K. The sub-cameras will share a single cryostat providing thermal intercepts at 80, 15, 4, 1 and 0.1 K, with cooling provided by pulse tube cryocoolers and a dilution refrigerator. The use of the intermediate temperature stage at 15 K minimizes the load at 4 K and reduces operating costs. We discuss our design requirements, specifications, key elements and expected performance of the optical, thermal and mechanical design for the short wavelength camera for CCAT.

  1. Lack of short-wavelength light during the school day delays dim light melatonin onset (DLMO) in middle school students.

    Figueiro, Mariana G; Rea, Mark S

    2010-01-01

    Circadian timing affects sleep onset. Delayed sleep onset can reduce sleep duration in adolescents required to awake early for a fixed school schedule. The absence of short-wavelength ("blue") morning light, which helps entrain the circadian system, can hypothetically delay sleep onset and decrease sleep duration in adolescents. The goal of this study was to investigate whether removal of short-wavelength light during the morning hours delayed the onset of melatonin in young adults. Dim light melatonin onset (DLMO) was measured in eleven 8th-grade students before and after wearing orange glasses, which removed short-wavelength light, for a five-day school week. DLMO was significantly delayed (30 minutes) after the five-day intervention, demonstrating that short-wavelength light exposure during the day can be important for advancing circadian rhythms in students. Lack of short-wavelength light in the morning has been shown to delay the circadian clock in controlled laboratory conditions. The results presented here are the first to show, outside laboratory conditions, that removal of short-wavelength light in the morning hours can delay DLMO in 8th-grade students. These field data, consistent with results from controlled laboratory studies, are directly relevant to lighting practice in schools.

  2. A 300-nm compact mm-wave linac FEL design

    Nassiri, A.; Kustom, R.L.; Kang, Y.W. [Argonne National Lab., IL (United States)

    1995-12-31

    Microfabrication technology offers an alternative method for fabricating precision, miniature-size components suitable for use in accelerator physics and commercial applications. The original R&D work at Argonne, in collaboration with the University of Illinois at Chicago, has produced encouraging results in the area of rf accelerating structure design, optical and x-ray masks production, deep x-ray lithography (LIGA exposures), and precision structural alignments. In this paper we will present a design study for a compact single pass mm-linac FEL to produce short wavelength radiation. This system will consists of a photocathode rf gun operated at 30 GHz, a 50-MeV superconducting constant gradient structure operated at 60 GHz, and a microundulator with 1-mm period. Initial experimental results on a scale model rf gun and microundulator will be presented.

  3. Transverse effects in UV FELs

    Small, D.W.; Wong, R.K.; Colson, W.B.

    1995-01-01

    In an ultraviolet Free Electron Laser (UV FEL), the electron beam size can be approximately the same as the optical mode size. The performance of a UV FEL is studied including the effect of emittance, betatron focusing, and external focusing of the electron beam on the transverse optical mode. The results are applied to the Industrial Laser Consortium's UV FEL

  4. The Present Applications of IR FEL at Peking University

    Yang Li Min; Zhao, Kui

    2004-01-01

    In this study the sections of human tissues were treated under 9.5 μm FEL in the BFEL based on the vibrational spectroscopic investigation that significant differences occur between normal and malignant tissues. Under the defocus condition, the burning of tissue section at some part while other part remains unchanged, suggesting that the FEL can selectively destroy some part of tissue. Vibrational spectroscopic and microscopic methods have shown that the FEL can induce decomposition of malignant tissues. The application of FEL whose wavelength is on the characteristic bands of malignant tissues may provide a new method to kill cancer cells with higher selectivity. For understanding the interactions between FEL and biological tissues, structure changes of substances under irradiation by FEL of 9.414 μm and 6.228 μm were measured using FTIR spectroscopy. The samples include ATP, ADP, AMP, and D-ribose, etc. The FTIR spectra of the molecules before and after irradiation of FEL indicate...

  5. Ultra-high accuracy optical testing: creating diffraction-limited short-wavelength optical systems

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman, Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli, Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-01-01

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-(angstrom) and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date

  6. Towards shorter wavelength x-ray lasers using a high power, short pulse pump laser

    Tighe, W.; Krushelnick, K.; Valeo, E.; Suckewer, S.

    1991-05-01

    A near-terawatt, KrF* laser system, focussable to power densities >10 18 W/cm 2 has been constructed for use as a pump laser in various schemes aimed at the development of x-ray lasing below 5nm. The laser system along with output characteristics such as the pulse duration, the focal spot size, and the percentage of amplified spontaneous emission (ASE) emitted along with the laser pulse will be presented. Schemes intended to lead to shorter wavelength x-ray emission will be described. The resultant requirements on the pump laser characteristics and the target design will be outlined. Results from recent solid target experiments and two-laser experiments, showing the interaction of a high-power, short pulse laser with a preformed plasma, will be presented. 13 refs., 5 figs

  7. Scaling model for high-aspect-ratio microballoon direct-drive implosions at short laser wavelengths

    Schirmann, D.; Juraszek, D.; Lane, S.M.; Campbell, E.M.

    1992-01-01

    A scaling model for hot spherical ablative implosions in direct-drive mode is presented. The model results have been compared with experiments from LLE, ILE, and LLNL. Reduction of the neutron yield due to illumination nonuniformities is taken into account by the assumption that the neutron emission is cut off when the gas shock wave reflected off the center meets the incoming pusher, i.e., at a time when the probability of shell breakup is greatly enhanced. The main advantage of this semiempirical scaling model is that it elucidates the principal features of these simple implosions and permits one to estimate very quickly the performance of a high-aspect-ratio direct-drive target illuminated by short-wavelength laser light. (Author)

  8. Surface Variability of Short-wavelength Radiation and Temperature on Exoplanets around M Dwarfs

    Zhang, Xin; Tian, Feng [Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084 (China); Wang, Yuwei [Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, QC H3A 0B9 (Canada); Dudhia, Jimy; Chen, Ming, E-mail: tianfengco@tsinghua.edu.cn [National Center for Atmospheric Research, Boulder, CO (United States)

    2017-03-10

    It is a common practice to use 3D General Circulation Models (GCM) with spatial resolution of a few hundred kilometers to simulate the climate of Earth-like exoplanets. The enhanced albedo effect of clouds is especially important for exoplanets in the habitable zones around M dwarfs that likely have fixed substellar regions and substantial cloud coverage. Here, we carry out mesoscale model simulations with 3 km spatial resolution driven by the initial and boundary conditions in a 3D GCM and find that it could significantly underestimate the spatial variability of both the incident short-wavelength radiation and the temperature at planet surface. Our findings suggest that mesoscale models with cloud-resolving capability be considered for future studies of exoplanet climate.

  9. Magneto-optical enhancement of TbFeCo/Al films at short wavelength

    Song, K.; Ito, H.; Naoe, M.

    1992-01-01

    In this paper, the bilayered films composed of magneto-optical (MO) amorphous Tb-Te-Co alloy and reflective Al layers were deposited successively on glass slide substrates without plasma exposure by using the facing targets sputtering system. The specimen films with the thickness of MO layer t MO below 5 nm showed apparent perpendicular magnetic anisotropy constant Ku of 2 to 3 x 10 6 erg/cm3 and rectangular Kerr loop. The specimen film with t MO of 14 nm took the Kerr rotation angle θ k as large as about 0.36 degree, at the wavelength λ as short as about 400 nm. These values of θ k is considerably larger than those of the bilayered films in the conventional MO media. Normally, the bilayered films with t MO above 50 nm took θ k of about 0.25 degree at θ k of 400 nm

  10. Temperature distribution and heat radiation of patterned surfaces at short wavelengths

    Emig, Thorsten

    2017-05-01

    We analyze the equilibrium spatial distribution of surface temperatures of patterned surfaces. The surface is exposed to a constant external heat flux and has a fixed internal temperature that is coupled to the outside heat fluxes by finite heat conductivity across the surface. It is assumed that the temperatures are sufficiently high so that the thermal wavelength (a few microns at room temperature) is short compared to all geometric length scales of the surface patterns. Hence the radiosity method can be employed. A recursive multiple scattering method is developed that enables rapid convergence to equilibrium temperatures. While the temperature distributions show distinct dependence on the detailed surface shapes (cuboids and cylinder are studied), we demonstrate robust universal relations between the mean and the standard deviation of the temperature distributions and quantities that characterize overall geometric features of the surface shape.

  11. Emitted short wavelength infrared radiation for detection and monitoring of volcanic activity

    Rothery, D. A.; Francis, P. W.; Wood, C. A.

    1988-01-01

    Thematic Mapper images from LANDSAT were used to monitor volcanoes. Achievements include: (1) the discovery of a magmatic precursor to the 16 Sept. 1986 eruption of Lascar, northern Chile, on images from Mar. and July 1985 and of continuing fumarolic activity after the eruption; (2) the detection of unreported major changes in the distribution of lava lakes on Erta'Ale, Ethiopia; and (3) the mapping of a halo of still-hot spatter surrounding a vent on Mount Erebus, Antarctica, on an image acquired 5 min after a minor eruption otherwise known only from seismic records. A spaceborne short wavelength infrared sensor for observing hot phenomena of volcanoes is proposed. A polar orbit is suggested.

  12. Short-wavelength InAlGaAs/AlGaAs quantum dot superluminescent diodes

    Liang, De-Chun; An, Qi; Jin, Peng; Li, Xin-Kun; Wei, Heng; Wu, Ju; Wang, Zhan-Guo

    2011-10-01

    This paper reports the fabrication of J-shaped bent-waveguide superluminescent diodes utilizing an InAlGaAs/AlGaAs quantum dot active region. The emission spectrum of the device is centred at 884 nm with a full width at half maximum of 37 nm and an output power of 18 mW. By incorporating an Al composition into the quantum dot active region, short-wavelength superluminescent diode devices can be obtained. An intersection was found for the light power-injection current curves measured from the straight-waveguide facet and the bent-waveguide facet, respectively. The result is attributed to the conjunct effects of the gain and the additional loss of the bent waveguide. A numerical simulation is performed to verify the qualitative explanation. It is shown that bent waveguide loss is an important factor that affects the output power of J-shaped superluminescent diode devices.

  13. Accelerator Physics Challenges of X-Ray FEL SASE Sources

    Emma, Paul J

    2002-05-30

    A great deal of international interest has recently focused on the design and construction of free-electron lasers (FEL) operating in the x-ray region ({approx}1 {angstrom}). At present, a linac-based machine utilizing the principle of self-amplified spontaneous emission (SASE) appears to be the most promising approach. This new class of FEL achieves lasing in a single pass of a high brightness electron beam through a long undulator. The requirements on electron beam quality become more demanding as the FEL radiation wavelength decreases, with the 1-{angstrom} goal still 3-orders of magnitude below the shortest wavelength operational SASE FEL (TTF-FEL at DESY [1]). The subpicosecond bunch length drives damaging effects such as coherent synchrotron radiation, and undulator vacuum chamber wakefields. Unlike linear colliders, beam brightness needs to be maintained only over a small ''slice'' of the bunch length, so the concepts of bunch integrated emittance and energy spread are less relevant than their high-frequency (or ''time-sliced'') counterparts, also adding a challenge to phase space diagnostics. Some of the challenges associated with the generation, preservation, measurement, and stability of high brightness FEL electron beams are discussed here.

  14. The 'Fresh-Bunch' technique in FELs

    Ben-Zvi, I.; Yang, K.M.; Yu, L.H.

    1991-01-01

    The 'Fresh Bunch' technique is being proposed as a method of increasing the gain and power of FEL amplifiers in which the length of the optical radiation pulse is shorter than the length of the electron bunch. In multi-stage FEL, electron beam energy spread is increased by the FEL interaction in the early stages. In the 'Fresh Bunch' technique, the low energy spread of the electron beam is recovered by shifting the radiation pulse to an undisturbed part of the electron bunch, thus improving the gain and trapping fraction in later stages. A test case for the application of the Fresh Bunch method is demonstrated by numerical simulation. In this particular example we examine a subharmonically seeded VUV Free-Electron Laser. We begin with the generation of harmonic radiation, which takes place over one part of the electron bunch. Then the radiation is shifted by means of a strong dispersive section to a fresh part of the bunch for exponential amplification and tapered wiggler amplification. By starting over with a new ensemble of electrons, the energy spread introduced by the bunching in the fundamental is removed, leading to an increased gain. Furthermore, it is possible to use a much stronger seed in the fundamental without incurring the penalty of a large energy spread later on. We note that more than a single application of the 'Fresh Bunch' method may be done in a single FEL multiplier-amplifier. Thus x-ray wavelengths may be reached by successive multiplication in a chain of FEL amplifiers starting from a tunable seed laser. 5 refs., 2 figs., 2 tabs

  15. Laser spectroscopy on atoms and ions using short-wavelength radiation

    Larsson, Joergen.

    1994-05-01

    Radiative properties and energy structures in atoms and ions have been investigated using UV/VUV radiation. In order to obtain radiation at short wavelengths, frequency mixing of pulsed laser radiation in crystals and gases has been performed using recently developed frequency-mixing schemes. To allow the study of radiative lifetimes shorter than the pulses from standard Q-switched lasers, different techniques have been used to obtain sufficiently short pulses. The Hanle effect has been employed following pulsed laser excitation for the same purpose. High-resolution spectroscopic techniques have been adapted for use with the broad-band, pulsed laser sources which are readily available in the UV/VUV spectral region. In order to investigate sources of radiation in the XUV and soft X-ray spectral regions, harmonic generation in rare gases has been studied. The generation of coherent radiation by the interaction between laser radiation and relativistic electrons in a synchrotron storage ring has also been investigated. 60 refs

  16. Ultrafast terawatt laser sources for high-field particle acceleration and short wavelength generation

    Downer, M.C.

    1996-01-01

    The Laser Sources working group concerned itself with recent advances in and future requirements for the development of laser sources relevant to high-energy physics (HEP) colliders, small scale accelerators, and the generation of short wave-length radiation. We heavily emphasized pulsed terawatt peak power laser sources for several reasons. First, their development over the past five years has been rapid and multi-faceted, and has made relativistic light intensity available to the advanced accelerator community, as well as the wider physics community, for the first time. Secondly, they have strongly impacted plasma-based accelerator research over the past two years, producing the first experimental demonstrations of the laser wakefield accelerator (LWFA) in both its resonantly-driven and self-modulated forms. Thirdly, their average power and wall-plug efficiency currently fall well short of projected requirements for future accelerators and other high average power applications, but show considerable promise for improving substantially over the next few years. A review of this rapidly emerging laser technology in the context of advanced accelerator research is therefore timely

  17. A non-destructive electron beam diagnostic for a SASE FEL using coherent off-axis undulator radiation

    Neuman, C P; Barnett, G A; Madey, J M J; O'Shea, P G

    1999-01-01

    We show that by observing coherent off-axis undulator radiation (COUR) from a short diagnostic wiggler, it may be possible to determine the length and structure of a short electron bunch. Typically the on-axis undulator radiation is incoherent, but at angles of a few degrees, the wavelength of the emitted radiation may be comparable to the length of a short electron bunch, and thus coherence effects emerge. Due to such coherence effects, the intensity of the emitted radiation may change by up to a factor of 10 sup 9 as the angle of observation is increased. The radiation becomes coherent in a way which depends on the length and structure of the electron bunch. Observing COUR disturbs the electron bunch negligibly. Thus, COUR can be used as a non-destructive diagnostic which would allow for optimization of FEL performance while an FEL is operating. Such a diagnostic could be used for proposed SASE FELs, which use short electron bunches. We present two methods to describe the theory for COUR, and we use these m...

  18. The SwissFEL Experimental Laser facility.

    Erny, Christian; Hauri, Christoph Peter

    2016-09-01

    The hard X-ray laser SwissFEL at the Paul Scherrer Institute is currently being commissioned and will soon become available for users. In the current article the laser facility is presented, an integral part of the user facility, as most time-resolved experiments will require a versatile optical laser infrastructure and precise information about the relative delay between the X-ray and optical pulse. The important key parameters are a high availability and long-term stability while providing advanced laser performance in the wavelength range from ultraviolet to terahertz. The concept of integrating a Ti:sapphire laser amplifier system with subsequent frequency conversion stages and drift compensation into the SwissFEL facility environment for successful 24 h/7 d user operation is described.

  19. Harmonic Content of the BESSY FEL Radiation

    Meseck, Atoosa

    2005-01-01

    BESSY proposes a linac-based cascaded High-Gain Harmonic-Generation (HGHG) free electron laser (FEL) multi-user facility. The BESSY soft X-ray FEL will consist of three undulator lines. The associated tunable lasers will cover the spectral range of 230nm to 460nm. Two to four HGHG stages reduce the seed wavelength to the desired radiation range of 1.24nm < λ < 51nm. The harmonic content of the high-intensity radiator output can be used to reduce the number of necessary HGHG stages. Moreover the higher harmonic content of the final output extends the offered spectral range and thus is of high interest for the user community. In this paper, the higher harmonic content of the final output as well as of the output of several radiators are investigated. The main parameters such as output power, pulse duration and bandwidth as well as their suitability for seeding are discussed.

  20. SwissFEL injector conceptual design report. Accelerator test facility for SwissFEL

    Pedrozzi, M.

    2010-07-01

    This comprehensive report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the design concepts behind the institute's SwissFEL X-ray Laser facility - in particular concerning the conceptual design of the injector system. The SwissFEL X-ray FEL project at PSI, involves the development of an injector complex that enables operation of a FEL system operating at 0.1 - 7 nm with permanent-magnet undulator technology and minimum beam energy. The injector pre-project was motivated by the challenging electron beam requirements necessary to drive the SwissFEL accelerator facility. The report takes a look at the mission of the test facility and its performance goals. The accelerator layout and the electron source are described, as are the low-level radio-frequency power systems and the synchronisation concept. The general strategy for beam diagnostics is introduced. Low energy electron beam diagnostics, the linear accelerator (Linac) and bunch compressor diagnostics are discussed, as are high-energy electron beam diagnostics. Wavelength selection for the laser system and UV pulse shaping are discussed. The laser room for the SwissFEL Injector and constructional concepts such as the girder system and alignment concepts involved are looked at. A further chapter deals with beam dynamics, simulated performance and injector optimisation. The facility's commissioning and operation program is examined, as are operating regimes, software applications and data storage. The control system structure and architecture is discussed and special subsystems are described. Radiation safety, protection systems and shielding calculations are presented and the lateral shielding of the silo roof examined

  1. TES arrays for the short wavelength band of the SAFARI instrument on SPICA

    Khosropanah, P.; Hijmering, R.; Ridder, M.; Gao, J. R.; Morozov, D.; Mauskopf, P. D.; Trappe, N.; O'Sullivan, C.; Murphy, A.; Griffin, D.; Goldie, D.; Glowacka, D.; Withington, S.; Jackson, B. D.; Audley, M. D.; de Lange, G.

    2012-09-01

    SPICA is an infra-red (IR) telescope with a cryogenically cooled mirror (~5K) with three instruments on board, one of which is SAFARI that is an imaging Fourier Transform Spectrometer (FTS) with three bands covering the wavelength of 34-210 μm. We develop transition edge sensors (TES) array for short wavelength band (34-60 μm) of SAFARI. These are based on superconducting Ti/Au bilayer as TES bolometers with a Tc of about 105 mK and thin Ta film as IR absorbers on suspended silicon nitride (SiN) membranes. These membranes are supported by long and narrow SiN legs that act as weak thermal links between the TES and the bath. Previously an electrical noise equivalent power (NEP) of 4×10-19 W/√Hz was achieved for a single pixel of such detectors. As an intermediate step toward a full-size SAFARI array (43×43), we fabricated several 8×9 detector arrays. Here we describe the design and the outcome of the dark and optical tests of several of these devices. We achieved high yield (<93%) and high uniformity in terms of critical temperature (<5%) and normal resistance (7%) across the arrays. The measured dark NEPs are as low as 5×10-19 W/√Hz with a response time of about 1.4 ms at preferred operating bias point. The optical coupling is implemented using pyramidal horns array on the top and hemispherical cavity behind the chip that gives a measured total optical coupling efficiency of 30±7%.

  2. Correlated evolution of short wavelength sensitive photoreceptor sensitivity and color pattern in Lake Malawi cichlids

    Michael J. Pauers

    2016-02-01

    Full Text Available For evolutionary ecologists, the holy grail of visual ecology is to establish an unambiguous link between photoreceptor sensitivity, the spectral environment, and the perception of specific visual stimuli (e.g., mates, food, predators, etc.. Due to the bright nuptial colors of the males, and the role female mate choice plays in their evolution, the haplochromine cichlid fishes of the African great lakes are favorite research subjects for such investigations. Despite this attention, current evidence is equivocal; while distinct correlations among photoreceptor sensitivity, photic environment, and male coloration exist in Lake Victorian haplochromines, attempts to find such correlations in Lake Malawian cichlids have failed. Lake Malawi haplochromines have a wide variability in their short-wavelength-sensitive photoreceptors, especially compared to their mid- and long-wavelength-sensitive photoreceptors; these cichlids also vary in the degree to which they express one of three basic color patterns (vertical bars, horizontal stripes, and solid patches of colors, each of which is likely used in a different form of communication. Thus, we hypothesize that, in these fishes, spectral sensitivity and color pattern have evolved in a correlated fashion to maximize visual communication; specifically, ultraviolet sensitivity should be found in vertically-barred species to promote ‘private’ communication, while striped species should be less likely to have ultraviolet sensitivity, since their color pattern carries ‘public’ information. Using phylogenetic independent contrasts, we found that barred species had strong sensitivity to ultraviolet wavelengths, but that striped species typically lacked sensitivity to ultraviolet light. Further, the only variable, even when environmental variables were simultaneously considered, that could predict ultraviolet sensitivity was color pattern. We also found that, using models of correlated evolution, color

  3. FEL options for power beaming

    Kim, K.J.; Zholents, A.A.; Zolotorev, M.S.; Vinokurov, N.A.

    1997-10-01

    The demand for the output power of communication satellites has been increasing exponentially. The satellite power is generated from solar panels which collect the sunlight and convert it to electrical power. The power per satellite is limited due to the limit in the practical size of the solar panel. One way to meet the power demand is to employ multiple satellites (up to 10) per the internationally agreed-upon ''slot'' in the geosynchronous earth orbit (GEO). However, this approach is very expensive due to the high cost of sending a satellite into a GEO orbit. An alternative approach is power beaming, i.e., to illuminate the solar panels with high power, highly-directed laser beams from earth. The power beaming generates more power per satellite for the same area of the solar panel. The minimum optical beam power, interesting for power beaming application, is P L = 200kW. The wavelength is chosen to be λ 0.84 microm, so that it is within one of the transmission windows of the air, and at the same time near the peak of the photo-voltaic conversion efficiency of Si, which is the commonly used material for the solar panels. Free electron lasers (FELs) are well suited for the power beaming application because they can provide high power with coherent wavefront, but without high energy density in media. In this article the authors discuss some principal issues, such as the choice of accelerator and electron gun, the choice of beam parameters, radiation hazards, technological availability, and overall efficiency and reliability of the installation. They also attempt to highlight the compromise between the cost of the primary installation, the operation cost, and the choice of technology, and its maturity. They then present several schemes for the accelerator-FEL systems based on RF accelerators. The initial electron beam accelerator up to the energy of a few MeV is more or less common for all these schemes

  4. Present and next steps of the JAERI superconducting rf linac based FEL program

    Minehara, E.J.; Yamauchi, T.; Sugimoto, M.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 0.3 kW FEL light and 100 kW or larger electron beam output in quasi continuous wave operation in 1999. The 1 kW class output as our present program goal will be achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 5 year program goal is the 100 kW class FEL light and a few tens MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual design options needed for such a very high power operation and shorter wavelength light sources will be discussed to improve and to upgrade the exciting facility. (author)

  5. Reactions of N2(A3Σ/sub u/+) and candidates for short wavelength lasers

    Setser, D.W.

    1987-01-01

    This proposal is a request for a one year renewal of a contract with the Univ. of California (Lawrence Livermore Laboratory). The proposed experiments are directed towards investigation of possible short-wavelength laser candidate molecules that can be pumped via excitation-transfer reactions with N 2 (A 3 Σ/sub u/ + ) molecules. We will continue our flowing-afterglow experiments to characterize the excitation-transfer collisions between N 2 (A) and promising acceptor diatomic molecules (radicals). We also will extend the studies to include excitation-transfer to Cd and to S atoms. For some chemical systems, a pulsed N 2 (A) source would be very convenient for kinetic measurements and we propose to develop a pulsed N 2 (A) source. During the first year, we have shown that the excitation-transfer reaction between N 2 (A) and SO(X) provides a possible laser candidate. Therefore, we propose to start a program to study the quenching and relaxation kinetics of the SO(A 3 PI) molecule, using pulsed laser excitation techniques to generate specific levels of SO(A 3 PI)

  6. Short wavelength infrared optical windows for evaluation of benign and malignant tissues

    Sordillo, Diana C.; Sordillo, Laura A.; Sordillo, Peter P.; Shi, Lingyan; Alfano, Robert R.

    2017-04-01

    There are three short wavelength infrared (SWIR) optical windows outside the conventionally used first near-infrared (NIR) window (650 to 950 nm). They occur in the 1000- to 2500-nm range and may be considered second, third, and fourth NIR windows. The second (1100 to 1350 nm) and third windows (1600 to 1870 nm) are now being explored through label-free linear and multiphoton imaging. The fourth window (2100 to 2350 nm) has been mostly ignored because of water absorption and the absence of sensitive detectors and ultrafast lasers. With the advent of new technology, use of window IV is now possible. Absorption and scattering properties of light through breast and prostate cancer, bone, lipids, and intralipid solutions at these windows were investigated. We found that breast and prostate cancer and bone have longer total attenuation lengths at NIR windows III and IV, whereas fatty tissues and intralipid have longest lengths at windows II and III. Since collagen is the major chromophore at 2100 and 2350 nm, window IV could be especially valuable in evaluating cancers and boney tissues, whereas windows II and III may be more useful for tissues with high lipid content. SWIR windows may be utilized as additional optical tools for the evaluation of collagen in tissues.

  7. Short-wavelength ablation of polymers in the high-fluence regime

    Liberatore, Chiara; Juha, Libor; Vyšín, Ludek; Endo, Akira; Mocek, Tomas; Mann, Klaus; Müller, Matthias; Pina, Ladislav; Rocca, Jorge J

    2014-01-01

    Short-wavelength ablation of poly(1,4-phenylene ether-ether-sulfone) (PPEES) and poly(methyl methacrylate) (PMMA) was investigated using extreme ultraviolet (XUV) and soft x-ray (SXR) radiation from plasma-based sources. The initial experiment was performed with a 10 Hz desktop capillary-discharge XUV laser lasing at 46.9 nm. The XUV laser beam was focused onto the sample by a spherical mirror coated with a Si/Sc multilayer. The same materials were irradiated with 13.5 nm radiation emitted by plasmas produced by focusing an optical laser beam onto a xenon gas-puff target. A Schwarzschild focusing optics coated with a Mo/Si multilayer was installed at the source to achieve energy densities exceeding 0.1 J cm −2 in the tight focus. The existing experimental system at the Laser Laboratorium Göttingen was upgraded by implementing a 1.2 J driving laser. An increase of the SXR fluence was secured by improving the alignment technique. (paper)

  8. Ultraviolet and short wavelength visible light exposure: why ultraviolet protection alone is not adequate.

    Reichow, Alan W; Citek, Karl; Edlich, Richard F

    2006-01-01

    The danger of exposure to ultraviolet (UV) radiation in both the natural environment and artificial occupational settings has long been recognized by national and international standards committees and worker safety agencies. There is an increasing body of literature that suggests that protection from UV exposure is not enough. Unprotected exposure to the short wavelengths of the visible spectrum, termed the "blue light hazard", is gaining acceptance as a true risk to long-term visual health. Global standards and experts in the field are now warning that those individuals who spend considerable time outdoors should seek sun filter eyewear with high impact resistant lenses that provide 100% UV filtration, high levels of blue light filtration, and full visual field lens/frame coverage as provided by high wrap eyewear. The Skin Cancer Foundation has endorsed certain sunglasses as "product[s]...effective [as] UV filter[s] for the eyes and surrounding skin". However, such endorsement does not necessarily mean that the eyewear meets all the protective needs for outdoor use. There are several brands that offer products with such protective characteristics. Performance sun eyewear by Nike Vision, available in both corrective and plano (nonprescription) forms, is one such brand incorporating these protective features.

  9. Potential applications of a dual-sweep streak camera system for characterizing particle and photon beams of VUV, XUV, and x-ray FELS

    Lumpkin, A. [Argonne National Lab., IL (United States)

    1995-12-31

    The success of time-resolved imaging techniques in the Characterization of particle beams and photon beams of the recent generation of L-band linac-driven or storage ring FELs in the infrared, visible, and ultraviolet wavelength regions can be extended to the VUV, XUV, and x-ray FELs. Tests and initial data have been obtained with the Hamamatsu C5680 dual-sweep streak camera system which includes a demountable photocathode (thin Au) assembly and a flange that allows windowless operation with the transport vacuum system. This system can be employed at wavelengths shorter than 100 nm and down to 1 {Angstrom}. First tests on such a system at 248-nm wavelengths have been performed oil the Argonne Wakefield Accelerator (AWA) drive laser source. A quartz window was used at the tube entrance aperture. A preliminary test using a Be window mounted on a different front flange of the streak tube to look at an x-ray bremsstrahlung source at the AWA was limited by photon statistics. This system`s limiting resolution of {sigma}{approximately}1.1 ps observed at 248 nm would increase with higher incoming photon energies to the photocathode. This effect is related to the fundamental spread in energies of the photoelectrons released from the photocathodes. Possible uses of the synchrotron radiation sources at the Advanced Photon Source and emerging short wavelength FELs to test the system will be presented.

  10. THz Imaging by a Wide-band Compact FEL

    Uk Jeong Young; Cheol Lee Byung; Hee-Park, S

    2004-01-01

    We have developed a laboratory-scale users facility with a compact THz FEL. The FEL operates in the wide wavelength range of 100–1200 μm, which corresponds to 0.3-3 THz. THz radiation from the FEL shows well collimated Gaussian spatial distribution and narrow spectral width of 0.3 μm, which is Fourier transform limited by the estimated pulse duration of 20 ps. The main application of the FEL is THz imaging for bio-medical researches. We are developing THz imaging techniques by 2-D scanning, single pulse capturing with the electro-optic method, and 3-D holography. High power, coherent, and pulsed feature of the FEL radiation is expected to show much better performance in advanced THz imaging of 3-D tomography by comparing with incoherent and weak THz sources. By controlling the optical delay between reference beam and scattered light from an object, we can get its 3-D tomography by the holograms. The coherent and pulse length of the FEL beam is measured to be 3-6 mm. In this paper we will show a...

  11. Novel phenomena in clusters irradiated by short-wavelength free-electron lasers

    Fukuzawa, Hironobu; Ueda, Kiyoshi

    2017-01-01

    By electron spectroscopy, we investigated various phenomena that are caused by the irradiation of extreme ultraviolet (EUV) and X-ray free-electron laser (FEL) pulses on rare-gas clusters. The results for the Ne clusters, which were irradiated by EUVFEL pulses at a photon energy of 20.3 eV below the ionization threshold, illustrate that novel interatomic processes yield low-energy electrons. The results for the Xe clusters, irradiated by EUVFEL pulses at a photon energy of 24.3 eV above the threshold, illustrate that nanoplasma is formed as a result of trapping the photoelectrons and consequently emits low-energy thermal electrons. The results for the Ar clusters irradiated by 5 keV XFEL pulses illustrate that nanoplasma is formed by trapping low-energy Auger electrons and secondary electrons in the tens of fs range, and continuous thermal emission from the plasma occurs in the ps range. (author)

  12. Tapered undulators for SASE FELs

    Fawley, W M; Vinokurov, N A

    2002-01-01

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission, where the radiation tends to have a relatively broad bandwidth and limited temporal coherence. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of tapered undulators for parameters corresponding to the Argonne low-energy undulator test line FEL and the proposed linac coherent light source.

  13. Viability of infrared FEL facilities

    Schwettman, H.A.

    2004-01-01

    Infrared FELs have broken important ground in optical science in the past decade. The rapid development of optical parametric amplifiers and oscillators, and THz sources, however, has changed the competitive landscape and compelled FEL facilities to identify and exploit their unique advantages. The viability of infrared FEL facilities depends on targeting unique world-class science and providing adequate experimental beam time at competitive costs

  14. The JAERI superconducting RF linac-based FELS and THEIR cryogenics

    Minehara, Eisuke J.

    2003-01-01

    In the 21st century, we need a powerful and efficient free-electron laser (FEL) for academic and industrial uses in almost all fields. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, the JAERI FEL group and I have developed an industrial FEL driven by a compact, stand-alone and zero-boil off super-conducting rf linac with an energy-recovery geometry. Our discussions on the JAERI FEL and cryogenics will cover market-requirements for the industrial FELs, some answers from the JAERI compact, stand-alone and zero-boil off cryostat concept and operational experiences over these 9 years, our discovery of the new, highly-efficient, high-power, and ultra-short pulse lasing mode, and the energy-recovery geometry. (author)

  15. SwissFEL - Conceptual design report

    Ganter, R.

    2010-07-01

    This report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the design concepts behind the institute's SwissFEL X-ray Laser facility. The goal of SwissFEL is to provide a source of extremely bright and short X-ray pulses enabling scientific discoveries in a wide range of disciplines to be made, from fundamental research through to applied science. The eminent scientific need for such an X-ray source which is well documented in the SwissFEL Science Case Report is noted. The technical design of SwissFEL has to keep a delicate balance between the demand by experimentalists for breathtaking performance in terms of photon beam properties on the one hand, and essential requirements for a user facility, such as confidence in technical feasibility, reliable and stable functioning and economy of installation and operation on the other hand. The baseline design which has been defined is discussed. This relies entirely on state-of-the-art technologies without fundamental feasibility issues. This SwissFEL Conceptual Design Report describes the technical concepts and parameters used for this baseline design. The report discusses the design strategy, the choice of parameters and the simulation of the accelerator unit and undulator. The photon beam layout is discussed, as is the installation's tera hertz pump source. The components of the facility, including the laser and radio-frequency systems, timing and synchronisation systems, magnets, undulators, and mechanical support systems are discussed. Further, the concepts behind electron beam diagnostics, vacuum equipment as well as control and feedback systems are discussed. The building layout is described and safety issues are discussed. An appendix completes the report

  16. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources

    Loch, R.A.; Sobierajski, R.; Louis, Eric; Bosgra, J.; Bosgra, J.; Bijkerk, Frederik

    2012-01-01

    The single shot damage thresholds of multilayer optics for highintensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly

  17. Short-Wavelength Infrared (SWIR) spectroscopy of low-grade metamorphic volcanic rocks of the Pilbara Craton

    Abweny, Mohammad S.; van Ruitenbeek, Frank J A; de Smeth, Boudewijn; Woldai, Tsehaie; van der Meer, Freek D.; Cudahy, Thomas; Zegers, Tanja; Blom, Jan Kees; Thuss, Barbara

    This paper shows the results of Short-Wavelength Infrared (SWIR) spectroscopy investigations of volcanic rocks sampled from low-grade metamorphic greenstone belts of the Archean Pilbara Craton in Western Australia. From the reflectance spectra a range of spectrally active minerals were identified,

  18. Short wavelength light filtering by the natural human lens and IOLs -- implications for entrainment of circadian rhythm

    Brøndsted, Adam Elias; Lundeman, Jesper Holm; Kessel, Line

    2013-01-01

    Photoentrainment of circadian rhythm begins with the stimulation of melanopsin containing retinal ganglion cells that respond directly to blue light. With age, the human lens becomes a strong colour filter attenuating transmission of short wavelengths. The purpose of the study was to examine the ...

  19. Effect of FEL induced ionization on X-ray reflectivity of multilayers

    Ksenzov, Dmitriy; Grigorian, Souren; Pietsch, Ullrich [University of Siegen (Germany)

    2009-07-01

    The VUV-FEL in Hamburg (FLASH) emits short-pulse radiation with wavelengths from 6 to 30 nm and a pulse length of 10-50 fs. The FLASH wavelength allows x-ray diffraction experiments at periodical multilayer's structures acting as 1D crystal. The probe of depth selective interaction of the high-intense x-ray short pulse with these objects can be used to obtain information about possible electronic excitation and various recombination processes inside multilayers. As known from recent experiments at FLASH, the later ones are most likely using highly intense FEL radiation. The ML reflectivity is analyzed for case of that the optical parameters are changing as function of the depth of the penetrating incident pulse into the multilayer. The response is studied for the model system La/B{sub 4}C using two experimental conditions both at fixed incidence angle: 1) the energy of the incident pulses, E, coincides with the energy of the 1st order multilayer Bragg peak, E{sub B}, of the reflection curve, and 2) the energy of incident pulse differs by a small dE from E{sub B}. The ML response to a given sub-pulse differs for both conditions. However, there is a clear fingerprint of ionization for both conditions for the case that E is close to the K-absorption edge of B-atoms. Our results support respective efforts to measure the optical parameters of solids under high-intense FEL radiation.

  20. Optimization Studies of the FERMI at ELETTRA FEL Design

    De Ninno, Giovanni; Fawley, William M.; Penn, Gregory E.; Graves, William

    2005-01-01

    The FERMI at ELETTRA project at Sincotrone Trieste involves two FEL's, each based upon the principle of seeded harmonic generation and using the existing ELETTRA injection linac at 1.2 GeV beam energy. Scheduled to be completed in 2008, FEL-1 will operate in 40-100 nm wavelength range and will involve one stage of harmonic up-conversion. The second undulator line, FEL-2, will begin operation two years later in the 10-40 nm wavelength range and use two harmonic stages operating as a cascade. The FEL design assumes continuous wavelength tunability over the full wavelength range, and polarization tunability of the output radiation including vertical or horizontal linear as well as helical polarization. The design considers focusing properties and segmentation of realizable undulators and available input seed lasers. We review the studies that have led to our current design. We present results of simulations using GENESIS and GINGER simulation codes including studies of various shot-to-shot fluctuations and undulator errors. Findings for the expected output radiation in terms of the power, transverse and longitudinal coherence are reported

  1. Optimization Studies of the FERMI at ELETTRA FEL Design

    De Ninno, G

    2005-01-01

    The FERMI at ELETTRA project at Sincotrone Trieste involves two FEL's, each based upon the principle of a seeded harmonic cascade and using the existing ELETTRA injection linac at 1.2 GeV beam energy. Scheduled to be completed in 2008, FEL-1 will operate in the 40-100 nm wavelength range and will involve one stage of harmonic up-conversion. The second phase, FEL-2, will begin operation two years later in the 10-40 nm wavelength range and will involve two cascade stages. FEL design assumes wavelength tunability over the full wavelength range and polarization tunability of the output radiation including helical polarization. The design considers focusing properties and segmentation of realizable undulators and available input seed lasers. We discuss how the interplay between various limitations and self-consistent accelerator simulations [1,2] have led to our current design. We present results of simulations using GENESIS and GINGER simulation codes including studies of various shot-to-shot fluctuations and und...

  2. A proposed visible FEL Facility at Boeing

    Dowell, D.H.; Adamski, J.L.; Hayward, T.D. [Boeing Defense & Space Group, Seattle, WA (United States)] [and others

    1995-12-31

    A 1-kW average power, visible wavelength FEL is described, based on a 120-MeV, 0.1. A macropulse average current linac operating at a duty factor of 0. 6% and having average beam power of 70 kW. The accelerator will employ a demonstrated photoinjector, 18-MeV, 433-MHz linac as an injector, followed by a 1300-MHz longitudinal phase space {open_quotes} linearizer,{close_quotes} a magnetic buncher chicane, and seven 1300-MHz, pulsed traveling wave linac sections. The magnets used to transport the beam from the linac to the FEL centerline, the 5-m THUNDER wiggler, and the optical resonator will be reclaimed from previous FEL demonstration experiments. We expect to attain pulse lengths of 7 ps for 3.5 nC, with minimal distortion of the pulse profile and normalized rms emittance of 7.5 {+-} 2.5 {pi} mm-mr. FELEX projects a laser conversion efficiency of 4.3 %, yielding average output of 3 kW.

  3. Quantum SASE FEL with a Laser Wiggler

    Bonifacio, R

    2005-01-01

    Quantum effects in high-gain FELs become relevant when ρ'=ρ(mcγ/ ћ k)<1. The quantum FEL parameter ρ' rules the maximum number of photons emitted per electrons. It has been shown that when ρ'<1 a "quantum purification" of the SASE regime occurs: in fact, the spectrum of the emitted radiation (randomly spiky in the usual classical SASE regime) shrinks to a very narrow single line, leading to a high degree of temporal coherence. From the definition of ρ it appears that in order to achieve the quantum regime, small values of ρ, beam energy and radiation wavelength are necessary. These requirements can be met only using a laser wiggler. In this work we state the scaling laws necessary to operate a SASE FEL in the Angstrom region. All physical quantities are expressed in terms of the normalized emittance and of two parameters: the ratio between laser and electron beam spot sizes and the ratio between Rayleigh range and electron ...

  4. FEL Trajectory Analysis for the VISA Experiment

    Nuhn, Heinz-Dieter

    1998-01-01

    The Visual to Infrared SASE Amplifier (VISA) [1] FEL is designed to achieve saturation at radiation wavelengths between 800 and 600 nm with a 4-m pure permanent magnet undulator. The undulator comprises four 99-cm segments each of which has four FODO focusing cells superposed on the beam by means of permanent magnets in the gap alongside the beam. Each segment will also have two beam position monitors and two sets of x-y dipole correctors. The trajectory walk-off in each segment will be reduced to a value smaller than the rms beam radius by means of magnet sorting, precise fabrication, and post-fabrication shimming and trim magnets. However, this leaves possible inter-segment alignment errors. A trajectory analysis code has been used in combination with the FRED3D [2] FEL code to simulate the effect of the shimming procedure and segment alignment errors on the electron beam trajectory and to determine the sensitivity of the FEL gain process to trajectory errors. The paper describes the technique used to establish tolerances for the segment alignment

  5. FEL for the polymer processing industries

    Kelley, Michael J.

    1997-05-01

    Polymers are everywhere in modern life because of their unique combination of end-use functionalities, ease of processing, recycling potential and modest cost. The physical and economic scope of the infrastructure committed to present polymers makes the introduction of entirely new chemistry unlikely. Rather, the breadth of commercial offerings more likely to shrink in the face of the widening mandate for recycling, especially of packaging. Improved performance and new functionality must therefore come by routes such as surface modification. However they must come with little environmental impact and at painfully low cost. Processing with strongly absorbed light offers unique advantages. The journal and patent literatures disclose a number of examples of benefits that can be achieved, principally by use of excimer lasers or special UV lamps. Examples of commercialization are few, however, because of the unit cost and maximum scale of existing light sources. A FEL, however, offers unique advantages: tunability to the optimum wavelength, potential for scale up to high average power, and a path to attractively low unit cost of light. A business analysis of prospective applications defines the technical and economic requirements a FEL for polymer surface processing must meet. These are compared to FEL technology as it now stands and as it is envisioned.

  6. New Insight into Short-Wavelength Solar Wind Fluctuations from Vlasov Theory

    Sahraoui, Fouad; Belmont, G.; Goldstein, M. L.

    2012-01-01

    The nature of solar wind (SW) turbulence below the proton gyroscale is a topic that is being investigated extensively nowadays, both theoretically and observationally. Although recent observations gave evidence of the dominance of kinetic Alfven waves (KAWs) at sub-ion scales with omega omega (sub ci)) is more relevant. Here, we study key properties of the short-wavelength plasma modes under limited, but realistic, SW conditions, Typically Beta(sub i) approx. > Beta (sub e) 1 and for high oblique angles of propagation 80 deg theory, we discuss the relevance of each plasma mode (fast, Bernstein, KAW, whistler) in carrying the energy cascade down to electron scales. We show, in particular, that the shear Alfven mode (known in the magnetohydrodynamic limit) extends at scales kappa rho (sub i) approx. > 1 to frequencies either larger or smaller than omega (sub ci), depending on the anisotropy kappa (parallel )/ kappa(perpendicular). This extension into small scales is more readily called whistler (omega > omega (sub ci)) or KAW (omega < omega (sub ci)) although the mode is essentially the same. This contrasts with the well-accepted idea that the whistler branch always develops as a continuation at high frequencies of the fast magnetosonic mode. We show, furthermore, that the whistler branch is more damped than the KAW one, which makes the latter the more relevant candidate to carry the energy cascade down to electron scales. We discuss how these new findings may facilitate resolution of the controversy concerning the nature of the small-scale turbulence, and we discuss the implications for present and future spacecraft wave measurements in the SW.

  7. Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities

    Haan, S.W.; Herrmann, M.C.; Dittrich, T.R.; Fetterman, A.J.; Marinak, M.M.; Munro, D.H.; Pollaine, S.M.; Salmonson, J.D.; Strobel, G.L.; Suter, L.J.

    2005-01-01

    Targets meant to achieve ignition on the National Ignition Facility (NIF) [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, Laser Focus World 30, 75 (1994)] have been redesigned and their performance simulated. Simulations indicate dramatically reduced growth of short wavelength hydrodynamic instabilities, resulting from two changes in the designs. First, better optimization results from systematic mapping of the ignition target performance over the parameter space of ablator and fuel thickness combinations, using techniques developed by one of us (Herrmann). After the space is mapped with one-dimensional simulations, exploration of it with two-dimensional simulations quantifies the dependence of instability growth on target dimensions. Low modes and high modes grow differently for different designs, allowing a trade-off of the two regimes of growth. Significant improvement in high-mode stability can be achieved, relative to previous designs, with only insignificant increase in low-mode growth. This procedure produces capsule designs that, in simulations, tolerate several times the surface roughness that could be tolerated by capsules optimized by older more heuristic techniques. Another significant reduction in instability growth, by another factor of several, is achieved with ablators with radially varying dopant. In this type of capsule the mid-Z dopant, which is needed in the ablator to minimize x-ray preheat at the ablator-ice interface, is optimally positioned within the ablator. A fabrication scenario for graded dopants already exists, using sputter coating to fabricate the ablator shell. We describe the systematics of these advances in capsule design, discuss the basis behind their improved performance, and summarize how this is affecting our plans for NIF ignition

  8. Harmonic Inverse FEL Interaction at 800nm

    Sears, C M S; Siemann, R; Spencer, J E

    2005-01-01

    The inverse Free Electron Laser (IFEL) interaction has recently been proposed and demonstrated as a premodulator for High Gain Harmonic Generation (HGHG) experiments. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.25 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. The harmonic IFEL can add flexibility to HGHG FEL design.

  9. Action spectrum for photobleaching of human lenses by short wavelength visible irradiation

    Kessel, Line; Larsen, Michael

    2015-01-01

    transmission with increasing laser irradiation. CONCLUSIONS: For a 75 year old lens an effect corresponding to elimination of 15 years or more of optical ageing was obtained. This study of the spectral characteristics and intensity needed to bleach the human lens with single-photon laser effects found...... an action-spectrum peak at 420 nm tailing gradually off toward longer wavelengths and more steeply toward shorter wavelengths. The results may be used to guide experiments with two-photon bleaching....

  10. A cure for the blues: opsin duplication and subfunctionalization for short-wavelength sensitivity in jewel beetles (Coleoptera: Buprestidae).

    Lord, Nathan P; Plimpton, Rebecca L; Sharkey, Camilla R; Suvorov, Anton; Lelito, Jonathan P; Willardson, Barry M; Bybee, Seth M

    2016-05-18

    Arthropods have received much attention as a model for studying opsin evolution in invertebrates. Yet, relatively few studies have investigated the diversity of opsin proteins that underlie spectral sensitivity of the visual pigments within the diverse beetles (Insecta: Coleoptera). Previous work has demonstrated that beetles appear to lack the short-wavelength-sensitive (SWS) opsin class that typically confers sensitivity to the "blue" region of the light spectrum. However, this is contrary to established physiological data in a number of Coleoptera. To explore potential adaptations at the molecular level that may compensate for the loss of the SWS opsin, we carried out an exploration of the opsin proteins within a group of beetles (Buprestidae) where short-wave sensitivity has been demonstrated. RNA-seq data were generated to identify opsin proteins from nine taxa comprising six buprestid species (including three male/female pairs) across four subfamilies. Structural analyses of recovered opsins were conducted and compared to opsin sequences in other insects across the main opsin classes-ultraviolet, short-wavelength, and long-wavelength. All nine buprestids were found to express two opsin copies in each of the ultraviolet and long-wavelength classes, contrary to the single copies recovered in all other molecular studies of adult beetle opsin expression. No SWS opsin class was recovered. Furthermore, the male Agrilus planipennis (emerald ash borer-EAB) expressed a third LWS opsin at low levels that is presumed to be a larval copy. Subsequent homology and structural analyses identified multiple amino acid substitutions in the UVS and LWS copies that could confer short-wavelength sensitivity. This work is the first to compare expressed opsin genes against known electrophysiological data that demonstrate multiple peak sensitivities in Coleoptera. We report the first instance of opsin duplication in adult beetles, which occurs in both the UVS and LWS opsin classes

  11. Optical klystron FELs based on tandem electrostatic accelerators

    Gover, A.; Friedman, A.

    1989-01-01

    The operation of tandem electrostatic accelerator FELs in an optical klystron configuration makes it possible to take advantage of the high quality (low emittance and low energy spread) of the electron beam in electrostatic accelerators. With evolving microwiggler technology, state-of-the-art moderate energy (6-14-MeV) tandem electrostatic accelerators may be used for the development of highly coherent tunable radiation sources in the entire IR region. The authors present the general design considerations and the predicted operating characteristics of such devices and refer in specifics to a design of a 10-1000-μm FEL based on the parameters of a 5-6-MeV high current tandem accelerator. The operating wavelength of FELs is determined by the Doppler shift formula

  12. The FEL development at the Advanced Photon Source

    Arnold, N. D.; Benson, C.; Berg, S.; Berg, W.; Biedron, S. G.; Chae, Y. C.; Crosbie, E. A.; Decker, G.; Dejus, R. J.; Den Hartog, P.; Deriy, B.; Dortwegt, R.; Edrmann, M.; Freund, H. P.; Friedsam, H.; Galayda, J. N.; Gluskin, E.; Goeppner, G. A.; Grelick, A.; Huang, Z.; Jones, J.; Kang, Y.; Kim, K.-J.; Kim, S.; Kinoshita, K.; Lewellen, J. W.; Lill, R.; Lumpkin, A. H.; Makarov, O.; Markovich, G. M.; Milton, S. V.; Moog, E. R.; Nassiri, A.; Ogurtsov, V.; Pasky, S.; Power, J.; Tieman, B.; Trakhtenberg, E.; Travish, G.; Vasserman, I.; Walters, D. R.; Wang, J.; Xu, S.; Yang, B.

    1999-01-01

    Construction of a single-pass free-electron laser (FEL) based on the self-amplified spontaneous emission (SASE) mode of operation is nearing completion at the Advanced Photon Source (APS) with initial experiments imminent. The APS SASE FEL is a proof-of-principle fourth-generation light source. As of January 1999 the undulator hall, end-station building, necessary transfer lines, electron and optical diagnostics, injectors, and initial undulatory have been constructed and, with the exception of the undulatory, installed. All preliminary code development and simulations have also been completed. The undulator hall is now ready to accept first beam for characterization of the output radiation. It is the project goal to push towards fill FEL saturation, initially in the visible, but ultimately to W and VUV, wavelengths

  13. Monolithic photonic integration for visible and short near-infrared wavelengths: technologies and platforms for bio and life science applications

    Porcel, Marco A. G.; Artundo, Iñigo; Domenech, J. David; Geuzebroek, Douwe; Sunarto, Rino; Hoofman, Romano

    2018-04-01

    This tutorial aims to provide a general overview on the state-of-the-art of photonic integrated circuits (PICs) in the visible and short near-infrared (NIR) wavelength ranges, mostly focusing in silicon nitride (SiN) substrates, and a guide to the necessary steps in the design toward the fabrication of such PICs. The focus is put on bio- and life sciences, given the adequacy and, thus, a large number of applications in this field.

  14. Photonic crystal fibre enables short-wavelength two-photon laser scanning fluorescence microscopy with fura-2

    McConnell, Gail; Riis, Erling

    2004-01-01

    We report on a novel and compact reliable laser source capable of short-wavelength two-photon laser scanning fluorescence microscopy based on soliton self-frequency shift effects in photonic crystal fibre. We demonstrate the function of the system by performing two-photon microscopy of smooth muscle cells and cardiac myocytes from the rat pulmonary vein and Chinese hamster ovary cells loaded with the fluorescent calcium indicator fura-2/AM

  15. Study of short wavelength turbulence in dense plasmas. Final technical report, September 8, 1981-August 7, 1983

    Chen, F.F.; Joshi, C.

    1983-10-01

    The work includes studies of four topics: (1) Thomson scattering from short wavelength density fluctuations from laser excited plasmas from solid targets; (2) studies of SBS driven ion acoustic waves and it's harmonics in underdense plasmas; (3) studies of optical mixing excitation of electron plasma waves (high frequency density fluctuations) in theta pinch plasma; and (4) computational studies of high frequency wave excitation by intense laser beams in plasmas

  16. Laser spectroscopy of the products of photoevaporation with a short-wavelength (λ = 193 nm) excimer laser

    Gochelashvili, K S; Zemskov, M E; Evdokimova, O N; Mikhkel'soo, V T; Prokhorov, A M

    1999-01-01

    An excimer laser spectrometer was designed and constructed. It consists of a high-vacuum interaction chamber, a short-wavelength (λ = 193 nm) excimer ArF laser used for evaporation, a probe dye laser pumped by an XeCl excimer laser, and a system for recording a laser-induced fluorescence signal. This spectrometer was used to investigate nonthermal mechanisms of photoevaporation of a number of wide-gap dielectrics. (laser applications and other topics in quantum electronics)

  17. The drive laser for the APS LEUTL FEL Rf photoinjector

    Arnold, N.; Koldenhoven, R.; Travish, G.

    1999-01-01

    The APS LEUTL free-electron laser (FEL) is a high-gain, short-wavelength device requiring a high-current, low-emittance beam. An rf photoinjector driven by a laser is used to provide the requisite beam. The drive laser consists of a diode-pumped Nd:Glass oscillator and a chirped pulse amplification (CPA) system consisting of a grating stretcher, a flashlamp-pumped Nd:Glass regenerative amplifier, and a grating compressor. The system generates 4-mj pulses in the R with a pulse length as short as 2 ps FWHM and a repetition rate of 6 Hz. Nonlinear doubling crystals are used to generate fourth-harmonic output of ∼500 microJ in the UV (263 nm), which is required to exceed the work function of the copper cathode in the gun. This paper describes the drive laser as well as the extensive controls implemented to allow for remote operation and monitoring. Performance measurements as well as the operating experience are presented

  18. Stability of short-axial-wavelength internal kink modes of an anisotropic plasma

    Faghihi, M.; Scheffel, J.

    1987-12-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m ≥ 1) modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also, constant-current-density equilibria can be stabilized for P > P and large β

  19. Stability of short-axial-wavelength internal kink modes of an anisotropic plasma

    Faghihi, M.; Schefffel, J.

    1987-01-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m ≥ 1) modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also, constant-current-density equilibria can be stabilized for Psub(perpendicular) > Psub(parallel) and large βsub(perpendicular). (author)

  20. The "TEU-FEL" project

    Ernst, G.J.; Witteman, W.J.; Verschuur, Jeroen W.J.; Mols, R.F.X.A.M.; Mols, R.F.X.A.M.; van Oerle, B.M.; van Oerle, B.M.; Bouman, A.F.M.; Botman, J.I.M.; Hagedoorn, H.L.; Delhez, J.L.; Kleeven, W.J.G.M.

    1995-01-01

    The free-electron laser of the TEU-FEL project will be based on a 6 MeV photo-cathode linac as injector, a 25 MeV race-track microtron as main accelerator and a hybrid, 25 mm period undulator. The project will be carried out in two phases. In phase one only the 6 MeV linac will be used, The FEL will then produce tunable radiation around 200 µm. In phase two the linac will be used as an injector for the microtron. The FEL will then produce tunable radiation around 10 µm. Technical information ...

  1. Group III nitride semiconductors for short wavelength light-emitting devices

    Orton, J. W.; Foxon, C. T.

    1998-01-01

    The group III nitrides (AlN, GaN and InN) represent an important trio of semiconductors because of their direct band gaps which span the range 1.95-6.2 eV, including the whole of the visible region and extending well out into the ultraviolet (UV) range. They form a complete series of ternary alloys which, in principle, makes available any band gap within this range and the fact that they also generate efficient luminescence has been the main driving force for their recent technological development. High brightness visible light-emitting diodes (LEDs) are now commercially available, a development which has transformed the market for LED-based full colour displays and which has opened the way to many other applications, such as in traffic lights and efficient low voltage, flat panel white light sources. Continuously operating UV laser diodes have also been demonstrated in the laboratory, exciting tremendous interest for high-density optical storage systems, UV lithography and projection displays. In a remarkably short space of time, the nitrides have therefore caught up with and, in some ways, surpassed the wide band gap II-VI compounds (ZnCdSSe) as materials for short wavelength optoelectronic devices. The purpose of this paper is to review these developments and to provide essential background material in the form of the structural, electronic and optical properties of the nitrides, relevant to these applications. We have been guided by the fact that the devices so far available are based on the binary compound GaN (which is relatively well developed at the present time), together with the ternary alloys AlGaN and InGaN, containing modest amounts of Al or In. We therefore concentrate, to a considerable extent, on the properties of GaN, then introduce those of the alloys as appropriate, emphasizing their use in the formation of the heterostructures employed in devices. The nitrides crystallize preferentially in the hexagonal wurtzite structure and devices have so

  2. Stability of short-axial-wavelength internal kink modes of an anisotropic plasma

    Faghihi, M.; Schefffel, J.

    1987-12-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m greater than or equal to 1) modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also, constant-current-density equilibria can be stabilized for Psub(perpendicular) > Psub(parallel) and large ..beta..sub(perpendicular).

  3. Is there an unknown risk for short-wavelength visible laser radiation?

    Reidenbach, Hans-Dieter; Beckmann, Dirk; Al Ghouz, Imene; Dollinger, Klaus [Fachhochschule Koeln (Germany). Forschungsbereich Medizintechnik und Nichtionisierende Strahlung; Ott, Guenter [Bundesanstalt fuer Arbeitsschutz und Arbeitsmedizin (BAuA), Dortmund (Germany); Brose, Martin [Berufsgenossenschaft Energie Textil Elektro Medienerzeugnisse (BG ETEM), Koeln (Germany)

    2013-09-01

    A specially designed test apparatus was used in the investigation on temporary blinding. During provisional tests, exposure had been carried out with different wavelengths, power settings and exposure durations. One subject familiar to the effects of temporary blinding experienced an unusual effect, which lasted a long period of time. Concerning that this effect is not known enough to be considered in safety regulations, make it important to publish this report. (orig.)

  4. The "TEU-FEL" project

    Ernst, G.J.; Witteman, W.J.; Verschuur, Jeroen W.J.; Mols, R.F.X.A.M.; Mols, R.F.X.A.M.; van Oerle, B.M.; van Oerle, B.M.; Bouman, A.F.M.; Botman, J.I.M.; Hagedoorn, H.L.; Delhez, J.L.; Kleeven, W.J.G.M.

    1995-01-01

    The free-electron laser of the TEU-FEL project will be based on a 6 MeV photo-cathode linac as injector, a 25 MeV race-track microtron as main accelerator and a hybrid, 25 mm period undulator. The project will be carried out in two phases. In phase one only the 6 MeV linac will be used, The FEL will

  5. Recovery Of Short Wavelength Geophysical Signals With Future Delay-Doppler Altimeters (Cryosat Ii And Sentinel Type)

    Andersen, Ole Baltazar

    2010-01-01

    altimetry: Factor of 20 improvements in along track resolution. An along-track footprint length that does not vary with wave height (sea state). Twice the precision in sea surface height measurements / sea surface slope measurements. These improvements are studied with respect to retrieval of short...... wavelength geophysical signal related to mainly bathymetric features. The combination of upward continuation from the sea bottom and smoothing the altimeter observations resulted in the best recovery of geophysical signal for simulated 5-Hz DD observations. Simulations carried out in this investigation...

  6. Paraconductivity of three-dimensional amorphous superconductors: evidence for a short-wavelength cutoff in the fluctuation spectrum

    Johnson, W.L.

    1977-10-01

    Measurements of the temperature dependence and magnetic field dependence of the paraconductivity of a three dimensional amorphous superconductor are presented. The data are analyzed in terms of several current theories and are found to give good agreement for low fields and temperatures near T/sub c/. The paraconductivity falls well below predicted theoretical values in the high temperature and high field limits. This is attributed to the reduced role of high wavevector contributions to the paraconductivity. It is shown that the introduction of a short wavelength cutoff in the theoretical fluctuation spectrum provides a phenomelogical account of the discrepancy between theory and experiment

  7. The GALAXIE all-optical FEL project

    Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O' Shea, B.; O' Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M. [Dept. of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90034 (United States); Dept. of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Dept. of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90034 (United States); and others

    2012-12-21

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-high brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  8. AlGaN-based laser diodes for the short-wavelength ultraviolet region

    Yoshida, Harumasa; Kuwabara, Masakazu; Yamashita, Yoji; Takagi, Yasufumi; Uchiyama, Kazuya; Kan, Hirofumi

    2009-01-01

    We have demonstrated the room-temperature operation of GaN/AlGaN and indium-free AlGaN multiple-quantum-well (MQW) laser diodes under the pulsed-current mode. We have successfully grown low-dislocation-density AlGaN films with AlN mole fractions of 20 and 30% on sapphire substrates using the hetero-facet-controlled epitaxial lateral overgrowth (hetero-FACELO) method. GaN/AlGaN and AlGaN MQW laser diodes have been fabricated on the low-dislocation-density Al 0.2 Ga 0.8 N and Al 0.3 Ga 0.7 N films, respectively. The GaN/AlGaN MQW laser diodes lased at a peak wavelength ranging between 359.6 and 354.4 nm. A threshold current density of 8 kA cm -2 , an output power as high as 80 mW and a differential external quantum efficiency (DEQE) of 17.4% have been achieved. The AlGaN MQW laser diodes lased at a peak wavelength down to 336.0 nm far beyond the GaN band gap. For the GaN/AlGaN MQW laser diodes, the modal gain coefficient and the optical internal loss are estimated to be 4.7±0.6 cm kA -1 and 10.6±2.7 cm -1 , respectively. We have observed that the characteristic temperature T 0 ranges from 132 to 89 K and DEQE shows an almost stable tendency with increase of temperature. A temperature coefficient of 0.049 nm K -1 is also found for the GaN/AlGaN MQW laser diode. The results for the AlGaN-based laser diodes grown on high-quality AlGaN films presented here will be essential for the future development of laser diodes emitting much shorter wavelengths.

  9. Los Alamos High-Brightness Accelerator FEL (HIBAF) facility

    Cornelius, W.D.; Bender, S.; Meier, K.; Thode, L.E.; Watson, J.M.

    1989-01-01

    The 10-/mu/m Los Alamos free-electron laser (FEL) facility is being upgraded. The conventional electron gun and bunchers have been replaced with a much more compact 6-MeV photoinjector accelerator. By adding existing parts from previous experiments, the primary beam energy will be doubled to 40 MeV. With the existing 1-m wiggler (/lambda//sub w/ = 2.7 cm) and resonator, the facility can produce photons with wavelengths from 3 to 100 /mu/m when lasing on the fundamental mode and produce photons in the visible spectrum with short-period wigglers or harmonic operation. After installation of a 150/degree/ bend, a second wiggler will be added as an amplifier. The installation of laser transport tubes between the accelerator vault and an upstairs laboratory will provide experimenters with a radiation-free environment for experiments. Although the initial experimental program of the upgraded facility will be to test the single accelerator-master oscillator/power amplifier configuration, some portion of the operational time of the facility can be dedicated to user experiments. 13 refs., 5 figs., 6 tabs.

  10. Gamma-ray detection with an UV-enhanced photodiode and scintillation crystals emitting at short wavelengths

    Johansen, G.A.

    1997-01-01

    A low-noise ion implanted photodiode with high spectral response in the deep blue/UV region has been tested as read-out device for scintillation crystals with matching emission spectra (YAP(Ce), GSO(Ce), BGO and CsI(Tl)). This gamma-ray detector concept is attractive in many industrial applications where compactness, reliability and ambient temperature operation are important. The results show that the amount of detected scintillation light energy falls rapidly off as the wavelength of the scintillation light decreases. It is concluded that the dynamic spectral response of the photodiode, due to increasing carrier collection times, is considerably less than the DC response at short wavelengths. The diode is not useful in pulse mode operation with scintillation crystals emitting at wavelengths below about 400 nm. For read-out of CsI(Tl) with 661.6 keV gamma-radiation, however, the photodiode concept shows better energy resolution (7.1%) than other detectors. (orig.)

  11. Short-wavelength luminescence in Ho{sup 3+}-doped KGd(WO{sub 4}){sub 2} crystals

    Malinowski, M., E-mail: m.malinowski@elka.pw.edu.p [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Kaczkan, M.; Stopinski, S.; Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Majchrowski, A. [Institute of Applied Physics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland)

    2009-12-15

    Emissions from the high-lying excited states, energy transfer and upconversion processes are investigated in Ho{sup 3+}-activated KGd(WO{sub 4}){sub 2} crystal. The spectral assignment based on time-resolved emission spectra allowed to identify various near ultra-violet (UV), blue and green emissions starting from the excited {sup 3}H{sub 5}, {sup 5}G{sub 4}, {sup 5}G{sub 5}, {sup 5}F{sub 3} and {sup 5}S{sub 2} levels. The temporal behavior of these transitions after pulsed excitation was analyzed as a function of temperature and holmium ions concentration. The shortening and nonexponentiality of the decays, observed with increasing activator concentrations, indicated cross-relaxation (CR) among the Ho{sup 3+} ions. Cross-relaxation rates were experimentally determined as a function of activator concentration and used to evaluate the values of the nearest-neighbor trapping rates X{sub 01} and to model the decays. It was observed that KGW, despite higher than in YAG maximum phonon energy of about 900 cm{sup -1}, is more efficient short-wavelength emitter than YAG. Examples of the excited-state absorption (ESA) and energy transfer (ET) mechanisms responsible for the upconverted, short-wavelength emissions were identified by analyzing fluorescence dynamics and possible energy resonances.

  12. Performance of the FEL cryomodules

    Drury, M.; Fischer, J.; Preble, J.

    1998-01-01

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab, formerly known as CEBAF) is building a highly efficient, kilowatt-level infrared free-electron laser, the IR Demo FEL. The IR FEL uses superconducting radio-frequency (SRF) cavities to accelerate the electron beam that provides energy for the laser. These cavities provide the high-gradient acceleration for the high average currents necessary for a compact FEL design. Currently, a quarter cryomodule injector and a full eight-cavity cryomodule have been installed in the FEL linac. These units were tested as part of the IR FEL commissioning process. The main focus of these tests was to determine the maximum stable operating gradient. The average maximum gradient reached by these ten cavities was 11 Mv/m. Other tests include measurement of cavity parameters such as the unloaded Q (Qo) vs. gradient, the input coupling, calibration of field probes and behavior of the tuner mechanisms. This paper presents the results of those tests

  13. Issues at a university based FEL center

    Smith, T.I.; Schwettman, H.A.

    1998-01-01

    The Stanford FEL Center was established in September 1990. In this paper, the FEL itself, the Center infrastructure, the interaction with experimenters and the educational mission are described. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Efficient soft x-ray generation in short wavelength laser produced plasmas

    Mochizuki, T.; Yamanaka, C.

    1987-01-01

    Intense x-ray generation in 1.053, 0.53, 0.26 μm laser-produced plasma has been investigated in the photon energy range of 0.1 to 3keV. The x-ray spectrum is found to have several humps which move to the higher energy side as the atomic number of the target increases. This atomic dependence is explained by a semi-Moseley's law and allows us to predict a target material most suitable for generating the photons of desired energies. Conversion efficiencies of 1.5 -- 3keV x-rays are obtained also as a function of laser wavelength at the intensity of 10/sup 13/W/cm/sup 2/. The conversion efficiency of keV x rays has been enhanced by a factor of 2 -- 3 with a controlled prepulse laser. From the semi-Moseley's law we find that cryogenic targets using either Xe or Kr in a liquid or solid phase may be most useful for a number of applications because they radiate 1 -- 3 keV x rays efficiently and never deposit on the x-ray optical components and the objects to be exposed

  15. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    Xu, Jixian; Sutherland, Brandon R.; Hoogland, Sjoerd; Fan, Fengjia; Sargent, Edward H., E-mail: ted.sargent@utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Kinge, Sachin [Advanced Technology, Materials and Research, Research and Development, Hoge Wei 33- Toyota Technical Centre, B-1930 Zaventem (Belgium)

    2015-10-12

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO{sub 2} layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10{sup −2} A W{sup −1} and a shot-derived specific detectivity of 3 × 10{sup 9} Jones at 1530 nm wavelength.

  16. Short-wavelength out-of-band EUV emission from Sn laser-produced plasma

    Torretti, F.; Schupp, R.; Kurilovich, D.; Bayerle, A.; Scheers, J.; Ubachs, W.; Hoekstra, R.; Versolato, O. O.

    2018-02-01

    We present the results of spectroscopic measurements in the extreme ultraviolet regime (7-17 nm) of molten tin microdroplets illuminated by a high-intensity 3 J, 60 ns Nd:YAG laser pulse. The strong 13.5 nm emission from this laser-produced plasma (LPP) is of relevance for next-generation nanolithography machines. Here, we focus on the shorter wavelength features between 7 and 12 nm which have so far remained poorly investigated despite their diagnostic relevance. Using flexible atomic code calculations and local thermodynamic equilibrium arguments, we show that the line features in this region of the spectrum can be explained by transitions from high-lying configurations within the Sn{}8+-Sn{}15+ ions. The dominant transitions for all ions but Sn{}8+ are found to be electric-dipole transitions towards the n = 4 ground state from the core-excited configuration in which a 4p electron is promoted to the 5s subshell. Our results resolve some long-standing spectroscopic issues and provide reliable charge state identification for Sn LPP, which could be employed as a useful tool for diagnostic purposes.

  17. Reduction of short wavelength reflectance of multi-wall carbon nanotubes through ultraviolet laser irradiation

    Stephens, Michelle S.; Simonds, Brian J.; Yung, Christopher S.; Conklin, Davis; Livigni, David J.; Oliva, Alberto Remesal; Lehman, John H.

    2018-05-01

    Multi-wall carbon nanotube coatings are used as broadband, low-reflectance absorbers for bolometric applications and for stray light control. They are also used as high emittance blackbody radiators. Irradiation of single wall carbon nanotubes with ultraviolet (UV) laser light has been shown to remove amorphous carbon debris, but there have been few investigations of the interaction of UV light with the more complex physics of multi-wall carbon nanotubes. We present measurements of reflectance and surface morphology before and after exposure of multi-wall carbon nanotube coatings to 248 nm UV laser light. We show that UV exposure reduces the reflectivity at wavelengths below 600 nm and present modeling of the thermal cycling the UV exposure causes at the surface of the carbon nanotubes. This effect can be used to flatten the spectral shape of the reflectivity curve of carbon nanotube absorber coatings used for broadband applications. Finally, we find that the effect of UV exposure depends on the nanotube growth process.

  18. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    Xu, Jixian; Sutherland, Brandon R.; Hoogland, Sjoerd; Fan, Fengjia; Sargent, Edward H.; Kinge, Sachin

    2015-01-01

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO 2 layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10 −2  A W −1 and a shot-derived specific detectivity of 3 × 10 9  Jones at 1530 nm wavelength

  19. Short wavelength automated perimetry can detect visual field changes in diabetic patients without retinopathy

    Othman Ali Zico

    2014-01-01

    Full Text Available Purpose: The purpose of the following study is to compare short wave automated perimetry (SWAP versus standard automated perimetry (SAP for early detection of diabetic retinopathy (DR. Materials and Methods: A total of 40 diabetic patients, divided into group I without DR (20 patients = 40 eyes and group II with mild non-proliferative DR (20 patients = 40 eyes were included. They were tested with central 24-2 threshold test with both shortwave and SAP to compare sensitivity values and local visual field indices in both of them. A total of 20 healthy age and gender matched subjects were assessed as a control group. Results: Control group showed no differences between SWAP and SAP regarding mean deviation (MD, corrected pattern standard deviation (CPSD or short fluctuations (SF. In group I, MD showed significant more deflection in SWAP (−4.44 ± 2.02 dB compared to SAP (−0.96 ± 1.81 dB (P = 0.000002. However, CPSD and SF were not different between SWAP and SAP. In group II, MD and SF showed significantly different values in SWAP (−5.75 ± 3.11 dB and 2.0 ± 0.95 compared to SAP (−3.91 ± 2.87 dB and 2.86 ± 1.23 (P = 0.01 and 0.006 respectively. There are no differences regarding CPSD between SWAP and SAP. The SWAP technique was significantly more sensitive than SAP in patients without retinopathy (p, but no difference exists between the two techniques in patients with non-proliferative DR. Conclusion: The SWAP technique has a higher yield and efficacy to pick up abnormal findings in diabetic patients without overt retinopathy rather than patients with clinical retinopathy.

  20. Start-to-end simulations of SASE FEL at the TESLA Test Facility

    Dohlus, M.; Floettmann, K.; Limberg, T.; Saldin, E.L; Schneidmiller, E.A.; Kozlov, O.S.; Yurkov, M.V.; Piot, Ph.

    2004-01-01

    VUV SASE FEL at the TESLA Test Facility (Phase 1) was successfully running and reached saturation in the wavelength range 80-120 nm. We present a posteriori start-to-end simulations of this machine. The codes Astra and elegant are used to track particle distribution from the cathode to the undulator entrance. An independent simulation of the beam dynamics in the bunch compressor is performed with the code CSRtrack. SASE FEL process is simulated with the code FAST. The simulation results are in good agreement with the measured properties of SASE FEL radiation. It is shown that the beam dynamics after the bunch compressor is mainly defined by space charge fields. FEL radiation is produced by the head of the electron bunch having a peak current of about 3 kA and a duration of 100 fs

  1. Expression and Evolution of Short Wavelength Sensitive Opsins in Colugos: A Nocturnal Lineage That Informs Debate on Primate Origins.

    Moritz, Gillian L; Lim, Norman T-L; Neitz, Maureen; Peichl, Leo; Dominy, Nathaniel J

    2013-01-01

    A nocturnal activity pattern is central to almost all hypotheses on the adaptive origins of primates. This enduring view has been challenged in recent years on the basis of variation in the opsin genes of nocturnal primates. A correspondence between the opsin genes and activity patterns of species in Euarchonta-the superordinal group that includes the orders Primates, Dermoptera (colugos), and Scandentia (treeshrews)-could prove instructive, yet the basic biology of the dermopteran visual system is practically unknown. Here we show that the eye of the Sunda colugo ( Galeopterus variegatus ) lacks a tapetum lucidum and has an avascular retina, and we report on the expression and spectral sensitivity of cone photopigments. We found that Sunda colugos have intact short wavelength sensitive (S-) and long wavelength sensitive (L-) opsin genes, and that both opsins are expressed in cone photoreceptors of the retina. The inferred peak spectral sensitivities are 451 and 562 nm, respectively. In line with adaptation to nocturnal vision, cone densities are low. Surprisingly, a majority of S-cones coexpress some L-opsin. We also show that the ratio of rates of nonsynonymous to synonymous substitutions of exon 1 of the S-opsin gene is indicative of purifying selection. Taken together, our results suggest that natural selection has favored a functional S-opsin in a nocturnal lineage for at least 45 million years. Accordingly, a nocturnal activity pattern remains the most likely ancestral character state of euprimates.

  2. Investigation of concept of efficient short wavelength laser. Quarterly progress report, 1 August 1978--31 October 1978

    Piper, L.G.; Krech, R.H.; Pugh, E.R.; Taylor, R.L.

    1978-12-01

    A concept for the development of an efficient short wavelength laser based on a class of endoergic molecules-azides is being studied. One of these two laser-device experiments involves generating high concentrations of azide radicals in the thermal pyrolysis of solid, ionic azides, with the subsequent excitation of the N/sub 2/(B/sup 3/pi/sub g/) state from azide-radical recombination. Laser action would then take place upon the N/sub 2/(B/sup 3/pi/sub g/ - A/sup 3/Sigma/sup +//sub u/), first-postive transition. The second laser-demonstration experiment involves creating a high density of NCl(b/sup 1/Sigma/sup +/) state by uv photolysis of ClN/sub 3/. In this case laser emission is expected on the NCl(b/sup 1/Sigma/sup +/ ..-->.. X/sup 3/Sigma/sup -/) transition at 665 nm.

  3. Investigation of concept of efficient short wavelength laser. Quarterly progress report, 1 August 1978--31 October 1978

    Piper, L.G.; Krech, R.H.; Pugh, E.R.; Taylor, R.L.

    1978-01-01

    A concept for the development of an efficient short wavelength laser based on a class of endoergic molecules-azides is being studied. One of these two laser-device experiments involves generating high concentrations of azide radicals in the thermal pyrolysis of solid, ionic azides, with the subsequent excitation of the N 2 (B 3 pi/sub g/) state from azide-radical recombination. Laser action would then take place upon the N 2 (B 3 pi/sub g/ - A 3 Sigma + /sub u/), first-postive transition. The second laser-demonstration experiment involves creating a high density of NCl(b 1 Sigma + ) state by uv photolysis of ClN 3 . In this case laser emission is expected on the NCl(b 1 Sigma + → X 3 Sigma - ) transition at 665 nm

  4. Investigation of concept of efficient short wavelength laser. Quarterly progress report, 1 November 1978-31 January 1979

    Krech, R.H.; Piper, L.G.; Pugh, E.R.; Taylor, R.L.

    1979-03-01

    A concept for the development of an efficient short wavelength laser based on a class of endoergic molecules-azides is being investigated. The first of two laser-device experiments involves generating high concentrations of azide radicals in the thermal pyrolysis of solid, ionic azides, with the subsequent excitation of the N/sub 2/(B/sup 3/..pi../sub g/) state from azide-radical recombination. Laser action would then take place upon the N/sub 2/(B/sup 3/..pi../sub g/-A/sup 3/..sigma../sup +//sub u/), first-positive transition. The second laser-demonstration experiment involves creating a high density of NCl(b/sup 1/..sigma../sup +/) state by uv photolysis of ClN/sub 3/. In this case laser emission is expected on the NCl(b/sup 1/..sigma../sup +/..-->..X/sup 3/..sigma../sup -/) transition at 665 nm.

  5. Optimization of a high efficiency FEL amplifier

    Schneidmiller, E.A.; Yurkov, M.V.

    2014-10-01

    The problem of an efficiency increase of an FEL amplifier is now of great practical importance. Technique of undulator tapering in the post-saturation regime is used at the existing X-ray FELs LCLS and SACLA, and is planned for use at the European XFEL, Swiss FEL, and PAL XFEL. There are also discussions on the future of high peak and average power FELs for scientific and industrial applications. In this paper we perform detailed analysis of the tapering strategies for high power seeded FEL amplifiers. Application of similarity techniques allows us to derive universal law of the undulator tapering.

  6. FELI linac for IR- and UV-FEL facilities

    Tomimasu, T.; Morii, Y.; Abe, S.

    1995-01-01

    FELI linac and IR-FEL facilities are now under construction and electron beams of 30-75MeV will be used for FIR- and IR-FEL experiments in this summer. It is composed of a 5-MeV electron injector and seven ETL type accelerating waveguides with a length of 2.93m (2π/3 mode, linearly tapered type). The injector consists of a 150-kV DC thermoionic triode gun operated by a 178.5-MHz and 500-ps pulser, a 714-MHz prebuncher (SHB), and a 2856-MHz standing wave type buncher (SWB). The linac is operated in three modes of 24μs, 12.5μs and 0.5μs. With a choice of three modes, the maximum beam loaded energy can be changed from 165 MeV to 288 MeV. The linac beam is sent to four vertical type undulators using S-type BT systems installed at 30-MeV, 75-MeV, 120-MeV, and 165-MeV sections at a 24-μs pulse beam load. The beam, once used for lasing at 30-MeV section or at 75-MeV section, can be bent back to the following accelerating waveguide and is reaccelerated and reused for lasing. Parameters of four undulators and intended FEL applications are shown. FEL spectral widths and wavelength limitations are also reviewed and discussed for 0.3μm FEL oscillations FELI is aiming at by the end of 1996. (author)

  7. Status of FEL-SUT project, and the experimental setup for multiphoton dissociation and isotope separation in the gaseous phase

    Chernyshev, A V; Petrov, A K; Kawai, M; Toyoda, K; Nakai, K; Kuroda, H

    2001-01-01

    The IR FEL Research Center of the Science University of Tokyo (FEL-SUT) is open for users to develop new applications of IR FEL in a wide field of material science, chemical technology and bio-chemical applications. The FEL is based on 35 MeV linac operated at the frequency of 2856 MHz (s-band). The FEL covers the wavelength range from 5 to 16 mu m with the micropulse duration of 1-2 ps, macropulse duration of 1 mu s, macropulse repetition rate of 10 Hz and the overall average power of 1 W. We report the present status of the Center and an experimental setup designed and constructed for the experiments on multiphoton dissociation and isotope separation.

  8. Investigation of concept of efficient short wavelength laser. Final technical report, April 1, 1977-July 31, 1979

    Piper, L.G.; Krech, R.H.; Pugh, E.; Taylor, R.L.

    1979-01-01

    The feasibility of producing an efficient, short wavelength, storage laser for ICF driven applications by making use of certain state-specific reactions of exoergic azide compounds has been investigated. The ultraviolet (approx. 300 nm) photolysis of gaseous ClN 3 produced prompt emission in the red, which was attributed to the efficient formation of ClN(b 1 Σ + ) with subsequent ClN(X reverse arrow b) fluorescence. Based on these results, a small-scale laser demonstration experiment was constructed using short duration Xe flash lamps as the photolytic source. The results of this latter experiment were negative. The most plausible explanation was that the flash lamps provided sufficient far-uv radiation to dissociate and/or ionize the ClN(b) produced in the primary photolytic step. In parallel, limited experiments were performed on the rapid pyrolysis of a solid, ionic azide, NaN 3 , to produce gaseous N 3 radicals and subsequent production of triplet N 2 molecules

  9. High average power CW FELs [Free Electron Laser] for application to plasma heating: Designs and experiments

    Booske, J.H.; Granatstein, V.L.; Radack, D.J.; Antonsen, T.M. Jr.; Bidwell, S.; Carmel, Y.; Destler, W.W.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Zhang, Z.X.

    1989-01-01

    A short period wiggler (period ∼ 1 cm), sheet beam FEL has been proposed as a low-cost source of high average power (1 MW) millimeter-wave radiation for plasma heating and space-based radar applications. Recent calculation and experiments have confirmed the feasibility of this concept in such critical areas as rf wall heating, intercepted beam (''body'') current, and high voltage (0.5 - 1 MV) sheet beam generation and propagation. Results of preliminary low-gain sheet beam FEL oscillator experiments using a field emission diode and pulse line accelerator have verified that lasing occurs at the predicted FEL frequency. Measured start oscillation currents also appear consistent with theoretical estimates. Finally, we consider the possibilities of using a short-period, superconducting planar wiggler for improved beam confinement, as well as access to the high gain, strong pump Compton regime with its potential for highly efficient FEL operation

  10. Evidence for nonuniversal behavior of paraconductivity caused by predominant short-wavelength Gaussian fluctuations in YBa2Cu3O6.9

    Gauzzi, A.; Pavuna, D.

    1995-01-01

    We report on in-plane paraconductivity measurements in thin YBa 2 Cu 3 O 6.9 films. Our analysis of the data shows that the temperature dependence of paraconductivity is affected by lattice disorder and deviates at all temperatures from the universal power laws predicted by both scaling and mean-field theories. This gives evidence for the absence of critical fluctuations and for the failure of the Aslamazov-Larkin universal relation between critical exponent and dimensionality of the spectrum of Gaussian fluctuations. We account quantitatively for the data within the experimental error by introducing a short-wavelength cutoff into this spectrum. This implies that three-dimensional short-wavelength Gaussian fluctuations dominate in YBa 2 Cu 3 O 6.9 and suggests a rapid attenuation of these fluctuations with decreasing wavelength in short-coherence-length systems as compared to the case of the conventional Ginzburg-Landau theory

  11. Contributions to the FEL2005 conference

    Grimm, O. (comp.)

    2005-07-01

    The following topics were dealt with: First lasing at 32 nm of the VUV-FEL at DESY, properties of the radiation from VUV-FEL at DESY, accelerator lay out and physics of X-ray free-electron lasers, bunch compression stability dependence on RF parameters, undulator systems and photon diagnostic for the European XFEL project, electron beam characterization at PITZ and the VUV-FEL at DESY, high precision optical synchronization systems for X-ray free electron lasers, optical laser synnchronized for the DESY VUV-FEL for two-color pump probe experiments, properties of the third harmonic of the SASE FEL radiation, detector response and beam line transmission measurements with far-infrared radiation, upgrades of the laser beam-line at PITZ, bunch length measurements using a Martin-Puplett interferometer at the VUV-FEL, next generation synchronization system for the VUV-FEL at DESY, transverse electron beam diagnostics at the VYV-FEL at DESY, the infrared undulator project at the VUV-FEL, misconceptions regarding second harmonic generation in X-ray free-electron lasers, influence of an energy chirp on SASE FEL operation, design considerations for the 4GLS XUV-FEL, broadband single shot spectrometer, commissioning of TTF2 bunch compressors for 20 fs SASE source, observation of femtosecond bunch length using a transverse deflecting structure, measurement of slice-emittance using a transverse deflecting structure, the injector of the VUV-FEL at DESY, spectral decoding electro-optic measurements for longitudinal bunch diagnostics at the DESY VUV-FEL, longitudinal phase space studies at PITZ, modelling the transverse phase space and core emittance studies at PITZ, measurements of thermal emittance for cesium telluride photocathodes at PITZ, status and first results from the upgraded PITZ facility, commissioning of the SPARC movable emittance meter and its first operation at PITZ. (HSI)

  12. Contributions to the FEL2005 conference

    Grimm, O.

    2005-01-01

    The following topics were dealt with: First lasing at 32 nm of the VUV-FEL at DESY, properties of the radiation from VUV-FEL at DESY, accelerator lay out and physics of X-ray free-electron lasers, bunch compression stability dependence on RF parameters, undulator systems and photon diagnostic for the European XFEL project, electron beam characterization at PITZ and the VUV-FEL at DESY, high precision optical synchronization systems for X-ray free electron lasers, optical laser synnchronized for the DESY VUV-FEL for two-color pump probe experiments, properties of the third harmonic of the SASE FEL radiation, detector response and beam line transmission measurements with far-infrared radiation, upgrades of the laser beam-line at PITZ, bunch length measurements using a Martin-Puplett interferometer at the VUV-FEL, next generation synchronization system for the VUV-FEL at DESY, transverse electron beam diagnostics at the VYV-FEL at DESY, the infrared undulator project at the VUV-FEL, misconceptions regarding second harmonic generation in X-ray free-electron lasers, influence of an energy chirp on SASE FEL operation, design considerations for the 4GLS XUV-FEL, broadband single shot spectrometer, commissioning of TTF2 bunch compressors for 20 fs SASE source, observation of femtosecond bunch length using a transverse deflecting structure, measurement of slice-emittance using a transverse deflecting structure, the injector of the VUV-FEL at DESY, spectral decoding electro-optic measurements for longitudinal bunch diagnostics at the DESY VUV-FEL, longitudinal phase space studies at PITZ, modelling the transverse phase space and core emittance studies at PITZ, measurements of thermal emittance for cesium telluride photocathodes at PITZ, status and first results from the upgraded PITZ facility, commissioning of the SPARC movable emittance meter and its first operation at PITZ. (HSI)

  13. A HIGH REPETITION RATE VUV-SOFT X-RAY FEL CONCEPT

    Corlett, J.; Byrd, J.; Fawley, W.M.; Gullans, M.; Li, D.; Lidia, S.M.; Padmore, H.; Penn, G.; Pogorelov, I.; Qiang, J.; Robin, D.; Sannibale, F.; Staples, J.W.; Steier, C.; Venturini, M.; Virostek, S.; Wan, W.; Wells, R.; Wilcox, R.; Wurtele, J.; Zholents, A.

    2007-01-01

    We report on design studies for a seeded FEL light source that is responsive to the scientific needs of the future. The FEL process increases radiation flux by several orders of magnitude above existing incoherent sources, and offers the additional enhancements attainable by optical manipulations of the electron beam: control of the temporal duration and bandwidth of the coherent output, reduced gain length in the FEL, utilization of harmonics to attain shorter wavelengths, and precise synchronization of the x-ray pulse with seed laser systems. We describe an FEL facility concept based on a high repetition rate RF photocathode gun, that would allow simultaneous operation of multiple independent FEL's, each producing high average brightness, tunable over the VUV-soft x-ray range, and each with individual performance characteristics determined by the configuration of the FEL. SASE, enhanced-SASE (ESASE), seeded, harmonic generation, and other configurations making use of optical manipulations of the electron beam may be employed, providing a wide range of photon beam properties to meet varied user demands

  14. Relationship between short-wavelength automatic perimetry and Heidelberg retina tomograph parameters in eyes with ocular hypertension

    Christos Pitsas

    2015-10-01

    Full Text Available AIM:To compare and correlate optic nerve head parameters obtained byHeidelberg retina tomograph (HRT with short-wavelength automatic perimetry (SWAP indices in eyes with ocular hypertension (OHT.METHODS: One hundred and forty-six patients with OHT included in the present study. All subjects had reliable SWAP and HRT measurements performed within a 2wk period. The eyes were classified as normal/abnormal according to visual field criteria and Moorfields regression analysis (MRA. Correlations between visual field indices and HRT parameters were analyzed using Pearson correlation coefficient (r.RESULTS:Twenty-nine eyes (19.9% had SWAP defects. Twenty-nine eyes (19.9% were classified as abnormal according to global MRA. Six eyes (4.1% had abnormal global MRA and SWAP defects. The k statistic is 0.116 (P=0.12 indicating a very poor agreement between the methods. No statistical significant correlation between HRT and SWAP parameters was detected.CONCLUSION:SWAP defects may coexist with abnormalities of optic disc detected by HRT in eyes with OHT. In most eyes, however, the two methods detect different glaucoma properties.

  15. Multiple pathways carry signals from short-wavelength-sensitive ('blue') cones to the middle temporal area of the macaque.

    Jayakumar, Jaikishan; Roy, Sujata; Dreher, Bogdan; Martin, Paul R; Vidyasagar, Trichur R

    2013-01-01

    We recorded spike activity of single neurones in the middle temporal visual cortical area (MT or V5) of anaesthetised macaque monkeys. We used flashing, stationary spatially circumscribed, cone-isolating and luminance-modulated stimuli of uniform fields to assess the effects of signals originating from the long-, medium- or short- (S) wavelength-sensitive cone classes. Nearly half (41/86) of the tested MT neurones responded reliably to S-cone-isolating stimuli. Response amplitude in the majority of the neurones tested further (19/28) was significantly reduced, though not always completely abolished, during reversible inactivation of visuotopically corresponding regions of the ipsilateral primary visual cortex (striate cortex, area V1). Thus, the present data indicate that signals originating in S-cones reach area MT, either via V1 or via a pathway that does not go through area V1. We did not find a significant difference between the mean latencies of spike responses of MT neurones to signals that bypass V1 and those that do not; the considerable overlap we observed precludes the use of spike-response latency as a criterion to define the routes through which the signals reach MT.

  16. Characterization of Low Noise TES Detectors Fabricated by D-RIE Process for SAFARI Short-Wavelength Band

    Khosropanah, P.; Suzuki, T.; Hijmering, R. A.; Ridder, M. L.; Lindeman, M. A.; Gao, J.-R.; Hoevers, H.

    2014-08-01

    SRON is developing TES detectors based on a superconducting Ti/Au bilayer on a suspended SiN membrane for the short-wavelength band of the SAFARI instrument on SPICA mission. We have recently replaced the wet KOH etching of the Si substrate by deep reactive ion etching. The new process enables us to fabricate the detectors on the substrate and release the membrane at the very last step. Therefore the production of SAFARI large arrays (4343) on thin SiN membrane (250 nm) is feasible. It also makes it possible to realize narrow supporting SiN legs of 1 m, which are needed to meet SAFARI NEP requirements. Here we report the current-voltage characteristics, noise performance and impedance measurement of these devices. The measured results are then compared with the distributed leg model that takes into account the thermal fluctuation noise due to the SiN legs. We measured a dark NEP of 0.7 aW/, which is 1.6 times higher than the theoretically expected phonon noise.

  17. Effects of low or high doses of short wavelength ultraviolet light (UVB) on Langerhans cells and skin allograft survival

    Odling, K.A.; Halliday, G.M.; Muller, H.K.

    1987-01-01

    Donor C57BL mouse shaved dorsal trunk or tail skin was exposed to high (200 mJ/cm 2 ) or low (40 mJ/cm 2 ) doses of short wavelength ultraviolet light (UVB) before grafting on to the thorax of BALB/c mouse recipients of the same sex. Skin grafted 1-14 days following a single high dose of UVB irradiation was ultrastructurally depleted of LC and survived significantly longer than unirradiated skin before being rejected. After a 21-day interval between exposure and grafting when LC were again present in the epidermis there was no significant difference between treated and control graft survival. Exposure to low dose UVB irradiation only significantly increased graft survival for skin transplanted 1-3 days after irradiation; skin grafted 4 days following irradiation survived for a similar period to unirradiated control skin grafts. Electronmicroscopy showed that the low UVB dose did not deplete LC from the epidermis. We conclude that after low dose UVB treatment the class II MHC antigens on the LC Plasma membrane were lost temporarily, thus prolonging graft survival, but when the plasma membrane antigens were re-expressed graft survival returned to normal. In contrast, high-dose UVB irradiation prolonged graft survival by depleting LC from the epidermis, with graft survival only returning to control values as LC repopulated the epidermis

  18. FELs, nice toys or efficient tools?

    Van der Meer, Alex F G

    2004-01-01

    An FEL is an intrinsically interesting device and pushing its performance presents a natural challenge to a physicist. Nonetheless, the main justification for doing FEL research is of course its potential as a unique, versatile source of radiation to be employed for something useful. After 25 years of FEL research, one may wonder how efficient these tools have become. In this paper, I will reflect on this issue from the perspective of 10 years of operation of FELIX as a user facility.

  19. Super ACO FEL oscillation at 300 nm

    Nutarelli, D; Renault, E; Nahon, L; Couprie, Marie Emmanuelle

    2000-01-01

    Some recent improvements, involving both the optical cavity mirrors and the positron beam dynamics in the storage ring, have allowed us to achieve a laser oscillation at 300 nm on the Super ACO Storage Ring FEL. The Super ACO storage ring is operated at 800 MeV which is the nominal energy for the usual synchrotron radiation users, and the highest energy for a storage ring FEL. The lasing at 300 nm could be kept during 2 h per injection, with a stored current ranging between 30 and 60 mA. The FEL characteristics are presented here. The longitudinal stability and the FEL optics behaviour are also discussed.

  20. FEL mirror response to shipboard vibrations

    Beauvais, Joshua A.

    2011-01-01

    The Optical cavity of a Free Electron Laser (FEL) is composed of components that must be maintained to very tight tolerances. The shipboard environment is one that will preclude a direct coupling of FEL components to the ship. This thesis will explore the basis for these tight tolerances, and how to isolate them from the FEL. A solid model of a potential FEL system will be developed using SolidWorks. This model will then be converted to a finite element model in ANSYS. The finite element ...

  1. Electron bunch length measurement at the Vanderbilt FEL

    Amirmadhi, F.; Brau, C.A.; Mendenhall, M. [Vanderbilt Free-Electron-Laser Center, Nashville, TN (United States)] [and others

    1995-12-31

    During the past few years, a number of experiments have been performed to demonstrate the possibility to extract the longitudinal charge distribution from spectroscopic measurements of the coherent far-infrared radiation emitted as transition radiation or synchrotron radiation. Coherent emission occurs in a spectral region where the wavelength is comparable to or longer than the bunch length, leading to an enhancement of the radiation intensity that is on the order of the number of particles per bunch, as compared to incoherent radiation. This technique is particularly useful in the region of mm and sub-mm bunch lengths, a range where streak-cameras cannot be used for beam diagnostics due to their limited time resolution. Here we report on experiments that go beyond the proof of principle of this technique by applying it to the study and optimization of FEL performance. We investigated the longitudinal bunch length of the Vanderbilt FEL by analyzing the spectrum of coherent transition radiation emitted by the electron bunches. By monitoring the bunch length while applying a bunch-compression technique, the amount of the compression could be easily observed. This enabled us to perform a systematic study of the FEL performance, especially gain and optical pulse width, as a function of the longitudinal electron distribution in the bunch. The results of this study will be presented and discussed.

  2. Mode distortion measurements on the Jefferson lab IR FEL

    Benson, S V; Shinn, M

    2002-01-01

    We have previously reported on the analytical calculations of mirror distortion in a high-power FEL with a near-concentric cavity. This analysis allowed us to estimate the power level at which the FEL interaction would be affected, though no exact theory of FEL power vs. distortion exists at this point. Recently we have directly measured the mode size and beam quality as a function of power using a resonator with a center wavelength of 5 mu m. The resonator mirrors were calcium fluoride. This particular material exhibits a large amount of distortion for a given power but, due to the negative slope of refractive index vs. temperature, adds almost no optical phase distortion on the laser output. The mode in the cavity can thus be directly calculated from the measurements at the resonator output. The presence of angular jitter produced raw measurements inconsistent with cold cavity expectations. Removing the effects of the angular jitter, we derive results in agreement with cold cavity measurements. The result i...

  3. Lasing attempts with a microwiggler on the Los Alamos FEL

    Warren, R.W.; O'Shea, P.G.; Bender, S.C.; Carlsten, B.E.; Early, J.W.; Feldman, D.W.; Fortgang, C.M.; Goldstein, J.C.; Schmitt, M.J.; Stein, W.E.; Wilke, M.D.; Zaugg, T.J.; Newnam, B.E.; Sheffield, R.L.

    1992-01-01

    The APEX FEL normally lases near a wavelength of 3μm using a permanent magnet wiggler with a 2.7-cm period and a linear accelerator of 40-MeV energy. Los Alamos National Laboratory is conducting a series of experiments with the goal of lasing at significantly shorter wavelengths with the same accelerator and the same kind of near-concentric resonator, but using a novel pulsed microwiggler of 0.5-cm period capable of generating a peak field of several tesla. We plan to lase on a fundamental wavelength of ∼0.8 μm and on the third harmonic at 0.25 μm

  4. Role of short-wavelength filtering lenses in delaying myopia progression and amelioration of asthenopia in juveniles

    Hai-Lan Zhao

    2017-08-01

    Full Text Available AIM: To evaluate the positive effects of blue-violet light filtering lenses in delaying myopia and relieving asthenopia in juveniles. METHODS: Sixty ametropia juveniles (aged range, 11-15y were randomized into two groups: the test group (30 children, 60 eyes, wearing blue-violet light filtering lenses; and the control group (30 children, 60 eyes, wearing ordinary aspherical lenses. Baseline refractive power of the affected eyes and axial length of the two groups was recorded. After 1-year, the patients underwent contrast sensitivity (glare and non-glare under bright and dark conditions, accommodation-related testing, asthenopia questionnaire assessment, and adverse reaction questionnaire assessment. RESULTS: After 1y of wearing the filtering lenses, changes in refractive power and axial length were not significantly different between the two groups (P>0.05. Under bright conditions, the contrast sensitivities at low and medium-frequency grating (vision angles of 6.3°, 4.0°, and 2.5° with glare in the test group were significantly higher than in the control group (P0.05. In the test group, the amplitude of accommodation, accommodative lag, and accommodative sensitivity of patients wearing glasses for 6 and 12mo were significantly elevated (P0.05, and the asthenopia grating was not significantly decreased (P>0.05. In addition, after wearing glasses for 6 to 12mo, the asthenopia grating of patients in the test group decreased significantly compared with the control group (P0.05. CONCLUSION: A 1-year follow-up reveal that compare with ordinary glasses, short-wavelength filtering lenses (blue/violet-light filters increase the low- and medium-frequency contrast sensitivity under bright conditions and improved accommodation. They effectively relieved asthenopia without severe adverse reactions, suggesting potential for clinical application. However, no significant advantages in terms of refractive power or axial length progression were found compared

  5. Short wavelength lateral variability of lithospheric mantle beneath the Middle Atlas (Morocco) as recorded by mantle xenoliths

    El Messbahi, Hicham; Bodinier, Jean-Louis; Vauchez, Alain; Dautria, Jean-Marie; Ouali, Houssa; Garrido, Carlos J.

    2015-05-01

    mountains results from the combination of different mechanisms and occurred in a piecewise fashion at a short wavelength scale.

  6. Comparison of XH2O Retrieved from GOSAT Short-Wavelength Infrared Spectra with Observations from the TCCON Network

    Eric Dupuy

    2016-05-01

    Full Text Available Understanding the atmospheric distribution of water (H 2 O is crucial for global warming studies and climate change mitigation. In this context, reliable satellite data are extremely valuable for their global and continuous coverage, once their quality has been assessed. Short-wavelength infrared spectra are acquired by the Thermal And Near-infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS aboard the Greenhouse gases Observing Satellite (GOSAT. From these, column-averaged dry-air mole fractions of carbon dioxide, methane and water vapor (XH 2 O have been retrieved at the National Institute for Environmental Studies (NIES, Japan and are available as a Level 2 research product. We compare the NIES XH 2 O data, Version 02.21, with retrievals from the ground-based Total Carbon Column Observing Network (TCCON, Version GGG2014. The datasets are in good overall agreement, with GOSAT data showing a slight global low bias of −3.1% ± 24.0%, good consistency over different locations (station bias of −1.53% ± 10.35% and reasonable correlation with TCCON (R = 0.89. We identified two potential sources of discrepancy between the NIES and TCCON retrievals over land. While the TCCON XH 2 O amounts can reach 6000–7000 ppm when the atmospheric water content is high, the correlated NIES values do not exceed 5500 ppm. This could be due to a dry bias of TANSO-FTS in situations of high humidity and aerosol content. We also determined that the GOSAT-TCCON differences directly depend on the altitude difference between the TANSO-FTS footprint and the TCCON site. Further analysis will account for these biases, but the NIES V02.21 XH 2 O product, after public release, can already be useful for water cycle studies.

  7. Locking Lasers to RF in an Ultrafast FEL

    Wilcox, R.; Huang, G.; Doolittle, L.; White, W.; Frisch, J.; Coffee, R.

    2010-01-01

    Using a novel, phase-stabilized RF-over-fiber scheme, they transmit 3GHz over 300m with 27fs RMS error in 250kHz bandwidth over 12 hours, and phase lock a laser to enable ultrafast pump-probe experiments. Free-electron lasers (FELs) are capable of producing short-duration (< 10fs), high-energy X-ray pulses for a range of scientific applications. The recently activated Linac Coherent Light Source (LCLS) FEL facility at SLAC will support experiments which require synchronized light pulses for pump-probe schemes. They developed and operated a fiber optic RF transmission system to synchronize lasers to the emitted X-ray pulses, which was used to enable the first pump-probe experiments at the LCLS.

  8. Measurement of short bunches

    Wang, D.X.

    1996-01-01

    In recent years, there has been increasing interest in short electron bunches for different applications such as short wavelength FELs, linear colliders, and advanced accelerators such as laser or plasma wakefield accelerators. One would like to meet various requirements such as high peak current, low momentum spread, high luminosity, small ratio of bunch length to plasma wavelength, and accurate timing. Meanwhile, recent development and advances in RF photoinjectors and various bunching schemes make it possible to generate very short electron bunches. Measuring the longitudinal profile and monitoring bunch length are critical to understand the bunching process and longitudinal beam dynamics, and to commission and operate such short bunch machines. In this paper, several commonly used measurement techniques for subpicosecond bunches and their relative advantages and disadvantages are discussed. As examples, bunch length related measurements at Jefferson Lab are presented. At Jefferson Lab, bunch lengths as short as 84 fs have been systematically measured using a zero-phasing technique. A highly sensitive Coherent Synchrotron Radiation (CSR) detector has been developed to noninvasively monitor bunch length for low charge bunches. Phase transfer function measurements provide a means of correcting RF phase drifts and reproducing RF phases to within a couple of tenths of a degree. The measurement results are in excellent agreement with simulations. A comprehensive bunch length control scheme is presented. (author)

  9. Measurement of short bunches

    Wang, D.X.

    1996-01-01

    In recent years, there has been increasing interest in short electron bunches for different applications such as short wavelength FELs, linear colliders, and advanced accelerators such as laser or plasma wakefield accelerators. One would like to meet various requirements such as high peak current, low momentum spread, high luminosity, small ratio of bunch length to plasma wavelength, and accurate timing. Meanwhile, recent development and advances in RF photoinjectors and various bunching schemes make it possible to generate very short electron bunches. Measuring the longitudinal profile and monitoring bunch length are critical to understand the bunching process and longitudinal beam dynamics, and to commission and operate such short bunch machines. In this paper, several commonly used measurement techniques for subpicosecond bunches and their relative advantages and disadvantages are discussed. As examples, bunch length related measurements at Jefferson lab are presented. At Jefferson Lab, bunch lengths s short as 84 fs have been systematically measured using a zero-phasing technique. A highly sensitive Coherent Synchrotron Radiation (CSR) detector has been developed to noninvasively monitor bunch length for low charge bunches. Phase transfer function measurements provide a means of correcting RF phase drifts and reproducing RF phases to within a couple of tenths of a degree. The measurement results are in excellent agreement with simulations. A comprehensive bunch length control scheme is presented

  10. EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY

    Michelle D. Shinn

    2007-08-26

    Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

  11. Electron gun for the Fel Clio

    Chaput, R.

    1990-01-01

    A triode electron gun has been developed and manufactured at LURE (Laboratoire pour l'Utilisation du Rayonnement Electromagnetique) and LAL (Laboratoire de l'Accelerateur Lineaire) for the free electron laser CLIO 1 (Collaboration pour un laser a electrons libres dans l'infrarouge a Orsay) now under construction: this gun involves a grid-cathode assembly manufactured by EIMAC, currently used in the SLAC gun family. For the FEL requirements, the gun must be able to yield a train of short pulses at accuracy frequency or a continuous pulse. Driving together the cathode and the grid the gun produces a continous beam of 12 μs or a pulsed beam of very short pulse of 1 ns at 250 MHz, 125 MHz, 62.5 MHz or 31.25 MHz. The performances of the gun has been tested on a testing bench. A peak current of 1 Amp. for 1 ns width at any frequencies was achieved at an injection voltage of 90 kV

  12. Photoionization of atoms and molecules by intense EUV-FEL pulses and FEL seeded by high-order harmonic of ultrashort laser pulses

    Iwasaki, Atsushi; Owada, Shigeki; Yamanouchi, Kaoru; Sato, Takahiro; Nagasono, Mitsuru; Yabashi, Makina; Ishikawa, Tetsuya; Togashi, Tadashi; Takahashi, Eiji J.; Midorikawa, Katsumi; Aoyama, Makoto; Yamakawa, Koichi; Kannari, Fumihiko; Yagishita, Akira

    2012-01-01

    The advantages of SPring-8 Compact SASE Source as a light source for spectroscopic measurements in the extreme ultraviolet (EUV) wavelength region are introduced by referring to our recent study of non-linear photoionization processes of He, in which the absolute two-photon ionization cross sections of He at four different wavelengths in the 54 - 62 nm region were determined using intense pulses of the free-election laser (FEL). In addition, our recent effort to generate intense full-coherent EUV light pulses are introduced, in which significant amplification of the 13th harmonic of ultrashort laser pulses at 800 nm was achieved by FEL seeded with the 13th harmonic. (author)

  13. Design considerations of a MW-scale, high-efficiency, industrial-use, ultraviolet FEL amplifier

    Pagani, C.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2000-01-01

    Theoretical and experimental work in free electron laser (FEL) physics, and the physics of particle accelerators over the last 10 years has pointed to the possibility of the generation of MW-level optical beams with laser-like characteristics in the ultraviolet (UV) spectral range. The concept is based on generation of the radiation in the master oscillator-power FEL amplifier (MOPA) configuration. The FEL amplifier concept eliminates the need for an optical cavity. As a result, there are no thermal loading limitations to increase the average output power of this device up to the MW-level. The problem of a tunable master oscillator can be solved with available conventional quantum lasers. The use of a superconducting energy-recovery linac could produce a major, cost-effective facility with wall plug power to output optical power efficiency of about 20% that spans wavelengths from the visible to the deep ultraviolet regime. The stringent electron beam qualities required for UV FEL amplifier operation can be met with a conservative injector design (using a conventional thermionic gun and subharmonic bunchers) and the beam compression and linear acceleration technology, recently developed in connection with high-energy linear collider and X-ray FEL programs

  14. VUV Optics Development for the Elettra Storage Ring FEL

    Guenster, Stefan

    2004-01-01

    Vacuum ultraviolet optical components for the storage ring FEL at Elettra are under continuous development in the European research consortium EUFELE. Target of the project is the progress to shorter lasing wavelengths in the VUV spectral range. The current status allows lasing with oxide mirror systems down to 190 nm. The main obstacles for the development of optical coatings for shorter wavelengths is the high energetic background of the synchrotron radiation impinging onto the front mirror in the laser cavity. Investigations in single layer systems and multilayer stacks of oxide or fluoride materials demonstrate that fluoride mirrors reach highest reflectivity values down to 140 nm, and oxide coatings possess a satisfactory resistance against the high energetic background irradiation. However, pure oxide multilayer stacks exhibit significant absorption below 190 nm and pure fluoride stacks suffer from strong degradation effects under synchrotron radiation. A solution could be hybrid systems, combining fluo...

  15. FEL in transverse optical klystron regime

    Scarlat, F.; Baltateanu, N.

    1994-01-01

    Among all operational regimes of free electron laser (FEL), the transverse optical regime (TOK) requires the least stringent electron beam parameters. The device associated to this regime, also defined as FEL with two or more components, consists of two or more identical interaction sections separated by one or more drift distances among themselves. Starting from the motion equations which describe the interaction between an electron and the radiation inside the undulator, one can obtain some practical expressions for the calculation of the efficiency of the energy transfer from the electron to the radiation, and the gain of the external coherent radiation for a FEL in TOK with three cavities. (Author)

  16. A high-power compact regenerative amplifier FEL

    Nguyen, D.C.; Sheffield, R.L.; Fortgang, C.M.; Kinross-Wright, J.M.; Ebrahim, N.A.; Goldstein, J.C.

    1997-01-01

    The Regenerative Amplifier FEL (RAFEL) is a new FEL approach aimed at achieving the highest optical power from a compact rf-linac FEL. The key idea is to feed back a small fraction ( 5 in single pass) wiggler to enable the FEL to reach saturation in a few passes. This paper summarizes the design of a high-power compact regenerative amplifier FEL and describes the first experimental demonstration of the RAFEL concept

  17. Experimental studies on the production and suppression mechanism of the hot electrons produced by short wavelength laser

    Qi Lanying; Jiang Xiaohua; Zhao Xuewei; Li Sanwei; Zhang Wenhai; Li Chaoguang; Zheng Zhijian; Ding Yongkun

    1999-12-01

    The experiments on gold-disk and hohlraum and plastic hydrocarbon (CH) film targets irradiated by laser beams with wavelength 0.35 μm (Xingguang-II) and 0.53 μm (Shenguang-I) are performed. The characteristics of hot electrons are commonly deduced from spectrum of hard X-ray. Associated with the measurement of backward SRS and 3/2ω 0 , the production mechanism of hot electrons for different target type is analyzed in laser plasma with shorter wavelength. A effective way to suppress hot electrons has been found

  18. Backscattering of gyrotron radiation and short-wavelength turbulence during electron cyclotron resonance plasma heating in the L-2M stellarator

    Batanov, G. M.; Borzosekov, V. D., E-mail: tinborz@gmail.com; Kovrizhnykh, L. M.; Kolik, L. V.; Konchekov, E. M.; Malakhov, D. V.; Petrov, A. E.; Sarksyan, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2013-06-15

    Backscattering of gyrotron radiation ({theta} = {pi}) by short-wavelength density fluctuations (k{sub Up-Tack} = 30 cm{sup -1}) in the plasma of the L-2M stellarator was studied under conditions of electron cyclotron resonance (ECR) plasma heating at the second harmonic of the electron gyrofrequency (75 GHz). The scattering of the O-wave emerging due to the splitting of the linearly polarized gyrotron radiation into the X- and O-waves was analyzed. The signal obtained after homodyne detection of scattered radiation is a result of interference of the reference signal, the quasi-steady component, and the fast oscillating component. The coefficients of reflection of the quasi-steady component, R{sub =}{sup 2}(Y), and fast oscillating component, R{sub {approx}}{sup 2}(Y), of scattered radiation are estimated. The growth of the R{sub {approx}}{sup 2}(Y) coefficient from 3.7 Multiplication-Sign 10{sup -4} to 5.2 Multiplication-Sign 10{sup -4} with increasing ECR heating power from 190 to 430 kW is found to correlate with the decrease in the energy lifetime from 1.9 to 1.46 ms. The relative density of short-wavelength fluctuations is estimated to be Left-Pointing-Angle-Bracket n{sub {approx}}{sup 2} Right-Pointing-Angle-Bracket / Left-Pointing-Angle-Bracket n{sub e}{sup 2} Right-Pointing-Angle-Bracket = 3 Multiplication-Sign 10{sup -7}. It is shown that the frequencies of short-wavelength fluctuations are in the range 10-150 kHz. The recorded short-wavelength fluctuations can be interpreted as structural turbulence, the energy of which comprises {approx}10% of the total fluctuations energy. Simulations of transport processes show that neoclassical heat fluxes are much smaller than anomalous ones. It is suggested that short-wavelength turbulence plays a decisive role in the anomalous heat transport.

  19. Multi-mode competition in an FEL oscillator at perfect synchronism of an optical cavity

    Dong, Z W; Kii, T; Yamazaki, T; Yoshikawa, K

    2002-01-01

    The sustained saturation in a short pulse free electron laser (FEL) oscillator at perfect synchronism of an optical cavity has been observed recently by Japan Atomic Energy Research Institute (JAERI) FEL group by using their super-conducting linac (Phys. Rev. Lett., in preparation). The experiments have clearly shown that FEL efficiency becomes maximum at perfect synchronism, although it has been considered that only a transient state exists at perfect synchronism due to the lethargy effect. Through careful analyses of the experimental condition of JAERI FEL, we found that, in spite of the short length of the electron micro-bunch, the saturation appears due to the following features, which were different from other FEL experiments: (1) very large ratio of the small signal gain to losses, (2) very long electron macro-bunch which can tolerate a slow start up. The saturation and high efficiency at perfect synchronism were benefited from the contribution of the weak sideband instability. In order to analyse these...

  20. Wavefront propagation through the beamline designed for seeding the DESY XUV FEL

    Reininger, R; Gürtler, P; Bahrdt, J

    2001-01-01

    A beamline designed to reduce the spectral bandwidth of the DESY XUV FEL is described. The beamline is intended to cover the wavelength range from 6.4 to 50 nm with three variable line spacing gratings. A plane mirror in front of the grating is used to maintain constant magnification in the dispersion direction. The electric field generated by the first undulator at three wavelengths, 6.4, 13, and 25 nm, is propagated through the beamline. The results show that the beamline has the resolution and imaging properties required for seeding the second undulator at these wavelengths.

  1. Primary experimental studies on mid-infrared FEL irradiation on dental substances at BFEL

    Biao, Z J; Gao Xue Ju; He Wei; Huang Yu Ying; Li Yong Gui; LiuNianQing; Wang Min Kai; Wu Gan; Yan Xue Pin; Zhang Guo Qing

    2001-01-01

    A free electron laser (FEL) with its characteristics of wide wavelength tunability, ultrashort pulse time structure, and high peak power density is predominantly superior to all other conventional lasers in applications. Several experimental studies on mid-infrared FEL irradiation on dental enamel and dentine were performed at the Beijing FEL. Experimental aims were to investigate changes in the hardness, ratios of P to Ca and Cs before and after irradiation on samples with a characteristic absorption wavelength of 9.66 mu m, in the colors of these sample surfaces after irradiation with different wavelengths around the peak wavelength. The time dependence of temperature of the dentine sample was measured with its ps pulse effects compared to that with a continuous CO sub 2 laser. FTIR absorption spectra in the range of 2.5-15.4 mu m for samples of these hard dental substances and pure hydroxyapatite were first examined to decide their chemical components and absorption maximums. Primary experimental results w...

  2. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    Goloviznin, V. V.; Oepts, D.; van der Wiel, M. J.

    1997-01-01

    A possible way to carry out two-color IR+VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  3. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    Goloviznin, V.V.; Oepts, W.; Wiel, van der M.J.

    1997-01-01

    A possible way to carry out two-color IR + VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  4. Summary of the working group on FEL theory

    Pellegrini, C.

    1984-01-01

    The working group on FEL theory dedicated most of its discussions to topics relevant to the high gain regime in a free electron laser. In addition the area of interest was mainly restricted to FELs for the production of XUV radiation (<1000 A). A list of the topics that were felt to be relevant is: (1) characterization of the FEL high gain regime; (2) the amplified spontaneous emission mode of operation (ASE); (3) superradiance in FELs; (4) diffraction effects for high gain FELs; (5) noise and start-up; (6) coherence properties of the radiation for the ASE and superradiant FELS. 9 references.

  5. Summary of the working group on FEL theory

    Pellegrini, C.

    1984-01-01

    The working group on FEL theory dedicated most of its discussions to topics relevant to the high gain regime in a free electron laser. In addition the area of interest was mainly restricted to FELs for the production of XUV radiation (<1000 A). A list of the topics that were felt to be relevant is: (1) characterization of the FEL high gain regime; (2) the amplified spontaneous emission mode of operation (ASE); (3) superradiance in FELs; (4) diffraction effects for high gain FELs; (5) noise and start-up; (6) coherence properties of the radiation for the ASE and superradiant FELS. 9 references

  6. Improved performance of P3HT:PCBM solar cells by both anode modification and short-wavelength energy utilization using Tb(aca)3phen

    Zhuo Zu-Liang; Wang Yong-Sheng; He Da-Wei; Fu Ming

    2014-01-01

    The performance of P3HT:PCBM solar cells was improved by anode modification using spin-coated Tb(aca) 3 phen ultrathin films. The modification of the Tb(aca) 3 phen ultrathin film between the indium tin oxide (ITO) anode and the PE-DOT:PSS layer resulted in a maximum power conversion efficiency (PCE) of 2.99% compared to 2.66% for the reference device, which was due to the increase in the short-circuit current density (J sc ). The PCE improvement could be attributed to the short-wavelength energy utilization and the optimized morphology of the active layers. Tb(aca) 3 phen with its strong down-conversion luminescence properties is suitable for the P3HT:PCBM blend active layer, and the absorption region of the ternary blend films is extended into the near ultraviolet region. Furthermore, the crystallization and the surface morphology of P3HT:PCBM films were improved with the Tb(aca) 3 phen ultrathin film. The ultraviolent—visible absorption spectra, atomic force microscope (AFM), and X-ray diffraction (XRD) of the films were investigated. Both anode modification and short-wavelength energy utilization using Tb(aca) 3 phen in P3HT:PCBM solar cells led to about a 12% PCE increase. (interdisciplinary physics and related areas of science and technology)

  7. Short-wavelength soft-x-ray laser pumped in double-pulse single-beam non-normal incidence

    Zimmer, D.; Ros, D.; Guilbaud, O.; Habib, J.; Kazamias, S.; Zielbauer, B.; Bagnoud, V.; Ecker, B.; Aurand, B.; Kuehl, T.; Hochhaus, D. C.; Neumayer, P.

    2010-01-01

    We demonstrated a 7.36 nm Ni-like samarium soft-x-ray laser, pumped by 36 J of a neodymium:glass chirped-pulse amplification laser. Double-pulse single-beam non-normal-incidence pumping was applied for efficient soft-x-ray laser generation. In this case, the applied technique included a single-optic focusing geometry for large beam diameters, a single-pass grating compressor, traveling-wave tuning capability, and an optimized high-energy laser double pulse. This scheme has the potential for even shorter-wavelength soft-x-ray laser pumping.

  8. A hybrid type undulator for far-infrared FELs at FELI

    Zako, A.; Miyauchi, Y.; Koga, A. [Free Electron Laser Research Institute, Inc., Osaka (Japan)] [and others

    1995-12-31

    Two FEL facilities of the FELI are now operating in the wavelength range of 1-20 {mu}m. A 3.2-m hybrid type undulator ({lambda}{sub u}=80mm, N=40) has been designed for far-infrared FELs and will be installed in December. It can cover the wavelength of 20-60 {mu}m by changing K-value from 1 to 2.7 for a 28.0-MeV electron beam. It is composed of ferrite magnetic poles and Sm-Co permanent magnets. Commonly wound coils induce alternating magnetic field in ferrite poles. Combination of the induced field and the permanent magnet field can controls the magnetic field between the undulator gap.

  9. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision--a significant trend in the evolution of mammalian vision.

    Jacobs, Gerald H

    2013-03-01

    All mammalian cone photopigments are derived from the operation of representatives from two opsin gene families (SWS1 and LWS in marsupial and eutherian mammals; SWS2 and LWS in monotremes), a process that produces cone pigments with respective peak sensitivities in the short and middle-to-long wavelengths. With the exception of a number of primate taxa, the modal pattern for mammals is to have two types of cone photopigment, one drawn from each of the gene families. In recent years, it has been discovered that the SWS1 opsin genes of a widely divergent collection of eutherian mammals have accumulated mutational changes that render them nonfunctional. This alteration reduces the retinal complements of these species to a single cone type, thus rendering ordinary color vision impossible. At present, several dozen species from five mammalian orders have been identified as falling into this category, but the total number of mammalian species that have lost short-wavelength cones in this way is certain to be much larger, perhaps reaching as high as 10% of all species. A number of circumstances that might be used to explain this widespread cone loss can be identified. Among these, the single consistent fact is that the species so affected are nocturnal or, if they are not technically nocturnal, they at least feature retinal organizations that are typically associated with that lifestyle. At the same time, however, there are many nocturnal mammals that retain functional short-wavelength cones. Nocturnality thus appears to set the stage for loss of functional SWS1 opsin genes in mammals, but it cannot be the sole circumstance.

  10. The FERMI-Elettra FEL Photon Transport System

    Zangrando, M.; Cudin, I.; Fava, C.; Godnig, R.; Kiskinova, M.; Masciovecchio, C.; Parmigiani, F.; Rumiz, L.; Svetina, C.; Turchet, A.; Cocco, D.

    2010-01-01

    The FERMI-Elettra free electron laser (FEL) user facility is under construction at Sincrotrone Trieste (Italy), and it will be operative in late 2010. It is based on a seeded scheme providing an almost perfect transform-limited and fully spatially coherent photon beam. FERMI-Elettra will cover the wavelength range 100 to 3 nm with the fundamental harmonics, and down to 1 nm with higher harmonics. We present the layout of the photon beam transport system that includes: the first common part providing on-line and shot-to-shot beam diagnostics, called PADReS (Photon Analysis Delivery and Reduction System), and 3 independent beamlines feeding the experimental stations. Particular emphasis is given to the solutions adopted to preserve the wavefront, and to avoid damage on the different optical elements. Peculiar FEL devices, not common in the Synchrotron Radiation facilities, are described in more detail, e.g. the online photon energy spectrometer measuring shot-by-shot the spectrum of the emitted radiation, the beam splitting and delay line system dedicated to cross/auto correlation and pump-probe experiments, and the wavefront preserving active optics adapting the shape and size of the focused spot to meet the needs of the different experiments.

  11. Phase-Space Tomography of Giant Pulses in Storage Ring FEL Theory and Experiment

    Chalut, K

    2005-01-01

    The use of giant pulses in storage ring FEL provides for high peak power at the fundamental wavelength and for effective generating of high VUV harmonics. This process is accompanied by a complex nonlinear dynamics of electron beam, which cannot be described by simple models. In this paper we compare the results of numerical simulations, performed by self-consistent #uvfel code, with experimental observations of electron beam evolution in the longitudinal phase space. The evolution of the electron beam distribution was obtained from the images recorded by dual-sweep streak-camera. The giant pulse process occurs on a short fast time scale compared with synchrotron oscillation period, which make standard methods of tomography inapplicable. We had developed a novel method of reconstruction, an SVD-Based Phase-Space Tomography, which allows to reconstruct phase space distribution from as few as two e-bunch profiles separated by about 3 degrees of rotation in the phase space. This technique played critical role in...

  12. Split-And-Delay Unit for FEL Interferometry in the XUV Spectral Range

    Sergey Usenko

    2017-05-01

    Full Text Available In this work we present a reflective split-and-delay unit (SDU developed for interferometric time-resolved experiments utilizing an (extreme ultraviolet XUV pump–XUV probe scheme with focused free-electron laser beams. The developed SDU overcomes limitations for phase-resolved measurements inherent to conventional two-element split mirrors by a special design using two reflective lamellar gratings. The gratings produce a high-contrast interference signal controlled by the grating displacement in every diffraction order. The orders are separated in the focal plane of the focusing optics, which enables one to avoid phase averaging by spatially selective detection of a single interference state of the two light fields. Interferometry requires a precise relative phase control of the light fields, which presents a challenge at short wavelengths. In our setup the phase delay is determined by an in-vacuum white light interferometer (WLI that monitors the surface profile of the SDU in real time and thus measures the delay for each laser shot. The precision of the WLI is 1 nm as determined by optical laser interferometry. In the presented experimental geometry it corresponds to a time delay accuracy of 3 as, which enables phase-resolved XUV pump–XUV probe experiments at free-electron laser (FEL repetition rates up to 60 Hz.

  13. Reactions of N2(A3SIGMA/sub u/+) and candidates for short wavelength lasers, March 1, 1984-February 28, 1985

    Setser, D.W.

    1987-01-01

    There are several potential schemes for efficiently generating high concentrations of the first electronically excited state of nitrogen, N 2 (A 3 Σ/sub u/ + , 6.2 eV) by either chemical or electrical pumping. The goal of this proposal is to study ways of utilizing the energy of the N 2 (A) molecules for developing efficient, short wavelength gas lasers. Such lasers are of potential interest for laser fusion. The authors report both excitation-transfer and dissociative excitation-transfer reactions of N 2 (A) that yield electronically-excited diatomic molecules as products. 25 refs

  14. A UV pre-ionized dual-wavelength short-pulse high-power CO{sub 2} laser facility for laser particle acceleration research

    Ebrahim, N A; Mouris, J F; Davis, R W

    1994-12-01

    In this report we describe the Chalk River dual-wavelength, short-pulse, single-mode, high-power CO{sub 2} laser facility for research in laser particle acceleration and CANDU materials modifications. The facility is designed and built around UV-preionized transversely-excited atmospheric-pressure (TEA) Lumonics CO{sub 2} laser discharge modules. Peak focussed power densities of up to 2 x 10{sup 14} W/cm{sup 2} in 500 ps pulses have been obtained. (author). 10 refs., 9 figs.

  15. Wavelength dependence of momentum-space images of low-energy electrons generated by short intense laser pulses at high intensities

    Maharjan, C M; Alnaser, A S; Litvinyuk, I; Ranitovic, P; Cocke, C L

    2006-01-01

    We have measured momentum-space images of low-energy electrons generated by the interaction of short intense laser pulses with argon atoms at high intensities. We have done this over a wavelength range from 400 to 800 nm. The spectra show considerable structure in both the energy and angular distributions of the electrons. Some, but not all, energy features can be identified as multi-photon resonances. The angular structure shows a regularity which transcends the resonant structure and may be due instead to diffraction. The complexity of the results defies easy model-dependent interpretations and invites full solutions to Schroedinger's equation for these systems

  16. Nonlinear absorption and transmission properties of Ge, Te and InAs using tuneable IR FEL

    Amirmadhi, F.; Becker, K.; Brau, C.A. [Vanderbilt Univ., Nashville, TN (United States)

    1995-12-31

    Nonlinear absorption properties of Ge, Te and InAs are being investigated using the transmission of FEL optical pulses through these semiconductors (z-scan method). Wavelength, intensity and macropulse dependence are used to differentiate between two-photon and free-carrier absorption properties of these materials. Macropulse dependence is resolved by using a Pockles Cell to chop the 4-{mu}s macropulse down to 100 ns. Results of these experiments will be presented and discussed.

  17. Luminescence from ZnSe excited by picosecond mid-infrared FEL pulses

    Mitsuyu, T.; Suzuki, T.; Tomimasu, T.

    1998-01-01

    We have observed blue band-edge emission from a ZnSe crystal under irradiation of mid-infrared picosecond free electron laser (FEL) pulses. The emission characteristics including spectrum, excitation power dependence, excitation wavelength dependence, and decay time have been investigated. The experimental results have indicated that it is difficult to understand the excitation process by multiphoton excitation, thermal excitation, or excitation through mid-gap levels. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Measurements of the growth rate of the short wavelength Rayleigh-Taylor instability of foam foil packages driven by a soft x-ray pulse

    Willi, O.; Pasley, J.; Iwase, A.; Nazarov, W.; Rose, S.J.

    2000-01-01

    The Rayleigh-Taylor instability was studied in the short wavelength regime using single mode targets that were driven by hohlraum radiation allowing the Takabe-Morse roll-over due to ablative stabilisation to be investigated. A temporally shaped soft x-ray drive was generated by focusing one of the PHEBUS laser beams into a gold hohlraum with a maximum radiation temperature of about 120 eV. Thin plastic foils with sinusoidal modulations with wavelengths between 12 and 50 μm, and a perturbation amplitude of about 10% of the wavelength, were used. A low density 50 mg/cc tri-acrylate foam 150 μm in length facing the hohlraum was attached to the modulated foam target. The targets were radiographed face-on at an x-ray energy of about 1.3 keV with a spatial resolution of about 5 μm using a Wolter-like x-ray microscope coupled to an x-ray streak camera with a temporal resolution of 50 ps. The acceleration was obtained from side-on radiography. 2-D hydrodynamic code simulations have been carried out to compare the experimental results with the simulations. (authors)

  19. Investigation of concept of efficient short wavelength laser. Interim progress report, 1 April 1977-30 April 1978

    Piper, L.G.; Krech, R.H.; Taylor, R.L.

    1978-05-01

    Under this program PSI is investigating the photolytic decomposition of a class of endoergic molecules - azides. Because these compounds contain substantial chemical energy, they offer a potentially more efficient approach for the production of electronically excited fragments. The goal of the present program was to acquire sufficient data and understanding of certain fundamental processes to permit the critical evaluation of this approach for laser development. An apparatus was built to study the wavelength-selected photolysis of gaseous, covalent azides. The photolysis source is a frequency doubled, tuneable dye laser. Detection of fragment species is accomplished by observation of primary fluorescence, or by laser-induced fluorescence (LIF) using a second tuneable dye laser. The design of the apparatus is discussed in detail.

  20. High-harmonic relativistic gyrotron as an alternative to FEL

    Bratman, V L; Kalynov, Yu K; Kolganov, N G; Manuilov, V N; Ofitserov, M M; Samsonov, S V; Volkov, A B [Russian Academy of Sciences, Nizhny Novgorod (Russian Federation). Inst. of Applid Physics

    1997-12-31

    A submillimeter wave gyrotron operating at moderately relativistic electron energies of 200-300 keV is proposed as a simple alternative to FEL. It is shown that high pulsed magnetic fields of 20-30 T and selective excitation of separate modes for resonances up to the 5-7 th harmonics will make it possible to obtain in a single device the coherent radiation with broadband frequency step tuning within the whole submillimeter wavelength range. At large pitch angles the coupling of the electron beam with cavity modes at higher harmonics should be as strong as at the fundamental one. In order to check the theoretical predictions, two gyrotrons were designed: LOG-1 (250 kV, 10 A, 10 ms) with a thermionic emission cathode and LOG-2 (350 kV, 35 A, 20 ns) with an explosive emission cathode. (J.U.). 7 refs.

  1. Longitudinal Diagnostics for Short Electron Beam Bunches

    Loos, H.; /SLAC

    2010-06-11

    Single-pass free electron lasers require high peak currents from ultra-short electron bunches to reach saturation and an accurate measurement of bunch length and longitudinal bunch profile is necessary to control the bunch compression process from low to high beam energy. The various state-of-the-art diagnostics methods from ps to fs time scales using coherent radiation detection, RF deflection, and other techniques are presented. The use of linear accelerators as drivers for free electron lasers (FEL) and the advent of single-pass (SASE) FELs has driven the development of a wide range of diagnostic techniques for measuring the length and longitudinal distribution of short and ultra-short electron bunches. For SASE FELs the radiation power and the length of the undulator needed to achieve saturation depend strongly on the charge density of the electron beam. In the case of X-ray FELs, this requires the accelerator to produce ultra-high brightness beams with micron size transverse normalized emittances and peak currents of several kA through several stages of magnetic bunch compression. Different longitudinal diagnostics are employed to measure the peak current and bunch profile along these stages. The measurement techniques can be distinguished into different classes. Coherent methods detect the light emitted from the beam by some coherent radiation process (spectroscopic measurement), or directly measure the Coulomb field traveling with the beam (electro-optic). Phase space manipulation techniques map the time coordinate onto a transverse dimension and then use conventional transverse beam diagnostics (transverse deflector, rf zero-phasing). Further methods measure the profile or duration of an incoherent light pulse emitted by the bunch at wavelengths much shorted than the bunch length (streak camera, fluctuation technique) or modulate the electron beam at an optical wavelength and then generate a narrow bandwidth radiation pulse with the longitudinal profile of

  2. Multi-mode interactions in an FEL oscillator

    Dong Zhi Wei; Masuda, K; Yamazaki, T; Yoshikawa, K

    2000-01-01

    A 3D time-dependent FEL oscillator simulation code has been developed by using the transverse mode spectral method to analyze interaction among transverse modes. The competition among them in an FEL oscillator was investigated based on the parameters of LANL FEL experiments. It is found that under typical FEL oscillator operation conditions, the TEM sub 0 sub 0 mode is dominant, and the effects of other transverse modes can be negligible.

  3. Status and prospects of a compact FIR FEL driven by a magnetron-based microtron

    Jeong, Young Uk; Kazakevitch, Grigori M.; Lee, Byung Cheol; Kim, Sun Kook; Cho, Sung Oh; Gavrilov, Nicolai G.; Lee, Jongmin

    2002-01-01

    A magnetron-based microtron as a driver of FIR FEL has several prominent advantages in cost, size, beam quality and operation convenience. However, it has some disadvantages due to the instability of the RF frequency and a low current. In order to overcome these disadvantages, the frequency stability of the magnetron was improved, and the interaction between the electron beam and the FIR radiation was enhanced by using a high-performance undulator and a low-loss waveguide-mode optical resonator. The FEL is now under upgrade in order to extend the wavelength range to cover 90-300 μm, which can be done by increasing the energy range of electron beam to 4.3-7 MeV. In this paper, we report the results of investigations on output characteristics of the FEL depending on cavity detuning, electron beam matching, and RF instability. Based on the results, we discuss the prospects of wide-band FIR FELs driven by magnetron-based microtrons as potent sources of radiation for scientific applications

  4. The APS SASE FEL: modeling and code comparison

    Biedron, S. G.

    1999-01-01

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL

  5. Reducing Short-Wavelength Blue Light in Dry Eye Patients with Unstable Tear Film Improves Performance on Tests of Visual Acuity.

    Kaido, Minako; Toda, Ikuko; Oobayashi, Tomoo; Kawashima, Motoko; Katada, Yusaku; Tsubota, Kazuo

    2016-01-01

    To investigate whether suppression of blue light can improve visual function in patients with short tear break up time (BUT) dry eye (DE). Twenty-two patients with short BUT DE (10 men, 12 women; mean age, 32.4 ± 6.4 years; age range, 23-43 years) and 18 healthy controls (10 men, 8 women; mean age, 30.1 ± 7.4 years; age range, 20-49 years) underwent functional visual acuity (VA) examinations with and without wearing eyeglasses with 50% blue light blocked lenses. The functional VA parameters were starting VA, functional VA, and visual maintenance ratio. The baseline mean values (logarithm of the minimum angle of resolution, logMAR) of functional VA and the visual maintenance ratio were significantly worse in the DE patients than in the controls (P 0.05). The DE patients had significant improvement in mean functional VA and visual maintenance ratio while wearing the glasses (P 0.05). Protecting the eyes from short-wavelength blue light may help to ameliorate visual impairment associated with tear instability in patients with DE. This finding represents a new concept, which is that the blue light exposure might be harmful to visual function in patients with short BUT DE.

  6. Reducing Short-Wavelength Blue Light in Dry Eye Patients with Unstable Tear Film Improves Performance on Tests of Visual Acuity.

    Minako Kaido

    Full Text Available To investigate whether suppression of blue light can improve visual function in patients with short tear break up time (BUT dry eye (DE.Twenty-two patients with short BUT DE (10 men, 12 women; mean age, 32.4 ± 6.4 years; age range, 23-43 years and 18 healthy controls (10 men, 8 women; mean age, 30.1 ± 7.4 years; age range, 20-49 years underwent functional visual acuity (VA examinations with and without wearing eyeglasses with 50% blue light blocked lenses. The functional VA parameters were starting VA, functional VA, and visual maintenance ratio.The baseline mean values (logarithm of the minimum angle of resolution, logMAR of functional VA and the visual maintenance ratio were significantly worse in the DE patients than in the controls (P 0.05. The DE patients had significant improvement in mean functional VA and visual maintenance ratio while wearing the glasses (P 0.05.Protecting the eyes from short-wavelength blue light may help to ameliorate visual impairment associated with tear instability in patients with DE. This finding represents a new concept, which is that the blue light exposure might be harmful to visual function in patients with short BUT DE.

  7. Optimum electron temperature and density for short-wavelength plasma-lasing from nickel-like ions

    Masoudnia, Leili; Bleiner, Davide

    2014-01-01

    Soft X-ray lasing across a Ni-like plasma gain-medium requires optimum electron temperature and density for attaining to the Ni-like ion stage and for population inversion in the 3d 9 4d 1 (J=0)→3d 9 4p 1 (J=1) laser transition. Various scaling laws, function of operating parameters, were compared with respect to their predictions for optimum temperatures and densities. It is shown that the widely adopted local thermodynamic equilibrium (LTE) model underestimates the optimum plasma-lasing conditions. On the other hand, non-LTE models, especially when complemented with dielectronic recombination, provided accurate prediction of the optimum plasma-lasing conditions. It is further shown that, for targets with Z equal or greater than the rare-earth elements (e.g. Sm), the optimum electron density for plasma-lasing is not accessible for pump-pulses at λ=1ω=1μm. This observation explains a fundamental difficulty in saturating the wavelength of plasma-based X-ray lasers below 6.8 nm, unless using 2ω pumping

  8. Observation of SASE in LEBRA FEL system

    Tanaka, T. E-mail: tanaka@lebra.nihon-u.ac.jp; Hayakawa, K.; Sato, I.; Hayakawa, Y.; Yokoyama, K

    2004-08-01

    A large enhancement of spontaneous undulator radiation has been observed during FEL lasing experiments at LEBRA. The enhancement has been observed only with the detector for the infrared fundamental radiation. The detector output signal showed spikes during the electron beam pulse, yet no apparent enhancement was observed with a CCD camera monitoring the visible harmonic radiations. An enhancement factor greater than 10 has been obtained with a 2.4 m long undulator with a completely detuned FEL optical cavity length and depends strongly on the parameters of the linac RF system. This implies that the SASE operation is possible even with a conventional electron beam by achieving suitable bunch compression.

  9. Does one hour of bright or short-wavelength filtered tablet screenlight have a meaningful effect on adolescents' pre-bedtime alertness, sleep, and daytime functioning?

    Heath, Melanie; Sutherland, Cate; Bartel, Kate; Gradisar, Michael; Williamson, Paul; Lovato, Nicole; Micic, Gorica

    2014-05-01

    Electronic media use is prevalent among adolescent populations, as is the frequency of sleeplessness. One mechanism proposed for technology affecting adolescents' sleep is the alerting effects from bright screens. Two explanations are provided. First, screens emit significant amounts of short-wavelength light (i.e. blue), which produces acute alertness and alters sleep timing. Second, later chronotypes are hypothesised to be hypersensitive to evening light. This study analysed the pre-sleep alertness (GO/NOGO task speed, accuracy; subjective sleepiness), sleep (sleep diary, polysomnography), and morning functioning of 16 healthy adolescents (M = 17.4 ± 1.9 yrs, 56% f) who used a bright tablet screen (80 lux), dim screen (1 lux) and a filtered short-wavelength screen (f.lux; 50 lux) for 1 hr before their usual bedtime in a within-subjects protocol. Chronotype was analysed as a continuous between-subjects factor; however, no significant interactions occurred. Significant effects occurred between bright and dim screens for GO/NOGO speed and accuracy. However, the magnitude of these differences was small (e.g. GO/NOGO speed = 23 ms, accuracy = 13%), suggesting minimal clinical significance. No significant effects were found for sleep onset latency, slow-rolling eye movements, or the number of SWS and REM minutes in the first two sleep cycles. Future independent studies are needed to test short (1 hr) vs longer (>2 hrs) screen usage to provide evidence for safe-to-harmful levels of screenlight exposure before adolescents' usual bedtime.

  10. The vertical and the longitudinal dynamic responses of the vehicle-track system to squat-type short wavelength irregularity

    Zhao, Xin; Li, Zili; Dollevoet, Rolf

    2013-12-01

    The squat, a kind of rolling contact fatigue occurring on the rail top, can excite the high-frequency vehicle-track interaction effectively due to its geometric deviations with a typical wavelength of 20-40 mm, leading to the accelerated deterioration of a track. In this work, a validated 3D transient finite element model is employed to calculate in the time domain the vertical and the longitudinal dynamic contact forces between the wheel and the rail caused by squats. The vehicle-track structure and the wheel-rail continua are both considered in order to include all the important eigencharacteristics of the system related to squats. By introducing the rotational and translational movements of the wheel, the transient wheel-rail rolling contact is solved in detail by a 3D frictional contact model integrated. The contact filter effect is considered automatically in the simulations by the finite size of the contact patch. The present work focuses on the influences of the length, width and depth of a light squat on the resulted dynamic contact forces, for which idealised defect models are used. The growth of a squat is also modelled to a certain extent by a series of defects with different dimensions. The results show that the system is mainly excited at two frequencies separately in the vertical and the longitudinal dynamics. Their superposition explains the typical appearance of mature squats. As a squat grows up, the magnitude of the excited vibration at the lower frequency increases faster than the one at the higher frequency.

  11. Optical modeling of the Jefferson Lab IR Demo FEL

    Neil, G.; Benson, S.; Shinn, M.; Davidson, P.; Kloppel, P.

    1997-01-01

    The Thomas Jefferson National Accelerator Facility (formerly known as CEBAF) has embarked on the construction of a 1 kW free-electron laser operating initially at 3 microns that is designed for laser-material interaction experiments and to explore the feasibility of scaling the system in power and wavelength for industrial and Navy defense applications. The superconducting radio-frequency linac, and single-pass transport which accelerates the beam from injector to wiggler, followed by energy-recovery deceleration to a dump. The electron and optical beam time structure in the design consists of a train of pecosecond pulses at a 37.425 MHz pulse repetition rate. The initial optical configuration is a conventional near-concentric resonator with transmissive outcoupling. Future upgrades of the system will increase the power and shorten the operating wavelength, and utilize a more advanced resonator system capable of scaling to high powers. The optical system of the laser has been mode led using the GLAD code by using a Beer's-law region to mimic the FEL interaction. Effects such as mirror heating have been calculated and compared with analytical treatments. The magnitude of the distorium for several materials and wavelengths has been estimated. The advantages as well as the limitations of this approach are discussed

  12. New autocorrelation technique for the IR FEL optical pulse width measurements

    Amirmadhi, F.; Brau, K.A.; Becker, C. [Vanderbilt Univ., Nashville, TN (United States)] [and others

    1995-12-31

    We have developed a new technique for the autocorrelation measurement of optical pulse width at the Vanderbilt University FEL center. This method is based on nonlinear absorption and transmission characteristics of semiconductors such as Ge, Te and InAs suitable for the wavelength range from 2 to over 6 microns. This approach, aside being simple and low cost, removes the phase matching condition that is generally required for the standard frequency doubling technique and covers a greater wavelength range per nonlinear material. In this paper we will describe the apparatus, explain the principal mechanism involved and compare data which have been acquired with both frequency doubling and two-photon absorption.

  13. A new undulator for the extension of the spectral range of the CLIO FEL

    Marcouille, O.; Berset, J.M.; Glotin, F. [LURE, Orsay (France)] [and others

    1995-12-31

    We built a new undulator in order to extend the lasing range of the CLIO infrared FEL. Presently, CLIO operates in the wavelength range 2 - 17 {mu}m. Beyond 14 {mu}m, the power decreases rapidly, because of the diffraction losses of the vacuum chamber (7 mm height and 2 m long). Thus, lasing at higher wavelengths implies installing a chamber with a height approximately twice. Then the minimum gap is increased and the maximum deflection parameter, K, is reduced from 2 to 1 : the laser tunability is greatly reduced. This is why a new undulator has been built.

  14. Generation of doublet spectral lines at self-seeded X-ray FELs

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim to reduce the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Braggtransmission geometry for self-seeding in the hard X-ray range. The obvious and technically possible extension is to use such kind of monochromator setup with two -or more- crystals arranged in a series to spectrally filter the SASE radiation at two -or more- closely-spaced wavelengths within the FEL gain band. This allows for the production of doublet- or multiplet-spectral lines. Applications exist over a broad range of hard X-ray wavelengths involving any process where there is a large change in cross section over a narrow wavelength range, as in multiple wavelength anomalous diffraction techniques (MAD). In this paper we consider the simultaneous operation of the LCLS hard X-ray FEL at two closely spaced wavelengths. We present simulation results for the LCLS baseline, and we show that this method can produce fully coherent radiation shared between two longitudinal modes. Mode spacing can be easily tuned within the FEL gain band, i.e. within 10 eV. An interesting aspect of the proposed scheme is a way of modulating the electron bunch at optical frequencies without a seed quantum laser. In fact, the XFEL output intensity contains an oscillating ''mode-beat'' component whose frequency is related to the frequency difference between the pair of longitudinal modes considered. Thus, at saturation one obtains FEL-induced modulations of energy loss and energy spread in the electron bunch at optical frequency. These modulations can be converted into density modulation at the same optical frequency with the help of a weak chicane installed behind the baseline undulator. Powerful coherent radiation can then be generated with the help of an optical transition radiation (OTR) station,which have important applications. In this paper we briefly

  15. Generation of doublet spectral lines at self-seeded X-ray FELs

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-11-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim to reduce the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Braggtransmission geometry for self-seeding in the hard X-ray range. The obvious and technically possible extension is to use such kind of monochromator setup with two -or more- crystals arranged in a series to spectrally filter the SASE radiation at two -or more- closely-spaced wavelengths within the FEL gain band. This allows for the production of doublet- or multiplet-spectral lines. Applications exist over a broad range of hard X-ray wavelengths involving any process where there is a large change in cross section over a narrow wavelength range, as in multiple wavelength anomalous diffraction techniques (MAD). In this paper we consider the simultaneous operation of the LCLS hard X-ray FEL at two closely spaced wavelengths. We present simulation results for the LCLS baseline, and we show that this method can produce fully coherent radiation shared between two longitudinal modes. Mode spacing can be easily tuned within the FEL gain band, i.e. within 10 eV. An interesting aspect of the proposed scheme is a way of modulating the electron bunch at optical frequencies without a seed quantum laser. In fact, the XFEL output intensity contains an oscillating ''mode-beat'' component whose frequency is related to the frequency difference between the pair of longitudinal modes considered. Thus, at saturation one obtains FEL-induced modulations of energy loss and energy spread in the electron bunch at optical frequency. These modulations can be converted into density modulation at the same optical frequency with the help of a weak chicane installed behind the baseline undulator. Powerful coherent radiation can then be generated with the help of an optical transition radiation (OTR) station,which have important applications. In this paper we briefly

  16. High color rendering index of remote-type white LEDs with multi-layered quantum dot-phosphor films and short-wavelength pass dichroic filters

    Yoon, Hee Chang; Oh, Ji Hye; Do, Young Rag

    2014-09-01

    This paper introduces high color rendering index (CRI) white light-emitting diodes (W-LEDs) coated with red emitting (Sr,Ca)AlSiN3:Eu phosphors and yellowish-green emitting AgIn5S8/ZnS (AIS/ZS) quantum dots (QDs) on glass or a short-wavelength pass dichroic filter (SPDF), which transmit blue wavelength regions and reflect yellow wavelength regions. The red emitting (Sr,Ca)AlSiN3:Eu phosphor film is coated on glass and a SPDF using a screen printing method, and then the yellowish-green emitting AIS/ZS QDs are coated on the red phosphor (Sr,Ca)AlSiN3:Eu film-coated glass and SPDF using the electrospray (e-spray) method.To fabricate the red phosphor film, the optimum amount of phosphor is dispersed in a silicon binder to form a red phosphor paste. The AIS/ZS QDs are mixed with dimethylformamide (DMF), toluene, and poly(methyl methacrylate) (PMMA) for the e-spray coating. The substrates are spin-coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to fabricate a conductive surface. The CRI of the white LEDs is improved through inserting the red phosphor film between the QD layer and the glass substrate. Furthermore, the light intensities of the multi-layered phosphor films are enhanced through changing the glass substrate to the SPDF. The correlated color temperatures (CCTs) vary as a function of the phosphor concentration in the phosphor paste. The optical properties of the yellowish-green AIS/ZS QDs and red (Sr,Ca)AlSiN3:Eu phosphors are characterized using photoluminescence (PL), and the multi-layered QD-phosphor films are measured using electroluminescence (EL) with an InGaN blue LED (λmax = 450 nm) at 60 mA.

  17. A Mode Locked UV-FEL

    Parvin, Parviz

    2004-01-01

    An appropriate resonator has been designed to generate femtosecond mode locked pulses in a UV FEL with the modulator performance based on the gain switching. The gain broadening due to electron energy spread affects on the gain parameters, small signal gain (γ0) and saturation intensity (Is), to determine the optimum output coupling as small.

  18. The CSU Accelerator and FEL Facility

    Milton, S.V.; Biedron, S.G.; Burleson, T.; Carrico, C.; Edelenbos, J.; Hall, C.; Horovitz, K.; Morin, A.; Rand, L.; Sipahi, N.; Sipahi, T.; van der Slot, P.; Yehudah, H.; Dong, A.; Tanaka, T.; Schaa, V.R.W.

    2013-01-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode

  19. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators

    Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David

    2011-06-01

    We describe the factors that go into the component choices for a short wavelength IR (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7 °C. In addition, we have mated our InGaAs detector arrays to 640×512 readout integrated integrated circuits to make focal plane arrays (FPAs). The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 μm at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0 °C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling. In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, and provide artifact-free imagery versus conventional laser illuminators.

  20. Transition operators in acoustic-wave diffraction theory. I - General theory. II - Short-wavelength behavior, dominant singularities of Zk0 and Zk0 exp -1

    Hahne, G. E.

    1991-01-01

    A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.

  1. FEL based photon collider of TeV energy range

    Saldin, E.L.; Shnejdmiller, E.A.; Sarantsev, V.P.; Yurkov, M.V.

    1994-01-01

    Physical principles of operation of high energy photon linear colliders (PLC) based on the Compton backscattering of laser photons on high energy electrons are discussed. The main emphasis is put on the analysis of a possibility to construct the PLC with the center of mass energy 0.5-2 TeV. Free electron laser (FEL) is considered as a source of primary photons. Proposed FEL system consists of a tunable FEL oscillator (output power ∼ 1 - 10 MW) with subsequent amplification of the master signal in a FEL amplifier up to the power ∼ 3 x 10 11 W. The FEL parameters are optimized, restrictions on the electron beam and FEL magnetic system parameters are formulated and problems of technical realization are discussed. It is shown that the FEL technique provides the most suitable way to construct photon linear collider on the base of future generation linear collider. 22 refs., 10 figs., 2 tabs

  2. FEL radiation power available in electron storage rings

    Miyahara, Yoshikazu

    1994-01-01

    FEL radiation power available in electron storage rings was studied in the small signal regime in considering the increase of the energy spread of the electron beam caused by the FEL interaction and the decrease of the FEL gain with the increase of the energy spread in addition to the radiation damping and the quantum excitation. All these effects were considered separately, and combined with FEL power equations. The radiation power available was expressed explicitly with the parameters of the storage ring, the wiggler and the mirrors. The transient process of FEL lasing is simulated with the power equations. A rough estimation is made of the radiation power available by the FEL at different beam energies, and optimization of FEL parameters for a higher radiation power is discussed. ((orig.))

  3. FTIR Spectroscopy on Basic Materials in THz Region for Compact FEL-Based Imaging

    Cha, H J; Lee, B C; Park, S H

    2005-01-01

    We are making experiments on THz(terahertz) imaging using a compact high power FEL (free-electron laser) which is operating as a users facility at KAERI. The wavelength range of output pulses is 100~1200 μm, which corresponds to 0.3~3 THz in the frequency region. We should select the optimum wavelength for the constituents of specimens to realize the imaging based on the THz FEL. A FTIR (Fourier-transform infrared) spectrometer was modified to measure the optical constants of the specimens in THz region. A polyester film of which thickness is 3.7 μm was used as a beam splitter of the spectrometer. In the case of normal incidence, the transmittance of the film was measured to be more than 90%, and the estimated loss by absorption was approximately 2% at the FEL frequency of 3 THz. Several tens of nanometer-thick-silver was coated on the polyester film to balance both transmission and reflection of THz waves in the beam splitter. We investigated FTIR spectroscopy on air, vapor and liquid water...

  4. Microfocusing of the FERMI@Elettra FEL beam with a K–B active optics system: Spot size predictions by application of the WISE code

    Raimondi, L.; Svetina, C.; Mahne, N.; Cocco, D.; Abrami, A.; De Marco, M.; Fava, C.; Gerusina, S.; Gobessi, R.; Capotondi, F.; Pedersoli, E.; Kiskinova, M.; De Ninno, G.; Zeitoun, P.; Dovillaire, G.; Lambert, G.; Boutu, W.; Merdji, H.; Gonzalez, A.I.; Gauthier, D.

    2013-01-01

    FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10–100 fs) pulses with ultrahigh peak brightness and wavelengths from 100 nm to 4 nm. A section fully dedicated to the photon transport and analysis diagnostics, named PADReS, has already been installed and commissioned. Three of the beamlines, EIS-TIMEX, DiProI and LDM, installed after the PADReS section, are in advanced commissioning state and will accept the first users in December 2012. These beam lines employ active X-ray optics in order to focus the FEL beam as well as to perform a controlled beam-shaping at focus. Starting from mirror surface metrology characterization, it is difficult to predict the focal spot shape applying only methods based on geometrical optics such as the ray tracing. Within the geometrical optics approach one cannot take into account the diffraction effect from the optics edges, i.e. the aperture diffraction, and the impact of different surface spatial wavelengths to the spot size degradation. Both these effects are strongly dependent on the photon beam energy and mirror incident angles. We employed a method based on physical optics, which applies the Huygens–Fresnel principle to reflection (on which the WISE code is based). In this work we report the results of the first measurements of the focal spot in the DiProI beamline end-station and compare them to the predictions computed with Shadow code and WISE code, starting from the mirror surface profile characterization

  5. Microfocusing of the FERMI@Elettra FEL beam with a K–B active optics system: Spot size predictions by application of the WISE code

    Raimondi, L., E-mail: lorenzo.raimondi@elettra.trieste.it [Sincrotrone Trieste ScpA, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy); Svetina, C.; Mahne, N. [Sincrotrone Trieste ScpA, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy); Cocco, D. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS-19 Menlo Park, CA 94025 (United States); Abrami, A.; De Marco, M.; Fava, C.; Gerusina, S.; Gobessi, R.; Capotondi, F.; Pedersoli, E.; Kiskinova, M. [Sincrotrone Trieste ScpA, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy); De Ninno, G. [Sincrotrone Trieste ScpA, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy); University of Nova Gorica, Vipavska 13, Rozna Dolina, SI-5000 Nova Gorica (Slovenia); Zeitoun, P. [Laboratoire d' Optique Appliquée, CNRS-ENSTA-École Polytechnique, Chemin de la Humiére, 91761 Palaiseau (France); Dovillaire, G. [Imagine Optic, 18 Rue Charles de Gaulle, 91400 Orsay (France); Lambert, G. [Laboratoire d' Optique Appliquée, CNRS-ENSTA-École Polytechnique, Chemin de la Humiére, 91761 Palaiseau (France); Boutu, W.; Merdji, H.; Gonzalez, A.I. [Service des Photons, Atomes et Molécules, IRAMIS, CEA-Saclay, Btiment 522, 91191 Gif-sur-Yvette (France); Gauthier, D. [University of Nova Gorica, Vipavska 13, Rozna Dolina, SI-5000 Nova Gorica (Slovenia); and others

    2013-05-11

    FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10–100 fs) pulses with ultrahigh peak brightness and wavelengths from 100 nm to 4 nm. A section fully dedicated to the photon transport and analysis diagnostics, named PADReS, has already been installed and commissioned. Three of the beamlines, EIS-TIMEX, DiProI and LDM, installed after the PADReS section, are in advanced commissioning state and will accept the first users in December 2012. These beam lines employ active X-ray optics in order to focus the FEL beam as well as to perform a controlled beam-shaping at focus. Starting from mirror surface metrology characterization, it is difficult to predict the focal spot shape applying only methods based on geometrical optics such as the ray tracing. Within the geometrical optics approach one cannot take into account the diffraction effect from the optics edges, i.e. the aperture diffraction, and the impact of different surface spatial wavelengths to the spot size degradation. Both these effects are strongly dependent on the photon beam energy and mirror incident angles. We employed a method based on physical optics, which applies the Huygens–Fresnel principle to reflection (on which the WISE code is based). In this work we report the results of the first measurements of the focal spot in the DiProI beamline end-station and compare them to the predictions computed with Shadow code and WISE code, starting from the mirror surface profile characterization.

  6. Generation of a few femtoseconds pulses in seeded FELs using a seed laser with small transverse size

    Li, Heting, E-mail: liheting@ustc.edu.cn; Jia, Qika

    2016-09-11

    We propose a simple method to generate a few femtosecond pulses in seeded FELs. We use a longitudinal energy-chirped electron beam passing through a dogleg where transverse dispersion will generate a horizontal energy chirp, then in the modulator, a seed laser with narrow beam radius will only modulate the center portion of the electron beam and then short pulses at high harmonics will be generated in the radiator. Using a representative realistic set of parameters, we show that 30 nm XUV pulse based on the HGHG scheme and 9 nm soft x-ray pulse based on the EEHG scheme with duration of about 8 fs (FWHM) and peak power of GW level can be generated from a 180 nm UV seed laser with beam waist of 75 μm. This new scheme can provide an optional operation mode for the existing seeded FEL facilities to meet the requirement of short-pulse FEL.

  7. Storage-ring FEL for the vuv

    Peterson, J.M.; Bisognano, J.J.; Garren, A.A.; Halbach, K.; Kim, K.J.; Sah, R.C.

    1984-09-01

    A free-electron laser for the vuv operating in a storage ring requires an electron beam of high density and low energy spread and a short wavelength, narrow-gap undulator. These conditions tend to produce longitudinal and transverse beam instabilities, excessive beam growth through multiple intrabeam scattering, and a short gas-scattering lifetime. Passing the beam only occasionally through the undulator in a by-pass straight section, as proposed by Murphy and Pellegrini, allows operation in a high-gain, single-pass mode and a long gas-scattering lifetime. Several storage ring designs have been considered to see how best to satisfy the several requirements. Each features a by-pass, a low-emittance lattice, and built-in wigglers for enhanced damping to counteract the intra-beam scattering. 15 references, 3 figures, 2 tables

  8. Ultrahigh harmonics generation in a FEL with a seed laser

    Goloviznin, V.V.; Amersfoort, P.W. van

    1995-01-01

    One of the most challenging problems in modern FEL technology is to operate in the X-ray region, especially in the open-quotes water windowclose quotes. Because of the absence of optical resonators in this range of wavelengths, only a single-pass device may be suitable for this task. The Self-Amplified Spontaneous Emission (SASE) mechanism is now under active discussion as a realistic way to provide high-power coherent emission in the X-ray range. Both the undulator parameters and the electron beam parameters required for the lasing are achieveable at today's technological level. On the other hand, the SASE approach implies a very long and expensive periodic magnetic structure, typically several tens of meters long. This is mainly because of the rather long build-up time necessary to establish a coherent mode from incoherent noise. A mechanism of shortening this time would be therefore highly desirable. In the present paper we consider a scheme using two undulators and a seed-laser to produce coherent X-ray emission. The first undulator and the seed-laser provide a pre-modulation of the beam while the second undulator serves as a source of coherent spontaneous radiation at a very high harmonic of the seed-laser frequency; the whole scheme may then be considered to be an FEL-based frequency upconvertor. The total length of the periodic magnetic structure is shown to be of the order of several meters, nearly an order of magnitude shorter than in the SASE case. For the same beam quality as in the SASE scheme and with realistic seed-laser parameters, the efficiency of the beam pre-modulation at the 50-th (exclamation point) harmonic is shown to be as high as 15%. The output radiation is tunable between discrete harmonics of the seed-frequency

  9. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    Sei, Norihiro, E-mail: sei.n@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Zen, Heishun; Ohgaki, Hideaki [Institute for Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-10-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR. - Highlights: • We have developed intense coherent synchrotron radiation (CSR) at KU-FEL. • The elevation angle of the CSR was correctly measured by a new technique. • The CSR power extracted to the air was 55 μJ per 7 μs macropulse. • It was demonstrated that an energy slit was effective to improve the CSR properties.

  10. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    Sei, Norihiro; Zen, Heishun; Ohgaki, Hideaki

    2016-01-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR. - Highlights: • We have developed intense coherent synchrotron radiation (CSR) at KU-FEL. • The elevation angle of the CSR was correctly measured by a new technique. • The CSR power extracted to the air was 55 μJ per 7 μs macropulse. • It was demonstrated that an energy slit was effective to improve the CSR properties.

  11. Determination of Seed Soundness in Conifers Cryptomeria japonica and Chamaecyparis obtusa Using Narrow-Multiband Spectral Imaging in the Short-Wavelength Infrared Range

    Matsuda, Osamu; Hara, Masashi; Tobita, Hiroyuki; Yazaki, Kenichi; Nakagawa, Toshinori; Shimizu, Kuniyoshi; Uemura, Akira; Utsugi, Hajime

    2015-01-01

    Regeneration of planted forests of Cryptomeria japonica (sugi) and Chamaecyparis obtuse (hinoki) is the pressing importance to the forest administration in Japan. Low seed germination rate of these species, however, has hampered low-cost production of their seedlings for reforestation. The primary cause of the low germinability has been attributed to highly frequent formation of anatomically unsound seeds, which are indistinguishable from sound germinable seeds by visible observation and other common criteria such as size and weight. To establish a method for sound seed selection in these species, hyperspectral imaging technique was used to identify a wavelength range where reflectance spectra differ clearly between sound and unsound seeds. In sound seeds of both species, reflectance in a narrow waveband centered at 1,730 nm, corresponding to a lipid absorption band in the short-wavelength infrared (SWIR) range, was greatly depressed relative to that in adjacent wavebands on either side. Such depression was absent or less prominent in unsound seeds. Based on these observations, a reflectance index SQI, abbreviated for seed quality index, was formulated using reflectance at three narrow SWIR wavebands so that it represents the extent of the depression. SQI calculated from seed area-averaged reflectance spectra and spatial distribution patterns of pixelwise SQI within each seed area were both proven as reliable criteria for sound seed selection. Enrichment of sound seeds was accompanied by an increase in germination rate of the seed lot. Thus, the methods described are readily applicable toward low-cost seedling production in combination with single seed sowing technology. PMID:26083366

  12. Growth of transverse coherence in SASE FELs

    Kumar, Vinit; Krishnagopal, Srinivas

    2000-01-01

    We introduce the correlation function between the electric field at two different points in the transverse plane as a parameter to quantify the degree of transverse coherence. We also propose a more realistic model for the initialization of the radiation in computer codes used to study SASE FELs. We make these modifications in the code TDA and use it to study the growth of transverse coherence as a function of electron beam size, beam current and transverse emittance. Our results show explicitly that the onset of full transverse coherence in SASE takes place much before the power saturates. With the more realistic model the onset of the exponential growth regime is delayed, and to get a given power from the FEL one needs a longer undulator than would be predicted by the original TDA code

  13. Nearly copropagating sheared laser pulse FEL undulator for soft x-rays

    Lawler, J E; Yavuz, D; Bisognano, J; Bosch, R A; Chiang, T C; Green, M A; Jacobs, K; Miller, T; Wehlitz, R; York, R C

    2013-01-01

    A conceptual design for a soft x-ray free-electron laser (FEL) using a short-pulsed, high energy near infrared laser undulator and a low-emittance modest-energy (∼170 MeV) electron beam is described. This low-cost design uses the laser undulator beam in a nearly copropagating fashion with respect to the electron beam, instead of the traditional ‘head-on’ fashion. The nearly copropagating geometry reduces the Doppler shift of scattered radiation to yield soft, rather than hard x-rays. To increase the FEL gain a sheared laser pulse from a Ti : sapphire or other broadband laser is used to extend the otherwise short interaction time of the nearly copropagating laser undulator beam with a relativistic electron beam. (paper)

  14. Spontaneous emission in Cherenkov FEL devices

    Ciocci, F.; Dattoli, G.; Doria, A.; Schettini, G.; Torre, A.; Walsh, J.E.

    1987-01-01

    The main features of the spectral characteristics of the spontaneously emitted Cherenkov light in circular and rectangular wave-guides filled with dielectric are discussed. The characteristics of the radiation emitted by an electron beam moving near and parallel to the surface of a dielectric slab are also analysed. Finally, the relevance of these results to a possible FEL-Cherenkov operation is briefly discussed

  15. High-power, high-efficiency FELs

    Sessler, A.M.

    1989-04-01

    High power, high efficiency FELs require tapering, as the particles loose energy, so as to maintain resonance between the electromagnetic wave and the particles. They also require focusing of the particles (usually done with curved pole faces) and focusing of the electromagnetic wave (i.e. optical guiding). In addition, one must avoid transverse beam instabilities (primarily resistive wall) and longitudinal instabilities (i.e sidebands). 18 refs., 7 figs., 3 tabs

  16. Duke storage rink UV/VUV FEL: Status and prospects

    Litvinenko, V.N.; Burnham, B.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The 1 GeV Duke storage ring was successfully commissioned with parameters exceeding initial specification. The OK-4 FEL has arrived at the Duke FEL laboratory from the Novosibirsk Institute of Nuclear Physics. The OK-4 installation and commissioning is in progress. In this paper we describe the up-to-date status of the Duke storage ring and the OK-4 FEL. The projected performance of the OK-4 UV/VUV FEL is presented based on the electron beam parameters achieved. Initial plans to operate the OK-4 UV/VUV FEL at the Duke 1 GeV storage ring are outlined. Future plans and prospects of both the OK-4 FEL and the Duke storage ring are discussed.

  17. Industrial Applications of High Average Power FELS

    Shinn, Michelle D

    2005-01-01

    The use of lasers for material processing continues to expand, and the annual sales of such lasers exceeds $1 B (US). Large scale (many m2) processing of materials require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes, although they have been demonstrated. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW in the IR, rendering these applications economically viable, since the cost/photon drops as the output power increases. This approach also enables high average power ~ 1 kW output in the UV spectrum. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth ~ 1 ps) output with very high beam quality. This talk will provide an overview of applications tests by our facility's users such as pulsed laser deposition, laser ablation, and laser surface modification, as well as present plans that will be tested with our upgraded FELs. These upg...

  18. Renewal of KU-FEL Facility

    Kii, Toshiteru; Masuda, Kai; Murakami, Shio; Ohgaki, Hideaki; Yamazaki, Tetsuo; Yoshikawa, Kiyoshi; Zen, Heishun

    2004-01-01

    Users demands to a high power tunable IR laser are increasing in Japan in energy-related science, such as basic study of high-efficiency solar cells, generation of new energy source of alcohol and/or H2 from polluted gas, and separation of DNA and/or RNA. To satisfy these demands, we decided to renew our FEL facility more user friendly and to operate more flexibly. Construction and fundamental studies on the KU-FEL have been carried out at a building of Institute of Chemical Research where few other accelerators are operating. Therefore, available machine time for our experiments is quite limited. We are now modifying the room by adding concrete walls of 2-m thickness and some space for users will be available. The present FEL system will be moved to the room A photocathode RF-gun system will be nearly added to the system and the present thermionic RF-gun will be used ternatively according to the demands of users. The photocathode material will be Cs2Te. The room with the shielding will be completed in June, ...

  19. Bunch compression for an FEL at NLCTA

    Zimmermann, F.

    1997-04-01

    As part of the design effort for a free electron laser driven by the Next Linear Collider Test Accelerator (NLCTA), the author reports studies of bunch-length compression utilizing the existing infrastructure and hardware. In one possible version of the NLCTA FEL, bunches with 900-microm FWHM length, generated by an S-band photo-injector, would be compressed to an rms length of 60--120 microm before entering the FEL undulator. It is shown that, using the present magnetic chicane, the bunch compression is essentially straightforward, and that almost all emittance-diluting effects, e.g. wakefields, chromaticity, or space charge in the bending magnets, are small. The only exception to this finding is the predicted increase of the horizontal emittance due to coherent synchrotron radiation (CSR). Estimates based on existing theories of coherent synchrotron radiation suggest a tripling or quadrupling of the initial emittance, which seems to preclude bunch compression during regular FEL operation. Serendipitously, the magnitude of the predicted emittance growth would, on the other hand, make the NLCTA chicane an excellent tool for measuring the effects of coherent synchrotron radiation. This will be of considerable interest to many future projects, in particular to the Linac Coherent Light Source (LCLS). As an aside, it is shown that coherent synchrotron radiation in a bending magnet gives rise to a minimum possible bunch length, which is very reminiscent of the Oide limit on the vertical spot size at the interaction point of a linear collider

  20. Future metrology needs for FEL reflective optics

    Assoufid, L.

    2000-01-01

    An International Workshop on Metrology for X-ray and Neutron Optics has been held March 16-17, 2000, at the Advanced Photon Source, Argonne National Laboratory, near Chicago, Illinois (USA). The workshop gathered engineers and scientists from both the U.S. and around the world to evaluate metrology instrumentation and methods used to characterize surface figure and finish for long grazing incidence optics used in beamlines at synchrotrons radiation sources. This two-day workshop was motivated by the rapid evolution in the performance of x-ray and neutron sources along with requirements in optics figure and finish. More specifically, the performance of future light sources, such as free-electron laser (FEL)-based x-ray sources, is being pushed to new limits in term of both brilliance and coherence. As a consequence, tolerances on surface figure and finish of the next generation of optics are expected to become tighter. The timing of the workshop provided an excellent opportunity to study the problem, evaluate the state of the art in metrology instrumentation, and stimulate innovation on future metrology instruments and techniques to be used to characterize these optics. This paper focuses on FEL optics and metrology needs. (A more comprehensive summary of the workshop can be found elsewhere.) The performance and limitations of current metrology instrumentation will be discussed and recommendations from the workshop on future metrology development to meet the FEL challenges will be detailed

  1. Future metrology needs for FEL reflective optics.

    Assoufid, L.

    2000-09-21

    An International Workshop on Metrology for X-ray and Neutron Optics has been held March 16-17, 2000, at the Advanced Photon Source, Argonne National Laboratory, near Chicago, Illinois (USA). The workshop gathered engineers and scientists from both the U.S. and around the world to evaluate metrology instrumentation and methods used to characterize surface figure and finish for long grazing incidence optics used in beamlines at synchrotrons radiation sources. This two-day workshop was motivated by the rapid evolution in the performance of x-ray and neutron sources along with requirements in optics figure and finish. More specifically, the performance of future light sources, such as free-electron laser (FEL)-based x-ray sources, is being pushed to new limits in term of both brilliance and coherence. As a consequence, tolerances on surface figure and finish of the next generation of optics are expected to become tighter. The timing of the workshop provided an excellent opportunity to study the problem, evaluate the state of the art in metrology instrumentation, and stimulate innovation on future metrology instruments and techniques to be used to characterize these optics. This paper focuses on FEL optics and metrology needs. (A more comprehensive summary of the workshop can be found elsewhere.) The performance and limitations of current metrology instrumentation will be discussed and recommendations from the workshop on future metrology development to meet the FEL challenges will be detailed.

  2. Electron beam optics for the FEL experiment and IFEL experiment

    van Steenbergen, A.

    1990-01-01

    Electron beam transport system parameters for the FEL experiment and for the FEL experiment are given. The perturbation of the ''interaction region'' optics due to wiggler focussing is taken into account and a range of solutions are provided for relevant Twiss parameters in the FEL or IFEL region. Modifications of the transport optics in specific sections of the overall beam transport lines, for reasons of enhanced diagnostic capability or enhanced beam momentum analysis resolution, is also presented

  3. Ultrafast phenomena at the nanoscale: science opportunities at the SwissFEL X-ray laser

    Abela, R.; Braun, H.; Ming, P.; Pedrozzi, M.; Quitmann, Ch.; Reiche, S.; Daalen, M. van; Veen, J.F. van der; Mesot, J.; Mesot, J.; Shiroka, T.; Veen, J.F. van der; Mesot, J.

    2009-09-01

    In today's fast-moving society, standing still is effectively synonymous with being left behind. If it is to maintain, beyond the coming 10-15 years, its high international standing as a complex of large research infrastructures, the Paul Scherrer Institute (PSI) must now lay the foundation for a competitive future. Experts worldwide foresee a strongly growing demand within science and technology for photon sources delivering ultra-short, coherent X-ray pulses. Such a source, called a free electron laser (FEL), is nothing less than a gigantic flash camera, allowing us to take a deeper look into matter than with any other machine before. By literally seeing molecules in action, scientists will be able not only to capture chemical and biological processes of direct relevance and benefit to society but also to improve them. It is a dream coming true. For the first time, it will not only be possible to take pictures of molecular structures, we will be able to make movies of their motion. The new X-ray laser project at PSI, known as SwissFEL, will be an important addition to the existing complex of PSI facilities that serve interdisciplinary and international research teams from academia and industry. The SwissFEL is an essential element of Switzerland's strategic focus and will prolong our nation's leading position in scientific research for years to come. It will attract top scientists from Switzerland and abroad, and will strengthen the position of PSI as a world-class research institute. This new high-tech facility will also provide an important incentive for Swiss industry, through which existing highly-qualified jobs will be maintained and new ones created. In this report we present a wide range of important, open questions within science and engineering disciplines that SwissFEL will contribute towards solving. These questions, which form the 'scientific case' for SwissFEL, have been identified through a range of workshops organized over the past few years and by

  4. Start-Up of FEL Oscillator from Shot Noise

    Kumar, V.; Krishnagopal, S.; Fawley, W.M.

    2007-01-01

    In free-electron laser (FEL) oscillators, as in self-amplified spontaneous emission (SASE) FELs, the buildup of cavity power starts from shot noise resulting from the discreteness of electronic charge. It is important to do the start-up analysis for the build-up of cavity power in order to fix the macropulse width from the electron accelerator such that the system reaches saturation. In this paper, we use the time-dependent simulation code GINGER [1]to perform this analysis. We present results of this analysis for the parameters of the Compact Ultrafast TErahertz FEL (CUTE-FEL) [2] being built at RRCAT

  5. FEL small signal dynamics and electron beam prebunching

    Dattoli, G.

    1993-01-01

    A seed signal and/or a pre-bunched electron beam may provide the start up of a free electron laser (FEL). Recently, interest has grown around FEL's operating with pre-bunched electron beams; this paper is, therefore, devoted to the analysis of the dynamic features of FEL's operating in such a configuration. It exploits a slightly modified form of the FEL high gain equation to derive quantities of practical interest like the dependence of the system growth rate on the bunching coefficients

  6. Computer modelling of statistical properties of SASE FEL radiation

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-01-01

    The paper describes an approach to computer modelling of statistical properties of the radiation from self amplified spontaneous emission free electron laser (SASE FEL). The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY

  7. JAERI 10kW High Power ERL-FEL and Its Applications in Nuclear Energy Industries

    Minehara, E J; Iijima, H; Kikuzawa, N; Nagai, R; Nishimori, N; Nishitani, T; Sawamura, M; Yamauchi, T

    2005-01-01

    The JAERI high power ERL-FEL has been extended to the more powerful and efficient free-electron laser (FEL) than 10kW for nuclear energy industries, and other heavy industries like defense, shipbuilding, chemical industries, environmental sciences, space-debris, and power beaming and so on. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand-alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the ERL-FEL will cover the current status of the 10kW upgrading and its applications of non-thermal peeling, cutting, and drilling to decommission the nuclear power plants, and to demonstrate successfully the proof of principle prevention of cold-worked stress-corrosion cracking failures in nuclear power reactors under routine operation using small cubic low-Carbon stainless steel samples.

  8. Design of compressors for FEL pulses using deformable gratings

    Bonora, Stefano; Fabris, Nicola; Frassetto, Fabio; Giovine, Ennio; Miotti, Paolo; Quintavalla, Martino; Poletto, Luca

    2017-06-01

    We present the optical layout of soft X-rays compressors using reflective grating specifically designed to give both positive or negative group-delay dispersion (GDD). They are tailored for chirped-pulse-amplification experiments with FEL sources. The optical design originates from an existing compressor with plane gratings already realized and tested at FERMI, that has been demonstrated capable to introduce tunable negative GDD. Here, we discuss two novel designs for compressors using deformable gratings capable to give both negative and positive GDD. Two novel designs are discussed: 1) a design with two deformable gratings and an intermediate focus between the twos, that is demonstrated capable to introduce positive GDD; 2) a design with one deformable grating giving an intermediate focus, followed by a concave mirror and a plane grating, that is capable to give both positive and negative GDD depending on the distance between the second mirror and the second grating. Both the designs are tunable in wavelength and GDD, by acting on the deformable gratings, that are rotated to tune the wavelength and the GDD and deformed to introduce the radius required to keep the spectral focus. The deformable gratings have a laminar profile and are ruled on a thin silicon plane substrate. A piezoelectric actuator is glued on the back of the substrate and is actuated to give a radius of curvature that is varying from infinite (plane) to few meters. The ruling procedure, the piezoelectric actuator and the efficiency measurements in the soft X-rays will be presented. Some test cases are discussed for wavelengths shorter than 12 nm.

  9. Design and analysis of InN - In0.25Ga0.75N single quantum well laser for short distance communication wavelength

    Polash, Md. Mobarak Hossain; Alam, M. Shah; Biswas, Saumya

    2018-03-01

    A single quantum well semiconductor laser based on wurtzite-nitride is designed and analyzed for short distance communication wavelength (at around 1300 nm). The laser structure has 12 Å well layer of InN, 15 Å barrier layer of In0.25Ga0.75N, and 54 Å separate confinement heterostructure layer of GaN. To calculate the electronic characteristics of the structure, a self-consistent method is used where Hamiltonian with effective mass approximation is solved for conduction band while six-bands Hamiltonian matrix with k · p formalism including the polarization effect, valence-band mixing effect, and strain effect is solved for valence band. The interband optical transition elements, optical gain, differential gain, radiative current density, spontaneous emission rate, and threshold characteristics have been calculated. The wave function overlap integral is found to be 45.93% for TE-polarized structure. Also, the spontaneous emission rate is found to be 6.57 × 1027 s - 1 cm - 3 eV - 1 at 1288.21 nm with the carrier density of 5 × 1019 cm - 3. Furthermore, the radiative current density and the radiative recombination rate are found to be 121.92 A cm - 2 and 6.35 × 1027 s - 1 cm - 3, respectively, while the TE-polarized optical gain of the structure is 3872.1 cm - 1 at 1301.7 nm.

  10. FERMI @ Elettra A Seeded Harmonic Cascade FEL for EUV and Soft X-Rays

    Bocchetta, C J; Craievich, P; D'Auria, G; Danailov, M B; De Ninno, G; Di Mitri, S; Diviacco, B; Ferianis, M; Gomezel, A; Iazzourene, F; Karantzoulis, E; Penco, G; Trovò, M

    2005-01-01

    We describe the machine layout and major performance parameters for the FERMI FEL project funded for construction at Sincrotrone Trieste, Italy. The project will be the first user facility based on seeded harmonic cascade FELs, providing controlled, high peak-power pulses. With a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac, the facility will provide tunable output over a range from ~100 nm to ~10 nm, with pulse duration from 40 fs to ~ 1ps, and with fully variable output polarization. Initially, two FEL cascades are planned; a single-stage harmonic generation to operate > 40 nm, and a two-stage cascade operating from ~40 nm to ~10 nm or shorter wavelength. The output is spatially and temporally coherent, with peak power in the GW range. Lasers provide modulation to the electron beam, as well as driving the photocathode and other systems, and the facility will integrate laser systems with the accelerator infrastructure, including a state-of-the-art optical timing sys...

  11. High-gain Seeded FEL Amplifier Tunable in the Terahertz Range

    Sung, C; Pellegrini, C; Ralph, J E; Reiche, S; Rosenzweig, J B; Tochitsky, Sergei Ya

    2005-01-01

    The lack of a high-power, relatively low-cost and compact terahertz (THz) source in the range 0.3-3x10(12) Hz is the major obstacle in progressing on biomedical and material studies at these wavelengths. A high-gain, single pass seeded FEL technique allows to obtain high power THz pulses of a high spectral brightness. We describe an ongoing project at the Neptune laboratory where a ~ 1kW seed pulse generated by difference frequency mixing of CO2 laser lines in a GaAs nonlinear crystal is injected into a waveguide FEL amplifier. The FEL is driven by a 5 ps (r.m.s) long electron pulse with a peak current up to 100A provided by a regular S-band photoinjector. According to 3-D, time dependent simulations, up to ~ 10 MW THz power can be generated using a 2 meter long planar undulator. By mixing different pairs of CO2 laser lines and matching resonant energy of the electron beam, tunability in the 100-400 mm range is expected. A tunable Fabri-Perot interferometer will be used to select a high-power 5ps THz pulse. T...

  12. A Coherent Compton Backscattering High Gain FEL using an X-Band Microwave Undulator

    Pellegrini, C; Travish, G

    2005-01-01

    We describe a proposed high-gain FEL using an X-band microwave undulator and operating at a wavelength of about 0.5 μm. The FEL electron beam energy is 65 MeV. The beam is produced by the NLCTA X-band linac at SLAC, using an S-band high-brightness photoinjector. The undulator consists of a circular waveguide with an rf wave counter-propagating with respect to the electron beam. The undulator is powered with two high-power X-band klystrons and a dual-moded pulse compressor recently developed at SLAC. This system is capable of delivering flat-top rf pulses of up to 400 ns and a few hundred megawatts. The equivalent undulator period is 1.4 cm, the radius of the circular pipe is 1 cm, and the undulator parameter is about 0.4 for a helical undulator configuration, obtained using two cross-polarized TE modes, or larger for a planar configuration, using one rf polarization. The undulator is about four meters long. The FEL will reach saturation within this distance when operated in a SASE mode. We describe t...

  13. Feasibility of an XUV FEL Oscillator Driven by a SCRF Linear Accelerator

    Lumpkin, A. H.; Freund, H. P.; Reinsch, M.

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) facility is currently under construction at Fermi National Accelerator Laboratory. Using a1-ms-long macropulse composed of up to 3000 micropulses, and with beam energies projected from 45 to 800 MeV, the possibility for an extreme ultraviolet (XUV) free-electron laser oscillator (FELO) with the higher energy is evaluated. We have used both GINGER with an oscillator module and the MEDUSA/OPC code to assess FELO saturation prospects at 120 nm, 40 nm, and 13.4 nm. The results support saturation at all of these wavelengths which are also shorter than the demonstrated shortest wavelength record of 176 nm from a storage-ring-based FELO. This indicates linac-driven FELOs can be extended into this XUV wavelength regime previously only reached with single-pass FEL configurations.

  14. Three years of biomedical FEL use in medicine and surgery How far have we come?

    Jean, Benedikt

    1997-02-01

    Since the FEL has been made available for biophysical research in the IR, it has revolutionized the optimization strategies of laser-tissue interaction and the minimizing of adverse effects, in particular for photoablative use in surgery. Its tunability together with the free combination of wavelength and energy made it an efficient research tool, allowing the reduction of risks and costs of preclinical biomedical research. New computer-assisted surgical techniques evolved and the broader data basis of IR photothermal ablation allows more accurate predictive modelling of the efficiency and the adverse effects of photoablation. New applications for diagnostic imaging as well as the first clinical applications in neurosurgery lay ahead.

  15. Status and initial commissioning of a high gain 800 nm SASE FEL

    Tremaine, Aaron M; Murokh, A; Musumeci, P; Pellegrini, C; Rosenzweig, J; Babzien, M; Ben-Zvi, I; Johnson, E; Malone, R; Rakowsky, G; Skaritka, J; Wang, X J; Yu, L H; Van Bibber, K A; Hill, J M; Le Sage, G P; Carr, R; Cornacchia, M; Nuhn, H D; Ruland, R; Nguyen, D C

    2000-01-01

    We describe the status and initial commissioning of the Visible to Infrared SASE Amplifier (VISA) experiment. VISA uses a strong focusing 4 m undulator, the Brookhaven National Laboratory ATF linac with an energy of 72 MeV, and a photoinjector electron source. The VISA fundamental radiation wavelength is near 800 nm and the power expected at saturation is near 60 MW. Power, angular and spectral measurements are planned for the VISA radiation and these results will be analyzed and compared with SASE FEL theory and computer simulation. In addition, the induced electron beam micro-bunching will be measured using coherent transition radiation.

  16. Status and initial commissioning of a high gain 800 nm SASE FEL

    Tremaine, A.; Frigola, P.; Murokh, A.; Musumeci, P.; Pellegrini, C.; Rosenzweig, J.; Babzien, M.; Ben-Zvi, I.; Johnson, E.; Malone, R.; Rakowsky, G.; Skaritka, J.; Wang, X.J.; Yu, L.H.; Van Bibber, K.A.; Hill, J.M.; Le Sage, G.P.; Carr, R.; Cornacchia, M.; Nuhn, H.-D.; Ruland, R.; Nguyen, D.C.

    2000-01-01

    We describe the status and initial commissioning of the Visible to Infrared SASE Amplifier (VISA) experiment. VISA uses a strong focusing 4 m undulator, the Brookhaven National Laboratory ATF linac with an energy of 72 MeV, and a photoinjector electron source. The VISA fundamental radiation wavelength is near 800 nm and the power expected at saturation is near 60 MW. Power, angular and spectral measurements are planned for the VISA radiation and these results will be analyzed and compared with SASE FEL theory and computer simulation. In addition, the induced electron beam micro-bunching will be measured using coherent transition radiation

  17. Development of a pump-probe facility with sub-picosecond time resolution combining a high-power ultraviolet regenerative FEL amplifier and a soft X-ray SASE FEL

    Faatz, B.; Fateev, A.A.; Feldhaus, J.; Krzywinski, J.; Pflueger, J.; Rossbach, J.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2001-01-01

    This paper presents the conceptual design of a high power radiation source with laser-like characteristics in the ultraviolet spectral range at the TESLA Test Facility (TTF). The concept is based on the generation of radiation in a regenerative FEL amplifier (RAFEL). The RAFEL described in this paper covers a wavelength range of 200-400 nm and provides 200 fs pulses with 2 mJ of optical energy per pulse. The linac operates at 1% duty factor and the average output radiation power exceeds 100 W. The RAFEL will be driven by the spent electron beam leaving the soft X-ray FEL, thus providing minimal interference between these two devices. The RAFEL output radiation has the same time structure as the X-ray FEL and the UV pulses are naturally synchronized with the soft X-ray pulses from the TTF FEL. Therefore, it should be possible to achieve synchronization close to the duration of the radiation pulses (200 fs) for pump-probe techniques using either an UV pulse as a pump and soft X-ray pulse as a probe, or vice versa

  18. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    Merminga, L.; Alexeev, P.; Benson, S.; Bolshakov, A.; Doolittle, L.; Neil, G.

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab

  19. Analysis of the FEL-RF interaction in recirculating energy-recovering linacs with an FEL

    Merminga, Lia; Alexeev, P.; Benson, Steve; Bolshakov, A.; Doolittle, Lawrence; Neil, George

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab

  20. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    Merminga, L. E-mail: merminga@jlab.org; Alexeev, P.; Benson, S.; Bolshakov, A.; Doolittle, L.; Neil, G

    1999-06-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab.

  1. Optimization of the LCLS X-Rray FEL Output Performance in the Presence of Strong Undulator Wakefields

    Reiche, Sven; Emma, Paul; Fawley, William M; Huang, Zhirong; Nuhn, Heinz-Dieter; Stupakov, Gennady

    2005-01-01

    The Linac Coherent Light Source (LCLS) Free-Electron Laser will operate in the wavelength range of 1.5 to 15 Angstroms. Energy loss due to wakefields within the long undulator can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber material (e.g. Cu) and its radius. To study the expected performance in the presence of these wakefields, we make a series of "start-to-end" simulations with tracking codes PARMELA and ELEGANT and time-dependent FEL simulation codes Genesis 1.3 and Ginger. We discuss the impact of the wakefield on output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation obtained with a slight z dependent taper in the undulator field. We compare these results to those obtained by decreasing the bunch ...

  2. Progress toward a soft X-ray FEL

    Pellegrini, C.

    1988-01-01

    We review the FEL physics and obtain scaling laws for the extension of its operation to the soft X-ray region. We also discuss the properties of an electron beam needed to drive such an FEL, and the present state of the art for the beam production. (orig.)

  3. Elements of a realistic 17 GHz FEL/TBA design

    Hopkins, D.B.; Halbach, K.; Hoyer, E.H.; Sessler, A.M.; Sternbach, E.J.

    1989-01-01

    Recently, renewed interest in an FEL version of a two-beam accelerator (TBA) has prompted a study of practical system and structure designs for achieving the specified physics goals. This paper presents elements of a realistic design for an FEL/TBA suitable for a 1 TeV, 17 GHz linear collider. 13 refs., 8 figs., 2 tabs

  4. Femtosecond X-ray Pulses from a Spatially Chirped Electron Bunch in a SASE FEL

    Emma, P.

    2003-01-14

    We propose a simple method to produce short x-ray pulses using a spatially chirped electron bunch in a SASE FEL. The spatial chirp is generated using an rf deflector which produces a transverse offset (in y and/or y') correlated with the longitudinal bunch position. Since the FEL gain is very sensitive to an initial offset in the transverse phase space at the entrance of the undulator, only a small portion of the electron bunch with relatively small transverse offset will interact significantly with the radiation, resulting in an x-ray pulse length much shorter than the electron bunch length. The x-ray pulse is also naturally phase locked to the rf deflector and so allows high precision timing synchronization. We discuss the generation and transport of such a spatially chirped electron beam and show that tens of femtosecond long pulse can be generated for the linac coherent light source (LCLS).

  5. Short Rayleigh Length Free Electron Lasers

    Crooker, P P; Armstead, R L; Blau, J

    2004-01-01

    Conventional free electron laser (FEL) oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. A new FEL interaction is described and analyzed with a Rayleigh length that is only one tenth the undulator length, or less. The effect of mirror vibration and positioning are more critical in the short Rayleigh length design, but we find that they are still within normal design tolerances.

  6. Extension of the spectral range of the CLIO FEL

    Marcouille, O.; Boyer, J.C.; Corlier, M. [LURE, Orsay (France)] [and others

    1995-12-31

    The CLIO FEL has been designed to lase between 2 and 20 {mu}m. The electrons are produced by a 32/50 MeV RF linear accelerator. The injector is a 100 keV thermoionic gun, followed by a subharmonic prebuncher at 0.5 GHz and a buncher at 3 GHz. The electron beam is then accelerated in a 4.5 m long travelling wave accelerating section, to the nominal energy. The undulator consisted of 48 periods of 40 mm and the optical cavity is 4.8 m long which corresponds to a 1.2 m Rayleigh length. The peak power extracted by a ZnSe Brewster plate is 10 MW at 10 {mu}. But, beyond 11{mu}m, the laser power decreases rapidely and no laser oscillation appears above 17 {mu}m. In order to lase at farther wavelengths, few changes have been made: First of all, the power limit is due to the diffraction losses of the undulator vaccuum chamber (7 mm height and 2 m long). Numerical calculations have been made and show that cavity losses reach 55 % at 15 {mu}m whereas the measured gain is 60 %. Consequently, the undulator vaccuum chamber have been replaced by a approximately twice bigger one. Then, the minimum gap is increased and the maximum deflection parameter K is reduced by a factor 2: laser tunability is greatly reduced. This why a new undulator has been built. The main characteristics are summarized.

  7. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution.

    Emerling, Christopher A; Huynh, Hieu T; Nguyen, Minh A; Meredith, Robert W; Springer, Mark S

    2015-11-22

    Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage. © 2015 The Author(s).

  8. FEL gain optimisation and spontaneous radiation

    Bali, L.M.; Srivastava, A.; Pandya, T.P. [Lucknow Univ. (India)] [and others

    1995-12-31

    Colson have evaluated FEL gains for small deviations from perfect electron beam injection, with radiation of the same polarisation as that of the wiggler fields. We find that for optimum gain the polarisation of the optical field should be the same as that of the spontaneous emission under these conditions. With a helical wiggler the axial oscillations resulting from small departures from perfect electron beam injection lead to injection dependent unequal amplitudes and phases of the spontaneous radiation in the two transverse directions. Viewed along the axis therefore the spontaneous emission is elliptically polarised. The azimuth of the ellipse varies with the difference of phase of the two transverse components of spontaneous emission but the eccentricity remains the same. With planar wigglers the spontaneous emission viewed in the axial direction is linearly polarised, again with an injection dependent azimuth. For optimum coherent gain of a radiation field its polarisation characteristics must be the same as those of the spontaneous radiation with both types of wiggler. Thus, with a helical wiggler and the data reported earlier, an increase of 10% in the FEL gain at the fundamental frequency and of 11% at the fifth harmonic has been calculated in the small gain per pass limit. Larger enhancements in gain may result from more favourable values of input parameters.

  9. The ARC-EN-CIEL FEL Proposal

    Couprie, M E

    2005-01-01

    ARC-EN-CIEL (Accelerator-Radiation for Enhanced Coherent Intense Extended Light), the French project of a fourth generation light source aims at providing the user community with coherent femtosecond light pulses covering from UV to soft X ray. It is based on a CW 1 GeV superconducting linear accelerator delivering high charge, subpicosecond, low emittance electron bunches with a high repetition rate. The FEL is based on in the injection of High Harmonics in Gases in a High Gain Harmonic Generation scheme, leading to a rather compact solution. The produced radiation extending down to 0.8 nm with the Non Linear Harmonic reproduces the good longitudinal and transverse coherence of the harmonics in gas. Optional beam loops are foreseen to increase the beam current or the energy. They will accommodate fs synchrotron radiation sources in the IR, VUV and X ray ranges and a FEL oscillator in the 10 nm range. An important synergy is expected between accelerator and laser communities. Indeed, electron plasma accelerat...

  10. Short-wavelength multiline erbium-doped fiber ring laser by a broadband long-period fiber grating inscribed in a taper transition

    Anzueto-Sánchez, G; Martínez-Rios, A

    2014-01-01

    A stable multiwavelength all-fiber erbium-doped fiber ring laser (EDFRL) based on a broadband long-period fiber grating (LPFG) inscribed in a fiber taper transition is presented. The LPFG’s characteristics were engineered to provide a higher loss at the natural lasing wavelength of the laser cavity. The LPFG inscribed on a taper transition provided a depth greater than 25 dB, and posterior chemical etching provided a broad notch band to inhibit laser generation on the long-wavelength side of the EDF gain. Up to four simultaneous laser wavelengths are generated in the range of 1530–1535 nm. (paper)

  11. Short (

    Telleman, Gerdien; den Hartog, Laurens

    2013-01-01

    Aim: This systematic review assessed the implant survival rate of short (<10 mm) dental implants installed in partially edentulous patients. A case report of a short implant in the posterior region have been added. Materials and methods: A search was conducted in the electronic databases of MEDLINE

  12. Wavelength switching in an optical klystron

    Berryman, K.W.; Smith, T.I.

    1995-01-01

    A symmetric optical klystron consists of two identical undulator sections separated a dispersive section. For a device of a given length, an optical klystron is capable of producing much more bunching, and therefore more gain, than a traditional undulator. Another consequence of introducing dispersion between two undulator sections is that the overall spontaneous radiation pattern results from the interference between the two undulator sections, and as such resembles a standard undulator radiation pattern modulated by a sinusoidal interference term. The presence of several wavelength peaks in the spontaneous lineshape implies an equal number of peaks in the gain spectrum. If the strength of the dispersion section is adjusted to provide nearly equal gain on the two largest of these peaks, then they will compete, and the FEL may switch wavelengths based on noise, cavity length, or other perturbations. We provide the first observations of this behavior, using the FIREFLY system at the Stanford Picosecond FEL Center. In FIREFLY, relative wavelength switching by more than 3%--more than twice the laser linewidth-has been observed by varying dispersion section strength, while at intermediate points stable switching has also been observed as a function of cavity length

  13. Design and implementation of Web-based SDUV-FEL engineering database system

    Sun Xiaoying; Shen Liren; Dai Zhimin; Xie Dong

    2006-01-01

    A design of Web-based SDUV-FEL engineering database and its implementation are introduced. This system will save and offer static data and archived data of SDUV-FEL, and build a proper and effective platform for share of SDUV-FEL data. It offers usable and reliable SDUV-FEL data for operators and scientists. (authors)

  14. Performance of an undulator for visible and UV FELs at FELI

    Miyauchi, Y.; Zako, A.; Koga, A. [Free Electron Laser Research Institute, Inc., Osaka (Japan)] [and others

    1995-12-31

    Two infrared free electron lasers (FELs) of the FELI project are now operating in the wavelength range of 1-20{mu}m. A 2.68-m undulator has been constructed for visible and UV FELs covering the wavelength of 1-0.2{mu}m for 100-165 MeV electron beams. It generates alternating, horizontal magnetic field, and wiggles electron beam on a vertical plane. The undulator length and period are 2.68m and 40mm, respectively. The gap of undulator magnets can be changed remotely by using servomotors with an accuracy of 1 {mu}m from the control room. The maximum K-value and related magnetic field strength are 1.9 and 0.5T, respectively, when its gap is set to the minimum value of 16mm. In order to minimize magnetic field reduction due to radiation damage, Sm-Co permanent magnet was adopted. Its structure and the results of magnetic field measurement will be reported.

  15. The impact of coherent synchrotron radiation on the beam transport of short bunches

    Li, R.

    1999-01-01

    Designs for next-generation accelerator, such as future linear colliders and short-wavelength FEL drivers, require beams of short (mm-length or smaller) bunches and high charge (nC-regime). As such a high charge microbunch traverses magnetic bends, the curvature effect on the bunch self-interaction, by way of coherent synchrotron radiation (CSR) and space charge force, may cause serious emittance degradation. This impact of CSR on the beam transport of short bunches has raised significant concern in the design of future machines and led to extensive investigations. This paper reviews some of the recent progress in the understanding of the CSR effect, presents analysis of and computational work on the CSR impact on short bunch transport, and addresses remaining issues

  16. Demonstration Of 3D Effects With High Gain And Efficiency In A UV FEL Oscillator

    Benson, Stephen; Biallas, George; Blackburn, Keith; Boyce, James; Bullard, Donald; Coleman, James; Dickover, Cody; Douglas, David; Ellingsworth, Forrest; Evtushenko, Pavel; Hernandez-Garcia, Carlos; Gould, Christopher; Gubeli, Joseph; Hardy, David; Jordan, Kevin; Klopf, John; Kortze, James; Legg, Robert; Marchlik, Matthew; Moore, Steven; Neil, George; Powers, Thomas; Sexton, Daniel; Shinn, Michelle; Tennant, Christopher; Walker, Richard; Watson, Anne; Williams, Gwyn; Wilson, Frederick; Zhang, Shukui

    2011-01-01

    We report on the performance of a high gain UV FEL oscillator operating on an energy recovery linac at Jefferson Lab. The high brightness of the electron beam leads to both gain and efficiency that cannot be reconciled with a one-dimensional model. Three-dimensional simulations do predict the performance with reasonable precision. Gain in excess of 100% per pass and an efficiency close to 1/2NW, where NW is the number of wiggler periods, is seen. The laser mirror tuning curves currently permit operation in the wavelength range of 438 to 362 nm. Another mirror set allows operation at longer wavelengths in the red with even higher gain and efficiency.

  17. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    Merminga, L; Benson, S; Bolshakov, A; Doolittle, L; Neil, George R

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed...

  18. High-power FEL design issues - a critical review

    Litvinenko, V.N.; Madey, J.M.J.; O`Shea, P.G. [Duke Univ., Durham, NC (United States)

    1995-12-31

    The high-average power capability of FELs has been much advertised but little realized. In this paper we provide a critical analysis of the technological and economic issues associated with high-average power FEL operation from the UV to near IR. The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  19. Undulator systems for the TESLA X-FEL

    Pflueger, J.; Tischer, M.

    2002-01-01

    A large X-ray FEL lab is under consideration within the TESLA project and is supposed to be operated in parallel with the TESLA linear collider. There will be five SASE FELs and five conventional spontaneous undulators. A conceptual design study has been made for the undulator systems for these X-FELs. It includes segmentation into 6.1 m long undulator 'cells'. Each consists of a 5 m long undulator 'segment', a separate quadrupole, one horizontal and one vertical corrector, and a phase shifter. These items are presented and discussed

  20. Tunable driver for the LLNL FEL experiment

    Guss, W.C.; Basten, M.A.; Kreischer, K.E.; Temkin, R.J.

    1991-07-01

    This report describes main activities undertaken during the period 1 June 1990 to 1 June 1991 by MIT to support the Lawrence Livermore National Laboratory tunable FEL driver project. The goal of this research was to further characterize a tunable microwave source (already identified as a BWO-gyrotron) of moderate output power (10--20 kW). In the 1989 fiscal year, the source was assembled at MIT and initial tests were conducted. Proposed for the fiscal year 1990 were analysis of the previous experimental results, and the performance of new experiments designed to increase the voltage tuning range, the output efficiency, and magnetic field tuning. During the report period the previous experimental results were analyzed and compared to computational results and new components were designed, to make the BWO ready for further experiments. In addition, the BWO-gyrotron was mounted in a new superconducting magnet and initial magnetic field profile measurements were made

  1. Millimeter-wave FEL-oscillator with a new type Bragg resonator: advantages in efficiency and selectivity

    Ginzburg, N S; Kaminsky, A K; Peskov, N Yu; Sedykh, S N; Sergeev, A P

    2000-01-01

    An FEL-oscillator with a new type of Bragg resonator was realized on the basis of linac LIU-3000 (JINR, Dubna) (0.8 MeV/200 A/200 ns). This resonator consists of two corrugated waveguide sections having a step of phase pi between the corrugations at the point of connection. The selective properties of a resonator of this type are significantly improved in comparison with a traditional two-mirror Bragg resonator. The output power was about 50 MW at a frequency of 30.7 GHz with the optimal parameters of the resonator, which corresponds to the efficiency of 35%, which is the highest for millimeter wavelength FEL. Radiation at the fundamental mode and the two side modes with the frequencies coincided to the 'cold' microwave testing was separately observed depending on the magnetic fields of the wiggler and solenoid.

  2. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    Bane, Karl L.F.; Emma, Paul; Huang, Heinz-Dieter Nuhn; Stupakov, Gennady; Fawley, William M.; Reiche, Sven

    2005-01-01

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., ∼ 20 0fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2

  3. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    Fawley, W M; Emma, P; Huang, Z; Nuhn, H D; Reiche, S; Stupakov, G

    2005-01-01

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber wall material (e.g. Cu) and its radius. Of recent interest [1] is the so-called "AC" component of the resistive wake which can lead to strong variations on very short timescales (e.g. ~20 fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well a...

  4. Milestone experiments for single pass UV/X-ray FELs

    Ben-Zvi, I.

    1994-01-01

    In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELS. These developments facilitate the construction of practical UV and X-ray FELs and has prompted proposals to the DOE for the construction of such facilities. There are several important experiments to be performed before committing to the construction of dedicated user facilities. Two experiments are under construction in the IR, the UCLA Self Amplified Spontaneous Emission experiment and the BNL laser seeded Harmonic Generation experiment. A multi-institution collaboration is being organized about a 210 MeV electron linac available at BNL and the 10 meter tong NISUS wiggler. This experiment will be done in the UV and will test various experimental aspects of electron beam dynamics, FEL exponential regime with gain guiding, start up from noise, seeding and harmonic generation. These experiments will advance the state of FEL research and lead towards future dedicated users' facilities

  5. A 20fs synchronization system for lasers and cavities in accelerators and FELs

    Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Huang, G.; Staples, J. W.

    2010-02-01

    A fiber-optic RF distribution system has been developed for synchronizing lasers and RF plants in short pulse FELs. Typical requirements are 50-100fs rms over time periods from 1ms to several hours. Our system amplitude modulates a CW laser signal, senses fiber length using an interferometer, and feed-forward corrects the RF phase digitally at the receiver. We demonstrate less than 15fs rms error over 12 hours, between two independent channels with a fiber path length difference of 200m and transmitting S-band RF. The system is constructed using standard telecommunications components, and uses regular telecom fiber.

  6. The proceedings of the KEK FEL simulation code workshop

    Kamitani, Takuya

    1992-11-01

    This is the record of the lectures in free electron laser simulation code workshop held in National Laboratory for High Energy Physics on March 15, 1991. As the device that can generate especially powerful and coherent light in the wide wavelength region from long wavelength like microwave to short wavelength like X-ray and gamma ray, the interest in free electron laser has heightened in Japan and foreign countries, and also the experiments have been carried out actively. Also the necessity of the quantitative theoretical calculation using the simulation has become high, and the researches have been carried out in various places. This workshop was held for the intention of offering the place for the interchange of researches, the exchange of information and discussion. 39 persons took part in the workshop, and 11 lectures were given, and it was very useful. (K.I.)

  7. Design considerations of 10 kW-scale, extreme ultraviolet SASE FEL for lithography

    Pagani, C; Schneidmiller, E A; Yurkov, M V

    2001-01-01

    The semiconductor industry growth is driven to a large extent by steady advancements in microlithography. According to the newly updated industry road map, the 70 nm generation is anticipated to be available in the year 2008. However, the path to get there is not clear. The problem of construction of extreme ultraviolet (EUV) quantum lasers for lithography is still unsolved: progress in this field is rather moderate and we cannot expect a significant breakthrough in the near future. Nevertheless, there is clear path for optical lithography to take us to sub-100 nm dimensions. Theoretical and experimental work in Self-Amplified Spontaneous Emission (SASE) Free Electron Lasers (FEL) physics and the physics of superconducting linear accelerators over the last 10 years has pointed to the possibility of the generation of high-power optical beams with laser-like characteristics in the EUV spectral range. Recently, there have been important advances in demonstrating a high-gain SASE FEL at 100 nm wavelength (J. Andr...

  8. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    Serpico, C., E-mail: claudio.serpico@elettra.eu [Elettra - Sincrotrone Trieste, Trieste (Italy); Grudiev, A. [CERN, Geneva (Switzerland); Vescovo, R. [University of Trieste, Trieste (Italy)

    2016-10-11

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  9. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    Serpico, C.; Grudiev, A.; Vescovo, R.

    2016-10-01

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  10. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Lumpkin, A.H.

    1992-01-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  11. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Lumpkin, A.H.

    1992-11-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  12. Design of a nondestructive two-in-one instrument for measuring the polarization and energy spectrum at an X-ray FEL facility

    Zhang, Qingmin; Deng, Bangjie; Chen, Yuanmiaoliang; Liu, Bochao; Chen, Shaofei; Fan, Jinquan; Feng, Lie; Deng, Haixiao; Liu, Bo; Wang, Dong

    2017-10-01

    The free electron laser (FEL), as a next-generation light source, is an attractive tool in scientific frontier research because of its advantages of full coherence, ultra-short pulse duration, and controllable polarization. Owing to the demand of real-time bunch diagnosis during FEL experiments, precise nondestructive measurements of the polarization and X-ray energy spectrum using one instrument are preferred. In this paper, such an instrument based on the electron time-of-flight technique is proposed. By considering the complexity and nonlinearity, a numerical model in the framework of Geant4 has been developed for optimization. Taking the Shanghai Soft X-ray FEL user facility as an example, its measurement performances' dependence on the critical parameters was studied systematically, and, finally, an optimal design was obtained, achieving resolutions of 0.5% for the polarization degree and 0.3 eV for the X-ray energy spectrum.

  13. Ultrafast phenomena at the nanoscale: science opportunities at the SwissFEL X-ray laser

    Abela, R.; Braun, H.; Ming, P.; Pedrozzi, M.; Quitmann, Ch.; Reiche, S.; Daalen, M. van; Veen, J.F. van der; Mesot, J. [Paul Scherrer Intitute (PSI), Villigen (Switzerland); Mesot, J.; Shiroka, T.; Veen, J.F. van der [Swiss Federal Institute of Technology (ETHZ), Zuerich (Switzerland); Mesot, J. [Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland)

    2009-09-15

    In today's fast-moving society, standing still is effectively synonymous with being left behind. If it is to maintain, beyond the coming 10-15 years, its high international standing as a complex of large research infrastructures, the Paul Scherrer Institute (PSI) must now lay the foundation for a competitive future. Experts worldwide foresee a strongly growing demand within science and technology for photon sources delivering ultra-short, coherent X-ray pulses. Such a source, called a free electron laser (FEL), is nothing less than a gigantic flash camera, allowing us to take a deeper look into matter than with any other machine before. By literally seeing molecules in action, scientists will be able not only to capture chemical and biological processes of direct relevance and benefit to society but also to improve them. It is a dream coming true. For the first time, it will not only be possible to take pictures of molecular structures, we will be able to make movies of their motion. The new X-ray laser project at PSI, known as SwissFEL, will be an important addition to the existing complex of PSI facilities that serve interdisciplinary and international research teams from academia and industry. The SwissFEL is an essential element of Switzerland's strategic focus and will prolong our nation's leading position in scientific research for years to come. It will attract top scientists from Switzerland and abroad, and will strengthen the position of PSI as a world-class research institute. This new high-tech facility will also provide an important incentive for Swiss industry, through which existing highly-qualified jobs will be maintained and new ones created. In this report we present a wide range of important, open questions within science and engineering disciplines that SwissFEL will contribute towards solving. These questions, which form the 'scientific case' for SwissFEL, have been identified through a range of workshops organized over

  14. FEL polarization control studies on Dalian coherent light source

    Zhang Tong; Deng Haixiao; Wang Dong; Zhao Zhentang; Zhang Weiqing; Wu Guorong; Dai Dongxu; Yang Xueming

    2013-01-01

    The polarization switch of a free-electron laser (FEL) is of great importance to the user scientific community. In this paper, we investigate the generation of controllable polarization FEL from two well-known approaches for Dalian coherent light source, i.e., crossed planar undulator and elliptical permanent undulator. In order to perform a fair comparative study, a one-dimensional time-dependent FEL code has been developed, in which the imperfection effects of an elliptical permanent undulator are taken into account. Comprehensive simulation results indicate that the residual beam energy chirp and the intrinsic FEL gain may contribute to the degradation of the polarization performance for the crossed planar undulator. The elliptical permanent undulator is not very sensitive to the undulator errors and beam imperfections. Meanwhile, with proper configurations of the main planar undulators and additional elliptical permanent undulator section, circular polarized FEL with pulse energy exceeding 100 μJ could be achieved at Dalian coherent light source. (authors)

  15. Towards the Fourier limit on the super-ACO Storage Ring FEL

    Couprie, M.E.; De Ninno, G.; Moneron, G.; Nutarelli, D.; Hirsch, M.; Garzella, D.; Renault, E.; Roux, R.; Thomas, C.

    2001-01-01

    Systematic studies on the Free Electron Laser (FEL) line and micropulse have been performed on the Super-ACO storage ring FEL with a monochromator and a double-sweep streak camera under various conditions of operation (detuning, 'CW' and Q-switched mode). From these data, it appears that the FEL is usually operated very close to the Fourier limit

  16. Towards the Fourier limit on the super-ACO Storage Ring FEL

    Couprie, Marie Emmanuelle; Garzella, D; Hirsch, M; Moneron, G; Nutarelli, D; Renault, E; Roux, R; Thomas, C

    2001-01-01

    Systematic studies on the Free Electron Laser (FEL) line and micropulse have been performed on the Super-ACO storage ring FEL with a monochromator and a double-sweep streak camera under various conditions of operation (detuning, 'CW' and Q-switched mode). From these data, it appears that the FEL is usually operated very close to the Fourier limit.

  17. Beam transport design for a recirculating-linac FEL driver

    Neuffer, D.; Douglas, D.; Li, Z.; Cornacchia, M.; Garren, A.

    1996-01-01

    The beam transport system for the CEBAF Industrial FEL includes a two-pass transport of the beam with acceleration from injector to wiggler, followed by energy recovery transport from wiggler to dump. From that context, the authors discuss the general problem of multi-pass energy-recovery beam transport for FELs. Tunable, nearly-isochronous, large-momentum-acceptance transport systems are required. The entire transport must preserve beam quality, particularly in the acceleration transport to the wiggler, and have low losses throughout the entire system. Various possible designs are presented, and results of dynamic analyses are discussed

  18. Beam profile diagnostics system for SDUV-FEL

    Xu Yichao; Han Lifeng; Chen Yongzhong

    2010-01-01

    A new beam profile diagnostics system for Shanghai Deep Ultraviolet Free Electron Laser (SDUV-FEL) has been developed based on industrial Ethernet, with good versatility and scalability. The system includes three major subsystems for image acquisition,pneumatic control and stepper motor control, respectively. Virtual instrument technology is adopted to drive the devices, and to develop the measurement software. In this paper,we describe the system structure, and its hardware and software design. The results of system commissioning are given as well. As an important diagnostic tool and data acquisition method, the system has been successfully applied to the measurement and control of the SDUV-FEL.(authors)

  19. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    Rizzo, G., E-mail: giuliana.rizzo@pi.infn.it [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Batignani, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Benkechkache, M.A. [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); University Constantine 1, Department of Electronics in the Science and Technology Faculty, I-25017, Constantine (Algeria); Bettarini, S.; Casarosa, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Comotti, D. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Dalla Betta, G.-F. [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); TIFPA INFN, I-38123 Trento (Italy); Fabris, L. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); Forti, F. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Grassi, M.; Lodola, L.; Malcovati, P. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Manghisoni, M. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); and others

    2016-07-11

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 10{sup 4} photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  20. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    Rizzo, G.; Batignani, G.; Benkechkache, M.A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.

    2016-01-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 10"4 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  1. Statistical properties of SASE FEL radiation: experimental results from the VUV FEL at the TESLA test facility at DESY

    Yurkov, M.V.

    2002-01-01

    This paper presents an experimental study of the statistical properties of the radiation from a SASE FEL. The experiments were performed at the TESLA Test Facility VUV SASE FEL at DESY operating in a high-gain linear regime with a gain of about 10 6 . It is shown that fluctuations of the output radiation energy follows a gamma-distribution. We also measured for the first time the probability distribution of SASE radiation energy after a narrow-band monochromator. The experimental results are in good agreement with theoretical predictions, the energy fluctuations after the monochromator follow a negative exponential distribution

  2. Status of the project of Novosibirsk high power FEL

    Pinayev, I.V.; Erg, G.I.; Gavrilov, N.G. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)] [and others

    1995-12-31

    The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  3. Colorado State University (CSU) accelerator and FEL facility

    Milton, S.; Biedron, S.; Harris, J.; Martinez, J.; D'Audney, A.; Edelen, J.; Einstein, J.; Hall, C.; Horovitz, K.; Morin, A.; Sipahi, N.; Sipahi, T.; Williams, J.; Carrico, C.; Van Der Slot, P. J M

    2014-01-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band (1.3 GHz) electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test laboratory, and a magnetic test laboratory.

  4. Towards imaging of ultrafast molecular dynamics using FELs

    Rouzee, A.; Johnsson, P.; Rading, L.; Siu, W.; Huismans, Y.; Duesterer, S.; Redlin, H.; Tavella, F.; Stojanovic, N.; Al-Shemmary, A.; Lepine, F.; Holland, D. M. P.; Schlathölter, Thomas; Hoekstra, R.; Fukuzawa, H.; Ueda, K.; Vrakking, M. J. J.; Hundertmark, A.

    2013-01-01

    The dissociation dynamics induced by a 100 fs, 400 nm laser pulse in a rotationally cold Br-2 sample was characterized by Coulomb explosion imaging (CEI) using a time-delayed extreme ultra-violet (XUV) FEL pulse, obtained from the Free electron LASer in Hamburg (FLASH). The momentum distribution of

  5. Dispersion relations for 1D high-gain FELs

    Webb, S.D.; Litvinenko, V.N.

    2010-01-01

    We present analytical results for the one-dimensional dispersion relation for high-gain FELs. Using kappa-n distributions, we obtain analytical relations between the dispersion relations for various order kappa distributions. Since an exact solution exists for the kappa-1 (Lorentzian) distribution, this provides some insight into the number of modes on the way to the Gaussian distribution.

  6. Milestone experiments for single pass UV/X-ray FELs

    Ben-Zvi, Ilan

    1995-04-01

    In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical UV and X-ray FELs and has prompted proposals to the DOE for the construction of such facilities. There are several important experiments to be performed before committing to the construction of dedicated user facilities. Two experiments are under construction in the IR, the UCLA self-amplified spontaneous emission experiment and the BNL laser seeded harmonic generation experiment. A multi-institution collaboration is being organized about a 210 MeV electron linac available at BNL and the 10 m long NISUS wiggler. This experiment will be done in the UV and will test various experimental aspects of electron beam dynamics, FEL exponential regime with gain guiding, start-up from noise, seeding and harmonic generation. These experiments will advance the state of FEL research and lead towards future dedicated users' facilities.

  7. The FEL-TNO uniform open systems model

    Luiijf, H.A.M.; Overbeek, P.L.

    1989-01-01

    The FEL-TNO Uniform Open Systems Model is based upon the IS0/0SI Basic Reference Model and integrates operating systems, (OSI) networks, equipment and media into one single uniform nodel. Usage of the model stimulates the development of operating systen and network independent applications and puts

  8. FEL-Oscillator simulations with Genesis 1.3

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Verschuur, Jeroen W.J.; Volokhine, I.; Boller, Klaus J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the propagation of the light outside the undulator. We present a paraxial Optical Propagation Code (OPC) based on the Spectral Method and Fresnel Diffraction Integral,

  9. Production and detection of axion-like particles at the VUV-FEL. Letter of intent

    Koetz, U.; Ringwald, A.; Tschentscher, T.

    2006-06-01

    Recently, the PVLAS collaboration has reported evidence for an anomalously large rotation of the polarization of light generated in vacuum in the presence of a transverse magnetic field. This may be explained through the production of a new light spin-zero particle coupled to two photons. In this Letter of Intent, we propose to test this hypothesis by setting up a photon regeneration experiment which exploits the photon beam of the Vacuum-UltraViolet Free-Electron Laser VUV-FEL, sent along the transverse magnetic field of a linear arrangement of dipole magnets of size B L ∼ 30 Tm. The high photon energies available at the VUV-FEL increase substantially the expected photon regeneration rate in the mass range implied by the PVLAS anomaly, in comparison to the rate expected at visible lasers of similar power. We find that the particle interpretation of the PVLAS result can be tested within a short running period. The pseudoscalar vs. scalar nature can be determined by varying the direction of the magnetic field with respect to the laser polarization. The mass of the particle can be measured by running at different photon energies. The proposed experiment offers a window of opportunity for a firm establishment or exclusion of the particle interpretation of the PVLAS anomaly before other experiments can compete. (Orig.)

  10. Extended wavelength InGaAs on GaAs using InAlAs buffer for back-side-illuminated short-wave infrared detectors

    Zimmermann, Lars; John, Joachim; Degroote, Stefan; Borghs, Gustaaf; Hoof, Chris van; Nemeth, Stefan

    2003-01-01

    We conducted an experimental study of back-side-illuminated InGaAs photodiodes grown on GaAs and sensitive in the short-wave infrared up to 2.4 μm. Standard metamorphic InGaAs or IR-transparent InAlAs buffers were grown by molecular-beam epitaxy. We studied dark current and photocurrent as a function of buffer thickness, buffer material, and temperature. A saturation of the dark current with buffer thickness was not observed. The maximum resistance area product was ∼10 Ω cm2 at 295 K. The dark current above 200 K was dominated by generation-recombination current. A pronounced dependence of the photocurrent on the buffer thickness was observed. The peak external quantum efficiency was 46% (at 1.6 μm) without antireflective coating

  11. Short Wavelength Electromagnetic Perturbations Excited Near the Solar Probe Plus Spacecraft in the Inner Heliosphere: 2.5D Hybrid Modeling

    Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.; Cooper, John F.

    2011-01-01

    A 2.5D numerical plasma model of the interaction of the solar wind (SW) with the Solar Probe Plus spacecraft (SPPSC) is presented. These results should be interpreted as a basic plasma model derived from the SW-interaction with the spacecraft (SC), which could have consequences for both plasma wave and electron plasma measurements on board the SC in the inner heliosphere. Compression waves and electric field jumps with amplitudes of about 1.5 V/m and (12-18) V/m were also observed. A strong polarization electric field was also observed in the wing of the plasma wake. However, 2.5D hybrid modeling did not show excitation of whistler/Alfven waves in the upstream connected with the bidirectional current closure that was observed in short-time 3D modeling SPPSC and near a tether in the ionosphere. The observed strong electromagnetic perturbations may be a crucial point in the electromagnetic measurements planned for the future Solar Probe Plus (SPP) mission. The results of modeling electromagnetic field perturbations in the SW due to shot noise in absence of SPPSC are also discussed.

  12. Extending the photon energy coverage of an x-ray self-seeding FEL via the reverse taper enhanced harmonic generation technique

    Zhang, Kaiqing; Qi, Zheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Feng, Chao, E-mail: fengchao@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Deng, Haixiao [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Dong, E-mail: wangdong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Zhentang [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-05-11

    In this paper, a simple method is proposed to extend the photon energy range of a soft x-ray self-seeding free-electron laser (FEL). A normal monochromator is first applied to purify the FEL spectrum and provide a coherent seeding signal. This coherent signal then interacts with the electron beam in the following reverse tapered undulator section to generate strong coherent microbunchings while maintain the good quality of the electron beam. After that, the pre-bunched electron beam is sent into the third undulator section which resonates at a target high harmonic of the seed to amplify the coherent radiation at shorter wavelength. Three dimensional simulations have been performed and the results demonstrate that the photon energy gap between 1.5 keV and 4.5 keV of the self-seeding scheme can be fully covered and 100 GW-level peak power can be achieved by using the proposed technique.

  13. The PixFEL project: development of advanced X-ray pixel detectors for application at future FEL facilities

    Rizzo, G.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Paladino, A.; Paoloni, E.; Comotti, D.; Grassi, M.; Lodola, L.; Malcovati, P.; Ratti, L.; Vacchi, C.; Fabris, L.; Manghisoni, M.; Re, V.; Traversi, G.; Morsani, F.; Betta, G.-F. Dalla; Pancheri, L.

    2015-01-01

    The PixFEL project aims to develop an advanced X-ray camera for imaging suited for the demanding requirements of next generation free electron laser (FEL) facilities. New technologies can be deployed to boost the performance of imaging detectors as well as future pixel devices for tracking. In the first phase of the PixFEL project, approved by the INFN, the focus will be on the development of the microelectronic building blocks, carried out with a 65 nm CMOS technology, implementing a low noise analog front-end channel with high dynamic range and compression features, a low power ADC and high density memory. At the same time PixFEL will investigate and implement some of the enabling technologies to assembly a seamless large area X-ray camera composed by a matrix of multilayer four-side buttable tiles. A pixel matrix with active edge will be developed to minimize the dead area of the sensor layer. Vertical interconnection of two CMOS tiers will be explored to build a four-side buttable readout chip with small pixel pitch and all the on-board required functionalities. The ambitious target requirements of the new pixel device are: single photon resolution, 1 to 10 4 photons @ 1 keV to 10 keV input dynamic range, 10-bit analog to digital conversion up to 5 MHz, 1 kevent in-pixel memory and 100 μm pixel pitch. The long term goal of PixFEL will be the development of a versatile X-ray camera to be operated either in burst mode (European XFEL), or in continuous mode to cope with the high frame rates foreseen for the upgrade phase of the LCLS-II at SLAC

  14. PHASE NOISE COMPARISON OF SHORT PULSE LASER SYSTEMS

    Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn

    2006-08-27

    This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.

  15. Wavelength converter technology

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers.......Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers....

  16. Analytical studies of constraints on the performance for EEHG FEL seed lasers

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-11-15

    Laser seeding technique have been envisioned to produce nearly transform-limited pulses at soft X-ray FELs. Echo-Enabled Harmonic Generation (EEHG) is a promising, recent technique for harmonic generation with an excellent up-conversion to very high harmonics, from the standpoint of electron beam physics. This paper explores the constraints on seed laser performance for reaching wavelengths of 1 nm. We show that the main challenge in implementing the EEHG scheme at extreme harmonic factors is the requirement for accurate control of temporal and spatial quality of the seed laser pulse. For example, if the phase of the laser pulse is chirped before conversion to an UV seed pulse, the chirp in the electron beam microbunch turns out to be roughly multiplied by the harmonic factor. In the case of a Ti:Sa seed laser, such factor is about 800. For such large harmonic numbers, generation of nearly transform-limited soft X-ray pulses results in challenging constraints on the Ti:Sa laser. In fact, the relative discrepancy of the time-bandwidth product of the seed-laser pulse from the ideal transform-limited performance should be no more than one in a million. The generated electron beam microbunching is also very sensitive to distortions of the seed laser wavefront, which are also multiplied by the harmonic factor. In order to have minimal reduction of the FEL input coupling factor, it is desirable that the size-angular bandwidth product of the UV seed laser beam be very close to the ideal i.e. diffraction-limited performance in the waist plane at the middle of the modulator undulator. (orig.)

  17. Analytical studies of constraints on the performance for EEHG FEL seed lasers

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-11-01

    Laser seeding technique have been envisioned to produce nearly transform-limited pulses at soft X-ray FELs. Echo-Enabled Harmonic Generation (EEHG) is a promising, recent technique for harmonic generation with an excellent up-conversion to very high harmonics, from the standpoint of electron beam physics. This paper explores the constraints on seed laser performance for reaching wavelengths of 1 nm. We show that the main challenge in implementing the EEHG scheme at extreme harmonic factors is the requirement for accurate control of temporal and spatial quality of the seed laser pulse. For example, if the phase of the laser pulse is chirped before conversion to an UV seed pulse, the chirp in the electron beam microbunch turns out to be roughly multiplied by the harmonic factor. In the case of a Ti:Sa seed laser, such factor is about 800. For such large harmonic numbers, generation of nearly transform-limited soft X-ray pulses results in challenging constraints on the Ti:Sa laser. In fact, the relative discrepancy of the time-bandwidth product of the seed-laser pulse from the ideal transform-limited performance should be no more than one in a million. The generated electron beam microbunching is also very sensitive to distortions of the seed laser wavefront, which are also multiplied by the harmonic factor. In order to have minimal reduction of the FEL input coupling factor, it is desirable that the size-angular bandwidth product of the UV seed laser beam be very close to the ideal i.e. diffraction-limited performance in the waist plane at the middle of the modulator undulator. (orig.)

  18. Field Encapsulation Library The FEL 2.2 User Guide

    Moran, Patrick J.; Henze, Chris; Ellsworth, David

    1999-01-01

    This document describes version 2.2 of the Field Encapsulation Library (FEL), a library of mesh and field classes. FEL is a library for programmers - it is a "building block" enabling the rapid development of applications by a user. Since FEL is a library intended for code development, it is essential that enough technical detail be provided so that one can make full use of the code. Providing such detail requires some assumptions with respect to the reader's familiarity with the library implementation language, C++, particularly C++ with templates. We have done our best to make the explanations accessible to those who may not be completely C++ literate. Nevertheless, familiarity with the language will certainly help one's understanding of how and why things work the way they do. One consolation is that the level of understanding essential for using the library is significantly less than the level that one should have in order to modify or extend the library. One more remark on C++ templates: Templates have been a source of both joy and frustration for us. The frustration stems from the lack of mature or complete implementations that one has to work with. Template problems rear their ugly head particularly when porting. When porting C code, successfully compiling to a set of object files typically means that one is almost done. With templated C++ and the current state of the compilers and linkers, generating the object files is often only the beginning of the fun. On the other hand, templates are quite powerful. Used judiciously, templates enable more succinct designs and more efficient code. Templates also help with code maintenance. Designers can avoid creating objects that are the same in many respects, but not exactly the same. For example, FEL fields are templated by node type, thus the code for scalar fields and vector fields is shared. Furthermore, node type templating allows the library user to instantiate fields with data types not provided by the FEL

  19. Breakdown Localization Studies on the SwissFEL C-band Test Structures

    Klavins, J; Le Pimpec, F; Locans, U; Shipman, N; Stingelin, L; Wohlmuther, M; Zennaro, R

    2013-01-01

    The SwissFEL main LINAC will consist of 104 Cband structures with a nominal accelerating gradient of 28MV/m. First power tests were performed on short constant impedance test-structures composed of eleven double-rounded cups. In order to localize breakdowns, two or three acoustic emission sensors were installed on the test-structures. In order to localize breakdowns we have analysed, in addition to acoustic measurements, the delay and phase of the RF power signals. Parasitic, acoustic noise emitted from the loads of the structure complicated the data interpretation and necessitated appropriate processing of the acoustic signals. The Goals of the experiments were to identify design and manufacturing errors of the structures. The results indicate that breakdowns occur mostly at the input power coupler, as also confirmed by vacuumevents at the same location. The experiments show that the LINAC test-structures fulfil the requirements in breakdown probability. Moreover developing a detection system based on acoust...

  20. Photocathode driven linac at UCLA for FEL and plasma wakefield acceleration experiments

    Hartman, S.; Aghamir, F.; Barletta, W.; Cline, D.; Dodd, J.; Katsouleas, T.; Kolonko, J.; Park, S.; Pellegrini, C.; Rosenzweig, J.; Smolin, J.; Terrien, J.; Davis, J.; Hairapetian, G.; Joshi, C.; Luhmann, N. Jr.; McDermott, D.

    1991-01-01

    The UCLA compact 20-MeV/c electron linear accelerator is designed to produce a single electron bunch with a peak current of 200 A, an rms energy spread of 0.2% or less, and a short 1.2 picosecond rms pulse duration. The linac is also designed to minimize emittance growth down the beamline so as to obtain emittances of the order of 8πmm-mrad in the experimental region. The linac will feed two beamlines, the first will run straight into the undulator for FEL experiments while the second will be used for diagnostics, longitudinal bunch compression, and other electron beam experiments. Here the authors describe the considerations put into the design of the accelerating structures and the transport to the experimental areas

  1. Circular polarization with crossed-planar undulators in high-gain FELs

    Kim, K J K J

    2000-01-01

    We propose a crossed undulator configuration for a high-gain free-electron laser to allow versatile polarization control. This configuration consists of a long (saturation length) planar undulator, a dispersive section, and a short (a few gain lengths) planar undulator oriented perpendicular to the first one. In the first undulator, a radiation component linearly polarized in the x-direction is amplified to saturation. In the second undulator, the x-polarized component propagates freely, while a new component, polarized in the y-direction, is generated and reaches saturation in a few gain lengths. By adjusting the strength of the dispersive section, the relative phase of two radiation components can be adjusted to obtain a suitable polarization for the total radiation field, including the circular polarization. The operating principle of the high-gain crossed undulator, which is quite different from that of the crossed undulator for spontaneous radiation, is illustrated in terms of 1-D FEL theory.

  2. A wiggler magnet for FEL low voltage operation

    Al-Shamma`a, A.; Stuart, R.A.; Lucas, J.

    1995-12-31

    In low voltage FELs (ie, 200kV), operation is necessarily in the microwave frequency range for wiggler periods of the order of cms., so that a waveguide system is mandatory. Also, because of the relatively low velocity of the electron beam, the wiggle amplitude of the electron beam can be much larger than is normal for highly relativistic FELs. Both these factors mean that the electron trajectory must be carefully controlled to avoid beam collision with the waveguide walls. A wiggler system with half poles at entrance and exit is not an acceptable solution because of the offset is gives rise to the electron trajectory. Consequently, we have designed and constructed a wiggler magnet with exponential entrance and exit tapers for a minimal deflection and displacement of the electron beam. Simulations and experimental measurements showed that an on axis trajectory is easily obtainable.

  3. Energy stability in a high average power FEL

    Mermings, L.; Bisognano, J.; Delayen, J.

    1995-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields or beam current are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents are determined. Furthermore, the analytical model is extended to include feedback. Comparison with simulation results derived from direct integration of the equations of motion is presented. Design strategies to increase the instability threshold are discussed and the UV Demo FEL, proposed for construction at CEBAF, and the INP Recuperatron at Novosibirsk are used as examples

  4. Feedback Control Of Dynamical Instabilities In Classical Lasers And Fels

    Bielawski, S; Szwaj, C

    2005-01-01

    Dynamical instabilities lead to unwanted full-scale power oscillations in many classical lasers and FEL oscillators. For a long time, applications requiring stable operation were typically performed by working outside the problematic parameter regions. A breakthrough occurred in the nineties [1], when emphasis was made on the practical importance of unstable states (stationary or periodic) that coexist with unwanted oscillatory states. Indeed, although not observable in usual experiments, unstable states can be stabilized, using a feedback control involving arbitrarily small perturbations of a parameter. This observation stimulated a set of works leading to successful suppression of dynamical instabilities (initially chaos) in lasers, sometimes with surprisingly simple feedback devices [2]. We will review a set of key results, including in particular the recent works on the stabilization of mode-locked lasers, and of the super-ACO, ELETTRA and UVSOR FELs [3].

  5. Physical optics simulations with PHASE for SwissFEL beamlines

    Flechsig, U.; Follath, R.; Reiche, S. [Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI (Switzerland); Bahrdt, J. [Helmholtz Zentrum Berlin (Germany)

    2016-07-27

    PHASE is a software tool for physical optics simulation based on the stationary phase approximation method. The code is under continuous development since about 20 years and has been used for instance for fundamental studies and ray tracing of various beamlines at the Swiss Light Source. Along with the planning for SwissFEL a new hard X-ray free electron laser under construction, new features have been added to permit practical performance predictions including diffraction effects which emerge with the fully coherent source. We present the application of the package on the example of the ARAMIS 1 beamline at SwissFEL. The X-ray pulse calculated with GENESIS and given as an electrical field distribution has been propagated through the beamline to the sample position. We demonstrate the new features of PHASE like the treatment of measured figure errors, apertures and coatings of the mirrors and the application of Fourier optics propagators for free space propagation.

  6. Help system for control of JAERI FEL (Free Electron laser)

    Sugimoto, Masayoshi

    1993-01-01

    The control system of JAERI FEL (Free Electron Laser) has a help system to provide the information necessary to operate the machine and to develop the new user interface. As the control software is constructed on the MS-Windows 3.x, the hyper-text feature of the Windows help system can be accessed. It consists of three major parts: (1) on-line help, (2) full document, and (3) tutorial system. (author)

  7. Status of the tandem FEL project development in Israel

    Benzvi, I.; Sokolowski, J.; Jerby, E.; Chomski, D.; Ruschin, S.

    1989-01-01

    The authors report the status of a collaborative research project development aimed toward construction of an IR FEL based on the EN tandem electrostatic accelerator of the Weizmann Institute of Science. A preliminary feasibility demonstration project yielded encouraging progress in three aspects: (1) Electron gun and accelerator conversion: A 50-kV 1-A electron gun injector was designed, built, tested, and assembled on the 6-MeV tandem accelerator which was previously converted and conditioned to operate as an electron accelerator in a positively charged HV terminal configuration. Contrary to the configuration of the only electrostatic accelerator FEL demonstrated so far, the electron gun and multistage depressed collector are connected to the ground, and the wiggler is placed in the HV terminal of the straight geometry tandem accelerator. This configuration promises to provide a high current high quality e-beam. (2) Electron-beam transport: The first installation of the electron optical beam recovery system yielded transport efficiency of 80%. Substantial improvement is expected with planned electron optics modifications. An effect, highly significant for realizing long pulse (quasi-cw) FEL operation, was observed experimentally. Due to the damping effect of the accelerator column capacitance network, the voltage terminal stayed constant for milliseconds even with poor beam transport efficiency. This points to the possibility of developing a long pulse FEL which may operate at a single longitudinal mode. (3) Wiggler development: A conventional 4.4-cm period SmCo planar wiggler was acquired and evaluated using a recently constructed floating wire magnetic field measurement setup

  8. Lattice Design for a High-Power Infrared FEL

    Douglas, D. R.

    1997-05-01

    A 1 kW infrared FEL, funded by the U.S. Navy, is under construction at Jefferson Lab. This device will be driven by a compact, 42 MeV, 5 mA, energy-recovering, CW SRF-based linear accelerator to produce light in the 3-6.6 μm range. The machine concept comprises a 10 MeV injector, a linac based on a single high-gradient Jefferson Lab accelerator cryomodule, a wiggler and optical cavity, and an energy-recovery recirculation arc. Energy recovery limits cost and technical risk by reducing the RF power requirements in the driver accelerator. Following deceleration to 10 MeV, the beam is dumped. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the accelerator lattice to numerous constraints. Principal considerations include: transport and delivery to the FEL of a high-quality, high-current beam; the impact of coherent synchrotron radiation (CSR) during beam recirculation transport; beam optics aberration control, to provide low-loss energy-recovery transport of a 5% relative momentum spread, high-current beam; attention to possible beam breakup (BBU) instabilities in the recirculating accelerator; and longitudinal phase space management during beam transport, to optimize RF drive system control during energy recovery and FEL operation. The presentation will address the design process and design solution for an accelerator transport lattice that meets the requirements imposed by these physical phenomena and operational necessities.

  9. Seeded quantum FEL at 478 keV

    Guenther, Marc [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Thirolf, Peter; Seggebrock, Thorben [Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Habs, Dietrich [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany)

    2012-07-01

    We present for the first time a concept for a seeded {gamma} quantum Free Electron Laser (QFEL) at 478 keV (transition in {sup 7}Li). To produce a highly intense and coherent {gamma} beam, we intend to use a seeded FEL scheme. Important for the production of a highly brilliant and coherent {gamma} beam are novel refractive {gamma} lenses for focusing and an efficient monochromator, allowing to generate a very intense and coherent seed beam. To realize such a coherent {gamma} beam at 478 keV (1/38 A), it is suitable to use a quantum FEL design based on a new ''asymmetric'' laser-electron Compton back scattering scheme as pursued for the MeGaRay and ELI-NP facilities. Here the pulse length of the laser is much longer than the electron bunch length, equivalent to a {gamma}-FEL with laser wiggler. The coherence of a seeded QFEL can open up totally new areas of fundamental physics and applications. Especially, 478 keV can be attractive for ''green energy'' and life-science research, such as the detection of Li deposition in the brain for manic-depressive psychosis treatment with high spatial resolution or isotope-specific nuclear waste management and treatment.

  10. Present status and future directions of the JAERI superconducting RF linac-based FEL

    Minehara, EJ.; Yamauchi, T.; Sugimori, M.; Sawamura, M.; Hajima, R.; Nagai, R.; Kikuzawa, N.; Nishimori, N.; Shizuma, T.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 2.34kW FEL light and l00kW electron beam output in quasi continuous wave operation in February 2000. Twice larger output than the present program goal of 1kW was achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 2 years program goal is the 100kW class FEL light and a few MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual and engineering design options needed for such a very high power operation will be discussed to improve and to upgrade the existing facility. Finally, several applications, table-top superconducting rf linac based FELs, and an X-ray FEL R and D will be discussed as a next-five years program at JAERI-FEL laboratory. (author)

  11. A study of phase control in the FEL [free electron laser] two-beam accelerator

    Sessler, A.M.; Whittum, D.H.; Wurtele, J.S.

    1989-08-01

    A formalism is developed for the analysis of a steady-state free electron laser (FEL) and is applied to the two-beam accelerator (TBA). Conditions are derived for the design of a FEL TBA with rf output power and phase insensitive to errors in both beam current and energy. An example is presented of a suitably phase insensitive TBA design with 100 reaccelerations employing untapered FEL sections and with low power rf input to each section. The theoretical analysis is confirmed by a single particle FEL simulations. 9 refs., 2 tabs

  12. UV-VUV FEL program at DUKE storage ring with OK-4 optical klystron

    Litvinenko, V.N.; Madey, J.M.J.; Vinokurov, N.A.

    1993-01-01

    A 1 GeV electron storage ring dedicated for UV-VUV FEL operation is under construction at the Duke University Free Electron Laser Laboratory. The UV-VUV-FEL project, based on the collaboration of the Duke FEL Laboratory and Budker Institute for Nuclear Physics is described. The main parameters of the DFELL storage ring, of the OK-4 optical klystron, and the experimental set-up are presented. The parameters of UV-VUV FEL are given and the possible future upgrades to this system are discussed

  13. Short-Wavelength Countermeasures for Circadian Desynchrony

    Heller, H. C; Smith, Mark

    2008-01-01

    .... Exposure of humans to bright light for an hour or more at the right phase of the circadian cycle produces significant phase shifts of circadian rhythms speeding recovery from jet-lag, and optimizing...

  14. Physics of short-wavelength-laser design

    Hagelstein, P.L.

    1981-01-01

    The physics and design of vuv and soft x-ray lasers pumped by ICF class high intensity infrared laser drivers are described (for example, the SHIVA laser facility at LLNL). Laser design and physics issues are discussed in the case of a photoionization pumping scheme involving Ne II and line pumping schemes involving H-like and He-like neon.

  15. Demonstration of a Short Wavelength Chemical Laser

    Gole, James

    1999-01-01

    ...)). Using this gain medium in a full vacuum cavity constructed following the design of the HF overtone system at the University of Illinois, Urbana, we have pursued and are continuing experiments...

  16. Short-Wavelength Countermeasures for Circadian Desynchrony

    Heller, H. C; Smith, Mark

    2008-01-01

    ... cognitive functionality and restorative sleep. Our work on mice produced the unexpected result that exposure to intermittent millisecond flashes of light distributed over an hour for a total of only 120 msec...

  17. Simulation studies of a XUV/soft X-ray harmonic-cascade FEL for the proposed LBNL recirculating linac*

    Fawley, W.M.; Barletta, W.A.; Corlett, J.N.; Zholents, A.

    2003-01-01

    Presently there is significant interest at LBNL in designing and building a facility for ultrafast (i.e. femtosecond time scale) x-ray science based upon a superconducting, recirculating RF linac (see Corlett et al. for more details). In addition to producing synchrotron radiation pulses in the 1-15 keV energy range, we are also considering adding one or more free-electron laser (FEL) beamlines using a harmonic cascade approach to produce coherent XUV soft X-ray emission beginning with a strong input seed at ∼200 nm wavelength obtained from a ''conventional'' laser. Each cascade is composed of a radiator together with a modulator section, separated by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a ''virgin'' pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse, which together then undergo FEL action in the modulator. We present various results obtained with the GINGER simulation code examining final output sensitivity to initial electron beam parameters. We also discuss the effects of spontaneous emission and shot noise upon this particular cascade approach which can limit the final output coherence

  18. Scheme for generation of fully-coherent, TW power level hard X-ray pulses from baseline undulators at the European X-ray FEL

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-07-01

    The most promising way to increase the output power of an X-ray FEL (XFEL) is by tapering the magnetic field of the undulator. Also, significant increase in power is achievable by starting the FEL process from a monochromatic seed rather than from noise. This report proposes to make use of a cascade self-seeding scheme with wake monochromators in a tunable-gap baseline undulator at the European XFEL to create a source capable of delivering coherent radiation of unprecedented characteristics at hard X-ray wavelengths. Compared with SASE X-ray FEL parameters, the radiation from the new source has three truly unique aspects: complete longitudinal and transverse coherence, and a peak brightness three orders of magnitude higher than what is presently available at LCLS. Additionally, the new source will generate hard X-ray beam at extraordinary peak (TW) and average (kW) power level. The proposed source can thus revolutionize fields like single biomolecule imaging, inelastic scattering and nuclear resonant scattering. The self-seeding scheme with the wake monochromator is extremely compact, and takes almost no cost and time to be implemented. The upgrade proposed in this paper could take place during the commissioning stage of the European XFEL, opening a vast new range of applications from the very beginning of operations.We present feasibility study and examplifications for the SASE2 line of the European XFEL. (orig.)

  19. R and D Requirements, RF Gun Mode Studies, FEL-2 Steady-State Studies, Preliminary FEL-1 Time-Dependent Studies, and Preliminary Layout Option Investigation

    Byrd, John; Corlett, John; Doolittle, Larry; Fawley, William; Lidia, Steven; Penn, Gregory; Ratti, Alex; Staples, John; Wilcox Russell; Wurtele, Jonathan; Zholents, Alexander

    2005-01-01

    This report constitutes the third deliverable of LBNLs contracted role in the FERMI (at) Elettra Technical Optimization study. It describes proposed RandD activities for the baseline design of the Technical Optimization Study, initial studies of the RF gun mode-coupling and potential effects on beam dynamics, steady-state studies of FEL-2 performance to 10 nm, preliminary studies of time-dependent FEL-1 performance using electron bunch distribution from the start-to-end studies, and a preliminary investigation of a configuration with FEL sinclined at a small angle from the line of the linac

  20. Analysis of the fluctuation-induced excess dc conductivity of epitaxial YBa2Cu3O7 films: Influence of a short-wavelength cutoff in the fluctuation spectrum

    Hopfengaertner, R.; Hensel, B.; Saemann-Ischenko, G.

    1991-01-01

    Measurements of the temperature dependence of the in-plane dc conductivity on various high-quality epitaxial YBa 2 Cu 3 O 7 films are presented. The rounding of the resistivity in the transition region has been analyzed in terms of the anisotropic Aslamazov-Larkin (AL), Lawrence-Doniach (LD), and Maki-Thompson theories. In the framework of the time-dependent Ginzburg-Landau (GL) approach we have investigated the influence of a short-wavelength cutoff parameter in the fluctuation spectrum of the AL and LD term. In both theories this physically reasonable cutoff leads to a considerable reduction of the predicted excess dc conductivity at higher temperatures. Moreover, the three-dimensional anisotropic AL term, taking the cutoff into account, predicts nearly the same excess conductivity as the original LD term, although these two approaches describe different systems. A good agreement between experimental data and LD as well as the modified three-dimensional anisotropic AL term was found in the region 1.01T c ≤T≤1.1T c . The zero-temperature GL coherence length ξ c (0) has been estimated to be about 1.5 A

  1. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-03-15

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an absorbing resonance with narrow bandwidth. Then, similarly to the hard X-ray case, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. In fact, the FEL pulse forces the gas atoms to oscillate in a way consistent with a forward-propagating, monochromatic radiation beam. The radiation power within this wake is much larger than the equivalent shot noise power in the electron bunch. Further on, the monochromatic wake of the radiation pulse is combined with the delayed electron bunch and amplified in the second undulator. The proposed setup is extremely simple, and composed of as few as two simple elements. These are the gas cell, to be filled with noble gas, and a short magnetic chicane. The installation of the magnetic chicane does not perturb the undulator focusing system and does not interfere with the baseline mode of operation. In this paper we assess the features of gas monochromator based on the use of He and Ne.We analyze the processes in the monochromator gas cell and outside it, touching upon the performance of the differential pumping system as well. We study the feasibility of using the proposed self-seeding technique to generate narrow bandwidth soft X-ray radiation in the LCLS-II soft X-ray beam line. We present conceptual design, technical implementation and expected performances of the gas monochromator self-seeding scheme. (orig.)

  2. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-03-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an absorbing resonance with narrow bandwidth. Then, similarly to the hard X-ray case, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. In fact, the FEL pulse forces the gas atoms to oscillate in a way consistent with a forward-propagating, monochromatic radiation beam. The radiation power within this wake is much larger than the equivalent shot noise power in the electron bunch. Further on, the monochromatic wake of the radiation pulse is combined with the delayed electron bunch and amplified in the second undulator. The proposed setup is extremely simple, and composed of as few as two simple elements. These are the gas cell, to be filled with noble gas, and a short magnetic chicane. The installation of the magnetic chicane does not perturb the undulator focusing system and does not interfere with the baseline mode of operation. In this paper we assess the features of gas monochromator based on the use of He and Ne.We analyze the processes in the monochromator gas cell and outside it, touching upon the performance of the differential pumping system as well. We study the feasibility of using the proposed self-seeding technique to generate narrow bandwidth soft X-ray radiation in the LCLS-II soft X-ray beam line. We present conceptual design, technical implementation and expected performances of the gas monochromator self-seeding scheme. (orig.)

  3. Parametric x-ray FEL operating with external Bragg reflectors

    Baryshevsky, V.G.; Batrakov, K.G.; Dubovskaya, I.Ya.

    1995-01-01

    In the crystal X-ray FELs using channeling and parametric quasi-Cherenkov mechanisms of spontaneous radiation were considered as versions of FEL allowing, in principle, to obtain coherent X-ray source. In this case a crystal is both radiator and resonator for X-rays emitted by a particle beam passing through crystal. However, it is well-known that a beam current density required for lasing is extremely high in X-ray spectral range for any radiation mechanisms and it is very important to find a way to lower its magnitude. The application of three-dimensional distributed feedback formed by dynamical diffraction of emitted photons permitted to reduce starting beam current density 10 2 -10 4 times up to 10 9 . One of ways to lower the starting current is the formation of multi-wave distributed feedback the another one is the application of external reflectors. The thing is that lasing regime was shown to be produced at frequencies in the vicinity of degeneration point for roots of dispersion equation describing radiation modes excited in an active medium (crystal plus particle beam). Unfortunately, in case of parametric quasi-Cherenkov FEL this region coincides with the region of strong self-absorption of radiation inside a crystal. That fact, obviously, increases the starting beam current. In this report we have shown that the application of external Bragg reflectors gives the possibility to lower radiation self-absorption inside a crystal by modifying radiation modes excited in the active medium under consideration. The corresponding dispersion equation and the expression for excited modes are derived. The generation equation determining starting conditions for lasing is obtained. Using these expressions we have shown that the application of external Bragg reflectors permits to reduce starting beam current density more than 10 times

  4. Theoretical analysis of experimental results on SG-1 FEL

    Yang Zhenhua; Wu Shangqing; Tian Shihong; Dong Zhiwei; Wu Yupu

    1994-01-01

    In order to study the SG-1 FEL and the beam transport thoroughly, and draw certain quantitative conclusions, we developed 3-D WAGFEL code to describe the FEL evolution and 3-D CEBQ code to describe the beam transport. The CEBQ code can simulate the 3-D transport of the electron beam in the modulation section with linear approximation of space charge. According to the first ASE experiments results, the LIA provided a 2 kA, 3.0 MeV beam with a normalized emittance of 0.6 πrad·cm, an energy spread (FWHM) of 4%, resulting in a beam brightness nearly 10 8 A/(πm·rad) 2 . The numerical simulation showed that the quality of the beam was good enough to abandon the 9-m long beam line and substitute it with a 2-m long drifting and focusing region. The second series of ASE and amplifier experiments began in October 1992. The beam transport section was modified. The ASE output power, the amplifier output power and detuning curve was measured. We analysed the experimental results using the WAGFEL and CEBQ codes with parameters equal to those of experiments. Firstly we followed 4096 electrons to simulate the transport process of the beam in the beam line under the condition of I = 2 kA, r b = 1 cm, γ = 6.8, Δγ/γ 4%, ε rms = 0.6 (πrad·cm). Through the simulation, we predicted that the beam current injected into the wiggler was about 611 A. Based on these beam parameters at the entrance of the wiggler, we simulated the FEL process with P in = 300 W. The results are also in Fig.7,8,9

  5. Real time diagnostic for operation at a CW low voltage FEL

    Balfour, C.; Shaw, A.; Mayhew, S.E. [and others

    1995-12-31

    At Liverpool University, a system for single user control of an FEL has been designed to satisfy the low voltage FEL (ie 200kV) operational requirements. This system incorporates many aspects of computer automation for beam diagnostics, radiation detection and vacuum system management. In this paper the results of the development of safety critical control systems critical control systems are reported.

  6. A single-particle calculation of the FEL-Cerenkov gain

    Dattoli, G.; Doria, A.; Gallerano, G.P.; Renieri, A.; Schettini, G.; Torre, A.

    1988-01-01

    In this work it is shown that the basic FEL-Cerenkov dynamics can be modelled using a pendulumlike equation in close analogy with FEL undulator case. The analysis, including the inhomogeneous broadening effects, is worked out in the hypothesis of single-slab geometry. Two-dimensional motion dynamics effects are also included

  7. On FEL integral equation and electron energy loss in intermediate gain regime

    Takao, Masaru

    1994-03-01

    The FEL pendulum equation in a intermediate gain small signal regime is investigated. By calculating the energy loss of the electron beam in terms of the solution of the pendulum equation, we confirm the consistency of the FEL equation in intermediate gain regime. (author)

  8. Lattice design for a high-power infrared FEL

    Douglas, D.R.

    1997-01-01

    A 1 kW infrared FEL, funded by the U.S. Navy, is being built at Jefferson Lab. It will be driven by a compact energy-recovering CW superconducting radio-frequency (SRF)-based linear accelerator. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the design to numerous constraints. This report addresses these issues and presents a design solution for an accelerator transport lattice meeting the requirements imposed by physical phenomena and operational necessities

  9. Characteristics of the FEL project for the MUH experiment

    Ciocci, F.; Doria, A.; Fascetti, M.; Gallerano, G.P.; Giannessi, L.; Giovenale, E.; Messina, G.; Picardi, L.; Renieri, A.; Ronci, G.; Ronsivalle, C.; Vignati, A.

    1999-01-01

    The design characteristics of a compact Free Electron Laser (FEL) operating in the far infrared spectral range between 200 and 600 μm are presented in this report. The device can be employed in a fundamental physics experiment to be performed in collaboration with INFN-Trieste and the Paul Sherrer Institute- Villigen. Spectroscopic measurements in the above spectral region will allow one to determine the energy difference between the levels 3D-3P in the μP system with great accuracy [it

  10. Opportunities and challenges for photon diagnostics at the soft X-ray FEL FLASH in simultaneous operation mode (Conference Presentation)

    Kuhlmann, Marion; Treusch, Rolf; Plönjes-Palm, Elke; Faatz, Bart; Tiedtke, Kai; Braune, Markus; Keitel, Barbara

    2017-06-01

    FLASH operates two distinguished undulator sections driven by one linear accelerator. In the 11th year of user operation the grown demands for detailed photon beam performances are doubled approached. The more complex machine settings and setup times require a more and more efficient determination of its characteristics concerning electron- and photon-beams. The photon diagnostics systems, e.g. gas monitor detection, photon-ion spectroscopy, or diffractive tools, not only have to deal on a regular basis with fundamental wavelengths between 4nm and 90nm, also they have to be reliable from 1µJ up to 1mJ of average single pulse energy. For the success of the experiments the error bars of many diagnostics measurements need to be pushed into their current limits and developments to go further are always issued. Especial, the pulse duration in conjunction with the spectral width has been accessed in the last year. Direct approaches of fundamental wavelengths below the Nitrogene K-edge and higher harmonics in and below the water window were achieved. While in principal distinguished to each other, the photon diagnostics tools of FLASH1 and FLASH2 add-up to a more complete understanding of the other. Together they allow for a better perspective towards further developments and a more suitable use of beam times. The intermingled knowledge of electron- and photon-beams is essential for an FEL particular in simultaneous operation mode. Examples out of regular user operation and distinguished FEL-studies are given to illustrate the current state of the photon diagnostics at FLASH.

  11. Development of BPM Electronics at the JLAB FEL

    Sexton, D.; Evtushenko, P.; Jordan, K.; Yan, J.; Dutton, S.; Moore, W.; Evans, R.; Coleman, J.

    2006-11-01

    A new version of BPM electronics based on the AD8362 RMS detector, which is a direct RF to DC converter, is under development at the JLAB FEL. Each of these new BPM electronics utilizes an embedded ColdFire Microprocessor for data processing and communication with the EPICS control system via TCP/IP. The ColdFire runs RTEMS, which is an open source real-time operating system. The JLAB FEL is a SRF Energy Recovery LINAC capable of running up to 10 mA CW beam with a 74.85 MHz micropulse frequency. For diagnostic reasons and for machine tune up, the micropulse frequency can be reduced to 1.17 MHz, which corresponds to about 160 μA of beam current. It is required that the BPM system would be functional for all micropulse frequencies. By taking into account the headroom for the beam steering and current variations the dynamic range of the RF front end is required to be about 60 dB. A BPM resolution of at least 100 μm is required, whereas better resolution is very desirable to make it possible for more accurate measurements of the electron beam optics. Some results of the RF front end development are presented as well as the first measurements made with an electron beam.

  12. Advanced Electron Beam Diagnostics for the FERMI FEL

    Ferianis, M; D'Auria, G; Di Mitri, S

    2005-01-01

    Fermi is the fourth generation light source currently under design at ELETTRA: based on the Harmonic Generation (HG) scheme it will generate FEL radiation in the 100-10nm range. The successful implementation of the HG scheme calls also for precise knowledge of electron beam emittances and energy spread as well as for very accurate control on the photon to electron interaction, in the Undulator sections. In this paper we present our design for two fundamental Diagnostics foreseen for the new FERMI LINAC: the Beam Position Monitors (BPM) and the Transverse Deflecting cavity set-up. Sensitivity studies on transverse beam displacement effects on global stability of FEL output radiation dictate the ultimate performance to be provided by the BPM system. Due to non negligible longitudinal occupancy of a cavity type BPM, some efforts have been put to study compact cavity BPM configuration. A proper set-up of RF deflecting cavity combined with the vertical ramp foreseen at the end of the LINAC provide a powerful tool ...

  13. Options for the Cryogenic System for the BESSY-FEL

    Kutzschbach, A.; Quack, H.; Haberstroh, Ch.; Knobloch, J.; Anders, W.; Pflueckhahn, D.

    2004-01-01

    The Berliner Elektronenspeicherring-Gesellschaft fuer Synchrotronstrahlung (BESSY GmbH), in January 1999, started operation of BESSY II, a third-generation synchrotron light source delivering world-class, high-brilliance photon beams in the VUV to XUV spectral range. Based on this experience, BESSY has recently proposed the construction of a free-electron laser (FEL), covering a photon-energy range from 20 eV to 1 keV.To reduce the development time and cost, BESSY intends to use proven cavity and cryostat technology developed for the TESLA linear collider. However, the cryogenic load per cavity is approximately 15 to 20 times higher than that anticipated for the (pulsed) TESLA operation. This paper describes possible modifications of the cryostat design to accommodate these additional losses.Superconducting RF cavities are the basis of the FEL accelerator providing the driving electron beam with 2.25 GeV. The accelerator consists of five cold sections separated by warm sections reserved for bunch compression and beam extraction. The total refrigeration load will be covered by a single refrigerator. Several possible layouts of the cryogenic system are described and their advantages and disadvantages are discussed

  14. ETHERNET BASED EMBEDDED SYSTEM FOR FEL DIAGNOSTICS AND CONTROLS

    Jianxun Yan; Daniel Sexton; Steven Moore; Albert Grippo; Kevin Jordan

    2006-01-01

    An Ethernet based embedded system has been developed to upgrade the Beam Viewer and Beam Position Monitor (BPM) systems within the free-electron laser (FEL) project at Jefferson Lab. The embedded microcontroller was mounted on the front-end I/O cards with software packages such as Experimental Physics and Industrial Control System (EPICS) and Real Time Executive for Multiprocessor System (RTEMS) running as an Input/Output Controller (IOC). By cross compiling with the EPICS, the RTEMS kernel, IOC device supports, and databases all of these can be downloaded into the microcontroller. The first version of the BPM electronics based on the embedded controller was built and is currently running in our FEL system. The new version of BPM that will use a Single Board IOC (SBIOC), which integrates with an Field Programming Gate Array (FPGA) and a ColdFire embedded microcontroller, is presently under development. The new system has the features of a low cost IOC, an open source real-time operating system, plug and play-like ease of installation and flexibility, and provides a much more localized solution

  15. A multi-frequency approach to free electron lasers driven by short electron bunches

    Piovella, Nicola

    1997-01-01

    A multi-frequency model for free electron lasers (FELs), based on the Fourier decomposition of the radiation field coupled with the beam electrons, is discussed. We show that the multi-frequency approach allows for an accurate description of the evolution of the radiation spectrum, also when the FEL is driven by short electron bunches, of arbitrary longitudinal profile. We derive from the multi-frequency model, by averaging over one radiation period, the usual FEL equations modelling the slippage between radiation and particles and describing the super-radiant regime in high-gain FELs. As an example of application of the multi-frequency model, we discuss the coherent spontaneous emission (CSE) from short electron bunches

  16. Characteristics of the FEL project for the MUH experiment; Stato del progetto FEL per l`esperimeto MUH

    Ciocci, F.; Doria, A.; Fascetti, M.; Gallerano, G.P.; Giannessi, L.; Giovenale, E.; Messina, G.; Picardi, L.; Renieri, A.; Ronci, G.; Ronsivalle, C.; Vignati, A. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione

    1999-01-01

    The design characteristics of a compact Free Electron Laser (FEL) operating in the far infrared spectral range between 200 and 600 {mu}m are presented in this report. The device can be employed in a fundamental physics experiment to be performed in collaboration with INFN-Trieste and the Paul Sherrer Institute- Villigen. Spectroscopic measurements in the above spectral region will allow one to determine the energy difference between the levels 3D-3P in the {mu}P system with great accuracy. [Italiano] In questo rapporto vengono presentate le caratteristiche di progetto di un Laser ad Elettroni Liberi (FEL) compatto operante nel lontano infrarosso a lunghezze d`onda comprese tra 200 e 600 {mu}m. Tale laser potra` essere impiegato in un esperimento di fisica fondamentale su idrogeno muonico in collaborazione con INFN-Trieste ed il Paul Sherrer Institute-Villigen. Le misure spettroscopiche nella regione spettrale del lontano infrarosso consentiranno di determinare con grande accuratezza la differenza di energia dei livelli 3D-3P nel sistema {mu}P. Attraverso la misura di questa transizione sara` possibile effettuare un test delle correzioni di Meccanica Quantistica (QED) alle energie di legame, migliorando di un ordine di grandezza l`accuratezza della misura della polarizzazione del vuoto.

  17. Performance of a Combined System Using an X-Ray FEL Oscillator and a High-Gain FEL Amplifier

    Gupta, L.; Lindberg, R.; Kim, K. -J.

    2017-06-01

    The LCLS-II at SLAC will feature a 4 GeV CW superconducting (SC) RF linac [1] that can potentially drive a 5th harmonic X-Ray FEL Oscillator (XFELO) to produce fully coherent, 1 MW photon pulses with a 5 meV bandwidth at 14.4 keV [2]. The XFELO output can serve as the input seed signal for a high-gain FEL amplifier employing fs electron beams from the normal conducting SLAC linac, thereby generating coherent, fs x-ray pulses with TW peak powers using a tapered undulator after saturation [3]. Coherent, intense output at several tens of keV will also be feasible if one considers a harmonic generation scheme. Thus, one can potentially reach the 42 keV photon energy required for the MaRIE project [4] by beginning with an XFELO operating at the 3rd harmonic to produce 14.0 keV photons using a 12 GeV SCRF linac, and then subsequently using the high-gain harmonic generation scheme to generate and amplify the 3th harmonic at 42 keV [5]. We report extensive GINGER simulations that determine an optimized parameter set for the combined system.

  18. Proceedings of the 3rd topical meeting on FEL and high power radiation

    Hiramatsu, Shigenori

    1994-01-01

    The meeting was held on June 10 and 11, 1993, at the National Laboratory for High Energy Physics. This is the joint study meeting with 31st large power microwave-milliwave study meeting. At the meeting, lectures were given on the report of 1st Asia FEL study meeting, infrared free electron laser (FEL) project in JAERI, present state of Free Electron Laser Research Institute Inc., infrared FEL experiment in the Institute of Scientific and Industrial Research, Osaka University, FEL experiment in UVSOR storage ring, NIJI-4 SRFEL, simulation of FEL oscillation in photo-klystron, vacuum UVFEL in PF, beam characteristics of small photon storage ring, micro-cherenkov FEL using field emission array, coherent spontaneous emission and radiation build-up in FEL oscillator, stability of soft X-ray multilayers under exposure to multipole Wigger radiation, long life Zn 2 excimer excited with relativistic electron beam, development of large power klystron in KEK, design of 1 THz gyrotron and first experiment, experiment of relativistic peniotron, experiments of 3rd and 10th cyclotron harmonic peniotron oscillators and others. (K.I.)

  19. Wavelength conversion devices

    Mikkelsen, Benny; Durhuus, Terji; Jørgensen, Carsten

    1996-01-01

    system requirements. The ideal wavelength converter should be transparent to the bit rate and signal format and provide an unchirped output signal with both a high extinction ratio and a large signal-to-noise ratio. It should allow conversion to both shorter and longer wavelengths with equal performance...

  20. Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots.

    van Hazel, Ilke; Sabouhanian, Amir; Day, Lainy; Endler, John A; Chang, Belinda S W

    2013-11-13

    One of the most striking features of avian vision is the variation in spectral sensitivity of the short wavelength sensitive (SWS1) opsins, which can be divided into two sub-types: violet- and UV- sensitive (VS & UVS). In birds, UVS has been found in both passerines and parrots, groups that were recently shown to be sister orders. While all parrots are thought to be UVS, recent evidence suggests some passerine lineages may also be VS. The great bowerbird (Chlamydera nuchalis) is a passerine notable for its courtship behaviours in which males build and decorate elaborate bower structures. The great bowerbird SWS1 sequence possesses an unusual residue combination at known spectral tuning sites that has not been previously investigated in mutagenesis experiments. In this study, the SWS1 opsin of C. nuchalis was expressed along with a series of spectral tuning mutants and ancestral passerine SWS1 pigments, allowing us to investigate spectral tuning mechanisms and explore the evolution of UV/violet sensitivity in early passerines and parrots. The expressed C. nuchalis SWS1 opsin was found to be a VS pigment, with a λmax of 403 nm. Bowerbird SWS1 mutants C86F, S90C, and C86S/S90C all shifted λmax into the UV, whereas C86S had no effect. Experimentally recreated ancestral passerine and parrot/passerine SWS1 pigments were both found to be VS, indicating that UV sensitivity evolved independently in passerines and parrots from a VS ancestor. Our mutagenesis studies indicate that spectral tuning in C. nuchalis is mediated by mechanisms similar to those of other birds. Interestingly, our ancestral sequence reconstructions of SWS1 in landbird evolution suggest multiple transitions from VS to UVS, but no instances of the reverse. Our results not only provide a more precise prediction of where these spectral sensitivity shifts occurred, but also confirm the hypothesis that birds are an unusual exception among vertebrates where some descendants re-evolved UVS from a violet type

  1. Influence of blue light spectrum filter on short-wavelength and standard automated perimetries Influência de filtro para o espectro azul da luz na perimetria computadorizada branco-branco e azul-amarelo

    Leonardo Cunha Castro

    2006-10-01

    Full Text Available PURPOSE: To evaluate the influence of a blue light spectrum filter (BLSF, similar in light spectrum transmittance to the intraocular lens Acrysof NaturalTM, on standard automated perimetry (SAP and short-wavelength automated perimetry (SWAP. METHODS: Twenty young individuals (OBJETIVO: Avaliar a influência de um filtro para o espectro azul da luz, semelhante à lente intra-ocular Acrysof Natural®, nos exames de perimetria automatizada padrão (branco-no-branco e de comprimento de onda curto (azul-no-amarelo. MÉTODOS: Vinte pacientes jovens sem alterações oculares (20 olhos realizaram seqüência de 4 exames de campo visual: perimetria automatizada padrão e azul-no-amarelo com e sem o filtro para o espectro azul da luz. Os índices de limiar foveal (FT, desvio médio (MD e desvio-padrão (PSD obtidos em todos os exames e a diferença causada pela excentricidade nos exames de perimetria automatizada azul-no-amarelo foram analisados. Variabilidade interindivíduos (desvio-padrão dos pontos testados foi calculada. RESULTADOS: Observou-se redução estatisticamente significante no desvio médio (p<0.001 e no limiar foveal (p<0.001 medidos pela perimetria automatizada azul-no-amarelo com o uso do filtro para o espectro azul da luz comparado quando realizado sem o filtro. Nenhum outro índice avaliado apresentou diferença estatisticamente significante nos exames de perimetria automatizada padrão ou azul-no-amarelo. Foi notado aumento da variabilidade interindivíduos com a excentricidade nos exames de perimetria automatizada azul-no-amarelo com e sem o uso do filtro para o espectro azul da luz, assim como a diferença de sensibilidade entre os hemisférios inferior e superior (hemisfério inferior menos superior, mas não houve diferença estatisticamente significante quando comparados os exames com e sem o uso do filtro. Quando foram comparados os 4 pontos mais inferiores e os 4 pontos mais superiores, a diferença inferior-superior aumentou

  2. Jefferson Lab IR demo FEL photocathode quantum efficiency scanner

    Gubeli, J; Grippo, A; Jordan, K; Shinn, M; Siggins, T

    2001-01-01

    Jefferson Laboratory's Free Electron Laser (FEL) incorporates a cesiated gallium arsenide (GaAs) DC photocathode gun as its electron source. By using a set of scanning mirrors, the surface of the GaAs wafer is illuminated with a 543.5nm helium-neon laser. Measuring the current flow across the biased photocathode generates a quantum efficiency (QE) map of the 1-in. diameter wafer surface. The resulting QE map provides a very detailed picture of the efficiency of the wafer surface. By generating a QE map in a matter of minutes, the photocathode scanner has proven to be an exceptional tool in quickly determining sensitivity and availability of the photocathode for operation.

  3. Development of web database system for JAERI ERL-FEL

    Kikuzawa, Nobuhiro

    2005-01-01

    The accelerator control system for the JAERI ERL-FEL is a PC-based distributed control system. The accelerator status record is stored automatically through the control system to analyze the influence on the electron beam. In order to handle effectively a large number of stored data, it is necessary that the required data can be searched and visualized in easy operation. For this reason, a web database (DB) system which can search of the required data and display visually on a web browser was developed by using open source software. With introduction of this system, accelerator operators can monitor real-time information anytime, anywhere through a web browser. Development of the web DB system is described in this paper. (author)

  4. Development of web database system for JAERI ERL-FEL

    Kikuzawa, Nobuhiro [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Tokai, Ibaraki (Japan)

    2005-06-01

    The accelerator control system for the JAERI ERL-FEL is a PC-based distributed control system. The accelerator status record is stored automatically through the control system to analyze the influence on the electron beam. In order to handle effectively a large number of stored data, it is necessary that the required data can be searched and visualized in easy operation. For this reason, a web database (DB) system which can search of the required data and display visually on a web browser was developed by using open source software. With introduction of this system, accelerator operators can monitor real-time information anytime, anywhere through a web browser. Development of the web DB system is described in this paper. (author)

  5. Undulators to FELs: Nanometers, Femtoseconds, Coherence and Applications

    Attwood, David [University of California Berkeley

    2011-11-30

    For scientists in many fields, from material science to the life sciences and archeology, synchrotron radiation, and in particular undulator radiation, has provide an intense source of x-rays which are tunable to the absorption edges of particular elements of interest, often permitting studies at high spatial and spectral resolution. Now a close cousin to the undulator, the x-ray free electron laser (XFEL) has emerged with improved spatial coherence and, perhaps more importantly, femtosecond pulse durations which permit dynamical studies. In the future attosecond x-ray capabilities are anticipated. In this colloqium we will describe some state of the art undulator studies, how undulators work, the evolution to FELs, their pulse and coherence properties, and the types of experiments envisioned.

  6. Study of CSR Effects in the Jefferson Laboratory FEL Driver

    Hall, C. C. [Colorado State U.; Biedron, S. [Colorado State U.; Burleson, Theodore A. [Colorado State U.; Milton, Stephen V. [Colorado State U.; Morin, Auralee L. [Colorado State U.; Benson, Stephen V. [JLAB; Douglas, David R. [JLAB; Evtushenko, Pavel E. [JLAB; Hannon, Fay E. [JLAB; Li, Rui [JLAB; Tennant, Christopher D. [JLAB; Zhang, Shukui [JLAB; Carlsten, Bruce E. [LANL; Lewellen, John W. [LANL

    2013-08-01

    In a recent experiment conducted on the Jefferson Laboratory IR FEL driver the effects of Coherent Synchrotron Radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR chicane. This experiment also provides a valuable opportunity to benchmark existing CSR models in a system that may not be fully represented by a 1-D CSR model. Here we present results from this experiment and compare to initial simulations of CSR in the magnetic compression chicane of the machine. Finally, we touch upon the possibility for CSR induced microbunching gain in the magnetic compression chicane, and show that parameters in the machine are such that it should be thoroughly damped.

  7. Los Alamos free-electron laser (FEL) rf system

    Tallerico, P.J.; Lynch, M.T.

    1985-01-01

    The FEL rf system was designed for 3.6-MW rf pulses from two klystrons to drive two linacs and one deflection cavity at 1300 MHz. Two 108.33-MHz subharmonic buncher cavities and one fundamental buncher were also built, each powered by a 5-kW amplifier. A single phase-coherent source drives the various amplifiers as well as the grid of the electron gun, which is pulsed at 21.67 MHz. The initial buncher system did not work as well as expected, and the first linac tank required more rf power than anticipated. The light output was extremely sensitive to amplitude and phase errors. More powerful klystrons were developed and installed, and a method was discovered for operating a single subharmonic buncher and allowing the first linac to complete the bunching process. This paper shows the actual configuration used to operate the laser and discusses future improvements

  8. Coherent harmonic production using a two-section undulator FEL

    Jaroszynski, D.A. [Commissariat a l`Energie, Bruyeres-le-Chatel (France); Prazeres, R.; Glotin, F. [Centre Universitaire Paris-Sud (France)] [and others

    1995-12-31

    We present measurements and a theoretical analysis of a new method of generating harmonic radiation in a free-electron laser oscillator with a two section undulator in a single optical cavity. To produce coherent harmonic radiation the undulator is arranged so that the downstream undulator section resonance frequency matches a harmonic of the upstream undulator. Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction fractions using a hole in one of the cavity mirrors. We present measurements that show that the optical power at the second and third harmonic can be enhanced by more than an order of magnitude in this fundamental/harmonic configuration. We compare the production of harmonic radiation of a two sectioned fundamental/harmonic undulator with that produced from a FEL operating at its highest efficiency with a step-tapered undulator, where the bunching at the end of the first section is very large. We examine, the dependence of the harmonic power on the intracavity power by adjusting the optical cavity desynchronism, {delta}L. We also examine the evolution of the fundamental and harmonic powers as a function of cavity roundtrip number to evaluate the importance of the small signal gain at the harmonic. We compare our measurements with predictions of a multi-electron numerical model that follows the evolution of fundamental and harmonic power to saturation. This fundamental/harmonic mode, of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture.

  9. Dielectric Wakefield Accelerator to drive the future FEL Light Source.

    Jing, C.; Power, J.; Zholents, A. (Accelerator Systems Division (APS)); ( HEP); (LLC)

    2011-04-20

    X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

  10. Quasi-real-time photon pulse duration measurement by analysis of FEL radiation spectra

    Engel, Robin, E-mail: robin.engel@uni-oldenburg.de [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg (Germany); Institut für Laser und Optik, Hochschule Emden/Leer, University of Applied Sciences, Constantiaplatz 4, D-26723 Emden (Germany); Düsterer, Stefan; Brenner, Günter [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Teubner, Ulrich [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg (Germany); Institut für Laser und Optik, Hochschule Emden/Leer, University of Applied Sciences, Constantiaplatz 4, D-26723 Emden (Germany)

    2016-01-01

    Considering the second-order spectral correlation function of SASE-FEL radiation allows a real-time observation of the photon pulse duration during spectra acquisition. For photon diagnostics at free-electron lasers (FELs), the determination of the photon pulse duration is an important challenge and a complex task. This is especially true for SASE FELs with strongly fluctuating pulse parameters. However, most techniques require an extensive experimental setup, data acquisition and evaluation time, limiting the usability in all-day operation. In contrast, the presented work uses an existing approach based on the analysis of statistical properties of measured SASE FEL spectra and implements it as a software tool, integrated in FLASH’s data acquisition system. This allows the calculation of the average pulse durations from a set of measured spectral distributions with only seconds of delay, whenever high-resolution spectra are recorded.

  11. Sustained lasing of HHG-seeded FEL by using EOS-based timing control

    Watanabe, Takahiro; Okayasu, Yuichi; Togashi, Tadashi; Hara, Toru; Tomizawa, Hiromitsu; Matsubara, Shinichi; Aoyama, Makoto; Yamakawa, Koichi; Iwasaki, Atsushi; Ohwada, Shigeki; Sato, Takahiro; Yamauchi, Kaoru; Otake, Yuji; Ohshima, Takashi; Ogawa, Kanade; Togawa, Kazuaki; Tanaka, Takashi; Takahashi, Eiji; Midorikawa, Katsumi; Yabashi, Makina; Tanaka, Hitoshi; Ishikawa, Tetsuya

    2013-01-01

    High-harmonic-generation (HHG) based seeded FEL experiments were demonstrated at SCSS, SPring-8. Seeded FEL has advantageous features against SASE such that there is no intrinsic nature of shot-noise fluctuation and output FEL pulses are in principle fully coherent in both transverse and longitudinal axes. In practical user experiments, however, an overlap between electron bunches and seed laser pulses in six-dimensional phase space needs to be precisely maintained for securing the stable lasing. Otherwise, the overlap could be quickly lost and the lasing is no more sustained. For the stable lasing, we have developed an EO (electro-optic) based timing control system, which enables to observe a timing drift between electron bunches and laser pulses, and compensate for it. Experimental results of the seeded FEL with and without the EO timing control are compared, and the effectiveness of the timing system is discussed. (author)

  12. Coherence and linewidth studies of a 4-nm high power FEL

    Fawley, W.M.; Sessler, A.M.; Scharlemann, E.T.

    1993-05-01

    Recently the SSRL/SLAC and its collaborators elsewhere have considered the merits of a 2 to 4-nm high power FEL utilizing the SLAC linac electron beam. The FEL would be a single pass amplifier excited by spontaneous emission rather than an oscillator, in order to eliminate the need for a soft X-ray resonant cavity. We have used GINGER, a multifrequency 2D FEL simulation code, to study the expected linewidth and coherence properties of the FEL, in both the exponential and saturated gain regimes. We present results concerning the effective shot noise input power and mode shape, the expected subpercent output line widths, photon flux, and the field temporal and spatial correlation functions. We also discuss the effects of tapering the wiggler upon the output power and line width

  13. Heavy ions acceleration in RF wells of 2-frequency electromagnetic field and in the inverted FEL

    Dzergach, A.I.; Kabanov, V.S.; Nikulin, M.G.; Vinogradov, S.V.

    1995-03-01

    Last results of the study of heavy ions acceleration by electrons trapped in moving 2-frequency 3-D RF wells are described. A linearized theoretical model of ions acceleration in a polarized spheroidal plasmoid is proposed. The equilibrium state of this plasmoid is described by the modified microcanonical distribution of the Courant-Snyder invariant (open-quotes quasienergyclose quotes of electrons). Some new results of computational simulation of the acceleration process are given. The method of computation takes into account the given cylindrical field E 011 (var-phi,r,z) and the self fields of electrons and ions. The results of the computation at relatively short time intervals confirm the idea and estimated parameters of acceleration. The heavy ion accelerator using this principle may be constructed with the use of compact cm band iris-loaded and biperiodical waveguides with double-sided 2-frequency RF feeding. It can accelerate heavy ions with a charge number Z i from small initial energies ∼ 50 keV/a.u. with the rate ∼ Z i · 10 MeV/m. Semirelativistic ions may be accelerated with similar rate also in the inverted FEL

  14. Transport studies of LPA electron beam towards the FEL amplification at COXINEL

    Khojoyan, M., E-mail: martin.khojoyan@synchrotron-soleil.fr; Briquez, F.; Labat, M.; Loulergue, A.; Marcouillé, O.; Marteau, F.; Sharma, G.; Couprie, M.E.

    2016-09-01

    Laser Plasma Acceleration (LPA) [1] is an emerging concept enabling to generate electron beams with high energy, high peak current and small transverse emittance within a very short distance. The use of LPA can be applied to the Free Electron Laser (FEL) [2] case in order to investigate whether it is suitable for the light amplification in the undulator. However, capturing and guiding of such beams to the undulator is very challenging, because of the large divergence and high energy spread of the electron beams at the plasma exit, leading to large chromatic emittances. A specific beam manipulation scheme was recently proposed for the COXINEL (Coherent X-ray source inferred from electrons accelerated by laser) setup, which makes an advantage from the intrinsically large chromatic emittance of such beams [3]. The electron beam transport is studied using two simulation codes: a SOLEIL in-house one and ASTRA [4]. The influence of the collective effects on the electron beam performance is also examined.

  15. Scaling of gain with energy spread and energy in the PEP FEL

    Fisher, A.S.

    1992-01-01

    The Sag Harbor paper on the PEP FEL discusses the scaling of various FEL parameters with energy spread σ var-epsilon . I will repeat some of this material here and then examine the benefit of increasing the energy spread. How much energy spread can be achieved with damping wigglers is the next topic. Finally, I consider the dependence of gain and saturation length on beam energy and undulator field

  16. Status and Future Plans of JAERI Eergy-Recovery Linac FEL

    Hajima, R; Kikuzawa, N; Minehara, E J; Nagai, R; Nishimori, N; Nishitani, T; Sawamura, M; Yamauchi, T

    2005-01-01

    An energy-recovery linac for a high-power free-electron laser is in operation at Japan Atomic Energy Research Institute (JAERI). In this paper, we report results of research activities and future plans of JAERI ERL-FEL, which are the construction of FEL transport line, the operation of newly-installed RF controller and IOTs, the development of super-lattice photo cathode.

  17. Face expressive lifting (FEL): an original surgical concept combined with bipolar radiofrequency

    Divaris, Marc; Blugerman, Guillermo; Paul, Malcolm D.

    2013-01-01

    Background Aging can lead to changes in facial expressions, transforming the positive youth expression of happiness to negative expressions as sadness, tiredness, and disgust. Local skin distension is another consequence of aging, which can be difficult to treat with rejuvenation procedures. The “face expressive lifting” (FEL) is an original concept in facial rejuvenation surgery. On the one hand, FEL integrates established convergent surgical techniques aiming to correct the age-related nega...

  18. Free electron laser as a fusion driver

    Prosnitz, D.; Schlitt, L.

    1981-01-01

    The Free Electron Laser (FEL) is shown to be a potentially attractive solution to the problem of finding a suitable short wavelength fusion driver. The design of a 3 MJ, 250 nm FEL fusion driver is discussed

  19. Research opportunities at the proposed Los Alamos XUV-FEL user facility

    Conradson, S.D.; Newman, B.E.

    1990-01-01

    This paper reports that within the last several years a number of meetings and conferences have addressed the unique scientific opportunities which would result from the development of an RF-linac FEL user facility accessing the XUV and mid-IR spectral regions. The capabilities of a number of linear and nonlinear spectroscopies would be enhanced by one or more features of the FEL output, e.g., its free tunability in these regions, transform-limited linewidth, high peak power and brightness, time structure, and the possibility of multi-color pump-probe experiments utilizing the coordinated output from more than one FEL oscillator. These advances would in turn benefit a variety of scientific areas. In the realm of basic science, experiments or measurements which ether require an FEL or where increased sensitivity would be advantageous can be found in quantum, atomic, cluster, molecular, and condensed matter physics, magnetic materials, surface science and catalysis, non-linear spectroscopy, and biophysics and -chemistry and physics, advanced fabrication processes, medical applications, and others. These applications form the basis for the specifications of the FEL and for the design of the laboratories for the proposed FEL user facility at Los Alamos

  20. Development of a novel thermionic RF electron gun applied on a compact THz-FEL facility

    Hu, T. N.; Pei, Y. J.; Qin, B.; Liu, K. F.; Feng, G. Y.

    2018-04-01

    The current requirements from civil and commercial applications lead to the development of compact free-electron laser (FEL)-based terahertz (THz) radiation sources. A picosecond electron gun plays an important role in an FEL-THz facility and attracts significant attention, as machine performance is very sensitive to initial conditions. A novel thermionic gun with an external cathode (EC) and two independently tunable cavities (ITCs) has been found to be a promising alternative to conventional electron sources due to its remarkable characteristics, and correspondingly an FEL injector can achieve a balance between a compact layout and high brightness benefitting from the velocity bunching properties and RF focusing effects in the EC-ITC gun. Nevertheless, the EC-ITC gun has not been extensively examined as part of the FEL injector in the past years. In this regard, to fill this gap, a development focusing on the experimental setup of an FEL injector based on an EC-ITC gun is described in detail. Before assembly, dynamic beam simulations were performed to investigate the optimal mounting position for the Linac associated with the focusing coils, and a suitable radio-frequency (RF) system was established based on a power coupling design and allocation. The testing bench proved to be fully functional through basic experiments using typical diagnostic approaches for estimating primary parameters. Associated with dynamic beam calculations, a performance evaluation for an EC-ITC gun was established while providing indirect testing results for an FEL injector.

  1. Design and test of SX-FEL cavity BPM

    Yuan Renxian; Zhou Weimin; Chen Zhichu; Yu Luyang; Wang Baopen; Leng Yongbin

    2013-01-01

    This paper reports the design and cold test of the cavity beam position monitor (CBPM) for SX-FEL to fulfill the requirement of beam position measurement resolution of less than 1 μm, even 0.1 μm. The CBPM was optimized by using a coupling slot to damp the TM 010 mode in the output signal. The isolation of TM 010 mode is about 117 dB, and the shunt impedance is about 200 Ω@4.65 GHz with the quality factor 80 from MAFIA simulation and test result. A special antenna was designed to load power for reducing excitation of other modes in the cavity. The resulting output power of TM 110 mode was about 90 mV/mm when the source was 6 dBm, and the accomplishable minimum voltage was about 200 μV. The resolution of the CBPM was about 0.1 μm from the linear fitting result based on the cold test. (authors)

  2. Management system of ELHEP cluster machine for FEL photonics design

    Zysik, Jacek; Poźniak, Krzysztof; Romaniuk, Ryszard

    2006-10-01

    A multipurpose, distributed MatLab calculations oriented, cluster machine was assembled in PERG/ELHEP laboratory at ISE/WUT. It is predicted mainly for advanced photonics and FPGA/DSP based systems design for Free Electron Laser. It will be used also for student projects for superconducting accelerator and FEL. Here we present one specific side of cluster design. For an intense, distributed daily work with the cluster, it is important to have a good interface and practical access to all machine resources. A complex management system was implemented in PERG laboratory. It helps all registered users to work using all necessary applications, communicate with other logged in people, check all the news and gather all necessary information about what is going on in the system, how it is utilized, etc. The system is also very practical for administrator purposes, it helps to keep controlling who is using the resources and for how long. It provides different privileges for different applications and many more. The system is introduced as a freeware, using open source code and can be modified by system operators or super-users who are interested in nonstandard system configuration.

  3. Quadrupole magnets for IR-FEL at RRCAT

    Ruwali, Kailash; Singh, Kushraj; Mishra, Anil Kumar; Biswas, Bhaskar

    2013-01-01

    The IR-FEL project at RRCAT needs quadrupole magnets for focusing 15 to 35 MeV electron beam through a dog-leg type beam line. This bend needs tighter relative tolerances on the central quadrupole triplet . The magnetic design, fabrication and magnetic characterization of five quadrupole magnets were carried out. The poles are detachable and wider than the coils. This significantly improves the good field region of the magnet. The magnet cross-section was optimized using 2D POISON code and entry-exit tapers were optimized using 3D code TOSCA.. The aperture radius of the magnet is 30 mm and the total core length is 180 mm. The integrated gradient of magnet is 0.51 T. The magnetic measurements were carried out using Danfysik make rotating coil bench model 690. Integrated gradient and multipoles present in the magnet aperture were measured at various excitation levels. The details of magnetic development and the magnetic measurements are discussed in this paper. (author)

  4. Broadband short pulse measurement by autocorrelation with a sum-frequency generation set-up

    Glotin, F.; Jaroszynski, D.; Marcouille, O.

    1995-01-01

    Previous spectral and laser pulse length measurements carried out on the CLIO FEL at wavelength λ=8.5 μm suggested that very short light pulses could be generated, about 500 fs wide (FWHM). For these measurements a Michelson interferometer with a Te crystal, as a non-linear detector, was used as a second order autocorrelation device. More recent measurements in similar conditions have confirmed that the laser pulses observed are indeed single: they are not followed by other pulses distant by the slippage length Nλ. As the single micropulse length is likely to depend on the slippage, more measurements at different wavelengths would be useful. This is not directly possible with our actual interferometer set-up, based on a phase-matched non-linear crystal. However, we can use the broadband non-linear medium provided by one of our users' experiments: Sum-Frequency Generation over surfaces. With such autocorrelation set-up, interference fringes are no more visible, but this is largely compensated by the frequency range provided. First tests at 8 μm have already been performed to validate the technic, leading to results similar to those obtained with our previous Michelson set-up

  5. Gas-filled cell as a narrow bandwidth bandpass filter in the VUV wavelength range

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-04-15

    We propose a method for spectrally filtering radiation in the VUV wavelength range by means of a monochromator constituted by a cell filled with a resonantly absorbing rare gas. Around particular wavelengths, the gas exhibits narrow-bandwidth absorbing resonances following the Fano profile. In particular, within the photon energy range 60 eV-65 eV, the correlation index of the Fano profiles for the photoionization spectra in Helium is equal to unity, meaning that the minimum of the cross-section is exactly zero. For sufficiently large column density in the gas cell, the spectrum of the incoming radiation will be attenuated by the background cross-section of many orders of magnitude, except for those wavelengths close to the point where the cross-section is zero. Remarkable advantages of a gas monochromator based on this principle are simplicity, efficiency and narrow-bandwidth. A gas monochromator installed in the experimental hall of a VUV SASE FEL facility would enable the delivery of a single-mode VUV laser beam. The design is identical to that of already existing gas attenuator systems for VUV or X-ray FELs. We present feasibility study and exemplifications for the FLASH facility in the VUV regime. (orig.)

  6. Validity and reliability of the Fels physical activity questionnaire for children.

    Treuth, Margarita S; Hou, Ningqi; Young, Deborah R; Maynard, L Michele

    2005-03-01

    The aim was to evaluate the reliability and validity of the Fels physical activity questionnaire (PAQ) for children 7-19 yr of age. A cross-sectional study was conducted among 130 girls and 99 boys in elementary (N=70), middle (N=81), and high (N=78) schools in rural Maryland. Weight and height were measured on the initial school visit. All the children then wore an Actiwatch accelerometer for 6 d. The Fels PAQ for children was given on two separate occasions to evaluate reliability and was compared with accelerometry data to evaluate validity. The reliability of the Fels PAQ for the girls, boys, and the elementary, middle, and high school age groups range was r=0.48-0.76. For the elementary school children, the correlation coefficient examining validity between the Fels PAQ total score and Actiwatch (counts per minute) was 0.34 (P=0.004). The correlation coefficients were lower in middle school (r=0.11, P=0.31) and high school (r=0.21, P=0.006) adolescents. The sport index of the Fels PAQ for children had the highest validity in the high school participants (r=0.34, P=0.002). The Fels PAQ for children is moderately reliable for all age groups of children. Validity of the Fels PAQ for children is acceptable for elementary and high school students when the total activity score or the sport index is used. The sport index was similar to the total score for elementary students but was a better measure of physical activity among high school students.

  7. Rational design of hypoallergens applied to the major cat allergen Fel d 1.

    Saarne, T; Kaiser, L; Grönlund, H; Rasool, O; Gafvelin, G; van Hage-Hamsten, M

    2005-05-01

    Allergen-specific immunotherapy is the only treatment for allergic disease providing long-lasting symptom relief. Currently, it is mainly based on the use of crude allergen extracts. The treatment may be improved by the use of genetically engineered allergens, hypoallergens, aiming at a more effective and safer therapy. The aim of this study was to provide a rational design of hypoallergen candidates for immunotherapy by using structural information and knowledge of B and T cell epitopes of an allergen. The three-dimensional structure of the major cat allergen Fel d 1 was systematically altered by duplication of selected T cell epitopes and disruption of disulphide bonds. Seven Fel d 1 derivatives were generated and screened for allergenic reactivity in comparison with recombinant Fel d 1 in competition-ELISA. The allergenicity was further evaluated in basophil activation experiments and T cell reactivity was assessed in a lymphoproliferation assay. Three out of seven Fel d 1 derivatives, with two duplicated T cell epitopes and one or two disulphide bonds disrupted, were carefully evaluated. The three derivatives displayed a strong reduction in allergenicity with 400-900 times lower IgE-binding capacity than recombinant Fel d 1. In addition, they induced a lower degree of basophil activation and similar or stronger T cell proliferation than recombinant Fel d 1. By a rational approach, we have constructed three Fel d 1 hypoallergens with reduced IgE-binding capacities and retained T cell reactivities. This strategy may be applied to any well-characterized allergen to improve immunotherapy for allergic patients.

  8. Wavelength conversion technology

    Stubkjær, Kristian

    1998-01-01

    Optical wavelength conversion is currently attracting much interest. This is because it enables full flexibility and eases management of WDM fibre networks. The tutorial will review existing and potential application areas. Examples of node architectures and network demonstrators that use wavelen...

  9. Status report on the development of a high-power UV/IR FEL at CEBAF

    Benson, S.; Bohn, C.; Dylla, H.F. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)] [and others

    1995-12-31

    Last year we presented a design for a kilowatt industrial UV FEL based on a superconducting RF accelerator delivering 5 mA of electron-beam current at 200 MeV with energy recovery to enhance efficiency. Since then, we have progressed toward resolving several issues associated with that design. More exact simulations of the injector have resulted in a more accurate estimate of the injector performance. A new injection method has reduced the longitudinal and transverse emittance at the linac entrance. A more compact lattice has been designed for the UV FEL, and a new recirculation scheme has been identified which greatly increases the threshold for longitudinal instabilities. We decided to use a wiggler from the Advanced Photon Source which leads to a robust high-gain FEL. Analysis of the stability of an RF control system based on CEBAF control modules indicates that only minor modifications will be needed to apply them to this FEL. Detailed magnet specifications, vacuum-chamber beam apertures, and diagnostic specifications have been developed for the recirculation arcs. The design of the optical cavity has been conceptualized, and control systems have been devised to regulate mirror distortion. A half-scale model of one of the end-corner cubes has been built and tested. Finally, three-dimensional simulations have been carried out which indicate that the FEL should exceed its minimum design goals with adequate performance margin.

  10. PFM2: a 32 × 32 processor for X-ray diffraction imaging at FELs

    Manghisoni, M.; Fabris, L.; Re, V.; Traversi, G.; Ratti, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Vacchi, C.; Pancheri, L.; Benkechcache, M. E. A.; Dalla Betta, G.-F.; Xu, H.; Verzellesi, G.; Ronchin, S.; Boscardin, M.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Giorgi, M.; Paladino, A.; Paoloni, E.; Rizzo, G.; Morsani, F.

    2016-11-01

    This work is concerned with the design of a readout chip for application to experiments at the next generation X-ray Free Electron Lasers (FEL). The ASIC, named PixFEL Matrix (PFM2), has been designed in a 65 nm CMOS technology and consists of 32 × 32 pixels. Each cell covers an area of 110 × 110 μm2 and includes a low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper used to process the preamplifier output signal, a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC) and digital circuitry for channel control and data readout. Two different solutions for the readout channel, based on different versions of the time-variant filter, have been integrated in the chip. Both solutions can be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future X-ray FEL machines. The ASIC will be bump bonded to a slim/active edge pixel sensor to form the first demonstrator for the PixFEL X-ray imager. This work has been carried out in the frame of the PixFEL project funded by Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  11. X-FEL revolution - X-ray lasers to probe matter

    Collet, E.; Cammarata, M.; Harmand, M.; Couprie, M.E.

    2015-01-01

    X-ray free electron lasers (X-FEL) are now able to generate X-ray pulses of a few femto-seconds (1 fs = 10"-"1"5 s), which allows the real-time observation of the movements of atoms. The changes in the structure of a material can be seen whatever the material, this is illustrated with the PYP protein (that is the photo-receptor of a bacterium), the changes between an initial state and 100 ps after light excitation show the displacement of the atoms of the protein. The brightness of X-FEL can be so high that it allows the study of nano-metric structures but it enables X-FEL radiation to ionize matter and the crystal sample may be destroyed, this becomes the new limit of X-FEL applied to crystallography. Another application of X-FEL to structure studies is to allow the study of systems that are not crystal systems like macromolecules, proteins or even viruses. Hundreds of patterns of X-ray diffractions of an object are combined to form a 3-dimensional image of the object in the wave vector space and it is then possible but very complex to deduce the real 3-dimensional structure of the object. (A.C.)

  12. Face expressive lifting (FEL): an original surgical concept combined with bipolar radiofrequency.

    Divaris, Marc; Blugerman, Guillermo; Paul, Malcolm D

    2014-01-01

    Aging can lead to changes in facial expressions, transforming the positive youth expression of happiness to negative expressions as sadness, tiredness, and disgust. Local skin distension is another consequence of aging, which can be difficult to treat with rejuvenation procedures. The "face expressive lifting" (FEL) is an original concept in facial rejuvenation surgery. On the one hand, FEL integrates established convergent surgical techniques aiming to correct the age-related negative facial expressions. On the other hand, FEL incorporates novel bipolar RF technology aiming to correct local skin distension. One hundred twenty-six patients underwent FEL procedure. Facial expression and local skin distension were assessed with 2 years follow-up. There was a correction of negative facial expression for 96 patients (76 %) and a tightening of local skin distension in 100 % of cases. FEL is an effective procedure taking into account and able to correct both age-related negative changes in facial expression and local skin distension using radiofrequency. Level of Evidence: Level IV, therapeutic study.

  13. The DarkLight Experiment at the JLab FEL

    Fisher, Peter

    2013-10-01

    DarkLight will study the production of gauge bosons associated with Dark Forces theories in the scattering of 100 MeV electrons on proton a target. DarkLight is a spectrometer to measure all the final state particles in e- + p -->e- + p +e- +e+ . QED allows this process and the invariant mass distribution of the e+e- pair is a continuum from nearly zero to nearly the electron beam energy. Dark Forces theories, which allow the dark matter mass scale to be over 1 TeV, predict a gauge boson A' in the mass range of 10-1,000 MeV and decays to an electron-positron pair with an invariant mass of mA'. We aim to search for this process using the 100 MeV, 10 mA electron beam at the JLab Free Electron Laser impinging on a hydrogen target with a 1019 cm-2 density. The resulting luminosity of 6 ×1035/cm2-s gives the experiment enough sensitivity to probe A' couplings of 10-9 α . DarkLight is unique in its design to detect all four particles in the final state. The leptons will be measured in a large high-rate TPC and a silicon sensor will measure the protons. A 0.5 T solenoidal magnetic field provides the momentum resolution and focuses the copious Møller scattering background down the beam line, away from the detectors. A first beam test has shown the FEL beam is compatible with the target design and that the hall backgrounds are manageable. The experiment has been approved by Jefferson Lab for first running in 2017.

  14. Design Features of a Planar Hybrid/Permanent Magnet Strong Focusing Undulator for Free Electron Laser (FEL) And Synchrotron Radiation (SR) Applications

    Tatchyn, Roman; /SLAC

    2011-09-09

    Insertion devices for Angstrom-wavelength Free Electron Laser (FEL) amplifiers driven by multi-GeV electron beams generally require distributed focusing substantially stronger than their own natural focusing fields. Over the last several years a wide variety of focusing schemes and configurations have been proposed for undulators of this class, ranging from conventional current-driven quadrupoles external to the undulator magnets to permanent magnet (PM) lattices inserted into the insertion device gap. In this paper we present design studies of a flexible high-field hybrid/PM undulator with strong superimposed planar PM focusing proposed for a 1.5 Angstrom Linac Coherent Light Source (LCLS) driven by an electron beam with a 1 mm-mr normalized emittance. Attainable field parameters, tuning modes, and potential applications of the proposed structure are discussed.

  15. Wavelength-stepped, actively mode-locked fiber laser based on wavelength-division-multiplexed optical delay lines

    Lee, Eunjoo; Kim, Byoung Yoon

    2017-12-01

    We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.

  16. DOOCS based control system for FPGA based cavity simulator and controller in VUV FEL

    Pucyk, P.

    2005-09-01

    The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF 1 system in VUV FEL experiment It is being developed by ELHEP 2 group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryo module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. Ths paper describes the concept, implementation and tests of the DOOCS based control system for SIMCON. The designed system is based the concept of autonomic and extendable modules connected by well defined, unified interfaces. The communication module controls the access to the hardware. It is crucial, that all modules (this presented in thesis and developed in the future) use this interface. Direct access to the control tables let the engineers to perform algorithm development or diagnostic measurements of the LLRF system. Default control tables generator makes the whole SIMCON an autonomic device, which can start immediately the operation without any additional tools. (orig.)

  17. DOOCS based control system for FPGA based cavity simulator and controller in VUV FEL

    Pucyk, P.D.

    2006-03-01

    The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF 1 system in VUV FEL experiment It is being developed by ELHEP 2 group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryo module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. This paper describes the concept, implementation and tests of the DOOCS based control system for SIMCON. The designed system is based the concept of autonomic and extendable modules connected by well defined, unified interfaces. The communication module controls the access to the hardware. It is crucial, that all modules (this presented in thesis and developed in the future) use this interface. Direct access to the control tables let the engineers to perform algorithm development or diagnostic measurements of the LLRF system. Default control tables generator makes the whole SIMCON an autonomic device, which can start immediately the operation without any additional tools. (Orig.)

  18. Wavelength sweepable laser source

    2014-01-01

    Wavelength sweepable laser source is disclosed, wherein the laser source is a semiconductor laser source adapted for generating laser light at a lasing wavelength. The laser source comprises a substrate, a first reflector, and a second reflector. The first and second reflector together defines...... and having a rest position, the second reflector and suspension together defining a microelectromechanical MEMS oscillator. The MEMS oscillator has a resonance frequency and is adapted for oscillating the second reflector on either side of the rest position.; The laser source further comprises electrical...... connections adapted for applying an electric field to the MEMS oscillator. Furthermore, a laser source system and a method of use of the laser source are disclosed....

  19. Development of an alternative testing strategy for the fish early life-stage (FELS) test using the AOP framework

    Currently, the fish early life-stage (FELS) test (OECD 210) is the primary guideline used to estimate chronic toxicity of regulated chemicals. Although already more cost-efficient than adult fish tests, the FELS test has some important drawbacks. Both industry and regulatory inst...

  20. Suppression of mode-beating in a saturated hole-coupled FEL oscillator

    Krishnagopal, S.; Xie, M.; Kim, K.J.

    1992-08-01

    In a hole-coupled resonator, either empty or loaded with a linear FEL gain medium, the phenomenon of mode-degeneracy and mode-beating have been studied. When the magnitudes of the eigenvalues, derived from a linear analysis, are equal for two or more dominant eigenmodes, the system cannot achieve a stable beam-profile. We investigate this phenomenon when a saturated FEL is present within the cavity, thus introducing non-linearity. We use a three-dimensional FEL oscillator code, based on the amplifier code TDA, and show that mode-beating is completely suppressed in the nonlinear saturated regime. We suggest a simple, qualitative model for the mechanism responsible for this suppression

  1. Analyses of superradiance and spiking-mode lasing observed at JAERI-FEL

    Hajima, R; Nagai, R; Minehara, E J

    2001-01-01

    Japan Atomic Energy Research Institute (JAERI)-FEL has achieved quasi-CW lasing with an average power of 1.7 kW, the initial goal of the R and D program. The FEL extraction efficiency obtained completely exceeds the well-known limit for non-bunched beam, which is determined by the number of undulator periods. We have conducted numerical studies to characterize lasing dynamics observed at JAERI-FEL. Cavity-length detuning curves numerically obtained show good agreement with experimental results. Lasing behavior numerically obtained exhibits chaotic spiking-mode and superradiance as the cavity-length detuning approaches zero. Broadening of lasing spectrum observed in the experiments is explained by these lasing dynamics. The extraction efficiency becomes maximal at the perfect synchronization of the cavity length, where the lasing is quasi-stationary superradiance. We also compare these results with analytical theory previously reported.

  2. A Concept for z-Dependent Microbunching Measurements with Coherent X-ray Transition Radiation in a SASE FEL

    Lumpkin, Alex H

    2004-01-01

    Previously, measurements in the visible to VUV regimes of z-dependent microbunching in a self-amplified spontaneous emission (SASE) free-electron laser (FEL) have provided important information about the fundamental mechanisms. In those experiments a thin metal foil was used to block the more intense SASE radiation and to generate coherent optical transition radiation (COTR) as one source in a two-foil interferometer. However, for the proposed Linac Coherent Light Source (LCLS), the intense SASE emission is either too strongly transmitted at 1.5 angstroms or the needed foil thickness for blocking scatters the electron beam too much. Since coherent x-ray transition radiation (CXTR) is emitted in an annulus with opening angle 1/γ = 36 µrad for 14.09-GeV electrons, one could use a thin foil or foil stack to generate the XTR and CXTR and an annular crystal to wavelength sort the radiation. The combined selectivity will favor the CXTR over SASE by about eight orders of magnitude. Time-dependent GINGER si...

  3. Gain length dependence on phase shake in the VUV-FEL at the TESLA Test Facility

    Pflueger, J. [DESY/HASYLAB, Hamburg (Germany); Schneidmiller, E.A. [Automatic Systems Corporation, Samara (Russian Federation); Pierini, P. [INFN, Milano (Italy)

    1995-12-31

    The TTF VUV FEL, which is in its design stage at DESY, consists of a 30 m long SASE FEL which will radiate around 6 nm, driven by a superconducting linac with final energy of 1 GeV. One of the important issues in its design is the undulator performance, which is studied in this paper. The present setup, including FODO lattice, is discussed in this paper. Results of simulations, including the realistic wiggler field errors and beam stearing, are presented. Dependence of the performance, in particular the gain and saturation length as well as the saturation peak power, on the wiggler field errors is discussed.

  4. Design and optimization of the grating monochromator for soft X-ray self-seeding FELs

    Serkez, Svitozar

    2015-10-15

    The emergence of Free Electron Lasers (FEL) as a fourth generation of light sources is a breakthrough. FELs operating in the X-ray range (XFEL) allow one to carry out completely new experiments that probably most of the natural sciences would benefit. Self-amplified spontaneous emission (SASE) is the baseline FEL operation mode: the radiation pulse starts as a spontaneous emission from the electron bunch and is being amplified during an FEL process until it reaches saturation. The SASE FEL radiation usually has poor properties in terms of a spectral bandwidth or, on the other side, longitudinal coherence. Self-seeding is a promising approach to narrow the SASE bandwidth of XFELs significantly in order to produce nearly transformlimited pulses. It is achieved by the radiation pulse monochromatization in the middle of an FEL amplification process. Following the successful demonstration of the self-seeding setup in the hard X-ray range at the LCLS, there is a need for a self-seeding extension into the soft X-ray range. Here a numerical method to simulate the soft X-ray self seeding (SXRSS) monochromator performance is presented. It allows one to perform start-to-end self-seeded FEL simulations along with (in our case) GENESIS simulation code. Based on this method, the performance of the LCLS self-seeded operation was simulated showing a good agreement with an experiment. Also the SXRSS monochromator design developed in SLAC was adapted for the SASE3 type undulator beamline at the European XFEL. The optical system was studied using Gaussian beam optics, wave optics propagation method and ray tracing to evaluate the performance of the monochromator itself. Wave optics analysis takes into account the actual beam wavefront of the radiation from the coherent FEL source, third order aberrations and height errors from each optical element. The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without both entrance and exit

  5. Design and optimization of the grating monochromator for soft X-ray self-seeding FELs

    Serkez, Svitozar

    2015-10-01

    The emergence of Free Electron Lasers (FEL) as a fourth generation of light sources is a breakthrough. FELs operating in the X-ray range (XFEL) allow one to carry out completely new experiments that probably most of the natural sciences would benefit. Self-amplified spontaneous emission (SASE) is the baseline FEL operation mode: the radiation pulse starts as a spontaneous emission from the electron bunch and is being amplified during an FEL process until it reaches saturation. The SASE FEL radiation usually has poor properties in terms of a spectral bandwidth or, on the other side, longitudinal coherence. Self-seeding is a promising approach to narrow the SASE bandwidth of XFELs significantly in order to produce nearly transformlimited pulses. It is achieved by the radiation pulse monochromatization in the middle of an FEL amplification process. Following the successful demonstration of the self-seeding setup in the hard X-ray range at the LCLS, there is a need for a self-seeding extension into the soft X-ray range. Here a numerical method to simulate the soft X-ray self seeding (SXRSS) monochromator performance is presented. It allows one to perform start-to-end self-seeded FEL simulations along with (in our case) GENESIS simulation code. Based on this method, the performance of the LCLS self-seeded operation was simulated showing a good agreement with an experiment. Also the SXRSS monochromator design developed in SLAC was adapted for the SASE3 type undulator beamline at the European XFEL. The optical system was studied using Gaussian beam optics, wave optics propagation method and ray tracing to evaluate the performance of the monochromator itself. Wave optics analysis takes into account the actual beam wavefront of the radiation from the coherent FEL source, third order aberrations and height errors from each optical element. The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without both entrance and exit

  6. PixFEL: developing a fine pitch, fast 2D X-ray imager for the next generation X-FELs

    Ratti, L.; Comotti, D.; Fabris, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Re, V.; Traversi, G.; Vacchi, C.; Bettarini, S.; Casarosa, G.; Forti, F.; Morsani, F.; Paladino, A.; Paoloni, E.; Rizzo, G.; Benkechkache, M.A.; Dalla Betta, G.-F.; Mendicino, R.

    2015-01-01

    The PixFEL project is conceived as the first stage of a long term research program aiming at the development of advanced X-ray imaging instrumentation for applications at the free electron laser (FEL) facilities. The project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging by exploring cutting-edge solutions for sensor development, for integration processes and for readout channel architectures. The main focus is on the development of the fundamental microelectronic building blocks for detector readout and on the technologies for the assembly of a multilayer module with minimum dead area. This work serves the purpose of introducing the main features of the project, together with the simulation results leading to the first prototyping run

  7. MIT wavelength tables. Volume 2. Wavelengths by element

    Phelps, F.M. III.

    1982-01-01

    This volume is the first stage of a project to expand and update the MIT wavelength tables first compiled in the 1930's. For 109,325 atomic emission lines, arranged by element, it presents wavelength in air, wavelength in vacuum, wave number and intensity. All data are stored on computer-readable magnetic tape

  8. Experimental results of two stage harmonic generation with picosecond pulses on the Stanford Mark III FEL

    Hooper, B.A.; Utah Univ., Salt Lake City; Stanford Univ., CA; Benson, S.V.; Madey, M.J.; Cutolo, A.; Naples Univ.

    1988-01-01

    We report experimental results on upper harmonic conversion using a lithium niobate and a beta barium borate crystal to quadruple the FEL light up into the visible and near infrared. The effects of finite linewidth, birefringent walk-off, and group velocity walk-off on conversion efficiency will be discussed with reference to the experimental results. (orig.)

  9. Magnetic measurement, sorting optimization and adjustment of SDUV-FEL hybrid undulator

    Wang Tao; Jia Qika

    2007-01-01

    Construction of an undulator includes magnet block measurement, sorting, field measurement and adjustment. Optimizing SDUV-FEL undulator by simulated annealing algorithm using measurement results of the magnet blocks by Helmholtz coil before installing undulator magnets, the cost function can be reduced by three orders of magnitude. The practical parameters of one segment meet the design specifications after adjusting the magnetic field. (authors)

  10. Start-To-End Simulations of the Energy Recovery Linac Prototype FEL

    Gerth, Christopher; Muratori, Bruno; Owen, Hywel; Thompson, Neil R

    2004-01-01

    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that serves as a testbed for the study of beam dynamics and accelerator technology important for the design and construction of the proposed 4th Generation Light Source (4GLS) project. Two major objectives for the ERLP are the operation of an oscillator infra-red FEL and demonstration of energy recovery from an electron bunch with an energy spread induced by the FEL. In this paper we present start-to-end simulations including the FEL of the ERLP. The beam dynamics in the high-brightness injector, which consists of a DC photocathode gun and a super-conducting booster, have been modelled using the particle tracking code ASTRA. After the main linac, in which the particles are accelerated to 35 MeV, particles have been tracked with the code ELEGANT. The 3D code GENESIS was used to model the FEL interaction with the electron beam. Different modes of operation and their impact on the design of the ERLP are discussed.

  11. Microbunching Instability Effect Studies and Laser Heater Optimization for the SPARX FEL Accelerator

    Vaccarezza, C.; Chiadroni, E.; Ferrario, M.; Giannessi, L.; Quattromini, M.; Ronsivalle, C.; Venturini, C.; Migliorati, M.; Dattoli, G.

    2010-05-23

    The effects of microbunching instability for the SPARX accelerator have been analyzed by means of numerical simulations. The laser heater counteracting action has been addressed in order to optimize the parameters of the compression system, either hybrid RF plus magnetic chicane or only magnetic, and possibly enhance the FEL performance.

  12. Powerful electrostatic FEL: Regime of operation, recovery of the spent electron beam and high voltage generator

    Boscolo, I. [Univ. and INFN, Milan (Italy); Gong, J. [Southwest Jiaotong Univ., Chengdu (China)

    1995-02-01

    FEL, driven by a Cockcroft-Walton electrostatic accelerator with the recovery of the spent electron beam, is proposed as powerful radiation source for plasma heating. The low gain and high gain regimes are compared in view of the recovery problem and the high gain regime is shown to be much more favourable. A new design of the onion Cockcroft-Walton is presented.

  13. Preliminary results of the Adone storage ring FEL experiment, LELA

    Barbini, R.; Vignola, G.; Trillo, S.

    1983-01-01

    A short description of the LELA (Free Electron Laser on Adone) experiment is given. Results on the spontaneous radiation angle and energy spectra and preliminary results on optical gain measurements are also discussed

  14. Temporal characterization of FEL micropulses as function of cavity length detuning using frequency-resolved optical gating

    Richman, B.A. [Stanford Univ., CA (United States); DeLong, K.W.; Trebino, R. [Sandia National Lab., Livermore, CA (United States)

    1995-12-31

    Results of frequency resolved optical gating (FROG) measurements on the Stanford mid-IR FEL system show the effect of FEL cavity length detuning on the micropulse temporal structure. The FROG technique enables the acquisition of complete and uniquely invertible amplitude and phase temporal dependence of optical pulses. Unambiguous phase and amplitude profiles are recovered from the data. The optical pulses are nearly transform limited, and the pulse length increases with cavity length detuning.

  15. Radiative flux calculations at UV and visible wavelengths

    Grossman, A.S.; Grant, K.E.; Wuebbles, D.J.

    1993-10-01

    A radiative transfer model to calculate the short wavelength fluxes at altitudes between 0 and 80 km has been developed at LLNL. The wavelength range extends from 175--735 nm. This spectral range covers the UV-B wavelength region, 250--350 nm, with sufficient resolution to allow comparison of UV-B measurements with theoretical predictions. Validation studies for the model have been made for both UV-B ground radiation calculations and tropospheric solar radiative forcing calculations for various ozone distributions. These studies indicate that the model produces results which agree well with respect to existing UV calculations from other published models

  16. EUV stimulated emission from MgO pumped by FEL pulses

    Philippe Jonnard

    2017-09-01

    Full Text Available Stimulated emission is a fundamental process in nature that deserves to be investigated and understood in the extreme ultra-violet (EUV and x-ray regimes. Today, this is definitely possible through high energy density free electron laser (FEL beams. In this context, we give evidence for soft-x-ray stimulated emission from a magnesium oxide solid target pumped by EUV FEL pulses formed in the regime of travelling-wave amplified spontaneous emission in backward geometry. Our results combine two effects separately reported in previous works: emission in a privileged direction and existence of a material-dependent threshold for the stimulated emission. We develop a novel theoretical framework, based on coupled rate and transport equations taking into account the solid-density plasma state of the target. Our model accounts for both observed mechanisms that are the privileged direction for the stimulated emission of the Mg L2,3 characteristic emission and the pumping threshold.

  17. First operation of a powerful FEL with two-dimensional distributed feedback

    Agarin, N V; Bobylev, V B; Ginzburg, N S; Ivanenko, V G; Kalinin, P V; Kuznetsov, S A; Peskov, N Yu; Sergeev, A S; Sinitsky, S L; Stepanov, V D

    2000-01-01

    A W-band (75 GHz) FEL of planar geometry driven by a sheet electron beam was realised using the pulse accelerator ELMI (0.8 MeV/3 kA/5 mu s). To provide the spatial coherence of radiation from different parts of the electron beam with a cross-section of 0.4x12 cm two-dimensional distributed feedback systems have been employed using a 2-D Bragg resonator of planar geometry. The resonator consisted of two 2-D Bragg reflectors separated by a regular waveguide section. The total energy in the microwave pulse of microsecond duration was 100 J corresponding to a power of approx 100 MW. The main component of the FEL radiation spectrum was at 75 GHz that corresponded to the zone of effective Bragg reflection found from 'cold' microwave testing of the resonator. The experimental data compared well with the results of theoretical analysis.

  18. An Experimental Study of an FEL Oscillator with a Linear Taper

    Benson, S.; Gubeli, J.; Neil, G.R.

    2001-01-01

    Motivated by the work of Saldin, Schneidmiller and Yurkov, we have measured the detuning curve widths, spectral characteristics, efficiency, and energy spread as a function of the taper for low and high Q resonators in the IR Demo FEL at Jefferson Lab. Both positive and negative tapers were used. Gain and frequency agreed reasonably well with the predictions of a single mode theory. The efficiency agreed reasonably well for a negative taper with a high Q resonator but disagreed for lower Q values due to the large slippage parameter and the non-ideal resonator Q. We saw better efficiency for a negative taper than for the same positive taper. The energy spread induced in the beam, normalized to the efficiency is larger for the positive taper than for the corresponding negative taper. This indicates that a negative taper is preferred over a positive taper in an energy recovery FEL

  19. Design of RF chopper system for improving beam quality in FEL injector with thermionic gun

    Chen, Q.; Qin, B.; Tan, P.; Hu, T.; Pei, Y.; Zhang, F.

    2014-01-01

    For a linac-based Free Electron Laser (FEL), good beam quality largely contributes to the success of the final radiation. An imperfection confronted with the HUST THz-FEL facility is the long beam tail that emerges in the electron gun and exists through the whole beam line. This paper proposes to deploy a chopper system after the electron gun to truncate the beam tails before they enter into the linac. Physical dimensions of the chopper cavity are discussed in detail and we have developed and derived new analytical expressions applying to all frequencies for the optimal design. Also, technical issues of the cavity are considered. Beam dynamic simulation is performed to examine the truncation effect and the results show that more than 78% of the beam tail can be removed effectively, while preserving the emittance and energy spread in acceptable level

  20. BEAM OPTIMIZATION STUDY FOR AN X-RAY FEL OSCILLATOR AT THE LCLS-II

    Qin, Weilun; Huang, S.; Liu, K.X.; Huang, Z; Ding, Y.; Maxwell, T.J.; Kim, K.-J.

    2016-06-01

    The 4 GeV LCLS-II superconducting linac with high repetition beam rate enables the possibility to drive an X-Ray FEL oscillator at harmonic frequencies *. Compared to the regular LCLS-II machine setup, the oscillator mode requires a much longer bunch length with a relatively lower current. Also a flat longitudinal phase space distribution is critical to maintain the FEL gain since the X-ray cavity has extremely narrow bandwidth. In this paper, we study the longitudinal phase space optimization including shaping the initial beam from the injector and optimizing the bunch compressor and dechirper parameters. We obtain a bunch with a flat energy chirp over 400 fs in the core part with current above 100 A. The optimization was based on LiTrack and Elegant simulations using LCLS-II beam parameters.

  1. Preliminary Design of a Synchronized Narrow Bandwidth FEL for Taiwan Light Source

    Keung Lau Wai; Ching Fan, Tai; Zone Hsiao Feng; Tung Hsu Kuo; Hwang, Ching Shiang; Cheng Kuo Chin; Huei Luo Guo; Jen Wang Duan; Ping Wang Jau; Huey Wang Min

    2004-01-01

    Design study of a narrow line-width, high power IR-FEL facility has been carried out at NSRRC. This machine is designed to synchronize with the U9 undulator radiation of Taiwan Light Source and therefore provide new opportunity for chemical dynamics and condensed matter research. It has been proposed to use a super-conducting linac to provide a 60 MeV high quality electron beam to drive a 2.5-10 microns FEL oscillator with U5 undulator. Operating this linac in energy recovery mode will also be considered as an option to improve overall system effeciency and reduce heat loss and radiation dosage at the beam dump. Performance requirements and outcomes from this preliminary design study will be reported.

  2. Diode readout electronics for beam intensity and position monitors for FELs

    Herrmann, S; Hart, P; Freytag, M; Pines, J; Weaver, M; Sapozhnikov, L; Nelson, S; Koglin, J; Carini, G A; Tomada, A; Haller, G

    2014-01-01

    LCLS uses Intensity-Position Monitors (IPM) to measure intensity and position of the FEL x-ray pulses. The primary beam passes through a silicon nitride film and four diodes, arranged in quadrants, detect the backscattered x-ray photons. The position is derived from the relative intensity of the four diodes, while the sum provides beam intensity information. In contrast to traditional synchrotron beam monitors, where diodes measure a DC current signal, the LCLS beam monitors have to cope with the pulsed nature of the FEL, which requires a large single shot dynamic range. A key component of these beam monitors is the readout electronics. The first generation of beam monitors showed some limitations. A new scheme with upgraded electronics, firmware and software was implemented resulting in a more robust and reliable measuring tool.

  3. Phase Noise Comparision of Short Pulse Laser Systems

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  4. Status of RF system for the JAERI energy-recovery linac FEL

    Sawamura, Masaru; Nagai, Ryoji

    2006-01-01

    The two types of the RF sources are used for the JAERI ERL-FEL. One is an all-solid state amplifier and the other is an inductive output tube (IOT). There are advantages of little failure and wide bandwidth for the all-solid state amplifier, low cost and high efficiency for IOT. The property of low cost with the IOT is suitable for a large machine like an energy recovery linac (ERL)

  5. Dynamical aspects on FEL interaction in single passage and storage ring devices

    Dattoli, G.; Renieri, A. [ENEA, Frascati (Italy)

    1995-12-31

    The dynamical behaviour of the free-electron lasers is investigated using appropriate scaling relations valid for devices operating in the low and high gain regimes, including saturation. The analysis is applied to both single passage and storage ring configurations. In the latter case the interplay between the interaction of the electron bean with the laser field and with the accelerator environment is investigated. In particular we discuss the effect of FEL interaction on the microwave instability.

  6. Studies of a Linac Driver for a High Repetition Rate X-Ray FEL

    Venturini, M.; Corlett, J.; Doolittle, L.; Filippetto, D.; Papadopoulos, C.; Penn, G.; Prosnitz, D.; Qiang, J.; Reinsch, M.; Ryne, R.; Sannibale, F.; Staples, J.; Wells, R.; Wurtele, J.; Zolotorev, M.; Zholents, A.

    2011-01-01

    We report on on-going studies of a superconducting CW linac driver intended to support a high repetition rate FEL operating in the soft x-rays spectrum. We present a pointdesign for a 1.8 GeV machine tuned for 300 pC bunches and delivering low-emittance, low-energy spread beams as needed for the SASE and seeded beamlines.

  7. Selected applications of planar permanent magnet multipoles in FEL insertion device design

    Tatchyn, R.

    1993-08-01

    In recent work, a new class of magnetic multipoles based on planar configurations of permanent magnet (PM) material has been developed. These structures, in particular the quadrupole and sextupole, feature fully open horizontal apertures, and are comparable in effectiveness to conventional iron multipole structures. In this paper results of recent measurements of planar PM quadrupoles and sextupoles are reported and selected applications to FEL insertion device design are considered

  8. Free-Electron Lasers Push Into New Frontiers

    Benson, Stephen V.

    2003-01-01

    From the early days of the development of free-electron lasers (FELs) the promise of high power and short wavelengths has tantalized physicists and other scientists. Recent developments in accelerator technologies and some new discoveries about the physics of FELs have allowed researchers to push the performance of FELs into new frontiers of high power, short wavelength, and ultra-short pulses. Spin-offs from the FELs have also opened up new radiation sources in the THz, X-ray and gamma ray wavelength ranges

  9. The Posterior Sustained Negativity Revisited—An SPN Reanalysis of Jacobsen and Höfel (2003

    Thomas Jacobsen

    2018-01-01

    Full Text Available Symmetry is an important cue for the aesthetic judgment of beauty. Using a binary forced-choice format in a cued mixed design, Jacobsen and Höfel (2003 compared aesthetic judgments of beauty and symmetry judgments of novel graphic patterns. A late posterior sustained negativity elicited by symmetric patterns was observed in the symmetry judgment condition, but not in the beauty judgement condition. Therefore, this negativity appeared to be mainly driven by the task.In a series of studies, Bertamini, Makin, and colleagues observed a comparable sustained posterior negativity (SPN to symmetric stimuli, mainly taken to reflect obligatory symmetry processing independent of task requirements. We reanalyzed the data by Jacobsen and Höfel (2003 using similar parameters for data analysis as Bertamini, Makin, and colleagues to examine these apparent differences. The reanalysis confirmed both a task-driven effect on the posterior sustained negativity/SPN to symmetric patterns in the symmetry judgment condition and a strong symmetry-driven SPN to symmetric patterns. Differences between the references used for analyses of the electroencephalogram (EEG had an effect. Based on the reanalysis, the Jacobsen and Höfel (2003 data also fit well with Bertamini’s, Makin’s, and colleagues’ account of obligatory symmetry processing.

  10. Commissioning experience and beam physics measurements at the SwissFEL Injector Test Facility

    T. Schietinger

    2016-10-01

    Full Text Available The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free-Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including a transverse deflecting rf cavity. It delivered electron bunches of up to 200 pC charge and up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of an FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measurements performed during the operation of the test facility, including the results of the test of an in-vacuum undulator prototype generating radiation in the vacuum ultraviolet and optical range.

  11. Commissioning experience and beam physics measurements at the SwissFEL Injector test Facility

    Schietinger, T.; Aiba, M.; Arsov, V.; Bettoni, S.; Beutner, B.; Calvi, M.; Craievich, P.; Dehler, M.; Frei, F.; Ganter, R.; Hauri, C. P.; Ischebeck, R.; Ivanisenko, Y.; Janousch, M.; Kaiser, M.; Keil, B.; Löhl, F.; Orlandi, G. L.; Ozkan Loch, C.; Peier, P.; Prat, E.; Raguin, J.-Y.; Reiche, S.; Schilcher, T.; Wiegand, P.; Zimoch, E.; Anicic, D.; Armstrong, D.; Baldinger, M.; Baldinger, R.; Bertrand, A.; Bitterli, K.; Bopp, M.; Brands, H.; Braun, H. H.; Brönnimann, M.; Brunnenkant, I.; Chevtsov, P.; Chrin, J.; Citterio, A.; Csatari Divall, M.; Dach, M.; Dax, A.; Ditter, R.; Divall, E.; Falone, A.; Fitze, H.; Geiselhart, C.; Guetg, M. W.; Hämmerli, F.; Hauff, A.; Heiniger, M.; Higgs, C.; Hugentobler, W.; Hunziker, S.; Janser, G.; Kalantari, B.; Kalt, R.; Kim, Y.; Koprek, W.; Korhonen, T.; Krempaska, R.; Laznovsky, M.; Lehner, S.; Le Pimpec, F.; Lippuner, T.; Lutz, H.; Mair, S.; Marcellini, F.; Marinkovic, G.; Menzel, R.; Milas, N.; Pal, T.; Pollet, P.; Portmann, W.; Rezaeizadeh, A.; Ritt, S.; Rohrer, M.; Schär, M.; Schebacher, L.; Scherrer, St.; Schlott, V.; Schmidt, T.; Schulz, L.; Smit, B.; Stadler, M.; Steffen, Bernd; Stingelin, L.; Sturzenegger, W.; Treyer, D. M.; Trisorio, A.; Tron, W.; Vicario, C.; Zennaro, R.; Zimoch, D.

    2016-10-26

    The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including atransverse deflecting rf cavity. It delivered electron bunchesof up to200 pC chargeand up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of a FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measureme...

  12. Energy stability in recirculating, energy-recovering linacs in the presence of a FEL

    Merminga, L.; Bisognano, J.; Delayen, J.R.

    1996-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs (free electron lasers). Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M 56 , phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. An analytical model which includes amplitude and phase feedback, has been developed to study the stability of the system for small perturbations from equilibrium. The interaction of the electron beam with the FEL is a major perturbation which affects both the stability of the system and development of startup and recovery scenarios. To simulate the system's response to such large parameter variations, a numerical model of the beam-cavity interaction has been developed which includes low level rf feedback, phase oscillations and beam loss instabilities and the FEL interaction. Agreement between the numerical model and the linear theory has been demonstrated in the limit of small perturbations. In addition, the model has been benchmarked against experimental data obtained during CEBAF's high current operation. Numerical simulations have been performed for the high power IR DEMO approved for construction at CEBAF

  13. The SPARX Project R&D Activity towards X-rays FEL Sources

    Alesini, David; Bertolucci, Sergio; Biagini, M E; Boni, R; Boscolo, Manuela; Castellano, Michele; Clozza, A; Di Pirro, G; Drago, A; Esposito, A; Ferrario, Massimo; Filippetto, D; Fusco, V; Gallo, A; Ghigo, A; Guiducci, Susanna; Incurvati, M; Ligi, C; Marcellini, F; Migliorati, Mauro; Mostacci, Andrea; Palumbo, Luigi; Pellegrino, L; Preger, Miro; Raimondi, Pantaleo; Ricci, R; Sanelli, C; Serio, Mario; Sgamma, F; Spataro, Bruno; Stecchi, A; Stella, A; Tazzioli, Franco; Vaccarezza, Cristina; Vescovi, Mario; Vicario, C

    2004-01-01

    SPARX is an evolutionary project proposed by a collaboration among ENEA-INFN-CNR-Università di Roma Tor Vergata aiming at the construction of a FEL-SASE X-ray source in the Tor Vergata Campus. The first phase of the SPARX project, funded by Government Agencies, will be focused on the R&D activity on critical components and techniques for future X-ray facilities. The R&D plans for the FEL source will be developped along two lines: (a) use of the SPARC high brightness photo-injector to develop experimental test on RF compression techniques and other beam physics issues, like emittance degradation in magnetic compressors due to CSR; (b) development of new undulator design concepts and up-grading of the FEL SPARC source to enhance the non linear harmonic generation mechanism, design and test of e-beam conditioning, prebunching and seeding. A parallel program will be aimed at the development of high repetition rate S-band gun, high Quantum Efficiency cathodes, high gradient X-band RF acceleratin...

  14. The potential for extending the spectral range accessible to the european X-ray free electron laser in the direction of longer wavelengths

    Saldin, E L; Yurkov, M V

    2004-01-01

    The baseline specifications of European XFEL give a range of wavelengths between 0.1 nm and 2 nm. This wavelength range at fixed electron beam energy 17.5 GeV can be covered by operating the SASE FEL with three undulators which have different period and tunable gap. A study of the potential for the extending the spectral range accessible to the XFEL in the direction of longer wavelengths is presented. The extension of the wavelength range to 6 nm would be cover the water window in the VUV region, opening the facility to a new class of experiments. There are at least two possible sources of VUV radiation associated with the X-ray FEL; the "low (2.5 GeV) energy electron beam dedicated" and the " 17.5 GeV spent beam parasitic" (or "after-burner") source modes. The second alternative, "after-burner undulator" is the one we regard as most favorable. It is possible to place an undulator as long as 80 meters after 2 nm undulator. Ultimately, VUV undulator would be able to deliver output power approaching 100 GW. A b...

  15. Technical Design and Optimization Study for the FERMI at Elettra FEL Photoinjector

    Lidia, Steven M.; Penco, Giuseppe; Trovo', Mauro

    2006-01-01

    The FERMI (at) Elettra FEL project will provide a novel, x-ray free electron laser user facility at Sincrotrone Trieste based on seeded and cascade FEL techniques. The electron beam source and injector systems play a crucial role in the success of the facility by providing the highest quality electron beams to the linac and FEL undulators. This Technical Note examines the critical technology components that make up the injector system, and demonstrates optimum beam dynamics solutions to achieve the required high quality electron beams. Section 2 provides an overview of the various systems and subsystems that comprise the photoinjector. The different operating modes of the injector are described as they pertain to the different linac configurations driven by the FEL and experimental design. For each mode, the required electron beam parameters are given. Sections 3 and 4 describe the critical beamline elements in the injector complex: the photocathode and drive laser, and the RF gun. The required drive laser parameters are given at the end of Section 3. Additional details on the design of the photoinjector drive laser systems are presented in a separate Technical Note. Design considerations for the RF gun are extensively presented in Section 4. There, we describe the variation of the cavity geometry to optimize the efficiency of the energy transfer to the electron beam. A study of the power coupling into the various cavity modes that interact within the bandwidth of the RF drive pulse is presented, followed by a study of the transient cavity response under several models and, finally, the effects on extracted beam quality. Section 5 describes the initial design for the low energy, off-axis diagnostic beamline. Beam dynamics simulations using ASTRA, elegant, and MAD are presented. Section 6 presents the optimization studies for the beam dynamics in the various operating modes. The optimized baseline configurations for the beamline and incident drive laser pulse are

  16. Topology optimised wavelength dependent splitters

    Hede, K. K.; Burgos Leon, J.; Frandsen, Lars Hagedorn

    A photonic crystal wavelength dependent splitter has been constructed by utilising topology optimisation1. The splitter has been fabricated in a silicon-on-insulator material (Fig. 1). The topology optimised wavelength dependent splitter demonstrates promising 3D FDTD simulation results....... This complex photonic crystal structure is very sensitive against small fabrication variations from the expected topology optimised design. A wavelength dependent splitter is an important basic building block for high-performance nanophotonic circuits. 1J. S. Jensen and O. Sigmund, App. Phys. Lett. 84, 2022...

  17. AWG Filter for Wavelength Interrogator

    Black, Richard J. (Inventor); Costa, Joannes M. (Inventor); Faridian, Fereydoun (Inventor); Moslehi, Behzad (Inventor); Sotoudeh, Vahid (Inventor)

    2015-01-01

    A wavelength interrogator is coupled to a circulator which couples optical energy from a broadband source to an optical fiber having a plurality of sensors, each sensor reflecting optical energy at a unique wavelength and directing the reflected optical energy to an AWG. The AWG has a detector coupled to each output, and the reflected optical energy from each grating is coupled to the skirt edge response of the AWG such that the adjacent channel responses form a complementary pair response. The complementary pair response is used to convert an AWG skirt response to a wavelength.

  18. Short Wavelength Electrostatic Waves in the Earth’s Magnetosheath.

    1982-07-01

    to an antenna effect. Emissions likely to be ion-acoustic mode waves have been found up- stream of the bow shock ( foreshock ) in the solar wind...particles apparently reflected at the bow shock and associated with ion- acoustic mode waves in the Earth’s foreshock are also observed [Eastman et al...Res., 86, A 4493-4510, 1981. Eastman, T.E., 1.R. Anderson, L.A. Frank, and G.K. Parks, Upstream particles observed in the Earth’s foreshock region

  19. Short wavelength optics for future free electron lasers

    Attwood, D.T.

    1984-04-01

    Although much free-electron laser work is directed toward achieving sufficient single-pass gain to be useful for research purposes, the availability of mirrors of high reflectance for the vacuum ultraviolet and soft x-ray regime would make resonant cavities a possibility. In addition, as in ordinary synchrotron radiation work, mirrors are required for the construction of realistic experiments and for beam manipulation purposes such as folding and extraction. The Working Group discussed a number of approaches to reflecting optics for free electron lasers, which are summarized here, and described in some detail. 16 references, 2 figures

  20. Ultra-short wavelength x-ray system

    Umstadter, Donald [Ann Arbor, MI; He, Fei [Ann Arbor, MI; Lau, Yue-Ying [Potomac, MD

    2008-01-22

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  1. Non-linear modulation of short wavelength compressional Alfven eigenmodes

    Fredrickson, E. D.; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Bortolon, A. [University of California, Irvine, California 92697 (United States); Crocker, N. A. [University of California, Los Angeles, California 90095 (United States); Levinton, F. M.; Yuh, H. [Nova Photonics, Princeton, New Jersey 08543 (United States)

    2013-04-15

    Most Alfvenic activity in the frequency range between toroidal Alfven eigenmodes and roughly one half of the ion cyclotron frequency on National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)], that is, approximately 0.3 MHz up to Almost-Equal-To 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n = 1 kink-like mode. In this paper, we present measurements of the spectrum of these high frequency CAE (hfCAE) and their mode structure. We compare those measurements to a simple model of CAE and present a predator-prey type model of the curious non-linear coupling of the hfCAE and the low frequency kink-like mode.

  2. Coherence techniques at extreme ultraviolet wavelengths

    Chang, Chang [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The renaissance of Extreme Ultraviolet (EUV) and soft x-ray (SXR) optics in recent years is mainly driven by the desire of printing and observing ever smaller features, as in lithography and microscopy. This attribute is complemented by the unique opportunity for element specific identification presented by the large number of atomic resonances, essentially for all materials in this range of photon energies. Together, these have driven the need for new short-wavelength radiation sources (e.g. third generation synchrotron radiation facilities), and novel optical components, that in turn permit new research in areas that have not yet been fully explored. This dissertation is directed towards advancing this new field by contributing to the characterization of spatial coherence properties of undulator radiation and, for the first time, introducing Fourier optical elements to this short-wavelength spectral region. The first experiment in this dissertation uses the Thompson-Wolf two-pinhole method to characterize the spatial coherence properties of the undulator radiation at Beamline 12 of the Advanced Light Source. High spatial coherence EUV radiation is demonstrated with appropriate spatial filtering. The effects of small vertical source size and beamline apertures are observed. The difference in the measured horizontal and vertical coherence profile evokes further theoretical studies on coherence propagation of an EUV undulator beamline. A numerical simulation based on the Huygens-Fresnel principle is performed.

  3. First lasings at IR-and FIR range using hybrid type undulator (FEL facility 4) and Halbach type undulator

    Takii, T.; Oshita, E.; Okuma, S.; Wakita, K.; Koga, A.; Tomimasu, T.; Ohasi, K.

    1997-01-01

    First lasing at 18μm was achieved by using a 2.7-m long hybrid type undulator (undulator 4) for far-infrared FELs and a 6.72-m long optical cavity installed at the 33-MeV beam line of the downstream of the FEL facility 1 (FEL-1). We are challenged at two-color FEL oscillation in mid-infrared range using the undulator 1 (λ u=3.4mm) and in far-infrared range using the undulator 4 (λ u=9mm). At first, a 30-MeV, 60-A beam passed through the undulator 1 without lasing is transported using a QFQDBQFQDBQFQDQF system and is used for lasing at the undulator 4. However, six pairs of steering coils had to be attached on the beam duct to reduce the deviation of the electron beam trajectory due to the vertical field distribution induced by the built-in electromagnets. The minimum gap of the undulator 4 was designed to be 35mm. However, the steering coils attached on the beam duct increased the gap up to 52mm. Therefore, the hybrid type undulator was replaced by a new Halbach type one (λ u=8mm, N=30) after the first lasing at 18μm on October 24, '96. The New FEL facility 4 was installed in the middle of December and first lasing at 18.6μm was achieved on December 26, within 10 hours operation. (author)

  4. PFM2: a 32 × 32 processor for X-ray diffraction imaging at FELs

    Manghisoni, M.; Re, V.; Traversi, G.; Fabris, L.; Ratti, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Vacchi, C.; Pancheri, L.; Benkechcache, M. E. A.; Dalla Betta, G.-F.; Xu, H.; Verzellesi, G.; Ronchin, S.; Boscardin, M.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.

    2016-01-01

    This work is concerned with the design of a readout chip for application to experiments at the next generation X-ray Free Electron Lasers (FEL). The ASIC, named PixFEL Matrix (PFM2), has been designed in a 65 nm CMOS technology and consists of 32 × 32 pixels. Each cell covers an area of 110 × 110 μm 2 and includes a low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper used to process the preamplifier output signal, a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC) and digital circuitry for channel control and data readout. Two different solutions for the readout channel, based on different versions of the time-variant filter, have been integrated in the chip. Both solutions can be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future X-ray FEL machines. The ASIC will be bump bonded to a slim/active edge pixel sensor to form the first demonstrator for the PixFEL X-ray imager. This work has been carried out in the frame of the PixFEL project funded by Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  5. Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection.

    Cheng, Rui; Xia, Li

    2016-11-15

    It is shown that for weak Bragg gratings the logarithmic ratio of reflected intensities at any two wavelengths within the spectrum follows a linear relationship with the Bragg wavelength shift, with a slope proportional to their wavelength spacing. This finding is exploited to develop a flexible, efficient, and cheap interrogation solution of weak fiber Bragg grating (FBGs), especially ultra-short FBGs, in distributed sensing based on dual-wavelength differential detection. The concept is experimentally studied in both single and distributed sensing systems with ultra-short FBG sensors. The work may form the basis of new and promising FBG interrogation techniques based on detecting discrete rather than continuous spectra.

  6. FEL indulators with the hollow-ring electron beam

    Epp, V.; Bordovitsyn, V. [Tomsk State Univ. (Russian Federation); Kozhevnikov, A. [Tomsk Pedagogical Institute (Russian Federation)] [and others

    1995-12-31

    A conceptual design of undulators with a modulated longitudinal magnetic field is proposed. The magnetic field is created by use of a solenoid with axis coincident with the electron beam axis. In order to modulate the magnetic field we propose an insertion of a row of alternating ferromagnetic and superconducting diaphragms in line with electron beam. The simulation of two-dimensional distribution of the magnetic field in the plane containing undulator axis was made using the computer code {open_quotes}Mermaid{close_quotes}. The magnetic field was analysed as a function of the system geometry. The dependence on the spacing l between superconducting diaphragms, inner a and outer b radii of the last ones is investigated. Two versions of the device are considered: with ferromagnetic rings made of magnetically soft material placed between the superconducting diaphragms and without them. It is shown that the field modulation depth increases with ratio of b/l and can exceed 50% in case of the ferromagnetic insertions. An approximate analytical calculation of the magnetic field distribution is performed as follows. The axial-symmetrical magnetic field can be defined by the vector potential with only one nonzero component A(r,{phi}) where r and {phi} are the cylindrical coordinates. The solution of the Laplace`s equation is found under the assumption that the magnetic field is infinitely extended and periodic along the z-axis. The boundary conditions are defined by the undulator design. The result is used for the calculation of the particle dynamics and for the investigations of the trajectory stability. The spectral and angular distribution of the radiation emitted from the described systems is found. The estimations show that the proposed design allows to create relatively high magnitude of the magnetic field (up to 1 T) with a short period about 1 cm or less.

  7. FY 2000 report on the results of the regional consortium R and D project - Regional consortium energy R and D. Development of new vacuum ultraviolet area optical materials realizing next generation short wavelength optical lithography; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki consortium energy kenkyu kaihatsu. Jisedai tanhacho hikari lithography wo jitsugensuru shinku shigaiiki kogaku zairyo no kaihatsu seika hokokusho

    NONE

    2001-03-01

    As materials for next generation lithography use optical device using short wavelength light sources such as F{sub 2} and Ar{sub 2}, the development was proceeded with of fluoride monocrystal materials and 12-inch class large/high quality monocrystal production technology. Studies were made in the following five fields: 1) proposal/design of new materials and the heightening of performance: 2) establishment of the large/high quality crystal production method; 3) evaluation of optical properties and elucidation of micro-defect formation mechanism; 4) comprehensive investigational research; 5) study of the evaluation technology by vacuum ultraviolet area pulse light. In 1), for the development of the optimum materials, a lot of materials were tried to be monocrystallized, and the permeability was estimated by measuring the reflectance in the vacuum ultraviolet area. As to LiCaAlF{sub 6}, monocrystal with 1-inch diameter was made by the Bridgman method. In 2), studies were made of conditions for large crystal growth by the pull method, large crystal growth by the Bridgman method, and the structure of production equipment for crystals with larger diameter. (NEDO)

  8. Long-Wavelength Phonon Scattering in Nonpolar Semiconductors

    Lawætz, Peter

    1969-01-01

    The long-wavelength acoustic- and optical-phonon scattering of carriers in nonpolar semiconductors is considered from a general point of view. The deformation-potential approximation is defined and it is shown that long-range electrostatic forces give a nontrivial correction to the scattering...... of the very-short-range nature of interactions in a covalent semiconductor....

  9. Wavelength dependence of interstellar polarization

    Mavko, G.E.

    1974-01-01

    The wavelength dependence of interstellar polarization was measured for twelve stars in three regions of the Milky Way. A 120A bandpass was used to measure the polarization at a maximum of sixteen wavelengths evenly spaced between 2.78μ -1 (3600A) and 1.28μ -1 (7800A). For such a wide wavelength range, the wavelength resolution is superior to that of any previously reported polarization measurements. The new scanning polarimeter built by W. A. Hiltner of the University of Michigan was used for the observations. Very broad structure was found in the wavelength dependence of the polarization. Extensive investigations were carried out to show that the structure was not caused by instrumental effects. The broad structure observed is shown to be in agreement with concurrent extinction measurements for the same stars. Also, the observed structure is of the type predicted when a homogeneous silicate grain model is fitted to the observed extinction. The results are in agreement with the hypothesis that the very broad band structure seen in the extinction is produced by the grains. (Diss. Abstr. Int., B)

  10. THE SECOND STAGE OF FERMI at ELETTRA: A SEEDED FEL IN THE SOFT X-RAY SPECTRAL RANGE

    Allaria, E.; DeNinno, G.; Fawley, W.M.

    2009-01-01

    The second stage of the FERMI FEL, named FEL-2, is based on the principle of high-gain harmonic generation and relies on a double-seeded cascade. Recent developments stimulated a revision of the original setup, which was designed to cover the spectral range between 40 and 10 nm. The numerical simulations we present here show that the nominal (expected) electron-beam performance allows extension of the FEL spectral range down to 4 nm. A significant amount of third harmonic power can be also expected. We also show that the proposed setup is flexible enough for exploiting future developments of new seed sources, e.g., high harmonic generation in gases.

  11. Heat treatment of long pulse operation for the JAERI ERL-FEL

    Sawamura, Masaru; Nagai, Ryoji; Kikuzawa, Nobuhiro; Hajima, Ryoichi; Minehara, Eisuke

    2005-01-01

    RF power sources are replaced from all-solid-state amplifiers to IOT amplifiers for the superconducting accelerators (SCAs) and a vacuum tube amplifier for the SHB of the JAERI ERL-FEL. A long pulse operation increased the pressure in the cryostat of the SCA. The single-cell SCA can be operated in 9% duty according to the time constant of the pressure decay in the cryostat. SHB can be operated in 4% duty which is limited by the frequency range of the tuners. The result of the ABAQUS calculation shows the more duty operation. (author)

  12. Plasma Wakefield Accelerated Beams for Demonstration of FEL Gain at FLASHForward

    Niknejadi, Pardis; Aschikhin, Alexander; Hu, Zhanghu; Karstensen, Sven; Knetsch, Alexander; Kononenko, Olena; Libov, Vladyslav; Ludwig, Kai; Martinez de la Ossa, Alberto; Marutzky, Frank; Mehrling, Timon; Osterhoff, Jens; Behrens, Christopher; Palmer, Charlotte; Poder, Kristjan

    2017-01-01

    FLASHForward is the Future-ORiented Wakefield Accelerator Research and Development project at the DESY free-electron laser (FEL) facility FLASH. It aims to produce high-quality, GeV-energy electron beams over a plasma cell of a few centimeters. The plasma is created by means of a 25 TW Ti:Sapphire laser system. The plasma wakefield will be driven by high-current-density electron beams extracted from the FLASH accelerator. The project focuses on the advancement of plasma-based particle acceler...

  13. Three dimensional modelling and numerical analysis of super-radiant harmonic emission in FEL (optical klystron)

    Gover, A.; Friedman, A.; Luccio, A.

    1986-09-01

    A full 3-D Analysis of super-radiant (bunched electron) free electron harmonic radiation is presented. A generalized form of the FEL pendulum equation was derived and numerically solved. Both spectral and phasor formulation were developed to treat the radiation in the time domain. In space the radiation field is expanded in terms of either a set of free space discrete modes or plane waves. The numerical solutions reveal some new distinctly 3-D effects to which we provide a physical explanation. 12 refs., 9 figs., 5 tabs

  14. Rf system modeling for the high average power FEL at CEBAF

    Merminga, L.; Fugitt, J.; Neil, G.; Simrock, S.

    1995-01-01

    High beam loading and energy recovery compounded by use of superconducting cavities, which requires tight control of microphonic noise, place stringent constraints on the linac rf system design of the proposed high average power FEL at CEBAF. Longitudinal dynamics imposes off-crest operation, which in turn implies a large tuning angle to minimize power requirements. Amplitude and phase stability requirements are consistent with demonstrated performance at CEBAF. A numerical model of the CEBAF rf control system is presented and the response of the system is examined under large parameter variations, microphonic noise, and beam current fluctuations. Studies of the transient behavior lead to a plausible startup and recovery scenario

  15. High-efficiency FEL with Bragg resonator driven by linear induction accelerator

    Ginzburg, N S; Kaminskij, A A; Kaminskij, A K; Peskov, N Yu; Sedykh, S N; Sergeev, A P; Sergeev, A S [Russian Academy of Sciences, Nizhny Novgorod (Russian Federation). Inst. of Applied Physics

    1997-12-31

    A narrow-band high-efficiency FEL-oscillator with a Bragg resonator was constructed based on a linear induction accelerator which formed a 1 MeV, 200 A, 200 ns electron beam. At the frequency of 31 GHz, radiation with a power of 31 MW and efficiency of 25% was measured. A high efficiency and a narrow width of the spectrum were achieved owing to the selective properties of the Bragg resonator in combination with the high quality of the helical electron beam formed in the reversed guide field regime. (author). 3 figs., 3 refs.

  16. Upgrade of a control system for the JAERI ERL-FEL

    Kikuzawa, Nobuhiro

    2004-01-01

    The accelerator control system used for the JAERI ERL-FEL is a PC-based distributed control system that has been in operation since 1992. Since an interface bus of the PCs is obsolete, interface boards for the PCs are difficult to obtain in recent years. Thus we have been developing the CAMAC controller with μITRON operating system to replace the old PCs connected with CAMAC. We will introduce a Java and CORBA environment in the new control system. The control system upgrade, including hardware upgrading and applications rewriting, is described in this paper. (author)

  17. Design and test of a trial undulator for a compact FEL THz radiation source

    Xiang Shuhua; Xiong Yongqian; Yang Lei; Liu Xialing; Wei Wei; Chen Jinhua

    2012-01-01

    The undulator is the key component in the THz radiation source based on FEL. We created a trial undulator in order to verify the feasibility of property requirements, and the accumulation of engineering experience. With the use of the finite element calculation software OPERA3D, we modify the structural parameters of the undulator gradually to meet the requirements of the peak, width of the good field and first integration. We also proved that the correction magnet could make the field meet the requirement of the second integration by calculation. After fabrication and acceptance, the electron trajectory is calculated based on the measured field. (authors)

  18. Magnetic Measurement of the 10 kW, IR FEL Dipole Magnets

    Tommy Hiatt; Kenneth Baggett; J. Beck; George Biallas; David Douglas; Kevin Sullivan; C. Tennant

    2003-01-01

    Magnetic measurements have been performed on several families of dipoles for the 10 kW IR-FEL presently under construction at the Thomas Jefferson National Accelerator Facility. The requirements for these magnets include varying field strengths, large horizontal apertures and parts in 10,000 field homogeneity as well as setability of core and integrated field. Measurements were made to quantify the magnets according to these requirements and to determine the hysteresis protocol, ramp rate dependence, and field clamp settings that are used. This paper will describe the results of these measurements and the procedures used to accomplish them

  19. Wavelength conversion techniques and devices

    Danielsen, Søren Lykke; Mikkelsen, Benny; Hansen, Peter Bukhave

    1997-01-01

    Taking into account the requirements to the converters e.g., bit rate transparency (at least up to 10 Gbit/s), polarisation independence, wavelength independence, moderate input power levels, high signal-to-noise ratio and high extinction ratio interferometric wavelength convertors are very...... interesting for use in WDM optical fibre networks. However, the perfect converter has probably not yet been fabricated and new techniques such as conversion relying on cross-absorption modulation in electro-absorption modulators might also be considered in pursue of effective conversion devices...

  20. Sub-wavelength plasmon laser

    Bora, Mihail; Bond, Tiziana C.

    2016-04-19

    A plasmonic laser device has resonant nanocavities filled with a gain medium containing an organic dye. The resonant plasmon frequencies of the nanocavities are tuned to align with both the absorption and emission spectra of the dye. Variables in the system include the nature of the dye and the wavelength of its absorption and emission, the wavelength of the pumping radiation, and the resonance frequencies of the nanocavities. In addition the pumping frequency of the dye is selected to be close to the absorption maximum.