WorldWideScience

Sample records for short tons air-dried

  1. Evaluation of food drying with air dehumidification system: a short review

    Science.gov (United States)

    Djaeni, M.; Utari, F. D.; Sasongko, S. B.; Kumoro, A. C.

    2018-01-01

    Energy efficient drying for food and agriculture products resulting high quality products has been an important issue. Currently, about 50% of total energy for postharvest treatment was used for drying. This paper presents the evaluation of new approach namely air dehumidification system with zeolite for food drying. Zeolite is a material having affinity to water in which reduced the moisture in air. With low moisture content and relative humidity, the air can improve driving force for drying even at low temperature. Thus, the energy efficiency can be potentially enhanced and the product quality can be well retained. For proving the hypothesis, the paddy and onion have been dried using dehumidified air. As performance indicators, the drying time, product quality, and heat efficiency were evaluated. Results indicated that the drying with zeolite improved the performances significantly. At operating temperature ranging 50 - 60°C, the efficiency of drying system can reach 75% with reasonable product quality.

  2. Influence of forced air volume on water evaporation during sewage sludge bio-drying.

    Science.gov (United States)

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao

    2013-09-01

    Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Pulsed Streamer Discharge Characteristics of Ozone Production in Dry Air

    OpenAIRE

    Samaranayake, W.J.M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Sakugawa, T.; Hackam, R.; Akiyama, H.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 波平, 隆男; 勝木, 淳; 秋山, 秀典

    2000-01-01

    Experimental investigation of HV short pulsed streamer discharges in dry air-fed ozonizers under various operating conditions are reported. Ozone concentration, energy input and ozone production yield (efficiency) were measured at various voltages (14 to 37 kV), pulse repetition rates (25 to 400 pulses per second, pps), flow rates (1.5 to 3.0 1/min) and different gap spacings (10 to 20 mm) at a pressure of 1.01×105 Pa in dry air. A spiral copper wire (1 mm in diameter) made to a cylindrical c...

  4. High strength air-dried aerogels

    Science.gov (United States)

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  5. Carrageenan drying with dehumidified air: drying characteristics and product quality

    NARCIS (Netherlands)

    Djaeni, M.; Sasongko, S.B.; Prasetyaningrum, Aji A A.A.; Jin, X.; Boxtel, van A.J.B.

    2012-01-01

    Applying dehumidified air is considered as an option to retain quality in carrageenan drying. This work concerns the effects of operational temperature, air velocity, and carrageenan thickness on the progress of drying and product quality when using dehumidified air. Final product quality and

  6. Air dehumidification and drying processes

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, R.

    1988-07-01

    Details are given on the physical principles of air dehumidification and drying as well as on appropriate systems available on the market. Reference is made to dehumidification through condensation (intermittent compressor or electric auxiliary heater defrosting, reversible-circuit hot gas bypass defrosting), air drying through sorption (sorbents, regeneration through heat inputs), the operation of absorptive dryers (schematic sketches), and the change of state of air (Mollier h,x-diagramm). Practical examples refer to the dehumidification of storage rooms, archives, and waterworks as well as to air drying in the pharmaceutical industry, the pastry and candy industry, the food industry, and the drying (preservation) of turbines and generators during long standstill periods. A diagramm shows that while adsorption processes are efficient at temperatures below 80/sup 0/C, low-temperature dehumidification is efficient at temperatures above. (HWJ).

  7. Improvements in BTS estimation of ton-miles

    Science.gov (United States)

    2004-08-01

    Ton-miles (one ton of freight shipped one mile) is the primary physical measure of freight transportation output. This paper describes improved measurements of ton-miles for air, truck, rail, water, and pipeline modes. Each modal measure contains a d...

  8. Effects of hot-air and hybrid hot air-microwave drying on drying kinetics and textural quality of nectarine slices

    Science.gov (United States)

    Miraei Ashtiani, Seyed-Hassan; Sturm, Barbara; Nasirahmadi, Abozar

    2018-04-01

    Drying and physicochemical characteristics of nectarine slices were investigated using hot-air and hybrid hot air-microwave drying methods under fixed air temperature and air speed (50 °C and 0.5 m/s, respectively). Microwave power levels for the combined hot air-microwave method were 80, 160, 240, and 320 W. Drying kinetics were analyzed and compared using six mathematical models. For both drying methods the model with the best fitness in explaining the drying behavior was the Midilli-Kucuk model. The coefficient of determination ( R 2), root mean square error (RMSE) and reduced chi square ( χ 2) for this model have been obtained greater than 0.999 and less than 0.006 and 0.0001 for hybrid hot air-microwave drying while those values for hot-air drying were more than 0.999 and less than 0.003 and 0.0001, respectively. Results showed that the hybrid method reduced the drying time considerably and produced products with higher quality. The range of effective moisture diffusivity ( D eff ) of hybrid and hot-air drying was between 8.15 × 10-8 and 2.83 × 10-7 m2/s and 1.27 × 10-8 m2/s, respectively. The total color difference (ΔE) has also been obtained from 36.68 to 44.27 for hybrid method; however this value for hot-air drying was found 49.64. Although reduced microwave power output led to a lower drying rate, it reduced changes in product parameters i.e. total color change, surface roughness, shrinkage and microstructural change and increased hardness and water uptake.

  9. Sneak Peek to the 2016 Billion-Ton Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    The 2005 Billion-Ton Study became a landmark resource for bioenergy stakeholders, detailing for the first time the potential to produce at least one billion dry tons of biomass annually in a sustainable manner from U.S. agriculture and forest resources. The 2011 U.S. Billion-Ton Update expanded and updated the analysis, and in 2016, the U.S. Department of Energy’s Bioenergy Technologies Office plans to release the 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy.

  10. Crispy banana obtained by the combination of a high temperature and short time drying stage and a drying process

    Directory of Open Access Journals (Sweden)

    K. Hofsetz

    2005-06-01

    Full Text Available The effect of the high temperature and short time (HTST drying stage was combined with an air drying process to produce crispness in bananas. The fruit was dehydrated in an air drier for five minutes at 70°C and then immediately set at a HTST stage (130, 140, 150°C and 9, 12, 15 minutes and then at 70°C until water activity (a w was around 0.300. Crispness was evaluated as a function of water activity, using sensory and texture analyses. Drying kinetics was evaluated using the empirical Lewis model. Crispy banana was obtained at 140°C-12min and 150°C-15min in the HTST stage, with a w = 0.345 and a w = 0.363, respectively. Analysis of the k parameter (Lewis model suggests that the initial moisture content of the samples effects this parameter, overcoming the HTST effect. Results showed a relationship between sensory crispness, instrumental texture and the HTST stage.

  11. Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics

    Science.gov (United States)

    İlter, Işıl; Akyıl, Saniye; Devseren, Esra; Okut, Dilara; Koç, Mehmet; Kaymak Ertekin, Figen

    2018-02-01

    In this study, the effect of hot air and microwave drying on drying kinetics and some quality characteristics such as water activity, color, optic index and volatile oil of garlic puree was investigated. Optic index representing browning of the garlic puree increased excessively with an increase in microwave power and hot air drying temperature. However, volatile oil content of the dried samples was decreased by increasing of temperature and microwave power. By increasing drying temperature (50, 60 and 70 °C) and microwave power (180, 360 and 540 W), the drying time decreased from 8.5 h to 4 min. In order to determine the kinetic parameters, the experimental drying data were fitted to various semi-empirical models beside 2nd Fick's diffusion equation. Among them, the Page model gave a better fit for microwave-drying, while Logarithmic model gave a better fit for hot air drying. By increasing the microwave power and hot air drying temperature, the effective moisture diffusivity, De values ranged from 0.76×10-8 to 2.85×10-8 m2/s and from 2.21×10-10 to 3.07×10-10 m2/s, respectively. The activation energy was calculated as 20.90 kJ/mol for hot air drying and 21.96 W/g for microwave drying using an Arrhenius type equation.

  12. Retention of short chain fatty acids under drying and storage conditions

    Directory of Open Access Journals (Sweden)

    Alexandre Santos Souza

    2011-09-01

    Full Text Available Cheese whey permeate was used as a substrate for the fermentation of Propionibacterium freudenreichi PS1 for the production of short chain fatty acids, components of the bio-aroma of Swiss cheese. The liquid bio-aroma was encapsulated by spray drying under different conditions of air inlet temperature and feed rate. A study was carried out on the stability of the bio-aroma during storage in laminated packages at 30 °C for 96 days using the product showing the greatest retention of acetic and propionic acids. The results showed that the best drying conditions were an air entrance temperature of 180 °C and a feed rate of 24 g/min resulting in particles with a smooth surface and few invaginations and micro-fissures. However, 72% of the acetic acid and 80% of the propionic acid were lost during storage showing that the wall material used was inadequate to guarantee product stability.

  13. Drying and decontamination of pistachios with sequential infrared drying, tempering and hot air drying

    Science.gov (United States)

    The pistachio industry is in need of improved drying technology as the current hot air drying has low energy efficiency and drying rate and high labor cost and also does not produce safe products against microbial contamination. In the current study, dehulled and water- sorted pistachios with a mois...

  14. SECAGEM DE SEMENTES DE SOJA EM SILO COM DISTRIBUIÇÃO RADIAL DO FLUXO DE AR: I. MONITORAMENTO FÍSICO DRYING OF SOYBEAN SEEDS IN A RADIAL AIR FLOW DRYER: I. PHYSICAL MONITORING

    Directory of Open Access Journals (Sweden)

    LUIZ CARLOS MIRANDA

    1999-11-01

    Full Text Available O trabalho foi desenvolvido com o objetivo de avaliar a evolução física do processo de remoção de água das sementes em secador estacionário, com cilindro central perfurado e distribuição radical de ar. A pesquisa foi conduzida com sementes de soja, variando o fluxo (26,9, 28,4 e 33,2 m³/minuto/t e a temperatura do ar insuflado (42, 46 e 50ºC, considerando a posição das sementes (17, 34 e 51 cm em relação ao cilindro de insuflação e o tempo de secagem (zero a doze horas, com intervalos de duas horas. Foram caracterizados o ar ambiente, o ar insuflado, as temperaturas e os teores de água da massa, as velocidades e curvas de secagem. As avaliações realizadas destacaram vantagens físicas operacionais da combinação de 28,4 m³/minuto/t com 46ºC e o contrário, com a combinação de 26,9 m³/minuto/t com 42ºC.The purpose of this research was to study several physical parameters of soybean seed drying submitted to stationary process with radial air distribution by combining different air flows (26.9, 28.4 and 33.2 m³/minute/ton and temperatures (42, 46 and 50ºC, considering seed positions in the seed mass (17, 34 and 51 cm in relation to the insuflation cylinder and drying periods (zero to twelve hours with two-hour intervals. Environmental air, insuflation air, seed temperatures, moisture content of seeds, drying speed and drying curves were characterized. Considering the evaluated parameters during the drying process, the physical advantages of the combination of 28.4 m³/minute/ton with 46ºC, and the desadvantage of the combination of 26.9 m³/minute/ton with 42ºC were observed.

  15. Accelerating oak air drying by presurfacing

    Science.gov (United States)

    W. T. Simpson; R. C. Baltes

    1972-01-01

    A comparison was made between the air-drying rates of rough and presurfaced northern red oak and white oak. In both species, the presurfaced material was about 1/8 inch thinner than the rough material and dried faster than the rough material. The reduction in drying time depends on the method of analyzing the drying curves, but is slightly less than 10 percent.

  16. Description of saturation curves and boiling process of dry air

    Directory of Open Access Journals (Sweden)

    Vestfálová Magda

    2018-01-01

    Full Text Available Air is a mixture of gases forming the gas wrap of Earth. It is formed by dry air, moisture and other pollutants. Dry air is a substance whose thermodynamic properties in gaseous state, as well as the thermodynamic properties of its main constituents in gaseous state, are generally known and described in detail in the literature. The liquid air is a bluish liquid and is industrially used to produce oxygen, nitrogen, argon and helium by distillation. The transition between the gaseous and liquid state (the condensation process, resp. boiling process, is usually displayed in the basic thermodynamic diagrams using the saturation curves. The saturation curves of all pure substances are of a similar shape. However, since the dry air is a mixture, the shapes of its saturation curves are modified relative to the shapes corresponding to the pure substances. This paper deals with the description of the dry air saturation curves as a mixture, i.e. with a description of the process of phase change of dry air (boiling process. The dry air saturation curves are constructed in the basic thermodynamic charts based on the values obtained from the literature. On the basis of diagrams, data appearing in various publications are interpreted and put into context with boiling process of dry air.

  17. Dry and mixed air cooling systems

    International Nuclear Information System (INIS)

    Gutner, Gidali.

    1975-01-01

    The various dry air cooling systems now in use or being developed are classified. The main dimensioning parameters are specified and the main systems already built are given with their characteristics. The available data allow dry air cooling to be situated against the other cooling modes and so specify the aim of the research or currently developed works. Some systems at development stages are briefly described. The interest in mixed cooling (assisted draft) and the principal available systems is analyzed. A program of research is outlined [fr

  18. Determination of the most economical drying schedule and air velocity in softwood drying

    Energy Technology Data Exchange (ETDEWEB)

    Salin, J.G.

    2001-12-01

    Simulation models for conventional softwood drying have been available and have also been used by kiln operators for many years. For instance models for Scots pine and Norway spruce, dried at temperatures below about 80 deg C, are in use in Sweden, Finland and Norway. These models predict drying rates as a function of climate (schedule) and air velocity. The models thus give a direct basis for calculation of instantaneous energy demand for moisture evaporation and ventilation. There is further a direct relationship between the air velocity in the space between the board layers in the kiln stack and the electrical power demand by the circulation fans. Finally, the smaller energy consumption associated with heat losses through kiln walls and the accumulated heat in timber etc. can be estimated with sufficient accuracy. Instantaneous energy costs can thus be calculated for each part of a drying schedule. Capital costs associated with kiln investment and maintenance, personnel, insurance etc can be accounted for as an hourly cost, which is basically independent of whether timber is dried fast or slowly. A slow drying process thus accumulates more capital costs per m 3 timber. In this way it is possible to calculate the total instantaneous drying cost (Euro/m{sup 3}/h or Euro/m3/MC%) and the overall total cost (Euro or Euro/m{sup 3}). Some results obtained with a simulation model equipped with such a cost calculation are presented in the paper. A rapidly increasing drying cost is seen when the final MC is lowered. By minimising the instantaneous cost, an optimal drying schedule can be determined for a given fixed air velocity. Finally an optimal air velocity - constant or varying - can be found in the same way.

  19. Infrared Drying as a Quick Preparation Method for Dried Tangerine Peel

    Directory of Open Access Journals (Sweden)

    Mingyue Xu

    2017-01-01

    Full Text Available To establish the most convenient and effective method to dry tangerine peels, different methods (sun drying, hot-air drying, freeze drying, vacuum drying, and medium- and short-wave infrared drying were exploited. Our results indicated that medium- and short-wave infrared drying was the best method to preserve nutraceutical components; for example, vitamin C was raised to 6.77 mg/g (D.W. from 3.39 mg/g (sun drying. Moreover, the drying time can be shortened above 96% compared with sun drying. Importantly, the efficiency of DPPH radical scavenging was enhanced from 26.66% to 55.92%. These findings would provide a reliable and time-saving methodology to produce high-quality dried tangerine peels.

  20. Dry coolers and air-condensing units (Review)

    Science.gov (United States)

    Milman, O. O.; Anan'ev, P. A.

    2016-03-01

    The analysis of factors affecting the growth of shortage of freshwater is performed. The state and dynamics of the global market of dry coolers used at electric power plants are investigated. Substantial increase in number and maximum capacity of air-cooled condensers, which have been put into operation in the world in recent years, are noted. The key reasons facilitating the choice of developers of the dry coolers, in particular the independence of the location of thermal power plant from water sources, are enumerated. The main steam turbine heat removal schemes using air cooling are considered, their comparison of thermal efficiency is assessed, and the change of three important parameters, such as surface area of heat transfer, condensate pump flow, and pressure losses in the steam exhaust system, are estimated. It is shown that the most effective is the scheme of direct steam condensation in the heat-exchange tubes, but other schemes also have certain advantages. The air-cooling efficiency may be enhanced much more by using an air-cooling hybrid system: a combination of dry and wet cooling. The basic applied constructive solutions are shown: the arrangement of heat-exchange modules and the types of fans. The optimal mounting design of a fully shopassembled cooling system for heat-exchange modules is represented. Different types of heat-exchange tubes ribbing that take into account the operational features of cooling systems are shown. Heat transfer coefficients of the plants from different manufacturers are compared, and the main reasons for its decline are named. When using evaporative air cooling, it is possible to improve the efficiency of air-cooling units. The factors affecting the faultless performance of dry coolers (DC) and air-condensing units (ACU) and the ways of their elimination are described. A high velocity wind forcing reduces the efficiency of cooling systems and creates preconditions for the development of wind-driven devices. It is noted that

  1. Ultrasound-Assisted Hot Air Drying of Foods

    Science.gov (United States)

    Mulet, Antonio; Cárcel, Juan Andrés; García-Pérez, José Vicente; Riera, Enrique

    This chapter deals with the application of power ultrasound, also named high-intensity ultrasound, in the hot air drying of foods. The aim of ultrasound-assisted drying is to overcome some of the limitations of traditional convective drying systems, especially by increasing drying rate without reducing quality attributes. The effects of ultrasound on drying rate are responsible for some of the phenomena produced in the internal and/or external resistance to mass transfer.

  2. Drying kinetics and mathematical modeling of hot air drying of coconut coir pith.

    Science.gov (United States)

    Fernando, J A K M; Amarasinghe, A D U S

    2016-01-01

    Drying kinetics of coir pith was studied and the properties of compressed coir pith discs were analyzed. Coir pith particles were oven dried in the range of temperatures from 100 to 240 °C and the rehydration ability of compressed coir pith was evaluated by finding the volume expansion. The optimum drying temperature was found to be 140 °C. Hot air drying was carried out to examine the drying kinetics by allowing the coir pith particles to fluidize and circulate inside the drying chamber. Particle motion within the drying chamber closely resembled the particle motion in a flash dryer. The effective moisture diffusivity was found to increase from 1.18 × 10(-8) to 1.37 × 10(-8) m(2)/s with the increase of air velocity from 1.4 to 2.5 m/s respectively. Correlation analysis and residual plots were used to determine the adequacy of existing mathematical models for describing the drying behavior of coir pith. The empirical models, Wang and Singh model and Linear model, were found to be adequate for accurate prediction of drying behavior of coir pith. A new model was proposed by modifying the Wang and Singh model and considering the effect of air velocity. It gave the best correlation between observed and predicted moisture ratio with high value of coefficient of determination (R(2)) and lower values of root mean square error, reduced Chi square (χ(2)) and mean relative deviation (E%).

  3. Phenome data - Air-drying stress - DGBY | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us DGBY Phenome data - Air-drying stress Data detail Data name Phenome data - Air-drying stress... DOI 10.18908/lsdba.nbdc00953-007 Description of data contents Yeasts used in bread making are exposed to air-dryin...g stress during dried yeast production processes. To clarify the genes required for air-drying tolera...tion of diploid Saccharomyces cerevisiae . The screening identified 278 gene deletions responsible for air-dryin...heir gene products. The results showed that the genes required for air-drying tol

  4. Evaluation of beetroot changes during drying with hot air by digital ...

    African Journals Online (AJOL)

    Foods drying are an important operation in processing and increasing foodstuffs shelf life and many factors effected on products efficiency and quality during drying. Deterioration of texture structure and products color changes depends on drying method and air temperature and air rate. Drying or removing maximum water ...

  5. Effect of microwave and air drying of parboiled rice on stabilization of rice bran oil

    Directory of Open Access Journals (Sweden)

    Rizk, Laila F.

    1995-06-01

    Full Text Available Two rice varieties, Giza 175 (short grain and Giza 181 (long grain were partDoiled by soaking the grains at room temperature for 20 hours and steaming for 15 min then dried either at room temperature or by microwave. The results indicated that air and microwave drying significantly increased oil extraction in both rice bran varieties. Parboiling followed by air or microwave drying produced a slight change on protein, fiber and ash content of rice bran and reduced the development of free fatty acids (F.F.A. In oil bran. Microwave samples have less F.F.A. content than the corresponding samples air dried. Oils from the cold stored rice bran presented lower F.F.A. than the corresponding oil bran stored at room temperature. The ratio between total unsaturated fatty acids and total saturated ones (Tu/Ts decreased after air and microwave drying. Results also show that air drying increased the ratio of total hydrocarbons and total sterols (Tu/Ts in both varieties while microwave decreased it.

    Dos variedades de arroz, Giza 175 (grano corto y Giza 181 (grano largo se precocieron mediante la puesta en remojo de los granos a temperatura ambiente durante 20 horas y cocimiento al vapor durante 15 minutos, luego se secaron a temperatura ambiente o por microondas. Los resultados indicaron que el secado al aire y en microondas aumentó significativamente la extracción del aceite en ambas variedades de salvado de arroz. El precocido seguido del secado al aire o en microondas produjo un cambio pequeño en el contenido en proteína, fibra y ceniza y redujo el desarrollo de ácidos grasos libres (F.F.A. en el aceite de salvado. Las muestras secadas en microondas tuvieron un menor contenido en F.F.A. que las muestras correspondientes al secado en aire. Aceites de salvado de arroz almacenado en frió presentaron menor F.F.A. que los almacenados a temperatura ambiente. La relación entre ácidos grasos insaturados totales y los saturados totales (Tu/Ts disminuy

  6. Dry-air drying at room temperature - a practical pre-treatment method of tree leaves for quantitative analyses of phenolics?

    Science.gov (United States)

    Tegelberg, Riitta; Virjamo, Virpi; Julkunen-Tiitto, Riitta

    2018-03-09

    In ecological experiments, storage of plant material is often needed between harvesting and laboratory analyses when the number of samples is too large for immediate, fresh analyses. Thus, accuracy and comparability of the results call for pre-treatment methods where the chemical composition remains unaltered and large number of samples can be treated efficiently. To study if a fast dry-air drying provides an efficient pre-treatment method for quantitative analyses of phenolics. Dry-air drying of mature leaves was done in a drying room equipped with dehumifier (10% relative humidity, room temperature) and results were compared to freeze-drying or freeze-drying after pre-freezing in liquid nitrogen. The quantities of methanol-soluble phenolics of Betula pendula Roth, Betula pubescens Ehrh., Salix myrsinifolia Salisb., Picea abies L. Karsten and Pinus sylvestris L. were analysed with HPLC and condensed tannins were analysed using the acid-butanol test. In deciduous tree leaves (Betula, Salix), the yield of most of the phenolic compounds was equal or higher in samples dried in dry-air room than the yield from freeze-dried samples. In Picea abies needles, however, dry-air drying caused severe reductions in picein, stilbenes, condensed tannin and (+)-catechin concentrations compared to freeze-drying. In Pinus sylvestris highest yields of neolignans but lowest yields of acetylated flavonoids were obtained from samples freeze-dried after pre-freezing. Results show that dry-air drying provides effective pre-treatment method for quantifying the soluble phenolics for deciduous tree leaves, but when analysing coniferous species, the different responses between structural classes of phenolics should be taken into account. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Application of Natural Air Drying on Shelled Corn in Timor

    Science.gov (United States)

    Nino, J.; Nelwan, L. O.; Purwanto, Y. A.

    2018-05-01

    A study of the application of natural air drying on shelled corn in Timor using a bed- type dryer has been performed. The study aspects were limited to obtain the suitable air flow rate requirement and duration of the drying operation per day. For each aspect, the treatments were carried out simultaneously. The results showed that at the average ambient air temperature of 30.6°C and relative humidity (RH) of 73.0% the air flow rate of 0.83 L/s-kg provided the highest drying rate. Subsequently, by using the same air flow rate, three scheme of drying operations duration were used, i.e., 8 hours per day (08.00-16.00), 6 hours per day (09.00-15.00) and 4 hours per day (10.00-14.00). The average temperature and RH of ambient air condition at the second experiment were 30.3°C and 73.3% respectively. After 4 days of drying, the 8 hours per day (first scheme) treatment was able to dry the shelled corn from the initial moisture content of 27.24% w.b. to the final moisture content of 14.05% w.b. The specific energy consumption (SEC) of the first scheme was 1.75 MJ/kg. The final moisture content of the second and third schemes were 15.08 % w.b. and 18.45 % w.b. respectively with SEC of 1.41 MJ/kg and 1.21 MJ/kg respectively.

  8. Drying Characteristics and Water-soluble Polysaccharides Evaluation of Kidney Shape Ganoderma lucidum Drying in Air Circulation System

    Science.gov (United States)

    Prasetyo, D. J.; Jatmiko, T. H.; Poeloengasih, C. D.; Kismurtono, M.

    2017-12-01

    In this project, drying kinetic of kidney shape Ganoderma lucidum fruiting body in air circulation system was studied. The drying experiments were conducted at 40, 50 and 60°C with air flow rate of 1.3 ms-1. Samples were weighted periodically until no change in sample weight was recorded, and then the samples were analyzed for its moisture content. Four different thin-layer mathematical models (Newton, Page, Two-term, Midilli) were used and compare to evaluate the drying curves of kidney shape G. lucidum. The water-soluble polysaccharides were evaluated in order to find the best drying temperature condition. The results indicates that Midilli model was the fittest model to describe the characteristic of kidney shape G. lucidum in the air circulation drying system and temperature of 50°C was the best drying condition to get highest value of water-soluble polysaccharides.

  9. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    Energy Technology Data Exchange (ETDEWEB)

    Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

    2011-08-01

    -diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result

  10. Generalization of drying curves in conductive/convective drying of cellulose

    Directory of Open Access Journals (Sweden)

    M. Stenzel

    2003-03-01

    Full Text Available The objective of this work is to analyze the possibility of applying the drying curves generalization methodology to the conductive/convective hot plate drying of cellulose. The experiments were carried out at different heated plate temperatures and air velocities over the surface of the samples. This kind of approach is very interesting because it permits comparison of the results of different experiments by reducing them to only one set, which can be divided into two groups: the generalized drying curves and the generalized drying rate curves. The experimental apparatus is an attempt to reproduce the operational conditions of conventional paper dryers (ratio of paper/air movement and consists of a metallic box heated by a thermostatic bath containing an upper surface on which the cellulose samples are placed. Sample material is short- and long-fiber cellulose sheets, about 1 mm thick, and ambient air was introduced into the system by a adjustable blower under different conditions. Long-fiber cellulose generalized curves were obtained and analyzed first individually and then together with the short-fiber cellulose results from Motta Lima et al. (2000 a,b. Finally, a set of equations to fit the generalized curves obtained was proposed and discussed.

  11. Drier for air-drying coatings

    NARCIS (Netherlands)

    Micciche, F.; Oostveen, E.A.; Linde, van der R.; Haveren, van J.

    2003-01-01

    The invention pertains to a drier composition for air-drying alkyd-based coatings, inks, or floor coverings, comprising a combination of the following components: a) a transition metal salt with the formula: (Me )( X )m in which Me is the transition metal; X represents a coordinating ligand; and k-

  12. Cold Vacuum Drying Instrument Air System Design Description. System 12

    International Nuclear Information System (INIS)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-01-01

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed and Instrument Air PandID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid PandID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility

  13. Cold Vacuum Drying Instrument Air System Design Description (SYS 12)

    Energy Technology Data Exchange (ETDEWEB)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-06-05

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed & Instrument Air P&ID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid P&ID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility.

  14. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  15. Economic investigations of short rotation intensively cultured hybrid poplars

    Science.gov (United States)

    David C. Lothner

    1983-01-01

    The history of the economic analyses is summarized for short rotation intensively cultured hybrid poplar at the North Central Forest Experiment Station. Early break-even analyses with limited data indicated that at a price of $25-30 per dry ton for fiber and low to medium production costs, several systems looked profitable. Later cash flow analyses indicated that two...

  16. Effects of open-air sun drying and pre-treatment on drying characteristics of purslane ( Portulaca oleracea L.)

    Science.gov (United States)

    İsmail, Osman; Kantürk Figen, Aysel; Pişkin, Sabriye

    2015-06-01

    Effects of open-air sun drying and pre-treatment on drying characteristic of purslanes ( Portulaca oleracea L.) were investigated. Drying times were determined as 31, 24 and 9 h for natural, salted and blanched, respectively. The higher "L" value and lower "-a/b" ratio values were obtained in natural dried purslane. The Aghbashlo et al. model gave a better fit to drying data.

  17. Mathematical modeling of hot air/electrohydrodynamic (EHD) drying kinetics of mushroom slices

    International Nuclear Information System (INIS)

    Taghian Dinani, Somayeh; Hamdami, Nasser; Shahedi, Mohammad; Havet, Michel

    2014-01-01

    Highlights: • Hot air/EHD drying behavior of thin layer mushroom slices was evaluated. • A new empirical model was proposed for drying kinetics modeling of mushroom slices. • The new model presents excellent predictions for hot air/EHD drying of mushroom. - Abstract: Researches about mathematical modeling of electrohydrodynamic (EHD) drying are rare. In this study, hot air combined with electrohydrodynamic (EHD) drying behavior of thin layer mushroom slices was evaluated in a laboratory scale dryer at voltages of 17, 19, and 21 kV and electrode gaps of 5, 6, and 7 cm. The drying curves were fitted to ten different mathematical models (Newton, Page, Modified Page, Henderson and Pabis, Logarithmic, Two-term exponential, Midilli and Kucuk, Wang and Singh, Weibull and Parabolic models) and a proposed new empirical model to select a suitable drying equation for drying mushroom slices in a hot air combined with EHD dryer. Coefficients of the models were determined by non-linear regression analysis and the models were compared based on their coefficient of determination (R 2 ), sum of square errors (SSE) and root mean square error (RMSE) between experimental and predicted moisture ratios. According to the results, the proposed model that contains only three parameters provided the best fit with the experimental data. It was closely followed by the Midilli and Kucuk model that contains four parameters. Therefore, the proposed model can present comfortable usage and excellent predictions for the moisture content changes of mushroom slices in the hot air combined with EHD drying system

  18. Ozone Generation in Dry Air Using Pulsed Discharges With and Without a Solid Dielectric Layer

    OpenAIRE

    Samaranayake, W.J.M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Hackam, R.; Akiyama, H.; ミヤハラ, Y.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 浪平, 隆男; 勝木, 淳; 秋山, 秀典

    2001-01-01

    Energy efficient generation of ozone is very important because ozone is being used increasingly in a wide range of industrial applications. Ozonizers usually use dielectric barrier discharges and employ alternating current (ac) with consequent heat generation, which necessitates cooling. In the present study, very short duration pulsed voltage is employed resulting in reduced heating of the gas and discharge reactor. A comparison of ozone generation in dry air using a coaxial concentric elect...

  19. Influence of drying conditions on the effective diffusivity and activation energy during convective air and vacuum drying of pumpkin

    Directory of Open Access Journals (Sweden)

    Liliana SEREMET (CECLU

    2015-12-01

    Full Text Available The main purpose of the work is to investigate the efficiency of convective air and vacuum processing on pumpkin drying kinetics. The pumpkin samples were of two different geometrical shapes (cylinder and cube and were dried in a laboratory scale hot air dryer using some specific parameters (constant air velocity of 1.0 m/s, three different temperatures 50, 60 and 70ºC suited to relative humidity (RH values of 9.8, 6.5, and 5.4% respectively. The vacuum drying was led at constant pressures of 5 kPa and accordance temperatures of 50, 60 and 70ºC. Moisture transfer from pumpkin slices was described by applying Fick’s diffusion model. Temperature dependence of the effective diffusivity was described by the Arrhenius-type equation. Cylindrical samples have a slightly better behaviour compared to cubic samples, due to the disposition of the tissues, and the mass and thermic transfer possibilities. Analysing the results of both drying methods, it was deduced that the most efficient method is convective air drying at 70ºC.

  20. Remediation of muddy tidal flat sediments using hot air-dried crushed oyster shells.

    Science.gov (United States)

    Yamamoto, Tamiji; Kondo, Shunsuke; Kim, Kyung-Hoi; Asaoka, Satoshi; Yamamoto, Hironori; Tokuoka, Makoto; Hibino, Tadashi

    2012-11-01

    In order to prove that hot air-dried crushed oyster shells (HACOS) are effective in reducing hydrogen sulfide in muddy tidal flat sediments and increasing the biomass, field experiments were carried out. The concentration of hydrogen sulfide in the interstitial water, which was 16 mg SL(-1) before the application of HACOS, decreased sharply and maintained almost zero in the experimental sites (HACOS application sites) for one year, whereas it was remained at ca. 5 mg SL(-1) in the control sites. The number of macrobenthos individuals increased to 2-4.5 times higher than that in the control site. Using a simple numerical model, the effective periods for suppression of hydrogen sulfide were estimated to be 3.2-7.6 and 6.4-15.2 years for the experimental sites with 4 and 8 tons per 10 × 10 × 0.2m area, respectively. From these results, it is concluded that HACOS is an effective material to remediate muddy tidal flats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Response Surface Model (RSM)-based Benefit Per Ton Estimates

    Science.gov (United States)

    The tables below are updated versions of the tables appearing in The influence of location, source, and emission type in estimates of the human health benefits of reducing a ton of air pollution (Fann, Fulcher and Hubbell 2009).

  2. Water loss at normal enamel histological points during air drying at room temperature.

    Science.gov (United States)

    De Medeiros, R C G; De Lima, T A S; Gouveia, C R; De Sousa, F B

    2013-06-01

    This in vitro study aimed to quantify water loss at histological points in ground sections of normal enamel during air drying at room temperature (25°C) and relative humidity of 50%. From each of 10 ground sections of erupted permanent human normal enamel, three histological points (n = 30) located at 100, 300 and 500 μm from enamel surface and along a transversal following prisms paths were characterized regarding the mineral, organic and water volumes. Water loss during air drying was from 0 to 48 h. Drying occurred with both falling and constant-drying rates, and drying stabilization times (Teq ) ranged from 0.5 to 11 h with a mean 0.26 (±0.12)% weight loss. In some samples (n = 5; 15 points), Teq increased as a function of the distance from the enamel surface, and drying occurred at an apparent diffusion rate of 3.47 × 10⁻⁸ cm² s⁻¹. Our data provide evidence of air drying resulting in air replacing enamel's loosely bound water in prisms sheaths following a unidirectional water diffusion rate of 3.47 × 10⁻⁸ cm² s⁻¹ (from the original enamel surface inward), not necessarily resulting in water evaporating directly into air, with important implications for transport processes and optical and mechanical properties. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  3. Changes in duration of dry and wet spells associated with air temperatures in Russia

    Science.gov (United States)

    Ye, Hengchun

    2018-03-01

    This study uses daily precipitation records from 517 Russian stations (1966-2010) to examine the relationships between continuous dry and wet day duration and surface air temperature for all four seasons. The study found that both mean and extreme durations of dry periods increase with air temperature at about 7.0% (0.24 day/°C) and 7.7% (0.86 day/°C) respectively, while those of wet periods decrease at about 1.3% (-0.02 day/°C) and 2.2% (-0.10 day/°C) respectively averaged over the entire study region during summer. An increase in the duration of dry periods with higher air temperature is also found in other seasons at locations with a mean seasonal air temperature of about -5 °C or higher. Opposite relationships of shorter durations of dry periods and longer wet periods associated with higher air temperature are observed over the northern part of the study region in winter. The changes in durations of both dry and wet periods have significant correlations with the changes in total dry and wet days but are about 2.5 times higher for dry periods and 0.5 times lower for wet periods. The study also found that locations with longer durations of dry periods experience faster rates of increase in air temperature, suggesting the likelihood of exacerbating drought severity in drier and/or warmer locations for all seasons.

  4. Performance Recovery of Natural Draft Dry Cooling Systems by Combined Air Leading Strategies

    Directory of Open Access Journals (Sweden)

    Weijia Wang

    2017-12-01

    Full Text Available The cooling efficiency of natural draft dry cooling system (NDDCS are vulnerable to ambient winds, so the implementation of measures against the wind effects is of great importance. This work presents the combined air leading strategies to recover the flow and heat transfer performances of NDDCS. Following the energy balance among the exhaust steam, circulating water, and cooling air, numerical models of natural draft dry cooling systems with the combined air leading strategies are developed. The cooling air streamlines, volume effectiveness, thermal efficiency and outlet water temperature for each cooling delta of the large-scale heat exchanger are obtained. The overall volume effectiveness, average outlet water temperature of NDDCS and steam turbine back pressure are calculated. The results show that with the air leading strategies inside or outside the dry-cooling tower, the thermo-flow performances of natural draft dry cooling system are improved under all wind conditions. The combined inner and outer air leading strategies are superior to other single strategy in the performance recovery, thus can be recommended for NDDCS in power generating units.

  5. Aroma changes in fresh bell peppers (Capsicum annuum) after hot-air drying.

    NARCIS (Netherlands)

    Luning, P.A.; Yuksel, D.; Vuurst de Vries, van R.; Roozen, J.P.

    1995-01-01

    The aroma of fresh and hot-air dried bell peppers (Capsicum annuum) was evaluated by sensory and instrumental methods. Hot-air drying decreased levels of the odor compounds (Z)-3-hexenal, 2-heptanone, (Z)-2-hexenal, (E)-2-hexenal, hexanol, (Z)-3-hexanol, (E)-2-hexenol, and linalool, which have

  6. Effect of air-drying time of single-application self-etch adhesives on dentin bond strength.

    Science.gov (United States)

    Chiba, Yasushi; Yamaguchi, Kanako; Miyazaki, Masashi; Tsubota, Keishi; Takamizawa, Toshiki; Moore, B Keith

    2006-01-01

    This study examined the effect of air-drying time of adhesives on the dentin bond strength of several single-application self-etch adhesive systems. The adhesive/resin composite combinations used were: Adper Prompt L-Pop/Filtek Z250 (AP), Clearfil Tri-S Bond/Clearfil AP-X (CT), Fluoro Bond Shake One/Beautifil (FB), G-Bond/Gradia Direct (GB) and One-Up Bond F Plus/Palfique Estelite (OF). Bovine mandibular incisors were mounted in self-curing resin and wet ground with #600 SiC to expose labial dentin. Adhesives were applied according to each manufacturer's instructions followed by air-drying time for 0 (without air-drying), 5 and 10 seconds. After light irradiation of the adhesives, the resin composites were condensed into a mold (phi4x2 mm) and polymerized. Ten samples per test group were stored in 37 degrees C distilled water for 24 hours; they were then shear tested at a crosshead speed of 1.0 mm/minute. One-way ANOVA followed by Tukey's HSD tests (alpha = 0.05) were done. FE-SEM observations of the resin/dentin interface were also conducted. Dentin bond strength varied with the different air drying times and ranged from 5.8 +/- 2.4 to 13.9 +/- 2.8 MPa for AP, 4.9 +/- 1.5 to 17.1 +/- 2.3 MPa for CT, 7.9 +/- 2.8 to 13.8 +/- 2.4 MPa for FB, 3.7 +/- 1.4 to 13.4 +/- 1.2 MPa for GB and 4.6 +/- 2.1 to 13.7 +/- 2.6 MPa for OF. With longer air drying of adhesives, no significant changes in bond strengths were found for the systems used except for OF. Significantly lower bond strengths were obtained for the 10-second air-drying group for OF. From FE-SEM observations, gaps between the cured adhesive and resin composites were observed for the specimens without the air drying of adhesives except for OF. The data suggests that, with four of the single-application self-etch adhesive systems, air drying is essential to obtain adequate dentin bond strengths, but increased drying time does not significantly influence bond strength. For the other system studied, the bond strength

  7. MEASUREMENT OF INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPY MACHINES

    Science.gov (United States)

    The article provides background information on indoor air emissions from office equipment, with emphasis on dry-process photocopy machines. The test method is described in detail along with results of a study to evaluate the test method using four dry-process photocopy machines. ...

  8. Potential of roof-integrated solar collectors for preheating air at drying facilities in Northern Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Franz; Nagle, Marcus; Leis, Hermann; Mueller, Joachim [Institute of Agricultural Engineering 440e, University of Hohenheim, Garbenstrasse 9, 70599 Stuttgart (Germany); Janjai, Serm [Department of Physics, Silpakorn University, Nakhon Pathom (Thailand); Mahayothee, Busarakorn [Department of Food Technology, Silpakorn University, Nakhon Pathom (Thailand); Haewsungcharoen, Methinee [Department of Food Engineering, Chiang Mai University, Chiang Mai (Thailand)

    2009-07-15

    Longan is one of the most widely cropped fruits in Northern Thailand, where a significant amount of the annual harvest is commercially dried and exported as a commodity. Liquefied petroleum gas is generally used as the energy source for heating the drying air, but concern is growing as fuel prices are expected to increase for the foreseeable future. Meanwhile, with the ample solar radiation in Thailand, the roofs of drying facilities could be adapted to serve as solar collectors to preheat the drying air, thus reducing the energy requirement from fossil fuels. In this study, a simulation program for a flat-plate solar air heater was used to estimate the potential to preheat drying air given the conditions of several longan drying facilities. Results showed that solar collectors can replace up to 19.6% of the thermal energy demand during the drying season. Bigger collectors and smaller air channels result in more useful heat, but attention has to be paid to costs and pressure drop, respectively. Annual monetary savings can reach up to THB 56,000 ({approx}US$ 1800 at US$ 1 THB 31). (author)

  9. DEHYDRATION OF CHEESE BY HOT AIR, MICROWAVE AND FREEZE-DRYING

    Directory of Open Access Journals (Sweden)

    ANA RITA C. PINHO

    2017-12-01

    Full Text Available The objective of this work was to study the dehydration of skim cheese through different methods, in particular by hot air, microwave and freeze-drying, in order to assess which of these methods would be more suitable for the development of a new product (cheese snack. For the three processes of dehydration, several temperatures, powers and times were used, respectively. The drying time was optimized to allow the water activity of the final product to be between 0.3 and 0.4. The color and texture of the product obtained by the three processes were evaluated, and the nutritional analysis (protein, lipids, ash of the product dried by hot air at 52 ºC and by microwave at 750 W and 850 W was performed. The sensory analysis of the microwave dehydrated products was also carried out. The results obtained revealed that the temperature played a relevant role in the drying time and the hardness of the product. In the dehydration by microwave, the power of 850 W resulted in a lower drying time and a better color preservation, but in a high hardness of the samples. Among the three processes studied, the microwave drying was the fastest for the water removal from the cheese.

  10. Effect of additives and steaming on quality of air dried noodles.

    Science.gov (United States)

    Gatade, Abhijeet Arun; Sahoo, Akshaya Kumar

    2015-12-01

    Texture is the most important property for consumer acceptance in cooked noodles. The air dried noodles are known to have higher cooking loss and cooking time, to that of instant fried noodles. But the fat content of instant fried noodles is more. In the present work attempts were made to optimize the moisture content so as to obtain a smooth dough for extruded noodle preparation and develop air dried noodles of low fat content with lesser cooking loss and cooking time. To meet the objectives, the effect of various additives and steaming treatment on cooking quality, sensory attributes, textural properties and microstructure of noodles were studied. Dough prepared by addition of 40 ml water to 100 g flour resulted into formation of a soft dough, leading to production of noodles of improved surface smoothness and maximum yield. The use of additives (5 g oil, 0.2 g guar gum, 2 g gluten and 1 ml of 1 % kansui solution for 100 g of flour) and steaming treatment showed significant effect on noodles quality, with respect to cooking characteristics, sensory attributes and textural properties. The microstructure images justified the positive correlation between the effects of ingredients with steaming and quality parameters of noodles. Air dried noodles with reduced cooking loss (~50 % reduction) with marginal reduction in cooking time was developed, which were having similar characteristics to that of instant fried noodles. Compared to the instant fried noodle, the prepared air dried noodle was having substantially reduced fat content (~70 % reduction). Thus the present study will be useful for guiding extrusion processes for production of air dried noodles having less cooking time and low fat content.

  11. Development of a distributed air pollutant dry deposition modeling framework

    International Nuclear Information System (INIS)

    Hirabayashi, Satoshi; Kroll, Charles N.; Nowak, David J.

    2012-01-01

    A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. - Highlights: ► A distributed air pollutant dry deposition modeling system was developed. ► The developed system enhances the functionality of i-Tree Eco. ► The developed system employs nationally available input datasets. ► The developed system is transferable to any U.S. city. ► Future planting and protection spots were visually identified in a case study. - Employing nationally available datasets and a GIS, this study will provide urban forest managers in U.S. cities a framework to quantify and visualize urban forest structure and its air pollution removal effect.

  12. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture.

    Science.gov (United States)

    Zielinska, Magdalena; Michalska, Anna

    2016-12-01

    The aim of the study was to evaluate the effect of hot air convective drying (HACD), microwave vacuum drying (MWVD) and their combination (HACD+MWVD) on the drying kinetics, colour, total polyphenols, anthocyanins antioxidant capacity and texture of frozen/thawed blueberries. Drying resulted in reduction of total polyphenols content and antioxidant capacity (69 and 77%, respectively). The highest content of total polyphenols was noted after HACD at 90°C. Lower air temperature and prolonged exposure to oxygen resulted in greater degradation of polyphenols and antioxidant capacity. Drying processes caused a significant decrease (from 70 to 95%) in the content of anthocyanins. The highest content of anthocyanins and the strongest antioxidant capacity was found in blueberries dried using HACD at 90°C+MWVD. Among drying methods, HACD at 90°C+MWVD satisfied significant requirements for dried fruits i.e. short drying time and improved product quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Impact of Dry Midlevel Air on Hurricane Intensity in Idealized Simulations with No Mean Flow

    Science.gov (United States)

    Braun, Scott A.; Sippel, Jason A.; Nolan, David S.

    2012-01-01

    This study examines the potential negative influences of dry midlevel air on the development of tropical cyclones (specifically, its role in enhancing cold downdraft activity and suppressing storm development). The Weather Research and Forecasting model is used to construct two sets of idealized simulations of hurricane development in environments with different configurations of dry air. The first set of simulations begins with dry air located north of the vortex center by distances ranging from 0 to 270 km, whereas the second set of simulations begins with dry air completely surrounding the vortex, but with moist envelopes in the vortex core ranging in size from 0 to 150 km in radius. No impact of the dry air is seen for dry layers located more than 270 km north of the initial vortex center (approximately 3 times the initial radius of maximum wind). When the dry air is initially closer to the vortex center, it suppresses convective development where it entrains into the storm circulation, leading to increasingly asymmetric convection and slower storm development. The presence of dry air throughout the domain, including the vortex center, substantially slows storm development. However, the presence of a moist envelope around the vortex center eliminates the deleterious impact on storm intensity. Instead, storm size is significantly reduced. The simulations suggest that dry air slows intensification only when it is located very close to the vortex core at early times. When it does slow storm development, it does so primarily by inducing outward- moving convective asymmetries that temporarily shift latent heating radially outward away from the high-vorticity inner core.

  14. OPTIMIZATION OF MICROWAVE AND AIR DRYING CONDITIONS OF QUINCE (CYDONIA OBLONGA, MILLER USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Cem Baltacioglu

    2015-03-01

    Full Text Available Effects of slice thickness of quince (Cydonia oblonga Miller , microwave incident power and air drying temperature on antioxidant activity and total phenolic content of quince were investigated during drying in microwave and air drying. Optimum conditions were found to be: i for microwave drying, 285 W and 4.14 mm thick (maximum antioxidant activity and 285 W and 6.85 mm thick (maximum total phenolic content, and ii for air drying, 75 ºC and 1.2 mm thick (both maximum antioxidant activity and total phenolic content. Drying conditions were optimized by using the response surface methodology. 13 experiments were carried out considering incident microwave powers from 285 to 795 W, air temperature from 46 to 74 ºC and slice thickness from 1.2 to 6.8 mm.

  15. Criticality Analysis of SFP Region I under Dry Air Condition

    International Nuclear Information System (INIS)

    Kim, Ki Yong; Kim, Min Chul

    2016-01-01

    This paper is to provide a result of the criticality evaluation under the condition that new fuel assemblies for initial fuel loading are storing in Region 1 of SFP in the dry air. The objective of this analysis is to ensure the effective neutron multiplication factor(k_e_f_f) of SFP is less than 0.95 under that condition. This analysis ensured the effective neutron multiplication factor(k_e_f_f) of Region 1 of SFP is less than 0.95 under the condition in the air. The keff in Region I of SFP under the condition of the dry air is 0.5865. The increased k_c_a_l_c of the Region 1 after the mislocated fuel assembly accident is 0.0444 at the pool flooded with un-borated water

  16. Thin layer convective air drying of wild edible plant (Allium roseum) leaves: experimental kinetics, modeling and quality.

    Science.gov (United States)

    Ben Haj Said, Leila; Najjaa, Hanen; Farhat, Abdelhamid; Neffati, Mohamed; Bellagha, Sihem

    2015-06-01

    The present study deals with the valorization of an edible spontaneous plant of the Tunisian arid areas: Allium roseum. This plant is traditionally used for therapeutic and culinary uses. Thin-layer drying behavior of Allium roseum leaves was investigated at 40, 50 and 60 °C drying air temperatures and 1 and l.5 m/s air velocity, in a convective dryer. The increase in air temperature significantly affected the moisture loss and reduced the drying time while air velocity was an insignificant factor during drying of Allium roseum leaves. Five models selected from the literature were found to satisfactorily describe drying kinetics of Allium roseum leaves for all tested drying conditions. Drying data were analyzed to obtain moisture diffusivity values. During the falling rate-drying period, moisture transfer from Allium roseum leaves was described by applying the Fick's diffusion model. Moisture diffusivity varied from 2.55 × 10(-12) to 8.83 × 10(-12) m(2)/s and increased with air temperature. Activation energy during convective drying was calculated using an exponential expression based on Arrhenius equation and ranged between 46.80 and 52.68 kJ/mol. All sulfur compounds detected in the fresh leaves were detected in the dried leaves. Convective air drying preserved the sulfur compounds potential formation.

  17. Effect of additives and steaming on quality of air dried noodles

    OpenAIRE

    Gatade, Abhijeet Arun; Sahoo, Akshaya Kumar

    2015-01-01

    Texture is the most important property for consumer acceptance in cooked noodles. The air dried noodles are known to have higher cooking loss and cooking time, to that of instant fried noodles. But the fat content of instant fried noodles is more. In the present work attempts were made to optimize the moisture content so as to obtain a smooth dough for extruded noodle preparation and develop air dried noodles of low fat content with lesser cooking loss and cooking time. To meet the objectives...

  18. Simultaneous application of microwave energy and hot air to whole drying process of apple slices: drying kinetics, modeling, temperature profile and energy aspect

    Science.gov (United States)

    Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni

    2018-02-01

    Drying kinetics, modeling, temperature profile and energy indices were investigated in apple slices during drying by a specially designed microwave-hot air domestic hybrid oven at the following conditions: 120, 150 and 180 W microwave powers coupled with 50, 60 and 70 °C air temperatures. Both sources of energy were applied simultaneously during the whole drying processes. The drying process continued until the moisture content of apple slices reached to 20% from 86.3% (wet basis, w.b). Drying times ranged from 330 to 800 min and decreased with increasing microwave power and air temperatures. The constant rate period was only observed at low microwave powers and air temperatures. Two falling rate periods were observed. Temperature of apple slices sharply increased within the first 60 min, then reached equilibrium with drying medium and finally increased at the end of the drying process. In order to describe drying behavior of apple slices nine empirical models were applied. The Modified Logistic Model fitted the best our experimental data ( R 2 = 0.9955-0.9998; χ 2 = 3.46 × 10-5-7.85 × 10-4 and RMSE = 0.0052-0.0221). The effective moisture and thermal diffusivities were calculated by Fick's second law and ranged from 1.42 × 10-9 to 3.31 × 10-9 m2/s and 7.70 × 10-9 to 12.54 × 10-9 m2/s, respectively. The activation energy ( Ea) values were calculated from effective moisture diffusivity ( Deff), thermal diffusivity ( α) and the rate constant of the best model ( k). The Ea values found from these three terms were similar and varied from 13.04 to 33.52 kJ/mol. Energy consumption and specific energy requirement of the hybrid drying of apple slices decreased and energy efficiency of the drying system increased with increasing microwave power and air temperature. Apples can be dried rapidly and effectively by use of the hybrid technique.

  19. The effect of osmotic pretreatment on the density of hot-air-dried carrot

    Directory of Open Access Journals (Sweden)

    J Soleimani

    2012-02-01

    Full Text Available Consumption of large amounts of fruits and vegetables throughout the world, have encouraged the development of various methods for their processing. Drying is considers as the most common method for preservation of vegetable and fruits. Although drying extend the shelf-life, it has various side effects on keeping quality of these foods; including decreasing of the color and texture quality as well as missing the flavor and nutritional values. These negative effects have increased the demand for the discovering the alternative drying methods and consequently for the production of fresh-like products. The aim of this study was to introduce and optimize the novel method for the drying of carrot as well as to develop and optimize the quality of osmo-air-dried carrots with special respect to the color, flavor, texture, rehydration properties, density and shriveling of the product. For this, the effect of osmotic pretreatment on the density of carrot slices was investigated, using 50% glucose syrup +5% salt at 40°C with 150 rpm, followed by complementary drying step. The result of treated group was compared with control samples which were dried only by hot-air-drier. The results showed that using osmotic pretreatment could increase the density through inhibition of the product's shrinkage. Meanwhile, in air-dried samples the density was decreased considerably and high shrinkage was also observed.

  20. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    Science.gov (United States)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  1. Preparation of Natural Zeolite for Air Dehumidification in Food Drying

    Directory of Open Access Journals (Sweden)

    Mohamad Djaeni

    2015-03-01

    Full Text Available Drying with air dehumidification with solid adsorbent improves the quality of food product as well as energy efficiency. The natural zeolite is one of adsorbent having potential to adsorb the water.  Normally, the material was activated to open the pore, remove the organic impurities, and increase Si/Al rate. Hence, it can enhance the adsorbing capacity. This research studied the activation of natural zeolite mined from Klaten, Indonesia as air dehumidification for food drying. Two different methods were used involving activation by heat and NaOH introduction.  As indicators, the porosity and water loaded were evaluated. Results showed both methods improved the adsorbing capacity significantly. With NaOH, the adsorbing capacity was higher. The simple test in onion and corn drying showed the presence of activated natural zeolite can speed up water evaporation positively. This performance was also comparable with Zeolite 3A

  2. Usage of hybrid solar collector system in drying technologies of medical plants

    International Nuclear Information System (INIS)

    Čiplienė, Aušra; Novošinskas, Henrikas; Raila, Algirdas; Zvicevičius, Egidijus

    2015-01-01

    Highlights: • Solar radiation energy utilization in drying technologies. • Accumulation of solar radiation energy. • The system comprising two different solar collector types. • Preparation of the drying agent by employing solar radiation energy around the clock. • The energy resources saving technology for medicinal plants’ raw material processing and drying. - Abstract: In the temperate climate zone under natural conditions, medicinal plants drying up to 8–12% moisture content and preparation of the quality medicinal plant’s raw material are complicated tasks. In many cases drying process of medicinal plants raw material, particularly rich in volatile compounds, needs the optimal drying temperatures of 30–45 °C and relative humidity not higher than 50–60%. In Lithuania, located in the northern part of the temperate climate zone, in summer the average temperature of ambient air is 16.1 ± 0.5 °C, and relative humidity is 77.3 ± 1.8%. In order to improve the sorption properties of ambient air, it is heated up to the admissible drying temperature. The experimental dryer was developed comprising two different solar collectors: the air type solar collector with area 12 m 2 for direct heating of the drying agent and the flat-plate type solar collector (8 m 2 ) for accumulation of converted heat energy. The research of motherwort (Leonurus cardiaca L.) drying was carried out in the dryer. It was determined that by combining operation of two different solar collectors, the solar radiation energy for drying agent’s heating could be used continuously around the clock by employing the accumulated energy, in order to compensate the solar irradiance variability and to ensure stability of the drying process. In the daytime the air-type solar collector at an airflow equal to 367 m 3 h −1 , i.e. at comparative flow of the drying agent per ton of dried medicinal plant raw material – 2450 m 3 h −1 , heats the air up to 30 °C when the solar

  3. The Effect of Temperature and Air Velocity on Drying Kinetics of Pistachio Nuts during Roasting by using Hot Air Flow

    Directory of Open Access Journals (Sweden)

    A Dini

    2017-10-01

    Full Text Available Introduction Pistachio nut is one of the most delicious and nutritious nuts in the world and it is being used as a saltedand roasted product or as an ingredient in snacks, ice cream, desserts, etc. The purpose of roasting is to promote flavour and texture changes in nuts that ultimately increase the overall palatability of the product.Roasting involves a number of physico-chemical changes, including heat exchange, chemical reactions and drying. Knowledge of desorption kinetics is essential to predict the behavior of the material during roasting process and to design roaster equipment.The main aim of this research was to evaluate suitable models for predicting moisture ratio, the effect of air temperature and velocity on the drying kinetics of pistachio nuts and obtain the effective diffusivity coefficient and activation energy in the drying process during the roasting of pistachio nuts. Materials and Methods Dried Ahmadaghaei pistachio nuts were supplied from Kashefan Kavir company (Doraj co. in Rafsanjan. Pistachio nuts were soaked in 17% salt solution for 8 minute and roasting was investigated at air temperatures of 120,130, 145, 160 and 170 °C and air velocities of 0.6, 0.88, 1.3, 1.72 and 2 ms-1. Five semi-theoretical and two empirical kinetic models were fitted to drying experimental data using nonlinear regression analysis techniques in the Curve Expert 2.2 computer program. Results and Discussion Tow-way ANOVA indicated that temperature and hot air velocity significantly affected the drying process during roasting of shelled pistachio nuts. The higher roasting temperatures and air velocities resulted in the higher drying rates. During first 10 min of roasting at constant air velocity of 1.3 ms-1, 64.5%, 70.3%, 77.1%, 83.5%, 89.7% of the moisture were removed at roasting air temperatures of 120 °C, 130 °C, 145 °C, 160 °C, 170 °C, respectively. The high regression coefficients (R2>0.996 and low reduced chi-square (χ2, mean relative

  4. Analyzing drying characteristics and modeling of thin layers of peppermint leaves under hot-air and infrared treatments

    Directory of Open Access Journals (Sweden)

    Seyed-Hassan Miraei Ashtiani

    2017-06-01

    Full Text Available The drying kinetics of peppermint leaves was studied to determine the best drying method for them. Two drying methods include hot-air and infrared techniques, were employed. Three different temperatures (30, 40, 50 °C and air velocities (0.5, 1, 1.5 m/s were selected for the hot-air drying process. Three levels of infrared intensity (1500, 3000, 4500 W/m2, emitter-sample distance (10, 15, 20 cm and air speed (0.5, 1, 1.5 m/s were used for the infrared drying technique. According to the results, drying had a falling rate over time. Drying kinetics of peppermint leaves was explained and compared using three mathematical models. To determine coefficients of these models, non-linear regression analysis was used. The models were evaluated in terms of reduced chi-square (χ2, root mean square error (RMSE and coefficient of determination (R2 values of experimental and predicted moisture ratios. Statistical analyses indicated that the model with the best fitness in explaining the drying behavior of peppermint samples was the Logarithmic model for hot-air drying and Midilli model for infrared drying. Moisture transfer in peppermint leaves was also described using Fick’s diffusion model. The lowest effective moisture diffusivity (1.096 × 10−11 m2/s occurred during hot-air drying at 30 °C using 0.5 m/s, whereas its highest value (5.928 × 10−11 m2/s belonged to infrared drying using 4500 W/m2 infrared intensity, 0.5 m/s airflow velocity and 10 cm emitter-sample distance. The activation energy for infrared and hot-air drying were ranged from 0.206 to 0.439 W/g, and from 21.476 to 27.784 kJ/mol, respectively.

  5. Effect of different air-drying time on the microleakage of single-step self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Horieh Moosavi

    2013-05-01

    Full Text Available Objectives This study evaluated the effect of three different air-drying times on microleakage of three self-etch adhesive systems. Materials and Methods Class I cavities were prepared for 108 extracted sound human premolars. The teeth were divided into three main groups based on three different adhesives: Opti Bond All in One (OBAO, Clearfil S3 Bond (CSB, Bond Force (BF. Each main group divided into three subgroups regarding the air-drying time: without application of air stream, following the manufacturer's instruction, for 10 sec more than manufacturer's instruction. After completion of restorations, specimens were thermocycled and then connected to a fluid filtration system to evaluate microleakage. The data were statistically analyzed using two-way ANOVA and Tukey-test (α = 0.05. Results The microleakage of all adhesives decreased when the air-drying time increased from 0 sec to manufacturer's instruction (p < 0.001. The microleakage of BF reached its lowest values after increasing the drying time to 10 sec more than the manufacturer's instruction (p < 0.001. Microleakage of OBAO and CSB was significantly lower compared to BF in all three drying time (p < 0.001. Conclusions Increasing in air-drying time of adhesive layer in one-step self-etch adhesives caused reduction of microleakage, but the amount of this reduction may be dependent on the adhesive components of self-etch adhesives.

  6. Preliminary Design of KAIST Micro Modular Reactor with Dry Air Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seung Joon; Bae, Seong Jun; Kim, Seong Gu; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    KAIST research team recently proposed a Micro Modular Reactor (MMR) concept which integrates power conversion unit (PCU) with the reactor core in a single module. Using supercritical CO{sub 2} as a working fluid of cycle can achieve physically compact size due to small turbomachinery and heat exchangers. The objective of this project is to develop a concept that can operate at isolated area. The design focuses especially on the operation in the inland area where cooling water is insufficient. Thus, in this paper the potential for dry air cooling of the proposed reactor will be examined by sizing the cooling system with preliminary approach. The KAIST MMR is a recently proposed concept of futuristic SMR. The MMR size is being determined to be transportable with land transportation. Special attention is given to the MMR design on the dry cooling, which the cooling system does not depend on water. With appropriately designed air cooling heat exchanger, the MMR can operate autonomously. Two types of air cooling methods are suggested. One is using fan and the other is utilizing cooling tower for the air flow. With fan type air cooling method it consumes about 0.6% of generated electricity from the nuclear reactor. Cooling tower occupies an area of 227 m{sup 2} and 59.6 m in height. This design is just a preliminary estimation of the dry cooling method, and therefore more detailed and optimal design will be followed in the next phase.

  7. Nitrogen mineralization from anaerobically digested centrifuge cake and aged air-dried biosolids.

    Science.gov (United States)

    Kumar, Kuldip; Hundal, Lakhwinder S; Cox, Albert E; Granato, Thomas

    2014-09-01

    This study was conducted to estimate nitrogen (N) mineralization of anaerobically digested centrifuge cake from the Stickney Water Reclamation Plant (SWRP) and Calumet Water Reclamation Plant (CWRP), lagoon-aged air-dried biosolids from the CWRP, and Milorganite at three rates of application (0, 12.5 and 25 Mg ha(-1)). The N mineralized varied among biosolids as follows: Milorganite (44%) > SWRP centrifuge cake (35%) > CWRP centrifuge cake (31%) > aged air-dried (13%). The N mineralized in the SWRP cake (32%) and CWRP aged air-dried biosolids (12%) determined from the 15N study were in agreement with the first study. The N mineralization value for centrifuge cake biosolids observed in our study is higher than the value given in the Part 503 rule and Illinois Part 391 guidelines. These results will be used to fine-tune biosolids application rate to match crop N demand without compromising yield while minimizing any adverse effect on the environment.

  8. Market opportunities for solar drying

    International Nuclear Information System (INIS)

    Voskens, R.G.J.H.; Out, P.G.; Schulte, B.

    2000-01-01

    One of the most promising applications for solar heating is the drying of agricultural products. The drying of agricultural products requires large quantities of low temperature air, in many cases, on a year-round basis. Low cost air-based collectors can provide heated air at solar collection efficiencies of 30 to 70%. In 1998/1999 a study was commissioned to better understand the technical and economic potential for solar drying of agricultural products in the world. The practical potential for solar drying was then determined for 59 crops and 22 regions. The world market for solar drying can be divided into three market segments: 1) mechanical drying T 50 deg. C; 3) sun drying. The most promising market for solar drying is generally market segment 1. For this segment the potential amount of energy displaced by solar is in between 216 770 PJ (World-wide). For Western Europe this potential is estimated between 23 88 PJ and for Eastern Europe between 7 and 13 PJ. A different market introduction strategy is required for each market segment. A total of 13 combinations of crops and regions are selected that appear to have the highest practical potential for solar drying. In the Netherlands a programme of activities was carried out by Ecofys and other organisations, to identify and develop the market potential for solar (assisted) drying of agricultural products. A promotional campaign for the use of renewable energy in the (promising) flower bulb sector is planned on a short-term basis to speed up market developments. It can be concluded that there is a large market for solar drying in the World as well as in Europe. (au)

  9. Thin layer convective air drying of wild edible plant (Allium roseum) leaves: experimental kinetics, modeling and quality

    OpenAIRE

    Ben Haj Said, Leila; Najjaa, Hanen; Farhat, Abdelhamid; Neffati, Mohamed; Bellagha, Sihem

    2014-01-01

    The present study deals with the valorization of an edible spontaneous plant of the Tunisian arid areas: Allium roseum. This plant is traditionally used for therapeutic and culinary uses. Thin-layer drying behavior of Allium roseum leaves was investigated at 40, 50 and 60 °C drying air temperatures and 1 and l.5 m/s air velocity, in a convective dryer. The increase in air temperature significantly affected the moisture loss and reduced the drying time while air velocity was an insignificant f...

  10. [Clinical characteristics of short tear film breakup time (BUT) -type dry eye].

    Science.gov (United States)

    Yamamoto, Yuji; Yokoi, Norihiko; Higashihara, Hisayo; Inagaki, Kayoko; Sonomura, Yukiko; Komuro, Aoi; Kinoshita, Shigeru

    2012-12-01

    To evaluate the clinical characteristics and management of short tear film breakup time (BUT) -type dry eye. Clinical background and post-treatment changes of symptoms in 77 patients with short BUT -type dry eye were investigated. Treatment consisted of artificial-tear eye-drop instillation and, if necessary, the addition of a low-density-level steroid, hyaluronic acid, a low-density-level cyclopentolate prepared by ourselves and punctal plugs inserted into the upper and lower lacrimal puncta. There were three times more women than men among the patients, and the peak age of occurrence was in the twenties in the men and in the sixties in the women. Our findings show that visual display terminal (VDT) work, contact lens (CL) wear, and changes in the sex hormones may initiate subjective symptoms. Some patients had simultaneous conjunctivochalasis, allergic conjunctivitis, and meibomian gland dysfunction. Nineteen patients (24.7%) were effectively treated with eye-drop instillation alone. Thirty-seven patients (48.1%) required punctal-plug insertion, which was completely effective in only 8 of them (21.6%). Mainly young men and menopausal women contract short BUT -type dry eye. Changes in sex hormones, VDT work and CL wear may be causal, and the disease cannot be controlled by eyedrop and punctal-plug treatment alone.

  11. Influence of drying air parameters on mass transfer characteristics of apple slices

    Science.gov (United States)

    Beigi, Mohsen

    2016-10-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  12. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment

    Science.gov (United States)

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2015-11-01

    In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42 %. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments.

  13. Reduced heat stress in offices in the tropics using solar powered drying of the supply air

    DEFF Research Database (Denmark)

    Gunnarsen, Lars; Santos, A M B

    2002-01-01

    air may facilitate personal cooling by increased evaporation of sweat. Heat acclimatized people with efficient sweating may in particular benefit from this cooling. A prototype solar powered supply system for dried-only air was made. Air from the system was mixed with room air, heated to six different...... content of room air, temperature of supply air and moisture content of supply air was developed based on the experiments. Reduction of moisture content in the supply air by 1.6 g/kg had the same effect as lowering the operative temperature by 1 degree C. The solar-powered system for supplying dry air...... is a low-cost alternative to traditional air conditioning in hot and humid regions....

  14. Effect of different air-drying time on the microleakage of single-step self-etch adhesives

    OpenAIRE

    Moosavi, Horieh; Forghani, Maryam; Managhebi, Esmatsadat

    2013-01-01

    Objectives This study evaluated the effect of three different air-drying times on microleakage of three self-etch adhesive systems. Materials and Methods Class I cavities were prepared for 108 extracted sound human premolars. The teeth were divided into three main groups based on three different adhesives: Opti Bond All in One (OBAO), Clearfil S3 Bond (CSB), Bond Force (BF). Each main group divided into three subgroups regarding the air-drying time: without application of air stream...

  15. Death of the TonB Shuttle Hypothesis.

    Science.gov (United States)

    Gresock, Michael G; Savenkova, Marina I; Larsen, Ray A; Ollis, Anne A; Postle, Kathleen

    2011-01-01

    A complex of ExbB, ExbD, and TonB couples cytoplasmic membrane (CM) proton motive force (pmf) to the active transport of large, scarce, or important nutrients across the outer membrane (OM). TonB interacts with OM transporters to enable ligand transport. Several mechanical models and a shuttle model explain how TonB might work. In the mechanical models, TonB remains attached to the CM during energy transduction, while in the shuttle model the TonB N terminus leaves the CM to deliver conformationally stored potential energy to OM transporters. Previous studies suggested that TonB did not shuttle based on the activity of a GFP-TonB fusion that was anchored in the CM by the GFP moiety. When we recreated the GFP-TonB fusion to extend those studies, in our hands it was proteolytically unstable, giving rise to potentially shuttleable degradation products. Recently, we discovered that a fusion of the Vibrio cholerae ToxR cytoplasmic domain to the N terminus of TonB was proteolytically stable. ToxR-TonB was able to be completely converted into a proteinase K-resistant conformation in response to loss of pmf in spheroplasts and exhibited an ability to form a pmf-dependent formaldehyde crosslink to ExbD, both indicators of its location in the CM. Most importantly, ToxR-TonB had the same relative specific activity as wild-type TonB. Taken together, these results provide conclusive evidence that TonB does not shuttle during energy transduction. We had previously concluded that TonB shuttles based on the use of an Oregon Green(®) 488 maleimide probe to assess periplasmic accessibility of N-terminal TonB. Here we show that the probe was permeant to the CM, thus permitting the labeling of the TonB N-terminus. These former results are reinterpreted in the context that TonB does not shuttle, and suggest the existence of a signal transduction pathway from OM to cytoplasm.

  16. Defining a procedure for predicting the duration of the approximately isothermal segments within the proposed drying regime as a function of the drying air parameters

    Science.gov (United States)

    Vasić, M.; Radojević, Z.

    2017-08-01

    One of the main disadvantages of the recently reported method, for setting up the drying regime based on the theory of moisture migration during drying, lies in a fact that it is based on a large number of isothermal experiments. In addition each isothermal experiment requires the use of different drying air parameters. The main goal of this paper was to find a way how to reduce the number of isothermal experiments without affecting the quality of the previously proposed calculation method. The first task was to define the lower and upper inputs as well as the output of the “black box” which will be used in the Box-Wilkinson’s orthogonal multi-factorial experimental design. Three inputs (drying air temperature, humidity and velocity) were used within the experimental design. The output parameter of the model represents the time interval between any two chosen characteristic points presented on the Deff - t. The second task was to calculate the output parameter for each planed experiments. The final output of the model is the equation which can predict the time interval between any two chosen characteristic points as a function of the drying air parameters. This equation is valid for any value of the drying air parameters which are within the defined area designated with lower and upper limiting values.

  17. Optimum dry-cooling sub-systems for a solar air conditioner

    Science.gov (United States)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  18. Robust Vacuum-/Air-Dried Graphene Aerogels and Fast Recoverable Shape-Memory Hybrid Foams.

    Science.gov (United States)

    Li, Chenwei; Qiu, Ling; Zhang, Baoqing; Li, Dan; Liu, Chen-Yang

    2016-02-17

    New graphene aerogels can be fabricated by vacuum/air drying, and because of the mechanical robustness of the graphene aerogels, shape-memory polymer/graphene hybrid foams can be fabricated by a simple infiltration-air-drying-crosslinking method. Due to the superelasticity, high strength, and good electrical conductivity of the as-prepared graphene aerogels, the shape-memory hybrid foams exhibit excellent thermotropical and electrical shape-memory properties, outperforming previously reported shape-memory polymer foams. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Temperature Control of Heating Zone for Drying Process: Effect of Air Velocity Change

    Directory of Open Access Journals (Sweden)

    Wutthithanyawat Chananchai

    2016-01-01

    Full Text Available This paper proposes a temperature control technique to adjust air temperature in a heating zone for drying process. The controller design is achieved by using an internal model control (IMC approach. When the IMC controller parameters were designed by calculating from an actual process transfer function estimated through an open-loop step response with input step change from 50% to 60% at a reference condition at air velocity of 1.20 m/s, the performance of temperature controller was experimentally tested by varying an air velocity between 1.32 m/s and 1.57 m/s, respectively. The experimental results showed that IMC controller had a high competency for controlling the drying temperature.

  20. Mercury fluxes from air/surface interfaces in paddy field and dry land

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jinshan [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China); Wang Dingyong, E-mail: dywang@swu.edu.cn [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China)] [Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716 (China); Liu Xiao; Zhang Yutong [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China)

    2011-02-15

    Research highlights: {yields} It was found that agricultural fields are important local atmospheric Hg sources in the region. {yields} The Hg emissions from dry cornfield were higher than those from the flooded rice paddy, higher mercury emissions in the warm season than the cold season, and during daytime than at night. {yields} Mercury evasion is strongly related to solar radiation which is important in the emission of Hg at both sites. - Abstract: In order to provide insight into the characteristics of Hg exchange in soil/water-air surface from cropland (including paddy field and dry land), Hg fluxes were measured in Chengjiang. Mercury fluxes were measured using the dynamic flux chamber method, coupled with a Lumex (registered) multifunctional Hg analyzer RA-915{sup +} (Lumex Ltd., Russia). The Hg fluxes from paddy field and dry land were alternatively measured every 30 min. Data were collected for 24-48 h once per month for 5 months. Mercury fluxes in both fields were synchronously measured under the same conditions to compare Hg emissions between paddy field and dry land over diurnal and seasonal periods and find out what factors affect Hg emission on each surface. These results indicated that air Hg concentrations at the monitoring site was double the value observed at the global background sites in Europe and North America. The Hg release fluxes were 46.5 {+-} 22.8 ng m{sup -2} h{sup -1} in the warm season, 15.5 {+-} 18.8 ng m{sup -2} h{sup -1} in the cold season for dry land, and 23.8 {+-} 15.6 ng m{sup -2} h{sup -1} in the warm season, 6.3 {+-} 11.9 ng m{sup -2} h{sup -1} in the cold season for paddy field. Solar radiation is important in the emission of Hg over both sites. Hg exchange at the soil/air and water/air interfaces showed temporal variations. The amount of Hg emission from dry land was higher than that from the paddy field, and the emission in daytime was higher than that at night. Moreover, Hg emissions from land covered by crops, was lower

  1. Performance of a Big Scale Green House Type Dryer for Coffee Drying Process

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2014-12-01

    Full Text Available Dying is one of important steps in coffee processing to produce good quality. Greenhouse is one of artificial drying alternatives that potential for coffee drying method cause of cleans environmental friendly, renewable energy sources and chippers. Indonesian Coffee and Cocoa Research Institute has developed and testing a big scale greenhouse type dryer for fresh coffee cherries and wet parchment coffee drying process. Greenhouse has 24 m length, 18 m width, also 3 m high of the front side and 2 m high of the rear side. The maximum capacity of greenhouse is 40 tons fresh coffee cherries. Fiber Reinforced Plastic (FRP used as greenhouse roof that combined with I and C profile of steel. Fresh coffee cherries and wet parchment coffee from Robusta variety use as main materials in this research. The treatment of this research was 30 kg/m2, 60 kg/m2 and 90 kg/m2 for coffee density. String process has done by manual, two times a day in the morning and in the afternoon. As control, fresh coffee cherries and wet parchment coffee has dried by fully sun drying method. The result showed that a big scale greenhouse has heat drying efficiency between 29.9-58.2% depend on type and density of coffee treatments. On the full sunny day, greenhouse has produced maximum drying air temperature up to 52oC. In radiation cumulative level 4-5 kW-jam/m2 per day, 12.9-38.8 tons fresh coffee cherries or wet parchment coffee with 58-64% moisture content can be dried to 12% moisture content for 6 up to 14 days drying process. Slowly drying mechanism can be avoided negative effect to degradation of quality precursor compound. Capacity of the dryer can be raise and fungi can be reduce with application of controllable mechanical stirring in the greenhouse. Keywords: greenhouse, coffee, drying, quality

  2. Death of the TonB shuttle hypothesis

    Directory of Open Access Journals (Sweden)

    Michael George Gresock

    2011-10-01

    Full Text Available A complex of ExbB, ExbD, and TonB transduces cytoplasmic membrane (CM proton motive force (pmf to outer membrane (OM transporters so that large, scarce, and important nutrients can be released into the periplasmic space for subsequent transport across the CM. TonB is the component that interacts with the OM transporters and enables ligand transport, and several mechanical models and a shuttle model explain how TonB might work. In the mechanical models, TonB remains attached to the CM during energy transduction, while in the shuttle model the TonB N terminus leaves the CM to deliver conformationally stored potential energy to OM transporters. Previous efforts to test the shuttle model by anchoring TonB to the CM by fusion to a large globular cytoplasmic protein have been hampered by the proteolytic susceptibility of the fusion constructs. Here we confirm that GFP-TonB, tested in a previous study by another laboratory, again gave rise to full-length TonB and slightly larger potentially shuttleable fragments that prevented unambiguous interpretation of the data. Recently, we discovered that a fusion of the Vibrio cholerae ToxR cytoplasmic domain to the N terminus of TonB was proteolytically stable. ToxR-TonB was able to be completely converted into a proteinase K-resistant conformation in response to loss of pmf in spheroplasts and exhibited an ability to form a pmf-dependent formaldehyde crosslink to ExbD, both indicators of its location in the CM. Most importantly, ToxR-TonB had the same relative specific activity as wild-type TonB. Taken together, these results provide the first conclusive evidence that TonB does not shuttle during energy transduction. The interpretations of our previous study, which concluded that TonB shuttled in vivo, were complicated by the fact that the probe used in those studies, Oregon Green® 488 maleimide, was permeant to the CM and could label proteins, including a TonB ∆TMD derivative, confined exclusively to the

  3. Empirical Modeling on Hot Air Drying of Fresh and Pre-treated Pineapples

    Directory of Open Access Journals (Sweden)

    Tanongkankit Yardfon

    2016-01-01

    Full Text Available This research was aimed to study drying kinetics and determine empirical model of fresh pineapple and pre-treated pineapple with sucrose solution at different concentrations during drying. 3 mm thick samples were immersed into 30, 40 and 50 Brix of sucrose solution before hot air drying at temperatures of 60, 70 and 80°C. The empirical models to predict the drying kinetics were investigated. The results showed that the moisture content decreased when increasing the drying temperatures and times. Increase in sucrose concentration led to longer drying time. According to the statistical values of the highest coefficients (R2, the lowest least of chi-square (χ2 and root mean square error (RMSE, Logarithmic model was the best models for describing the drying behavior of soaked samples into 30, 40 and 50 Brix of sucrose solution.

  4. Hyperventilation with cold versus dry air in 2- to 5-year-old children with asthma

    DEFF Research Database (Denmark)

    Nielsen, Kim G; Bisgaard, Hans

    2005-01-01

    UNLABELLED: Cold air challenge (CACh) has been shown to discriminate between children with asthma and healthy young children. Hyperventilation with dry room-temperature air is a simplified alternative. We compared responsiveness in young children with asthma between two standardized, single......-subject SDs (SDw). The challenge sequence was randomly assigned. A comparator challenge was performed 1 hour later if the first challenge gave a change of 3 SDw or more. Forty 2- to 5-year-old children with asthma were included. Responsiveness to cold versus dry air showed significant, but weak, correlation...

  5. Drought analysis in the Tons River Basin, India during 1969-2008

    Science.gov (United States)

    Meshram, Sarita Gajbhiye; Gautam, Randhir; Kahya, Ercan

    2018-05-01

    The primary focus of this study is the analysis of droughts in the Tons River Basin during the period 1969-2008. Precipitation data observed at four gauging stations are used to identify drought over the study area. The event of drought is derived from the standardized precipitation index (SPI) on a 3-month scale. Our results indicated that severe drought occurred in the Allahabad, Rewa, and Satna stations in the years 1973 and 1979. The droughts in this region had occurred mainly due to erratic behavior in monsoons, especially due to long breaks between monsoons. During the drought years, the deficiency of the annual rainfall in the analysis of annual rainfall departure had varied from -26% in 1976 to -60% in 1973 at Allahabad station in the basin. The maximum deficiency of annual and seasonal rainfall recorded in the basin is 60%. The maximum seasonal rainfall departure observed in the basin is in the order of -60% at Allahabad station in 1973, while maximum annual rainfall departure had been recorded as -60% during 1979 at the Satna station. Extreme dry events ( z score <-2) were detected during July, August, and September. Moreover, severe dry events were observed in August, September, and October. The drought conditions in the Tons River Basin are dominantly driven by total rainfall throughout the period between June and November.

  6. Coffee husk associated with firewood as fuel for indirect heating of drying air

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Edney Alves; Silva, Juarez de Sousa e; Silva, Jadir Nogueira da; Oliveira Filho, Delly [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola; Donzeles, Sergio Mauricio Lopes [Empresa de Pesquisa Agropecuaria de Minas Gerais (EPAMIG), Vicosa, MG (Brazil)

    2008-07-01

    The objective of this work was the performance analysis of a furnace, burning coffee husk associated with firewood to heat the drying air passing through a heat exchanger. For the analysis the temperature variation, the combustion quality, the heat losses and the furnace thermal efficiency were all monitored. Results showed that the furnace average efficiency was 58.3% and the heat losses in the exhaust were 24.3%. The presence of carbon monoxide in the exhaust gases (average 2982.8 ppm) had proven incomplete combustion, and suggesting that the combustion gases can not be used to directly drying of foods. Despite of indirect heating, the presented thermal efficiency indicates that the burning of coffee husks is one economic alternative for air heating in grain drying or in other agricultural processes. (author)

  7. Improving Malaysian cocoa quality through the use of dehumidified air under mild drying conditions.

    Science.gov (United States)

    Hii, Ching L; Law, Chung L; Cloke, Michael; Sharif, Suzannah

    2011-01-30

    Various studies have been conducted in the past to improve the quality of Malaysian cocoa beans. However, the processing methods still remain crude and lack technological advancement. In terms of drying, no previous study has attempted to apply advanced drying technology to improve bean quality. This paper presents the first attempt to improve the quality of cocoa beans through heat pump drying using constant air (28.6 and 40.4 °C) and stepwise (step-up 30.7-43.6-56.9 °C and step-down 54.9-43.9 °C) drying profiles. Comparison was made against hot air drying at 55.9 °C. Product quality assessment showed significant improvement in the quality of Malaysian cocoa beans. Quality was found to be better in terms of lower acidity (higher pH) and higher degree of browning (cut test) for cocoa beans dried using the step-up profile. All heat pump-dried samples showed flavour quality comparable to that of Ghanaian and better than that of Malaysian and Indonesian commercial samples. Step-up-dried samples showed the best flavour profile with high level of cocoa flavour, low in sourness and not excessive in bitterness and astringency. Dried cocoa samples from the step-up drying profile showed the best overall quality as compared with commercial samples from Malaysia, Indonesia and Ghana. The improvement of Malaysian cocoa bean quality is thus achievable through heat pump drying. 2010 Society of Chemical Industry.

  8. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.

    Science.gov (United States)

    Shima, Jun; Ando, Akira; Takagi, Hiroshi

    2008-03-01

    Yeasts used in bread making are exposed to air-drying stress during dried yeast production processes. To clarify the genes required for air-drying tolerance, we performed genome-wide screening using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 278 gene deletions responsible for air-drying sensitivity. These genes were classified based on their cellular function and on the localization of their gene products. The results showed that the genes required for air-drying tolerance were frequently involved in mitochondrial functions and in connection with vacuolar H(+)-ATPase, which plays a role in vacuolar acidification. To determine the role of vacuolar acidification in air-drying stress tolerance, we monitored intracellular pH. The results showed that intracellular acidification was induced during air-drying and that this acidification was amplified in a deletion mutant of the VMA2 gene encoding a component of vacuolar H(+)-ATPase, suggesting that vacuolar H(+)-ATPase helps maintain intracellular pH homeostasis, which is affected by air-drying stress. To determine the effects of air-drying stress on mitochondria, we analysed the mitochondrial membrane potential under air-drying stress conditions using MitoTracker. The results showed that mitochondria were extremely sensitive to air-drying stress, suggesting that a mitochondrial function is required for tolerance to air-drying stress. We also analysed the correlation between oxidative-stress sensitivity and air-drying-stress sensitivity. The results suggested that oxidative stress is a critical determinant of sensitivity to air-drying stress, although ROS-scavenging systems are not necessary for air-drying stress tolerance. (c) 2008 John Wiley & Sons, Ltd.

  9. Bottom ash handling: why the outlook is dry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    The author believes that dry systems are the way forward for bottom ash handling at coal fired power plants. The first two commercial installations of Clyde Bergemann's DRYCON system, in China, are due to enter operation shortly. The DRY ash CONveyor (DRYCON) employs fresh air flow to cool the ash, returning reheat energy to the boiler. It also addresses some problems encountered with previous dry technologies whilst increasing ash capacity and enhancing ash cooking. The advantages of the DRYCON over the wet submerged scraper conveyor are listed. 7 figs.

  10. Effect of water activity and protective solutes on growth and subsequent survival to air-drying of Lactobacillus and Bifidobacterium cultures.

    Science.gov (United States)

    Champagne, Claude P; Raymond, Yves; Simon, Jean-Paul

    2012-08-01

    Probiotic cultures of Lactobacillus plantarum, Lactobacillus rhamnosus, Bifidobacterium longum, Lactobacillus casei and Lactobacillus acidophilus were grown in media having water activities (a (w)) adjusted between 0.99 and 0.94 with NaCl or with a mixture of glycerol and sucrose in order to find conditions of osmotic stress which would still allow for good growth. Cultures grown at a (w) = 0.96 or 0.99 were then recovered by centrifugation, added to a sucrose-phosphate medium and air-dried. In some assays, a 2-h osmotic stress was applied to the cell concentrate prior to air-drying. Assays were also carried out where betaine, glutamate and proline (BGP) supplements were added as protective compounds to the growth or drying media. For most strains, evidence of osmotic stress and benefits of BGP supplementation on growth occurred at a (w) = 0.96. Growing the cells in complex media adjusted at a (w) = 0.96 did not enhance their subsequent survival to air-drying, but applying the 2-h osmotic stress did. Addition of the BGP supplements to the growth medium or in the 2-h stress medium did not enhance survival to air-drying. Furthermore, addition of BGP to a sucrose-phosphate drying medium reduced survival of the cultures to air-drying. This study provides preliminary data for producers of probiotics who wish to use air-drying in replacement of freeze-drying for the stabilization of cultures.

  11. Influence of warm air-drying on enamel bond strength and surface free-energy of self-etch adhesives.

    Science.gov (United States)

    Shiratsuchi, Koji; Tsujimoto, Akimasa; Takamizawa, Toshiki; Furuichi, Tetsuya; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2013-08-01

    We examined the effect of warm air-drying on the enamel bond strengths and the surface free-energy of three single-step self-etch adhesives. Bovine mandibular incisors were mounted in self-curing resin and then wet ground with #600 silicon carbide (SiC) paper. The adhesives were applied according to the instructions of the respective manufacturers and then dried in a stream of normal (23°C) or warm (37°C) air for 5, 10, and 20 s. After visible-light irradiation of the adhesives, resin composites were condensed into a mold and polymerized. Ten samples per test group were stored in distilled water at 37°C for 24 h and then the bond strengths were measured. The surface free-energies were determined by measuring the contact angles of three test liquids placed on the cured adhesives. The enamel bond strengths varied according to the air-drying time and ranged from 15.8 to 19.1 MPa. The trends for the bond strengths were different among the materials. The value of the γS⁺ component increased slightly when drying was performed with a stream of warm air, whereas that of the γS⁻ component decreased significantly. These data suggest that warm air-drying is essential to obtain adequate enamel bond strengths, although increasing the drying time did not significantly influence the bond strength. © 2013 Eur J Oral Sci.

  12. The impact of dry-land sprint start training on the short track speed skating start.

    Science.gov (United States)

    Haug, William B; Drinkwater, Eric J; Cicero, Nicholas J; Barthell, J Anthony; Chapman, Dale W

    2017-05-05

    This investigation sought to determine the effects of dry-land sprint start training on short track speed skating (STSS) start performance. Nine highly trained short track athletes completed a control period of normal STSS training followed by a four-week training intervention. Before and after the control and intervention periods, athletes performed three electronically timed dry-land and on-ice 14.43 m maximal sprint start efforts. The intervention consisted of two sprint sessions per week consisting of nine electronically timed 14.43 m dry-land sprint starts in addition to normal STSS training. The control period resulted in no substantial change in on-ice start performance (Mean Δ: -0.01 s, 95% Confidence Limits (CL): -0.08 to 0.05 s; Effect Size (ES): -0.05; Trivial) however, a small change was observed in dry-land start performance (Mean Δ: -0.07 s, 95% CL: -0.13 to -0.02 s; ES: -0.49). Following brief specific dry-land sprint start training a small improvement was observed in both on-ice (Mean Δ: -0.07 s, 95% CL: -0.13 to -0.01 s; ES: -0.33) and dry-land (Mean Δ: -0.04 s, 95% CL: -0.09 to 0.00 s; ES: -0.29) start performance. This investigation suggests STSS start performance can be improved through a brief dry-land sprint start training program.

  13. The effect of air dried conditions on mechanical and physical ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... small dimension wooden material is used and this affects the cost of ... The first serious application of laminating technique ... buildings, stock hangar, farms and stables constructions ... resistant lamine elements to air dried condition were easy .... the other was organic solvent water repellent protim WR230.

  14. Short Term Airing by Natural Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Perino, M.

    2010-01-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. Among the available ventilation strategies...... that are currently available, buoyancy driven, single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and Indoor Air Quality (IAQ) control. However, to promote a wider distribution of these systems an improvement in the knowledge of their working...... airflow rate, ventilation efficiency, thermal comfort and dynamic temperature conditions. A suitable laboratory test rig was developed to perform extensive experimental analyses of the phenomenon under controlled and repeatable conditions. The results showed that short-term window airing is very effective...

  15. Effects of production methods and protective ingredients on the viability of probiotic Lactobacillus rhamnosus R0011 in air-dried alginate beads.

    Science.gov (United States)

    Champagne, Claude P; Raymond, Yves; Arcand, Yves

    2017-01-01

    The goal of this study was to use a microencapsulation technology to prepare air-dried concentrated cultures of Lactobacillus rhamnosus R0011. The cultures were microencapsulated in alginate beads, which were added to a growth medium to allow cell multiplication inside the matrix; the beads were recovered, dipped in protective solutions, and air-dried. The effects of fermentation technology and of the composition of the protective solutions on subsequent survival during air-drying were examined. The cells prepared under a constant pH of 6.2 had only 2.5% survival to air-drying at 25 °C when the protective solution was composed of sucrose and phosphate. Allowing the pH to drop to 4.2 during the biomass production step and using a protective medium composed of glycerol, maltodextrin, yeast extract, and ascorbate increased survival to 20%. If the ingredients of the protective medium at the beginning of drying were concentrated at a water activity of 0.96 rather than 0.98, survival during air-drying increased further to 56%. This rate was similar to that of a traditional freeze-drying process. These data suggest that applying a combination of acid and osmotic stresses to L. rhamnosus R0011 cells improves their subsequent stability during the air-drying process. Dried microencapsulated cultures having 2.6 × 10 11 CFU·g -1 were obtained.

  16. Generalized drying curves in conductive/convective paper drying

    Directory of Open Access Journals (Sweden)

    O.C. Motta Lima

    2000-12-01

    Full Text Available This work presents a study related to conductive/convective drying of paper (cellulose sheets over heated surfaces, under natural and forced air conditions. The experimental apparatus consists in a metallic box heated by a thermostatic bath containing an upper surface on which the paper samples (about 1 mm thick are placed. The system is submitted to ambient air under two different conditions: natural convection and forced convection provide by an adjustable blower. The influence of initial paper moisture content, drying (heated surface temperature and air velocity on drying curves behavior is observed under different drying conditions. Hence, these influence is studied through the proposal of generalized drying curves. Those curves are analyzed individually for each air condition exposed above and for both together. A set of equations to fit them is proposed and discussed.

  17. Air-drying of cells, the novel conditions for stimulated synthesis of triacylglycerol in a Green Alga, Chlorella kessleri.

    Directory of Open Access Journals (Sweden)

    Takuma Shiratake

    Full Text Available Triacylglycerol is used for the production of commodities including food oils and biodiesel fuel. Microalgae can accumulate triacylglycerol under adverse environmental conditions such as nitrogen-starvation. This study explored the possibility of air-drying of green algal cells as a novel and simple protocol for enhancement of their triacylglycerol content. Chlorella kessleri cells were fixed on the surface of a glass fibre filter and then subjected to air-drying with light illumination. The dry cell weight, on a filter, increased by 2.7-fold in 96 h, the corresponding chlorophyll content ranging from 1.0 to 1.3-fold the initial one. Concomitantly, the triacylglycerol content remarkably increased to 70.3 mole% of fatty acids and 15.9% (w/w, relative to total fatty acids and dry cell weight, respectively, like in cells starved of nitrogen. Reduction of the stress of air-drying by placing the glass filter on a filter paper soaked in H2O lowered the fatty acid content of triacylglycerol to 26.4 mole% as to total fatty acids. Moreover, replacement of the H2O with culture medium further decreased the fatty acid content of triacylglycerol to 12.2 mole%. It thus seemed that severe dehydration is required for full induction of triacylglycerol synthesis, and that nutritional depletion as well as dehydration are crucial environmental factors. Meanwhile, air-drying of Chlamydomonas reinhardtii cells increased the triacylglycerol content to only 37.9 mole% of fatty acids and 4.8% (w/w, relative to total fatty acids and dry cell weight, respectively, and a marked decrease in the chlorophyll content, on a filter, of 33%. Air-drying thus has an impact on triacylglycerol synthesis in C. reinhardtii also, however, the effect is considerably limited, owing probably to instability of the photosynthetic machinery. This air-drying protocol could be useful for the development of a system for industrial production of triacylglycerol with appropriate selection of the

  18. Problems and issues for short-haul air transportation.

    Science.gov (United States)

    Vittek, J. F., Jr.

    1972-01-01

    The problems of developing an efficient short-haul air system are not primarily technical, but economic and political. The key issues are whether the community will accept new and expanded air facilities, what standards of service the passengers will demand and how the system will evolve. The solutions recommended are national in scope and require the federal government to take a leading role.

  19. Short dry spells in the wet season increase mortality of tropical pioneer seedlings.

    Science.gov (United States)

    Engelbrecht, Bettina M J; Dalling, James W; Pearson, Timothy R H; Wolf, Robert L; Gálvez, David A; Koehler, Tobias; Tyree, Melvin T; Kursar, Thomas A

    2006-06-01

    Variation in plant species performance in response to water availability offers a potential axis for temporal and spatial habitat partitioning and may therefore affect community composition in tropical forests. We hypothesized that short dry spells during the wet season are a significant source of mortality for the newly emerging seedlings of pioneer species that recruit in treefall gaps in tropical forests. An analysis of a 49-year rainfall record for three forests across a rainfall gradient in central Panama confirmed that dry spells of > or = 10 days during the wet season occur on average once a year in a deciduous forest, and once every other year in a semi-deciduous moist and an evergreen wet forest. The effect of wet season dry spells on the recruitment of pioneers was investigated by comparing seedling survival in rain-protected dry plots and irrigated control plots in four large artificially created treefall gaps in a semi-deciduous tropical forest. In rain-protected plots surface soil layers dried rapidly, leading to a strong gradient in water potential within the upper 10 cm of soil. Seedling survival for six pioneer species was significantly lower in rain-protected than in irrigated control plots after only 4 days. The strength of the irrigation effect differed among species, and first became apparent 3-10 days after treatments started. Root allocation patterns were significantly, or marginally significantly, different between species and between two groups of larger and smaller seeded species. However, they were not correlated with seedling drought sensitivity, suggesting allocation is not a key trait for drought sensitivity in pioneer seedlings. Our data provide strong evidence that short dry spells in the wet season differentially affect seedling survivorship of pioneer species, and may therefore have important implications to seedling demography and community dynamics.

  20. VARIABILITY PROMISING LINES PEANUT ON THE DRY LAND IN CENTRAL MALUKU DISTRICT

    Directory of Open Access Journals (Sweden)

    Sheny Kaihatu

    2013-01-01

    Full Text Available Study multiple strains or varieties of peanut aim to get two until three peanut promising lines (productivity larger three tons per ha of drought-tolerant Series of Dry Days larger than 15 percent and adaptive dryland agroecosystem in Maluku, performed in Central Maluku district Makariki 2010, using Randomized Block Design three replications. 10 strains planted include: S-4, S-5, S-8, S-9, S-10, S-11, S-15, S-16, S-19, S-20, and two varieties local Lions and Red as comparison. Wide swath of 2.5 m x 3.5 m, spacing of 40 cm x 15 cm, one seed per planting hole. Parameter: number of observations crop plants, 50 percent flowering, plant height, maturity, number of pods per plant, weight of wet pods per plant, dry weight of pods per plant, pod dry weight per plot, weight of 100 seeds (g and dry seed weight (tons per ha. Results: strains or varieties S-4 gives a wet pod weight and dry weight of pods per plant higher in amount of 62.2 g and 37.27 g where as strain S-5, S-11, and S-15 dry seed weight higher respectively by two tons per ha.

  1. Solar air heaters for industrial drying; Aquecedor solar de ar para secagem industrial

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Everaldo Mendes [Governo do Estado da Paraiba, Joao Pessoa, PB (Brazil). Secretaria de Planejamento e Gestao

    2008-07-01

    The objective of this study is to encourage the use of solar energy in industrial drying of fruits, with the producers poles, at the same time, promote the rational use of energy for heat, or replacing the hydroelectric and oil derivatives for this purpose. This study is presented in the following chapters: availability of solar energy; details of constructive solar heated air; drying fruit; market. (author)

  2. The volatile oil composition of fresh and air-dried buds of Cannabis sativa.

    Science.gov (United States)

    Ross, S A; ElSohly, M A

    1996-01-01

    The composition of the steam-distilled volatile oil of fresh and air-dried, indoor-grown marijuana was studied by GC/FID and GC/MS. In all, 68 components were detected of which 57 were fully identified. Drying of the plant material had no effect on the qualitative composition of the oil and did not affect the ability of individuals familiar with marijuana smell to recognize the odor.

  3. A Numerical Assessment of the Air Flow Behaviour in a Conventional Compact Dry Kiln

    OpenAIRE

    Paulo Zdanski; Daniel Possamai; Miguel Vaz Jr.

    2015-01-01

    Convective drying is the most common drying strategy used in timber manufacturing industries in the developing world. In convective drying, the reduction rate of the moisture content is directly affected by the flow topology in the inlet and exit plenums and the air flow velocity in the channels formed by timber layers.Turbulence, boundary layer separation, vortex formation and recirculation regions are flow features that are intrinsically associated with the kiln geometry, which in turn dict...

  4. Air-Lubricated Thermal Processor For Dry Silver Film

    Science.gov (United States)

    Siryj, B. W.

    1980-09-01

    Since dry silver film is processed by heat, it may be viewed on a light table only seconds after exposure. On the other hand, wet films require both bulky chemicals and substantial time before an image can be analyzed. Processing of dry silver film, although simple in concept, is not so simple when reduced to practice. The main concern is the effect of film temperature gradients on uniformity of optical film density. RCA has developed two thermal processors, different in implementation but based on the same philosophy. Pressurized air is directed to both sides of the film to support the film and to conduct the heat to the film. Porous graphite is used as the medium through which heat and air are introduced. The initial thermal processor was designed to process 9.5-inch-wide film moving at speeds ranging from 0.0034 to 0.008 inch per second. The processor configuration was curved to match the plane generated by the laser recording beam. The second thermal processor was configured to process 5-inch-wide film moving at a continuously variable rate ranging from 0.15 to 3.5 inches per second. Due to field flattening optics used in this laser recorder, the required film processing area was plane. In addition, this processor was sectioned in the direction of film motion, giving the processor the capability of varying both temperature and effective processing area.

  5. Influence of 60Co γ irradiation pre-treatment on characteristics of hot air drying sweet potato slices

    International Nuclear Information System (INIS)

    Jiang Ning; Liu Chunquan; Li Dajing; Liu Xia; Yan Qimei

    2012-01-01

    The influences of irradiation, hot air temperature and thicknesses of the slices on the characters of dehydration and surface temperature of 60 Co γ-rays irradiated sweet potato were investigated. Meanwhile, microscopic observation and determination of water activity of irradiated sweet potato were conducted. The results show that the drying rate and the surface temperature rose with the increasing of irradiation dose. When the dry basis moisture content was 150%, the drying rate of the samples were 1.92, 1.97, 2.05, 2.28, 3.12% /min while the irradiation dose were 0, 2, 5, 8, 10 kGy, and the surface temperature were 48.5 ℃, 46.3℃, 44.5 ℃, 42.2 ℃, 41.5 ℃, respectively. With higher air temperature and thinner of the sweet potato slices, the dehydration of the irradiated sweet potato slices were faster. The drying speed of sweet potato slices at 85 ℃ was 170 min faster than that of 65 ℃. The drying speed of 7 mm sweet potato slices was 228 min faster than that of 3 mm sample. The cell wall and the vacuole of the sweet potato slices were broken after irradiation, and its water activity increased with the increase is radiation dose. The water activity of the irradiated samples were 0.92, 0.945, 0.958, 0.969, 0.979 with the irradiation doses of 0, 2, 5, 8, 10 kGy, respectively. The hot air drying rate, surface temperature and water activity of sweet potato are significantly impacted by irradiation. The conclusion provides a theoretical foundation for further processing technology of combined radiation and hot air drying sweet potato. (authors)

  6. Economical analysis of the spray drying process by pre-dehumidification of the inlet air

    Energy Technology Data Exchange (ETDEWEB)

    Madeira, A.N.; Camargo, J.R. [University of Taubate (UNITAU), SP (Brazil). Mechanical Engineering Dept.

    2009-07-01

    Spray drying is a dehumidification process by atomization in a closed chamber that aims to remove moisture of a product by heat and mass transfer from the product's contained water to the air that, in this process is previously heated. This paper presents a case study for an industry that produces food ingredients. The current process applied in the product to heat the air can uses one of these two systems: a direct heating process that burns liquid petroleum gas in contact with the inlet air or indirect heating that uses a heat exchanger which heat the air. This heating system consumes 90% of the total process energy. However, this inlet air can reach the dehumidifier with high moisture from the atmosphere condition requesting, in this case, more energy consumption according to the year's seasons. This paper promotes a utilization study of the current process through the installation of a pre-dehumidification device of the inlet air and shows a study to three different dehumidification systems that means by refrigeration, adsorption and actual comparing their performance in an energetic and economical point of view. The goals of this study are to analyze the capacity of moisture removing of each removing device, the influence of moisture variation of the inlet air in the process as well as the economic impact of each device in the global system. It concludes that the utilization of dehumidification devices can eliminate the heating system reducing this way the energy consumption. Moreover it promotes the increasing of moisture gradient between the inlet air and the product optimizing the drying process and increasing the global energy efficiency in the global system. Choosing the most appropriate system for the pre-dehumidification device depends on the desired initial and final moisture content of the product, but applying pre-dehumidifiers at the inlet air promotes an energetic optimization in the spray drying process. (author)

  7. Effect of hot-air drying on the physicochemical properties of kaffir lime leaves (Citrus hystrix)

    OpenAIRE

    Juhari, Nurul Hanisah Binti; Lasekan, Ola; Muhammad, Kharidah; Karim, Shahrim

    2013-01-01

    The effect of hot-air drying namely drying time (3-15 h), drying temperature (40-80°C) and loading capacity (0.5-2.0 kg/m2 ) on the physicochemical characteristics of kaffir lime leaves was optimized using Response Surface Methodology. Twenty treatments were assigned based on the second- order CCD including 6 center points, 6 axial points and 8 factorial points. The quality of dried kaffir lime leaves was evaluated by determining moisture content, water activity, texture (brittleness) and Hun...

  8. Gas Dispersion in Granular Porous Media under Air-Dry and Wet Conditions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Hamamoto, S; Kawamoto, K

    2012-01-01

    Subsurface gaseous-phase transport is governed by three gas transport parameters: the air permeability coefficient (ka), gas diffusion coefficient (DP), and gas dispersion coefficient (DH). Among these, DH is the least understood due to hitherto limited research into the relationship between gas...... dispersion and soil physical characteristics. In this study, a series of advection–dispersion experiments was performed on granular porous media to identify the effects of soil column dimensions (length and diameter), particle size and shape, dry bulk density, and moisture content on the magnitude of gas...... dispersion. Glass beads and various sands of different shapes (angular and rounded) with mean particle diameters (d50) ranging from 0.19 to 1.51 mm at both air-dry and variable moisture contents were used as granular porous media. Gas dispersion coefficients and gas dispersivities (a = DH/v, where v...

  9. Properties of metallocene complexes during the oxidative crosslinking of air drying coatings

    Science.gov (United States)

    Stava, Vit; Erben, Milan; Vesely, David; Kalenda, Petr

    2007-05-01

    Driers are added to air drying paints to accelerate the hardening of spread coating. For decades cobalt octoate has been the most widely used drier because of its good performance at ambient temperature. Recently, several reports describing possible carcinogenity and genotoxicity of cobalt and cobalt salts, such as cobalt sulfate in aerosols, have appeared. It is necessary to reduce the amount of cobalt compounds in coatings industry. Present study deals with the possibility of using ferrocene and its derivatives as driers for air drying coatings. We concentrated particularly on the synergic effect between these metallocene complexes and the cobalt drier. In the first step the kinetics of autooxidation by FTIR spectroscopy in model systems was investigated. Then the metallocene complexes were applied together with cobalt drier to alkyd resin, where their influence on hardness of spread coatings was examined.

  10. Low temperature hot air drying of potato cubes subjected to osmotic dehydration and intermittent microwave: drying kinetics, energy consumption and product quality indexes

    Science.gov (United States)

    Dehghannya, Jalal; Bozorghi, Somayyeh; Heshmati, Maryam Khakbaz

    2018-04-01

    Hot-air drying is a slow energy-extensive process. Use of intermittent microwave (IM) in hot-air (HA) drying of food products is characterized with advantages including reduced process time, energy saving, and improved final quality. In this study, the effect of IM-HA drying following an osmotic dehydration (OD) pretreatment was analyzed on qualitative and quantitative properties of the output (i.e. effective moisture diffusion coefficient (Deff), shrinkage, bulk density, rehydration and energy consumption). Temperature and airflow velocity were fixed at 40°C and 1 m/s, respectively. The process variables included sucrose solution concentration at five levels (0 or control, 10, 30, 50 and 70 w/w%), microwave output power at four levels (0 or control, 360, 600 and 900 W), and pulse ratio at four levels (1, 2, 3 and 4). Use of osmotic dehydration in combination with IM-HA drying reduced the drying time by up to about 54%. Increasing the osmotic solution concentration to 30% and using higher pulse ratios increased the Deff. The lowest shrinkage and bulk density as well as the highest rehydration belonged to the 900 W microwave power and pulse ratio of 4. The lowest energy consumption was observed when using the 900 W power level, showing 63.27% less consumption than the HA drying method.

  11. Antioxidant capacity and total phenolic content of air-dried cape gooseberry (Physalis peruviana L. at different ripeness stages

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Narváez-Cuenca

    2014-08-01

    Full Text Available Because the use of drying at high temperatures might negatively affect the functional properties of fruits, the effect of air-drying at 60°C on the total phenolic content (TPC and antioxidant capacity (AOC of cape gooseberry fruit was evaluated at three ripeness stages. The AOC was evaluated with 2,2'-azino-bis(3- ethylbenzothiazoline-6-sulfonic acid (ABTS , ferric reducing ability of plasma (FRAP, 1,1-diphenyl-2-picrylhydrazyl (DPPH, and beta-carotene-linoleate assays. The TPC and AOC increased in the fresh fruit as the ripeness stage increased. The TPC increased from 401.8±19.8 to 569.3±22.3 mg GA E/100 g dry weight (DW. The AOC values obtained with ABTS in the fresh fruit (ranging from 79.4±4.5 to 132.7±12.9 mumol trolox/g fruit DW were comparable to those obtained with FRAP (ranging from 82.9±16.3 to 153.9±31.7 mumol trolox/g fruit DW. The values assessed with DPPH ranged from 21.0±3.2 to 34.1±5.1 mumol trolox/g fruit DW. The beta-carotene-linoleate assay gave values ranging from 5.8±1.1 to 12.7±2.0 mumol a-tocoferol/g fruit DW. Air-drying the cape gooseberry fruit had a small influence on the TPC. The air-dried fruit had AOC values ranging from 27 to 164% of the value of the fresh fruit. While the ABTS assay produced higher values in the air-dried fruit than in the fresh fruit, the FRAP, DPPH, and beta-carotene-linoleate assays resulted in lower values in the air-dried fruit.

  12. Summary and Comparison of the 2016 Billion-Ton Report with the 2011 U.S. Billion-Ton Update

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    In terms of the magnitude of the resource potential, the results of the 2016 Billion-Ton Report (BT16) are consistent with the original 2005 Billion-Ton Study (BTS) and the 2011 report, U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry (BT2. An effort was made to reevaluate the potential forestland, agricultural, and waste resources at the roadside, then extend the analysis by adding transportation costs to a biorefinery under specified logistics assumptions to major resource fractions.

  13. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    International Nuclear Information System (INIS)

    Labidi, A.; Bejaoui, A.; Ouali, H.; Akkari, F. Chaffar; Hajjaji, A.; Gaidi, M.; Kanzari, M.; Bessais, B.; Maaref, M.

    2011-01-01

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  14. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    Energy Technology Data Exchange (ETDEWEB)

    Labidi, A., E-mail: Ahmed_laabidi@yahoo.fr [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Bejaoui, A.; Ouali, H. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Akkari, F. Chaffar [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Hajjaji, A.; Gaidi, M. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Maaref, M. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia)

    2011-09-15

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  15. Cold Vacuum Drying facility heating, ventilation, and Air Conditioning system design description

    International Nuclear Information System (INIS)

    SINGH, G.

    2000-01-01

    This System Design Description (SDD) addresses the HVAC system for the CVDF. The CVDF HVAC system consists of five subsystems: (1) Administration building HVAC system; (2) Process bay recirculation HVAC system; (3) Process bay local exhaust HVAC and process vent system; (4) Process general supply/exhaust HVAC system; and (5) Reference air system. The HVAC and reference air systems interface with the following systems: the fire protection control system, Monitoring and Control System (MCS), electrical power distribution system (including standby power), compressed air system, Chilled Water (CHW) system, drainage system, and other Cold Vacuum Drying (CVD) control systems not addressed in this SDD

  16. Dry deposition and soil-air gas exchange of polychlorinated biphenyls (PCBs) in an industrial area.

    Science.gov (United States)

    Bozlaker, Ayse; Odabasi, Mustafa; Muezzinoglu, Aysen

    2008-12-01

    Ambient air and dry deposition, and soil samples were collected at the Aliaga industrial site in Izmir, Turkey. Atmospheric total (particle+gas) Sigma(41)-PCB concentrations were higher in summer (3370+/-1617 pg m(-3), average+SD) than in winter (1164+/-618 pg m(-3)), probably due to increased volatilization with temperature. Average particulate Sigma(41)-PCBs dry deposition fluxes were 349+/-183 and 469+/-328 ng m(-2) day(-1) in summer and winter, respectively. Overall average particulate deposition velocity was 5.5+/-3.5 cm s(-1). The spatial distribution of Sigma(41)-PCB soil concentrations (n=48) showed that the iron-steel plants, ship dismantling facilities, refinery and petrochemicals complex are the major sources in the area. Calculated air-soil exchange fluxes indicated that the contaminated soil is a secondary source to the atmosphere for lighter PCBs and as a sink for heavier ones. Comparable magnitude of gas exchange and dry particle deposition fluxes indicated that both mechanisms are equally important for PCB movement between air and soil in Aliaga.

  17. Performance of a solar dryer using hot air from roof-integrated solar collectors for drying herbs and spices

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Tung, P. [Silpakorn University, Pathom (Thailand). Dept. of Physics

    2005-11-01

    A solar dryer for drying herbs and spices using hot air from roof-integrated solar collectors was developed. The dryer is a bin type with a rectangular perforated floor. The bin has a dimension of 1.0 m x 2.0 m x 0.7 m. Hot air is supplied to the dryer from fiberglass-covered solar collectors, which also function as the roof of a farmhouse. The total area of the solar collectors is 72 m{sup 2}. To investigate its performance, the dryer was used to dry four batches of rosella flowers and three batches of lemon-grasses during the year 2002-2003. The dryer can be used to dry 200 kg of rosella flowers and lemon-grasses within 4 and 3 days, respectively. The products being dried in the dryer were completely protected from rains and insects and the dried products are of high quality. The solar air heater has an average daily efficiency of 35% and it performs well both as a solar collector and a roof of a farmhouse. (author)

  18. Drying kinetics and characteristics of dried gambir leaves using solar heating and silica gel dessicant

    Science.gov (United States)

    Hasibuan, R.; Hidayati, J.; Sundari, R.; Wicaksono, A. S.

    2018-02-01

    A drying combination of solar heating and silica gel dessicant has been applied to dry gambir leaves. The solar energy is captured by a collector to heat the air and the hot air is used to dry gambir leaves in a drying chamber. An exhaust fan in drying chamber assists to draw water molecules from gambir leaves accelerated by silica gel dessicant. This study has investigated the drying kinetics and drying characteristics of gambir leaves drying. In drying operation the air velocity is tuned by a PWM (pulse width modulation) controller to adjust minimum and maximum level, which is based on the rotation speed of the exhaust fan. The results show that the air velocity influenced the drying kinetics and drying characteristics of gambir leaves using solar-dessicant drying at 40 cm distance between exhaust fan and silica gel dessicant.

  19. Mathematical models and qualities of shredded Thai-style instant rice under a combined gas-fired infrared and air convection drying

    Science.gov (United States)

    Nachaisin, Mali; Teeta, Suminya; Deejing, Konlayut; Pharanat, Wanida

    2017-09-01

    Instant food is a product produced for convenience for consumer. Qualities are an important attribute of food materials reflecting consumer acceptance. The most problem of instant rice is casehardening during drying process resulted in the longer rehydration time. The objective of this research was to study the qualities of shredded Thai-style instant rice under a combined gas-fired infrared and air convection drying. Additionally, the mathematical models for gas-fired infrared assisted thin-layer drying of shredded Thai-style rice for traditional was investigated. The thin-layer drying of shredded Thai-style rice was carried out under gas-fired infrared intensities of 1000W/m2, air temperatures of 70°C and air velocities of 1 m/s. The drying occurred in the falling rate of drying period. The Page model was found to satisfactorily describe the drying behavior of shredded Thai-style rice, providing the highest R2 (0.997) and the lowest MBE and RMSE (0.01 and 0.18) respectively. A 9 point hedonic test showed in softness and color, but odor and overall acceptance were very similar.

  20. Oxidation mechanism of Fe–16Cr alloy as SOFC interconnect in dry/wet air

    International Nuclear Information System (INIS)

    Chen, Zhi-Yuan; Wang, Li-Jun; Li, Fu-Shen; Chou, Kuo-Chih

    2013-01-01

    Highlights: •A special thermodynamic description corresponding to the kinetics was applied. •We reported the relationships of degradation time with temperature and moisture. •”Turning time” in the Fe–16Cr alloy oxidation kinetic model was given. •The oxidation mechanism of Fe–16Cr alloy in the wet air was discussed. -- Abstract: Experimental study on the oxidation corrosions of Fe–16Cr alloy was carried out at 800–1100 °C under dry/wet air conditions. Faster oxidation rate was observed at higher temperature and water vapor content. The degradation time t d between two stages in oxidation process showed an exponential relationship with elevating corrosion temperature in dry air, and a linear relationship with the water content in the case of water vapor introduced to the system. The mechanism of oxidation corrosions of Fe–16Cr alloy was suggested by the Real Physical Picture (RPP) model. It was found that the break-away oxidation in stage II was controlled by diffusion at initial both in dry and wet air, then became linear with the exposure time, which implied that the oxidation rate was then controlled by chemical reaction of the interface between the metal and the oxidized scale. Moreover, the effect of water in the oxidation process is not only to supply more oxygen into system, but also to modify the structures of oxide scale due to the existence of hydrogen atom, which results in the accelerated corrosions

  1. Pecan drying with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, S.R.; Chhinnan, M.S.

    1983-07-01

    High moisture in-shell pecans were dried by keeping them in direct and indirect contact with silica gel to investigate their drying characteristics. In-shell pecans were also dried with ambient air from a controlled environment chamber and with air dehumidified by silica gel. Direct contact and dehumidified air drying seemed feasible approaches.

  2. Microwave assisted air drying of osmotically treated pineapple with variable power programmes

    CSIR Research Space (South Africa)

    Botha, GE

    2012-01-01

    Full Text Available Variable power programmes for microwave assisted air drying of pineapple were studied. The pineapple pieces were pre-treated by osmotic dehydration in a 55º Brix sucrose solution at 40ºC for 90 minutes. Variable power output programmes were designed...

  3. Drying properties and quality parameters of dill dried with intermittent and continuous microwave

    OpenAIRE

    Eştürk, Okan

    2012-01-01

    In this study, influence of various microwave-convective air drying applications on drying kinetics, color and sensory quality of dill leaves (Anethum graveolens L.) were investigated. In general, increasing the drying air temperature decreased the drying time, and increased the drying rate. Increasing microwave pulse ratio increased the drying time. Page, Logarithmic, Midilli et al, Wang & Singh and Logistic models were fitted to drying data and the Page model was found to satisfactorily...

  4. Short-Term Effects of Drying-Rewetting and Long-Term Effects of Nutrient Loading on Periphyton N:P Stoichiometry

    Directory of Open Access Journals (Sweden)

    Andres D. Sola

    2018-01-01

    Full Text Available Nitrogen (N and phosphorus (P concentrations and N:P ratios critically influence periphyton productivity and nutrient cycling in aquatic ecosystems. In coastal wetlands, variations in hydrology and water source (fresh or marine influence nutrient availability, but short-term effects of drying and rewetting and long-term effects of nutrient exposure on periphyton nutrient retention are uncertain. An outdoor microcosm experiment simulated short-term exposure to variation in drying-rewetting frequency on periphyton mat nutrient retention. A 13-year dataset from freshwater marshes of the Florida Everglades was examined for the effect of long-term proximity to different N and P sources on mat-forming periphyton nutrient standing stocks and stoichiometry. Field sites were selected from one drainage with shorter hydroperiod and higher connectivity to freshwater anthropogenic nutrient supplies (Taylor Slough/Panhandle, TS/Ph and another drainage with longer hydroperiod and higher connectivity to marine nutrient supplies (Shark River Slough, SRS. Total P, but not total N, increased in periphyton mats exposed to both low and high drying-rewetting frequency with respect to the control mats in our experimental microcosm. In SRS, N:P ratios slightly decreased downstream due to marine nutrient supplies, while TS/Ph increased. Mats exposed to short-term drying-rewetting had higher nutrient retention, similar to nutrient standing stocks from long-term field data. Periphyton mat microbial communities may undergo community shifts upon drying-rewetting and chronic exposure to nutrient loads. Additional work on microbial species composition may further explain how periphyton communities interact with drying-rewetting dynamics to influence nutrient cycling and retention in wetlands.

  5. STATISTIC MODELING OF DRYING KINETHIC OF SPINACH LEAVES USING MICROWAVE AND HOT AIR METHODS

    Directory of Open Access Journals (Sweden)

    Mojtaba Nouri

    2015-06-01

    Full Text Available The target of this study was to model of spinach leaves drying using microwave and hot air dryer. This test performed in combination treatment of temperatures (50°C, 60°C, and 70°C and microwave (90, 180, 360, 600 and 900w in 3 replications. Sample moisture measured within drying. All the results were fitted and analyzed with 8 mathematical models base on 3 parameters including determination (R2, Chi square(X2, root mean square errors(RSME. Results also revealed that temperature and microwave power effectively reduce the drying time when increase. Drying occurs in degrading stage; moreover the comparison of results exhibited that Page and Two sentences models were fitted appropriately to estimate moisture changing and drying description. Regarding all the results, it is cleared that microwave method is an appropriate method in spinach drying as a result of reducing drying temperature and its high efficiency.

  6. PADDY DRYING IN MIXED ADSORPTION DRYER WITH ZEOLITE: DRYING RATE AND TIME ESTIMATION

    Directory of Open Access Journals (Sweden)

    Mochammad Djaeni

    2013-11-01

    Full Text Available Recently, the main problem of the rice stock and distribution in Indonesia is the quality degradation as indicated in unpleasant odor (smelly, stained, yellowness, and high percentage of broken rice. This is due to the low of paddy quality dried by from either direct sunlight or conventional fluidized bed dryer. As a result, the paddy cracks and breaks easily during milling in which causes the storage life being shorter as the enzymatic degradation by germ or fungi occurs. Air dehumidified with zeolite at drying medium temperature is potential to improve the quality of paddy. Zeolite is a material having high affinity to water vapor. In this case, the paddy and zeolite was mixed and fluidized with the air. The air will evaporate water from paddy, and at same time, the zeolite will adsorb water from air. Hence, the humidity of dryer can be kept low in which improves the driving force for drying. This work discusses the effect of presence of zeolite in the dryer, operational drying temperature, air velocity and relative humidity on drying rate of paddy. The results showed that increasing of zeolite as well as operational temperature increased the drying rate. In addition, using the model, the air dehumidification with zeolite and increase of air velocity can speed up drying time significantly at operational temperature below 80oC. This condition is very suitable for paddy drying since the quality degradation can be avoided.

  7. Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME-GC-MS and electronic nose.

    Science.gov (United States)

    Yang, Wenjian; Yu, Jie; Pei, Fei; Mariga, Alfred Mugambi; Ma, Ning; Fang, Yong; Hu, Qiuhui

    2016-04-01

    Volatile compounds are important factors that affect the flavor quality of Flammulina velutipes, but the changes occurring during hot air drying is still unclear. To clarify the dynamic changes of flavor components during hot air drying, comprehensive flavor characterization and volatile compounds of F. velutipes were evaluated using electronic nose technology and headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS), respectively. Results showed that volatile components in F. velutipes significantly changed during hot air drying according to the principal component analysis and radar fingerprint chart of electronic nose. Volatile compounds of fresh F. velutipes consisted mainly of ketones, aldehydes and alcohols, and 3-octanone was the dominant compound. Drying process could significantly decrease the relative content of ketones and promoted the generation of alcohols, acids, and esters, which became the main volatile compounds of dried F. velutipes. These may provide a theoretical basis for the formation mechanism of flavor substances in dried F. velutipes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Air-drying Models for New-built Offshore Gas Pipelines%新建海底天然气管道干空气干燥模型研究

    Institute of Scientific and Technical Information of China (English)

    曹学文; 王立洋; 林宗虎

    2005-01-01

    Drying (conditioning) is an important procedure to prevent hydrate formation during gas pipeline gas-up and to protect pipelines against corrosion. The air-drying method is preferred in offshore gas pipelines pre-commissioning. The air-drying process of gas pipelines commonly includes two steps, air purging and soak test. The mass conservation and the phase equilibrium theory are applied to setting up the mathematical models of air purging, which can be used to simulate dry airflow rate and drying time. Fick diffusion law is applied to setting up the mathematical model of soak test, which can predict the water vapor concentration distribution. The results calculated from the purging model and the soak test model are in good agreement with the experimental data in the DF1-1 offshore production pipeline conditioning. The models are verified to be available for the air-drying project design of offshore gas pipelines. Some proposals for air-drying engineering and operational procedures are put forward by analyzing the air-drying process of DF1-1 gas-exporting pipelines.

  9. An analysis of short haul air passenger demand, volume 2

    Science.gov (United States)

    Blumer, T. P.; Swan, W. M.

    1978-01-01

    Several demand models for short haul air travel are proposed and calibrated on pooled data. The models are designed to predict demand and analyze some of the motivating phenomena behind demand generation. In particular, an attempt is made to include the effects of competing modes and of alternate destinations. The results support three conclusions: (1) the auto mode is the air mode's major competitor; (2) trip time is an overriding factor in intermodal competition, with air fare at its present level appearing unimportant to the typical short haul air traveler; and (3) distance appears to underly several demand generating phenomena, and therefore, must be considered very carefully to any intercity demand model. It may be the cause of the wide range of fare elasticities reported by researchers over the past 15 years. A behavioral demand model is proposed and calibrated. It combines the travel generating effects of income and population, the effects of modal split, the sensitivity of travel to price and time, and the effect of alternative destinations satisfying the trip purpose.

  10. Drying characteristics of whole Musa AA group ‘Kluai Leb Mu Nang’ using hot air and infrared vacuum

    Science.gov (United States)

    Kulketwong, C.; Thungsotanon, D.; Suwanpayak, N.

    2017-06-01

    Dried Musa AA group ‘Kluai Leb Mu Nang’ are the famous processing goods of Chumphon province, the south of Thailand. In this paper, we improved the qualities of whole Musa AA group ‘Kluai leb Mu Nang’ by using the hot air and infrared vacuum (HA and infrared vacuum) drying method which has two stages. The first stage of the method is the hot air (HA) and hot air-infrared (HAI) drying for rapidly reducing the moisture content and the drying times at atmospheric pressure, and the second stage, the moisture content, and color of the samples can be controlled by the HA and infrared vacuum drying. The experiment was evaluated by the terms of firmness, color change, moisture content, vacuum pressure and energy consumption at various temperatures. The results were found that the suitable temperature of the HAI and HA and infrared vacuum drying stages at 70°C and 55°C, respectively, while the suitable vacuum pressure in the second process was -0.4 bar. The samples were dried in a total of 28 hrs using 13.83 MJ/kg of specific energy consumption (stage 1 with 8.8 MJ/kg and stage 2 of 5.03 MJ/kg). The physical characteristics of the 21% (wb) of dried bananas can be measured the color change, L*=38.56, a*=16.47 and b*=16.3, was approximate the goods from the local market, whereas the firmness of them was more tender and shown a value of 849.56 kN/m3.

  11. Effects of air temperature and velocity on the drying kinetics and product particle size of starch from arrowroot (Maranta arundinacae)

    Science.gov (United States)

    Caparanga, Alvin R.; Reyes, Rachael Anne L.; Rivas, Reiner L.; De Vera, Flordeliza C.; Retnasamy, Vithyacharan; Aris, Hasnizah

    2017-11-01

    This study utilized the 3k factorial design with k as the two varying factors namely, temperature and air velocity. The effects of temperature and air velocity on the drying rate curves and on the average particle diameter of the arrowroot starch were investigated. Extracted arrowroot starch samples were dried based on the designed parameters until constant weight was obtained. The resulting initial moisture content of the arrowroot starch was 49.4%. Higher temperatures correspond to higher drying rates and faster drying time while air velocity effects were approximately negligible or had little effect. Drying rate is a function of temperature and time. The constant rate period was not observed for the drying rate of arrowroot starch. The drying curves were fitted against five mathematical models: Lewis, Page, Henderson and Pabis, Logarithmic and Midili. The Midili Model was the best fit for the experimental data since it yielded the highest R2 and the lowest RSME values for all runs. Scanning electron microscopy (SEM) was used for qualitative analysis and for determination of average particle diameter of the starch granules. The starch granules average particle diameter had a range of 12.06 - 24.60 μm. The use of ANOVA proved that particle diameters for each run varied significantly with each other. And, the Taguchi Design proved that high temperatures yield lower average particle diameter, while high air velocities yield higher average particle diameter.

  12. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.

    Science.gov (United States)

    Sasano, Yu; Takahashi, Shunsuke; Shima, Jun; Takagi, Hiroshi

    2010-03-31

    During bread-making processes, yeast cells are exposed to multiple stresses. Air-drying stress is one of the most harmful stresses by generation of reactive oxygen species (ROS). Previously, we discovered that the novel N-acetyltransferase Mpr1/2 confers oxidative stress tolerance by reducing intracellular ROS level in Saccharomyces cerevisiae Sigma1278b strain. In this study, we revealed that Japanese industrial baker's yeast possesses one MPR gene. The nucleotide sequence of the MPR gene in industrial baker's yeast was identical to the MPR2 gene in Sigma1278b strain. Gene disruption analysis showed that the MPR2 gene in industrial baker's yeast is involved in air-drying stress tolerance by reducing the intracellular oxidation levels. We also found that expression of the Lys63Arg and Phe65Leu variants with enhanced enzymatic activity and stability, respectively, increased the fermentation ability of bread dough after exposure to air-drying stress compared with the wild-type Mpr1. In addition, our recent study showed that industrial baker's yeast cells accumulating proline exhibited enhanced freeze tolerance in bread dough. Proline accumulation also enhanced the fermentation ability after air-drying stress treatment in industrial baker's yeast. Hence, the antioxidant enzyme Mpr1/2 could be promising for breeding novel yeast strains that are tolerant to air-drying stress. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    Science.gov (United States)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  14. No Heat Spray Drying Technology

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles [ZoomEssence, Inc., Hebron, KY (United States)

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  15. Air drying modelling of Mastocarpus stellatus seaweed a source of hybrid carrageenan

    Science.gov (United States)

    Arufe, Santiago; Torres, Maria D.; Chenlo, Francisco; Moreira, Ramon

    2018-01-01

    Water sorption isotherms from 5 up to 65 °C and air drying kinetics at 35, 45 and 55 °C of Mastocarpus stellatus seaweed were determined. Experimental sorption data were modelled using BET and Oswin models. A four-parameter model, based on Oswin model, was proposed to estimate equilibrium moisture content as function of water activity and temperature simultaneously. Drying experiments showed that water removal rate increased significantly with temperature from 35 to 45 °C, but at higher temperatures drying rate remained constant. Some chemical modifications of the hybrid carrageenans present in the seaweed can be responsible of this unexpected thermal trend. Experimental drying data were modelled using two-parameter Page model (n, k). Page parameter n was constant (1.31 ± 0.10) at tested temperatures, but k varied significantly with drying temperature (from 18.5 ± 0.2 10-3 min-n at 35 °C up to 28.4 ± 0.8 10-3 min-n at 45 and 55 °C). Drying experiments allowed the determination of the critical moisture content of seaweed (0.87 ± 0.06 kg water (kg d.b.)-1). A diffusional model considering slab geometry was employed to determine the effective diffusion coefficient of water during the falling rate period at different temperatures.

  16. Short Range Air Defense in Army Divisions: Do We Really Need It

    National Research Council Canada - National Science Library

    Anderson, Charles

    2000-01-01

    Ever since the Soviet threat collapsed, coupled with the demonstrated, overwhelming, capability of our air forces during numerous operations in the 1990s, the relevance of the Short Range Air Defense (SHORAD...

  17. Military Readiness: Air Transport Capability Falls Short of Requirements

    National Research Council Canada - National Science Library

    2000-01-01

    ..., For example, during fiscal years 1997 through 1999, on average only 55 percent of the C-5 fleet, the Air Force's largest cargo aircraft, was mission capable-significantly short of the 75 percent expected for wartime...

  18. Design of solar drying-plant for bulk material drying

    Directory of Open Access Journals (Sweden)

    Peter Horbaj

    2008-11-01

    Full Text Available A generally well-known high energy requirement for technological processes of drying and the fact that the world’s supplyof the conventional energy sources has considerably decreased are the decisive factors forcing us to look for some new, if possible,renewable energy sources for this process by emphasising their environmental reliability. One of the possibilities how to replace, atleast partly, the conventional energy sources – heat in a drying process is solar energy.Air-drying of bulk materials usually has a series of disadvantages such as time expenditure, drying defects in the bulk materialand inadequate final moisture content. A method that obviates or reduces the disadvantages of air-drying and, at the same time, reducesthe costs of kiln drying, is drying with solar heat. Solar energy can replace a large part of this depletable energy since solar energy cansupply heat at the temperatures most often used to dry bulk material. Solar drying-plant offer an attractive solution.

  19. Summary and recommendations for the NASA/MIT workshop on short haul air transport

    Science.gov (United States)

    Simpson, R. W.

    1971-01-01

    The material is summarized that was covered by the MIT/NASA Waterville Valley workshop which dealt with the institutional, socio-economic, operational and technological problems associated with introducing new forms of short haul domestic air transportation. It was found that future air systems hold great potential in satisfying society's needs for a low noise, low landspace, high access, high speed, large network system for public travel over distances between 5 and 500 miles. It is concluded that quiet air systems are necessary for obtaining community approval, and is recommended that extremely high priority be assigned to the development of quiet aircraft for future short haul air systems.

  20. The Role of TonB Gene in Edwardsiella ictaluri Virulence

    Directory of Open Access Journals (Sweden)

    Hossam Abdelhamed

    2017-12-01

    Full Text Available Edwardsiella ictaluri is a Gram-negative facultative intracellular pathogen that causes enteric septicemia in catfish (ESC. Stress factors including poor water quality, poor diet, rough handling, overcrowding, and water temperature fluctuations increase fish susceptibility to ESC. The TonB energy transducing system (TonB-ExbB-ExbD and TonB-dependent transporters of Gram-negative bacteria support active transport of scarce resources including iron, an essential micronutrient for bacterial virulence. Deletion of the tonB gene attenuates virulence in several pathogenic bacteria. In the current study, the role of TonB (NT01EI_RS07425 in iron acquisition and E. ictaluri virulence were investigated. To accomplish this, the E. ictaluri tonB gene was in-frame deleted. Growth kinetics, iron utilization, and virulence of the EiΔtonB mutant were determined. Loss of TonB caused a significant reduction in bacterial growth in iron-depleted medium (p > 0.05. The EiΔtonB mutant grew similarly to wild-type E. ictaluri when ferric iron was added to the iron-depleted medium. The EiΔtonB mutant was significantly attenuated in catfish compared with the parent strain (21.69 vs. 46.91% mortality. Catfish surviving infection with EiΔtonB had significant protection against ESC compared with naïve fish (100 vs. 40.47% survival. These findings indicate that TonB participates in pathogenesis of ESC and is an important E. ictaluri virulence factor.

  1. Drying kinetics and quality aspects during heat pump drying of onion (Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Nihar Ranjan Sahoo

    2012-10-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 A prototype heat pump dryer has been developed for drying of fruits and vegetables at low temperature and relative humidity to maintain the quality of dried product. Onions, of Nasik red variety were peeled, trimmed and sliced to 2 mm thickness. The onion slices were dried in the heat pump dryer at 35ºC (32 % R.H., 40ºC (26 % R.H., 45ºC (19 % R.H. and 50ºC (15 % R.H.. Samples were also dried in a hot air dryer at 50ºC (52 % R.H. for comparison. The drying rate increased with increase in drying air temperature, associated with reduced R.H., in the heat pump dryer. Drying took place mainly under the falling rate period. The Page equation, resulting in a higher coefficient of determination and lower root mean square error, better described the thin-layer drying of onion slices than the Henderson and Pabis equation. Heat pump drying took less drying time of 360 min and yielded better quality dried product, with higher retention of ascorbic acid and pyruvic acid and lower colour change, as compared to a hot air dryer at the same drying air temperature of 50ºC.

  2. Air defense planning for an area with the use of very short range air defense sets

    Directory of Open Access Journals (Sweden)

    Tadeusz Pietkiewicz

    2017-12-01

    Full Text Available This paper presents a heuristic method of planning the deployment of very short-range anti-air missile and artillery sets (VSHORAD around an area (‘protected area’ in order to protect it. A function dependent on the distance between the earliest feasible points of destroying targets and the centre of the protected area was taken as an objective function. This is a different indicator from those commonly used in the literature, and based on the likelihood of a defense zone penetration by means of an air attack (MAA: the kill probability of the MAA and the probability of area losses. The model constraints resulted directly from the restrictions imposed by real air defense systems and the nature of the area being defended. This paper assumes that the VSHORAD system operates as a part of a general, superordinate air defense command and control system based on the idea of network-centric warfare, which provides the VSHORAD system with a recognized air picture, air defense plans, and combat mission specifications. The presented method has been implemented. The final part of the paper presents the computational results. Keywords: optimal planning, air defense system, area installation protection, deployment of very short range anti-air missile and artillery sets (VSHORAD

  3. Valorisation et Recyclage des Déchets Plastiques dans le Béton

    Directory of Open Access Journals (Sweden)

    Benimam Samir

    2014-04-01

    Full Text Available La valorisation des déchets dans le génie civil est un secteur important dans la mesure où les produits que l’on souhaite obtenir ne sont pas soumis à des critères de qualité trop rigoureux. Le recyclage des déchets touche deux impacts très importants à savoir l’impact et l’impact économique. Donc plusieurs pays du monde, différents déchets sont utilisé dans le domaine de la construction et spécialement dans le ciment ou béton comme poudre, fibres ou agrégats. Ce travail s’intéresse à la valorisation d’un déchet qui est nuisible pour l’environnement vu son caractère encombrant et inesthétique il s’agit du déchet plastique. Trois types de déchets plastiques sont ajoutés dans le béton (sous forme de grains et fibres (ondulées et rectilignes. Les propriétés à l’état frais (maniabilité, air occlus et densité et à l’état durci (résistance à la compression, à la traction, retrait et absorption d’eau des différents bétons réalisés sont analysées et comparés par rapport leurs témoins respectifs. D’après les résultats expérimentaux on peut conclure que le renforcement de la matrice cimentaire avec des fibres plastiques ondulées montrent une nette amélioration de la résistance à la traction du béton ainsi qu’une diminution remarquable de sa capacité d’absorption de l’eau lorsqu’on utilise des grains plastiques.

  4. Final Environmental Assessment: To Relocate Air Force Explosive Ordnance Disposal Administrative Complex at Eglin Air Force Base

    Science.gov (United States)

    2006-10-01

    Trips PM10E = .0022 * Trips COE = .262 * Trips Year 2010 and beyond: VOCE = .012 * Trips NOxE = .013 * Trips PM10E = .0022 * Trips COE...Air Force Base, Florida To convert from pounds per day to tons per year: VOC (tons/yr) = VOCE * DPYII/2000 NOx (tons/yr) = NOxE * DPYII/2000

  5. Assessment of the environmental microbiological cross contamination following hand drying with paper hand towels or an air blade dryer.

    Science.gov (United States)

    Margas, E; Maguire, E; Berland, C R; Welander, F; Holah, J T

    2013-08-01

    This study compared the potential for cross contamination of the surrounding environment resulting from two different hand-drying methods: paper towels and the use of an air blade dryer. One hundred volunteers for each method washed their hands and dried them using one of the two methods. Bacterial contamination of the surrounding environment was measured using settle plates placed on the floor in a grid pattern, air sampling and surface swabs. Both drying methods produced ballistic droplets in the immediate vicinity of the hand-drying process. The air blade dryer produced a larger number of droplets which were dispersed over a larger area. Settle plates showed increased microbial contamination in the grid squares which were affected by ballistic droplets. Using the settle plates counts, it was estimated that approx. 1.7 × 10(5) cfu more micro-organisms were left on the laboratory floor (total area approx. 17.15 m(2)) after 100 volunteers used an air blade dryer compared to when paper towels were used. The two drying methods led to different patterns of ballistic droplets and levels of microbial contamination under heavy use conditions. Whilst the increase in microbial levels in the environment is not significant if only nonpathogenic micro-organisms are spread, it may increase the risk of pathogen contamination of the environment when pathogens are occasionally present on people's hands. The study suggests that the risk of cross contamination from the washroom users to the environment and subsequent users should be considered when choosing a hand-drying method. The data could potentially give guidance following the selection of drying methods on implementing measures to minimise the risk of cross contamination. © 2013 The Society for Applied Microbiology.

  6. Development and demonstration of calculation tool for industrial drying processes ''DryPack''; Udvikling og demonstration af beregningsvaerktoej til industrielle toerreprocesser ''DryPack''

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, P.; Weinkauff Kristoffersen, J.; Blazniak Andreasen, M. [Teknologisk Institut, Aarhus (Denmark); Elmegaard, B.; Kaern, M. [Danmarks Tekniske Univ.. DTU Mekanik, Kgs. Lyngby (Denmark); Monrad Andersen, C. [Lokal Energi, Viby J. (Denmark); Grony, K. [SE Big Blue, Kolding (Denmark); Stihoej, A. [Enervision, Kolding (Denmark)

    2013-03-15

    In this project we have developed a calculation tool for calculating energy consumption in different drying processes - primarily drying processes with air. The program can be used to determine the energy consumption of a current drying process, after which it can be calculated how much energy can be saved by various measures. There is also developed a tool for the simulation of a batch drier, which calculates the drying of a batch depending on the time. The programs have demonstrated their usefulness in connection with three cases that are reviewed in the report. In the project measurements on four different dryers have been carried out, and energy consumption is calculated using ''DryPack''. With ''DryPack'' it is possible to find potential savings by optimizing the drying processes. The program package includes utilities for the calculation of moist air: 1) Calculation of the thermodynamic properties of moist air; 2) Device operation with moist air (mixing, heating, cooling and humidification); 3) Calculation of the relative change of the drying time by changing the process parameters; 4) IX-diagram at a temperature above 100 deg. C. (LN)

  7. Best practices to hasten field drying of grasses and alfalfa

    Science.gov (United States)

    Rapid drying of hay and silage shortens the harvest window, enhances forage quality, and reduces the chance for rain damage. Forage generally has about 75% moisture when it is cut. This means the crop must lose 2.3 to 3 tons of water per acre (550 to 720 gal/acre) to dry to haylage at 60 to 65% mois...

  8. Detection of PAX8/PPARG and RET/PTC Rearrangements Is Feasible in Routine Air-Dried Fine Needle Aspiration Smears

    DEFF Research Database (Denmark)

    Ferraz, Carolina; Rehfeld, Christian; Krogdahl, Annelise

    2012-01-01

    Background: The diagnostic limitations of fine needle aspiration (FNA), like the indeterminate category, can be partially overcome by molecular analysis. As PAX8/PPARG and RET/PTC rearrangements have been detected in follicular thyroid carcinomas (FTCs) and papillary thyroid carcinomas (PTCs......), their detection in FNA smears could improve the FNA diagnosis. To date, these rearrangements have never been analyzed in routine air-dried FNA smears, but only in frozen tissue, formalin-fixed paraffin-embedded (FFPE) tissue, and in fresh FNA material. Fixed routine air-dried FNA samples have hitherto been judged...... as generally not suitable for testing these rearrangements in a clinical setting. Therefore, the objective of the present study was to investigate the feasibility of extracting RNA from routine air-dried FNA smears for the detection of these rearrangements with real-time polymerase chain reaction (RT...

  9. Modeling of convective drying kinetics of Pistachio kernels in a fixed bed drying system

    Directory of Open Access Journals (Sweden)

    Balbay Asım

    2013-01-01

    Full Text Available Drying kinetics of Pistachio kernels (PKs with initial moisture content of 32.4% (w.b was investigated as a function of drying conditions in a fixed bed drying system. The drying experiments were carried out at different temperatures of drying air (40, 60 and 80°C and air velocities (0.05, 0.075 and 0.1 m/s. Several experiments were performed in terms of mass of PKs (15g and 30g using a constant air velocity of 0.075 m/s. The fit quality of models was evaluated using the determination coefficient (R2, sum square error (SSE and root mean square error (RMSE. Among the selected models, the Midilli et al model was found to be the best models for describing the drying behavior of PKs. The activation energies were calculated as 29.2 kJ/mol and effective diffusivity values were calculated between 1.38 and 4.94x10-10 m2/s depending on air temperatures.

  10. Energy and rice quality aspects during drying of freshly harvested paddy with industrial inclined bed dryer

    International Nuclear Information System (INIS)

    Sarker, M.S.H.; Ibrahim, M. Nordin; Ab. Aziz, N.; Mohd. Salleh, P.

    2014-01-01

    Highlights: • We presented performance evaluation approach for industrial inclined bed paddy dryer. • Specific electrical energy consumption was 1.44–1.95 MJ/kg water evaporated. • Specific thermal energy consumption was 2.77–3.47 MJ/kg water evaporated. • Dryer yielded 1–4% higher head rice at drying temperature of 38–39 °C than 41–42 °C. • Dryers should be operated at 38–39 °C for 1–4% higher head rice at reasonable energy. - Abstract: The performance evaluation of any industrial dryer regarding energy consumption and product quality should be assessed to check its present status and to suggest for further efficient operation. An investigation was carried out to evaluate the impact of drying temperature and air flow on energy consumption and quality of rice during paddy drying with industrial inclined bed dryer (IBD) with average holding capacity of 15 ton in the selected complexes of Padiberas Nasional Berhad (BERNAS)-the national paddy custodian of Malaysia. In reducing paddy moisture content (mc) from 22% to 23% wet basis (wb) down to around 12.5% wb, the final mc, the specific electrical (in terms of primary energy) and the specific thermal energy consumption were found to be varied between 1.44 to 1.95 MJ/kg water evaporated and 2.77 to 3.47 MJ/kg water evaporated, respectively. Analysis revealed that the specific electrical energy consumption was around 20% lesser and the specific thermal energy consumption of IBDs was around 10% higher during drying with air temperature of 41–42 °C than drying with 38–39 °C in reducing paddy mc from 22% to 23% (wb) down to around 12.5% (wb). However, paddy being with almost same initial mc dried using drying temperature of 38–39 °C, IBDs yielded 1–4% higher head rice yield while milling recovery and whiteness were comparable at acceptable milling degree and transparency. The bed air flows between 0.27 and 0.29 m 3 m −2 s −1 resulted in higher head rice yield slightly while its

  11. Determination of drying characteristics and quality properties of eggplant in different drying conditions

    Directory of Open Access Journals (Sweden)

    Gözde Bayraktaroglu Urun

    2015-12-01

    Full Text Available Drying is the most traditional process used for preserving eggplant a long time. The aim of this study was to determining drying characteristics and quality properties of eggplant dried by sun drying, hot air convective drying and infrared assisted convective drying. Convective drying and infrared assisted convective were carried out in a convective dryer at three different temperatures(40°, 50°, 60°C and air velocity at 5 m/s.The increasing of temperatures during the drying of eggplant led to a significant reduction of the drying time. However loss of nutrition was observed in eggplant samples dried at higher temperature.The biggest change in colour parameters was observed in samples dried with sun drying.So it was thought that sun drying had a negative effect on quality properties of eggplant samples.

  12. Short communication Effects of drying procedures on chemical ...

    African Journals Online (AJOL)

    jancik.filip

    2016-12-31

    Dec 31, 2016 ... Another drying procedure included pre-treatment by heating in a ... freeze-drying method and that this procedure is useful for forage analyses and evaluation. ... oven drying (OD) and innovative drying procedures (pre-treatments .... This was probably caused by losses of compounds such as ammonia and.

  13. Development of an Inline Dry Power Inhaler That Requires Low Air Volume.

    Science.gov (United States)

    Farkas, Dale; Hindle, Michael; Longest, P Worth

    2017-12-20

    Inline dry powder inhalers (DPIs) are actuated by an external air source and have distinct advantages for delivering aerosols to infants and children, and to individuals with compromised lung function or who require ventilator support. However, current inline DPIs either perform poorly, are difficult to operate, and/or require large volumes (∼1 L) of air. The objective of this study was to develop and characterize a new inline DPI for aerosolizing spray-dried formulations with powder masses of 10 mg and higher using a dispersion air volume of 10 mL per actuation that is easy to load (capsule-based) and operate. Primary features of the new low air volume (LV) DPIs are fixed hollow capillaries that both pierce the capsule and provide a continuous flow path for air and aerosol passing through the device. Two different configurations were evaluated, which were a straight-through (ST) device, with the inlet and outlet capillaries on opposite ends of the capsule, and a single-sided (SS) device, with both the inlet and outlet capillaries on the same side of the capsule. The devices were operated with five actuations of a 10 mL air syringe using an albuterol sulfate (AS) excipient-enhanced growth (EEG) formulation. Device emptying and aerosol characteristics were evaluated for multiple device outlet configurations. Each device had specific advantages. The best case ST device produced the smallest aerosol [mean mass median aerodynamic diameter (MMAD) = 1.57 μm; fine particle fraction <5 μm (FPF <5μm ) = 95.2%)] but the mean emitted dose (ED) was 61.9%. The best case SS device improved ED (84.8%), but produced a larger aerosol (MMAD = 2.13 μm; FPF <5μm  = 89.3%) that was marginally higher than the initial deaggregation target. The new LV-DPIs produced an acceptable high-quality aerosol with only 10 mL of dispersion air per actuation and were easy to load and operate. This performance should enable application in high and low flow

  14. Three air quality studies: Great Lakes ozone formation and nitrogen dry deposition; and Tucson aerosol chemical characterization

    Science.gov (United States)

    Foley, Theresa

    (arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, and nickel) in the southern Tucson metropolitan area. A Tucson company that uses beryllium oxide to manufacture thermally conductive ceramics has prompted strong citizen concern. This study found that the study area has good air quality with respect to PM10 and metals, with ambient concentrations meeting US Environmental Protection Agency and World Health Organization standards. Beryllium was detected only once (during a dust storm) and was ascribed to naturally-occurring beryllium in the suspended soil. The third paper (to be submitted to the Journal of Great Lakes Research) studies nitrogen dry deposition over Lake Michigan and Lake Superior. Numerous studies have shown that wet and dry deposition of nitrogen has contributed to the eutrophication of coastal waters and declining productivity of marine fisheries. Nitrogen dry deposition over the Great Lakes themselves, as opposed to the shorelines, has not been documented in the peer-reviewed literature. This paper calculates nitrogen dry deposition over Lake Michigan and Lake Superior, using aircraft measurements from the LADCO Aircraft Study, and finds that over-water, nitrogen dry deposition is a significant source of nitrogen to Lake Michigan and Lake Superior.

  15. Turbulent transport across an interface between dry and humid air in a stratified environment

    Science.gov (United States)

    Gallana, Luca; de Santi, Francesca; di Savino, Silvio; Iovieno, Michele; Ricchiardone, Renzo; Tordella, Daniela

    2014-11-01

    The transport of energy and water vapor across a thin layer which separates two decaying isotropic turbulent flows with different kinetic energy and humidity is considered. The interface is placed in a shearless stratified environment in temporal decay. This system reproduces a few aspects of small scale turbulent transport across a dry air/moist air interface in an atmospheric like context. In our incompressible DNS at Reλ = 250 , Boussinesq's approximation is used for momentum and energy transport while the vapor is modeled as a passive scalar (Kumar, Schumacher & Shaw 2014). We investigated different stratification levels with an initial Fr between 0.8 and 8 in presence of a kinetic energy ratio equal to 7. As the buoyancy term becomes of the same order of the inertial ones, a spatial redistribution of kinetic energy, dissipation and vapor concentration is observed. This eventually leads to the onset of a well of kinetic energy in the low energy side of the mixing layer which blocks the entrainment of dry air. Results are discussed and compared with laboratory and numerical experiments. A posteriori estimates of the eventual compression/expansion of fluid particles inside the interfacial mixing layer are given (Nance & Durran 1994).

  16. Occurrence and dry deposition of organophosphate esters in atmospheric particles over the northern South China Sea.

    Science.gov (United States)

    Lai, Senchao; Xie, Zhiyong; Song, Tianli; Tang, Jianhui; Zhang, Yingyi; Mi, Wenying; Peng, Jinhu; Zhao, Yan; Zou, Shichun; Ebinghaus, Ralf

    2015-05-01

    Nine organophosphate esters (OPEs) in airborne particles were measured during a cruise campaign over the northern South China Sea (SCS) from September to October 2013. The concentration of the total OPEs (∑OPEs) was 47.1-160.9 pg m(-3), which are lower than previous measurements in marine atmosphere environments. Higher OPE concentrations were observed in terrestrially influenced samples, suggesting that OPE concentrations were significantly influenced by air mass transport. Chlorinated OPEs were the dominant OPEs, accounting for 65.8-83.7% of the ∑OPEs. Tris-(2-chloroethyl) phosphate (TCEP) was the predominant OPE compound in the samples (45.0±12.1%), followed by tris-(1-chloro-2-propyl) phosphates (TCPPs) (28.8±8.9%). Dry particle-bound deposition fluxes ranged from 8.2 to 27.8 ng m(-2) d(-1) for the ∑OPEs. Moreover, the dry deposition input of the ∑OPEs was estimated to be 4.98 ton y(-1) in 2013 in a vast area of northern SCS. About half of the input was found to relate to air masses originating from China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Photovoltaic assisted solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ali, M.I.; Ibarahim, Z.

    2006-01-01

    A photovoltaic assisted solar drying system has been constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. This drying system uses a custom designed parallel flow V-groove type collector. A fan powered by photovoltaic source assists the air flow through the drying system. A funnel with increasing diameter towards the top with ventilator turbine is incorporated into the system to facilitate the air flow during the absence of photovoltaic energy source. This drying system is designed with high efficiency and portability in mind so that it can readily be used at plantation sites where the crops are harvested or produced. A daily mean efficiency about 44% with mean air flow rate 0.16 kgs -1 has been achieved at mean daily radiation intensity of 800 Wm -2 . daily mean temperature of air drying chamber under the above conditions is 46 o C. Study has shown that the air flow and air temperature increase with the increase of solar radiation intensity. On a bright sunny day with instantaneous solar intensity about 600 Wm -2 , the temperature of air entering the drying chamber of 45 o C has been measured. In the absence of photovoltaic or in natural convection flow, the instantaneous efficiency decreased when solar radiation increased. The instantaneous efficiency recorded are 35% and 27% respectively at 570 Wm -2 and 745 Wm -2 of solar radiation. The temperature of drying chamber for the same amount of solar radiation are 42 o C and 48 o C respectively. Thus, the solar dryer shows a great potential for application in drying process of agricultural produce

  18. STATISTIC MODELING OF DRYING KINETHIC OF SPINACH LEAVES USING MICROWAVE AND HOT AIR METHODS

    OpenAIRE

    Mojtaba Nouri; Marzieh Vahdani; Shilan Rashidzadeh; Lukáš Hleba; Mohammad Ali Shariati

    2015-01-01

    The target of this study was to model of spinach leaves drying using microwave and hot air dryer. This test performed in combination treatment of temperatures (50°C, 60°C, and 70°C) and microwave (90, 180, 360, 600 and 900w) in 3 replications. Sample moisture measured within drying. All the results were fitted and analyzed with 8 mathematical models base on 3 parameters including determination (R2), Chi square(X2), root mean square errors(RSME). Results also revealed that temperature and micr...

  19. Dry purification of aspirational air in coke-sorting systems with wet slaking of coke

    Energy Technology Data Exchange (ETDEWEB)

    T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    Coke transportation after wet slaking is accompanied by the release of dust in the production building and in the surrounding atmosphere. Wet methods are traditionally used to purify very humid air. Giprokoks has developed designs for highly efficient dry dust-removal methods in such conditions.

  20. CFD Analysis on the Passive Heat Removal by Helium and Air in the Canister of Spent Fuel Dry Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Do Young; Jeong, Ui Ju; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2016-05-15

    In the current commercial design, the canister of the dry storage system is mainly backfilled with helium gas. Helium gas shows very conductive behavior due to high thermal conductivity and small density change with temperature. However, other gases such as air, argon, or nitrogen are expected to show effective convective behavior. Thus these are also considered as candidates for the backfill gas to provide effective coolability. In this study, to compare the dominant cooling mechanism and effectiveness of cooling between helium gas and air, a computational fluid dynamics (CFD) analysis for the canister of spent fuel dry storage system with backfill gas of helium and air is carried out. In this study, CFD simulations for the helium and air backfilled gas for dry storage system canister were carried out using ANSYS FLUENT code. For the comparison work, two backfilled fluids were modeled with same initial and boundary conditions. The observed major difference can be summarized as follows. - The simulation results showed the difference in dominant heat removal mechanism. Conduction for helium, and convection for air considering Reynolds number distribution. - The temperature gradient inside the fuel assembly showed that in case of air, more effective heat mixing occurred compared to helium.

  1. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wei, E-mail: yangwei861212@126.com; Zhou, Qianhong; Dong, Zhiwei [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2016-08-28

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N{sub 2}, O{sub 2}, and air, as well as femtosecond laser filament discharge in dry and humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.

  2. Effect of process parameters on energy performance of spray drying with exhaust air heat recovery for production of high value particles

    International Nuclear Information System (INIS)

    Julklang, Wittaya; Golman, Boris

    2015-01-01

    Highlights: • We study heat recovery from spray dryer using air-to-air heat exchanger. • We examine dryer energy performance using advanced mathematical model. • We use the response surface methodology to study the effect of process parameters. • Energy efficiency up to 43.3% is obtained at high flow rate of dilute slurry. • Energy saving up to 52.4% is obtained at high drying air temperature. - Abstract: Spray drying process has been widely used in various industries for many decades for production of numerous materials. This paper explores the energy performance of an industrial scale spray dryer equipped with an exhaust air heat recovery system for production of high value particles. Energy efficiency and energy saving were calculated using a comprehensive mathematical model of spray drying. The response surface methodology (RSM) was utilized to study the effect of process parameters on energy performance using a space-filling design. The meta model equations were formulated employing the well-fitted response surface equations with adjusted R 2 larger than 0.995. The energy efficiency as high as 43.3% was obtained at high flow rate of dilute slurry, while the highest energy saving of 52.4% was found by combination of positive effect of drying air temperature and negative effect of slurry mass flow rate. The utilization of efficient air-to-air heat exchanger leads to an increase in energy efficiency and energy savings. The detailed temperature and vapor concentration profiles obtained with the model are also valuable in determining final product quality when spray dryer is operated at energy efficient conditions

  3. Shrinkage and porosity evolution during air-drying of non-cellular food systems: Experimental data versus mathematical modelling.

    Science.gov (United States)

    Nguyen, Thanh Khuong; Khalloufi, Seddik; Mondor, Martin; Ratti, Cristina

    2018-01-01

    In the present work, the impact of glass transition on shrinkage of non-cellular food systems (NCFS) during air-drying will be assessed from experimental data and the interpretation of a 'shrinkage' function involved in a mathematical model. Two NCFS made from a mixture of water/maltodextrin/agar (w/w/w: 1/0.15/0.015) were created out of maltodextrins with dextrose equivalent 19 (MD19) or 36 (MD36). The NCFS made with MD19 had 30°C higher Tg than those with MD36. This information indicated that, during drying, the NCFS with MD19 would pass from rubbery to glassy state sooner than NCFS MD36, for which glass transition only happens close to the end of drying. For the two NCFS, porosity and volume reduction as a function of moisture content were captured with high accuracy when represented by the mathematical models previously developed. No significant differences in porosity and in maximum shrinkage between both samples during drying were observed. As well, no change in the slope of the shrinkage curve as a function of moisture content was perceived. These results indicate that glass transition alone is not a determinant factor in changes of porosity or volume during air-drying. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Drying characteristics of zucchini and empirical modeling of its drying process

    Directory of Open Access Journals (Sweden)

    Naciye Kutlu

    2017-10-01

    Full Text Available The aim of the study was to dry zucchini (Cucurbita pepo by two different methods (convective hot-air (CHD and microwave-assisted drying (MWD. The effect of air temperature (60, 70 and 80°C, microwave (MW power (180, 360, 540 W and sample thickness (5 and 10 mm on some drying characteristics of zucchini were investigated. Thirteen mathematical models available in the literature were fitted to the experimental moisture ratio data. The coefficients of the models were determined by non-linear regression analysis. It was determined that the model that fits the moisture ratio data the best varies at different drying conditions. Increasing drying temperature and MW power and reducing sample thickness improved the drying rate and drying time. Drying in microwave has reduced the drying time by 52-64% for zucchini. It was found that the effective moisture diffusivities increased with increasing temperature and MW power. MWD samples had better rehydration ratios compared to ones dried only in tray drier for 5 mm thickness.  

  5. Transitioning aluminum clad spent fuels from wet to interim dry storage

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Iyer, N.C.; Sindelar, R.L.; Peacock, H.B. Jr.

    1994-01-01

    The United States Department of Energy (DOE) currently owns several hundred metric tons of aluminum clad, spent nuclear fuel and target assemblies. The vast majority of these irradiated assemblies are currently stored in water basins that were designed and operated for short term fuel cooling prior to fuel reprocessing. Recent DOE decisions to severely limit the reprocessing option have significantly lengthened the time of storage, thus increasing the tendency for corrosion induced degradation of the fuel cladding and the underlying core material. The portent of continued corrosion, coupled with the age of existing wet storage facilities and the cost of continuing basin operations, including necessary upgrades to meet current facility standards, may force the DOE to transition these wet stored, aluminum clad spent fuels to interim dry storage. The facilities for interim dry storage have not been developed, partially because fuel storage requirements and specifications for acceptable fuel forms are lacking. In spite of the lack of both facilities and specifications, current plans are to dry store fuels for approximately 40 to 60 years or until firm decisions are developed for final fuel disposition. The transition of the aluminum clad fuels from wet to interim dry storage will require a sequence of drying and canning operations which will include selected fuel preparations such as vacuum drying and conditioning of the storage atmosphere. Laboratory experiments and review of the available literature have demonstrated that successful interim dry storage may also require the use of fuel and canister cleaning or rinsing techniques that preclude, or at least minimize, the potential for the accumulation of chloride and other potentially deleterious ions in the dry storage environment. This paper summarizes an evaluation of the impact of fuel transitioning techniques on the potential for corrosion induced degradation of fuel forms during interim dry storage

  6. Influence of air pollution on epiphytic lichens at Kopmanholm

    Energy Technology Data Exchange (ETDEWEB)

    Moberg, R

    1968-01-01

    Investigations were conducted to determine the effects of pollutants from a sulfate pulp factory at Kopmanholmen, Sweden on epiphytic lichens. In 1965 the factory produced 130,000 tons of pulp, 9000 tons of chlorine, 10,000 tons of alkalies and 4000 tons of sulfuric acid. The air is polluted by sulfur dioxide, organic compounds of sulfur, chlorine, and hydrogen sulfide. Results indicate that no zone is completely lacking lichen vegetation. Alectoria implexa, Cetraria glauca, Parmeliopsis aleurites and P. hyperopta are especially sensitive to air pollution. Alectoria jubata, Cetraria chlorophylla, C. pinastri, Parmelia physodes and Parmeliopsis ambigua, although injured, seem to be less sensitive to air pollution because they were collected close to the factory. The injuries on the lichens are probably not caused by a single component, but the various pollutants interact and probably intensify the effect of each other. Groups of trees in the polluted area reduce the injuries.

  7. Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica).

    Science.gov (United States)

    Gallegos-Infante, José-Alberto; Rocha-Guzman, Nuria-Elizabeth; González-Laredo, Ruben-Francisco; Reynoso-Camacho, Rosalia; Medina-Torres, Luis; Cervantes-Cardozo, Veronica

    2009-01-01

    The interest in nopal has encouraged the use of dehydration; there are few studies about the effect of process parameters on the nopal polyphenol content and antioxidant activity. The objective of the present work was to evaluate the effect of air-drying flow rates on the amount and antioxidant capacity of extracts of Opuntia ficus indica cladodes. Nopal was dried at 45 degrees C and air flow rates of 3 and 5 m/sec. Samples were analyzed for moisture, total polyphenol, flavonoid, and flavonol contents, chain-breaking activity, inhibition of low-density lipoprotein and deoxyribose oxidation. Nopal drying at an air flow rate of 3 m/sec showed higher values of phenols, flavonoids and flavonols. The best value of low-density lipoprotein inhibition and deoxyribose was found at 1,000 microg/ml. The air flow rate affected the amount of polyphenols and the OH( . ) radical scavenging, but did not modify the chain-breaking activity and the low-density lipoprotein inhibition activity.

  8. Herbal dryer: drying of ginger (zingiber officinale) using tray dryer

    Science.gov (United States)

    Haryanto, B.; Hasibuan, R.; Alexander; Ashari, M.; Ridha, M.

    2018-02-01

    Drying is widely used as a method to preserve food because of its convenience and affordability. Drying of ginger using tray dryer were carried out at various drying conditions, such as air-drying flow, air-drying temperature, and sample dimensions, to achieve the highest drying rate. Samples with various dimensions were placed in the tray dryer and dried using various air-drying flow and temperatures. The weights of samples were observed every 3 minutes interval. Drying was stopped after three times of constant weighing. Data of drying was collected to make the drying curves. Drying curves show that the highest drying rate is achieved using highest air flow and temperature.

  9. Dry air oxidation kinetics of K-Basin spent nuclear fuel

    International Nuclear Information System (INIS)

    Abrefah, J.; Buchanan, H.C.; Gerry, W.M.; Gray, W.J.; Marschman, S.C.

    1998-06-01

    The safety and process analyses of the proposed Integrated Process Strategy (IPS) to move the N-Reactor spent nuclear fuel (SNF) stored at K-Basin to an interim storage facility require information about the oxidation behavior of the metallic uranium. Limited experiments have been performed on the oxidation reaction of SNF samples taken from an N-Reactor outer fuel element in various atmospheres. This report discusses studies on the oxidation behavior of SNF using two independent experimental systems: (1) a tube furnace with a flowing gas mixture of 2% oxygen/98% argon; and (2) a thermogravimetric system for dry air oxidation

  10. Regional assessment of anthropogenic impacts on air, water and soil, case: Huasteca Hidalguense, Mexico; Evaluacion regional del impacto antropogenico sobre aire, agua y suelo, caso: Huasteca Hidalguense, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo Martinez, Alberto Jose; Cabrera Cruz, Rene Bernardo Elias; Hernandez Mariano, Marisol; Galindo, Erick; Otazo, Elena; Prieto, Francisco [Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Hidalgo, Pachuca, Hidalgo (Mexico)]. E-mail: gordillo@uaeh.edu.mx; rcabreracruz@yahoo.com.mx

    2010-08-15

    The state of Hidalgo, Mexico presents an important environmental problem that manifests itself in different ways. To identify the sources, types and the magnitude of pollutants, an inventory of sources of industrial and domestic pollution for air, water and soil in ten municipalities of the Huasteca Region of the state was carried out using the technique of Rapid Assessment of Sources of Environmental Pollution and the results are reported in this paper. A total of combined pollutants emitted was 116 978.95 tons/year. Gasoline vehicles contributed 11 039 tons/year of air pollutants and diesel vehicles 1521 tons/year. For water, industrial sources contributed 22 496 tons/year and domestic effluents 15 776 tons/year. Soil pollution was a result of industrial solid waste, 4025 tons/year, and municipal solid waste, 62 121 tons/year. By municipality, Huejutla de Reyes is the most polluted in air, water and soil, with 53 % of the regional total. These results were evaluated in relation to environmental quality of each medium based on the Mexican regulations; these levels are above permissible limits for water and soil. A database with relevant information was prepared as a support for efficient management of pollutant emissions, provide base mark data for complementary studies, and to promote the future conservation of environmental quality and the biological richness of the area. [Spanish] El estado de Hidalgo, Mexico presenta una importante problematica ambiental que se manifiesta de manera heterogenea a lo largo de su territorio. Existe la necesidad de conocer las fuentes, tipos de agentes contaminantes y su magnitud. En este trabajo se realizo un inventario de la contaminacion emitida por fuentes de origen industrial y domestico en aire, agua y suelo en diez municipios de la region de la Huasteca por medio de la tecnica de Evaluacion Rapida de Fuentes de Contaminacion Ambiental (ERFCA). El total de la contaminacion emitida fue de 116 978.95 ton/ano. Las emisiones al

  11. Herbs drying using a heat pump dryer

    Energy Technology Data Exchange (ETDEWEB)

    Fatouh, M.; Metwally, M.N.; Helali, A.B.; Shedid, M.H. [Department of Mechanical Power Engineering, Faculty of Engineering at El Mattaria, Helwan University, P.O. Box 11718, Masaken El-Helmia, Cairo (Egypt)

    2006-09-15

    In the present work, a heat pump assisted dryer is designed and constructed to investigate the drying characteristics of various herbs experimentally. R134a is used as a working fluid in the heat pump circuit during the experimental work. Experiments have been conducted on Jew's mallow, spearmint and parsley. The effects of herb size, stem presence, surface load, drying air temperature and air velocity on the drying characteristics of Jew's mallow have been predicted. Experimental results show that a high surface load of 28kg/m{sup 2} yields the smallest drying rate, while the drying air with temperature of 55{sup o}C and velocity of 2.7m/s achieves the largest drying rate. A maximum dryer productivity of about 5.4kg/m{sup 2}h is obtained at the air temperature of 55{sup o}C, air velocity of 2.7m/s and dryer surface load of 28kg/m{sup 2}. It was found that small size herbs without stem need low specific energy consumption and low drying time. Comparison of the drying characteristics of different herbs revealed that parsley requires the lowest specific energy consumption (3684kJ/kg{sub H{sub 2}O}) followed by spearmint (3982kJ/kg{sub H{sub 2}O}) and Jew's mallow (4029kJ/kg{sub H{sub 2}O}). Finally, dryer productivity has been correlated in terms of surface load, drying air velocity and drying air temperature. (author)

  12. Air cooling of refrigerating loops: 'dry-hybrid' systems; Refroidissement par air des circuits frigorifiques: les systemes ''secs hybrides''

    Energy Technology Data Exchange (ETDEWEB)

    Becker, W. [Societe Jaggi-Gunter (Switzerland)

    2003-02-01

    Different type of cooling systems can be implemented on coldness production plants. The choice very often depends on the initial investment, but from a technical and economical point of view, this choice is not necessary the best solution. Thus, it can be useful to know the different existing systems and their exploitation costs with respect to the expected needs. A particular solution which uses a 'dry-hybrid' cooler is presented in this study: 1 - open-loop evaporative cooler; 2 - open-loop evaporative cooler with intermediate exchanger; 3 - close-loop evaporative cooler; 4 - dry-cooler; 5 - dry cooler with spraying in the air flow way; 6 - dry cooler with counterflow spraying; 7 - hybrid dry cooler; 8 - example of a realization in Germany: technical and economical value of the project, description of compared solutions and hypotheses, interpretation of results. (J.S.)

  13. Effect mechanism of air deflectors on the cooling performance of dry cooling tower with vertical delta radiators under crosswind

    International Nuclear Information System (INIS)

    Zhao, Yuanbin; Long, Guoqing; Sun, Fengzhong; Li, Yan; Zhang, Cuijiao; Liu, Jiabin

    2015-01-01

    Highlights: • A 3D numerical model was set for NDDCTV to study the effect of air deflectors. • The air deflectors improve the tower performance by 1.375 °C at u c = 6 m/s for a case. • The air deflectors reduce the air inflow deviation angle θ d at most delta entries. • The reduced θ d can improve the cooling performance of former deteriorated columns. • Both the radial inflow air velocity and θ d impact the cooling performance of delta. - Abstract: To study the effect mechanism of air deflectors on dry cooling tower, a three dimensional numerical model was established, with full consideration of the delta structure. The accuracy and credibility of dry cooling tower numerical model were validated. By numerical model, the average air static pressure and the average radial inflow air velocity were computed and analyzed at delta air entry, sector air entry and exit faces. By the air inflow deviation angle θ d , the effect of air deflectors on the aerodynamic field around tower was analyzed. The water exit temperatures of θ −1 columns, θ +2 columns and cooling sectors were also presented to clarify the effect of air deflectors. It was found that the air deflectors improved the aerodynamic field around cooling columns. The reduced air inflow deviation degree at delta entry improved the cooling performance of deteriorated columns. Referring to the radial inflow air velocity u ra and the air inflow deviation degree at delta entry, the effect mechanism of air deflectors are clarified under crosswind

  14. Short-term exposure to air pollution and digital vascular function.

    Science.gov (United States)

    Ljungman, Petter L; Wilker, Elissa H; Rice, Mary B; Schwartz, Joel; Gold, Diane R; Koutrakis, Petros; Vita, Joseph A; Mitchell, Gary F; Vasan, Ramachandran S; Benjamin, Emelia J; Mittleman, Murray A; Hamburg, Naomi M

    2014-09-01

    We investigated associations between ambient air pollution and microvessel function measured by peripheral arterial tonometry between 2003 and 2008 in the Framingham Heart Study Offspring and Third Generation Cohorts. We measured particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), black carbon, sulfates, particle number, nitrogen oxides, and ozone by using fixed monitors, and we determined moving averages for 1-7 days preceding vascular testing. We examined associations between these exposures and hyperemic response to ischemia and baseline pulse amplitude, a measure of arterial tone (n = 2,369). Higher short-term exposure to air pollutants, including PM2.5, black carbon, and particle number was associated with higher baseline pulse amplitude. For example, higher 3-day average PM2.5 exposure was associated with 6.3% higher baseline pulse amplitude (95% confidence interval: 2.0, 10.9). However, there were no consistent associations between the air pollution exposures assessed and hyperemic response. Our findings in a community-based sample exposed to relatively low pollution levels suggest that short-term exposure to ambient particulate pollution is not associated with vasodilator response, but that particulate air pollution is associated with baseline pulse amplitude, suggesting potentially adverse alterations in baseline vascular tone or compliance. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Physical properties of sunflower grains after drying

    Directory of Open Access Journals (Sweden)

    Paulo Carteri Coradi

    2015-12-01

    Full Text Available The knowledge of the physical properties of the grains is important for the optimization of post-harvest operations. This study aimed to evaluate the effects of convective drying with different air temperatures (45, 55, 65 and 75 °C the physical properties of sunflower seeds. The drying sunflower grains was performed in convection oven with forced air. In natural conditions, samples of 5 kg of pellets were used for each repetition drying. During the drying process, the grains samples were weighed periodically until they reach 10% (wet basis, w.b., then were subjected to evaluations of physical properties. According to the results it was observed that the porosity, apparent density, thousand kernel weight to the drag coefficient, roundness, sphericity and width of sunflower seed did not change with increasing temperature drying air. It was concluded that the drying air temperatures of 45 °C and 55 retained the initial physical characteristics of sunflower seeds. The temperature of the drying air of 75 °C had greater influence on changes in volumetric shrinkage of the grains.

  16. Numerical modelling of the effect of dry air traces in a helium parallel plate dielectric barrier discharge

    Science.gov (United States)

    Lazarou, C.; Belmonte, T.; Chiper, A. S.; Georghiou, G. E.

    2016-10-01

    A validated numerical model developed for the study of helium barrier discharges in the presence of dry air impurities is presented in this paper. The model was used to numerically investigate the influence of air traces on the evolution of the helium dielectric barrier discharge (DBD). The level of dry air used as impurity was in the range from 0 to 1500 ppm, which corresponds to the most commonly encountered range in atmospheric pressure discharge experiments. The results presented in this study clearly show that the plasma chemistry and consequently the discharge evolution is highly affected by the concentration level of impurities in the mixture. In particular, it was observed that air traces assist the discharge ignition at low concentration levels (~55 ppm), while on the other hand, they increase the burning voltage at higher concentration levels (~1000 ppm). Furthermore, it was found that the discharge symmetry during the voltage cycle highly depends on the concentration of air. For the interpretation of the results, a detailed analysis of the processes that occur in the discharge gap is performed and the main reaction pathways of ion production are described. Thanks to this approach, useful insight into the physics behind the evolution of the discharge is obtained.

  17. Daily efficiency of flat-plate solar air collectors for grain drying

    Energy Technology Data Exchange (ETDEWEB)

    Ting, K.C.; Shove, G.C.

    1983-01-01

    Single cover flat-plate solar collectors incorporated into walls and roofs of farm buildings have been used to heat ambient air for low temperature grain drying systems. Large surface area and high airflow rate are common features of these collectors. The drying period may range from several days to several weeks. Therefore, a knowledge of the variations of the collectors' daily efficiencies with respect to their design parameters would be helpful in applying solar collectors to grain drying. The objective of this study was to develop a simpler means of direct calculation of a collector's daily efficiency based on its design parameters. Many factors, such as configuration of the collector, airflow rate, weather conditions, etc. will affect the performance of solar collectors. A large number of varied conditions need to be tested in order to investigate the effect of different parameters on the collector performance. To facilitate this investigation, a computer simulation model developed by Ting was used to calculate the daily efficiencies of collectors under different operating conditions. The computer model was verified by Morrison's experimental data. Based on the simulation results, a functional relationship was developed between the daily efficiencies of collectors and their design parameters.

  18. Investigation of ore processing to recover uranium concentrate from sandstone of Pa Lua area on scale of 2 tons of ore per batch

    International Nuclear Information System (INIS)

    Cao Hung Thai; Dinh Manh Thang; Tran Van Son; Le Quang Thai; Bui Dang Hanh; Hoang Bich Ngoc; Nguyen Hong Ha; Phung Vu Phong; Nguyen Khac Tuan

    2003-01-01

    Based on the laboratory results, a system for testing on scale of 2 tons uranium ore per batch including following parts was established: equipment for crushing and grinding, equipment for acid leaching, equipment for impurity precipitation and filtration and drying. the results of testing by 2 tons ore per batch scale shown that uranium recovery in the leach circuit were achieved of at least 90% under following conditions: The supplying rate of leach agent 50-701/m 2 .h, sandstone is mixed or incubated with acid before the percolation. About 23 kg filter cake per m 3 solution were disposed as tailings. Flocculants N101, A101 (TOAGOSEL, Japan) were used for improvement of filtration and washing capacity of impurity precipitation. Uranium peroxide was precipitated with addition of hydrogen peroxide. The underflow solids were filtered and calcined. The product contained min. 76% U 3 O 8 . The water recycle was successfully tested. That results in minimization of water addition to only 0.3m 3 /ton of ore. Experimental results on 2 tons scale showed that the proposed processing flow sheet using direct precipitation can meet all environmental and technical objectives. (CHT)

  19. Convective drying of chilies using a concentrating solar collector

    International Nuclear Information System (INIS)

    Hanif, M.; Khattak, M.K.; Aamir, M.

    2015-01-01

    A concentrating solar collector was developed for convective drying of green chilies by providing optimum drying environment. A temperature in the range of 45-65 degree C and relative humidity of less than 10% was observed during the drying period provided by the solar collector from 9.00 am to 5.00 pm. Different levels of drying temperature and air mass flow rates were tested to find their effect on drying time of the chilies. The experiment was laid out as a randomized complete block design with a factorial arrangement of the treatments consisting of 3 levels of temperature and 3 levels of air mass flow rate, replicated 3 times. Drying temperature and air mass flow rates effected the drying time significantly. The means comparison showed that minimum drying time of 17.96 h was recorded at high temperature of 65 degree C followed by a drying time of 20.27 and 21.43 h at temperatures of 55 and 45 degree C. The means of air mass flow rates showed that minimum drying time of 18.49 h was noted at high air mass flow rate of 3.50 kg min-1 followed by 20.32 and 20.86 h at air mass flow rates of 1.5 and 2.30 kg min-l. Chilies dried at temperature of 65 degree C and air mass flow rate of 3.5 kg min-1 showed an average drying rate of 0.02 g(H20)hrl cm-2as compared to the slow drying rates at 55 and 45 degree C. It was concluded that chilies must be dried at high temperature and high air mass flow rates to get on time quality dried chilies. (author)

  20. Warm Dry Weather Conditions Cause of 2016 Fort McMurray Wild Forest Fire and Associated Air Quality

    Science.gov (United States)

    de Azevedo, S. C.; Singh, R. P.; da Silva, E. A., Sr.

    2016-12-01

    The climate change is evident from the increasing temperature around the world, day to day life and increasing frequency of natural hazards. The warm and dry conditions are the cause of frequent forest fires around the globe. Forest fires severely affect the air quality and human health. Multi sensor satellites and dense network of ground stations provide information about vegetation health, meteorological, air quality and atmospheric parameters. We have carried out detailed analysis of satellite and ground data of wild forest fire that occurred in May 2016 in Fort McMurray, Alberta, Canada. This wild forest fire destroyed 10 per cent of Fort McMurray's housing and forced more than 90,000 people to evacuate the surrounding areas. Our results show that the warm and dry conditions with low rainfall were the cause of Fort McMurray wild fire. The air quality parameters (particulate matter, CO, ozone, NO2, methane) and greenhouse gases measured from Atmospheric Infrared Sounder (AIRS) satellite show enhanced levels soon after the forest fire. The emissions from the forest fire affected health of population living in surrounding areas up to 300 km radius.

  1. Supply of dry ambient air in Alstroemenia. Test on the impact of the supply of dry ambient air on the microclimate and crops in alstroemeria; Droge buitenlucht toevoeren in Alstroemeria. Praktijkproef naar de invloed van droge buitenlucht toevoeren op microklimaat en gewas in alstroemeria

    Energy Technology Data Exchange (ETDEWEB)

    Van der Helm, F.; Van Weel, P.; Raaphorst, M.

    2012-08-15

    After one year of dry air distribution in Alstroemeria it is shown that it can effectively lower the vapour deficit between the leaves. It resulted in a decrease of leaf tip damage of 70% compared to the reference, but not to a decrease of spontaneously broken stems. The research is conducted in practice at Hoogenboom Alstroemeria on 1000 m{sup 2} within a larger greenhouse compartment planted with the variety 'Primadonna'. Wageningen UR has conducted the research with an air distribution system of 8 m{sup 3}/m{sup 2} from supplier Lekhabo. The dry air was distributed in the crop by two transparent air tubes. Climate could not be controlled in the research area separate from the reference, therefore more dry air was required than expected, which is contradictive with energy saving. Growers that want to use dry air to either to prevent leaf tips or to save energy will have to find a balance between these two benefits that partly contradict. Both advantages are required to make the investment profitable. It is calculated that nurseries with a relatively small heat and power cogeneration and greenhouses that are already equipped with a second screen can probably profitably invest in a simple and small capacity dry air distribution system [Dutch] Na ruim een jaar opgewarmde buitenlucht toevoeren in Alstroemeria is duidelijk geworden dat hiermee effectief het vocht deficit tussen het gewas verlaagd kan worden. Dit leidde in dit onderzoek tot een afname van vochtblaadjes van 70%, maar niet tot minder afgroeiers. De proef is uitgevoerd in 1000 m{sup 2} binnen een afdeling met het ras Primadonna bij het bedrijf Hoogenboom alstroemeria in Nieuwe Wetering. De proef is door Wageningen UR glastuinbouw uitgevoerd met een installatie voor aanvoer van 8m{sup 3}/m{sup 2} per uur lucht door twee slurven aan de zijkant van het bed. In de proefomgeving kon het klimaat niet apart geregeld worden op het toevoeren van buitenlucht. Hierdoor is steeds relatief veel buitenlucht

  2. A measurement of summertime dry deposition of ambient air particulates and associated metallic pollutants in Central Taiwan.

    Science.gov (United States)

    Fang, Guor-Cheng; Chiang, Hung-Che; Chen, Yu-Cheng; Xiao, You-Fu; Wu, Chia-Ming; Kuo, Yu-Chen

    2015-04-01

    The purpose of this study is to characterize metallic elements associated with atmospheric particulate matter in the dry deposition plate, total suspended particulate, fine particles, and coarse particles at Taichung Harbor and Gong Ming Junior High School (airport) in central Taiwan at a sampling site from June 2013 to August 2013. The results indicated that: (1) the average concentrations of the metallic elements Cr and Cd were highest at the Gong Ming Junior High School (airport), and the average concentrations of the metallic elements Ni, Cu, and Pb were highest at the Taichung Harbor sampling site. (2) The high smelting industry density and export/import rate of heavily loaded cargos were the main reasons leading to these findings. (3) The average metallic element dry deposition and metallic element PM(2.5-10) all followed the order of Pb > Cr > Cu > Ni > Cd at the two sampling sites. However, the average metallic elements Cu and Pb were found to have the highest dry deposition velocities and concentrations in PM(2.5) for the two sampling sites in this study. (4) The correlation coefficients of ambient air particle dry deposition and concentration with wind speed at the airport were higher than those from the harbor sampling site. The wind and broad open spaces at Taichung Airport were the possible reasons for the increasing correlation coefficients for ambient air particle concentration and dry deposition with wind speed at the Taichung Airport sampling site.

  3. Dynamic Performance of a Residential Air-to-Air Heat Pump.

    Science.gov (United States)

    Kelly, George E.; Bean, John

    This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…

  4. Effect of biomass open burning on particulate matter and polycyclic aromatic hydrocarbon concentration levels and PAH dry deposition in ambient air.

    Science.gov (United States)

    Chiu, Jui C; Shen, Yun H; Li, Hsing W; Chang, Shun S; Wang, Lin C; Chang-Chien, Guo P

    2011-01-01

    The objectives of the present study were to investigate particulate matter (PM) and polycyclic aromatic hydrocarbon (PAH) concentrations in ambient air during rice straw open burning and non-open burning periods. In the ambient air of a rice field, the mean PM concentration during and after an open burning event were 1828 and 102 μg m⁻³, respectively, which demonstrates that during a rice field open burning event, the PM concentration in the ambient air of rice field is over 17 times higher than that of the non-open burning period. During an open burning event, the mean total PAH and total toxic equivalence (BaP(eq)) concentrations in the ambient air of a rice field were 7206 ng m⁻³ and 10.3 ng m⁻³, respectively, whereas after the open burning event, they were 376 ng m⁻³ and 1.50 ng m⁻³, respectively. Open burning thus increases total PAH and total BaP(eq) concentrations by 19-fold and 6.8-fold, respectively. During a rice straw open burning event, in the ambient air of a rice field, the mean dry deposition fluxes of total PAHs and total BaP(eq) were 1222 μg m⁻² day⁻¹ and 4.80 μg m⁻² day⁻¹, respectively, which are approximately 60- and 3-fold higher than those during the non-open burning period, respectively. During the non-open burning period, particle-bound PAHs contributed 79.2-84.2% of total dry deposition fluxes (gas + particle) of total PAHs. However, an open burning event increases the contribution to total PAH dry deposition by particle-bound PAHs by up to 85.9-95.5%. The results show that due to the increased amount of PM in the ambient air resulting from rice straw open burning, particle-bound PAHs contributed more to dry deposition fluxes of total PAHs than they do during non-open burning periods. The results show that biomass (rice straw) open burning is an important PAH emission source that significantly increases both PM and PAH concentration levels and PAH dry deposition in ambient air.

  5. NSGA-II Algorithm with a Local Search Strategy for Multiobjective Optimal Design of Dry-Type Air-Core Reactor

    Directory of Open Access Journals (Sweden)

    Chengfen Zhang

    2015-01-01

    Full Text Available Dry-type air-core reactor is now widely applied in electrical power distribution systems, for which the optimization design is a crucial issue. In the optimization design problem of dry-type air-core reactor, the objectives of minimizing the production cost and minimizing the operation cost are both important. In this paper, a multiobjective optimal model is established considering simultaneously the two objectives of minimizing the production cost and minimizing the operation cost. To solve the multi-objective optimization problem, a memetic evolutionary algorithm is proposed, which combines elitist nondominated sorting genetic algorithm version II (NSGA-II with a local search strategy based on the covariance matrix adaptation evolution strategy (CMA-ES. NSGA-II can provide decision maker with flexible choices among the different trade-off solutions, while the local-search strategy, which is applied to nondominated individuals randomly selected from the current population in a given generation and quantity, can accelerate the convergence speed. Furthermore, another modification is that an external archive is set in the proposed algorithm for increasing the evolutionary efficiency. The proposed algorithm is tested on a dry-type air-core reactor made of rectangular cross-section litz-wire. Simulation results show that the proposed algorithm has high efficiency and it converges to a better Pareto front.

  6. Public Health and Air Pollution in Asia (PAPA): A Multicity Study of Short-Term Effects of Air Pollution on Mortality

    OpenAIRE

    Wong, Chit-Ming; Vichit-Vadakan, Nuntavarn; Kan, Haidong; Qian, Zhengmin

    2008-01-01

    Background and Objectives: Although the deleterious effects of air pollution from fossil fuel combustion have been demonstrated in many Western nations, fewer studies have been conducted in Asia. The Public Health and Air Pollution in Asia (PAPA) project assessed the effects of short-term exposure to air pollution on daily mortality in Bangkok, Thailand, and in three cities in China: Hong Kong, Shanghai, and Wuhan. Methods: Poisson regression models incorporating natural spline smoothing func...

  7. Research on the drying kinetics of household food waste for the development and optimization of domestic waste drying technique.

    Science.gov (United States)

    Sotiropoulos, A; Malamis, D; Michailidis, P; Krokida, M; Loizidou, M

    2016-01-01

    Domestic food waste drying foresees the significant reduction of household food waste mass through the hygienic removal of its moisture content at source. In this manuscript, a new approach for the development and optimization of an innovative household waste dryer for the effective dehydration of food waste at source is presented. Food waste samples were dehydrated with the use of the heated air-drying technique under different air-drying conditions, namely air temperature and air velocity, in order to investigate their drying kinetics. Different thin-layer drying models have been applied, in which the drying constant is a function of the process variables. The Midilli model demonstrated the best performance in fitting the experimental data in all tested samples, whereas it was found that food waste drying is greatly affected by temperature and to a smaller scale by air velocity. Due to the increased moisture content of food waste, an appropriate configuration of the drying process variables can lead to a total reduction of its mass by 87% w/w, thus achieving a sustainable residence time and energy consumption level. Thus, the development of a domestic waste dryer can be proved to be economically and environmentally viable in the future.

  8. Leukotriene-B4 concentrations in exhaled breath condensate and lung function after thirty minutes of breathing technically dried compressed air.

    Science.gov (United States)

    Neubauer, Birger; Struck, Niclas; Mutzbauer, Till S; Schotte, Ulrich; Langfeldt, Norbert; Tetzlaff, Kay

    2002-01-01

    In previous studies it had been shown that leukotriene-B4 [LTB4] concentrations in the exhaled breath mirror the inflammatory activity of the airways if the respiratory tract has been exposed to occupational hazards. In diving the respiratory tract is exposed to cold and dry air and the nasopharynx, as the site of breathing-gas warming and humidification, is bypassed. The aim of the present study was to obtain LTB4-concentrations in the exhaled breath and spirometric data of 17 healthy subjects before and after thirty minutes of technically dried air breathing at normobar ambient pressure. The exhaled breath was collected non-invasively, via a permanently cooled expiration tube. The condensate was measured by a standard enzyme immunoassay for LTB4. Lung function values (FVC, FEV1, MEF 25, MEF 50) were simultaneously obtained by spirometry. The measured pre- and post-exposure LTB4- concentrations as well as the lung function values were in the normal range. The present data gave no evidence for any inflammatory activity in the subjects' airways after thirty minutes breathing technically dried air.

  9. Drying of building lumber

    Energy Technology Data Exchange (ETDEWEB)

    Washimi, Hiroshi

    1988-08-20

    Dried lumber is classified into air dried and kiln-dried lumber. The water content of kiln-dried lumber is specified by the Japan Agricultural Standards. However, since building lumber varies in such factors as the location where it was growing, species and shape, the standards, though relaxed, are not being observed. In fact, lumbered products which are not ''Kiln-dried'' frequently bear ''kiln-dried lumber'' marks. In an attempt to correct the situation, the Forestry Agency has set up voluntary standards, but problems still remain. The conventional drying method consists of first subjecting the lumber to optimum drying, then letting bending and deformations to freely and fully appear, and follow this with corrective sawing to produce planks straight from end to end. Compared with air dried lumber in terms of moisture content, kiln-dried lumber remains much with same with minimal shrinkage and expansion. For oil-containing resin, such normal treatments as drying by heating, steaming and boiling seem to be quite effective. Kiln drying, which is becoming more and more important with changes in the circulation system, consists of the steaming-drying-heating method and the dehumidizing type drying method. The major factor which determines the drying cost is the number of days required for drying, which depends largely on the kind of lumber and moisture content. The Forestry Angency is promoting production of defoiled lumber. (2 figs, 2 tables)

  10. Evaluation of energy consumption in different drying methods

    Energy Technology Data Exchange (ETDEWEB)

    Motevali, Ali; Minaei, Saeid; Khoshtagaza, Mohammad Hadi [Department of Agricultural Machinery Engineering, Agricultural Faculty, Tarbiat Modares University, Tehran 14115-111 (Iran, Islamic Republic of)

    2011-02-15

    This study was conducted to evaluate energy consumption in various drying systems including hot-air convection, use of microwave pretreatment with convection dryer, microwave drying, vacuum drying and infrared drying. Tests were conducted using pomegranate arils under various experimental conditions as follows. In convection dryer at six temperature levels (45, 50, 55, 60, 65 and 70 C) and three air velocity levels (0.5, 1 and 1.5 m/s) at three pretreatments of control, 100 W microwave pretreatment for 20 min and 200 W microwave pretreatment for 10 min. Experiments in the microwave dryer were done at three power levels of 100, 200 and 300 W and in vacuum dryer at five temperature levels (50, 60, 70, 80, and 90 C) under 250 kPa pressure. For infrared drying, there were four air velocity levels (0.3, 0.5, 0.7 and 1 m/s) and three illumination levels (0.22, 0.31 and 0.49 W/cm{sup 2}). Experimental results showed that minimum and maximum energy consumption in pomegranate drying were associated with microwave and vacuum dryers, respectively. The use of microwave pretreatment in drying pomegranate arils in hot air dryer decreased drying time and energy consumption in comparison with pure convection drying. In infrared drying, it was found that drying time increased with air velocity which resulted in increased energy consumption. (author)

  11. Evaluation of energy consumption in different drying methods

    International Nuclear Information System (INIS)

    Motevali, Ali; Minaei, Saeid; Khoshtagaza, Mohammad Hadi

    2011-01-01

    This study was conducted to evaluate energy consumption in various drying systems including hot-air convection, use of microwave pretreatment with convection dryer, microwave drying, vacuum drying and infrared drying. Tests were conducted using pomegranate arils under various experimental conditions as follows. In convection dryer at six temperature levels (45, 50, 55, 60, 65 and 70 o C) and three air velocity levels (0.5, 1 and 1.5 m/s) at three pretreatments of control, 100 W microwave pretreatment for 20 min and 200 W microwave pretreatment for 10 min. Experiments in the microwave dryer were done at three power levels of 100, 200 and 300 W and in vacuum dryer at five temperature levels (50, 60, 70, 80, and 90 o C) under 250 kPa pressure. For infrared drying, there were four air velocity levels (0.3, 0.5, 0.7 and 1 m/s) and three illumination levels (0.22, 0.31 and 0.49 W/cm 2 ). Experimental results showed that minimum and maximum energy consumption in pomegranate drying were associated with microwave and vacuum dryers, respectively. The use of microwave pretreatment in drying pomegranate arils in hot air dryer decreased drying time and energy consumption in comparison with pure convection drying. In infrared drying, it was found that drying time increased with air velocity which resulted in increased energy consumption.

  12. Thermohydraulic modeling of the dry air passive containment cooling system process in the Westinghouse AP-600 ALWR

    Energy Technology Data Exchange (ETDEWEB)

    Harari, R; Weis, Y; Barnea, Y [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    Following postulated events of a LOCA, the passive Containment Cooling System (PCCS) uses dry air to transfer the residual heat by natural circulation. The air flow path, designed between the steel reactor containment hot shell and the concrete shield building, creates an open thermosyphon. The purpose of this inherently safe process is to assure the long term steady-state cooling of the nuclear core after an emergency shutdown (authors).

  13. Thermal comfort in air-conditioned mosques in the dry desert climate

    Energy Technology Data Exchange (ETDEWEB)

    Al-ajmi, Farraj F. [Department of Civil Engineering, College of Technological Studies, Shuwaikh 70654 (Kuwait)

    2010-11-15

    In Kuwait, as in most countries with a typical dry desert climate, the summer season is long with a mean daily maximum temperature of 45 C. Centralized air-conditioning, which is generally deployed from the beginning of April to the end of October, can have tremendous impact on the amount of electrical energy utilized to mechanically control the internal environment in mosque buildings. The indoor air temperature settings for all types of air-conditioned buildings and mosque buildings in particular, are often calculated based on the analytical model of ASHRAE 55-2004 and ISO 7730. However, a field study was conducted in six air-conditioned mosque buildings during the summers of 2007 to investigate indoor climate and prayers thermal comfort in state of Kuwait. The paper presents statistical data about the indoor environmental conditions in Kuwait mosque buildings, together with an analysis of prayer thermal comfort sensations for a total of 140 subjects providing 140 sets of physical measurements and subjective questionnaires were used to collect data. Results show that the neutral temperature (T{sub n}) of the prayers is found to be 26.1 C, while that for PMV is 23.3 C. Discrepancy of these values is in fact about 2.8 C higher than those predicted by PMV model. Therefore, thermal comfort temperature in Kuwait cannot directly correlate with ISO 7730 and ASHRAE 55-2004 standards. Findings from this study should be considered when designing air conditioning for mosque buildings. This knowledge can contribute towards the development of future energy-related design codes for Kuwait. (author)

  14. Short-term effects of air pollution on hospital admissions in Korea.

    Science.gov (United States)

    Son, Ji-Young; Lee, Jong-Tae; Park, Yoon Hyeong; Bell, Michelle L

    2013-07-01

    Numerous studies have identified short-term effects of air pollution on morbidity in North America and Europe. The effects of air pollution may differ by region of the world. Evidence on air pollution and morbidity in Asia is limited. We investigated associations between ambient air pollution and hospital admissions in eight Korean cities for 2003-2008. We applied a two-stage Bayesian hierarchical model to estimate city-specific effects and the overall effects across the cities. We considered lagged effects of pollutants by cause (allergic disease, asthma, selected respiratory disease, and cardiovascular disease), sex, and age (0-14, 15-64, 65-74, and ≥ 75 years). We found evidence of associations between hospital admissions and short-term exposure to air pollution. An interquartile range (IQR) increase in PM10 (30.7 µg/m) was associated with an overall increase of 2.2% (95% posterior interval = 0.5%-3.9%), 2.8% (1.3%-4.4%), 1.7% (0.9%-2.6%), and 0.7% (0.0%-1.4%) in allergic, asthma, selected respiratory, and cardiovascular admissions, respectively. For NO2 (IQR 12.2 ppb), the corresponding figures were 2.3% (0.6%-4.0%), 2.2% (0.3%-4.1%), 2.2% (0.6%-3.7%), and 2.2% (1.1%-3.4%). For O3, we found positive associations for all the studied diagnoses except cardiovascular disease. SO2 was associated with hospital admissions for selected respiratory or cardiovascular causes, whereas O3 was negatively associated with cardiovascular admissions. We found suggestive evidence for stronger associations in younger and older age groups. Associations were similar for men and women. Ambient air pollution was associated with increased risk of hospital admissions in Korea. Results suggest increased susceptibility among the young or the elderly for pollution effects on specific diseases.

  15. Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity.

    Science.gov (United States)

    Aral, Serdar; Beşe, Ayşe Vildan

    2016-11-01

    Thin layer drying characteristics and physicochemical properties of hawthorn fruit (Crataegus spp.) were investigated using a convective dryer at air temperatures 50, 60 and 70°C and air velocities of 0.5, 0.9 and 1.3m/s. The drying process of hawthorn took place in the falling rate period, and the drying time decreased with increasing air temperature and velocity. The experimental data obtained during the drying process were fitted to eleven different mathematical models. The Midilli et al.'s model was found to be the best appropriate model for explaining the drying behavior of hawthorn fruit. Effective moisture diffusion coefficients (Deff) were calculated by Fick's diffusion model and their values varied from 2.34×10(-10)m(2)/s to 2.09×10(-9)m(2)/s. An Arrhenius-type equation was applied to determine the activation energies. While the shrinkage decreased, the rehydration ratio increased with increasing air temperature and air velocity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Inhibition of water uptake after dry storage of cut flowers: Role of aspired air and wound-induced processes in Chrysanthemum

    NARCIS (Netherlands)

    Meeteren, van U.; Arévalo-Galarza, L.; Doorn, van W.G.

    2006-01-01

    We investigated the relative role of aspired air and a plant-induced reaction in the vascular occlusion of dry-stored cv. Cassa chrysanthemum flowers (Chrysanthemum × morifolium Ramat). Measurements of hydraulic capacity showed that the air that is aspired directly after cutting (into the opened

  17. Experimental investigation of drying characteristics of cornelian cherry fruits ( Cornus mas L.)

    Science.gov (United States)

    Ozgen, Filiz

    2015-03-01

    Major target of present paper is to investigate the drying kinetics of cornelian cherry fruits ( Cornus mas L.) in a convective dryer, by varying the temperature and the velocity of drying air. Freshly harvested fruits are dried at drying air temperature of 35, 45 and 55 °C. The considered drying air velocities are V air = 1 and 1.5 m/s for each temperature. The required drying time is determined by taking into consideration the moisture ratio measurements. When the moisture ratio reaches up to 10 % at the selected drying air temperature, then the time is determined ( t = 40-67 h). The moisture ratio, fruit temperature and energy requirement are presented as the functions of drying time. The lowest drying time (40 h) is obtained when the air temperature is 55 °C and air velocity is 1.5 m/s. The highest drying time (67 h) is found under the conditions of 35 °C temperature and 1 m/s velocity. Both the drying air temperature and the air velocity significantly affect the required energy for drying system. The minimum amount of required energy is found as 51.12 kWh, at 55 °C and 1 m/s, whilst the maximum energy requirement is 106.7 kWh, at 35 °C and 1.5 m/s. It is also found that, air temperature significantly influences the total drying time. Moreover, the energy consumption is decreasing with increasing air temperature. The effects of three parameters (air temperature, air velocity and drying time) on drying characteristics have also been analysed by means of analysis of variance method to show the effecting levels. The experimental results have a good agreement with the predicted ones.

  18. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply, April 2005

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-04-01

    The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country’s present petroleum consumption – the goal set by the Biomass R&D Technical Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  19. a comparative study of the drying rate constant, drying efficiency

    African Journals Online (AJOL)

    The drying rate constants for the solar dryer and open- air sun dried bitter leaf were 0.8 and ... of cost benefit but the poorest when other considerations ... J. I. Eze, National Centre for Energy Research and Development (NCERD), University of ...

  20. Pipeline drying using dehumidified air with low dew point temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Syed Younus; Gandhidasan, P.; Al-Farayedhi, A.A. [King Fahd Univ. of Petroleum and Minerals, Mechanical Engineering Dept., Dhahran (Saudi Arabia)

    1998-05-01

    The presence of humidity may be detrimental to the operation of pipelines transporting natural gas or other petroleum products. In particular conditions water solidifies or reacts chemically with hydrocarbons, forming hydrates. Such crystalline substances may cause obstruction of the lines and damage the equipment of the relevant facilities. A procedure for predicting the performance of drying a pipeline using dehumidified air with a low dew point is described in this paper. The mathematical model estimates the time required for the complete removal of moisture in the pipeline for the given operating conditions with simplified assumptions. The governing equations are solved analytically as well as numerically and the results are briefly discussed in the paper. (Author)

  1. Short Communication

    African Journals Online (AJOL)

    carelm

    The drying rate and chemical composition of lucerne hay that was field dried (sun ... dried in a forced air bulk drier (FABD) were compared during summer (which is .... Wooden slats were installed inside the FABD at the same height from the ...

  2. Modelling Condensation and Simulation for Wheat Germ Drying in Fluidized Bed Dryer

    Directory of Open Access Journals (Sweden)

    Der-Sheng Chan

    2018-06-01

    Full Text Available A low-temperature drying with fluidized bed dryer (FBD for wheat germ (WG stabilization could prevent the loss of nutrients during processing. However, both evaporation and condensation behaviors occurred in sequence during FBD drying of WG. The objective of this study was to develop a theoretical thin-layer model coupling with the macro-heat transfer model and the bubble model for simulating both the dehydration and condensation behaviors of WG during low-temperature drying in the FBD. The experimental data were also collected for the model modification. Changes in the moisture content of WG, the air temperature of FBD chamber, and the temperature of WG during drying with different heating approaches were significantly different. The thermal input of WG drying with short heating time approach was one-third of that of WG drying with a traditional heating approach. The mathematical model developed in this study could predict the changes of the moisture content of WG and provide a good understanding of the condensation phenomena of WG during FBD drying.

  3. Atmospheric conditions and weather regimes associated with extreme winter dry spells over the Mediterranean basin

    Science.gov (United States)

    Raymond, Florian; Ullmann, Albin; Camberlin, Pierre; Oueslati, Boutheina; Drobinski, Philippe

    2018-06-01

    Very long dry spell events occurring during winter are natural hazards to which the Mediterranean region is extremely vulnerable, because they can lead numerous impacts for environment and society. Four dry spell patterns have been identified in a previous work. Identifying the main associated atmospheric conditions controlling the dry spell patterns is key to better understand their dynamics and their evolution in a changing climate. Except for the Levant region, the dry spells are generally associated with anticyclonic blocking conditions located about 1000 km to the Northwest of the affected area. These anticyclonic conditions are favourable to dry spell occurrence as they are associated with subsidence of cold and dry air coming from boreal latitudes which bring low amount of water vapour and non saturated air masses, leading to clear sky and absence of precipitation. These extreme dry spells are also partly related to the classical four Euro-Atlantic weather regimes are: the two phases of the North Atlantic Oscillation, the Scandinavian "blocking" or "East-Atlantic", and the "Atlantic ridge". Only the The "East-Atlantic", "Atlantic ridge" and the positive phase of the North Atlantic Oscillation are frequently associated with extremes dry spells over the Mediterranean basin but they do not impact the four dry spell patterns equally. Finally long sequences of those weather regimes are more favourable to extreme dry spells than short sequences. These long sequences are associated with the favourable prolonged and reinforced anticyclonic conditions

  4. Specific energy consumption in microwave drying of garlic cloves

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.P. [Department of Processing and Food Engineering, College of Technology and Agricultural Engineering, Udaipur 313 001, Rajasthan (India); Prasad, Suresh [Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur 721 302 (India)

    2006-09-15

    The convective and microwave-convective drying of garlic cloves was carried out in a laboratory scale microwave dryer, which was developed for this purpose. The specific energy consumption involved in the two drying processes was estimated from the energy supplied to the various components of the dryer during the drying period. The specific energy consumption was computed by dividing the total energy supplied by amount of water removed during the drying process. The specific energy consumption in convective drying of garlic cloves at 70{sup o}C temperature and 1.0m/s air velocity was estimated as 85.45MJ/kg of water evaporated. The increase in air velocity increased the energy consumption. The specific energy consumption at 40W of microwave power output, 70{sup o}C air temperature and 1.0m/s air velocity was 26.32MJ/kg of water removed, resulting in about a 70% energy saving as compared to convective drying processes. The drying time increased with increase in air velocity in microwave-convective drying process; a trend reverse to what was observed in convective drying process of garlic cloves. (author)

  5. Determination of Sliced Pineapple Drying Characteristics in A Closed Loop Heat Pump Assisted Drying System

    Directory of Open Access Journals (Sweden)

    Cüneyt Tunçkal

    2018-02-01

    Full Text Available Pineapple (Ananascomosus slices were dried with the aid of a heat pump assisted dryer (HPD. During this process, air velocity was kept constant at 1m/s, while air temperatures were changed as 37°C, 40°C and 43°C. The drying air was also circulated by using an axial fan in a closed cycle and fresh air was not allowed into the system. The drying rate and drying time were significantly influenced by drying temperature. It was observed that drying temperatures had significant effects on the drying rate and drying time. During the conduct of the study, pineapple slices were dried at 37, 40 and 43°C for 465, 360 and 290 min, respectively. The specific moisture extraction ratio (SMER values were observed to change as drying temperatures were changed. The drying rate curves indicated that the whole drying process occurred in the falling rate period. Seven well-known thin-layer models (Lewis, Henderson &Pabis, Logarithmic, Page, Midilli & Kucuk, Weibull and Aghbashlo et al. were employed to make a prediction about drying kinetics through nonlinear regression analysis. The Midilli & Kucuk and Aghbashlo et al. models were consistent with the experimental data. Fick’s second law of diffusion was used to determine the moisture diffusivity coefficient ranging from 3.78×10–9 to 6.57×10-9  m2/s the each of the above mentioned temperatures. The dependence of effective diffusivity coefficient on temperature was defined by means a fan Arrhenius type equation. The activation energy of moisture diffusion was found to be 75.24kJ/mol.   Article History: Received: July 18th 2017; Received: October 27th 2017; Accepted: January 16th 2018; Available online How to Cite This Article: Tunçkal, C., Coşkun, S., Doymaz, I. and Ergun, E. (2018 Determination of Sliced Pineapple Drying Characteristics in A Closed Loop Heat Pump Assisted Drying System. International Journal of Renewable Energy Development, 7(1, 35-41. https://doi.org/10.14710/ijred.7.1.35-41

  6. Effect of surface roughness on drying speed of drying lamellas in ...

    African Journals Online (AJOL)

    Lamellas, which are defined as top layers of multilayer parquet and favourable to wood veneer can be dried in jet ventilated automatic veneer roller dryer due to short drying period. The objective of this study is to determine the effect of surface roughness on the drying speed of the veneer roller dryer. Quercus spp.

  7. Thin layer modelling of Gelidium sesquipedale solar drying process

    International Nuclear Information System (INIS)

    Ait Mohamed, L.; Ethmane Kane, C.S.; Kouhila, M.; Jamali, A.; Mahrouz, M.; Kechaou, N.

    2008-01-01

    The effect of air temperature and air flow rate on the drying kinetics of Gelidium sesquipedale was investigated in convective solar drying. Drying was conducted at 40, 50 and 60 deg. C. The relative humidity was varied from 50% to 57%, and the drying air flow rate was varied from 0.0277 to 0.0833 m 3 /s. The expression for the drying rate equation is determined empirically from the characteristic drying curve. Thirteen mathematical models of thin layer drying are selected in order to estimate the suitable model for describing the drying curves. The two term model gives the best prediction of the drying curves and satisfactorily describes the drying characteristics of G. sesquipedale with a correlation coefficient R of 0.9999 and chi-square (χ 2 ) of 3.381 x 10 -6

  8. Multi-Ton Argon and Xenon

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Ricardo; Balascuta, Septimiu; Alton, Drew; Aprile, Elena; Giboni, Karl-Ludwig; Haruyama, Tom; Lang, Rafael; Melgarejo, Antonio Jesus; Ni, Kaixuan; Plante, Guillaume; Choi, Bin [et al.

    2009-01-01

    There is a wide range of astronomical evidence that the visible stars and gas in all galaxies, including our own, are immersed in a much larger cloud of non-luminous matter, typically an order of magnitude greater in total mass. The existence of this ''dark matter'' is consistent with evidence from large-scale galaxy surveys and microwave background measurements, indicating that the majority of matter in the universe is non-baryonic. The nature of this non-baryonic component is still totally unknown, and the resolution of the ''dark matter puzzle'' is of fundamental importance to cosmology, astrophysics, and elementary particle physics. A leading explanation, motivated by supersymmetry theory, is the existence of as yet undiscovered Weakly Interacting Massive Particles (WIMPs), formed in the early universe and subsequently clustered in association with normal matter. WIMPs could, in principle, be detected in terrestrial experiments by their collisions with ordinary nuclei, giving observable low energy (< 100 keV) nuclear recoils. The predicted low collision rates require ultra-low background detectors with large (0.1-10 ton) target masses, located in deep underground sites to eliminate neutron background from cosmic ray muons. The establishment of the Deep Underground Science and Engineering Laboratory for large-scale experiments of this type would strengthen the current leadership of US researchers in this and other particle astrophysics areas. We propose to detect nuclear recoils by scintillation and ionization in ton-scale liquid noble gas targets, using techniques already proven in experiments at the 0.01-0.1 ton level. The experimental challenge is to identify these events in the presence of background events from gammas, neutrons, and alphas.

  9. Characterization of short chain fatty acid microcapsules produced by spray drying

    International Nuclear Information System (INIS)

    Teixeira, Maria Ines; Andrade, Leonardo R.; Farina, Marcos; Rocha-Leao, Maria Helena M.

    2004-01-01

    Microcapsules containing short chain fatty acids (SCFA) were produced by spray drying technique using different proportions of gum arabic and maltodextrin as wall materials. Proportions of 5% and 10% of gum arabic and maltodextrin isolated, and a mixture of 5% of maltodextrin and 5% of gum arabic were added to samples of fermented permeate containing SCFA, and spray dried. The microstructure of microcapsules was studied by scanning electron microscopy (SEM) and the size distribution was obtained by laser diffraction. SEM observations showed that the microcapsules structures were affected by type and proportion of wall material tested. Most of the microcapsules containing gum arabic as wall material had surface dents or invaginations. Microcapsules containing maltodextrin were spherical with few surface dents and some of them had pores. The larger microcapsule sizes were observed in those containing maltodextrin. Our results show that microstructure and size of microcapsules are affected by type and proportion of biomaterial used. The samples containing 5% of maltodextrin and the mixture of 5% of gum arabic with 5% of maltodextrin presented smooth surfaces and homogenous size distributions. The corresponding microcapsules are considered optimal to food industrial uses due to the flowability property. Besides, these capsules were found to present a homogenous distribution of diameters, which may give a homogenous flavor distribution to the food products

  10. Thin layer modelling of Gelidium sesquipedale solar drying process

    Energy Technology Data Exchange (ETDEWEB)

    Ait Mohamed, L. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Ethmane Kane, C.S. [Faculte des Sciences de Tetouan, BP 2121, Tetouan (Morocco); Kouhila, M.; Jamali, A. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Mahrouz, M. [Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Kechaou, N. [Ecole Nationale d' Ingenieurs de Sfax, BPW 3038 (Tunisia)

    2008-05-15

    The effect of air temperature and air flow rate on the drying kinetics of Gelidium sesquipedale was investigated in convective solar drying. Drying was conducted at 40, 50 and 60 C. The relative humidity was varied from 50% to 57%, and the drying air flow rate was varied from 0.0277 to 0.0833 m{sup 3}/s. The expression for the drying rate equation is determined empirically from the characteristic drying curve. Thirteen mathematical models of thin layer drying are selected in order to estimate the suitable model for describing the drying curves. The two term model gives the best prediction of the drying curves and satisfactorily describes the drying characteristics of G. sesquipedale with a correlation coefficient R of 0.9999 and chi-square ({chi}{sup 2}) of 3.381 x 10{sup -6}. (author)

  11. Fuel briquettes from wood and agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    Natividad, R.A.

    1982-01-01

    A short review of the production and uses of briquettes and of machinery available for briquetting fine dry, coarse dry and coarse wet raw materials. The potential of a fuel briquette industry in the Philippines with an estimated annual production of 217 million ton of sawdust, 2.09 billion ton of rice hulls and 2.87 million ton of coconut husks is discussed. Studies at the Forest Products Research and Development Institute (FPRDI) have shown that sawdust, coir dust rice hulls briquettes with 1-2% resin binder have heating values of 6882, 5839 and 3913 cal/g respectively.

  12. Solar heating of air used for the drying at medium and large scale, of forestry, fishery, agriculture, cattle and industrial products

    International Nuclear Information System (INIS)

    Gutierrez, F.

    1991-01-01

    The drying process and/or preservation of grains is improved through the previous heating of air. In many cases it is enough to raise the temperature only a few degrees (from 10 to 15 Centigrade), in order to increase their capacity to absorb dampness. This can be done using very simple solar captors. A massive use of solar energy in the drying process of products, by means of hot air, can only be done with very expensive equipment. For this reason, it is recommended the use of lower thermic heaters, which will have a lower cost too. (Author)

  13. Experimental Investigation of Solar Drying for Orange Peels by Forced convection

    International Nuclear Information System (INIS)

    Ben Slama, Romdhane; Mechlouch, Fethi; Ben Daoud, Houcine

    2009-01-01

    Solar drier does not degrade any more the dried products with the manner of the products dried at the natural sun. The drying unit is composed mainly of a solar air collector and an enclosure of drying. The transformation of the solar radiation into heat is done thanks to the solar collector whose effectiveness is increased by the addition of suitable baffles in the mobile air vein. The efficiency of the collector reaches then 80. The hot air on the outlet side of the collector arrives in the enclosure of drying where the heat transfer with the product to be dried is done by convection. The kinetics drying study shows that in addition to the dependence of the temperature and air velocity of drying, the speed of drying also depends on fragmentation on the product to dry, and mainly, of the product surface in contact with the drying air. Thus, the hygrometry is reduced from 76 to 13 pour cent in one day.. The total efficiency of the drier reached 28 pour cent

  14. Experimental study of drying kinetics by forced convection of aromatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Belghit, A; Boutaleb, B C [Laboratoire de Mecanique des Fluides et Energetique, Marrakech (Morocco). Faculte des Sciences Semlalia; Kouhila, M [Laboratoire d' Energie Solaire, Marrakech (Morocco). Ecole Normale Superieure

    2000-08-01

    This paper has the objectives to determine the isotherms of sorption and the drying kinetics of verbena, which is the most consumed aromatic plant in Morocco. The experiments undertaken consist of examining the effects of drying air velocity, temperature of drying air and air moisture content on the drying kinetics of verbena in a laboratory drying tunnel working by forced convection. The results verified, with good reproducibility, that temperature is the main factor in controlling the rate of drying. The expression of the drying rate is determined empirically from the characteristic curve of drying. (author)

  15. PENGARUH KEDALAMAN AIR TERHADAP SHORT TERM MEMORY DAN KONSUMSI ENERGI PADA PENYELAM

    Directory of Open Access Journals (Sweden)

    Rini Dharmastiti

    2012-02-01

    Full Text Available Penelitian ini akan melihat pengaruh kedalaman air terhadap short term memory dan konsumsi energi penyelam. Penelitian ini mengambil sampel 10 mahasiswa pria dan 5 wanita. Pengukuran performansi short term memory dilakukan dengan cara setiap obyek diperlihatkan deretan 7 angka acak yang diberikan selama 5 detik dan setelah 15 detik kemudian dilakukan pemanggilan kembali informasi yang baru saja diberikan. Setiap obyek diuji sebangak 30 kali untuk setiap kedalaman (1 m; 2,5 m; dan 4 m. Pengukuran konsumsi energi dilakukan dengan menghitung denyut jantung menggunakan metode palpasi. Hasil penelitian menunjukkan bahwa semakin meningkat kedalaman air, maka performasi short term memory penyelam tersebut semakin menurun.  Penurunan ini berlaku untuk pria dan wanita. Penambahan kedalaman ini juga meningkatkan konsumsi energi baik pada pria maupun wanita. Perbedaan jenis kelamin mempengaruhi performansi short term memory secara signifikan. Pria memiliki performansi rata-rata short term memory sebesar 91,67% pada kedalaman 1 m, 90,67% pada kedalaman 2,5 m, dan 86,33% pada kedalaman 4 m. Sedangkan wanita memiliki performansi rata-rata sebesar 86% pada kedalaman 1 m, 84% pada kedalaman 2,5 m, dan 80,67% pada kedalaman 4 m. Rata-rata konsumsi energi pria adalah 3,19 kkal, 3,34 kkal, dan 3,65 kkal pada kedalaman 1 m; 2,5 m; dan 4 m berturut-turut. Sedangkan rata-rata konsumsi energi wanita adalah 3,81 kkal, 4,07 kkal, dan 4,54 kkal pada kedalaman yang sama dengan pria.     Kata kunci : tekanan, kedalaman air, performansi short term memory, konsumsi energi.       This research is to observe water depth effects on short term memory and energy expenditure of diver. This research objects are 10 male and 5 female students. Short term memory performance measurement held by every object has been shown 7 random numerics (as information for 5 seconds and after 15 seconds later they write down the information on a paper. Every object got 30 tests for every

  16. Efficacy and safety of short-term application of pranoprofen eye drops for senile patients with dry eyes

    Directory of Open Access Journals (Sweden)

    Yu-Chan Li

    2018-06-01

    Full Text Available AIM:To investigate the efficacy and safety of short-term application of pranoprofen eye drops in the treatment of dry eyes in senile patients. METHODS: Totally 100 elderly patients with dry eyes treated in our hospital from June 2016 to May 2017 were randomly divided into 2 groups. All cases were bilateral onset, and the right eyes were marked as the observation eyes. The 50 eyes in the observation group were treated with 1g/L pranoprofen eye drops combined with 1g/L sodium hyaluronate eye drops, while 50 in the control group were treated with 1g/L sodium hyaluronate eye drops. The results of Schirmer Ⅰ, ocular surface disease index(OSDI, break-up time(BUT, ocular surface staining(OSS, human leukocyte antigen-DR(HLA-DRand CD11b in conjunctival epithelial cells before and at 2wk after treatment, and adverse reactions in 2 groups were observed. RESULTS: Before treatment, results of Schirmer I, OSDI, BUT, OSS, HLA-DR and CD11b in the two groups were similar, there were no statistically significant differences(P>0.05. After treatment, OSDI, OSS, HLA-DR, CD11b significantly decreased, BUT significantly increased in both groups, the differences were statistically significant(PPPCONCLUSION: Short term application of pranoprofen eye drops can effectively enhance the efficacy in treating elderly patients with dry eyes, release clinical symptoms, and the therapeutic mechanism may be related to the inhibitory effect on HLA-DR.

  17. Numerical analysis of temperature and flow effects in a dry, two-dimensional, porous-media reservoir used for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.

    1979-10-01

    The purpose of the work is to define the hydrodynamic and thermodynamic response of a CAES dry porous media reservoir subjected to simulated air mass cycling. The knowledge gained will provide, or will assist in providing, design guidelines for the efficient and stable operation of the air storage reservoir. The analysis and results obtained by two-dimensional modeling of dry reservoirs are presented. While the fluid/thermal response of the underground system is dependent on many parameters, the two-dimensional model was applied only to those parameters that entered the analysis by virtue of inclusion of the vertical dimension. In particular, the parameters or responses that were quantified or characterized include wellbore heat transfer, heat losses to the vertical boundaries of the porous zone, gravitationally induced flows, producing length of the wellbore, and the effects of nonuniform permeability. The analysis of the wellbore heat transfer included consideration of insulation, preheating (bubble development with heated air), and air mass flow rate.

  18. Drying of plasterboard - some quality aspects

    Energy Technology Data Exchange (ETDEWEB)

    Naesman, L. (University of Lund (Sweden)); Wimmerstedt, R. (University of Lund (Sweden))

    1993-06-01

    The manufacture process, especially the drying operation, of plasterboard was studied. The purpose was to measure physical properties, which can be used for the optimization of the process with respect to energy and quality. The cardboard was found to be hygroscopic whereas the gypsum was not. It was determined that the chloride content in the gypsum raw material should not exceed 75 ppm. The starch was found to migrate towards the surface of the gypsum core during the drying process (air temperture 140 C, dew-point of air 30 C and air velocity 10 m/s). The drying of different qualitites of plasterboard was also investigated. It was found that the cardboard is a very important parameter whereas the gypsum core has little effect on the drying rate and core temperature. (orig.)

  19. Transportation system benefits of early deployment of a 75-ton multipurpose canister system

    International Nuclear Information System (INIS)

    Wankerl, M.W.; Schmid, S.P.

    1995-01-01

    In 1993 the US Civilian Radioactive Waste Management System (CRWMS) began developing two multipurpose canister (MPC) systems to provide a standardized method for interim storage and transportation of spent nuclear fuel (SNF) at commercial nuclear power plants. One is a 75-ton concept with an estimated payload of about 6 metric tons (t) of SNF, and the other is a 125-ton concept with an estimated payload of nearly 11 t of SNF. These payloads are two to three times the payloads of the largest currently certified US rail transport casks, the IF-300. Although is it recognized that a fully developed 125-ton MPC system is likely to provide a greater cost benefit, and radiation exposure benefit than the lower-capacity 75-ton MPC, the authors of this paper suggest that development and deployment of the 75-ton MPC prior to developing and deploying a 125-ton MPC is a desirable strategy. Reasons that support this are discussed in this paper

  20. Initial Response of Pine Seedlings and Weeds to Dried Sewage Sludge in Rehabilitation of an Eroded Forest Site

    Science.gov (United States)

    Charles R. Berry

    1977-01-01

    Dried sewage sludge was applied at rates of 0, 17, 34, and 69 metric tons/ha on a badly eroded forest site in the Piedmont region of northeast Georgia. Production of weed bio mass varied directly with amount of sludge applied. Heigh growth for both shortleafand loblolly pine seedlings appeared to be greater on plots receiving 17 metric tons of sludge/ha, bu differences...

  1. Kinetics, mass transport characteristics, and structural changes during air-drying of purple yam (Dioscorea Alata L.) at different process conditions

    Science.gov (United States)

    De Vera, Flordeliza C.; Comaling, Leif Anthony B.; Lao, Iya Ray Alyanna M.; Caparanga, Alvin R.; Sauli, Zaliman

    2017-11-01

    This experiment was designed to follow the 2k factorial design to study the effects of the three drying parameters on the drying characteristics and effective moisture diffusivity and to fit each run performed on the best thin-layer drying kinetics model. Raw purple yam samples were pre-treated and undergone the designed drying procedures at which the weight of the samples were recorded every minute until such time that the sample weights become constant. Scanning Electron Microscopy (SEM) is utilized for qualitative analysis of the dried samples. The number of pores per unit area and the overall aesthetics of the surface of the dried samples were compared also using SEM. Considering the qualitative analysis conducted on the samples from the images of SEM, dried samples from run 2 has the most desirable conditions such as high temperature and low air velocity for drying because the samples from this run have large pore diameters with minimal cell breakages.

  2. Spray drying of fruit and vegetable juices--a review.

    Science.gov (United States)

    Verma, Anjali; Singh, Satya Vir

    2015-01-01

    The main cause of spray drying is to increase the shelf life and easy handling of juices. In the present paper, the studies carried out so far on spray drying of various fruits and vegetables are reported. The major fruit juices dried are mango, banana, orange, guava, bayberry, watermelon, pineapple, etc. However, study on vegetable juices is limited. In spray drying, the major optimized parameters are inlet air temperature, relative humidity of air, outlet air temperature, and atomizer speed that are given for a particular study. The juices in spray drying require addition of drying agents that include matlodextrin, liquid glucose, etc. The drying agents are added to increase the glass transition temperature. Different approaches for spray dryer design have also been discussed in the present work.

  3. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    International Nuclear Information System (INIS)

    Yehia, Ashraf; Mizuno, Akira

    2013-01-01

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  4. Solar drying in sludge management in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Kamil Salihoglu, Nezih; Pinarli, Vedat; Salihoglu, Guray [Faculty of Engineering and Architecture, Environmental Engineering Department, Uludag University, 16059, Bursa (Turkey)

    2007-08-15

    Two main wastewater treatment plants in Bursa city in Turkey will start to operate and produce at least 27,000 tons of dry solids per year by the end of 2006. The purpose of this study was to investigate an economical solution to the sludge management problem that Bursa city would encounter. The general trend in Turkey is mechanical dewatering to obtain a dry solid (DS) content of 20%, and liming the mechanically dewatered sludge to reach the legal land filling requirement, 35% DS content. This study recommends limited liming and solar drying as an alternative to only-liming the mechanically dewatered sludge. Open and covered solar sludge drying plants were constructed in pilot scale for experimental purposes. Dry solids and climatic conditions were constantly measured. Faecal coliform reduction was also monitored. The specially designed covered solar drying plant proved to be more efficient than the open plant in terms of drying and faecal coliform reduction. It was found that, if the limited liming and solar drying method was applied after mechanical dewatering instead of only-liming method, the total amount of the sludge to be disposed would be reduced by approximately 40%. This would lead to a reduction in the transportation, handling, and land filling costs. The covered drying system would amortize itself in 4 years. (author)

  5. Drying of α-amylase by spray drying and freeze-drying - a comparative study

    Directory of Open Access Journals (Sweden)

    S. S. de Jesus

    2014-09-01

    Full Text Available This study is aimed at comparing two traditional methods of drying of enzymes and at verifying the efficiency of each one and their advantages and disadvantages. The experiments were performed with a laboratory spray dryer and freeze-dryer using α-amylase as the model enzyme. An experimental design in star revealed that spray drying is mainly influenced by the inlet air temperature and feed flow rate, which were considered to be the main factors influencing the enzymatic activity and water activity; the long period of material exposure to high temperatures causes a partial activity loss. In the experiments of freeze drying, three methods of freezing were used (freezer, acetone and dry ice, and liquid nitrogen and samples subsequently freeze-dried for times ranging between 0-24 hours. The product obtained from the two techniques showed high enzymatic activity and low water activity. For the drying of heat-resistant enzymes, in which the product to be obtained does not have high added value, spray drying may be more economically viable because, in the freeze drying process, the process time can be considered as a limiting factor when choosing a technique.

  6. Analysis on energy consumption of drying process for dried Chinese noodles

    International Nuclear Information System (INIS)

    Wang, Zhenhua; Zhang, Yingquan; Zhang, Bo; Yang, Fuguang; Yu, Xiaolei; Zhao, Bo; Wei, Yimin

    2017-01-01

    Highlights: • Energy analysis of a tunnel dryer for dried Chinese noodles is completed. • Energy saving performance of dryers with different inlet air was compared. • MND was developed and evaluated, and the efficiency and throughput was improved. - Abstract: Drying is an important operation during the production of dried Chinese noodles, and the energy consumption from drying accounts for approximately 60% of the total energy consumption during the manufacturing process. To investigate the energy consumption and throughput of dryers for dried Chinese noodles, experiments were conducted using a new 130-m long tunnel dryer with two lines of noodles (ND) and an old 60-m long tunnel dryer with five lines of noodles (OD). The energy saving effects of a modified new 130-m long tunnel dryer (MND), which was only modified through the inclusion of automatic control for temperature and humidity without any modifications to the oil heater or ND dryer structure, were also compared. The energy saving effect was determined from the enthalpy difference between the inlet and outlet humid air of the ND and MND. Finally, the MND was found to be better than ND in terms of energy efficiency and throughput, and trends for the future of noodle drying were discussed.

  7. Influence of carbon monoxide additions on the sensitivity of the dry hydrogen-air mixtures to detonation

    International Nuclear Information System (INIS)

    Magzumov, A.E.; Kirillov, I.A.; Fridman, A.A.; Rusanov, V.D.

    1995-01-01

    Under severe accident conditions of water cooled nuclear reactors the hydrogen-air detonation represents one of the most hazardous events which can result in the reactor containment damage. An important factor related with the measure of gas mixture detonability is the detonation cell size which correlates with the critical tube diameter and detonation initiation energy. A numerical kinetic study is presented of the influence of carbon monoxide admixtures (from 0 vol.% to 40 vol.%) upon the sensitivity (detonation cell size) of the dry hydrogen-air gas mixtures to detonation in post-accident containment atmosphere. (author). 3 refs., 3 figs

  8. Surficial geology map of the Great Heath, Washington County, Maine

    Science.gov (United States)

    Cameron, Cornelia Clermont; Mullen, Michael K.

    1983-01-01

    The major portion of the Great Heath, comprising 2,645 acres in the Cherryfield quadrangle, Washington County, Maine, generally averaging 13 feet in thickness, but with as great an average as 15 feet, contain an estimated 6,953 ,000 short tons air-dried peat. The peat #s chiefly sphagnum moss with some reed-sedge of high quality according to ASTM standards for agricultural and horticultural use. This same volume of peat may be considered for use as fuel because BTO per pound ranges from 8,600 to 10,500 with low sulfur and high hydrogen contents.

  9. Some peat deposits in Penobscot County, Maine

    Science.gov (United States)

    Cameron, Cornelia Clermont; Anderson, Walter A.

    1979-01-01

    Twenty of the peat deposits in Penobscot County, Maine contain an estimated 29,282,000 short tons air-dried peat. The peat is chiefly sphagnum moss and reed-sedge of high quality according to ASTM standards for agricultural and horticultural use. Analyses show that this same volume has high fuel value, low sulfur and high hydrogen contents compared with lignite and sub-bituminous coal, which may indicate that it also has potential for fuel use. On the basis of the metallic trace element content, one area within the region containing the 20 deposits has been delineated for further bedrock studies.

  10. Applying short-duration pulses as a mean to enhance volatile organic compounds removal by air sparging.

    Science.gov (United States)

    Ben Neriah, Asaf; Paster, Amir

    2017-10-01

    Application of short-duration pulses of high air pressure, to an air sparging system for groundwater remediation, was tested in a two-dimensional laboratory setup. It was hypothesized that this injection mode, termed boxcar, can enhance the remediation efficiency due to the larger ZOI and enhanced mixing which results from the pressure pulses. To test this hypothesis, flow and transport experiments were performed. Results confirm that cyclically applying short-duration pressure pulses may enhance contaminant cleanup. Comparing the boxcar to conventional continuous air-injection shows up to a three-fold increase in the single well radius of influence, dependent on the intensity of the short-duration pressure-pulses. The cleanup efficiency of Toluene from the water was 95% higher than that achieved under continuous injection with the same average conditions. This improvement was attributed to the larger zone of influence and higher average air permeability achieved in the boxcar mode, relative to continuous sparging. Mixing enhancement resultant from recurring pressure pulses was suggested as one of the mechanisms which enhance the contaminant cleanup. The application of a boxcar mode in an existing, multiwell, air sparging setup can be relatively straightforward: it requires the installation of an on-off valve in each of the injection-wells and a central control system. Then, turning off some of the wells, for a short-duration, result in a stepwise increase in injection pressure in the rest of the wells. It is hoped that this work will stimulate the additional required research and ultimately a field scale application of this new injection mode. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The ratio of long-lived to short-lived radon-222 progeny concentrations in ground-level air

    International Nuclear Information System (INIS)

    Hoetzl, H.; Winkler, R.

    1996-01-01

    The ratio of 210 Pb air concentration to the short-lived radon ( 222 Rn) decay products concentration at ground level was investigated at a semi-rural location 10 km north of Munich, south Germany, for a period of 11 years (1982-1992). The average ratio from 132 monthly mean values has been found to be (7.5±2.2) x 10 -5 (arithmetic mean±S.D.). While the time series of the short-lived radon daughter concentration exhibit a distinct seasonal pattern with maxima mostly in October of each year, the course of 210 Pb air concentration is characterized by high values from October through February. Consequently, high ratios of 210 Pb to short-lived decay product concentration are often observed in the winter months of December-February. To study the influence of meteorological conditions on this behaviour, 210 Pb and 214 Pb concentrations were measured on a short-term basis with sampling intervals of 2-3 days from October 1991 to November 1992. The air concentrations obtained within those intervals were then correlated with actual meteorological parameters. On the base of this investigation the seasonal behaviour can essentially be explained by the more frequent inversion weather conditions in winter than in the summer months. At the same location, the average ratio of 210 Po to 210 Pb concentration in ground level air has been found to be 0.079 from 459 weakly mean values between 1976 and 1985. Hence, the corresponding average ratios of the short-lived radon daughters (EEC) to 210 Pb and 210 Po, were 1:7.5x10 -5 and 1:0.6 x 10 -5 , respectively

  12. Short-term effects of ambient air pollution on pediatric outpatient visits for respiratory diseases in Yichang city, China

    International Nuclear Information System (INIS)

    Liu, Yuewei; Xie, Shuguang; Yu, Qing; Huo, Xixiang; Ming, Xiaoyan; Wang, Jing; Zhou, Yun; Peng, Zhe; Zhang, Hai; Cui, Xiuqing; Xiang, Hua; Huang, Xiji; Zhou, Ting; Chen, Weihong; Shi, Tingming

    2017-01-01

    Previous studies have suggested that short-term exposure to ambient air pollution was associated with pediatric hospital admissions and emergency room visits for certain respiratory diseases; however, there is limited evidence on the association between short-term air pollution exposure and pediatric outpatient visits. Our aim was to quantitatively assess the short-term effects of ambient air pollution on pediatric outpatient visits for respiratory diseases. We conducted a time-series study in Yichang city, China between Jan 1, 2014 and Dec 31, 2015. Daily counts of pediatric respiratory outpatient visits were collected from 3 large hospitals, and then linked with air pollution data from 5 air quality monitoring stations by date. We used generalized additive Poisson models to conduct linear and nonlinear exposure-response analyses between air pollutant exposures and pediatric respiratory outpatient visits, adjusting for seasonality, day of week, public holiday, temperature, and relative humidity. Each interquartile range (IQR) increase in PM 2.5 (lag 0), PM 10 (lag 0), NO 2 (lag 0), CO (lag 0), and O 3 (lag 4) concentrations was significantly associated with a 1.91% (95% CI: 0.60%, 3.23%), 2.46% (1.09%, 3.85%), 1.88% (0.49%, 3.29%), 2.00% (0.43%, 3.59%), and 1.91% (0.45%, 3.39%) increase of pediatric respiratory outpatient visits, respectively. Similarly, the nonlinear exposure-response analyses showed monotonic increases of pediatric respiratory outpatient visits by increasing air pollutant exposures, though the associations for NO 2 and CO attenuated at higher concentrations. These associations were unlikely modified by season. We did not observe significant association for SO 2 exposure. Our results suggest that short-term exposures to PM 2.5 , PM 10 , NO 2 , CO, and O 3 may account for increased risk of pediatric outpatient visits for respiratory diseases, and emphasize the needs for reduction of air pollutant exposures for children. - Highlights: • PM 2

  13. Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer

    Science.gov (United States)

    Defrere, D.; Hinz, P.; Downey, E.; Boehm, M.; Danchi, W. C.; Durney, O.; Ertel, S.; Hill, J. M.; Hoffmann, W. F.; Mennesson, B.; hide

    2016-01-01

    The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feed forward approach to stabilize the path length fluctuations seen by the LBTI nuller uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current

  14. Mathematical modeling of drying of pretreated and untreated pumpkin

    OpenAIRE

    Tunde-Akintunde, T. Y.; Ogunlakin, G. O.

    2011-01-01

    In this study, drying characteristics of pretreated and untreated pumpkin were examined in a hot-air dryer at air temperatures within a range of 40–80 °C and a constant air velocity of 1.5 m/s. The drying was observed to be in the falling-rate drying period and thus liquid diffusion is the main mechanism of moisture movement from the internal regions to the product surface. The experimental drying data for the pumpkin fruits were used to fit Exponential, General exponential, Logarithmic, Page...

  15. Development of automated control system for wood drying

    Science.gov (United States)

    Sereda, T. G.; Kostarev, S. N.

    2018-05-01

    The article considers the parameters of convective wood drying which allows changing the characteristics of the air that performs drying at different stages: humidity, temperature, speed and direction of air movement. Despite the prevalence of this type of drying equipment, the main drawbacks of it are: the high temperature and humidity, negatively affecting the working conditions of maintenance personnel when they enter the drying chambers. It makes the automation of wood drying process necessary. The synthesis of a finite state of a machine control of wood drying process is implemented on a programmable logic device Omron.

  16. Induction of genetic changes in Saccharomyces cerevisiae by partial drying in air of constant relative humidity and by UV

    International Nuclear Information System (INIS)

    Hieda, K.

    1981-01-01

    It was investigated whether there was a critical degree of dryness for induction of genetic changes by drying. Saccharomyces cerevisiae cells were dried in air of 0.33, 53 and 76% relative humidity (RH). The frequencies of mitotic recombination at ade2, of gene conversion at leu1, and of gene mutation at can1 were measured in X2447, XS1473 and S288C strains, respectively. After the cells had been dried at 0% RH for 4 h the frequencies of the genetic changes at ade2, leu1 and can1 were, respectively, 56, 7 and 3.5 times higher than each spontaneous frequency. Induction rates, defined as the frequencies of the induced genetic changes per unit time (1 h) of drying, were greatly decreased with increase in RH. Partial drying in air of 76% RH up to 4 and 8 h induced no genetic change at ade2 and leu1, respectively. It was concluded, therefore, that drying at a certain RH between 53 and 76% gave the critical degreee of dryness of cells for the induction of the genetic changes. The water contents of cells (g water per g dry material) were 12% at 53% RH and 21% at 76% RH, whereas the water content of native cells was 212%. Removal of a large amount of cellular water had no effect on the induction of the genetic changes. UV sensitivity of partially dried cells of X2447 for the induction of the genetic change at ade2 drastically increased with decrease in RH between 76 and 53%. The drastic change in the UV sensitivity suggested that photochemical reactivity of DNA of chromosome XV, in which the ade2 locus is located, changed between 76 and 53% RH. It seems that the genetic changes were induced only in the low RH region where DNA in vivo had a different photochemical reactivity. (orig.)

  17. Application of microwave to drying and blanching of tomatoes

    International Nuclear Information System (INIS)

    Ando, Y.; Orikasa, T.; Shiina, T.; Sotome, I.; Isobe, S.; Muramatsu, Y.; Tagawa, A.

    2010-01-01

    The applicability of microwave to the drying and blanching of tomatoes was examined. The changes of the drying rate and surface color were first measured and compared between drying by hot air (50degC) or microwave at three radiation powers. The drying rates using a microwave were higher than that using hot air. Both a constant-rate drying period and a falling-rate drying period were observed for each microwave radiation power. Compared to hot air drying, microwave drying resulted in an increase in lightness which is a preferable quality of tomatoes. Next, the changes in temperature, nutrients and surface color were measured and compared between blanching by microwave or boiling water. Microwave blanching required less time, resulted in higher retention of nutrients (ascorbic acid and lycopene) and caused less change in color in comparison with boiling water blanching. These results suggest that a microwave could be applied to drying and blanching tomatoes

  18. Modification of Cell Wall Polysaccharides during Drying Process Affects Texture Properties of Apple Chips

    Directory of Open Access Journals (Sweden)

    Min Xiao

    2018-01-01

    Full Text Available The influences of hot air drying (AD, medium- and short-wave infrared drying (IR, instant controlled pressure drop drying (DIC, and vacuum freeze drying (FD on cell wall polysaccharide modification were studied, and the relationship between the modifications and texture properties was analyzed. The results showed that the DIC treated apple chips exhibited the highest crispness (92 and excellent honeycomb-like structure among all the dried samples, whereas the FD dried apple chips had low crispness (10, the minimum hardness (17.4 N, and the highest volume ratio (0.76 and rehydration ratio (7.55. Remarkable decreases in the contents of total galacturonic acid and the amounts of water extractable pectin (WEP were found in all the dried apple chips as compared with the fresh materials. The highest retention of WEP fraction (102.7 mg/g AIR was observed in the FD dried apple chips, which may lead to a low structural rigidity and may be partially responsible for the lower hardness of the FD apple chips. In addition, the crispness of the apple chips obtained by DIC treatment, as well as AD and IR at 90°C, was higher than that of the samples obtained from the other drying processes, which might be due to the severe degradation of pectic polysaccharides, considering the results of the amounts of pectic fractions, the molar mass distribution, and concentrations of the WEP fractions. Overall, the data suggested that the modifications of pectic polysaccharides of apple chips, including the amount of the pectic fractions and their structural characteristics and the extent of degradation, significantly affect the texture of apple chips.

  19. Humidifying system design of PEMFC test platform based on the mixture of dry and wet air

    Directory of Open Access Journals (Sweden)

    Tiancai Ma

    2015-01-01

    Full Text Available Based on the present humidifying system of PEMFC test platform, a novel design based on dry and wet air mixture is proposed. Key parameters are calculated, and test platform is built. Three experiments are implemented to test the performance of proposed design. Results show that the new design can meet the requirements, and realize the quick response and accurate control.

  20. Effect of different drying methods on moisture ratio and rehydration of pumpkin slices.

    Science.gov (United States)

    Seremet Ceclu, Liliana; Botez, Elisabeta; Nistor, Oana-Viorela; Andronoiu, Doina Georgeta; Mocanu, Gabriel-Danut

    2016-03-15

    This study was carried to determine the influence of hot air drying process and combined methods on physicochemical properties of pumpkin (Cucurbita moschata) samples. The experiments in hot air chamber were lead at 50, 60 and 70 °C. The combined method consists of a triple combination of the main drying techniques. Thus, in first stage the samples were dried in hot air convection at 60 °C followed by hot air ventilation at 40 °C simultaneous with microwave. The time required to reduce the moisture content to any given level was highly dependent on the drying conditions. So, the highest value of drying time in hot air has been 540 min at 50 °C, while the lowest time has been 189 min in hot air combined by microwave at 40 °C and a power of 315 W. The samples dried by hot air shows a higher rehydration capacity than samples dried by combined method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. RETROFIT AIR POLLUTION CONTROL FILTER FOR RESTAURANT UNDERFIRED CHARBROILERS - PHASE I

    Science.gov (United States)

    Each day about 700,000 U.S. food service operations/restaurants emit more than 285 tons of particulate matter (PM) and more than 41 tons of volatile organic compounds (VOCs), a significant source of environmental air pollution that can adversely impact health. An estimated 32...

  2. TonEBP modulates the protective effect of taurine in ischemia-induced cytotoxicity in cardiomyocytes

    Science.gov (United States)

    Yang, Y J; Han, Y Y; Chen, K; Zhang, Y; Liu, X; Li, S; Wang, K Q; Ge, J B; Liu, W; Zuo, J

    2015-01-01

    Taurine, which is found at high concentration in the heart, exerts several protective actions on myocardium. Physically, the high level of taurine in heart is maintained by a taurine transporter (TauT), the expression of which is suppressed under ischemic insult. Although taurine supplementation upregulates TauT expression, elevates the intracellular taurine content and ameliorates the ischemic injury of cardiomyocytes (CMs), little is known about the regulatory mechanisms of taurine governing TauT expression under ischemia. In this study, we describe the TonE (tonicity-responsive element)/TonEBP (TonE-binding protein) pathway involved in the taurine-regulated TauT expression in ischemic CMs. Taurine inhibited the ubiquitin-dependent proteasomal degradation of TonEBP, promoted the translocation of TonEBP into the nucleus, enhanced TauT promoter activity and finally upregulated TauT expression in CMs. In addition, we observed that TonEBP had an anti-apoptotic and anti-oxidative role in CMs under ischemia. Moreover, the protective effects of taurine on myocardial ischemia were TonEBP dependent. Collectively, our findings suggest that TonEBP is a core molecule in the protective mechanism of taurine in CMs under ischemic insult. PMID:26673669

  3. The ratio of long-lived to short-lived radon-222 progeny concentrations in ground-level air

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, H.; Winkler, R. [Institut fuer Strahlenschutz, GSF-Forschungszentrum fuer Umwelt und Gesundheit, Neuherberg Oberschleissheim (Germany)

    1996-02-09

    The ratio of {sup 210}Pb air concentration to the short-lived radon ({sup 222}Rn) decay products concentration at ground level was investigated at a semi-rural location 10 km north of Munich, south Germany, for a period of 11 years (1982-1992). The average ratio from 132 monthly mean values has been found to be (7.5{+-}2.2) x 10{sup -5} (arithmetic mean{+-}S.D.). While the time series of the short-lived radon daughter concentration exhibit a distinct seasonal pattern with maxima mostly in October of each year, the course of {sup 210}Pb air concentration is characterized by high values from October through February. Consequently, high ratios of {sup 210}Pb to short-lived decay product concentration are often observed in the winter months of December-February. To study the influence of meteorological conditions on this behaviour, {sup 210}Pb and {sup 214}Pb concentrations were measured on a short-term basis with sampling intervals of 2-3 days from October 1991 to November 1992. The air concentrations obtained within those intervals were then correlated with actual meteorological parameters. On the base of this investigation the seasonal behaviour can essentially be explained by the more frequent inversion weather conditions in winter than in the summer months. At the same location, the average ratio of {sup 210}Po to {sup 210}Pb concentration in ground level air has been found to be 0.079 from 459 weakly mean values between 1976 and 1985. Hence, the corresponding average ratios of the short-lived radon daughters (EEC) to {sup 210}Pb and {sup 210}Po, were 1:7.5x10{sup -5} and 1:0.6 x 10{sup -5}, respectively.

  4. Regional Feedstock Partnership Summary Report: Enabling the Billion-Ton Vision

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Vance N. [South Dakota State Univ., Brookings, SD (United States). North Central Sun Grant Center; Karlen, Douglas L. [Dept. of Agriculture Agricultural Research Service, Ames, IA (United States). National Lab. for Agriculture and the Environment; Lacey, Jeffrey A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Process Science and Technology Division

    2016-07-12

    The U.S. Department of Energy (DOE) and the Sun Grant Initiative established the Regional Feedstock Partnership (referred to as the Partnership) to address information gaps associated with enabling the vision of a sustainable, reliable, billion-ton U.S. bioenergy industry by the year 2030 (i.e., the Billion-Ton Vision). Over the past 7 years (2008–2014), the Partnership has been successful at advancing the biomass feedstock production industry in the United States, with notable accomplishments. The Billion-Ton Study identifies the technical potential to expand domestic biomass production to offset up to 30% of U.S. petroleum consumption, while continuing to meet demands for food, feed, fiber, and export. This study verifies for the biofuels and chemical industries that a real and substantial resource base could justify the significant investment needed to develop robust conversion technologies and commercial-scale facilities. DOE and the Sun Grant Initiative established the Partnership to demonstrate and validate the underlying assumptions underpinning the Billion-Ton Vision to supply a sustainable and reliable source of lignocellulosic feedstock to a large-scale bioenergy industry. This report discusses the accomplishments of the Partnership, with references to accompanying scientific publications. These accomplishments include advances in sustainable feedstock production, feedstock yield, yield stability and stand persistence, energy crop commercialization readiness, information transfer, assessment of the economic impacts of achieving the Billion-Ton Vision, and the impact of feedstock species and environment conditions on feedstock quality characteristics.

  5. Public Health and Air Pollution in Asia (PAPA): a multicity study of short-term effects of air pollution on mortality.

    Science.gov (United States)

    Wong, Chit-Ming; Vichit-Vadakan, Nuntavarn; Kan, Haidong; Qian, Zhengmin

    2008-09-01

    Although the deleterious effects of air pollution from fossil fuel combustion have been demonstrated in many Western nations, fewer studies have been conducted in Asia. The Public Health and Air Pollution in Asia (PAPA) project assessed the effects of short-term exposure to air pollution on daily mortality in Bangkok, Thailand, and in three cities in China: Hong Kong, Shanghai, and Wuhan. Poisson regression models incorporating natural spline smoothing functions were used to adjust for seasonality and other time-varying covariates that might confound the association between air pollution and mortality. Effect estimates were determined for each city and then for the cities combined using a random effects method. In individual cities, associations were detected between most of the pollutants [nitrogen dioxide, sulfur dioxide, particulate matter air pollution than those in Western industrial nations because they spend more time outdoors and less time in air conditioning. Although the social and environmental conditions may be quite different, it is reasonable to apply estimates derived from previous health effect of air pollution studies in the West to Asia.

  6. Hot-air drying of purslane ( Portulaca oleracea L.)

    Science.gov (United States)

    Doymaz, İbrahim

    2013-06-01

    Drying characteristics of purslane was experimentally studied in a cabinet dryer. The experimental drying data were fitted best to Modified Henderson and Pabis and Midilli et al. models apart from other models to predict the drying kinetics. The effective moisture diffusivity varied from 1.12 × 10-9 to 3.60 × 10-9 m2/s over the temperature range studied and activation energy was 53.65 kJ/mol.

  7. Mathematical modelling of thin layer drying of pear

    Directory of Open Access Journals (Sweden)

    Lutovska Monika

    2016-01-01

    Full Text Available In this study, a thin - layer drying of pear slices as a function of drying conditions were examined. The experimental data set of thin - layer drying kinetics at five drying air temperatures 30, 40, 50, 60 and 70°C, and three drying air velocities 1, 1.5 and 2 m s-1 were obtained on the experimental setup, designed to imitate industrial convective dryer. Five well known thin - layer drying models from scientific literature were used to approximate the experimental data in terms of moisture ratio. In order to find which model gives the best results, numerical experiments were made. For each model and data set, the statistical performance index, (φ, and chi-squared, (χ2, value were calculated and models were ranked afterwards. The performed statistical analysis shows that the model of Midilli gives the best statistical results. Because the effect of drying air temperature and drying air velocity on the empirical parameters was not included in the base Midilli model, in this study the generalized form of this model was developed. With this model, the drying kinetic data of pear slices can be approximated with high accuracy. The effective moisture diffusivity was determined by using Fick’s second laws. The obtained values of the effective moisture diffusivity, (Deff, during drying ranged between 6.49 x 10-9 and 3.29 x 10-8 m2 s-1, while the values of activation energy (E0 varied between 28.15 to 30.51 kJ mol-1.

  8. Temporal trends in respiratory mortality and short-term effects of air pollutants in Shenyang, China.

    Science.gov (United States)

    Xue, Xiaoxia; Chen, Jianping; Sun, Baijun; Zhou, Baosen; Li, Xuelian

    2018-04-01

    Short-term exposures to air pollution are associated with acute effects on respiratory health. This study aimed to describe 10-year temporal trends in respiratory mortality in the urban areas of Shenyang, China, according to gender and age and estimate the effects of air pollution on respiratory diseases (ICD-10J00-J99) and lung cancer (ICD-10 C33-C34) using a case-crossover design. During the study period 2013-2015, the exposure-response relationship between ambient air pollutants and mortality data was fitted by a quasi-Poisson model. Age-standardized mortality rates for a combined number of respiratory diseases and for lung cancer declined in Shenyang; however, death counts increased with aging. Deaths from respiratory diseases increased by 4.7% (95% CI, 0.00-9.9), and lung cancer mortality increased by 6.5% (95% CI, 1.2-12.0), both associated with a 10 μg/m 3 increase in exposure to particulate matter pollutants. These results provided an updated estimate of the short-term effects of air pollution in Shenyang. Since population aging is also associated with increasing mortality from respiratory diseases and lung cancer, reinforcing air quality control measures and health-promoting behaviors is urgent and necessary in Shenyang.

  9. Drying Kinetics Analysis of Seaweed Gracilaria changii using Solar Drying System

    International Nuclear Information System (INIS)

    Mohd Yusof Othman; Ahmad Fudholi; Kamaruzzaman Sopian; Mohd Hafidz Ruslan; Muhammad Yahya

    2012-01-01

    A solar drying system suitable for agricultural and marine products have been designed, constructed and evaluated under Malaysia climatic conditions. The solar drying system has been constructed and evaluated for the drying of seaweed Gracilaria changii. The initial and final moisture content of seaweed are 95 % (wet basis) and 10 % (product basis), respectively. The drying time was about 7 hours at average solar radiation of 593 W/ m 2 and air flow rate of 0.0613 kg/ s. Three different thin-layer drying models were compared with experimental data, during the drying of seaweed using the solar drying system at average temperature and humidity of about 50 degree Celsius and 20 %, respectively. The one with highest R2 and lowest MBE and RMSE was selected to better estimate the drying curves. The study showed that the Page model was better fit to drying seaweed compared to the other models (Newton model, and Henderson and Pabis model). (author)

  10. Criticality safety review of 2 1/2-, 10-, and 14-ton UF6 cylinders

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1991-10-01

    Currently, UF 6 cylinders designed to contain 2 1/2 tons of UF 6 are classified as Fissile Class 2 packages with a transport index (TI) of 5 for the purpose of transportation. The 10-ton UF 6 cylinders are classified as Fissile Class 1 with no TI assigned for transportation. The 14-ton cylinders, although not certified for transport with enrichments greater than 1 wt % because they have no approved overpack, can be used in on-site operations for enrichments greater than 1 wt %. The maximum 235 U enrichments for these cylinders are 5.0 wt % for the 2 1/2-ton cylinder and 4.5 wt % for the 10- and 14-ton cylinders. This work reviews the suitability for reclassification of the 2 1/2-ton UF 6 packages as Fissile Class 1 with a maximum 235 U enrichment of 5 wt %. Additionally, the 10- and 14-ton cylinders are reviewed to address a change in maximum 235 U enrichment from 4.5 to 5 wt %. Based on this evaluation, the 2 1/2-ton UF 6 cylinders meet the 10 CFR.71 criteria for Fissile Class 1 packages, and no TI is needed for criticality safety purposes; however, a TI may be required based on radiation from the packages. Similarly, the 10- and 14-ton UF 6 packages appear acceptable for a maximum enrichment rating change to 5 wt % 235 U. 11 refs., 13 figs., 7 tabs

  11. Cryogenic air separation: the last twenty years

    International Nuclear Information System (INIS)

    Grenier, M.; Petit, P.

    1986-01-01

    In the last 20 years cryogenic air separation plant sizes have increased from 150 tons per day to 2800 tons per day. Progressively reversing heat exchangers have replaced regenerators. However, with this arrangement, the quantity of pure product output is limited to about 50% of the air input. With the appearance on the market of molecular sieve, another arrangement was developed, which allows one to produce a combined pure product flow equivalent to 85% of the air input. Recently, there has been a strong tendency for the reversing exchangers to be superseded by this arrangement. Due to the ever increasing cost of energy, optimization studies are today pushed much further than they used to be; as a consequence there have been major changes in the size of equipment, improvements in the machinery, and simultaneous developments in instrumentation

  12. The release of organic compounds during biomass drying depends upon the feedstock and/or altering drying heating medium

    International Nuclear Information System (INIS)

    Rupar, K.; Sanati, M.

    2003-01-01

    The release of organic compounds during the drying of biomass is a potential environmental problem, it may contribute to air pollution or eutrophication. In many countries there are legal restrictions on the amounts of terpenes that may be released into the atmosphere. When considering bioenergy in future energy systems, it is important that information on the environmental effects is available. The emissions of organic compounds from different green and dried biofuels that have been dried in hot air and steam medium, were analyzed by using different techniques. Gas chromatography and gas chromatography mass spectrometry have been used to identify the organic matter. The terpene content was significantly affected by the following factors: changing of the drying medium and the way the same biomass was handled from different localities in Sweden. Comparison between spectra from dried and green fuels reveal that the main compounds emitted during drying are monoterpene and sesquiterpene hydrocarbons, while the emissions of diterpene hydrocarbons seem to be negligible. The relative proportionality between emitted monoterpene, diterpene and sesquiterpene change when the drying medium shifts from steam to hot air. The obtained result of this work implies a parameter optimization study of the dryer with regard to environmental impact. With assistance of this result it might be foreseen that choice of special drying medium, diversity of biomass and low temperature reduce the emissions. A thermo-gravimetric analyzer was used for investigating the biomass drying rate. (author)

  13. Drying Rate and Product Quality Evaluation of Roselle (Hibiscus sabdariffa L.) Calyces Extract Dried with Foaming Agent under Different Temperatures.

    Science.gov (United States)

    Djaeni, Mohamad; Kumoro, Andri Cahyo; Sasongko, Setia Budi; Utari, Febiani Dwi

    2018-01-01

    The utilisation of roselle ( Hibiscus sabdariffa L.) calyx as a source of anthocyanins has been explored through intensive investigations. Due to its perishable property, the transformation of roselle calyces into dried extract without reducing their quality is highly challenging. The aim of this work was to study the effect of air temperatures and relative humidity on the kinetics and product quality during drying of roselle extract foamed with ovalbumin and glycerol monostearate (GMS). The results showed that foam mat drying increased the drying rate significantly and retained the antioxidant activity and colour of roselle calyces extract. Shorter drying time was achieved when higher air temperature and/or lower relative humidity was used. Foam mat drying produced dried brilliant red roselle calyces extract with better antioxidant activity and colour qualities when compared with nonfoam mat drying. The results showed the potential for retaining the roselle calyces extract quality under suggested drying conditions.

  14. Experimental investigation on influence of porous material properties on drying process by a hot air jet

    International Nuclear Information System (INIS)

    Di Marco, P; Filippeschi, S

    2012-01-01

    The drying process of porous media is a subject of scientific interest, and different mathematical approaches can be found in the literature. A previous paper by the same authors showed that the celebrated Martin correlation for hot air jet heat and mass transfer yields different degrees of accuracy (from 15% to 65%, increasing at high values of input power) if tested on different fabrics, the remaining conditions being the same. In this paper the fabric drying has been experimentally investigated more in depth. A dedicated experimental apparatus for hot jet drying was assembled and operated, in which a hot jet impinges perpendicularly onto a wet fabric. A calibrated orifice was adopted to measure the jet flow rate, with an accuracy better than 3%. The drying power was determined by continuously weighing with a precision scale a moistened patch exposed to the drying jet. The effect of the time of the exposure and the initial amount of water has been evaluated for each sample. During the hot jet exposure, the temperature distribution over the wet patch has been observed by an infrared thermo-camera. A mathematical model of water transport inside and outside the fabric was developed, in order to evidence the governing transport resistances. The theoretical predictions have been compared with the experimental results, and showed the necessity to modify correlations and models accounting for fabric properties.

  15. Air-side performance evaluation of three types of heat exchangers in dry, wet and periodic frosting conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [Zhejiang Vocational College of Commerce, Hangzhou, Binwen Road 470 (China); Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 1206 West Green Street, Urbana, IL 61801 (United States); Hrnjak, P.S. [Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 1206 West Green Street, Urbana, IL 61801 (United States)

    2009-08-15

    The performances of three types of heat exchangers that use the louver fin geometry: (1) parallel flow parallel fin with extruded flat tubes heat exchanger (PF{sup 2}), (2) parallel flow serpentine fin with extruded flat tubes heat exchanger (PFSF) and (3) round tube wave plate fin heat exchanger (RTPF) have been experimentally studied under dry, wet and frost conditions and results are presented. The parameters quantified include air-side pressure drop, water retention on the surface of the heat exchanger, capacity and overall heat transfer coefficient for air face velocity 0.9, 2 and 3 m/s, air humidity 70% and 80% and different orientations. The performances of three types of heat exchanger are compared and the results obtained are presented. The condensate drainage behavior of the air-side surface of these three heat exchanger types was studied using both the dip testing method and wind tunnel experiment. (author)

  16. Cold, dry air is associated with influenza and pneumonia mortality in Auckland, New Zealand.

    Science.gov (United States)

    Davis, Robert E; Dougherty, Erin; McArthur, Colin; Huang, Qiu Sue; Baker, Michael G

    2016-07-01

    The relationship between weather and influenza and pneumonia mortality was examined retrospectively using daily data from 1980 to 2009 in Auckland, New Zealand, a humid, subtropical location. Mortality events, defined when mortality exceeded 0·95 standard deviation above the mean, followed periods of anomalously cold air (ta.m. = -4·1, P < 0·01; tp.m. = -4·2, P < 0·01) and/or anomalously dry air (ta.m. = -4·1, P < 0·01; tp.m. = -3·8, P < 0·01) by up to 19 days. These results suggest that respiratory infection is enhanced during unusually cold conditions and during conditions with unusually low humidity, even in a subtropical location where humidity is typically high. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  17. 305 Building 2 ton bridge crane and monorail assembly analysis

    International Nuclear Information System (INIS)

    Axup, M.D.

    1995-12-01

    The analyses in the appendix of this document evaluate the integrity of the existing bridge crane structure, as depicted on drawing H-3-34292, for a bridge crane and monorail assembly with a load rating of 2 tons. This bridge crane and monorail assembly is a modification of a 1 1/2 ton rated manipulator bridge crane which originally existed in the 305 building

  18. Effects of superheated steam on the drying of rubberwood

    Directory of Open Access Journals (Sweden)

    Kanokwan Buaphud

    2006-07-01

    Full Text Available Rubberwood drying is the most time and energy consuming step in the processing of wood product. This research studied the effect of superheated steam drying on the drying time required and the physical and mechanical properties of rubberwood after drying. In this study, a cylindrical drying chamber with a length of 1.2 m and a diameter of 0.5 m was constructed and injected with superheated steam. The dimensions of the wood lumber were 1 m × 7.62 cm × 2.54 cm. The wood samples were impinged with alternating cycles of superheated steam and hot air at ratios of 6:1, 4:1 and 1:6 hours until the moisture content was less than 15% dry basis. The conditions inside the chamber were 110ºC and ambient pressure. Continuous superheated steam and continuous hot air were also used for comparisons. The drying rate and the temperature profile for each process were determined.Initial acceptability of the dried wood was conducted using the prong test and visual inspection. Results showed that if the drying rate was too fast, the dried wood did not pass the prong test due to stress buildup. Therefore, an optimum drying condition was developed based on minimizing defects and reducing the drying time. For the optimum condition, the following schedule was carried out: (1 saturated steam at 100ºC was used during the first 4 hours of drying to prevent the wood surface from drying too quickly which would minimize the moisture gradient between the center and wood surface, (2 superheated steam at 105ºC and 110ºC was used in alternating cycle with hot air (80ºC during the main drying stages to rapidly remove the free water and majority of the bound water inside the wood, and (3 hot air was used continuously during the final stages of drying to reduce the relative humidity inside the chamber making it possible for the removal of the residual bound water. This process successfully reduced the drying time to less than 2 days without causing any defects which compared

  19. A comparison of the effect of short-acting and long-acting cloxacillin-based dry-cow therapy on somatic cell counts after calving in cows also given internal teat sealants.

    Science.gov (United States)

    Whitfield, L K; Laven, R A

    2018-01-01

    To compare, in cows treated with an internal teat sealant, the effect of short-acting and long-acting cloxacillin-based dry-cow therapy on somatic cell counts (SCC) after calving. Cows from a spring-calving, pasture-based dairy farm in the Manawatu-Whanganui region of New Zealand were randomly allocated to receive either a short-acting cloxacillin and ampicillin dry-cow therapy and internal teat sealant (n=291) or a long-acting cloxacillin and ampicillin dry-cow therapy and internal teat sealant (n=288) at the end of lactation. Cows were managed on-farm with routine husbandry procedures through the dry period and following calving. A multivariable logistic regression model was used to determine the association between length of action of dry-cow therapy and the proportion of cows with a SCC >150,000 cells/mL at the first herd test after calving. Age of cow, mean SCC for the preceding season and interval from calving to the first post-calving herd test were all associated with the proportion of cows with an individual SCC >150,000 cells/mL at the first herd test (pcow therapy was not associated with decreased odds of cows having a SCC >150,000 cells/mL at the first herd test compared with treatment with long-acting dry-cow therapy (OR=0.724; 95% CI=0.40-1.30). In this herd, which routinely used internal teat sealants, the use of short-acting cloxacillin-based dry-cow therapy did not result in an increased proportion of cows with elevated SSC post-calving. This was a single farm, single year study but indicates that in this herd, changing from a long-acting to a short-acting antimicrobial may have no impact on the prevalence of subclinical mastitis.

  20. Silk cocoon drying in forced convection type solar dryer

    International Nuclear Information System (INIS)

    Singh, Panna Lal

    2011-01-01

    The thin layer silk cocoon drying was studied in a forced convection type solar dryer. The drying chamber was provided with several trays on which the cocoons loaded in thin layer. The hot air generated in the solar air heater was forced into drying chamber to avoid the direct exposure of sunlight and UV radiation on cocoons. The drying air temperature varied from 50 to 75 o C. The cocoon was dried from the initial moisture content of about 60-12% (wb). The drying data was fitted to thin layer drying models. Drying behaviour of the silk cocoon was best fitted with the Wang and Singh drying model. Good agreement was obtained between predicted and experimental values. Quality of the cocoons dried in the solar dryer was at par with the cocoons dried in the conventional electrical oven dryer in term of the silk yield and strength of the silk. Saving of electrical energy was about 0.75 kWh/kg cocoons dried. Economic analysis indicated that the NPV of the solar dryer was higher and more stable (against escalation rate of electricity) as compare to the same for electrical oven dryer. Due to simplicity in design and construction and significant saving of operational electrical energy, solar cocoon dryer seems to be a viable option.

  1. Short-term effects of ambient air pollution on pediatric outpatient visits for respiratory diseases in Yichang city, China.

    Science.gov (United States)

    Liu, Yuewei; Xie, Shuguang; Yu, Qing; Huo, Xixiang; Ming, Xiaoyan; Wang, Jing; Zhou, Yun; Peng, Zhe; Zhang, Hai; Cui, Xiuqing; Xiang, Hua; Huang, Xiji; Zhou, Ting; Chen, Weihong; Shi, Tingming

    2017-08-01

    Previous studies have suggested that short-term exposure to ambient air pollution was associated with pediatric hospital admissions and emergency room visits for certain respiratory diseases; however, there is limited evidence on the association between short-term air pollution exposure and pediatric outpatient visits. Our aim was to quantitatively assess the short-term effects of ambient air pollution on pediatric outpatient visits for respiratory diseases. We conducted a time-series study in Yichang city, China between Jan 1, 2014 and Dec 31, 2015. Daily counts of pediatric respiratory outpatient visits were collected from 3 large hospitals, and then linked with air pollution data from 5 air quality monitoring stations by date. We used generalized additive Poisson models to conduct linear and nonlinear exposure-response analyses between air pollutant exposures and pediatric respiratory outpatient visits, adjusting for seasonality, day of week, public holiday, temperature, and relative humidity. Each interquartile range (IQR) increase in PM 2.5 (lag 0), PM 10 (lag 0), NO 2 (lag 0), CO (lag 0), and O 3 (lag 4) concentrations was significantly associated with a 1.91% (95% CI: 0.60%, 3.23%), 2.46% (1.09%, 3.85%), 1.88% (0.49%, 3.29%), 2.00% (0.43%, 3.59%), and 1.91% (0.45%, 3.39%) increase of pediatric respiratory outpatient visits, respectively. Similarly, the nonlinear exposure-response analyses showed monotonic increases of pediatric respiratory outpatient visits by increasing air pollutant exposures, though the associations for NO 2 and CO attenuated at higher concentrations. These associations were unlikely modified by season. We did not observe significant association for SO 2 exposure. Our results suggest that short-term exposures to PM 2.5 , PM 10 , NO 2 , CO, and O 3 may account for increased risk of pediatric outpatient visits for respiratory diseases, and emphasize the needs for reduction of air pollutant exposures for children. Copyright © 2017

  2. Corn Drying with Zeolite in The Fluidized Bed Dryer under Medium Temperature

    Directory of Open Access Journals (Sweden)

    Mohamad Djaeni

    2013-08-01

    Full Text Available Drying is an important step to find high quality of corn. Based on Standard of National Industry, populer as SNI, number 01-3920-1995, the corn was well stored at moisture content 14% or below (wet basis. However, conventional corn drying dealed with in-efficient energy process and corn quality degradation. This research evaluated the performance of corn drying assisted by zeolite as moisture adsorbent. In this process, the zeolite and corn were placed in the dryer fluidized by warm air as drying medium under 40 - 50oC. The air evaporated water product from corn, and at same time the zeolite adsorbed moisture in air. So, the relative humidity of air in dryer can be kept low in which enhanced the driving force for drying. Beside that, the moisture adsoprtion by zeolite was exothermic process that can supply the energy for drying or keep the dryer temperature. Thus, the drying rate can be faster. This work foccussed to observe the effect of drying temperature, air velocity, and corn to zeolite ratio on drying time as well as corn quality. As indicators, the drying rate was estimated and the proxymates content such as protein, fat, and carbohydrate content were analyzed. The results showed that compared with conventional fluidised bed dryer, corn drying with zeolite, can speed up drying time as well as improving the constant of drying rate. In addition, the corn proximate nutrition content can be well retained. At operating temperature 40oC, air velocity 9 m.s-1, and zeolite to corn ratio 1:2, the drying time can be 60 minutes shorter compared to that without zeolite.

  3. Feasibility analysis of heat pump dryer to dry hawthorn cake

    International Nuclear Information System (INIS)

    Wang, D.C.; Zhang, G.; Han, Y.P.; Zhang, J.P.; Tian, X.L.

    2011-01-01

    Highlights: → A heat pump dryer (HPD) is effectively proposed to dry hawthorn cake-likely materials. → Low drying temperature and high COP of heat pump are obtained in drying beginning. → HPD is more effective, economic than a traditional hot air dryer. → Feasibility of the HPD is also validated by the operation economy estimation. - Abstract: A heat pump dryer (HPD) would be an economic, environmentally friendly, hygienic drying machine used to dry some food, such as hawthorn cakes. Based on the production process of the hawthorn cake, a HPD is proposed and its basic principle is introduced. The experimental drying curves of the hawthorn cake using the heat pump drying method and the traditional hot air drying method are compared and analyzed. The drying process of hawthorn cakes is similar to that of the other drying materials. The higher drying temperature causes a faster drying process. But in the initial stage of the heat pump drying process, the water content of the hawthorn cake is not sensitive to the drying temperature, so a lower drying air temperature can be available in order to get a higher coefficient of performance (COP) of the heat pump (HP). The experimental results and the economic analysis indicate that the HPD is feasibly used to dry hawthorn cakes.

  4. Feasibility analysis of heat pump dryer to dry hawthorn cake

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C., E-mail: wdechang@163.com [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China); Zhang, G.; Han, Y.P.; Zhang, J.P.; Tian, X.L. [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China)

    2011-08-15

    Highlights: {yields} A heat pump dryer (HPD) is effectively proposed to dry hawthorn cake-likely materials. {yields} Low drying temperature and high COP of heat pump are obtained in drying beginning. {yields} HPD is more effective, economic than a traditional hot air dryer. {yields} Feasibility of the HPD is also validated by the operation economy estimation. - Abstract: A heat pump dryer (HPD) would be an economic, environmentally friendly, hygienic drying machine used to dry some food, such as hawthorn cakes. Based on the production process of the hawthorn cake, a HPD is proposed and its basic principle is introduced. The experimental drying curves of the hawthorn cake using the heat pump drying method and the traditional hot air drying method are compared and analyzed. The drying process of hawthorn cakes is similar to that of the other drying materials. The higher drying temperature causes a faster drying process. But in the initial stage of the heat pump drying process, the water content of the hawthorn cake is not sensitive to the drying temperature, so a lower drying air temperature can be available in order to get a higher coefficient of performance (COP) of the heat pump (HP). The experimental results and the economic analysis indicate that the HPD is feasibly used to dry hawthorn cakes.

  5. Radiation data input for the design of dry or semi-dry U tailings disposal

    International Nuclear Information System (INIS)

    Kvasnicka, J.

    1986-01-01

    Before discussion of design criteria for the handling of dry or semi-dry tailings, it is necessary to obtain an insight into the radiation levels associated with the tailings particles and to study the basic physical properties of dry tailings. This article presents the experimental results of assessing Ra and specific alpha-activity distribution with respect to particle size of the Ranger (RUM) and Nabarlek (QML) uranium mines dry tailings samples. The variation of Rn emanation coefficient versus particle size of dry tailings has also been measured. The nuclear-track detection technique, gamma spectrometry and alpha counting were used for the above measurements. Surface Rn flux from the hypothetical Nabarlek semi-infinite dry tailings pile is 32 Bq m -2 s -1 and the Rn flux for Ranger is 10 Bq m -2 s -1 . The theoretical exposure rates for 1 m above these hypothetical tailings piles are 0.95 microC kg -1 h -1 and 0.28 microC kg -1 h -1 , respectively. The derived air alpha-contamination limits (DAAC) for the tailings dust were calculated to be 1.2 Bq m -3 for workers and 0.034 Bq m -3 for a member of the public. The limit for workers corresponds to the air tailings dust concentration of 0.79 mg m -3 for QML tailings and 2.2 mg m -3 for RUM tailings. The DAAC limit for the public corresponds to the air tailings dust concentration of 0.022 mg m -3 for QML tailings and 0.064 mg m -3 for RUM tailings

  6. Cool and dry weather enhances the effects of air pollution on emergency IHD hospital admissions.

    Science.gov (United States)

    Qiu, Hong; Yu, Ignatius Tak-Sun; Wang, Xiaorong; Tian, Linwei; Tse, Lap Ah; Wong, Tze Wai

    2013-09-20

    Associations between ambient pollution and cardiovascular morbidity including ischemic heart disease (IHD) have been confirmed. Weather factors such as temperature, season and relative humidity (RH) may modify the effects of pollution. We conducted this study to examine the effects of air pollution on emergency IHD hospital admissions varied across seasons and RH levels, and to explore the possible joint modification of weather factors on pollution effects. Daily time series of air pollution concentrations, mean temperature and RH were collected from IHD hospital admissions from 1998 to 2007 in Hong Kong. We used generalized additive Poisson models with interaction term to estimate the pollution effects varied across seasons and RH levels, after adjusting for time trends, weather conditions, and influenza outbreaks. An increase in the detrimental effects of air pollution in cool season and on low humidity days was observed. In the cool and dry season, a 10 μg/m(3) increment of lag03 exposure was associated with an increase of emergency IHD admissions by 1.82% (95% CI: 1.24-2.40%), 3.89% (95% CI: 3.08-4.70%), and 2.19% (95% CI: 1.33-3.06%) for particles with an aerodynamic diameter less than 10 μm (PM10), nitrogen dioxide (NO2), and ozone (O3), respectively. The effects of pollutants decreased greatly and lost statistical significance in the warm and humid season. We found season and RH jointly modified the associations between ambient pollution and IHD admissions, resulting in increased IHD admissions in the cool and dry season and reduced admissions in the warm and humid season. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Storage and handling of willow from short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Kofman, P. D.; Spinelli, R.

    1997-07-01

    During the project two main storage and drying trials were organised. The first trial in 1996 consisted of 14 piles of 6 different size material (whole shoots, via 200 mm chunk, 100 mm chunk, 50 mm chip, 28 mm chips, 25 mm chips) and six different methods of covering: Open air storage, storage under plastic cover, storage under top-cover, airtight storage, unventilated storage under roof, and intermittent ventilation (cooling) under roof. The drying trial in 1997 which consisted of four piles was established in Horsens in the same building as the ventilated trials the year before. Only Austoft 50 mm chips were used for this trial. The four piles were established in February and removed in May. Based on all the results of the trials the following conclusions can be drawn: Storage of willow from short rotation coppice is very difficult. Fine chips, such as producted by the two main harvesting machines Claas and Austoft are not suitable for storage over prolonged periods of time (more than 2 months); fine chips loose a large amount of dry matter and a lot of their lower heating value; fine chips also have a heavy infestation of micro-organisms which might cause working environment problems; short rotation coppice is best delivered straight into the heating plants during harvest; if short rotation coppice has to be stored, then this should be done as whole shoots or large chunk; if short rotation coppice has to be stored as chips for a longer period of time (more than two months), then these chips should be sealed airtight as silage. (EG) EFP-94; EFP-95; EFP-96. 10 refs.

  8. EC multicentre study on short-term effects of air pollution on health. The aphea project

    Energy Technology Data Exchange (ETDEWEB)

    Katsouyanni, K. [Univ. of Athens (Greece). Medical School; Zmirou, D. [Grenoble Univ. (France). Faculte de Medecine; Spix, C. [GSF- Forschungszentrum Umwelt und Gesundheit (Germany)

    1995-12-31

    The APHEA project is an attempt to provide quantitative estimates of the short-term health effects of air pollution, using an extensive data base from ten different European countries which represent various social, environmental and air pollution situations. Within the framework of the project, the methodology of analyzing epidemiologic time series data, as well as that of performing meta-analysis, are further developed and standardized

  9. EC multicentre study on short-term effects of air pollution on health. The aphea project

    Energy Technology Data Exchange (ETDEWEB)

    Katsouyanni, K [Univ. of Athens (Greece). Medical School; Zmirou, D [Grenoble Univ. (France). Faculte de Medecine; Spix, C [GSF- Forschungszentrum Umwelt und Gesundheit (Germany)

    1996-12-31

    The APHEA project is an attempt to provide quantitative estimates of the short-term health effects of air pollution, using an extensive data base from ten different European countries which represent various social, environmental and air pollution situations. Within the framework of the project, the methodology of analyzing epidemiologic time series data, as well as that of performing meta-analysis, are further developed and standardized

  10. Drying Rate and Product Quality Evaluation of Roselle (Hibiscus sabdariffa L. Calyces Extract Dried with Foaming Agent under Different Temperatures

    Directory of Open Access Journals (Sweden)

    Mohamad Djaeni

    2018-01-01

    Full Text Available The utilisation of roselle (Hibiscus sabdariffa L. calyx as a source of anthocyanins has been explored through intensive investigations. Due to its perishable property, the transformation of roselle calyces into dried extract without reducing their quality is highly challenging. The aim of this work was to study the effect of air temperatures and relative humidity on the kinetics and product quality during drying of roselle extract foamed with ovalbumin and glycerol monostearate (GMS. The results showed that foam mat drying increased the drying rate significantly and retained the antioxidant activity and colour of roselle calyces extract. Shorter drying time was achieved when higher air temperature and/or lower relative humidity was used. Foam mat drying produced dried brilliant red roselle calyces extract with better antioxidant activity and colour qualities when compared with nonfoam mat drying. The results showed the potential for retaining the roselle calyces extract quality under suggested drying conditions.

  11. Study of the morphology of corrosion features of natural graphite oxidised by dry and humid air

    International Nuclear Information System (INIS)

    Senevat, Jean

    1965-12-01

    The author reports a study which aimed at highlighting the morphology differences between corrosion features which affect flakes of natural graphite oxidised by dry air and by humid air. The study is based on observations made by optical and transmission electronic microscopy, this last one being performed on replicates. As the so-called 'Hennig' replicates did not result in a sufficient resolution of corrosion feature details, another method has been developed. Three classes of samples (in relationship with the rate of impurities present in samples) have been studied. Flakes have thus been sorted and each flake has then been oxidised at different wear rates. This highlights the influence of damages created by impurities in the lattice [fr

  12. Drying Spirulina with Foam Mat Drying at Medium Temperature

    Directory of Open Access Journals (Sweden)

    Aji Prasetyaningrum

    2012-10-01

    Full Text Available Spirulina is a single cell blue green microalgae (Cyanobacteria containing many Phytonutrients (Beta-carotene, Chlorophyl, Xanthophyl, Phyocianin using as anti-carcinogen in food. Producing dry spirulina by quick drying process at medium temperature is very important to retain the Phytonutrient quality. Currently, the work is still challenging due to the gel formation that block the water diffusion from inside to the surface.  This research studies the performance of foam-mat drying on production of dry spirulina. In this method the spirulina was mixed with foaming agent (glair/egg albumen, popular as white egg at 2.5% by weight at air velocity 2.2 m/sec. Here, the effect of spirulina thickness and operational temperature on drying time and quality (Beta-carotene and color were observed. The drying time was estimated based on the measurement of water content in spirulina versus time. Result showed that the thicker spirulina, the longer drying time. Conversely, the higher operational temperature, faster drying time. At thickness ranging 1-3 mm and operational temperature below 70oC, the quality of spirulina can fit the market requirement

  13. In vivo evidence of TonB shuttling between the cytoplasmic and outer membrane in Escherichia coli.

    Science.gov (United States)

    Larsen, Ray A; Letain, Tracy E; Postle, Kathleen

    2003-07-01

    Gram-negative bacteria are able to convert potential energy inherent in the proton gradient of the cytoplasmic membrane into active nutrient transport across the outer membrane. The transduction of energy is mediated by TonB protein. Previous studies suggest a model in which TonB makes sequential and cyclic contact with proteins in each membrane, a process called shuttling. A key feature of shuttling is that the amino-terminal signal anchor must quit its association with the cytoplasmic membrane, and TonB becomes associated solely with the outer membrane. However, the initial studies did not exclude the possibility that TonB was artifactually pulled from the cytoplasmic membrane by the fractionation process. To resolve this ambiguity, we devised a method to test whether the extreme TonB amino-terminus, located in the cytoplasm, ever became accessible to the cys-specific, cytoplasmic membrane-impermeant molecule, Oregon Green(R) 488 maleimide (OGM) in vivo. A full-length TonB and a truncated TonB were modified to carry a sole cysteine at position 3. Both full-length TonB and truncated TonB (consisting of the amino-terminal two-thirds) achieved identical conformations in the cytoplasmic membrane, as determined by their abilities to cross-link to the cytoplasmic membrane protein ExbB and their abilities to respond conformationally to the presence or absence of proton motive force. Full-length TonB could be amino-terminally labelled in vivo, suggesting that it was periplasmically exposed. In contrast, truncated TonB, which did not associate with the outer membrane, was not specifically labelled in vivo. The truncated TonB also acted as a control for leakage of OGM across the cytoplasmic membrane. Further, the extent of labelling for full-length TonB correlated roughly with the proportion of TonB found at the outer membrane. These findings suggest that TonB does indeed disengage from the cytoplasmic membrane during energy transduction and shuttle to the outer membrane.

  14. Air classifier technology (ACT) in dry powder inhalation. Part 1 : Introduction of a novel force distribution concept (FDC) explaining the performance of a basic air classifier on adhesive mixtures

    NARCIS (Netherlands)

    de Boer, A H; Hagedoorn, P; Gjaltema, D; Goede, J; Frijlink, H W

    2003-01-01

    Air classifier technology (ACT) is introduced as part of formulation integrated dry powder inhaler development (FIDPI) to optimise the de-agglomeration of inhalation powders. Carrier retention and de-agglomeration results obtained with a basic classifier concept are discussed. The theoretical

  15. Influence of local air velocity from air conditioner evaluated by salivary and skin biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Masaki; Takahashi, Takayuki; Yoshino, Yuichiro; Sasaki, Makoto [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Nishimiya, Hajime [Asahi Kasei Homes Corporation, R and D Laboratories, 2-1 Samejima, Fuji, Shizuoka 416-8501 (Japan)

    2010-11-15

    The purpose of this paper is to reveal both the psychosomatic and the physical effects of local air velocity from an air conditioner using biomarkers which can be collected noninvasively. Salivary {alpha}-amylase activity (SAA) and salivary cortisol were used as the indexes of psychosomatic effects. The total protein (TP) collected from stratum corneum was used as an index of the physical condition of dry skin. A continuous experiment over a 5 days period in summer was conducted using 8 healthy young male adults for 2-types of airflow conditioners, a whole ceiling-type air conditioner (without local air velocity) and a normal-type air conditioner (with local air velocity). The subjects felt cool, windy, dry and uncomfortable when under the normal-type air conditioner as determined in a subjective evaluation. The SAA under the normal-type air conditioner fluctuated more widely than with the whole ceiling-type air conditioner. The level of salivary cortisol decreased more in a day under the normal-type air conditioner than with the whole ceiling-type air conditioner. These results showed that reducing local air velocity may provide more healthy psychosomatic conditions over the long-term. Moreover, the TP of a drying-exposed skin area showed a significant change during this experiment whereas the TP of drying-protected area was relatively unchanged. It was indicated that one week's exposure to local air velocity conditions possibly influences the drying of facial skin. Thus, air movement at low velocity can be provides more comfortable conditions not only psychosomatically but also physically. (author)

  16. Air quality: how to assess air quality management policies on a short and on a long term? The integration of the climate factor

    International Nuclear Information System (INIS)

    Prevot, Aurelie

    2014-01-01

    This document presents the activities and works performed by the INERIS Institute in the development of tools for the assessment of air quality management policies including the climate factor. This comprises the development of simulations within the frame of the SALUT'AIR project, and also within the frame of the reviewing of the European policy on air quality (directives 2008/50/CE on ambient air quality and 2001/81/CE on national limits of emissions of some pollutants). The CHIMERE model of chemistry and transport is one of these tools. Simulations are performed to analyse the impact of scenarios of air quality management on a short term, in terms of pollutant emissions, pollutant concentration, and particle concentrations. The integration of a climate factor is justified by the existence of interactions between climate and air quality

  17. The Foulness multi-ton air blast simulator. Part 2. Recent developments - the linear charge driven facility

    International Nuclear Information System (INIS)

    Clare, P.M.

    1978-02-01

    The gun-driven facility for simulating nuclear air blast has been described in Part 1 (AWRE Report 031/74). It was, however, subject to certain limitations in providing the requisite blast parameters for nuclear hardening. The efficiency of the simulator has been improved beyond that of the gun-driven facility to produce blast waves of higher peak overpressure, longer positive duration and greater equivalent yield. This has been done by firing in the 1.8 m (6 ft) diameter section of the tunnel instead of in the guns. Various line charge arrangements were investigated and the pressures and strains developed in the 1.8 m (6 ft) diameter section were measured. The shock loading on the tube walls was less than that produced by firing in the guns and consisted of a short duration shock decaying to a lower amplitude pressure pulse of longer duration (1 ms), followed by a few reflected shocks which the tube walls were well able to withstand. The equipment is described and results discussed. (author)

  18. MODELLING OF THIN LAYER DRYING KINETICS OF COCOA BEANS DURING ARTIFICIAL AND NATURAL DRYING

    Directory of Open Access Journals (Sweden)

    C.L. HII

    2008-04-01

    Full Text Available Drying experiments were conducted using air-ventilated oven and sun dryer to simulate the artificial and natural drying processes of cocoa beans. The drying data were fitted with several published thin layer drying models. A new model was introduced which is a combination of the Page and two-term drying model. Selection of the best model was investigated by comparing the determination of coefficient (R2, reduced chi-square (2 and root mean square error (RMSE between the experimental and predicted values. The results showed that the new model was found best described the artificial and natural drying kinetics of cocoa under the conditions tested.

  19. Impingement drying for preparing dried apple pomace flour and its fortification in bakery and meat products.

    Science.gov (United States)

    Jung, Jooyeoun; Cavender, George; Zhao, Yanyun

    2015-09-01

    This study aimed to evaluate impingement drying (ID) as a rapid drying method to dry wet apple pomace (WAP) and to investigate the fortification of dried apple pomace flour (APF) or WAP in bakery and meat products. ID at ~110 °C reduced the moisture content of apple pomace from 80 % (wet basis) to 4.5 % within 3 h, compared with 24 h to 2.2 % using 40 °C forced-air drying and ~60 h to 2.3 % using freeze drying. Furthermore, ID enhanced the extractable phenolic compounds, allowing for a 58 % increase in total phenolic content (TPC) compared with wet pomace, a 110 % and 83 % higher than TPC in forced-air dried and freeze dried samples, respectively. The 15-20 % APF-fortified cookies were found to be ~44-59 % softer, ~30 % more chewy, and ~14 % moister than those of the control. WAP-fortified meat products had significantly higher dietary fiber content (0.7-1.8 % vs. 0.1-0.2 % in control) and radical scavenging activity than that of the control. These results suggest that impingement drying is a fast and effective method for preparing dried APF with highly retained bioactive compounds, and apple pomace fortified products maintained or even had improved quality.

  20. Air Permitting Implications of a Biorefinery Producing Raw Bio-Oil in Comparison with Producing Gasoline and Diesel Blendstocks

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Arpit H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-01

    A biorefinery, considered a chemical process plant under the Clean Air Act permitting program, could be classified as a major or minor source based on the size of the facility and magnitude of regulated pollutants emitted. Our previous analysis indicates that a biorefinery using fast pyrolysis conversion process to produce finished gasoline and diesel blendstocks with a capacity of processing 2,000 dry metric tons of biomass per day would likely be classified as a major source because several regulated pollutants (such as particulate matter, sulfur dioxide, nitrogen oxide) are estimated to exceed the 100 tons per year (tpy) major source threshold, applicable to chemical process plants. Being subject to a major source classification could pose additional challenges associated with obtaining an air permit in a timely manner before the biorefinery can start its construction. Recent developments propose an alternative approach to utilize bio-oil produced via the fast pyrolysis conversion process by shipping it to an existing petroleum refinery, where the raw bio-oil can be blended with petroleum-based feedstocks (e.g., vacuum gas oil) to produce gasoline and diesel blendstocks with renewable content. Without having to hydro-treat raw bio-oil, a biorefinery is likely to reduce its potential-to-emit to below the 100 tpy major source threshold, and therefore expedite its permitting process. We compare the PTE estimates for the two biorefinery designs with and without hydrotreating of bio-oils and examine the air permitting implications on potential air permit classification and discuss the best available control technology requirements for the major source biorefinery utilizing hydrotreating operation. Our analysis is expected to provide useful information to new biofuel project developers to identify opportunities to overcome challenges associated with air permitting.

  1. Biomass yield and fuel characteristics of short-rotation coppice (willow, poplar, empress tree)

    Energy Technology Data Exchange (ETDEWEB)

    Maier, J.; Vetter, R. [Institute for Land Management Compatible to Environmental Requirements, Muellheim (Germany)

    2004-07-01

    In two pedo-climatic different regions in the state of Baden-Wuerttemberg three shortrotation coppices willow, poplar and empress tree were tested with regard to their biomass productivity on arable land and to their properties for energetic use. Between 8 and 13 tons of dry matter per hectare and year could be produced under extensive cultivation conditions, over 15 tons with irrigation. Due to their composition, it can be assumed that their use as solid fuel in a biomass combustor is just as unproblematic as with forest timber. (orig.)

  2. Spray Drying of Mosambi Juice in Lab

    Science.gov (United States)

    Singh, S. V.; Verma, A.

    2014-01-01

    The studies on spray drying of mosambi juice were carried out with Laboratory spray dryer set-up (LSD-48 MINI SPRAY DRYER-JISL). Inlet and outlet air temperature and maltodextrin (drying agent) concentration was taken as variable parameters. Experiments were conducted by using 110 °C to 140 °C inlet air temperature, 60 °C to 70 °C outlet air temperature and 5-7 % maltodextrin concentration. The free flow powder of mosambi juice was obtained with 7 % maltodextrin at 140 °C inlet air temperature and 60 °C outlet air temperature. Fresh and reconstituted juices were evaluated for vitamin C, titrable acidity and sensory characteristics. The reconstituted juice was found slightly acceptable by taste panel.

  3. Evaluation of dry solid waste recycling from municipal solid waste: case of Mashhad city, Iran.

    Science.gov (United States)

    Farzadkia, Mahdi; Jorfi, Sahand; Akbari, Hamideh; Ghasemi, Mehdi

    2012-01-01

    The recycling for recovery and reuse of material and energy resources undoubtedly provides a substantial alternative supply of raw materials and reduces the dependence on virgin feedstock. The main objective of this study was to assess the potential of dry municipal solid waste recycling in Mashhad city, Iran. Several questionnaires were prepared and distributed among various branches of the municipality, related organizations and people. The total amount of solid waste generated in Mashhad in 2008 was 594, 800  tons with per capita solid waste generation rate of 0.609  kg  person(-1) day(-1). Environmental educational programmes via mass media and direct education of civilians were implemented to publicize the advantages and necessity of recycling. The amount of recycled dry solid waste was increased from 2.42% of total dry solid waste (2588.36  ton  year(-1)) in 1999 to 7.22% (10, 165  ton  year(-1)) in 2008. The most important fractions of recycled dry solid waste in Mashhad included paper and board (51.33%), stale bread (14.59%), glass (9.73%), ferrous metals (9.73%), plastic (9.73%), polyethylene terephthalate (2.62%) and non-ferrous metals (0.97%). It can be concluded that unfortunately the potential of dry solid waste recycling in Mashhad has not been considered properly and there is a great effort to be made in order to achieve the desired conditions of recycling.

  4. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-07-06

    This product builds on previous efforts, namely the 2005 Billion-Ton Study (BTS) and the 2011 U.S. Billion-Ton Update (BT2).With each report, greater perspective is gained on the potential of biomass resources to contribute to a national energy strategy. Similarly, each successive report introduces new questions regarding commercialization challenges. BTS quantified the broad biophysical potential of biomass nationally, and BT2 elucidated the potential economic availability of these resources. These reports clearly established the potential availability of up to one billion tons of biomass resources nationally. However, many questions remain, including but not limited to crop yields, climate change impacts, logistical operations, and systems integration across production, harvest, and conversion. The present report aims to address many of these questions through empirically modeled energy crop yields, scenario analysis of resources delivered to biorefineries, and the addition of new feedstocks. Volume 2 of the 2016 Billion-Ton Report is expected to be released by the end of 2016. It seeks to evaluate environmental sustainability indicators of select scenarios from volume 1 and potential climate change impacts on future supplies.

  5. [Research about effect of spray drying conditions on hygroscopicity of spray dry powder of gubi compound's water extract and its mechanism].

    Science.gov (United States)

    Zong, Jie; Shao, Qi; Zhang, Hong-Qing; Pan, Yong-Lan; Zhu, Hua-Xu; Guo, Li-Wei

    2014-02-01

    To investigate moisture content and hygroscopicity of spray dry powder of Gubi compound's water extract obtained at different spray drying conditions and laying a foundation for spray drying process of Chinese herbal compound preparation. In the paper, on the basis of single-factor experiments, the author choose inlet temperature, liquid density, feed rate, air flow rate as investigated factors. The experimental absorption rate-time curve and scanning electron microscopy results showed that under different spray drying conditions the spray-dried powders have different morphology and different adsorption process. At different spray-dried conditions, the morphology and water content of the powder is different, these differences lead to differences in the adsorption process, at the appropriate inlet temperature and feed rate with a higher sample density and lower air flow rate, in the experimental system the optimum conditions is inlet temperature of 150 degrees C, feed density of 1.05 g x mL(-1), feed rate of 20 mL x min(-1) air flow rate of 30 m3 x h(-1).

  6. Effects of pulsed electric fields pretreatment and drying method on drying characteristics and nutritive quality of blueberries

    Science.gov (United States)

    Fresh blueberries were pretreated with pulsed electric fields (PEF) at 2 kV/cm and then dried at 45, 60 and 75 degrees C by conventional hot air or vacuum drying. Drying characteristics and changes in contents of moisture, anthocyanin, total phenolics, vitamin C, and antioxidant activity in the blu...

  7. Effect of drying conditions on drying kinetics and quality of aromatic Pandanus amaryllifolius leaves

    OpenAIRE

    Rayaguru, Kalpana; Routray, Winny

    2010-01-01

    Pandanus amaryllifolius is a plant with aromatic leaves, which impart the characteristic flavour of aromatic rice. The quality of aromatic Pandanus leaves dried at low temperature (35 °C) and low RH (27%) in a heat pump dryer was evaluated and compared with those obtained from hot air drying at 45 °C. Thin-layer drying kinetics has been studied for both the conditions. To determine the kinetic parameters, the drying data were fitted to various semi-theoretical models. The goodness of fit was ...

  8. Viability of G4 after Spray-Drying and Freeze-Drying

    Directory of Open Access Journals (Sweden)

    Stephenie Wong

    2010-01-01

    Full Text Available Viability of Bifidobacterium pseudocatenulatum G4 following spray-drying and freeze-drying in skim milk was evaluated. After spray-drying, the strain experienced over 99% loss in viability regardless of the air outlet temperature (75 and 85 °C and the heat-adaptation temperature (45 and 65 °C, 30 min. The use of heat-adaptation treatment to improve the thermotolerance of this strain was ineffective. On the other hand, the strain showed a superior survival at 71.65%–82.07% after freeze-drying. Viable populations of 9.319–9.487 log 10 cfu/g were obtained when different combinations of skim milk and sugar were used as cryoprotectant. However, the addition of sugars did not result in increased survival during the freeze-drying process. Hence, 10% (w/v skim milk alone is recommended as a suitable protectant and drying medium for this strain. The residual moisture content obtained was 4.41% ± 0.44%.

  9. Postharvest monitoring of organic potato (cv. Anuschka) during hot-air drying using visible-NIR hyperspectral imaging.

    Science.gov (United States)

    Moscetti, Roberto; Sturm, Barbara; Crichton, Stuart Oj; Amjad, Waseem; Massantini, Riccardo

    2018-05-01

    The potential of hyperspectral imaging (500-1010 nm) was evaluated for monitoring of the quality of potato slices (var. Anuschka) of 5, 7 and 9 mm thickness subjected to air drying at 50 °C. The study investigated three different feature selection methods for the prediction of dry basis moisture content and colour of potato slices using partial least squares regression (PLS). The feature selection strategies tested include interval PLS regression (iPLS), and differences and ratios between raw reflectance values for each possible pair of wavelengths (R[λ 1 ]-R[λ 2 ] and R[λ 1 ]:R[λ 2 ], respectively). Moreover, the combination of spectral and spatial domains was tested. Excellent results were obtained using the iPLS algorithm. However, features from both datasets of raw reflectance differences and ratios represent suitable alternatives for development of low-complex prediction models. Finally, the dry basis moisture content was high accurately predicted by combining spectral data (i.e. R[511 nm]-R[994 nm]) and spatial domain (i.e. relative area shrinkage of slice). Modelling the data acquired during drying through hyperspectral imaging can provide useful information concerning the chemical and physicochemical changes of the product. With all this information, the proposed approach lays the foundations for a more efficient smart dryer that can be designed and its process optimized for drying of potato slices. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Thin layer convective solar drying and mathematical modeling of prickly pear peel (Opuntia ficus indica)

    International Nuclear Information System (INIS)

    Lahsasni, Siham; Kouhila, Mohammed; Mahrouz, Mostafa; Idlimam, Ali; Jamali, Abdelkrim

    2004-01-01

    This paper presents the thin layer convective solar drying and mathematical modeling of prickly pear peel. For these purposes, an indirect forced convection solar dryer consisting of a solar air collector, an auxiliary heater, a circulation fan and a drying cabinet is used for drying experiments. Moreover, the prickly pear peel is sufficiently dried in the ranges of 32 to 36 deg. C of ambient air temperature, 50 to 60 deg. C of drying air temperature, 23 to 34% of relative humidity, 0.0277 to 0.0833 m 3 /s of drying air flow rate and 200 to 950 W/m 2 of daily solar radiation. The experimental drying curves show only a falling drying rate period. The main factor in controlling the drying rate was found to be the drying air temperature. The drying rate equation is determined empirically from the characteristic drying curve. Also, the experimental drying curves obtained were fitted to a number of mathematical models. The Midilli-Kucuk drying model was found to satisfactorily describe the solar drying curves of prickly pear peel with a correlation coefficient (r) of 0.9998 and chi-square (χ 2 ) of 4.6572 10 -5

  11. Effects of hot air and freeze drying methods on antioxidant activity, colour and some nutritional characteristics of strawberry tree (Arbutus unedo L) fruit.

    Science.gov (United States)

    Orak, H H; Aktas, T; Yagar, H; İsbilir, S Selen; Ekinci, N; Sahin, F Hasturk

    2012-08-01

    Antioxidant activity, colour and some nutritional properties of hot air and freeze-dried strawberry tree (Arbutus unedo L.) fruits were investigated. Additionally, the effects of two pre-treatments, namely ethyl oleate and water blanching, were compared in terms of drying characteristics. For determination of antioxidant activities in ethanol extracts, two different analytical methods were used: 1,1-diphenyl-2-picrylhydrazyl scavenging activity and β-carotene bleaching activity. As a result, the ethyl oleate pre-treatment shortened the drying time by hot air method and gave a higher 1,1-diphenyl-2-picrylhydrazyl scavenging activity (82.16 ± 0.34%), total phenolic content (7.62 ± 1.09 µg GAE/g extract), ascorbic acid content (236.93 ± 20.14 mg/100 g), besides hydromethylfurfural was not observed. Freeze-dried fruits exhibited higher ascorbic acid content (368.63 ± 17.16 mg/100 g) than those fresh fruits (231.33 ± 19.51 mg/100 g) and nearly 1,1-diphenyl-2-picrylhydrazyl activity (93.52 ± 0.41 %) to fresh fruits (94.03 ± 1.18%). Colour characteristics, sugar content and mineral contents of fruits were significantly affected by pre-treatments and drying methods (p drying of strawberry tree fruits should bring a valuable and attractive foodstuff to food industry due to the rich nutritional components, antioxidant activity and colour. Another conclusion from this study is that the freeze-drying is the best drying method to keep the nutritional value, antioxidant activity and sensory properties of fruits.

  12. Estimation of cauliflower mass transfer parameters during convective drying

    Science.gov (United States)

    Sahin, Medine; Doymaz, İbrahim

    2017-02-01

    The study was conducted to evaluate the effect of pre-treatments such as citric acid and hot water blanching and air temperature on drying and rehydration characteristics of cauliflower slices. Experiments were carried out at four different drying air temperatures of 50, 60, 70 and 80 °C with the air velocity of 2.0 m/s. It was observed that drying and rehydration characteristics of cauliflower slices were greatly influenced by air temperature and pre-treatment. Six commonly used mathematical models were evaluated to predict the drying kinetics of cauliflower slices. The Midilli et al. model described the drying behaviour of cauliflower slices at all temperatures better than other models. The values of effective moisture diffusivities ( D eff ) were determined using Fick's law of diffusion and were between 4.09 × 10-9 and 1.88 × 10-8 m2/s. Activation energy was estimated by an Arrhenius type equation and was 23.40, 29.09 and 26.39 kJ/mol for citric acid, blanch and control samples, respectively.

  13. Forest vegetation as a sink for atmospheric particulates: Quantitative studies in rain and dry deposition

    International Nuclear Information System (INIS)

    Russel, I.J.; Choquette, C.E.; Fang, S.; Dundulis, W.P.; Pao, A.A.; Pszenny, A.A.P.

    1981-01-01

    Radionuclides in the atmosphere are associated with nonradioactive air particulates and hence serve to trace the fluxes of air particulates to various surfaces. Natural and artificial radioactivities found in the atmosphere have been measured in vegetation for 10 years to elucidate some of the mechanisms of acquirement by forest trees of atmospheric particulates. Whole tree analysis, in conjunction with soil assay, have served to establish the fraction of the flux of radionuclides retained by above-ground tissues of a forest stand. Interpretation is facilitated because most radionuclides in the atmosphere are superficially acquired. Typically 5--20% of the total open field flux is retained by the forest canopy in a moderately rainy climate (120 cm/year). Short-lived daughters of radon give a dry deposition velocity of particulates in the Aitken size range of 0.03--0.05 cm/s, thus permitting an estimate of transient removal by forest canopies by dry deposition of this size fraction

  14. The short-term effects of air pollutants on respiratory disease mortality in Wuhan, China: comparison of time-series and case-crossover analyses

    OpenAIRE

    Meng Ren; Na Li; Zhan Wang; Yisi Liu; Xi Chen; Yuanyuan Chu; Xiangyu Li; Zhongmin Zhu; Liqiao Tian; Hao Xiang

    2017-01-01

    Few studies have compared different methods when exploring the short-term effects of air pollutants on respiratory disease mortality in Wuhan, China. This study assesses the association between air pollutants and respiratory disease mortality with both time-series and time-stratified?case-crossover designs. The generalized additive model (GAM) and the conditional logistic regression model were used to assess the short-term effects of air pollutants on respiratory disease mortality. Stratified...

  15. A breath actuated dry powder inhaler

    NARCIS (Netherlands)

    de Boer, Anne; Frijlink, Henderik W.; Hagedoorn, Paul

    2015-01-01

    A breath actuated dry powder inhaler with a single air circulation chamber for de-agglomeration of entrained powdered medicament using the energy of the inspiratory air stream. The chamber has a substantially polygonal sidewall, a plurality of air supply channels entering the chamber substantially

  16. Mixed cropping of annual feed legumes with barley improves feed quantity and crude protein content under dry-land conditions

    Directory of Open Access Journals (Sweden)

    Khoshnood Alizadeh

    2013-01-01

    Full Text Available The objective of this research is to determine a suitable mixture of annual feed legumes and barley as a winter crop under dry-land conditions. Seeds of Hungarian vetch (cv. 2670, smooth vetch (cv. Maragheh, and local varieties of grass pea and field pea were mixed with barley (cv. Abidar in a 1:1 ratio and were tested, along with related monoculture. All legumes in the mixture survived winter while legumes alone, except Hungarian vetch, did not survive in the cold areas. The maximum fresh and dry forage yields (56 and 15 ton ha-1 respectively were obtained from a mixture of smooth vetch and barley in provinces with mild winter and more than 400 mm of rainfall. The mixture of barley and smooth vetch resulted in the highest mean crude protein content (17%. Autumn seeding of smooth vetch and barley in a 1:1 ratio produced more than 2 ton ha-1 of dry biomass with good quality in all studied areas and thus could serve as an alternative cropping system after wheat/barley in cold and semi-cold dry land.

  17. Study on Turn-to-turn Short Circuit On一line Monitoring System for Dry一type Ai r一core Reactor

    Directory of Open Access Journals (Sweden)

    GAO Zi-wei

    2017-04-01

    Full Text Available The change of current value caused by turn-to-turn short circuit of dry-type air-core reactor is so little that failure detection is difficult to be carried out. In order to solve this problem,a new on-line monitoring system based on impedance variation of turn-to-turn short circuit is proposed. The numerical method is applied to analyze the variation of equivalent resistance and equivalent reactance when dry-type air-core reactor winding short circuit happens in different places,and the monitoring method based on harmonic analysis method and quasi- synchronization sampling method is analyzed by theory. The hardware system,which takes single-chip microcomputer as the core of data processing and logic control,completes data acquisition of voltage signal and current signal of the reactor. In the respect of software design,the impedance variation will be uploaded to the PC after it has been calculated by using the above monitoring method,and then monitoring of turn-to-turn short circuit fault will be realized. Finally,the design of on-line monitoring system is studied by testing. The research result shows that,the equivalent resistance increases and the equivalent reactance decreases when turn-to-turn short circuit occurs,and the variation of equivalent resistance is more obvious than equivalent reactance. The experiment results prove that this monitoring method is true and the on-line monitoring system is feasible.

  18. Modeling of thin layer drying of tarragon (Artemisia dracunculus L.)

    NARCIS (Netherlands)

    ArabHosseini, A.; Huisman, W.; Boxtel, van A.J.B.; Mueller, J.

    2009-01-01

    The drying behavior of tarragon leaves as well as chopped plants were evaluated at air temperatures ranging from 40 to 90 °C, at various air relative humidities and a constant air velocity of 0.6 m/s. The experimental data was fitted to a number of thin layer drying equations. The equations were

  19. Long term integrity of spent fuel and construction materials for dry storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, T [CRIEPI (Japan)

    2012-07-01

    In Japan, two dry storage facilities at reactor sites have already been operating since 1995 and 2002, respectively. Additionally, a large scale dry storage facility away from reactor sites is under safety examination for license near the coast and desired to start its operation in 2010. Its final storage capacity is 5,000tU. It is therefore necessary to obtain and evaluate the related data on integrity of spent fuels loaded into and construction materials of casks during long term dry storage. The objectives are: - Spent fuel rod: To evaluate hydrogen migration along axial fuel direction on irradiated claddings stored for twenty years in air; To evaluate pellet oxidation behaviour for high burn-up UO{sub 2} fuels; - Construction materials for dry storage facilities: To evaluate long term reliability of welded stainless steel canister under stress corrosion cracking (SCC) environment; To evaluate long term integrity of concrete cask under carbonation and salt attack environment; To evaluate integrity of sealability of metal gasket under long term storage and short term accidental impact force.

  20. energetic performance analysis of drying agricultural products

    African Journals Online (AJOL)

    user

    ... a solar box dryer aided by a tracking device, and open air drying over an effective total drying time of 6 hours each day, for 5 days. ... cost in the use of modern dryers. Drying can be ..... speed, cloud cover and humidity respectively. 4.2 Solar ...

  1. Thin layer convective solar drying and mathematical modeling of prickly pear peel (Opuntia ficus indica)

    Energy Technology Data Exchange (ETDEWEB)

    Lahsasni, S.; Mahrouz, M. [Unite de Chimie Agroalimentaire (LCOA), Faculte des Sciences Semlalia, Marrakech (Morocco); Kouhila, M.; Idlimam, A.; Jamali, A. [Ecole Normale Superieure, Marrakech (Morocco). Lab. d' Energie Solaire et Plantes Aromatiques et Medicinales

    2004-02-01

    This paper presents the thin layer convective solar drying and mathematical modeling of prickly pear peel. For these purposes, an indirect forced convection solar dryer consisting of a solar air collector, an auxiliary heater, a circulation fan and a drying cabinet is used for drying experiments. Moreover, the prickly pear peel is sufficiently dried in the ranges of 32 to 36 {sup o} C of ambient air temperature, 50 to 60 {sup o}C of drying air temperature, 23 to 34% of relative humidity, 0.0277 to 0.0833 m{sup 3}/s of drying air flow rate and 200 to 950 W/m{sup 2} of daily solar radiation. The experimental drying curves show only a falling drying rate period. The main factor in controlling the drying rate was found to be the drying air temperature. The drying rate equation is determined empirically from the characteristic drying curve. Also, the experimental drying curves obtained were fitted to a number of mathematical models. The Midilli-Kucuk drying model was found to satisfactorily describe the solar drying curves of prickly pear peel with a correlation coefficient (r) of 0.9998 and chi-square ({chi}{sup 2}) of 4.6572 10{sup -5}. (Author)

  2. Dilution Refrigeration of Multi-Ton Cold Masses

    CERN Document Server

    Wikus, P; CERN. Geneva

    2007-01-01

    Dilution refrigeration is the only means to provide continuous cooling at temperatures below 250 mK. Future experiments featuring multi-ton cold masses require a new generation of dilution refrigeration systems, capable of providing a heat sink below 10 mK at cooling powers which exceed the performance of present systems considerably. This thesis presents some advances towards dilution refrigeration of multi-ton masses in this temperature range. A new method using numerical simulation to predict the cooling power of a dilution refrigerator of a given design has been developed in the framework of this thesis project. This method does not only allow to take into account the differences between an actual and an ideal continuous heat exchanger, but also to quantify the impact of an additional heat load on an intermediate section of the dilute stream. In addition, transient behavior can be simulated. The numerical model has been experimentally verified with a dilution refrigeration system which has been designed, ...

  3. Novel hybridized drying methods for processing of apple fruit: Energy conservation approach

    International Nuclear Information System (INIS)

    Hazervazifeh, Amin; Nikbakht, Ali M.; Moghaddam, Parviz A.

    2016-01-01

    Strategic outlook of apple cultivation and its significant post-processing challenges have been the leading factors for energy and time saving research approaches in apple processing. In this research, apple slices were subjected to hot air flow, microwave radiation and combined microwave-hot air flow drying. Drying time, energy consumption and thermal efficiency at different microwave power levels (500 W, 1000 W, 1500 W and 2000 W), hot air temperatures (40 °C, 50 °C, 60 °C and 70 °C) and inlet air velocities (0.5 ms"−"1, 1 ms"−"1, 1.5 ms"−"1 and 2 ms"−"1) were studied and compared. The minimum time of processing was 17 min when integrated hot air flow and microwave radiation was applied with 2000 W power at the temperature of 70 °C and air velocity of 2 ms"−"1. Furthermore, the minimum value of total energy consumption during entire process of apple slices drying was 2684 kJ which belonged to microwave drying with 2000 W power. - Highlights: • Microwave radiation is implemented to reduce the energy demand for drying. • Simultaneous impact of microwave and hot air on energy and time consumption was analyzed. • Minimum drying time occurs with combined utilization of microwave and hot air. • Thermal efficiency was desirable in low air velocities and high temperatures. • Thermal efficiency of microwave radiation increased by 200% compared to single hot air method.

  4. Drying characteristics and nitrogen loss of biogas digestate during drying process

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, C.; Muller, J. [Hohenheim Univ., Stuttgart (Germany). Inst. of Agricultural Engineering, Tropical and Subtropical Group

    2010-07-01

    The cost of transporting biogas digestate can be decreased by reducing its water content. However, the digestate emits volatile compounds during drying. This study investigated the drying behaviour and the change of digestate composition. Drying took place in a hybrid solar/waste-heat dryer that used solar energy as well as waste heat from a combined heat and power unit (CHP) and the exhaust air of a microturbine. The experiment involved the use of 60 t of liquid digestate. Climatic conditions were measured inside and outside the drying hall. Dry matter (DM) and organic dry matter (ODM) were also measured on a daily basis. In addition, the energy consumption of waste and solar heat were recorded and related to the quantity of dried feedstock. The total nitrogen, ammonium, phosphate, potassium oxide, magnesium oxide and calcium oxide in the digestate were subjected to chemical analysis before and after the drying process. Losses of nitrogen were calculated. Specific energy consumption depended on the climatic condition. Most of the energy consumption was covered by the waste heat of the CHP. A considerable amount of nitrogen was lost during the drying process.

  5. Seasonal atmospheric deposition and air-sea gas exchange of polycyclic aromatic hydrocarbons over the Yangtze River Estuary, East China Sea: Implications for source-sink processes

    Science.gov (United States)

    Jiang, Yuqing; Lin, Tian; Wu, Zilan; Li, Yuanyuan; Li, Zhongxia; Guo, Zhigang; Yao, Xiaohong

    2018-04-01

    In this work, air samples and surface seawater samples covering four seasons from March 2014 to January 2015 were collected from a background receptor site in the YRE to explore the seasonal fluxes of air-sea gas exchange and dry and wet deposition of 15 polycyclic aromatic hydrocarbons (PAHs) and their source-sink processes at the air-sea interface. The average dry and wet deposition fluxes of 15 PAHs were estimated as 879 ± 1393 ng m-2 d-1 and 755 ± 545 ng m-2 d-1, respectively. Gaseous PAH release from seawater to the atmosphere averaged 3114 ± 1999 ng m-2 d-1 in a year round. The air-sea gas exchange of PAHs was the dominant process at the air-sea interface in the YRE as the magnitude of volatilization flux of PAHs exceeded that of total dry and wet deposition. The gas PAH exchange flux was dominated by three-ring PAHs, with the highest value in summer and lowest in winter, indicating a marked seasonal variation owing to differences in Henry's law constants associated with temperature, as well as wind speed and gaseous-dissolved gradient among seasons. Based on the simplified mass balance estimation, a net 11 tons y-1 of PAHs (mainly three-ring PAHs) were volatilized from seawater to the atmosphere in a ∼20,000 km2 area in the YRE. Other than the year-round Yangtze River input and ocean ship emissions, the selective release of low-molecular-weight PAHs from bottom sediments in winter due to resuspension triggered by the East Asian winter monsoon is another potential source of PAHs. This work suggests that the source-sink processes of PAHs at the air-sea interface in the YRE play a crucial role in regional cycling of PAHs.

  6. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation.

    Science.gov (United States)

    Li, Xiang; Peng, Ling; Yao, Xiaojing; Cui, Shaolong; Hu, Yuan; You, Chengzeng; Chi, Tianhe

    2017-12-01

    Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants. However, existing methods of air pollutant concentration prediction fail to effectively model long-term dependencies, and most neglect spatial correlations. In this paper, a novel long short-term memory neural network extended (LSTME) model that inherently considers spatiotemporal correlations is proposed for air pollutant concentration prediction. Long short-term memory (LSTM) layers were used to automatically extract inherent useful features from historical air pollutant data, and auxiliary data, including meteorological data and time stamp data, were merged into the proposed model to enhance the performance. Hourly PM 2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) concentration data collected at 12 air quality monitoring stations in Beijing City from Jan/01/2014 to May/28/2016 were used to validate the effectiveness of the proposed LSTME model. Experiments were performed using the spatiotemporal deep learning (STDL) model, the time delay neural network (TDNN) model, the autoregressive moving average (ARMA) model, the support vector regression (SVR) model, and the traditional LSTM NN model, and a comparison of the results demonstrated that the LSTME model is superior to the other statistics-based models. Additionally, the use of auxiliary data improved model performance. For the one-hour prediction tasks, the proposed model performed well and exhibited a mean absolute percentage error (MAPE) of 11.93%. In addition, we conducted multiscale predictions over different time spans and achieved satisfactory performance, even for 13-24 h prediction tasks (MAPE = 31.47%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Microwave wood strand drying: energy consumption, VOC emission and drying quality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Du, G.; Zhang, Y. [Tennessee Univ., Knoxville, TN (United States). Dept. of Forestry, Wildlife and Fisheries

    2005-07-01

    The objective of this research was to develop microwave drying technology for wood strand drying for oriented strand board (OSB) manufacturing. The advantages of microwave drying included a reduction in the drying time of wood strands and a reduction in the release of volatile organic compounds (VOC) through a decrease in the thermal degradation of the wood material. Temperature and moisture content changes under different microwave drying conditions were investigated. The effects of microwave drying on VOC emissions were evaluated and analyzed using gas chromatography and mass spectrometry. Microwave power input and the mass of drying materials in the microwave oven were found to have a dominant effect on drying quality. Results indicated that an increase in microwave power input and a decrease in sample weights resulted in high drying temperatures, short drying times and a high drying rate. The effect of microwave drying on the strand surfaces was also investigated. Different strand geometries and initial moisture content resulted in varying warm-up curves, but did not influence final moisture content. VOC emissions were quantified by comparing alpha-pinene concentrations. The microwave drying resulted in lower VOC emissions compared with conventional drying methods. It was concluded that the microwave drying technique provided faster strand drying and reduced energy consumption by up to 50 per cent. In addition, the surface wettability of wood strands dried with microwaves was better than with an industrial rotary drum drier. 12 refs., 3 tabs., 5 figs.

  8. In the environmental pollution air raid of NATO; NATO no kubaku ga kankyo osen ni

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-05

    In recent European Union commissioned report, there was no evidence that the air raid of the NATO military in Yugoslavia became a cause of the large-scale ecology destruction until now. However, the pollution is very serious in industrial area suburb which becomes a target for Novi Sad and Pacncevo, Prahovo. The Hungary-based Regional Environment Center for Central and Eastern Europe in Hungary: REC was reported. According to REC, the pollution of the Danube river after the air raid which reaches for 11 weeks by the NATO military was serious, and ammonia of 100 tons, ethylene dichloride over the 1 thousand tons, 33% hydrochloric acid solution of the 1 thousand tons escaped to the Danube river from the air raid of Pancevo on April 18th. And, the mercury accumulated in sodium hydroxide of about 3 thousand tons, liquid chlorine of several decade tons and chlorine/alkali plant also escaped from Pancevo. United Nations-led Environmental Damage Assessment Mission should inspect Kosovo and Yugoslavia on July 19th, and it was announced with 'NATO does not show still us all well-informed information'. The investigation is carried out on the item which the Yugoslavia authorities designates, and the atmosphere level of VCM has reached 10600 times the concentration of the acceptable level near Pancevo, and it reports that acid rain was observed in each place. (translated by NEDO)

  9. Sowing Depth Effects on Vetch Yield in Maragheh Dry Lands

    Directory of Open Access Journals (Sweden)

    J Asghari Meidany

    2013-12-01

    Full Text Available Increases forage production and economic production in rainfed condition requires attention to agricultural issues such as determination of appropriate sowing depth. So in order to determine the effect of different sowing depths of vetch this experiment was conducted in Agricultural Research Station of Maragheh as strip plot based on randomized complete block design with three species of vetch V. sativa , V. dasycarpa-kouhak and V. narbonensis velox67 as main plots and three sowing depth as sub factor. Results showed that the effect of sowing depth on Vicia yield was significant at the 1% level and the maximum yield of wet hay, dry hay, straw and seed depth of belong to 8-10 cm depth and respectively are 5.364, 3.416, 4.389 and 1.081 ton per ha whereas the minimum yield of wet hay, dry hay, straw and seed depth of belong to 2-4 cm depth and respectively are 4.888, 2.318, 3.729 and 0.825. Among the three Vicia species the highest yield of wet hay, dry hay , straw and seed belongs to V. dasykarpa and respectively are 5.632, 3.532, 4.614 and 1.065 ton/ha. Soil moisture study in the field of these vetches at the time of 10 % vetch flowering showed water differences. V.dasycarpa had lower water depletion from soil. The amount of average soil water for species included: V. dasycarpa 26.31, V. sativa 23.76 and V. narbonesis 22.5.

  10. Short-term airing by natural ventilation - implication on IAQ and thermal comfort.

    Science.gov (United States)

    Heiselberg, P; Perino, M

    2010-04-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. Among the available ventilation strategies that are currently available, buoyancy driven, single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and Indoor Air Quality (IAQ) control. However, to promote a wider distribution of these systems an improvement in the knowledge of their working principles is necessary. The present study analyses and presents the results of an experimental evaluation of airing performance in terms of ventilation characteristics, IAQ and thermal comfort. It includes investigations of the consequences of opening time, opening frequency, opening area and expected airflow rate, ventilation efficiency, thermal comfort and dynamic temperature conditions. A suitable laboratory test rig was developed to perform extensive experimental analyses of the phenomenon under controlled and repeatable conditions. The results showed that short-term window airing is very effective and can provide both acceptable IAQ and thermal comfort conditions in buildings. Practical Implications This study gives the necessary background and in-depth knowledge of the performance of window airing by single-sided natural ventilation necessary for the development of control strategies for window airing (length of opening period and opening frequency) for optimum IAQ and thermal comfort in naturally ventilated buildings.

  11. [Estimating emergency hospital admissions to gauge short-term effects of air pollution: evaluation of health data quality].

    Science.gov (United States)

    Bois de Fer, Béatrice; Host, Sabine; Chardon, Benoît; Chatignoux, Edouard; Beaujouan, Laure; Brun-Ney, Dominique; Grémy, Isabelle

    2009-01-01

    The study of the short-term effects and health impact of air pollution is carrier out by the ERPURS regional surveillance program which utilizes hospitalization data obtained from the French hospital information system (PMSI) to determine these links. This system does not permit the distinction between emergency hospital admissions from scheduled ones, which cannot be related to short term changes in air pollution levels. This study examines how scheduled admissions affect the quality of the health indicators used to estimate air pollution effects. This indicator is compared to three new emergency hospitalisation indicators reconstructed based on data from the public hospitals in Paris, partly from the PMSI data and partly with data from an on-line emergency network that regroups all of the computerized emergency services. According to the pathology, scheduled admissions present a difficulty which affects the capacity to highlight the weakest risks with any precision.

  12. New Perspectives on Dry Eye Definition and Diagnosis: A Consensus Report by the Asia Dry Eye Society.

    Science.gov (United States)

    Tsubota, Kazuo; Yokoi, Norihiko; Shimazaki, Jun; Watanabe, Hitoshi; Dogru, Murat; Yamada, Masakazu; Kinoshita, Shigeru; Kim, Hyo-Myung; Tchah, Hung-Won; Hyon, Joon Young; Yoon, Kyung-Chul; Seo, Kyoung Yul; Sun, Xuguang; Chen, Wei; Liang, Lingyi; Li, Mingwu; Liu, Zuguo

    2017-01-01

    For the last 20 years, a great amount of evidence has accumulated through epidemiological studies that most of the dry eye disease encountered in daily life, especially in video display terminal (VDT) workers, involves short tear film breakup time (TFBUT) type dry eye, a category characterized by severe symptoms but minimal clinical signs other than short TFBUT. An unstable tear film also affects the visual function, possibly due to the increase of higher order aberrations. Based on the change in the understanding of the types, symptoms, and signs of dry eye disease, the Asia Dry Eye Society agreed to the following definition of dry eye: "Dry eye is a multifactorial disease characterized by unstable tear film causing a variety of symptoms and/or visual impairment, potentially accompanied by ocular surface damage." The definition stresses instability of the tear film as well as the importance of visual impairment, highlighting an essential role for TFBUT assessment. This paper discusses the concept of Tear Film Oriented Therapy (TFOT), which evolved from the definition of dry eye, emphasizing the importance of a stable tear film. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Dry Matter Losses and Greenhouse Gas Emissions From Outside Storage of Short Rotation Coppice Willow Chip.

    Science.gov (United States)

    Whittaker, Carly; Yates, Nicola E; Powers, Stephen J; Misselbrook, Tom; Shield, Ian

    This study examined the dry matter losses and the greenhouse gas (GHG) concentrations within two short rotation coppice (SRC) willow wood chip storage heaps. One heap was built on a grassland area (East Midlands) and the other (Rothamsted) on a concrete hard standing. A series of 1- and 3-m probes were embedded in the heaps in order to retrieve gas samples for analysis, and pre-weighed net bags were positioned in the core of the heap to detect dry matter losses. The bagged samples showed dry matter losses of 18 and 19 % in the East Midlands and Rothamsted heaps after 210 and 97 days storage, respectively. The Rothamsted heap showed a whole-heap dry matter loss of 21 %. During this time, the wood chips dried from 54 to 39 % moisture content in the East Midlands heap and 50 to 43 % at Rothamsted. The results from analysing the whole Rothamsted heap indicated an overall loss of 1.5 GJ per tonne stored, although measurements from bagged samples in the core suggested that the chips dried sufficiently to have a minimal energy loss from storage. The process of mixing the heap, however, led to incorporation of wet outer layers and hence the average moisture content was higher in an average sample of chip. After establishment of the heaps, the temperature rose rapidly and this correlated with a peak in carbon dioxide (CO 2 ) concentration within the heap. A peak in methane (CH 4 ) concentration was also detected in both heaps, though more noticeably in the East Midlands heap after around 55 days. In both instances, the peak CH 4 concentration occurred as CO 2 concentrations dropped, suggesting that after an active period of aerobic decomposition in the first 2 months of storage, the conditions in the heap became anaerobic. The results from this study suggest that outside wood chip storage is not an efficient method of storing biomass, though this may be location-specific as there are some studies showing lower dry matter losses. It is necessary to explore other

  14. 75 FR 81126 - Revisions to Lead Ambient Air Monitoring Requirements

    Science.gov (United States)

    2010-12-27

    ... tons per year of lead is necessary to provide sufficient information about airborne lead levels near... Revisions to Lead Ambient Air Monitoring Requirements AGENCY: Environmental Protection Agency (EPA). ACTION...) that revised the primary and secondary National Ambient Air Quality Standards (NAAQS) for lead and...

  15. Drying of Agricultural Products Using Long Wave Infrared Radiation(Part 2). Drying of Welsh Onion

    International Nuclear Information System (INIS)

    Itoh, K.; Han, C.S.

    1995-01-01

    The investigation was carried out to clarify the intermittent drying characteristics for welsh onion use of long-wave infrared radiation. When compared with two other methods: use of air and vacuum freezing, this method showed significantly high rate of drying. The experiments were carried out analyzing the influence of different lengths of the welsh onion, different rate of radiation and different temperature of the airflow. The obtained results were as follows: 1. The rate of drying increases as the length of welsh onion decrease and the rate of radiation increase. 2. The airflow, temperature does not influence to the rate of drying. 3. The increasing of the drying time considerably aggravate the quality the dried welsh onion

  16. Effects of diquafosol sodium eye drops on tear film stability in short BUT type of dry eye.

    Science.gov (United States)

    Shimazaki-Den, Seika; Iseda, Hiroyuki; Dogru, Murat; Shimazaki, Jun

    2013-08-01

    To investigate the effects of diquafosol sodium (DQS) eye drops, a purinergic P2Y2 receptor agonist, on tear film stability in patients with unstable tear film (UTF). Two prospective studies were conducted. One was an exploratory nonrandomized trial on 39 eyes with dry eye symptoms and short tear film break-up time (BUT), but without epithelial damage. Changes in symptoms, BUT, Schirmer value, and ocular surface fluorescein staining (FS) scores were studied for 3 months. The other was a randomized clinical trial of DQS and artificial tears (AT) in 17 eyes with short BUT. Eyes with decreased Schirmer values (≤ 5 mm) were excluded. Changes in symptoms, BUT, FS scores, and tear film stability using continuous corneal topographic analysis were studied for 4 weeks. In the exploratory study, while Schirmer values were not significantly increased, significant improvements in symptoms and BUT were noted at both 1 and 3 months. In the randomized clinical trial, significant improvements in symptoms were noted in the DQS group, but not in the AT group, at 2 weeks. BUT was significantly prolonged in the DQS group at 4 weeks but not in the AT group. No significant changes were noted in FS scores or tear film stability. DQS improved subjective symptoms and prolonged BUT in eyes with UTF not associated with low tear secretion and ocular surface epithelial damage. Because many patients who have UTF are refractory to conventional treatments, DQS may offer benefits in the treatment of dry eyes.

  17. Radiation preservation of dry fruits and nuts

    International Nuclear Information System (INIS)

    Wahid, M.; Sattar, A.; Jan, M.; Ahmad, A.; Khan, I.

    1988-01-01

    Dried fruits are considered a major source of income and foreign exchange in many countries. The spoilage of dried fruits and nuts by insect infestation, colour deterioration and chemical changes during storage are the serious problems especially under humid tropical conditions. The present work was undertaken to study the effect of irradiation in combination with different modified storage environments on insect infestation as well as chemical and sensory quality indices. The affect of gamma radiation dose of 1 KGy and storage environments such as air vacuum and carbon dioxide on insect infestation of dry fruits and nuts. In the case of un-irradiated samples, insect infestation progressed throughout the storage period especially in those kept under air. The vacuum storage was found better in checking infestation followed by CO/sub/2 and air. (orig./A.B.)

  18. Co3O4 as p-Type Material for CO Sensing in Humid Air

    Directory of Open Access Journals (Sweden)

    Svetlana Vladimirova

    2017-09-01

    Full Text Available Nanocrystalline cobalt oxide Co3O4 has been prepared by precipitation and subsequent thermal decomposition of a carbonate precursor, and has been characterized in detail using XRD, transmission electron microscopy, and FTIR spectroscopy. The sensory characteristics of the material towards carbon monoxide in the concentration range 6.7–20 ppm have been examined in both dry and humid air. A sensor signal is achieved in dry air at sufficiently low temperatures T = 80–120 °C, but the increase in relative humidity results in the disappearance of sensor signal in this temperature range. At temperatures above 200 °C the inversion of the sensor signal in dry air was observed. In the temperature interval 180–200 °C the sensor signal toward CO is nearly the same at 0, 20 and 60% r.h. The obtained results are discussed in relation with the specific features of the adsorption of CO, oxygen, and water molecules on the surface of Co3O4. The independence of the sensor signal from the air humidity combined with a sufficiently short response time at a moderate operating temperature makes Co3O4 a very promising material for CO detection in conditions of variable humidity.

  19. Preparation of High-Grade Powders from Tomato Paste Using a Vacuum Foam Drying Method.

    Science.gov (United States)

    Sramek, Martin; Schweiggert, Ralf Martin; van Kampen, Andreas; Carle, Reinhold; Kohlus, Reinhard

    2015-08-01

    We present a rapid and gentle drying method for the production of high-grade tomato powders from double concentrated tomato paste, comparing results with powders obtained by foam mat air drying and freeze dried powders. The principle of this method consists of drying tomato paste in foamed state at low temperatures in vacuum. The formulations were dried at temperatures of 50, 60, and 70 °C and vacuum of 200 mbar. Foam stability was affected by low serum viscosity and the presence of solid particles in tomato paste. Consequently, serum viscosity was increased by maltodextrin addition, yielding optimum stability at tomato paste:maltodextrin ratio of 2.4:1 (w/w) in dry matter. Material foamability was improved by addition of 0.5% (w/w, fresh weight) egg white. Because of solid particles in tomato paste, foam air filling had to be limited to critical air volume fraction of Φ = 0.7. The paste was first pre-foamed to Φ = 0.2 and subsequently expanded in vacuo. After drying to a moisture content of 5.6% to 7.5% wet base (w.b.), the materials obtained were in glassy state. Qualities of the resulting powders were compared with those produced by freeze and air drying. Total color changes were the least after vacuum drying, whereas air drying resulted in noticeable color changes. Vacuum foam drying at 50 °C led to insignificant carotenoid losses, being equivalent to the time-consuming freeze drying method. In contrast, air drying caused lycopene and β-carotene losses of 18% to 33% and 14% to 19% respectively. Thus, vacuum foam drying enables production of high-grade tomato powders being qualitatively similar to powders obtained by freeze drying. © 2015 Institute of Food Technologists®

  20. Development of Solar Biomass Drying System

    Directory of Open Access Journals (Sweden)

    Atnaw Samson Mekbib

    2017-01-01

    Full Text Available The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the drying chamber. The biomass absorbs the heat and transforms the moisture content within the biomass into water vapour and then leaves the chamber via the exhaust air outlet. This problem however can be solved by adopting indirect solar drying system. High and controllable temperatures can be achieved as a fan is used to move the air through the solar collector. This project has successfully created a solar cabinet dryer that combines both direct and indirect solar drying systems and functions to dry biomass as well as crops effectively and efficiently with minimal maintenance. Hence, it is indeed a substitution for conventional dryers which are affordable to local farmers.

  1. Air emissions assessment from offshore oil activities in Sonda de Campeche, Mexico.

    Science.gov (United States)

    Schifter, I; González-Macías, C; Miranda, A; López-Salinas, E

    2005-10-01

    Air emission data from offshore oil platforms, gas and oil processing installations and contribution of marine activities at the Sonda de Campeche, located at the Gulf of Mexico, were compiled and integrated to facilitate the study of long range transport of pollutants into the region. From this important region, roughly 76% of the total Mexican oil and gas production is obtained. It was estimated that the total air emissions of all contaminants are approximately 821,000 tons per year. Hydrocarbons are the largest pollutant emissions with 277,590 tons per year, generated during flaring activities, and SOx in second place with 185,907 tons per year. Marine and aviation activities contribute with less than 2% of total emissions. Mass of pollutants emitted per barrel of petroleum produced calculated in this work, are in the range reported by similar oil companies.

  2. Influence of drying conditions on the effective moisture diffusivity and energy requirements during the drying of pretreated and untreated pumpkin

    International Nuclear Information System (INIS)

    Tunde-Akintunde, Toyosi Y.; Ogunlakin, Grace O.

    2011-01-01

    Pumpkin as a fruit is consumed by both animals and humans. Its high moisture content makes it perishable and thus there is a need for drying as a means of preservation. Thin-layer drying characteristics for the samples dried using a hot-air dryer were obtained from the experiment data. The drying was observed to take place in the falling rate drying period. Ficks law was used to determine the moisture diffusivity which varied from a minimum of 1.19 x 10 -9 m 2 /s for untreated pumpkin samples dried at 40 o C to a maximum value of 4.27 x 10 -9 m 2 /s for steam blanched samples dried at 80 o C. The value of the energy of activation varied from 21.44 to 28.67 kJ/mol. The input energy values and specific energy requirement for thin-drying of pumpkin samples were found to be in the range of 317.8-458.1 kW h and 1588.8-2290.3 kW h/kg from 40 o C to 80 o C with a drying air velocity of 1.5 m/s respectively.

  3. Influence of drying conditions on the effective moisture diffusivity and energy requirements during the drying of pretreated and untreated pumpkin

    Energy Technology Data Exchange (ETDEWEB)

    Tunde-Akintunde, Toyosi Y.; Ogunlakin, Grace O. [Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Oyo State (Nigeria)

    2011-02-15

    Pumpkin as a fruit is consumed by both animals and humans. Its high moisture content makes it perishable and thus there is a need for drying as a means of preservation. Thin-layer drying characteristics for the samples dried using a hot-air dryer were obtained from the experiment data. The drying was observed to take place in the falling rate drying period. Ficks law was used to determine the moisture diffusivity which varied from a minimum of 1.19 x 10{sup -9} m{sup 2}/s for untreated pumpkin samples dried at 40 C to a maximum value of 4.27 x 10{sup -9} m{sup 2}/s for steam blanched samples dried at 80 C. The value of the energy of activation varied from 21.44 to 28.67 kJ/mol. The input energy values and specific energy requirement for thin-drying of pumpkin samples were found to be in the range of 317.8-458.1 kW h and 1588.8-2290.3 kW h/kg from 40 C to 80 C with a drying air velocity of 1.5 m/s respectively. (author)

  4. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation

    International Nuclear Information System (INIS)

    Li, Xiang; Peng, Ling; Yao, Xiaojing; Cui, Shaolong; Hu, Yuan; You, Chengzeng; Chi, Tianhe

    2017-01-01

    Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants. However, existing methods of air pollutant concentration prediction fail to effectively model long-term dependencies, and most neglect spatial correlations. In this paper, a novel long short-term memory neural network extended (LSTME) model that inherently considers spatiotemporal correlations is proposed for air pollutant concentration prediction. Long short-term memory (LSTM) layers were used to automatically extract inherent useful features from historical air pollutant data, and auxiliary data, including meteorological data and time stamp data, were merged into the proposed model to enhance the performance. Hourly PM 2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) concentration data collected at 12 air quality monitoring stations in Beijing City from Jan/01/2014 to May/28/2016 were used to validate the effectiveness of the proposed LSTME model. Experiments were performed using the spatiotemporal deep learning (STDL) model, the time delay neural network (TDNN) model, the autoregressive moving average (ARMA) model, the support vector regression (SVR) model, and the traditional LSTM NN model, and a comparison of the results demonstrated that the LSTME model is superior to the other statistics-based models. Additionally, the use of auxiliary data improved model performance. For the one-hour prediction tasks, the proposed model performed well and exhibited a mean absolute percentage error (MAPE) of 11.93%. In addition, we conducted multiscale predictions over different time spans and achieved satisfactory performance, even for 13–24 h prediction tasks (MAPE = 31.47%). - Highlights: • Regional air pollutant concentration shows an obvious spatiotemporal correlation. • Our prediction model presents superior performance. • Climate data and metadata can significantly

  5. Mathematical modeling of drying of pretreated and untreated pumpkin.

    Science.gov (United States)

    Tunde-Akintunde, T Y; Ogunlakin, G O

    2013-08-01

    In this study, drying characteristics of pretreated and untreated pumpkin were examined in a hot-air dryer at air temperatures within a range of 40-80 °C and a constant air velocity of 1.5 m/s. The drying was observed to be in the falling-rate drying period and thus liquid diffusion is the main mechanism of moisture movement from the internal regions to the product surface. The experimental drying data for the pumpkin fruits were used to fit Exponential, General exponential, Logarithmic, Page, Midilli-Kucuk and Parabolic model and the statistical validity of models tested were determined by non-linear regression analysis. The Parabolic model had the highest R(2) and lowest χ(2) and RMSE values. This indicates that the Parabolic model is appropriate to describe the dehydration behavior for the pumpkin.

  6. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    International Nuclear Information System (INIS)

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-01-01

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial

  7. Quality, energy requirement and costs of drying tarragon (Artemisia dracunculus L.)

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, A.A.A.

    2005-11-07

    Tarragon (Artemisia dracunculus L.) is a favorite herbal and medicinal plant. Drying is necessary to achieve longer shelf life with high quality, preserving the original flavor. Essential oil content and color are the most important parameters that define the quality of herbal and medicinal plants. Hot air batch drying is the most common drying method for these plants but affects the essential oil content and color. The drying conditions affect essential oil content and color as well as the energy consumption and costs. Process engineers and farmers need to know how they have to dry to obtain the best quality. The objective of this work is to investigate the conditions for optimal drying in terms of quality, energy consumption and costs. Adsorption and desorption experiments were done to find the equilibrium moisture content and water exchange between the material and surrounding air during drying and storage at temperatures of 25C to 70C and relative humidities of 5% to 90%. Drying of tarragon leaves and chopped plants was investigated separately and the best model was selected from the drying equations in literature. The effect of drying temperature and relative humidity on the essential oil content and color change was studied. Experiments were done at temperatures of 40C to 90C and the optimal conditions were. Long-term effects of the drying conditions were also investigated during the storage time. Material dried at 45, 60 and 90C was stored and the essential oil content and color of the material was measured after 15, 30, 60 and 120 days of storage. Drying at 45C was found as the best condition based on the changes of essential oil and color during drying and storage. Optimization of drying of tarragon was studied based on the results of the sorption isotherms, drying equations and the changes of essential oil content and color during drying and storage. Models were made for the drying process, energy consumption and cost calculation. The current conditions

  8. Loss of essential oil of tarragon (Artemisia dranunculus L.) due to drying

    NARCIS (Netherlands)

    ArabHosseini, A.; Padhye, S.; Beek, van T.A.; Boxtel, van A.J.B.; Huisman, W.; Posthumus, M.A.; Müller, J.

    2006-01-01

    The effect of hot air-drying on the essential oil constituents and yield in French and Russian tarragon (Artemisia dracunculus L.) leaves was studied. The tarragon leaves were dried at air temperatures ranging from 40 to 90 °C. The drying stopped when the moisture content of the samples reached 10%

  9. Latest Apple Drying Technologies: A Review

    OpenAIRE

    ÖZDEMİR, Yasin; SAYIN, Emir Olcay; KURULTAY, Şefik

    2009-01-01

    Drying is known as one of the oldest preservation methods and can be applicable to many fruits. Sun drying of apple has been known from ancient times. However, this technique is weather-dependent and has contamination problems such as dust, soil, sand particles and insects. Hot air drying of apples has low energy efficiency and requires longer drying period. The desire to eliminate these problems, prevent quality loss, and achieve fast and effective thermal processing has resulted in an incre...

  10. Application of Viterbi’s Algorithm for Predicting Rainfall Occurrence and Simulating Wet\\Dry Spells – Comparison with Common Methods

    Directory of Open Access Journals (Sweden)

    M. Ghamghami

    2015-06-01

    Full Text Available Today, there arevarious statistical models for the discrete simulation of the rainfall occurrence/non-occurrence with more emphasizing on long-term climatic statistics. Nevertheless, the accuracy of such models or predictions should be improved in short timescale. In the present paper, it is assumed that the rainfall occurrence/non-occurrence sequences follow a two-layer Hidden Markov Model (HMM consist of a hidden layer (discrete time series of rainfall occurrence and non-occurrence and an observable layer (weather variables, which is considered as a case study in Khoramabad station during the period of 1961-2005. The decoding algorithm of Viterbi has been used for simulation of wet/dry sequences. Performance of five weather variables, as the observable variables, including air pressure, vapor pressure, diurnal air temperature, relative humidity and dew point temperature for choosing the best observed variables were evaluated using some measures oferror evaluation. Results showed that the variable of diurnal air temperatureis the best observable variable for decoding process of wet/dry sequences, which detects the strong physical relationship between those variables. Also the Viterbi output was compared with ClimGen and LARS-WG weather generators, in terms of two accuracy measures including similarity of climatic statistics and forecasting skills. Finally, it is concluded that HMM has more skills rather than the other two weather generators in simulation of wet and dry spells. Therefore, we recommend the use of HMM instead of two other approaches for generation of wet and dry sequences.

  11. Relationship of Corneal Pain Sensitivity With Dry Eye Symptoms in Dry Eye With Short Tear Break-Up Time.

    Science.gov (United States)

    Kaido, Minako; Kawashima, Motoko; Ishida, Reiko; Tsubota, Kazuo

    2016-03-01

    The purpose of this prospective comparative study was to investigate corneal sensitivity in subjects with unstable tear film, with and without dry eye (DE) symptoms. Forty-one eyes of 41 volunteers (mean age: 45.1 ± 9.4 years; age range, 23-57 years), with normal tear function and ocular surface except for tear stability, were studied. The eyes were divided into two groups depending on the presence or absence of DE symptoms: 21 eyes with DE symptoms (symptomatic group); and 20 eyes without DE symptoms (asymptomatic group). Three types of corneal sensitivity values were measured using a Cochet-Bonnet esthesiometer: the sensitivity for perception of touch (S-touch), the sensitivity for blinking (S-blink), and the sensitivity for pain (S-pain). Mean S-blink and S-pain were significantly higher in the symptomatic group than in the asymptomatic group (P 0.05). Corneal sensitivity for blinking and pain evoked by increased stimuli was higher in the symptomatic group (subjects with short break-up time DE) compared with subjects who have no DE symptoms despite decreased tear stability. The presence of both tear instability and hyperesthesia, rather than tear instability alone, may contribute to DE pathogenesis.

  12. Numerical characterisation of one-step and three-step solar air heating collectors used for cocoa bean solar drying.

    Science.gov (United States)

    Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel; La Madrid, Raúl

    2017-12-01

    In the northern coastal and jungle areas of Peru, cocoa beans are dried using artisan methods, such as direct exposure to sunlight. This traditional process is time intensive, leading to a reduction in productivity and, therefore, delays in delivery times. The present study was intended to numerically characterise the thermal behaviour of three configurations of solar air heating collectors in order to determine which demonstrated the best thermal performance under several controlled operating conditions. For this purpose, a computational fluid dynamics model was developed to describe the simultaneous convective and radiative heat transfer phenomena under several operation conditions. The constructed computational fluid dynamics model was firstly validated through comparison with the data measurements of a one-step solar air heating collector. We then simulated two further three-step solar air heating collectors in order to identify which demonstrated the best thermal performance in terms of outlet air temperature and thermal efficiency. The numerical results show that under the same solar irradiation area of exposition and operating conditions, the three-step solar air heating collector with the collector plate mounted between the second and third channels was 67% more thermally efficient compared to the one-step solar air heating collector. This is because the air exposition with the surface of the collector plate for the three-step solar air heating collector former device was twice than the one-step solar air heating collector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Operation and maintenance techniques of 1 ton bucket elevator in IMEF

    International Nuclear Information System (INIS)

    Soong, Woong Sup

    1999-04-01

    IMEF pool is used as a pathway between pool and hot cell in order to transfer (incoming and outgoing) irradiated materials. Transfer is performed by 1 ton bucket elevator which is moved inside the rectangular tube installed between pool and M1 hot cell. Allowable load capacity is 1 ton of the bucket elevator and its size is 25 X 25 X 150 cm. Bucket is driven by chain system which is moved up and down through the guide rail. Guide rail is installed in rectangular tube that is tilted about 63 degree. Chain which is moved by using the roller sliding method is driven by sprocket wheel being rotated by the shaft and the shaft is driven by gear reducing motor. In this report operation and maintenance techniques of 1 ton bucket elevator in IMEF are described in detail. (Author). 8 refs., 14 tabs., 6 figs

  14. Operation and maintenance techniques of 1 ton bucket elevator in IMEF

    Energy Technology Data Exchange (ETDEWEB)

    Soong, Woong Sup

    1999-04-01

    IMEF pool is used as a pathway between pool and hot cell in order to transfer (incoming and outgoing) irradiated materials. Transfer is performed by 1 ton bucket elevator which is moved inside the rectangular tube installed between pool and M1 hot cell. Allowable load capacity is 1 ton of the bucket elevator and its size is 25 X 25 X 150 cm. Bucket is driven by chain system which is moved up and down through the guide rail. Guide rail is installed in rectangular tube that is tilted about 63 degree. Chain which is moved by using the roller sliding method is driven by sprocket wheel being rotated by the shaft and the shaft is driven by gear reducing motor. In this report operation and maintenance techniques of 1 ton bucket elevator in IMEF are described in detail. (Author). 8 refs., 14 tabs., 6 figs.

  15. Nouvelles Techniques d'Intervention sur la Corrosion des Armatures du Béton Armé

    CERN Document Server

    Colloca, C

    1999-01-01

    Les principaux dégâts constatés dans les armatures passives du béton armé sont la corrosion généralisée et la corrosion locale. Ces dégradations sont provoquées soit par la carbonatation du béton soit par le contact avec l'eau pure ou l'eau chargée de chlorures pénétrant dans les pores et dans les fissures de surface. Ce document présente de nouvelles techniques d'intervention, fondées sur d'anciens principes, introduites pour le traitement électrochimique des zones altérées liées aux différentes conditions. La réalcalinisation (dans le cas de béton carbonaté) permet d'augmenter le pH du béton et de rétablir un niveau de basicité garantissant la passivation de l'armature. La désalification (dans le cas de béton entamé par les chlorures) provoque l'élimination des ions chlorure à travers la surface du béton. Les avantages de ces traitements, par rapport aux anciennes techniques, sont appréciables si l'on considère la durée d'exécution et leur coût moins élevé.

  16. Harvesting of short rotation coppice. Harvesting trials with a cut and storage system in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Schweier, J.; Becker, G.

    2012-11-01

    Short rotation coppice (SRC) harvesting techniques are available in Germany, but broad experience and knowledge about machine performance and the related effective costs of harvesting operations are still missing. This information is crucial, as harvesting costs strongly influence the economic performance of the overall supply chain. Therefore, it was the aim of this study to collect and analyze productivity data of different harvesting systems for SRC. The combined cut and chip system on the one hand and the cut and storage system on the other hand were studied by literature review. Several studies analyze the combined cut and chip systems and the reported machine productivities showed great variations. The average was 30 green tons per scheduled machine hour (gt smh{sup -1}). Few studies are analysing the cut and storage system. They report that machines still are under development and that further research is needed. Therefore, time studies of harvesting operations using the cut and storage system were carried out. Five trials were performed with the harvesting machine 'Stemster MK III' developed by Nordic Biomass. The share of productive working time was 85% and the average productivity was 21 gt smh{sup -1}. These results were compared with values from the literature. Resulting harvesting costs were calculated per oven dry ton (Euro odt{sup -1}). The advantages and disadvantages of both harvesting systems are highlighted. (orig.)

  17. Drying of carrot slices in a triple pass solar dryer

    Directory of Open Access Journals (Sweden)

    Seshachalam Kesavan

    2017-01-01

    Full Text Available An indirect triple pass forced convection solar dryer was developed and its performance was evaluated for drying of carrot slices. The drying experiments were carried out under the meteorological conditions of Coimbatore city in India during the year 2016. The experimental set-up consists of a blower, triple pass packed bed air collector (using sand with wire mesh absorber plate, and a drying chamber. The air mass flow rate was optimized to 0.062 kg/s. The initial moisture content of the carrot slices was reduced from 87.5% (on wet basis to the final moisture content of 10% (wet basis in 6 h duration. The thin layer drying characteristics were analyzed using twelve mathematical models available in open literature. The results showed that the pick-up efficiency of the dryer was varied in the range between 14 and 43% with an average air collector thermal efficiency of 44% during the experimentation. The drying characteristics of carrot slices was predicted with good degree of accuracy using Wang and Singh drying model.

  18. Implications of drying temperature and humidity on the drying kinetics of seaweed

    Science.gov (United States)

    Ali, Majid Khan Majahar; Fudholi, Ahmad; Muthuvalu, M. S.; Sulaiman, Jumat; Yasir, Suhaimi Md

    2017-11-01

    A Low Temperature and Humidity Chamber Test tested in the Solar Energy Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia. Experiments are attempted to study the effect of drying air temperature and humidity on the drying kinetics of seaweed Kappaphycus species Striatum besides to develop a model to estimate the drying curves. Simple method using a excel software is used in the analysis of raw data obtained from the drying experiment. The values of the parameters a, n and the constant k for the models are determined using a plot of curve drying models. Three different drying models are compared with experiment data seaweed drying at 30, 40, 50 and 60°C and relative humidity 20, 30 and 40% for seaweed. The higher drying temperatures and low relative humidity effects the moisture content that will be rapidly reduced. The most suitable model is selected to best describe the drying behavior of seaweed. The values of the coefficient of determination (R2), mean bias error (MBE) and root mean square error (RMSE) are used to determine the goodness or the quality of the fit. The Page model is showed a better fit to drying seaweed. The results from this study crucial for solar dryer development on pilot scale in Malaysia.

  19. Secagem de café cereja descascado por ar quente e microondas Drying pulped coffee cherry beans by means of hot air ond microwaves

    Directory of Open Access Journals (Sweden)

    M.L. Cunha

    2003-12-01

    Full Text Available Este trabalho objetivou estudar a viabilidade de produzir café cereja descascado seco pela aplicação de microondas para assistir a secagem convencional a ar quente, a fim de reduzir o tempo de processo, com o aumento do rendimento industrial e da qualidade do produto perante os métodos tradicionais de secagem. Dois ciclos de secagem foram testados: a processo em secador rotativo convencional a ar quente, com umidade do produto reduzida de 45-50 a 11-13% b.u.; b processo subdividido em uma primeira etapa de pré-secagem convencional a ar quente de 45-50 a 30% b.u., seguida de etapa de secagem final por ar quente e microondas, com redução de 30 a 11-13% b.u. de umidade do produto. O tempo global do primeiro para o segundo ciclo de secagem foi reduzido de 15 a 37,5 para pouco mais de 10 horas, respectivamente. A qualidade sensorial do produto foi avaliada pela "prova da xícara", complementada por análises de microscopia eletrônica de varredura (MEV, com resultados satisfatórios. Um estudo preliminar dos aspectos econômicos envolvidos na ampliação de escala para uma linha industrial de processamento de café com a inclusão de um sistema a microondas foi também delineado.This research concerns a process development study focussing the application of microwaves to pulped coffee cherries production, in order to reduce the drying time and increase the industrial yield and product quality when compared to conventional drying processes. Two drying cycles were tested: a a hot air drying process using a conventional batch rotary dryer from 45-50 to 11-13% w.b. product moisture; b a two stage process, whereby the product was pre dried with hot air from 45-50 to 30% w.b., followed by a final microwave and hot air drying stage, to reduce product moisture from 30 to 11-13% w.b. The overall drying time was reduced from 15 to 37.5 hours to about 10 hours, respectively. The sensory quality of the product was evaluated by the "cup test", complemented

  20. Determination of carbon-reduction-cycle intermediates in leaves of Arbutus unedo L. suffering depressions in photosynthesis after application of abscisic acid or exposure to dry air.

    Science.gov (United States)

    Loske, D; Raschke, K

    1988-02-01

    Gas exchange and contents of photosynthetic intermediates of leaves of Arbutus unedo L. were determined with the aim of recognizing the mechanisms of inhibition that were responsible for the "midday depression" of photosynthesis following exposure to dry air, and the decline in photosynthetic capacity following application of abscisic acid (ABA). Rapidly killed (<0.1 s) leaf samples were taken when gas analysis showed reduced CO2 assimilation. Determination of the contents of 3-phosphoglyceric acid (PGA), ribulose 1,5-bisphosphate (RuBP), triose phosphates, fructose 1,6-bisphosphate and hexose phosphates in the samples showed that significant variation occurred only in the level of PGA. As a result, the ratio PGA/RuBP decreased with increasing inhibition of photosynthesis, particularly when application of ABA had been the cause. A comparison of metabolite patterns did not bring out qualitative differences that would have indicated that effects of ABA and of dry air had been caused by separate mechanisms. Depression of photosynthesis occurred in the presence of sufficient RuBP which indicated that the carboxylation reaction of the carbon-reduction-cycle was inhibited after application of ABA or exposure to dry air.

  1. Short term respiratory health effects of ambient air pollution: results of the APHEA project in Paris.

    OpenAIRE

    Dab, W; Medina, S; Quénel, P; Le Moullec, Y; Le Tertre, A; Thelot, B; Monteil, C; Lameloise, P; Pirard, P; Momas, I; Ferry, R; Festy, B

    1996-01-01

    STUDY OBJECTIVE: To quantify the short term respiratory health effects of ambient air pollution in the Paris area. DESIGN: Time series analysis of daily pollution levels using Poisson regression. SETTING: Paris, 1987-92. MEASUREMENTS AND MAIN RESULTS: Air pollution was monitored by measurement of black smoke (BS) (15 monitoring stations), sulphur dioxide (SO2), nitrogen dioxide (NO2), particulate matter less than 13 microns in diameter (PM13), and ozone (O3) (4 stations). Daily mortality and ...

  2. Environmental Assessment for the Construction of a Three-Bay Multi-Aircraft Hangar Tinker Air Force Base, Oklahoma

    Science.gov (United States)

    2008-01-01

    Years 2005 through 2009: VOCE = .016 * Trips NOxE = .015 * Trips PM10E = .0022 * Trips COE = .262 * Trips Appendix A: Air Quality January 2008...Final EA for the Construction of a Three-Bay Multi-Aircraft Hangar Page A-9 Tinker Air Force Base, Oklahoma Years 2010 and beyond: VOCE = .012...Trips NOxE = .013 * Trips PM10E = .0022 * Trips COE = .262 * Trips To convert from pounds per day to tons per year: VOC (tons/year) = VOCE

  3. [Investigation on Spray Drying Technology of Auricularia auricular Extract].

    Science.gov (United States)

    Zhou, Rong; Chen, Hui; Xie, Yuan; Chen, Peng; Wang, Luo-lin

    2015-07-01

    To investigate the feasibility of spray drying technology of Auricularia auricular extract and its optimum process. On the basis of single factor test, with the yield of dry extract and the content of polysaccharide as indexes, orthogonal test method was used to optimize the spray drying technology on the inlet air temperature, injection speed and crude drug content. Using ultraviolet spectrophotometry, thin layer chromatography(TLC) and pharmacodynamics as indicators, extracts prepared by traditional alcohol precipitation drying process and spray drying process were compared. Compared with the traditional preparation method, the extract prepared by spray drying had little differences from the polysaccharide content, TLC and the function of reducing TG and TC, and its optimum technology condition were as follows: The inlet air temperature was 180 °C, injection speed was 10 ml/min and crude drugs content was 0. 4 g/mL. Auricularia auricular extract by spray drying technology is stable and feasible with high economic benefit.

  4. Etude comparative de la cinétique de la réaction d’hydratation des bétons autoplaçants et des bétons vibrés

    Directory of Open Access Journals (Sweden)

    Ahmed Gargouri

    2014-04-01

    En effet, la nature exothermique de la réaction chimique du ciment peut induire des déformations de dilatation et de contraction. Par ailleurs, la dépression capillaire crée par la consommation d’eau due à l’hydratation du ciment entraine un retrait de dessiccation. Ces déformations peuvent entrainer des micros fissurations pouvant affecter la durabilité de l’ouvrage à long terme surtout pour les ouvrages épais. D’où l’importance d’étudier la cinétique d’hydratation de ses bétons non conventionnels et de les comparer à celle des bétons vibrés traditionnels. L’évolution de la température adiabatique ainsi que la variation en fonction du temps du degré d’hydratation sont déterminées pour le béton autoplaçant et le béton vibré. L’analyse des résultats expérimentaux obtenus montre que le changement de composition modifie considérablement la cinétique de la réaction d’hydratation.

  5. A full size test rig of dry and dry-wet towers

    International Nuclear Information System (INIS)

    Fesson, J.-P.

    1981-01-01

    In order to test the various systems submitted by French companies, with a view to their application to the 900 MW and 1300 MW nuclear units, the tower is divided into two parts, each permitting the evacuation of an identical thermal charge. The first part includes a cross-current wet zone in which the water flows vertically and the air horizontally, connected to a set of vertical dry batteries. The second part includes bands of packing along the counter-current system, alternating with horizontal dry exchangers [fr

  6. Modelling the Drying Characteristics and Kinetics of Hot Air-Drying of Unblanched Whole Red Pepper and Blanched Bitter Leaf Slices

    OpenAIRE

    Samuel Enahoro Agarry

    2017-01-01

    The objective of this study was to investigate the drying characteristics and kinetics of red pepper and bitter leaf under the influence of different drying temperatures. The drying experiments were carried out at dry bulb temperature of 35, 45, 55 and 75oC, respectively in an oven dryer. The results showed that as drying temperature increased, drying rate also increased and the drying time decreased. It was observed that un-sliced red pepper and sliced bitter leaf would dry within 2.5-12 h a...

  7. Drying process strongly affects probiotics viability and functionalities.

    Science.gov (United States)

    Iaconelli, Cyril; Lemetais, Guillaume; Kechaou, Noura; Chain, Florian; Bermúdez-Humarán, Luis G; Langella, Philippe; Gervais, Patrick; Beney, Laurent

    2015-11-20

    Probiotic formulations are widely used and are proposed to have a variety of beneficial effects, depending on the probiotic strains present in the product. The impact of drying processes on the viability of probiotics is well documented. However, the impact of these processes on probiotics functionality remains unclear. In this work, we investigated variations in seven different bacterial markers after various desiccation processes. Markers were composed of four different viability evaluation (combining two growth abilities and two cytometric measurements) and in three in vitro functionalities: stimulation of IL-10 and IL-12 production by PBMCs (immunomodulation) and bacterial adhesion to hexadecane. We measured the impact of three drying processes (air-drying, freeze-drying and spray-drying), without the use of protective agents, on three types of probiotic bacteria: Bifidobacterium bifidum, Lactobacillus plantarum and Lactobacillus zeae. Our results show that the bacteria respond differently to the three different drying processes, in terms of viability and functionality. Drying methods produce important variations in bacterial immunomodulation and hydrophobicity, which are correlated. We also show that adherence can be stimulated (air-drying) or inhibited (spray-drying) by drying processes. Results of a multivariate analysis show no direct correlation between bacterial survival and functionality, but do show a correlation between probiotic responses to desiccation-rewetting and the process used to dry the bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Energy cost of seed drying

    Directory of Open Access Journals (Sweden)

    Weerachet Jittanit

    2017-11-01

    Full Text Available In this work, the energy costs of drying corn, rice and wheat seeds between 3 drying options were compared. They consisted of 1 two-stage drying by using fluidised bed dryer (FBD in the 1st stage and in-store dryer (ISD in the 2nd stage, 2 single-stage drying by fixed bed dryer (FXD and 3 two-stage drying by using FXD in the 1st  stage and ISD in the 2nd  stage. The drying conditions selected for comparison were proved to be safe for seed viability by the previous studies. The results showed that the drying options 2 and 3 consumed less energy than option 1. However, the benefits from lower energy cost must be weighed against some advantages of using FBD. Furthermore, it appeared that running the burners of FXD and ISD for warming up the ambient air during humid weather condition could shorten drying time significantly with a little higher energy cost.

  9. The determination of optimum condition in water hyacinth drying process by mixed adsorption drying method and modified fly ash as an adsorbent

    Science.gov (United States)

    Saputra, Asep Handaya; Putri, Rizky Anggreini

    2017-05-01

    Water hyacinth is an aquatic weed that has a very fast growth which makes it becomes a problem to the ecosystem. On the other hand, water hyacinth has a high fiber content (up to 20% by weight) which makes it potential to become raw material for composites and textile industries. As an aquatic plant, water hyacinth has a high initial moisture content that reaches more than 90%. Meanwhile the moisture content of fiber as a raw material for composite and textile industry should not be more than 10% to maintain the good quality of the products. Mixed adsorption drying method is one of the innovative method that can replace conventional drying process. Fluidization method which has been commonly used in agricultural and pharmaceutical products drying, can be enhanced by combining it with the adsorption method as performed in this study. In mixed fluidization-adsorption drying method, fly ash as adsorbent and water hyacinth fiber were put together into the fluidization column where the drying air evaporate the moisture content in water hyacinth fiber. In addition, the adsorbent adsorb the moisture content in the drying air to make the moisture content of the drying air remain low. The drying process is performed in various temperature and composition of water hyacinth and adsorbent in order to obtain the optimum drying condition. In addition, the effect of fly ash pellet and fly ash powder to the drying process was also performed. The result shows that the higher temperature and the more amount of adsorbent results in the faster drying rate. Fly ash pellet shows a better adsorption since it has a smaller pore diameter and wider surface area. The optimum temperature obtained from this study is 60°C and the optimum ratio of water hyacinth and fly ash is 50:50.

  10. Effects of drying conditions on the physicochemical and functional ...

    African Journals Online (AJOL)

    This study aimed to investigate ate the effect of drying conditions (freeze dryingng and hot-air oven drying at 40 and 60°C) onon the physicochemical and functional proper perties of red and yellow-fleshed watermelon rind rind flour. In comparison among the drying proceocesses used in this study, freeze drying method re ...

  11. How to select the best tree planting locations to enhance air pollution removal in the MillionTreesNYC initiative

    International Nuclear Information System (INIS)

    Morani, Arianna; Nowak, David J.; Hirabayashi, Satoshi; Calfapietra, Carlo

    2011-01-01

    Highest priority zones for tree planting within New York City were selected by using a planting priority index developed combining three main indicators: pollution concentration, population density and low canopy cover. This new tree population was projected through time to estimate potential air quality and carbon benefits. Those trees will likely remove more than 10 000 tons of air pollutants and a maximum of 1500 tons of carbon over the next 100 years given a 4% annual mortality rate. Cumulative carbon storage will be reduced through time as carbon loss through tree mortality outweighs carbon accumulation through tree growth. Model projections are strongly affected by mortality rate whose uncertainties limit estimations accuracy. Increasing mortality rate from 4 to 8% per year produce a significant decrease in the total pollution removal over a 100 year period from 11 000 tons to 3000 tons. - Highlights: → The manuscript is part of the IUFRO Special section 'Adaptation of Forest Ecosystems to Air Pollution and Climate Change' (Elena Paoletti and Yusuf Serengil Eds.) approved by William J. Manning. → It has been already peer-reviewed and accepted outside EES. → The reference number of this manuscript is IUFRO49. - Carbon and air pollutant uptake by urban forests are highly influenced by mortality rates.

  12. How to select the best tree planting locations to enhance air pollution removal in the MillionTreesNYC initiative

    Energy Technology Data Exchange (ETDEWEB)

    Morani, Arianna [Institute of Agro-Environmental and Forest Biology (IBAF), National Research Council (CNR) Via Salaria km 29300, 00015 Monterotondo Scalo, Roma (Italy); Nowak, David J.; Hirabayashi, Satoshi [USDA Forest Service, Northern Research Station, 5 Moon Library, SUNY-ESF, Syracuse, NY 13210 (United States); Calfapietra, Carlo, E-mail: carlo.calfapietra@ibaf.cnr.it [Institute of Agro-Environmental and Forest Biology (IBAF), National Research Council (CNR) Via Salaria km 29300, 00015 Monterotondo Scalo, Roma (Italy)

    2011-05-15

    Highest priority zones for tree planting within New York City were selected by using a planting priority index developed combining three main indicators: pollution concentration, population density and low canopy cover. This new tree population was projected through time to estimate potential air quality and carbon benefits. Those trees will likely remove more than 10 000 tons of air pollutants and a maximum of 1500 tons of carbon over the next 100 years given a 4% annual mortality rate. Cumulative carbon storage will be reduced through time as carbon loss through tree mortality outweighs carbon accumulation through tree growth. Model projections are strongly affected by mortality rate whose uncertainties limit estimations accuracy. Increasing mortality rate from 4 to 8% per year produce a significant decrease in the total pollution removal over a 100 year period from 11 000 tons to 3000 tons. - Highlights: > The manuscript is part of the IUFRO Special section 'Adaptation of Forest Ecosystems to Air Pollution and Climate Change' (Elena Paoletti and Yusuf Serengil Eds.) approved by William J. Manning. > It has been already peer-reviewed and accepted outside EES. > The reference number of this manuscript is IUFRO49. - Carbon and air pollutant uptake by urban forests are highly influenced by mortality rates.

  13. Dry well cooling device

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki.

    1997-01-01

    A plurality of blowing ports with introduction units are disposed to a plurality of ducts in a dry well, and a cooling unit comprising a cooler, a blower and an isolating valve is disposed outside of the dry well. Cooling air and the atmosphere in the dry well are mixed to form a cooling gas and blown into the dry well to control the temperature. Since the cooling unit is disposed outside of the dry well, the maintenance of the cooling unit can be performed even during the plant operation. In addition, since dampers opened/closed depending on the temperature of the atmosphere are disposed to the introduction units for controlling the temperature of the cooling gas, the temperature of the atmosphere in the dry well can be set to a predetermined level rapidly. Since an axial flow blower is used as the blower of the cooling unit, it can be contained in a ventilation cylinder. Then, the atmosphere in the dry well flowing in the ventilation cylinder can be prevented from leaking to the outside. (N.H.)

  14. Drying kinetics characteristic of Indonesia lignite coal (IBC) using lab scale fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, TaeJin; Jeon, DoMan; Namkung, Hueon; Jang, DongHa; Jeon, Youngshin; Kim, Hyungtaek [Ajou Univ., Suwon (Korea, Republic of). Div. of Energy Systems Research

    2013-07-01

    Recent instability of energy market arouse a lot of interest about coal which has a tremendous amount of proven coal reserves worldwide. South Korea hold the second rank by importing 80 million tons of coal in 2007 following by Japan. Among various coals, there is disused coal. It's called Low Rank Coal (LRC). Drying process has to be preceded before being utilized as power plant. In this study, drying kinetics of LRC is induced by using a fixed bed reactor. The drying kinetics was deduced from particle size, the inlet gas temperature, the drying time, the gas velocity, and the L/D ratio. The consideration on Reynold's number was taken for correction of gas velocity, particle size, and the L/D ratio was taken for correction packing height of coal. It can be found that active drying of free water and phase boundary reaction is suitable mechanism through the fixed bed reactor experiments.

  15. Technical and economical feasibility study of a sewage sludge disinfection plants by irradiation process

    International Nuclear Information System (INIS)

    Rojas Bustos, Gustavo

    1999-01-01

    This report presents a technical and economical evaluation for a disinfection plant of sewage sludge based on irradiation. The process starts after sludge stabilization which is achieved by anaerobic digestion. It includes two stages, plus an optional: the first corresponds to dewatering of sewage sludge up to a solids content between 20 and 25 %, the second stage corresponds to disinfection by gamma or electron beam irradiation, and the third, which is optional, corresponds to the drying of sewage sludge up to a water content of 50%, which allows to diminish significantly the volumes of solids to be transported. If this stage is not accomplished the final product corresponds to a sewage sludge with 25 % of dry solids, which can also be disposed in agricultural land. Process was designed to treat 60 tons per day of sewage sludge (dry matter basis). The report presents the design of process equipment, principal and auxiliary, the investment and operational cost estimations as well as the total cost of treatment per ton of sewage sludge. A sensitivity analysis is also included to determine the influence of operational process parameters in operational and investment costs. The results showed that a sewage sludge plant including dewatering and disinfection process through gamma irradiation, achieves a capital investment of about US$ 12.000.000 with a treatment cost per ton of dry sludge of US$140. Including the optional air-drying stage, the total cost of treatment is about US$148 per ton of dry matter. In the case of electron beam irradiation the capital investment achieves a value of US$ 11 millions with a total treatment cost of US$ 136 per ton of dry matter. These values resulted quite similar to the cost of alternative treatment, i.e., disposal in a dedicated landfill. (L.V.)

  16. Semiportable load-cell-based weighing system prototype of 18.14-metric-ton (20-ton) capacity for UF6 cylinder weight verifications: description and testing procedure

    International Nuclear Information System (INIS)

    McAuley, W.A.

    1984-01-01

    The 18.14-metric-ton-capacity (20-ton) Load-Cell-Based Weighing System (LCBWS) prototype tested at the Oak Ridge (Tennessee) Gaseous Diffusion Plant March 20-30, 1984, is semiportable and has the potential for being highly accurate. Designed by Brookhaven National Laboratory, it can be moved to cylinders for weighing as opposed to the widely used operating philosophy of most enrichment facilities of moving cylinders to stationary accountability scales. Composed mainly of commercially available, off-the-shelf hardware, the system's principal elements are two load cells that sense the weight (i.e., force) of a uranium hexafluoride (UF 6 ) cylinder suspended from the LCBWS while the cylinder is in the process of being weighed. Portability is achieved by its attachment to a double-hook, overhead-bridge crane. The LCBWS prototype is designed to weigh 9.07- and 12.70-metric ton (10- and 14-ton) UF 6 cylinders. A detailed description of the LCBWS is given, design information and criteria are supplied, a testing procedure is outlined, and initial test results are reported. A major objective of the testing is to determine the reliability and accuracy of the system. Other testing objectives include the identification of (1) potential areas for system improvements and (2) procedural modifications that will reflect an improved and more efficient system. The testing procedure described includes, but is not limited to, methods that account for temperature sensitivity of the instrumentation, the local variation in the acceleration due to gravity, and buoyance effects. Operational and safety considerations are noted. A preliminary evaluation of the March test data indicates that the LCBWS prototype has the potential to have an accuracy in the vicinity of 1 kg

  17. Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae)

    International Nuclear Information System (INIS)

    Aghbashlo, Mortaza; Kianmehr, Mohammad H.; Samimi-Akhijahani, Hadi

    2008-01-01

    Berberis is known as a medicinal and ornamental plant in the world. Berberis fruit is used in medicine to cure liver, neck and stomach cancer, blood purification and mouth scent. Dried berberis fruit using new technology was preserved for relatively long time. Thin-layer drying simulation was used to obtain experiment data, using laboratory scale hot-air dryer of the static tray. Fick's second law was used as a major equation to calculate the moisture diffusivity with some simplification. The calculated value of moisture diffusivity varied from a minimum of 3.320 x 10 -10 to a maximum of 9 x 10 -9 m 2 /s and the value of energy activation from a minimum of 110.837 to a maximum of 130.61 kJ/mol of from 50 deg. C to 70 deg. C with drying air velocities of 0.5-2 m/s. The high value of the energy of activation for berberis fruit probably related to the tissue of berberis fruit and high moisture content (about 74.28%w.b), and intensive changes in D eff values for a different air temperature at constant air velocity. The input energy values and specific energy requirement for thin-drying of berberis fruit were found to be in the range of 0.643348-35.20032 (kWh) and 20.9355-1110.0700 (kWh/kg) from 50 deg. C to 70 deg. C with drying air velocities of 0.5-2 m/s, respectively

  18. Drying characteristics of osmotically pretreated cranberries : Energy and quality aspects

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, S.; Marcotte, M. [Agriculture and Agri-Food Canada, St. Hyacinthe, PQ (Canada). Food Research and Development Centre; Poirier, M.; Kudra, T. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Technology Centre

    2002-06-01

    This paper presents the results of a study in which osmotically pretreated cranberries were dried. The osmotic treatment included dehydration and sugar infusion. The process involved pretreating halved cranberries in a standard osmotic solution followed by freeze-drying, vacuum-drying and air-drying in various dryers, such as cabinet-air-through, fluid bed, pulsed fluid bed, and vibrated fluid bed dryers. The intent was to identify the best drying technology. The comparison criteria selected were energy consumption and product quality. Product quality for freeze-dried berries was quantified based on anthocyanins content, rehydration ratio, color, and taste. Unit heat consumption could be used for selecting the drying method, as all other drying methods yielded similar but slightly lower quality products. The highest energy efficiency was obtained with the vibrated fluid bed and the pulsed fluid bed. It was noted that drying rates were reduced during the second drying period when sugar was infused into the cranberries during osmotic pretreatment, but the total energy consumption was reduced by osmotic dehydration. 22 refs., 1 tab., 5 figs.

  19. Design of Solar Heat Sheet for Air Heaters

    Science.gov (United States)

    Priya, S. Shanmuga; Premalatha, M.; Thirunavukkarasu, I.

    2011-12-01

    The technique of harnessing solar energy for drying offers significant potential to dry agricultural products such as food grains, fruits, vegetables and medicinal plants, thereby eliminating many of the problems experienced with open-sun drying and industrial drying, besides saving huge quantities of fossil fuels. A great deal of experimental work over the last few decades has already demonstrated that agricultural products can be satisfactorily dehydrated using solar energy. Various designs of small scale solar dryers have been developed in the recent past, mainly for drying agricultural products. Major problems experienced with solar dryers are their non-reliability as their operation largely depends on local weather conditions. While back-up heaters and hybrid dryers partly solved this issue, difficulties in controlling the drying air temperature and flow rate remains a problem, and affects the quality of the dried product. This study is aimed at eliminating the fluctuations in the quality of hot air supplied by simple solar air heaters used for drying fruits, vegetables and other applications. It is an attempt to analyse the applicability of the combination of an glazed transpired solar collector (tank), thermal storage and a intake fan(suction fan) to achieve a steady supply of air at a different atmospheric temperature and flow rate for drying fruits and vegetables. Development of an efficient, low-cost and reliable air heating system for drying applications is done.

  20. Effect of wetting properties on the kinetics of drying of porous media

    International Nuclear Information System (INIS)

    Shahidzadeh-Bonn, N; Azouni, A; Coussot, P

    2007-01-01

    The influence of the wetting properties of a model porous medium on the evaporation rate of water contained in the sample is studied experimentally. For a hydrophilic porous medium, drying is mainly controlled by the liquid film covering the solid grains and capillary rise inside the pores, leading to a constant drying rate and a homogeneous desaturation of the whole sample in time. For a hydrophobic porous medium, a drying front penetrates into the sample in the early stages of evaporation and the drying rate is found to strongly depend on the boundary conditions and wetting heterogeneities. In the presence of an air flow along the free surface of the sample, the drying rate varies as the square root of time, indicating a diffusive transport mechanism. Without air flow, a power law behaviour for the drying rate as a function of time is observed with an exponent of 0.75 ± 0.03. This is likely to be due to competition between diffusion through the vapour phase and local capillary rise of the liquid due to wetting heterogeneities. A surprising consequence is that for the late stages of drying, the total evaporated mass may become larger without air flow than with air flow. (fast track communication)

  1. Effect of solar radiation on drying house performance

    International Nuclear Information System (INIS)

    Rachmat, R.

    2000-01-01

    Solar drying is one of thermal utilization where radiation energy can be utilized efficiently. Solar drying of all sorts of agricultural products have been thoroughly studied and reported in literature, but brown rice drying system has not yet done as many as other products. The aim of the present study is to investigate the effect of solar radiation on drying house performance and brown rice drying characteristics. A construction of drying house is made from FRP sheets with 30 deg. of root slope faces southern part and inside the drying house is installed a flat bed dryer. The site of construction has 136 deg. 31.4'E in longitude and 34 deg. 43.8N in latitude with 3 m in elevation from sea level. The investigated parameters are global solar radiation, absorbed and net radiation and brown rice drying characteristics. The results showed that in unload condition, the air temperature inside drying house was higher (10 deg. C - 12 deg. C) than ambient air when there was not collector and temperature rise become higher (16 deg. C) when there was a black FRP collector inside drying house. The effect of solar radiation on temperature rise has the trend as a linear function. The heat collection efficiency of drying house with black FRP collector was two times higher (36.9 percent) than that without collector (16.3 percent). These phenomena exhibited significant result of collector utilization to the advantageous condition for a drying purpose [in

  2. Achieving better energy-efficient air conditioning – A review of technologies and strategies

    International Nuclear Information System (INIS)

    Chua, K.J.; Chou, S.K.; Yang, W.M.; Yan, J.

    2013-01-01

    Air conditioning is essential for maintaining thermal comfort in indoor environments, particularly for hot and humid climates. Today, air conditioning, comprising cooling and dehumidification, has become a necessity in commercial and residential buildings and industrial processes. It accounts for a major share of the energy consumption of a building or facility. In tropical climates, the energy consumed by heating, ventilation and air-conditioning (HVAC) can exceed 50% of the total energy consumption of a building. This significant figure is primarily due to the heavy duty placed on cooling technologies to remove both sensible and latent heat loads. Therefore, there is tremendous potential to improve the overall efficiency of the air-conditioning systems in buildings. Based on today’s practical technology for cooling, the major components of a chiller plant are (1) compressors, (2) cooling towers, (3) pumps (chilled and cooling water) and (4) fans in air handling units. They all consume mainly electricity to operate. When specifying the kW/R ton of a plant, there are two levels of monitoring cooling efficiency: (1) at the efficiency of the chiller machines or the compressors which consume a major amount of electricity; and (2) at the overall efficiency of cooling plants which include the cooling towers, pumps for moving coolant (chilled and cooling water) to all air-handling units. Pragmatically, a holistic approach is necessary towards achieving a low energy input per cooling achieved such as 0.6 kW/R ton cooling or lower by considering all aspects of the cooling plant. In this paper, we present a review of recent innovative cooling technology and strategies that could potentially lower the kW/R ton of cooling systems – from the existing mean of 0.9 kW/R ton towards 0.6 kW/R ton or lower. The paper, broadly divided into three key sections (see Fig. 2), begins with a review of the recent novel devices that enhances the energy efficiency of cooling systems at

  3. An experimental study on the application of polyalcohol solid-solid phase change materials in solar drying with cross-corrugated solar air collectors

    Science.gov (United States)

    Gao, W. F.; Lin, W. X.; Liu, T.; Li, M.

    2017-11-01

    In this paper, two identical solar driers with the same cross-corrugated solar air collectors and drying chamber were developed, one with phase-change materials (PCMs) and the other without PCMs. These two solar drying systems were tested in typical sunny and cloudy days in Kunming and their thermal performances were analyzed. The experimental results show that the temperature changing is smoother in the collector with the PCMs, which is beneficial for the drying as the useful drying time was prolonged. The same trend was also found in the chamber with the PCMs. The PCMs in solar drying system was found to play a role in temperature regulating. There were several cycles of heat charging-discharging in a cloudy testing day while the temperatures on collectors and in chambers with the polyalcohol PCMs is higher than each phase-change temperature. Nevertheless, there was only one cycle of heat charging-discharging in a sunny testing day. The collector with PCMs has higher daily useful heat gain than the collector without PCMs.

  4. Comportement du béton à l'eau de mer. Synthèse bibliographique Concrete Behavior in Marine Environment. a Review Paper

    Directory of Open Access Journals (Sweden)

    Lesage J.

    2006-11-01

    Full Text Available Depuis quelques années, dans l'élaboration de structures destinées à l'exploration et à l'exploitation des hydrocarbures en mer, le choix se porte parfois sur les structures en béton plutôt que sur les structures en acier, en particulier dans les zones difficiles de la mer du Nord. C'est pourquoi il nous a semblé intéressant de faire le point des connaissances actuelles sur le comportement du béton à l'eau de mer. Les problèmes les plus importants se situent au niveau de la zone de marnage, c'est-à-dire la zone où le béton est alternativement immergé. Ils sont de tous ordres : contraintes mécaniques avec érosion et cavitation, action capillaire de l'eau avec alternance d'humidification et de séchage, action du gel et du dégel. Les moyens de lutte ne manquent pas : constructions massives, voire surdimensionnées, résistant au choc, choix des formes, mise en aeuvre soignée d'un béton de qualité riche en ciment, correctement dosé en agrégats, dur, dense, compact, imperméable; introduction dans le béton d'un entraineur d'air pour diminuer les effets du gel. L'utilisation d'un ciment prise mer et le choix d'un rapport eau/ciment voisin de 0,45 sont hautement recommandés. Quant à la corrosion, elle concerne les structures en béton à tous les niveaux, aussi bien dans la zone immergée en continu que dans la zone alternativement immergée. L'attaque du béton par les sulfates contenus dans l'eau de mer conduit à la formation de sels de Candlot qui provoquent une dégradation du béton. Le remède consiste à limiter la teneur en aluminate tricalcique du ciment. L'attaque des aciers de renfort par les chlorures a fait l'objet de nombreuses études: la solution consiste surtout à protéger les aciers par galvanisation ou protection cathodique. D'une manière générale, le béton placé dans ce milieu agressif que constitue l'eau de mer subit des contraintes mécaniques et physicochimiques importantes, mais on sait en g

  5. Small-angle neutron scattering investigation of polyurethane aged in dry and wet air

    Directory of Open Access Journals (Sweden)

    Q. Tian

    2014-05-01

    Full Text Available The microstructures of Estane 5703 aged at 70°C in dry and wet air have been studied by small-angle neutron scattering. The samples were swollen in deuterated toluene for enhancing the contrast. The scattering data show the characteristic domain structure of polyurethanes consisting of soft and hard segments. Debye-Anderson-Brumberger function used with hard sphere structure factor, and the Teubner-Strey model are used to analyze the two-phase domain structure of the polymer. The combined effects of temperature and humidity have a strong disruption effect on the microstructures of Estane. For the sample aged at 70°C in wet air for 1 month, the domain size, described by the correlation length, increases from 2.3 to 3.8 nm and their distance, expressed by hard-sphere interaction radius, increases from 8.4 to 10.6 nm. The structure development is attributed to degradation of polymer chains as revealed by gel permeation chromatography. The hydrolysis of ester links on polymer backbone at 70°C in the presence of water humidity is the main reason for the changes of the microstructure. These findings can contribute to developing predictive models for the safety, performance, and lifetime of polyurethanes.

  6. Severe symptoms of short tear break-up time dry eye are associated with accommodative microfluctuations

    Directory of Open Access Journals (Sweden)

    Kaido M

    2017-05-01

    Full Text Available Minako Kaido,1,2 Motoko Kawashima,1 Reiko Ishida,1,3 Kazuo Tsubota1 1Department of Ophthalmology, Keio University School of Medicine, Tokyo, 2Wada Eye Clinic, Chiba, 3Ishida Eye Clinic, Shizuoka, Japan Aim: Validating the hypothesis that accommodative microfluctuations (AMFs may be associated with severe symptoms in short tear break-up time (BUT dry eye (DE. Methods: This study included 12 subjects with short BUT DE (age: 49.6±18.3 years. Diagnoses were performed based on the presence of DE symptoms, BUT ≤5 s, Schirmer score >5 mm, and negative keratoconjunctival epithelial damage. Tear evaluation, AMF, and functional visual acuity (VA examinations were conducted before and after DE treatment. The AMF parameters evaluated were: total high-frequency component (HFC, HFC with low accommodation for the task of staring into the distance (HFC1, HFC with high accommodation for deskwork (HFC2. A subjective questionnaire of DE symptoms was also performed. Results: Mean BUT increased from 1.9±2.0 to 6.4±2.5 s after treatment (P<0.05. The mean logarithm of the minimum angle of resolution functional VA significantly improved (from 0.19±0.19 to 0.12±0.17; P<0.05. Mean power spectrum values for total HFC and HFC1 decreased (from 61.3±5.7 to 53.8±6.6 dB and from 62.9±10.5 to 52.4±6.2 dB, respectively; P<0.05, while the mean HFC2 power spectrum values did not differ before and after treatment (P>0.05. Subjective DE symptoms were reduced in nine patients. Conclusion: Along with the improvement of BUT after treatment, DE symptoms diminished and HFC1 and functional VA improved, suggesting that tear film instability is associated with deterioration of functional VA, AMF, and DE symptoms. Keywords: accommodative microfluctuation, ciliary muscle spasm, dry eye, ocular fatigue, tear break-up time, functional visual acuity 

  7. Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation

    NARCIS (Netherlands)

    Calfapietra, C.; Gielen, B.; Galema, A.N.J.; Lukac, M.; Angelis, de P.; Moscatelli, M.C.; Ceulemans, R.; Scarascia-Mugnozza, G.

    2003-01-01

    This paper investigates the possible contribution of Short Rotation Cultures (SRC) to carbon sequestration in both current and elevated atmospheric CO2 concentrations ([CO2]). A dense poplar plantation (1 x 1 m) was exposed to a [CO2] of 550 ppm in Central Italy using the free-air CO2 enrichment

  8. Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa.

    Science.gov (United States)

    Cursino, Luciana; Li, Yaxin; Zaini, Paulo A; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J

    2009-10-01

    A mutation in the Xylella fastidiosa tonB1 gene resulted in loss of twitching motility and in significantly less biofilm formation as compared with a wild type. The altered motility and biofilm phenotypes were restored by complementation with a functional copy of the gene. The mutation affected virulence as measured by Pierce's disease symptoms on grapevines. The role of TonB1 in twitching and biofilm formation appears to be independent of the characteristic iron-uptake function of this protein. This is the first report demonstrating a functional role for a tonB homolog in X. fastidiosa.

  9. New three-count technique for short-lived radon decay products in air

    International Nuclear Information System (INIS)

    Tian Deyuan; Lu Zhizhao

    1998-01-01

    Up to the present, radon and its short-lived decay products in air are usually monitored by means of a detection. But radon progeny, including RaB ( 214 Pb) and RaC ( 214 Bi) which are β and γ emitters, contribute about 90% to the equilibrium equivalent radon concentration (EECRn). Therefore, this paper introduces a new three-count technique by a β detector in the light of radioactive decay law and its boundary conditions during sampling and counting times to solve the Bateman equation. β (even low level β) instruments have been fairly popularized domestically and internationally. It can be used not only as an instrument for radon and its daughters in air, but also as a monitor for β airborne activity in the environment. This new method taps further the latent power of the present instrument and realizes various uses for a unit. (author)

  10. HVAC--the importance of clean intake section and dry air filter in cold climate.

    Science.gov (United States)

    Hanssen, S O

    2004-01-01

    HVAC systems, if properly designed, installed, operated and maintained, will improve thermal conditions and air quality indoors. However, the success strongly depends on the design of the system and the quality of the components we use in our HVAC installations. Regrettably, several investigations have revealed that many HVAC installations have a lot of operational and maintenance problems, especially related to moisture, rain and snow entrainment. In short, it seems that too little attention is placed on the design of the intake section, despite the fact that there exists a large number of national and international guidelines and recommendations. This is a serious problem because the air intake is the initial component of the ventilation plant and as such the first line of defense against debris and other outdoor air pollutants. Unfortunately, the design is often an argued compromise between the architect, the civil engineer and the HVAC engineer. In the future, the technical, hygienic and microbiological feature of air intakes must be better ensured in order to avoid the air intake becoming a risk component as regards contamination and indoor air quality. Further, it seems that the magnitude of the problem is not well known, or recognized, by the building designers, engineers and professionals involved in the construction and operation of buildings. This fact needs to be addressed more seriously, because obviously there is a big difference between the idealistic architectonic design, engineering intentions and the real life situation. Several practical recommendations for design and operation of HVAC systems are presented. Following the recommendations will result in less pollution from the HVAC-system and increased indoor environmental quality.

  11. Physical quality of grains subjected to moistening and drying processes for marketing

    Directory of Open Access Journals (Sweden)

    Paulo C. Coradi

    Full Text Available ABSTRACT The aim was to evaluate the physical quality of conventional and transgenic corn grains, through drying and wetting processes for marketing. The experimental design was completely randomized in a factorial scheme (7 x 3 x 2, corresponding to seven drying times (0, 20, 40, 60, 80, 100 and 120 min, three temperatures of the drying air (80, 100 and 120 °C and two hybrids of corn (conventional AG 1051 and transgenic Herculex@ 30S31H. Grain drying was held in convection oven with forced air ventilation while the wetting was done in a B.O.D chamber. The water movement in the grain, the volume and the electrical conductivity were evaluated periodically. The results showed that the transgenic corn grain reduced the negative effects of drying and moistening on the physical quality. The increase in drying air temperature accelerated the physical deterioration of conventional and transgenic corn grains. The increase in water content by the moistening process caused losses in grain physical quality, similar to the drying process, for both the conventional and transgenic corn grains.

  12. Determination of pistachio drying behaviour and conditions in a solar drying system

    Energy Technology Data Exchange (ETDEWEB)

    Midilli, Adnan [Karadeniz Technical Univ., Mechanical Engineering Dept., Trabzon (Turkey)

    2001-07-01

    The main object of this study is to determine the drying behaviour and conditions of shelled and unshelled pistachio samples using both solar assisted and open sun drying. For each drying experiment, 100 g each of unshelled and shelled pistachio were used. The least-squares method was applied to find the drying curve equation of pistachio. During the experiments, shelf temperatures, weight loss of pistachio, moisture content of air, and distribution of solar radiation were measured; and presented depending on the drying time. Also, the mass shrinkage ratios of shelled and unshelled pistachio samples were determined, and the experimental uncertainty ratio was calculated as 15-16.5 per cent based on the experimental results. It was deduced that the shelled and unshelled pistachio samples in the solar assisted forced convection dryer were perfectly dried at temperatures of 50{+-}10degC in the time period of 6 h. Whereas, the samples in the open sun drying were not sufficiently dried at temperatures of 28{+-}4degC in the same time period. Hence, it is suggested that the pistachio samples with approximately 29.0 per cent of moisture are dried in the solar assisted convection dryer at 50{+-}10degC of temperature in the time period of approximately 6 h in order to protect from the negative climatic and environmental effects. However, it is not desirable to dry the pistachio samples in the open sun because of greater drying time, dirt, dust and harmful insects. (Author)

  13. PAHs in corn grains submitted to drying with firewood.

    Science.gov (United States)

    de Lima, Rafael Friedrich; Dionello, Rafael Gomes; Peralba, Maria do Carmo Ruaro; Barrionuevo, Simone; Radunz, Lauri Lourenço; Reichert Júnior, Francisco Wilson

    2017-01-15

    Grain drying using firewood as fuel for air heating, with direct fire, is still widely used in Brazil. The combustion of organic material, such as wood, can generate polycyclic aromatic hydrocarbons (PAHs) which are known to have carcinogenic potential. In the present work corn grain drying was carried out at three drying air temperatures: 60°C, 60/80°C and 80°C. Following the drying process, the presence and quantification of PAH in the corn grains was investigated. After extracting the PAHs of the matrix, the material was subjected to analysis by gas chromatography with mass detector. he results showed the presence of seven compounds: fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene and chrysene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Spent fuel behaviour during dry storage - a review

    International Nuclear Information System (INIS)

    Shivakumar, V.; Anantharaman, K.

    1997-09-01

    One of the strategies employed for management of spent fuel prior to their final disposal/reprocessing is their dry storage in casks, after they have been sufficiently cooled in spent fuel pools. In this interim storage, one of the main consideration is that the fuel should retain its integrity to ensure (a) radiological health hazard remains minimal and (b) the fuel is retrievable for down steam fuel management processes such as geological disposal or reprocessing. For dry storage of spent fuel in air, oxidation of the exposed UO 2 is the most severe of phenomena affecting the integrity of fuel. This is kept within acceptable limits for desired storage time by limiting the fuel temperature in the storage cask. The limit on the fuel temperature is met by having suitable limits on maximum burn-up of fuel, minimum cooling period in storage pool and optimum arrangement of fuel bundles in the storage cask from heat removal considerations. The oxidation of UO 2 by moist air has more deleterious effects on the integrity of fuel than that by dry air. The removal of moisture from the storage cask is therefore a very important aspect in dry storage practice. The kinetics of the oxidation phenomena at temperatures expected during dry storage in air is very slow and therefore the majority of the existing data is based on extrapolation of data obtained at higher fuel temperatures. This and the complex effects of factors like fission products in fuel, radiolysis of storage medium etc. has necessitated in having a conservative limiting criteria. The data generated by various experimental programmes and results from the on going programmes have shown that dry storage is a safe and economical practice. (author)

  15. Indoor air humidity, air quality, and health - An overview.

    Science.gov (United States)

    Wolkoff, Peder

    2018-04-01

    There is a long-standing dispute about indoor air humidity and perceived indoor air quality (IAQ) and associated health effects. Complaints about sensory irritation in eyes and upper airways are generally among top-two symptoms together with the perception "dry air" in office environments. This calls for an integrated analysis of indoor air humidity and eye and airway health effects. This overview has reviewed the literature about the effects of extended exposure to low humidity on perceived IAQ, sensory irritation symptoms in eyes and airways, work performance, sleep quality, virus survival, and voice disruption. Elevation of the indoor air humidity may positively impact perceived IAQ, eye symptomatology, and possibly work performance in the office environment; however, mice inhalation studies do not show exacerbation of sensory irritation in the airways by low humidity. Elevated humidified indoor air appears to reduce nasal symptoms in patients suffering from obstructive apnea syndrome, while no clear improvement on voice production has been identified, except for those with vocal fatigue. Both low and high RH, and perhaps even better absolute humidity (water vapor), favors transmission and survival of influenza virus in many studies, but the relationship between temperature, humidity, and the virus and aerosol dynamics is complex, which in the end depends on the individual virus type and its physical/chemical properties. Dry and humid air perception continues to be reported in offices and in residential areas, despite the IAQ parameter "dry air" (or "wet/humid air") is semantically misleading, because a sensory organ for humidity is non-existing in humans. This IAQ parameter appears to reflect different perceptions among other odor, dustiness, and possibly exacerbated by desiccation effect of low air humidity. It is salient to distinguish between indoor air humidity (relative or absolute) near the breathing and ocular zone and phenomena caused by moisture

  16. Design of dry barriers for containment of contaminants in unsaturated soils

    International Nuclear Information System (INIS)

    Morris, C.E.; Thomson, B.M.; Stormont, J.C.

    1997-01-01

    A dry barrier is a region of very dry conditions in unsaturated soil that prevents vertical migration of water created by circulating dry air through the formation. Dry soil creates a barrier to vertical water movement by decreasing the soil's hydraulic conductivity, a concept also used in capillary barriers. A dry barrier may be a viable method for providing containment of a contaminant plume in a setting with a thick unsaturated zone and dry climate. The principal factors which determine the feasibility of a dry barrier include: (1) an and environment, (2) thick vadose zone, and (3) the ability to circulate air through the vadose zone. This study investigated the technical and economic considerations associated with creating a dry barrier to provide containment of a hypothetical 1 ha aqueous contaminant plume. The concept appears to be competitive with other interim containment methods such as ground freezing

  17. Quality of second season soybean submitted to drying and storage

    Directory of Open Access Journals (Sweden)

    Cesar Pedro Hartmann Filho

    2016-09-01

    Full Text Available Drying agricultural products reduces the moisture content to suitable levels for storage, in order to maintain the product quality. However, special care with the temperatures applied in the process is important for the integrity and longevity of the material. The present study aimed at determining the immediate and latent effect of air-drying temperatures on the quality of soybean produced as a second season crop. The grains were collected at the R8 stage, close to the physiological maturity, with moisture content of approximately 23 % (w.b., submitted to drying temperatures of 40 ºC, 50 ºC, 60 ºC, 70 ºC and 80 ºC, up to a moisture content of 12.5 ± 0.7 % (w.b., and then stored under non-controlled humidity and temperature for 180 days. Thereafter, quality was assessed every 45 days by determining the dry matter loss, color and crude protein and lipid contents, as well as the acidity and peroxide indices of the crude oil extracted. Based on the results obtained, it was concluded that the increase in the air-drying temperature affects the soybean quality and crude oil extracted, being this effect enhanced with the storage time; the soybean and crude oil quality decline with an increase in the air-drying temperature and storage time; the air temperature of 40 ºC has the least effect on the quality of soybean grains and crude oil extracted.

  18. Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato

    Science.gov (United States)

    Belghith, Amira; Azzouz, Soufien; ElCafsi, Afif

    2016-03-01

    In recent years, there is an increased demand on the international market of dried fruits and vegetables with significant added value. Due to its important production, consumption and nutrient intake, drying of tomato has become a subject of extended and varied research works. The present work is focused on the drying behavior of thin-layer tomato and its mathematical modeling in order to optimize the drying processes. The moisture desorption isotherms of raw tomato were determined at four temperature levels namely 45, 50, 60 and 65 °C using the static gravimetric method. The experimental data obtained were modeled by five equations and the (GAB) model was found to be the best-describing these isotherms. The drying kinetics were experimentally investigated at 45, 55 and 65 °C and performed at air velocities of 0.5 and 2 m/s. In order to investigate the effect of the exchange surface on drying time, samples were dried into two different shapes: tomato halves and tomato quarters. The impact of various drying parameters was also studied (temperature, air velocity and air humidity). The drying curves showed only the preheating period and the falling drying rate period. In this study, attention was paid to the modeling of experimental thin-layer drying kinetics. The experimental results were fitted with four different models.

  19. Confined Mobility of TonB and FepA in Escherichia coli Membranes.

    Directory of Open Access Journals (Sweden)

    Yoriko Lill

    Full Text Available The important process of nutrient uptake in Escherichia coli, in many cases, involves transit of the nutrient through a class of beta-barrel proteins in the outer membrane known as TonB-dependent transporters (TBDTs and requires interaction with the inner membrane protein TonB. Here we have imaged the mobility of the ferric enterobactin transporter FepA and TonB by tracking them in the membranes of live E. coli with single-molecule resolution at time-scales ranging from milliseconds to seconds. We employed simple simulations to model/analyze the lateral diffusion in the membranes of E.coli, to take into account both the highly curved geometry of the cell and artifactual effects expected due to finite exposure time imaging. We find that both molecules perform confined lateral diffusion in their respective membranes in the absence of ligand with FepA confined to a region [Formula: see text] μm in radius in the outer membrane and TonB confined to a region [Formula: see text] μm in radius in the inner membrane. The diffusion coefficient of these molecules on millisecond time-scales was estimated to be [Formula: see text] μm2/s and [Formula: see text] μm2/s for FepA and TonB, respectively, implying that each molecule is free to diffuse within its domain. Disruption of the inner membrane potential, deletion of ExbB/D from the inner membrane, presence of ligand or antibody to FepA and disruption of the MreB cytoskeleton was all found to further restrict the mobility of both molecules. Results are analyzed in terms of changes in confinement size and interactions between the two proteins.

  20. Dry sliding wear behavior of epoxy composite reinforced with short palmyra fibers

    International Nuclear Information System (INIS)

    Biswal, Somen; Satapathy, Alok

    2016-01-01

    The present work explores the possibility of using palmyra fiber as a replacement for synthetic fiber in conventional polymer composites for application against wear. An attempt has been made in this work to improve the sliding wear resistance of neat epoxy by reinforcing it with short palmyra fibers (SPF). Epoxy composites with different proportions (0, 4, 8 and 12 wt. %) of SPF are fabricated by conventional hand lay-up technique. Dry sliding wear tests are performed on the composite samples using a pin-on-disc test rig as per ASTM G 99-05 standards under various operating parameters. Design of experiment approach based on Taguchi's L16 Orthogonal Arrays is used for the analysis of the wear. This parametric analysis reveals that the SPF content is the most significant factor affecting the wear process followed by the sliding velocity. The sliding wear behavior of these composites under an extensive range of test conditions is predicted by a model based on the artificial neural network (ANN). A well trained ANN has been used to predict the sliding wear response of epoxy based composites over a wide range. (paper)

  1. REDUCING ENVIRONMENTAL IMPACT AND COST OF PRODUCTION FOR DRYING FRUITS

    Directory of Open Access Journals (Sweden)

    Murad Erol

    2013-12-01

    Full Text Available To reduce the production costs for heat used in drying fruit plants was studied using of local biomass from tree branch pruning. The average annual get 3 t / ha biomass whit energy potential of 37 GJ/ha at a cost of up to 60 €/t. biomass at 10 - 50 mm chopped and dried below 20% can be gasefied with TLUD process characterized by high energy conversion efficiency, stability and safety in operation, emissions of CO and PM very low. TLUD process produces on average and 15% biochar that can be used as fuel or as agricultural amendment to increase fertility and for atmospheric carbon sequestration. There have been experiments simulated by model of USCMER 30/60MGB dryer equipped with two thermal modules TLUD FORTE-40 for apple slices drying heat of the apple prinings. Biomass used and biochar resulting chemical and energy were defined as micro-gasification process TLUD. That can dry 205 kg of apple slices in 6 hours with 74 kg of dry biomass to 10% of that remains and 12.2 kg biochar, biochar with or without 52 kg biomass, which costs € 8.55 or € 5.97, ie 4.3 or 6.1 times cheaper than diesel. On dry ton of sliced apple it can produce 59.6 kg biochar with soil seize -174.8 kg. CO2.

  2. Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Aghbashlo, Mortaza; Kianmehr, Mohammad H.; Samimi-Akhijahani, Hadi [Department of Agriculture Machinery, University of Tehran, Aboreyhan Campus (Iran)

    2008-10-15

    Berberis is known as a medicinal and ornamental plant in the world. Berberis fruit is used in medicine to cure liver, neck and stomach cancer, blood purification and mouth scent. Dried berberis fruit using new technology was preserved for relatively long time. Thin-layer drying simulation was used to obtain experiment data, using laboratory scale hot-air dryer of the static tray. Fick's second law was used as a major equation to calculate the moisture diffusivity with some simplification. The calculated value of moisture diffusivity varied from a minimum of 3.320 x 10{sup -10} to a maximum of 9 x 10{sup -9} m{sup 2}/s and the value of energy activation from a minimum of 110.837 to a maximum of 130.61 kJ/mol of from 50 C to 70 C with drying air velocities of 0.5-2 m/s. The high value of the energy of activation for berberis fruit probably related to the tissue of berberis fruit and high moisture content (about 74.28%w.b), and intensive changes in D{sub eff} values for a different air temperature at constant air velocity. The input energy values and specific energy requirement for thin-drying of berberis fruit were found to be in the range of 0.643348-35.20032 (kWh) and 20.9355-1110.0700 (kWh/kg) from 50 C to 70 C with drying air velocities of 0.5-2 m/s, respectively. (author)

  3. Study of the effect of the nature of aggregates on the mechanical behaviour of the concrete in hot and dry zones «Contribution of the curing» Etude de l’effet de la nature des granulats sur le comportement mécanique du béton en zones chaudes et arides «Contribution de la cure»

    Directory of Open Access Journals (Sweden)

    Bendjillali K.

    2012-09-01

    Full Text Available Laghouat est parmi les villes de l’Algérie riches en matériaux de différentes natures, tels que les roches calcaires massives et les matériaux alluvionnaires meubles siliceux et silico-calcaires. L’objectif premier de ce travail est d’établir une comparaison des performances mécaniques des bétons préparés avec de granulats de natures différentes. Nôtre second objectif est l’étude de l’influence de la cure sur la résistance à la compression et la résistance à la flexion des bétons étudiés. Les échantillons sont conservés sous un climat chaud et sec réel qui est le climat de Laghouat. Nous avons utilisé comme cure: le film plastique, la toile de jute mouillée et l’immersion dans l’eau. A travers ce travail expérimental, nous avons pu constater que les meilleures résistances à la compression sont obtenues dans les bétons à sable siliceux et celles à la flexion sont obtenues dans les bétons à granulats calcaires. La conservation du béton dans une ambiance aride sans protection augmente sa résistance mécanique à jeune âge, mais à long terme, cette dernière chute d’une façon significative. L’étude a mis en évidence la nécessité de l’emploi d’un super plastifiant et de l’application immédiate de la cure pour le bétonnage en climat chaud. Laghouat is among the cities of Algeria rich in materials of various natures, such as the massive limestone rocks and the natural river materials. The first objective of this work is to establish a comparison of the mechanical performances between concretes with aggregates of different natures. The second objective is to study the effect of curing on the compressive and the flexural strength of concretes. Samples are conserved under a real hot and dry climate which is the climate of Laghouat. We used as curing: plastic film, wet hessian and immersing in water. Through this work, we noticed that the best compressive strengths are obtained in concretes

  4. A method to press powder at 6000 ton using small amount of explosive

    Science.gov (United States)

    Hilmi, Ahmad Humaizi; Azmi, Nor Azmaliana; Ismail, Ariffin

    2017-12-01

    Large die hydraulic press forces are one of the key instruments in making jumbo planes. The machine can produce aircraft components such as wing spars, landing gear supports and armor plates. Superpower nations such as USA, Russia, Germany, Japan, Korea and China have large die hydraulic press which can press 50,000 tons. In Malaysia, heavy-duty press is available from companies such as Proton that builds chassis for cars. However, that heavy-duty press is not able to produce better bulkhead for engines, fuselage, and wings of an aircraft. This paper presents the design of an apparatus that uses 50 grams of commercial grade explosives to produce 6000 tons of compaction. This is a first step towards producing larger scale apparatus that can produce 50,000-ton press. The design was done using AUTODYN blast simulation software. According to the results, the maximum load the apparatus can withstand was 6000 tons which was contributed by 50 grams of commercial explosive(Emulex). Explosive size larger than 50 grams will lead to catastrophic failure. Fabrication of the apparatus was completed. However, testing of the apparatus is not presented in this article.

  5. Exergetic performance analyses of drying of broccoli florets in a tray drier

    International Nuclear Information System (INIS)

    Zafer Erbay

    2009-01-01

    At present, the drying process is one of the major procedures of food preservation and an important unit operation in a wide variety of food industries. Recently, drying of vegetables is of a particular interest because it is added to various ready-to-eat meals in order to improve their nutritional quality due to health benefit compounds present in vegetables (vitamins, phytochemicals, dietary fibers). Broccoli has been described as a vegetable with a high nutritional value due to its important content of vitamins, antioxidants and anti-carcinogenic compounds. Broccoli dehydration has not been investigated to a great extent and a few data are available in the open literature. In this study, broccoli florets were dried in a tray drier at a temperature range of 50-70 deg C with an air velocity range of 0.5-1.5 m/s. The performance of the process and system was evaluated using the exergy analysis method. Based on the experimental data, effects of the drying air temperature and the velocity on the performance of the drying process were discussed. It was obtained that the exergy evaporation rate and the exergetic efficiency of the process were obtained to vary between 0.0006-0.0029 kW and 0.27-1.16%, respectively. They increased as the drying air temperature increased, while the exergetic efficiency decreased with the rise in the drying air velocity. (author)

  6. Drying and radial shrinkage characteristics and changes in color ...

    African Journals Online (AJOL)

    Drying and radial shrinkage characteristics and changes in color and shape of carrots tissues during air drying were studied. Slices dimensions were obtained by computer vision and the color was quantified by chroma, hue, whitening index and total carotenoids contents. The drying time became shorter of 1 h when ...

  7. Image analysis of epicuticular damage to foliage caused by dry deposition of the air pollutant nitric acid.

    Science.gov (United States)

    Padgett, Pamela E; Parry, Sally D; Bytnerowicz, Andrzej; Heath, Robert L

    2009-01-01

    Nitric acid vapor is produced by the same photochemical processes that produce ozone. In the laboratory, concentrated nitric acid is a strong acid and a powerful oxidant. In the environment, where the concentrations are much lower, it is an innocuous source of plant nitrogen. As an air pollutant, which mode of action does dry deposition of nitric acid follow? We investigated the effects of dry deposition of nitric acid on the foliage of four tree species native to the western United States. A novel controlled environment, fumigation system enabled a four-week exposure at concentrations consistent with ambient diurnal patterns. Scanning electron microscopy and automated image analysis revealed changes in the epicuticular wax layer during fumigation. Exposure to nitric acid resulted in a reproducible suite of damage symptoms that increased with increasing dose. Each tree species tested exhibited a unique set of damage features, including cracks, lesions, and conformation changes to epicuticular crystallite structures. Dry deposition of atmospheric nitric acid caused substantial perturbation to the epicuticular surface of all four tree species investigated, consistent with the chemical oxidation of epicuticular waxes. Automated image analysis eliminated many biases that can trouble microscopy studies. Trade names and commercial enterprises or products are mentioned solely for information. No endorsements by the U.S. Department of Agriculture are implied.

  8. Potential of poplar short rotation coppice cultivation for bioenergy in Southern Portugal

    International Nuclear Information System (INIS)

    Pereira, Sandrina; Costa, Mário; Graça Carvalho, Maria da; Rodrigues, Abel

    2016-01-01

    Highlights: • Evaluation of the potential of poplar coppice cultivation for bioenergy. • Biomass costs from 76.9 to 120.5 Euro/ton and net energy from 34.7 to 75.4 PJ. • Biomass co-firing in power plants reduces CO_2 emissions between 8.2% and 16.5%. • A scenario of CO_2 allowances trading can turn the project financially viable. - Abstract: This manuscript examines the potential of poplar short rotation coppice cultivation for bioenergy in the Alentejo region, Southern Portugal. The biomass is intended to fulfil, at least, 10% (energy basis) of the fuel needs of two Portuguese coal-fired power plants (Sines and Pego), using co-firing technology. The study considers the overall production chain from cradle to power plant gate, cultivated in scrubland areas with duration of 12 years, harvested every three years and with 6667 plants per ha, covering a land area of about 52,250 ha. Three different biomass annual yields are assumed. The results show that the biomass selling prices range from 76.9 to 120.5 Euro ton"−"1, to match the production costs. The net energy of the overall project ranges from 34.7 to 75.4 PJ and the project cost from 619 to 823.9 MEuro. The main environmental impact of the project is the reduction of the CO_2 emissions due to the biomass co-firing, instead of burning coal alone. The power plants can reduce CO_2 emissions over the project lifetime between 8.2% and 16.5% of the current values. The financial analysis demonstrates that the project is not financially feasible without external grants, but a policy scenario of carbon allowances trading may be instrumental on turning it financially feasible, depending on allowances and coal market prices. Finally, with a reduction of 50% in the main costs, the project becomes financially feasible under a CO_2 emissions trading scenario for a biomass yield of 20 dry ton ha"−"1 per year.

  9. Three-dimensional DEM–CFD analysis of air-flow-induced detachment of API particles from carrier particles in dry powder inhalers

    Directory of Open Access Journals (Sweden)

    Jiecheng Yang

    2014-02-01

    Full Text Available Air flow and particle–particle/wall impacts are considered as two primary dispersion mechanisms for dry powder inhalers (DPIs. Hence, an understanding of these mechanisms is critical for the development of DPIs. In this study, a coupled DEM–CFD (discrete element method–computational fluid dynamics is employed to investigate the influence of air flow on the dispersion performance of the carrier-based DPI formulations. A carrier-based agglomerate is initially formed and then dispersed in a uniformed air flow. It is found that air flow can drag API particles away from the carrier and those in the downstream air flow regions are prone to be dispersed. Furthermore, the influence of the air velocity and work of adhesion are also examined. It is shown that the dispersion number (i.e., the number of API particles detached from the carrier increases with increasing air velocity, and decreases with increasing the work of adhesion, indicating that the DPI performance is controlled by the balance of the removal and adhesive forces. It is also shown that the cumulative Weibull distribution function can be used to describe the DPI performance, which is governed by the ratio of the fluid drag force to the pull-off force.

  10. Three-dimensional DEM–CFD analysis of air-flow-induced detachment of API particles from carrier particles in dry powder inhalers

    Science.gov (United States)

    Yang, Jiecheng; Wu, Chuan-Yu; Adams, Michael

    2014-01-01

    Air flow and particle–particle/wall impacts are considered as two primary dispersion mechanisms for dry powder inhalers (DPIs). Hence, an understanding of these mechanisms is critical for the development of DPIs. In this study, a coupled DEM–CFD (discrete element method–computational fluid dynamics) is employed to investigate the influence of air flow on the dispersion performance of the carrier-based DPI formulations. A carrier-based agglomerate is initially formed and then dispersed in a uniformed air flow. It is found that air flow can drag API particles away from the carrier and those in the downstream air flow regions are prone to be dispersed. Furthermore, the influence of the air velocity and work of adhesion are also examined. It is shown that the dispersion number (i.e., the number of API particles detached from the carrier) increases with increasing air velocity, and decreases with increasing the work of adhesion, indicating that the DPI performance is controlled by the balance of the removal and adhesive forces. It is also shown that the cumulative Weibull distribution function can be used to describe the DPI performance, which is governed by the ratio of the fluid drag force to the pull-off force. PMID:26579364

  11. Hibiscus sabdariffa L extract drying with different carrier agent: Drying rate evaluation and color analysis

    Science.gov (United States)

    Djaeni, M.; Utari, F. D.; Kumoro, A. C.

    2017-03-01

    The aim of this study was to investigate the effect of different carrier agents on roselle or Hibiscus sabdariffa L.extract drying. Carrier agent was used for reducing stickiness of material and avoiding agglomeration as well as improving stability. The method consisted of two steps involving roselle extraction and drying process. The liquid roselle extract was mixed with carrier agent (maltodextrin-arabic gum) in various composition. The mixture was then dried at different air temperature ranging 40 - 80°C. As a response, moisture content in the extract was observed by gravimetry every 10 minutes during90 minutes. The procedurewas repeated for the drying without carrieragent. The result showed that constant rate of drying with carrier agent was higher up to l.7 times than that of without carrier agent. Based on the color analysis,roselle extract drying with carrier agent also showed reasonable quality.

  12. Modelling the Drying Characteristics and Kinetics of Hot Air-Drying of Unblanched Whole Red Pepper and Blanched Bitter Leaf Slices

    Directory of Open Access Journals (Sweden)

    Samuel Enahoro Agarry

    2017-01-01

    Full Text Available The objective of this study was to investigate the drying characteristics and kinetics of red pepper and bitter leaf under the influence of different drying temperatures. The drying experiments were carried out at dry bulb temperature of 35, 45, 55 and 75oC, respectively in an oven dryer. The results showed that as drying temperature increased, drying rate also increased and the drying time decreased. It was observed that un-sliced red pepper and sliced bitter leaf would dry within 2.5-12 h and 1.67-7 h, respectively at temperature ranging from 75 to 35oC. The drying of red pepper and bitter leaf was both in the constant and falling rate period. Four semi-empirical mathematical drying models (Newton, Page, Henderson and Pabis, and Logarithmic models were fitted to the experimental drying curves. The models were compared using the coefficient of determination (R^2 and the root mean square error (RMSE. The Page model has shown a better fit to the experimental drying data of red pepper and bitter leaf, respectively as relatively compared to other tested models. Moisture transport during drying was described by the application of Fick’s diffusion model and the effective moisture diffusivity was estimated. The value ranges from 15.69 to 84.79 × 10-9 m2/s and 0.294 to 1.263 × 10-9 m2/s for red pepper and bitter leaf, respectively. The Arrhenius-type relationship describes the temperature dependence of effective moisture diffusivity and was determined to be 37.11 kJ/mol and 32.86 kJ/mol for red pepper and bitter leaf, respectively. A correlation between the drying time and the heat transfer area was also developed.

  13. Qualidade das sementes de pinhão manso submetidas à secagem artificial Seed quality of jatropha under different drying air conditions

    Directory of Open Access Journals (Sweden)

    Renan Ullmann

    2010-09-01

    Full Text Available Na fase de pós-colheita do pinhão manso a secagem é o processo mais utilizado para assegurar sua qualidade e estabilidade. Assim, objetivou-se no presente trabalho analisar a secagem das sementes de pinhão manso, bem como verificar o efeito das diversas condições de ar na qualidade do produto, por meio das análises de condutividade elétrica, absorção de água, porcentagem de germinação e índice de velocidade de germinação (IVG. A secagem foi realizada em secador experimental testando as temperaturas de 30; 40; 50; 60 e 70 ºC, em delineamento inteiramente casualizado, com quatro repetições. Verificou-se que o aumento da temperatura do ar de secagem aumenta os danos nas sementes de pinhão manso, porém não interfere na absorção de água do produto. Já a germinação se mateve elevada, mesmo na temperatura de secagem mais alta, apresentando valores acima de 91% e o IVG não apresentou diferenças estatísticas. Portanto, conclui-se que a qualidade fisiológica das sementes de pinhão manso é afetada pela temperatura de secagem.The post-harvest drying of jatropha is the most frequently used process to ensure quality and stability. The aim of this work was to analyze the seed drying of jatropha and check the effect of air conditions on seed quality, through electrical conductivity, water absorption germination test and index of germination velocity (IGV. Drying was done in an experimental drier, testing controlled temperatures of 30; 40; 50; 60 and 70 ºC, in a randomized design with four replications. It was found that increasing the temperature of the drying air increases the damage on the seeds of jatropha, but does not interfere with water absorption of the product. The germination is high even at the highest drying temperature, with values above 91% and IVG did not show statistical differences. Therefore, it was concluded that the physiological quality of seeds of Jatropha curcas is affected by drying temperature.

  14. Biomassa microbiana em amostras de solos secadas ao ar e reumedecidas Microbial biomass in air dried and rewetted soil samples

    Directory of Open Access Journals (Sweden)

    Antônio Samarão Gonçalves

    2002-05-01

    Full Text Available O objetivo do trabalho foi avaliar a viabilidade do condicionamento de amostras como terra fina secada ao ar (TFSA por curto período, para a determinação do carbono da biomassa microbiana (BMS-C, pelo método da fumigaçãoextração, e verificar a respiração microbiana basal (RB do solo. O condicionamento como TFSA, procedendo-se à fumigação para a análise da BMS-C imediatamente ou 24 horas após o reumedecimento, proporcionou valores de BMS-C para os solos Podzólicos, Latossolo Vermelho-Amarelo álico e Orgânico, semelhantes aos valores dos seus controles. Os solos Glei Pouco Húmico e Vertissolo apresentaram valores de BMS-C similares aos do controle a partir de 24 horas de incubação; o solo Planossolo arenoso apresentou valores similares aos do controle com 72 horas, e a Rendizina, com 168 horas de incubação. Na maioria dos solos, a RB determinada na TFSA apresentou valores maiores do que os do tratamento-controle, quando avaliada imediatamente ou 24 horas após o reumedecimento a 60% da capacidade máxima de retenção de água, seguida de queda e manutenção em níveis semelhantes ao do controle nos períodos subseqüentes. O précondicionamento, de curta duração, como TFSA, é promissor para a determinação da BMS-C, quando níveis e períodos adequados de reumedecimento são adotados.The objective of this work was to evaluate the utilization of short term air dried soil samples in a determination of soil microbial biomass (SMB-C, by a fumigationextraction method, and soil microbial basal respiration (BR. Zero time or 24 hours rewetting incubation period before fumigation procedure gave values of SMB-C similar to those of the control for the Podzolic soils, Allic RedYellow Latosol and Organic soil. Low Humic Gley and Vertisol soils gave values of SMB-C similar to those of the control for periods of incubation equal or higher than 24 hours. Planosol (sandy soil and Rendzina soils gave values of SMB-C similar to the

  15. Drying kinetics of atemoya pulp

    Directory of Open Access Journals (Sweden)

    Plúvia O. Galdino

    Full Text Available ABSTRACT This study was conducted in order to obtain drying curves of whole atemoya pulp through the foam-mat drying method. The suspension was prepared with whole atemoya pulp mixed with 2% of Emustab® and 2% of Super Liga Neutra® with mixing time of 20 min, and dried in a forced-air oven at different temperatures (60; 70 and 80 °C and thicknesses of the foam layer (0.5, 1.0 and 1.5 cm. The drying rate curves were plotted against the water content ratio and the semi-theoretical models of Henderson & Pabis, Page and Midilli were used. All tested models showed coefficient of determination (R2 above 0.993, and the Midilli model showed the best fit for all conditions. Drying curves were affected by temperature and layer thickness.

  16. Immediate and short-term effects of the combination of dry needling and percutaneous TENS on post-needling soreness in patients with chronic myofascial neck pain

    Science.gov (United States)

    León-Hernández, Jose V.; Martín-Pintado-Zugasti, Aitor; Frutos, Laura G.; Alguacil-Diego, Isabel M.; de la Llave-Rincón, Ana I.; Fernandez-Carnero, Josue

    2016-01-01

    ABSTRACT Background Dry needling (DN) and percutaneous electrical nerve stimulation (PENS) are widely used techniques in the treatment of myofascial pain. Objective To investigate the immediate and short-term effects of the combination of DN and PENS compared to DN alone on the upper trapezius muscle. Method This is a 72-hour follow-up single-blinded randomized controlled trial. Sixty-two volunteer patients with chronic myofascial neck pain with active Myofascial Trigger Points (MTrPs) in the upper trapezius muscle were recruited. Randomization was performed, and 31 patients received DN treatment (DN group) and 31 received DN and PENS (DN+PENS group). The primary outcomes were neck disability index (NDI) and visual analog scale for pain for both post-needling soreness (PNS) and neck pain intensity (NPI). Pressure pain threshold (PPT) and cervical range of motion (CROM) were the secondary outcomes. Results We detected between-group differences in NPI and PNS in favor of the DN+PENS group immediately after treatment. No between-group differences in NDI were observed. Conclusion PENS application after dry needling treatment is more effective than dry needling alone for decreasing soreness in the short term and improving neck pain intensity immediately in patients with myofascial chronic neck pain. PMID:27410163

  17. Short-term effects of air pollution on hospital admissions of respiratory diseases in Europe : A quantitative summary of APHEA study results

    NARCIS (Netherlands)

    Spix, C; Anderson, HR; Schwartz, J; Vigotti, MA; LeTertre, A; Vonk, JM; Touloumi, G; Balducci, F; Piekarski, T; Bacharova, L; Tobias, A; Ponka, A; Katsouyanni, K

    1998-01-01

    The Air Pollution and Health: a European Approach (APHEA) project is a coordinated study of the short-term effects of air pollution on mortality and hospital admissions. Five West European cities (i.e., London, Amsterdam, Rotterdam, Paris, Milano) contributed several years of hospital admissions

  18. Effect of Infrared Blanching on Enzyme Activity and Retention of β-Carotene and Vitamin C in Dried Mango.

    Science.gov (United States)

    Guiamba, Isabel R F; Svanberg, Ulf; Ahrné, Lilia

    2015-06-01

    The objectives of this work were to evaluate infrared (IR) dry blanching in comparison with conventional water blanching prior to hot air drying of mango to inactivate polyphenol oxidase (PPO) and ascorbic acid oxidase (AAO) enzymes, and to study its effect on color change and retention of vitamin C and β-carotene. Mango cylinders were blanched under similar temperature-time conditions either by IR heating or by immersion in a water bath during 2 min at 90 °C (high-temperature-short-time-HTST) or for 10 min at 65 °C (low-temperature-long-time-LTLT). After blanching mango was hot air dried at 70 °C. PPO was completely inactivated during the blanching treatments, but AAO had a moderate remaining activity after LTLT treatment (∼30%) and a low remaining activity after HTST treatment (9% to 15%). A higher retention of vitamin C was observed in mango subjected to IR dry blanching, 88.3 ± 1.0% (HTST) and 69.2 ± 2.9% (LTLT), compared with water blanching, 61.4 ± 5.3% (HTST) and 50.7 ± 9.6% (LTLT). All-trans-β-carotene retention was significantly higher in water blanched dried mango, 93.2 ± 5.2% (LTLT) and 91.4 ± 5.1% (HTST), compared with IR dry blanched, 73.6 ± 3.6% (LTLT) and 76.9 ± 2.9% (HTST). Increased levels of 13-cis-β-carotene isomer were detected only in IR dry blanched mango, and the corresponding dried mango also had a slightly darker color. IR blanching of mango prior to drying can improve the retention of vitamin C, but not the retention of carotenoids, which showed to be more dependent on the temperature than the blanching process. A reduction of drying time was observed in LTLT IR-blanching mango. © 2015 Institute of Food Technologists®

  19. Green, Eco, Innovative Design, and Manufacturing Technology of a 1-Ton per Batch Municipal Solid Waste Incinerator

    Directory of Open Access Journals (Sweden)

    Kerdsuwan Somrat

    2016-01-01

    Full Text Available The thermal treatment of waste by incineration is considered an ultimate solution in order to get rid of waste properly by using the combustible properties of waste and transforming them into inert form and gaseous emission, with the main advantage of a huge reduction in mass and volume of treated waste, destruction of the dangerous components in waste, and obtaining green and clean energy from the exothermal reaction from the completed combustion process. In order to achieve the main goal of incineration, a good design, construction, supervision, and intensive operation and maintenance must be taken into account, especially for the small-scale incinerator. This research will deal with the green, innovative, and eco design and manufacturing technology of a 1-ton per batch municipal solid waste (MSW incinerator. The concept design of the incinerator will focus on the design of the feeding process where only one batch of waste will be discharged into the combustion chamber at one time instead of the semi-feed process, as found in the conventional incinerator. This will ease the operation of the operator and reduce the operating cost. Moreover, the innovative design includes the redesign of combustion air injection into either the primary or secondary combustion chamber in order to achieve the 3Ts of combustion (time, temperature. and turbulence. This design can eliminate the use of an auxiliary burner in the primary combustion chamber. Rethinking the innovative design of using recirculation hot flue gas for preheating of wet garbage in order to pre-dry the waste before combustion is also taken into account. The manufacturing process of the wall composition as well as other parts of the incinerator are also examined.

  20. Modelling and Evaluation of Environmental Impact due to Continuous Emissions of the Severonickel Plant (Kola Peninsula)

    Science.gov (United States)

    Mahura, A.; Gonzalez-Aparicio, I.; Nuterman, R.; Baklanov, A.

    2012-04-01

    In this study, evaluation of potential impact - through concentration, deposition and loadings patterns - on population and environment due to continuous anthropogenic emissions (on example of sulfates) of the Cu-Ni smelters of the Russian North is given. To estimate impact, the Danish Emergency Response Model for Atmosphere (DERMA) was employed to perform long-term simulations of air concentration, time integrated air concentration (TIAC), dry (DD) and wet (WD) deposition patterns resulting from continuous emissions of the Severonickel smelters located on the Kola Peninsula (Murmansk region, Russia). To perform such simulations the 3D meteorological fields (from the European Center for Medium-Range Weather Forecasts, ECMWF) for the year 2000 were used as input. For simplicity, it has been assumed that normalized releases of sulfates from smelters location occurred at a constant rate every day. For each daily release the atmospheric transport, dispersion, dry and wet deposition due to removal processes were estimated during 10 day interval. Output from these long-term simulations is an essential input for evaluation of impact, doses, risks, and short- and long-term consequences, etc. Detailed analyses of simulated concentration and deposition fields allowed evaluating the spatial and temporal variability of resulted patterns on different scales. Temporal variability of both wet and dry deposition as well as their contribution into total deposition have been estimated. On an annual scale, the concentration and deposition patterns were estimated for the most populated cities of the North-West Russia. The modeled annual fields were also integrated into GIS environment as well as layers with population density (from the Center for International Earth Science Information Network, CIESIN) and standard administrative division of the North-West Russia and bordering countries. Furthermore, the estimation of deposited amounts (loadings) of sulfates for selected regions of

  1. Spray Drying of Honey: The Effect of Drying Agents on Powder Properties

    Directory of Open Access Journals (Sweden)

    Samborska Katarzyna

    2015-06-01

    Full Text Available The aim of this study was to investigate the possibility of honey spray drying with addition of maltodextrin and gum Arabic as drying agents. The influence of the concentration of the solution subjected to drying, the type and content of the drying agents upon the physical properties of obtained powders was examined. An attempt was undertaken to obtain powder with a honey content of more than 50% d.b. Spray drying of multifloral honey with the addition of maltodextrin and gum Arabic was carried out at inlet air temperature of 180°C, feed rate of 1 mL/s and rotational speed of a disc atomizer of 39,000 rpm. The properties of obtained powders were quantified in terms of moisture content, bulk density, Hausner ratio, apparent density, hygroscopicity and wettability. Using gum Arabic it was possible to obtain a product with a higher content of honey (67% solids than in the case of maltodextrin (50% d.b.. However, the powders obtained with gum Arabic were characterised by worse physical properties: higher hygroscopicity and cohesion, and longer wetting time.

  2. Air pollution removal by trees in public green spaces in Strasbourg city, France

    Science.gov (United States)

    Wissal Selmi; Christiane Weber; Emmanuel Riviere; Nadege Blond; Lotfi Mehdi; David Nowak

    2016-01-01

    This study integrates i-Tree Eco model in order to estimate air pollution removal by urban trees in Strasbourg city, France. Applied for the first time in a French city, the model shows that public trees, i.e., trees managed by the city, removed about 88 t of pollutants during one year period (from July 2012 to June 2013): about 1 ton for CO; 14 tons for NO2...

  3. Growth and energy yield when cultivating various energy crops on farming soil. Tillvaext och energiutbyte vid odling av olika energigroedor paa jordbruksmark

    Energy Technology Data Exchange (ETDEWEB)

    Thoerner, L.

    1988-03-01

    In four fields in the south of Sweden different energy crops were tested. In all trials sugar beet, barley, alfalfa, corn, sunflower and quickgrowing species of Salix (energy forest) were grown. In some of the trials broome-grass, potatoes and winter wheat were tested. One trial also included marrow-stem kale, Jerusalem artichoke and a hybride of J artichoke and sunflower. The purpose of the experiment was to illustrate the effect of increasing N-fertilizing and the effect of growing the crops in different climatic conditions. The yield varies between the crops. Some of the crops were harvested in different stages of development. The largest yields were noticed for sugar beet, corn, potatoes and energy forest. For these crops the yield was 11.5-14.5 tons of dry matter per hectare. The yield of potatoes was very large but it is figures for only one place with very good conditions. Barley, sunflower and alfalfa produced 8-10 tons of dry matter per hectare. The smaller yield depends on a short vegetation season for these crops. The year of establishment the energy forest produced about four tons of dry matter in the form of stem wood. When fully established the production has been 12-15 tons of dry matter per hectare and annum. The analysis of plant material indicates small divergences in the content of carbon and heat value.

  4. Foam-mat drying technology: A review.

    Science.gov (United States)

    Hardy, Z; Jideani, V A

    2017-08-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.

  5. The prospects for dry fuel storage

    International Nuclear Information System (INIS)

    Harris, G.G.; Elliott, D.

    1994-01-01

    Dry storage of spent nuclear fuels is one method of dealing with radioactive waste. This article reports from a one day seminar on future prospects for dry fuel storage held in November 1993. Dry storage in an inert gas or air environment in vaults or casks, is an alternative to wet storage in water-filled ponds. Both wet and dry storage form part of the Interim Storage option for radioactive waste materials, and form alternatives to reprocessing or direct disposal in a deep repository. It has become clear that a large market for dry fuel storage will exist in the future. It will therefore be necessary to ensure that the various technical, safety, commercial, legislative and political constraints associated with it can be met effectively. (UK)

  6. An analytical method for determining the temperature dependent moisture diffusivities of pumpkin seeds during drying process

    Energy Technology Data Exchange (ETDEWEB)

    Can, Ahmet [Department of Mechanical Engineering, University of Trakya, 22030 Edirne (Turkey)

    2007-02-15

    This paper presents an analytical method, which determines the moisture diffusion coefficients for the natural and forced convection hot air drying of pumpkin seeds and their temperature dependence. In order to obtain scientific data, the pumpkin seed drying process was investigated under both natural and forced hot air convection regimes. This paper presents the experimental results in which the drying air was heated by solar energy. (author)

  7. Dry storage cell for radioactive material

    International Nuclear Information System (INIS)

    Bradley, N.

    1982-01-01

    In a dry storage cell for irradiated nuclear fuel or other highly active waste, cooling air flow is by natural draught in heat exchange with fuel containing canisters housed in channels. To inhibit corrosion by ensuring that the temperature of the air flowing over the canisters does not fall below the dew point when heat generation by decay has fallen, a fraction of the heat energy transferred to the cooling air is recirculated to the air upstream of the canisters. Recirculation of heat energy is effected by recirculation of a fraction of the hot air from downstream of the canisters. (author)

  8. Characteristics of a Dry Fog Ionizer

    International Nuclear Information System (INIS)

    Murata, Y; Kudo, Y; Yonezawa, M

    2008-01-01

    The newly developed 'Dry Fog Ionizer' generates charged dry fog. The dry fog consists of very fine water droplets 8μm in mean diameter. This system consists of a dry fog nozzle (H.Ikeuchi and Co., LTD.), a ring electrode for induction charging (50mm outside diameter, and 10mm thick) in front of the nozzle, and a fan for dissipating charged dry fog. The ring electrode is DC or AC-biased and fine droplets ejected from the nozzle are electrified by induction charging. The particle size of the charged water droplets are reduced through evaporation during the transporting process by air flow, and completely evaporate approximately 2m from the nozzle under normal atmospheric conditions (25 deg. C, 60%R.H.) leaving high density ions. Using this system, high density ionic space charge can be realized in a remote spot from the ionizer. By this principle, the Dry Fog Ionizer shows strong charge-eliminating ability in the region away from the ionizer. When a dc bias of 5kV was applied to a ring electrode with the rate of water flow from the nozzle being 21/h, an ionic space-charge density of 1200nC /m 3 was able to be obtained at a distance 2m away from the ionizer, which was 10 2 times the value produced by an ordinary corona-type ionizer with an air blower.

  9. Dry skin - self-care

    Science.gov (United States)

    ... pat skin dry then apply your moisturizer. Avoid skin care products and soaps that contain alcohol, fragrances, dyes, or other chemicals. Take short, warm baths or showers. Limit your ... gentle skin cleansers or soap with added moisturizers. Only use ...

  10. Shelf-life extension of dried shrimps by irradiation and packaging techniques

    International Nuclear Information System (INIS)

    Warunee Varanyanond; Hirata, Takashi; Ishitani, Takasuke

    2000-01-01

    Dried shrimps were air-packaged or N2-packaged in the flexible pouch of oriented polypropylene (OPP), polyvinylidene chloride coated polypropylene (KOP) and ethylene vinyl alcohol copolymer (EVOH). The packages were irradiated with gamma ray from cobalt 60 at 3 and 8 kGy. Non-irradiated dried shrimps were used as a control. The samples were stored at 30 deg C and 70+-5 percent RH for 4 months. Non-enzymatic browning induced the discoloration of dried shrimps, and oxidation of astaxanthin proceeded after irradiation and during storage. The hunter color difference, delta E, of all the samples was increased, especially in the non-irradiated air-packages samples. The decrease in astaxanthin content was found in both air - and N2-packaged samples during storage. The number of microorganisms was reduced by irradiation dose of 3 and 8 kGy from 6.5 to 4.2 and 2.7 log CFU/g, respectively. The decreased concentration of O2 in the package also reduced the number of microorganisms. The air packaged dried shrimps in the OPP pouch deteriorated during storage. Shrinkage of the pouches and growth of halophilic bacteria on the surface of dried shrimps were found at a sub(w) of 0.75. The discoloration of dried shrimps in the OPP pouch was more significant than that in other pouches. Irradiation at 3 and 8 kGy in combination with packaging in KOP and EVOH pouches containing N2 atmosphere was one of the promising methods for prolonging shelf-life of dried shrimps at room temperature

  11. Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans

    International Nuclear Information System (INIS)

    Ranjbaran, M.; Zare, D.

    2013-01-01

    The performance of microwave-assisted fluidized bed drying of soybeans was simulated (using a previously validated mathematical model) and analyzed based on the first- and second law of thermodynamics. The energy and exergy analysis were carried out for several drying conditions. The effects of inlet air temperature, microwave power density, bed thickness and inlet air velocity on the efficiencies and inefficiencies of drying process have been simulated and discussed. Generally, application of microwave energy during fluidized bed drying enhanced the exergy efficiency of drying process. However, the results showed that it was more efficient not to apply microwave energy at the first stage of fluidized bed drying process. The application of higher levels of drying air temperature led in higher exergy efficiencies. The values of mean relative deviations for the predictions of efficiencies and inefficiencies of drying process were less than 14%, compared with those calculated using experimental data. - Highlights: • Introducing a mathematical model to predict the efficiency of microwave-assisted fluidized bed dryers. • Energy and exergy analysis in microwave-assisted fluidized bed drying of grains. • Providing practical recommendations for efficient use of microwave power during drying

  12. Influence of drying method on steviol glycosides and antioxidants in Stevia rebaudiana leaves.

    Science.gov (United States)

    Periche, Angela; Castelló, María Luisa; Heredia, Ana; Escriche, Isabel

    2015-04-01

    The application of different drying conditions (hot air drying at 100 °C and 180 °C, freeze drying and shade drying) on steviol glycosides (stevioside, dulcoside A, rebaudioside A and rebaudioside C) and antioxidants in Stevia leaves was evaluated. Stevioside, the major glycoside found in fresh leaves (81.2mg/g), suffered an important reduction in all cases, although shade drying was the least aggressive treatment. Considering the antioxidant parameters (total phenols, flavonoids and total antioxidants), the most suitable drying method was hot air at 180 °C, since it substantially increased all of them (76.8 mg gallic acid, 45.1mg catechin and 126 mg Trolox, all equivalent/g Stevia, respectively), with respect to those present in fresh leaves (44.4, 2.5 and 52.9 mg equivalent/g). Therefore, the ideal method for drying Stevia leaves depends on their final use (sweetener or antioxidant), although, hot air at 180 °C is the most recommendable if only one treatment has to be chosen. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer

    International Nuclear Information System (INIS)

    Kaleta, Agnieszka; Górnicki, Krzysztof; Winiczenko, Radosław; Chojnacka, Aneta

    2013-01-01

    Highlights: ► Three new drying models are formulated. ► The developed models are various modifications of the Page model. ► Nineteen models are used to describe the fluidized bed drying of apple. ► The Page model and formulated model is considered as the most appropriate. - Abstract: Three new drying models were formulated. The developed models are various modifications of the Page model. The models were used to describe the drying behaviour of apple (var. Ligol) dried in a fluidized bed dryer. The suitability of new models to describe the drying characteristics were compared to the accuracy of sixteen models available from the literature. The accuracies of the models were measured using the correlation coefficient (R), root mean square error (RMSE), and reduced chi-square (χ 2 ). Three new developed models described the drying characteristics of apple cubes satisfactorily (R > 0.997). The Page model and one of the empirical models formulated by the authors of this study can be considered as the most appropriate (R > 0.9977, RMSE = 0.0094–0.0167, χ 2 = 0.0001–0.0002). The effect of drying air temperature on the drying models parameters were also determined. The shrinkage of apple cubes during drying was measured to assess the changes in quality of dried apples

  14. Effect of drying conditions on drying kinetics and quality of aromatic Pandanus amaryllifolius leaves.

    Science.gov (United States)

    Rayaguru, Kalpana; Routray, Winny

    2010-12-01

    Pandanus amaryllifolius is a plant with aromatic leaves, which impart the characteristic flavour of aromatic rice. The quality of aromatic Pandanus leaves dried at low temperature (35 °C) and low RH (27%) in a heat pump dryer was evaluated and compared with those obtained from hot air drying at 45 °C. Thin-layer drying kinetics has been studied for both the conditions. To determine the kinetic parameters, the drying data were fitted to various semi-theoretical models. The goodness of fit was determined using the coefficient of determination, reduced chi square, and root mean square error. Aroma, colour, and overall acceptability determination of fresh and dried leaves were made using sensory evaluation. Drying of leaves took place mainly under the falling-rate period. The Page equation was found to be best among the proposed models to describe the thin-layer drying of Pandanus leaves with higher coefficient of determination. The effective moisture diffusivity values were also determined. The effect of low RH was prominent during the initial drying when the product was moist. The effect of temperature was prominent in the later part of drying, which acted as a driving force for moisture diffusion and hence the total drying time was reduced. Retention of aromatic compound 2-acetyl-1-pyrroline content was more in low temperature dried samples with higher sensory scores.

  15. Heating and cooling performance of air-to-air heat pumps installed in the greenhouses with vegetables growth. Kuki netsugen hito ponpuno saibai jokenkani okeru onshitsuno danreibo seino

    Energy Technology Data Exchange (ETDEWEB)

    Kozakai, Kazuyoshi; Uehara, Tsuyoshi; Okano, Toshiaki

    1987-05-01

    Two units of integral-type air-air heat pumps (rated capacity: 7.5 KW each) and a heat storage type air-air heat pump (rated capacity: 7.5 KW) equipped with a heat storage water tank were installed in the experimental greenhouses (315 m/sup 2/ and 126 m/sup 2/) to introduced the heat pump as part of the development of power demand for the greenhouse culture. The experiment of hydroponic culture of tomatos in both summer and winter and merons in summer was made controlling the temperature and humidity in the greenhouse. The coefficient of performance (COP) of the integral-type air-air heat pump was 2.2 to 2.3 in the cooling season and 2.3 to 2.6 in the heating season. The crop of tomato per 10 areas was 11.6 tons in summer and 14.2 tons in winter and both crops were more than the mean valve in the greenhouse culture. The COP of the heat storage type air-air heat pump was 2.2 in the cooling season and 2.6 in the heating season. The average weight of a melon was 1.7 kg and the sugar content was approximately 13%. The crop and quality of melon exceeded the levels in the greenhouse culture. (14 figs, 8 tabs, 7 refs)

  16. Validation of drying models and rehydration characteristics of betel (Piper betel L.) leaves

    OpenAIRE

    Balasubramanian, S.; Sharma, R.; Gupta, R. K.; Patil, R. T.

    2010-01-01

    Effect of temperature on drying behaviour of betel leaves at drying air temperatures of 50, 60 and 70°C was investigated in tunnel as well as cabinet dryer. The L* and b* values increased whereas, a* values decreased, as the drying air temperature increased from 50 to 70°C in both the dryers, but the colour values remained higher for cabinet dryer than tunnel dryer in all cases. Eleven different drying models were compared according to their coefficients of determination (R2), root mean squar...

  17. High-pressure treatment of wood - combination of mechanical and thermal drying in the ''I/D process''

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, M. [Bundesforschungsanstalt fuer Ernaehrung, Institut fuer Verfahrenstechnik, Haid-und-Neu-Str. 9, D-76131 Karlsruhe (Germany); Bentz, M. [Institut fuer Mechanische Verfahrenstechnik und Mechanik, Universitaet Karlsruhe (T.H.), D-76128 Karlsruhe (Germany)

    2004-11-01

    Thermal drying of materials with internal pores is always a time-consuming and energy-intensive step within a production process. For chemical and pharmaceutical mass products and, in particular, for wood as an important raw material it is desirable to reduce the water content before thermal treatment by mechanical operations. The wood-processing industry, facing a rising stress of competition, is forced more than ever to offer high-quality products at lowest prices. Today, drying of timber is mostly done by air drying or by technical drying in kiln dryers. In any case, drying is necessary to prevent deterioration in quality by shrinkage, formation of cracks, discoloration or infestation. A new process of dewatering wood by combining mechanical and thermal means has been developed at the University of Karlsruhe. Compared to conventional drying processes, short drying times and a low residual moisture content can be achieved and, thus, energy consumption and costs can be reduced. In industrial wood drying only thermal processes (e.g., convective kiln drying, vacuum drying, etc.) have been established because so far no method has been known for removing liquid by mechanical force without significant change in wood structure. With the new I/D process chances for alternatives to conventional thermal drying or for mechanothermal applications are offered. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  18. Simple and Low-Cost Exposed -Layer Grain Drying Apparatus ...

    African Journals Online (AJOL)

    Thin-layer drying apparatus was developed from standard “off-the- shelf” equipment: a fan convection laboratory oven and a weighing scale. Using this apparatus the thin-layer drying data for wheat under constant conditions were obtained for a range of drying air temperature from 30°C to 150°C and the initial moisture ...

  19. Process Simulation and Cost Analysis for Removing Inorganics from Wood Chips using Combined Mechanical and Chemical Preprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hongqiang; Westover, Tyler L.; Cherry, Robert; Aston, John E.; Lacey, Jeffrey A.; Thompson, David N.

    2016-10-01

    Naturally occurring and introduced inorganic species (ash) in biomass feedstocks negatively impact thermochemical energy conversion processes such as pyrolysis, hydrothermal liquefaction, gasification and combustion to biopower. As such, it is desirable to better understand the cost:benefit ratios of various ash reduction processes. Here, a novel process simulation model was developed using AspenPlus to reduce the ash content of Loblolly logging residues using both air classification and a dilute-acid leaching process. For costing purposes, a throughput of 25 tons/hour was selected. At this scale, the process cost for a standalone air classification process was $3 per ton for a biomass feedstock. Ash reduction via dilute –acid leaching was simulated based on experimentally determined kinetics of ion diffusion at an acid concentration of 0.5% H2SO4 and temperature of 75°F. The total estimated processing cost for leaching at these conditions was approximately $14/ton of dry biomass. Sensitivity analysis of three parameters on mineral reduction in the leaching process revealed that increasing leaching temperature was not economically feasible, while it was viable to apply a longer retention time in leaching for higher ash removal or achieve a lower water content in final products with reasonable extra costs. In addition, scenarios combining air classification with leaching were examined. A whole process cost of approximately $16/ton of biomass at a biomass feedstock rate of 25 ton/hour considering a 9% of biomass classified as light fraction to be leached. The leaching operating costs constituted 75% of this amount, of which the heating costs of dryer was 44%. This suggests that the process costs would be substantially reduced if more efficient drying methods are applied in future.

  20. Short Term Prediction of PM10 Concentrations Using Seasonal Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Hamid Hazrul Abdul

    2016-01-01

    Full Text Available Air pollution modelling is one of an important tool that usually used to make short term and long term prediction. Since air pollution gives a big impact especially to human health, prediction of air pollutants concentration is needed to help the local authorities to give an early warning to people who are in risk of acute and chronic health effects from air pollution. Finding the best time series model would allow prediction to be made accurately. This research was carried out to find the best time series model to predict the PM10 concentrations in Nilai, Negeri Sembilan, Malaysia. By considering two seasons which is wet season (north east monsoon and dry season (south west monsoon, seasonal autoregressive integrated moving average model were used to find the most suitable model to predict the PM10 concentrations in Nilai, Negeri Sembilan by using three error measures. Based on AIC statistics, results show that ARIMA (1, 1, 1 × (1, 0, 012 is the most suitable model to predict PM10 concentrations in Nilai, Negeri Sembilan.

  1. Solar-assisted drying of timber at industrial scale: management paper

    African Journals Online (AJOL)

    While ambient air drying depends on the weather conditions, conventional hightemperature dryers cause high investments and energy costs. Up to now, solar dryers could not be established in industrial timber production, due to their insufficient drying capacity and the lack of an adequate control of the drying conditions.

  2. Is dry cleaning all wet?

    International Nuclear Information System (INIS)

    Ryan, M.

    1993-01-01

    Chemical solvents from dry cleaning, particularly perchloroethylene (perc), have contributed to groundwater contamination, significant levels of air pollution in and around cleaners, and chemical accumulation in food. Questions are being raised about the process of cleaning clothes with chemical, and other less toxic cleaning methods are being explored. The EPA has focused attention on the 50 year old Friedburg method of cleaning, Ecoclean, which uses no dangerous chemicals and achieves comparable results. Unfortunately, the cleaning industry is resistant to change, so cutting back on amount of clothes that need dry cleaning and making sure labels aren't exaggerating when they say dry clean only, is frequently the only consumer option now

  3. 77 FR 7531 - Disapproval and Promulgation of Air Quality Implementation Plans; Montana; Revisions to the...

    Science.gov (United States)

    2012-02-13

    ... airborne pollutant, except lead,\\1\\ must obtain a Montana air quality permit except as provided in ARM 17.8... more than 15 tons per year of any airborne pollutant, other than lead, to obtain a Montana air quality permit. \\1\\ Facilities or emitting units that emit airborne lead must obtain a Montana air quality permit...

  4. The Effect of Operating Conditions on Drying Characteristics and Quality of Ginger (Zingiber Officinale Roscoe) Using Combination of Solar Energy-Molecular Sieve Drying System

    Science.gov (United States)

    Hasibuan, R.; Zamzami, M. A.

    2017-03-01

    Ginger (Zingiber officinale Roscoe) is an agricultural product that can be used as beverages and snacks, and especially for traditional medicines. One of the important stages in the processing of ginger is drying. The drying process intended to reduce the water content of 85-90% to 8-10%, making it safe from the influence of fungi or insecticide. During the drying takes place, the main ingredient contained in ginger is homologous ketone phenolic known as gingerol are chemically unstable at high temperatures, for the drying technology is an important factor in maintaining the active ingredient (gingerol) which is in ginger. The combination of solar energy and molecular sieve dryer that are used in the research is capable of operating 24 hours. The purpose of this research is to study the effect of operating conditions (in this case the air velocity) toward the drying characteristics and the quality of dried ginger using the combination of solar energy and molecular sieve dryer. Drying system consist of three main parts which is: desiccator, solar collector, and the drying chamber. To record data changes in the mass of the sample, a load cell mounted in the drying chamber, and then connected to the automated data recording system using a USB data cable. All data of temperature and RH inside the dryer box and the change of samples mass recorded during the drying process takes place and the result is stored in the form of Microsoft Excel. The results obtained, shows that the air velocity is influencing the moisture content and ginger drying rate, where the moisture content equilibrium of ginger for the air velocity of 1.3 m/s was obtained on drying time of 360 minutes and moisture content of 2.8%, at 1.0 m/s was obtained on drying time of 300 minutes and moisture content of 1.4%, at 0, 8 m/s was obtained at 420 minutes drying time and the moisture content is 2.0%. The drying characteristics shows that there are two drying periods, which is: the increasing drying rate

  5. The range and effectiveness of short-term measures to reduce traffic emissions during high air pollution episodes

    International Nuclear Information System (INIS)

    Elsom, Derek M.

    1999-01-01

    Concern for continuing poor urban air quality, caused primarily by motor vehicles emissions, and the slow progress being made towards reducing total vehicle emissions by long-term measures, such as improving fuel and vehicle technologies, has prompted some authorities to try to reduce the severity and duration of high air pollution episodes by implementing short-term traffic restraint measures. This paper reviews the range of episodic air quality management schemes applied in cities around the world and comments on the effectiveness of such schemes. The difficulty of targeting vehicles according to the contribution they make to the air quality problem is highlighted. The problem of some schemes simply causing a displacement of the area of excessive vehicle emissions rather than reducing total emissions is reviewed. Rapid developments in telematics and improved urban air quality and traffic monitoring networks (e.g. Urban Traffic Management and Control systems) may offer significant improvements in the effectiveness of episodic management schemes in the future. (Author)

  6. Rodigo Uno (Italy) geothermal thermal energy for crop drying

    International Nuclear Information System (INIS)

    Facchini, U.; Sordelli, C.; Magnoni, S.; Cantadori, M.

    1992-01-01

    This paper outlines the chief design and performance features of a forage drying installation which makes use of locally available geothermal energy. The heat exchange is accomplished through a water-air exchanger directly fed by 59 degrees C geothermal springs. Two 80,000 cubic meter/hour ventilators, making use of this energy (58 to 38 degrees C heat exchange), raise the drying air temperature by 16 degrees C, while providing an overall drying capacity of 43,200 kg/day. The balance of available 38 degrees C geothermal energy is being employed by a local aquaculture farm. The paper comments on the economic and environmental benefits being derived from this direct utilization of geothermal energy

  7. Pharmaceutical spray drying: solid-dose process technology platform for the 21st century.

    Science.gov (United States)

    Snyder, Herman E

    2012-07-01

    Requirement for precise control of solid-dosage particle properties created with a scalable process technology are continuing to expand in the pharmaceutical industry. Alternate methods of drug delivery, limited active drug substance solubility and the need to improve drug product stability under room-temperature conditions are some of the pharmaceutical applications that can benefit from spray-drying technology. Used widely for decades in other industries with production rates up to several tons per hour, pharmaceutical uses for spray drying are expanding beyond excipient production and solvent removal from crystalline material. Creation of active pharmaceutical-ingredient particles with combinations of unique target properties are now more common. This review of spray-drying technology fundamentals provides a brief perspective on the internal process 'mechanics', which combine with both the liquid and solid properties of a formulation to enable high-throughput, continuous manufacturing of precision powder properties.

  8. Final report on CCQM-P151: Halocarbons in dry whole air

    Science.gov (United States)

    Rhoderick, George; Guenther, Franklin; Duewer, David; Lee, Jeongsoon; Seog Kim, Jin; Hall, Bradley; Weiss, Ray; Harth, Christina; Reimann, Stefan; Vollmer, Martin

    2014-01-01

    The growing awareness of climate change/global warming and continuing concerns regarding stratospheric ozone depletion will require future measurements and standards for many compounds, in particular halocarbons that are linked to these issues. In order to track and control the emissions of these species globally in the atmosphere, it is necessary to demonstrate measurement equivalence at the highest levels of accuracy for assigned values of standards. This report describes the results of a pilot study between National Metrology Institutes and atmospheric research laboratories for several of the more important halocarbons at atmospheric concentration levels. The comparison includes the chlorofluorocarbons (CFCs) dichlorodifluoromethane (CFC 12), trichlorofluoromethane (CFC 11), and 1,1,2-trichlorotrifluoroethane (CFC 113); the hydrochlorofluorocarbons (HCFCs) chlorodifluoromethane (HCFC 22) and 1-chloro-1,1-difluoroethane (HCFC 142b); and the hydrofluorocarbon (HFC) 1,1,1,2-tetrafluoroethane (HFC 134a), all in a dried whole air sample. The objective of this key comparison is to compare the measurement capabilities of the participants for these halocarbons at trace atmospheric levels. Main text. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM.

  9. Performance Analysis of a Solar Dryer Equipped with a Recycling Air System and Desiccant Chamber

    Directory of Open Access Journals (Sweden)

    M.H Aghkhani

    2013-09-01

    Full Text Available Drying is a high energy consuming process. Solar drying is one of the most popular methods for dehydration of agricultural products. In the present study, the performance of a forced convection solar dryer equipped with recycling air system and desiccant chamber was investigated. The solar dryer is comprised of solar collector, drying chamber, silica jell desiccant chamber, air ducts, fan and measuring and controlling system. Drying rate and energy consumption in three levels of air temperature (40, 45 and 50 oC and two modes of drying (with recycling air and no-recycling with open duct system were measured and compared. The results showed that increasing the drying air temperature decreased the drying time and increased the energy consumption in the mode of non-recycling air system. The dryer efficiency and drying rate were better in the mode of recycling air system than open duct system. The highest dryer efficiency was obtained from drying air temperature of 50 oC and the mode of recycling air system. In general, the efficiency of solar collector and the highest efficiency of the dryer were 0.34 and 0.41, respectively.

  10. Effect of air-temperature and diet composition on the drying process of pellets for japanese abalone (Haliotis discus hannai feeding

    Directory of Open Access Journals (Sweden)

    Antonio Vega-Gálvez

    2011-09-01

    Full Text Available The aim of this research was to study the effect of air-temperature and diet composition on the mass transfer kinetics during the drying process of pellets used for Japanese Abalone (Haliotis discus hannai feeding. In the experimental design, three temperatures were used for convective drying, as well as three different diet compositions (Diets A, B and C, in which the amount of fishmeal, spirulin, algae, fish oil and cornstarch varied. The water diffusion coefficient of the pellets was determined using the equation of Fick's second law, which resulted in values between 0.84-1.94×10-10 m²/s. The drying kinetics was modeled using Page, Modified Page, Root of time, Exponential, Logarithmic, Two-Terms, Modified Henderson-Pabis and Weibull models. In addition, two new models, referred to as 'Proposed' models 1 and 2, were used to simulate this process. According to the statistical tests applied, the models that best fitted the experimental data were Modified Henderson-Pabis, Weibull and Proposed model 2, respectively. Bifactorial analysis of variance ANOVA showed that Diet A (fishmeal 44%, spirulin 9%, fish oil 1% and cornstarch 36% presented the highest diffusion coefficient values, which were favored by the temperature increase in the drying process.

  11. Rehydration properties of hybrid method dried fruit enriched by natural components

    Science.gov (United States)

    Kowalska, Hanna; Marzec, Agata; Kowalska, Jolanta; Ciurzyńska, Agnieszka; Samborska, Kinga; Bialik, Michał; Lenart, Andrzej

    2018-04-01

    The aim of the study was to determine the impact of osmotic pre-dehydration and drying of fruit on the rehydration properties of dried fruit. Herein, the effect of fruit juice, applied as a natural enriching substance was very important. In addition, the properties of dried fruits obtained through combined air-drying and subsequent microwave-vacuum drying with `puffing' effect were similar to the freeze-dried fruits, but showed other rehydration properties. As raw material, frozen strawberry (Honeoye variety) and fresh apples (Idared variety) were used in the study. The apples and partially defrosted strawberries were prior dehydrated in solutions of sucrose and a mixture of sucrose with chokeberry juice concentrate at 50°C for 2 h. Next, the fruit samples were dried by one of two ways: air-drying (50°C, 5 h) and microwavevacuum drying for about 360 s; and freeze-drying (30°C, 63 Pa, 24 h). The rehydration was carried out in distilled water (20°C, 5 h). The osmotic pre-dehydration hindered fruit drying process. The impact of drying method became particularly evident while examining the kinetics of rehydration. During the rehydration of the pre-dehydrated dried fruit a slower hydration could be observed. Freeze-dried strawberries absorbed 2-3 times more water than those dried by the `puffing' effect.

  12. Short-Term Exposure to Air Pollution and Lung Function in the Framingham Heart Study

    Science.gov (United States)

    Ljungman, Petter L.; Wilker, Elissa H.; Gold, Diane R.; Schwartz, Joel D.; Koutrakis, Petros; Washko, George R.; O’Connor, George T.; Mittleman, Murray A.

    2013-01-01

    Rationale: Short-term exposure to ambient air pollution has been associated with lower lung function. Few studies have examined whether these associations are detectable at relatively low levels of pollution within current U.S. Environmental Protection Agency (EPA) standards. Objectives: To examine exposure to ambient air pollutants within EPA standards and lung function in a large cohort study. Methods: We included 3,262 participants of the Framingham Offspring and Third Generation cohorts living within 40 km of the Harvard Supersite monitor in Boston, Massachusetts (5,358 examinations, 1995–2011) who were not current smokers, with previous-day pollutant levels in compliance with EPA standards. We compared lung function (FEV1 and FVC) after previous-day exposure to particulate matter less than 2.5 μm in diameter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) in the “moderate” range of the EPA Air Quality Index to exposure in the “good” range. We also examined linear relationships between moving averages of pollutant concentrations 1, 2, 3, 5, and 7 days before spirometry and lung function. Measurements and Main Results: Exposure to pollutant concentrations in the “moderate” range of the EPA Air Quality Index was associated with a 20.1-ml lower FEV1 for PM2.5 (95% confidence interval [CI], −33.4, −6.9), a 30.6-ml lower FEV1 for NO2 (95% CI, −60.9, −0.2), and a 55.7-ml lower FEV1 for O3 (95% CI, −100.7, −10.8) compared with the “good” range. The 1- and 2-day moving averages of PM2.5, NO2, and O3 before testing were negatively associated with FEV1 and FVC. Conclusions: Short-term exposure to PM2.5, NO2, and O3 within current EPA standards was associated with lower lung function in this cohort of adults. PMID:24200465

  13. Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity

    Science.gov (United States)

    Yucheng Peng; Douglas J. Gardner; Yousoo Han; Alper Kiziltas; Zhiyong Cai; Mandla A. Tshabalala

    2013-01-01

    The effect of drying method on selected material properties of nanocellulose was investigated. Samples of nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC) were each subjected to four separate drying methods: air-drying, freeze-drying, spray-drying, and supercritical-drying. The thermal stability and crystallinity of the dried nanocellulose were...

  14. Experimental Study on Short Circuit Phenomena in Air Switch of Distribution Line due to Sparkover between Different Poles on Which One Surge Arrester of the Three Ones is Omitted

    Science.gov (United States)

    Sato, Tomoyuki; Uemura, Satoshi; Asakawa, Akira; Yokoyama, Shigeru; Honda, Hideki; Horikoshi, Kazuhiro

    In this study, we experimentally examined the possibility of the internal short circuit of an air switch due to the sparkover between different poles under the condition that no surge arrester exists in neighboring poles and one of three surge arresters is omitted at the pole with an air switch. Experiments at Shiobara Testing Yard and Akagi Testing Center of CRIEPI clarified the following. Fault current may flow via the grounding point of a pole with an air switch and that of the next pole on a different phase from grounded phase of the pole with an air switch. If the low-voltage wire, overhead ground wire or communication wire forms a short circuit between them, ultimately the air switch may burn out. Moreover Fault current continues even if the length of the short-circuit between different poles is increased. Although the increase of the short-circuit length results in the increase of wire impedance, the amount of increase is still small compared with source impedance.

  15. Comparative Evaluation of Sulfur Compounds Contents and Antiobesity Properties of Allium hookeri Prepared by Different Drying Methods

    Directory of Open Access Journals (Sweden)

    Min Hye Yang

    2017-01-01

    Full Text Available Despite the nutritional and medicinal values of Allium hookeri, its unique flavor (onion or garlic taste and smell coming from sulfur containing compounds limits its usage as functional food. For comparative study, A. hookeri roots were prepared under two different drying conditions, namely, low-temperature drying that minimizes the volatilization of sulfur components and hot-air drying that minimizes the garlic odor and spicy taste of A. hookeri. In GC/MS olfactory system, the odorous chemicals and organosulfur compounds such as diallyl trisulfide, dimethyl trisulfide, and dipropyl trisulfide were significantly decreased in hot-air drying compared to low-temperature drying. The spiciness and saltiness taste were noticeably reduced, while sourness, sweetness, and umami taste were significantly increased in hot-air dried A. hookeri according to electronic tongue. Although the content of volatile sulfur components was present at lower level, the administration of hot-air dried A. hookeri extract (100 mg/kg p.o. apparently prevented the body weight gain and improved insulin resistance in C57BL/6J obese mice receiving high fat diet. Results suggested that the hot-air dried A. hookeri possessing better taste and odor might be available as functional crop and bioactive diet supplement for the prevention and/or treatment of obesity.

  16. Energy and exergy analyses of solar drying process of pistachio

    International Nuclear Information System (INIS)

    Midilli, A.; Kucuk, H.

    2003-01-01

    This paper is concerned with the energy and exergy analyses of the drying process of shelled and unshelled pistachios using a solar drying cabinet. Using the first law of thermodynamics, energy analysis was carried to estimate the amounts of energy gained from solar air collectors and the ratios of energy utilization. However, exergy analysis was accomplished to determine the location, type, and magnitude of exergy losses during the solar drying process by applying the second law of thermodynamics. It was deduced that the exergy losses took place mostly in the 15th shelf where the available energy was less utilized. Moreover, the shelled and unshelled pistachios are sufficiently dried in the ranges between 40 and 60 deg. C and 37 and 62% of relative humidity at 1.23 m s -1 of drying air velocity in 6 h despite the exergy losses of 0.15-3.08 kJ kg -1

  17. Aroma retention during the drying of liquid foods

    NARCIS (Netherlands)

    Menting, L.C.; Hoogstad, B.; Thijssen, H.A.C.

    1970-01-01

    Factors detg. aroma retention during the drying of food liqs. were investigated by a model system. Slabs of an aq. soln. of partially hydrolyzed starch, contg. a small amt. of acetone, were dried in air and the percentage of acetone retained was measured. Acetone was lost almost exclusively during

  18. Reducing Short-Wavelength Blue Light in Dry Eye Patients with Unstable Tear Film Improves Performance on Tests of Visual Acuity.

    Science.gov (United States)

    Kaido, Minako; Toda, Ikuko; Oobayashi, Tomoo; Kawashima, Motoko; Katada, Yusaku; Tsubota, Kazuo

    2016-01-01

    To investigate whether suppression of blue light can improve visual function in patients with short tear break up time (BUT) dry eye (DE). Twenty-two patients with short BUT DE (10 men, 12 women; mean age, 32.4 ± 6.4 years; age range, 23-43 years) and 18 healthy controls (10 men, 8 women; mean age, 30.1 ± 7.4 years; age range, 20-49 years) underwent functional visual acuity (VA) examinations with and without wearing eyeglasses with 50% blue light blocked lenses. The functional VA parameters were starting VA, functional VA, and visual maintenance ratio. The baseline mean values (logarithm of the minimum angle of resolution, logMAR) of functional VA and the visual maintenance ratio were significantly worse in the DE patients than in the controls (P 0.05). The DE patients had significant improvement in mean functional VA and visual maintenance ratio while wearing the glasses (P 0.05). Protecting the eyes from short-wavelength blue light may help to ameliorate visual impairment associated with tear instability in patients with DE. This finding represents a new concept, which is that the blue light exposure might be harmful to visual function in patients with short BUT DE.

  19. Reducing Short-Wavelength Blue Light in Dry Eye Patients with Unstable Tear Film Improves Performance on Tests of Visual Acuity.

    Directory of Open Access Journals (Sweden)

    Minako Kaido

    Full Text Available To investigate whether suppression of blue light can improve visual function in patients with short tear break up time (BUT dry eye (DE.Twenty-two patients with short BUT DE (10 men, 12 women; mean age, 32.4 ± 6.4 years; age range, 23-43 years and 18 healthy controls (10 men, 8 women; mean age, 30.1 ± 7.4 years; age range, 20-49 years underwent functional visual acuity (VA examinations with and without wearing eyeglasses with 50% blue light blocked lenses. The functional VA parameters were starting VA, functional VA, and visual maintenance ratio.The baseline mean values (logarithm of the minimum angle of resolution, logMAR of functional VA and the visual maintenance ratio were significantly worse in the DE patients than in the controls (P 0.05. The DE patients had significant improvement in mean functional VA and visual maintenance ratio while wearing the glasses (P 0.05.Protecting the eyes from short-wavelength blue light may help to ameliorate visual impairment associated with tear instability in patients with DE. This finding represents a new concept, which is that the blue light exposure might be harmful to visual function in patients with short BUT DE.

  20. Optimasi Proses Spray Drying Pada Enkapsulasi Antosianin Ubi Ungu

    Directory of Open Access Journals (Sweden)

    Retno Yunilawati

    2018-04-01

    Full Text Available Teknologi proses spray drying banyak dilakukan pada enkapsulasi zat warna alam untuk aplikasi di industri. Pada penelitian ini dilakukan enkapsulasi antosianin ubi ungu dengan teknik spray drying. Tujuan dari penelitian ini adalah optimasi proses spray drying pada enkapsulasi antosianin ubi ungu. Optimasi proses dilakukan pada kondisi berbagai suhu inlet (150 °C sampai dengan 180 °C dan jumlah maltodekstrin sebagai carrier (5% sampai dengan 15%. Sebagai respon dilakukan pengukuran kadar air, absorbansi, dan kadar antosianin. Response Surface Methodology (RSM dengan metode Central Composite Design (CCD digunakan untuk analisis data optimasi. Hasil analisis menunjukkan bahwa suhu inlet dan persentase maltodekstrin berpengaruh secara signifikan terhadap kadar air, absorbansi, dan kadar antosianin total. Kondisi optimal didapatkan pada suhu inlet 166,96 °C dan maltodekstrin sebesar 5%. Pada kondisi ini dihasilkan serbuk antosianin ubi ungu dengan kadar air 4,79%; absorbansi 0,8827; dan kadar antosianin total 968,65 mg/kg.

  1. Drying characteristic, enzyme inactivation and browning pigmentation kinetics of controlled humidity-convective drying of banana slices

    Science.gov (United States)

    Sarpong, Frederick; Yu, Xiaojie; Zhou, Cunshan; Oteng-Darko, Patricia; Amenorfe, Leticia Peace; Wu, Bengang; Bai, Junwen; Ma, Haile

    2018-04-01

    Investigating the kinetics of enzyme activities and browning indexes in food are very essential in understanding the enzyme inactivation and browning pigmentation reaction during drying processing. In order to understand and predict accurately the enzyme inactivation and browning pigmentation of banana slices using Relative Humidity (RH)-convective hot air dryer aided by ultrasound (US) pretreatment, this study was conducted. Drying was carried out with 20 kHz frequency of US-pretreatment using three durations (10 20 and 30 min) and RH (10 20 and 30%) conditions at 70 °C and 2.0 m/s air velocity. The kinetic study of both enzyme inactivation and browning pigmentation results were compared to their relevance of fit in terms of coefficient of correlation (R2), the root mean square error (RMSE) and the reduced chi-square (χ 2). First order and second-order polynomial kinetic model fitted well for enzyme inactivation and browning indexes respectively. Both enzymes inactivation kinetics and enzymatic browning index (EBI) declined significantly (p drying time in all drying conditions and rate of decrease intensified in longer US-pretreatment duration and lower RH conditions. However, shorter US-pretreatment duration and higher RH conditions reduced the non- enzymatic browning index (NBI) significantly. Again, longer US-pretreatment duration and lower RH shortened the drying time but adversely created more microspores from the micrograph study. Longer US pretreatment and lower RH decrease significantly (p < 0.05) the L* and b* values whereas the a* values was increased.

  2. Increase of alcohol yield per ton of pulp

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, B N

    1957-01-01

    Digestion processes of cellulose were studied under production conditions. When the digestion was carried out with acid having 5.2% total SO/sub 2/ and 0.92% CaO, the concentration of total sugars in the spent liquor was 1.8 to 2.5%. When the acidity was reduced to 4.8% total SO/sub 2/ and 0.82% CaO, all other conditions being the same, the sugar concentration in the spent liquor increased to 3.0 to 3.7%. The importance of the acid strength and CaO content of the cooking liquor was further demonstrated at the end of 1955. At that time the total SO/sub 2/ in the acid rose to 8% while the amount of CaO remained practically the same-0.85 to 0.90%. These conditions permitted an increase in the amount of ships by 25 to 30%, which further changed the ratio CaO: wood and created conditions favorable for an improved yield of sugar. The increase in the activity of the acid was reflected favorably in the degree of hydrolysis of the hemicelluloses and in the degree to which the oligosaccharides or polysaccharides were hydrolyzed to simple sugars. At that time the yield of alcohol reached 53 1/ton of unbleached pulp. The process was further improved in 1956 by the use of successive washings; at the end of the digestion period the concentrated spent liquor was piped to the alcohol unit. The yield of alcohol reached 59.4 1/ton of pulp. Sugar recovery from the tank was 92.5% of that theoretically possible. Further improvements resulted by saturating the wood chips with acid under variable pressures. As a result, the base of the cooking acid was reduced to 0.7 to 0.72% and, at the end of the process the liquor contained 0.03 to 0.06% CaO instead of 0.2 to 0.18%. The alcohol yield/ton of pulp then rose to 66.8 l.

  3. Short-term degradation of air quality during major firework events in Delhi, India

    Science.gov (United States)

    Shivani; Gadi, Ranu; Saxena, Mohit; Sharma, Sudhir Kumar; Mandal, Tuhin Kumar

    2018-04-01

    The effect of firework events on air quality was assessed from ambient fine particulate matter (PM2.5) collected during the Diwali period in two consecutive years, i.e., November 2015 and October 2016. The extensive firework activities led to the short-term degradation of air quality during the Diwali days. PM2.5 samples were chemically characterised for elements, water-soluble ionic species, organic carbon (OC) and elemental carbon (EC). Ba, K, Sr, S, Mg and Na showed significant increases in concentration on Diwali days compared to pre-Diwali days which revealed their association with firecrackers. Concentration of SO4 2-, NO3 -, Cl-, K+ and NH4 + ions contributed to the increases in PM2.5 concentration on Diwali days. Higher OC/EC ratios indicated the formation of secondary organic carbon during the Diwali period. This study concludes that the high PM2.5 level during Diwali 2016 was a result of contribution from fireworks on the Diwali night, trans-regional movement of pollutants due to crop residue burning, low wind speed (0.15 m s-1), and high humidity. It was observed that short-term exposure to Diwali is plausible to generate 1.3% increase in non-carcinogenic hazard index due to elements Al and Ba during Diwali 2016, whereas no significant variation was observed for the carcinogenic risk due to Pb. However, in 2015, the increase in non-carcinogenic hazard index was appreciably lower as compared to 2016.

  4. Factory Acceptance Test Procedure Westinghouse 100 ton Hydraulic Trailer

    International Nuclear Information System (INIS)

    Aftanas, B.L.

    1994-01-01

    This Factory Acceptance Test Procedure (FAT) is for the Westinghouse 100 Ton Hydraulic Trailer. The trailer will be used for the removal of the 101-SY pump. This procedure includes: safety check and safety procedures; pre-operation check out; startup; leveling trailer; functional/proofload test; proofload testing; and rolling load test

  5. Computed tomographic analysis of vegetable during far infrared radiation drying process

    International Nuclear Information System (INIS)

    Maneechot, P.; Tojo, S.; Watanabe, K.

    2006-01-01

    Far Infrared Radiation (FIR) technology is widely used in the automotive industry to cure painted finishes during manufacturing. FIR drying is used not only in manufacturing but also in agricultural processing such as rice drying. At the present time, FIR drying technology has rarely been used for fruits and vegetables except in research laboratories. In this study, FIR drying and hot air convection drying were compared with respect to energy consumption and time requirement. The internal changes of the agricultural product were also observed during the FIR drying process. A Computed Tomographic (CT) scanner was employed for the observation of the tested material, carrot, and was used to analyze the structural deformation and the internal moisture distribution of the test material. CT data and the hardness of the sample were recorded at regular intervals during the drying experiment. For 200, 400 and 600W FIR drying, the maximum drying rates were 173, 459 and 724%d.b./hr respectively, and the required drying times were 26, 12 and 4.5 hours, respectively. The structure of the carrot sample shrank in accordance with the reduction of moisture content in 200W FIR drying as well as in hot air drying, whereas in 400W and 600W FIR drying the sample was dried without so much deformation

  6. Experimental program to determine maximum temperatures for dry storage of spent fuel

    International Nuclear Information System (INIS)

    Knox, C.A.; Gilbert, E.R.; White, G.D.

    1985-02-01

    Although air is used as a cover gas in some dry storage facilities, other facilities use inert cover gases which must be monitored to assure inertness of the atmosphere. Thus qualifying air as a cover gas is attractive for the dry storage of spent fuels. At sufficiently high temperatures, air can react with spent fuel (UO 2 ) at the site of cladding breaches that formed during reactor irradiation or during dry storage. The reaction rate is temperature dependent; hence the rates can be maintained at acceptable levels if temperatures are low. Tests with spent fuel are being conducted at Pacific Northwest Laboratory (PNL) to determine the allowable temperatures for storage of spent fuel in air. Tests performed with nonirradiated UO 2 pellets indicated that moisture, surface condition, gamma radiation, gadolinia content of the fuel pellet, and temperature are important variables. Tests were then initiated on spent fuel to develop design data under simulated dry storage conditions. Tests have been conducted at 200 and 230 0 C on spent fuel in air and 275 0 C in moist nitrogen. The results for nonirradiated UO 2 and published data for irradiated fuel indicate that above 230 0 C, oxidation rates are unacceptably high for extended storage in air. The tests with spent fuel will be continued for approximately three years to enable reliable extrapolations to be made for extended storage in air and inert gases with oxidizing constituents. 6 refs., 6 figs., 3 tabs

  7. ICARUS 600 ton: A status report

    CERN Document Server

    Vignoli, C; Badertscher, A; Barbieri, E; Benetti, P; Borio di Tigliole, A; Brunetti, R; Bueno, A; Calligarich, E; Campanelli, Mario; Carli, F; Carpanese, C; Cavalli, D; Cavanna, F; Cennini, P; Centro, S; Cesana, A; Chen, C; Chen, Y; Cinquini, C; Cline, D; De Mitri, I; Dolfini, R; Favaretto, D; Ferrari, A; Gigli Berzolari, A; Goudsmit, P; He, K; Huang, X; Li, Z; Lu, F; Ma, J; Mannocchi, G; Mauri, F; Mazza, D; Mazzone, L; Montanari, C; Nurzia, G P; Otwinowski, S; Palamara, O; Pascoli, D; Pepato, A; Periale, L; Petrera, S; Piano Mortari, Giovanni; Piazzoli, A; Picchi, P; Pietropaolo, F; Rancati, T; Rappoldi, A; Raselli, G L; Rebuzzi, D; Revol, J P; Rico, J; Rossella, M; Rossi, C; Rubbia, C; Rubbia, A; Sala, P; Scannicchio, D; Sergiampietri, F; Suzuki, S; Terrani, M; Ventura, S; Verdecchia, M; Wang, H; Woo, J; Xu, G; Xu, Z; Zhang, C; Zhang, Q; Zheng, S

    2000-01-01

    The goal of the ICARUS Project is the installation of a multi-kiloton LAr TPC in the underground Gran Sasso Laboratory. The programme foresees the realization of the detector in a modular way. The first step is the construction of a 600 ton module which is now at an advanced phase. It will be mounted and tested in Pavia in one year and then it will be moved to Gran Sasso for the final operation. The major cryogenic and purification systems and the mechanical components of the detector have been constructed and tested in a 10 m3 prototype. The results of these tests are here summarized.

  8. Effect of moisture and drying time on the bond strength of the one-step self-etching adhesive system

    Directory of Open Access Journals (Sweden)

    Yoon Lee

    2012-08-01

    Full Text Available Objectives To investigate the effect of dentin moisture degree and air-drying time on dentin-bond strength of two different one-step self-etching adhesive systems. Materials and Methods Twenty-four human third molars were used for microtensile bond strength testing of G-Bond and Clearfil S3 Bond. The dentin surface was either blot-dried or air-dried before applying these adhesive agents. After application of the adhesive agent, three different air drying times were evaluated: 1, 5, and 10 sec. Composite resin was build up to 4 mm thickness and light cured for 40 sec with 2 separate layers. Then the tooth was sectioned and trimmed to measure the microtensile bond strength using a universal testing machine. The measured bond strengths were analyzed with three-way ANOVA and regression analysis was done (p = 0.05. Results All three factors, materials, dentin wetness and air drying time, showed significant effect on the microtensile bond strength. Clearfil S3 Bond, dry dentin surface and 10 sec air drying time showed higher bond strength. Conclusions Within the limitation of this experiment, air drying time after the application of the one-step self-etching adhesive agent was the most significant factor affecting the bond strength, followed by the material difference and dentin moisture before applying the adhesive agent.

  9. Air Quality | Air Quality Planning & Standards | US EPA

    Science.gov (United States)

    2016-06-08

    Air pollution comes from many different sources: stationary sources such as factories, power plants, and smelters and smaller sources such as dry cleaners and degreasing operations; mobile sources such as cars, buses, planes, trucks, and trains; and naturally occurring sources such as windblown dust, and volcanic eruptions, all contribute to air pollution.

  10. Analysis of heat recovery from a spray dryer by recirculation of exhaust air

    International Nuclear Information System (INIS)

    Golman, Boris; Julklang, Wittaya

    2014-01-01

    Highlights: • We study a spray dryer with heat recovery by partial recirculation of exhaust air. • We examine effects of process parameters on energy efficiency and energy savings. • Decreasing drying air temperature and flow rate will increase energy efficiency. • Increasing recirculation ratio and slurry feed rate will increase energy efficiency. - Abstract: Model simulations were employed to investigate the influences of process parameters on the energy recovery in spray drying process that partially recycle the exhaust drying gas. The energy efficiency and energy saving were studied for various values of recirculation ratios with respect to the temperature and flow rate of the drying air, slurry feed rate and concentration of slurry in spray drying of advanced ceramic materials. As a result, significant gains in energy efficiency and energy saving were obtained for a spray drying system with high recirculation ratio of exhaust air. The high slurry feed rate and the low slurry concentration, inlet drying air temperature and drying air flow rate enhanced the energy efficiency of spray drying system. However, the high energy saving was obtained in spray dryers operating at low slurry feed rate and high slurry concentration

  11. Implications of\tenhanced\teffectiveness\tof\tvincristine\tsulfate/ε-viniferin combination\tcompared\tto\tvincristine\tsulfate\tonly\ton\tHepG2\tcells

    Directory of Open Access Journals (Sweden)

    Filiz\tÖzdemir

    2016-12-01

    Full Text Available Objective: This\tstudy\twas\tdesigned\tto\tinvestigate\tthe\teffects\tof\tε-viniferin\t(ε-VNF\ton\tthe\tmitochondrial\tpathway\tof\tapoptosis and\ton\tlate\tapoptosis\tin\tHepG2\tcell\tlines.\tTo\tobserve\tthese\teffects,\tε-VNF\tand\tvincristine\tsulfate\t(VNC,\tanti-cancer\tdrugs\tused for\ttreatment\ton\tHepG2\tcells,\twere\tadministered\teither\talone\tor\tin\tcombination\tat\tdifferent\ttime\tintervals. Methods:\tMitochondrial\tmembrane\tpotential\tchanges\tin\tthe\tcells\t(ΔΨm\twere\tevaluated\tusing\tcationic\tdye\tJC-1,\twhile\tBax,\tBcl- 2\texpression\tlevels\twith\tRT-PCR\tand\tcaspase-3\tactivity\twere\tanalyzed\tusing\ta\tkit.\tFor\tdetection\tof\tapoptotic\tactivity,\tan\tin\tsitu TUNEL\tassay\twas\tperformed. Results: When 98.3µM ε-VNF, 52.5µM VNC and the 11.25+15.8µM VNC+ε-VNF combination were compared with the control group,\tΔΨm\tchanges\tat\tthe\t6th\thour\twere\tfound\tto\tbe\t19.5%,\t5.5%,\t24.6%,\tand\t3.5%\t,\trespectively.\tThese\tfinding\tshow\tthat\tthe combination\tgroup\t(24.6%\tresulted\tin\tearly\tapoptosis\tof\tthe\tcell\tat\tthe\t6th\thour.\tBax\tmRNA\texpression\tincreased\tat\tthe\t24th hour in the VNC+ε-VNF group compared to control group (160%, and caspase-3 activation increased in the 1.25+15.8 µM[VNC+ε-VNF]\tgroup\tcompared\tto\tthe\tcontrol\tgroup\tat\tthe\t48th\thour.\tThe\tdetection\tof\tDNA\tfragments\tin\tHepG2\tcells\twithin 24\thours\tsuggests\tdirect\tapoptosis. Conclusion: These findings demonstrate that the doses administered to the VNC+ε-VNF combination group\twere\tlower than those\tadministered\tto\tgroups\tusing\tone\tagent\talone\t(e.g.\tVNC,\tthe\tresults\tof\twhich\treduce\tthe\tpossibility\tof\tadministering\ttoxic doses.

  12. Hazardous emissions, operating practices, and air regulations at industrial wood-fired facilities in Wisconsin

    International Nuclear Information System (INIS)

    Hubbard, A.J.

    1993-01-01

    Since October of 1988 the State of Wisconsin Department of Natural Resources has regulated over four hundred substances as hazardous air pollutants. The rule regulates new as well as existing sources of air pollution in Wisconsin. Consequently, all permits to operate an air pollution source in Wisconsin must address the hazardous air emissions potential of the source. While widely perceived as a clean-burning fuel, wood is often burned in a manner which clearly results in significant emissions of very hazardous air pollutants. Research conducted on a 20 million BTU per hour wood-fired spreader stoker boiler in northern Wisconsin showed that this boiler has the potential to emit 0.022 pound of benzene and 0.012 pound of formaldehyde per ton (lb/ton) of wood fired. Recent stack tests at more than a dozen other small industrial wood-fired facilities in Wisconsin show a range of formaldehyde emissions of 0.0007--0.1950 lb/ton. Work at Birchwood Lumber ampersand Veneer showed that the benzene and formaldehyde emission rates under good firing conditions are an order of magnitude lower than the benzene and formaldehyde emission rates under poor firing conditions. This finding has supported Wisconsin's regulatory approach of encouraging wood-fired facilities to enhance the quality of the combustion process as a technique to minimize the hazardous air pollution potential of industrial wood combustion. The Wisconsin strategy is to define open-quotes good combustion technologyclose quotes through easily measurable combustion parameters rather than emission standards. This paper presents several techniques in use in Wisconsin to comply with open-quotes good combustion technologyclose quotes for industrial wood-fired furnaces. These techniques include fuel blending overfire air, furnace insulation, and proper grate design

  13. 10'000 ton ALICE gets her UK-built "Brain"

    CERN Multimedia

    Maddock, Julia

    2007-01-01

    For one of the four LEP experiments, called ALICE, the process got a step closer last week when a crucial part of the 10'000-ton detector, the British-built Central Trigger Processor (CTP), was installed in the ALICE cavern, some 150 feet underground. (plus background information about ALICE) (2,5 pages)

  14. Shortness of Breath

    Science.gov (United States)

    ... filled with air (called pneumotho- rax), it will hinder expansion of the lung, resulting in shortness of ... of Chest Physi- cians. Shortness of Breath: Patient Education. http: / / www. onebreath. org/ document. doc? id= 113. ...

  15. Short-term pressure and temperature MSLB response analyses for large dry containment of the Maanshan nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Liang-Che, E-mail: lcdai@iner.gov.tw; Chen, Yen-Shu; Yuann, Yng-Ruey

    2014-12-15

    Highlights: • The GOTHIC code is used for the PWR dry containment pressure and temperature analysis. • Boundary conditions are hot standby and 102% power main steam line break accidents. • Containment pressure and temperature responses of GOTHIC are similar with FSAR. • The capability of the developed model to perform licensing calculation is assessed. - Abstract: Units 1 and 2 of the Maanshan nuclear power station are the typical Westinghouse three-loop PWR (pressurized water reactor) with large dry containments. In this study, the containment analysis program GOTHIC is adopted for the dry containment pressure and temperature analysis. Free air space and sump of the PWR dry containment are individually modeled as control volumes. The containment spray system and fan cooler unit are also considered in the GOTHIC model. The blowdown mass and energy data of the main steam line break (hot standby condition and various reactor thermal power levels) are tabulated in the Maanshan Final Safety Analysis Report (FSAR) 6.2 which could be used as the boundary conditions for the containment model. The calculated containment pressure and temperature behaviors of the selected cases are in good agreement with the FSAR results. In this study, hot standby and 102% reactor thermal power main steam line break accidents are selected. The calculated peak containment pressure is 323.50 kPag (46.92 psig) for hot standby MSLB, which is a little higher than the FSAR value of 311.92 kPag (45.24 psig). But it is still below the design value of 413.69 kPag (60 psig). The calculated peak vapor temperature inside the containment is 187.0 °C (368.59 F) for 102% reactor thermal power MSLB, which is lower than the FSAR result of 194.42 °C (381.95 F). The effects of the containment spray system and fan cooler units could be clearly observed in the GOTHIC analysis. The calculated containment pressure and temperature behaviors of the selected cases are in good agreement with the FSAR

  16. Short-term pressure and temperature MSLB response analyses for large dry containment of the Maanshan nuclear power station

    International Nuclear Information System (INIS)

    Dai, Liang-Che; Chen, Yen-Shu; Yuann, Yng-Ruey

    2014-01-01

    Highlights: • The GOTHIC code is used for the PWR dry containment pressure and temperature analysis. • Boundary conditions are hot standby and 102% power main steam line break accidents. • Containment pressure and temperature responses of GOTHIC are similar with FSAR. • The capability of the developed model to perform licensing calculation is assessed. - Abstract: Units 1 and 2 of the Maanshan nuclear power station are the typical Westinghouse three-loop PWR (pressurized water reactor) with large dry containments. In this study, the containment analysis program GOTHIC is adopted for the dry containment pressure and temperature analysis. Free air space and sump of the PWR dry containment are individually modeled as control volumes. The containment spray system and fan cooler unit are also considered in the GOTHIC model. The blowdown mass and energy data of the main steam line break (hot standby condition and various reactor thermal power levels) are tabulated in the Maanshan Final Safety Analysis Report (FSAR) 6.2 which could be used as the boundary conditions for the containment model. The calculated containment pressure and temperature behaviors of the selected cases are in good agreement with the FSAR results. In this study, hot standby and 102% reactor thermal power main steam line break accidents are selected. The calculated peak containment pressure is 323.50 kPag (46.92 psig) for hot standby MSLB, which is a little higher than the FSAR value of 311.92 kPag (45.24 psig). But it is still below the design value of 413.69 kPag (60 psig). The calculated peak vapor temperature inside the containment is 187.0 °C (368.59 F) for 102% reactor thermal power MSLB, which is lower than the FSAR result of 194.42 °C (381.95 F). The effects of the containment spray system and fan cooler units could be clearly observed in the GOTHIC analysis. The calculated containment pressure and temperature behaviors of the selected cases are in good agreement with the FSAR

  17. Mushroom drying with solar assisted heat pump system

    International Nuclear Information System (INIS)

    Şevik, Seyfi; Aktaş, Mustafa; Doğan, Hikmet; Koçak, Saim

    2013-01-01

    Highlights: • Experimental investigation of a simple and cost effective solar assisted heat pump system. • Developing of a computer program for a drying system with different scenarios by using PLC. • Obtained less energy input with high coefficients of performance of system and more quality products. • Determination of mushroom drying properties such as moisture content, moisture ratio and drying ratio. - Abstract: In this study, a simple and cost effective solar assisted heat pump system (SAHP) with flat plate collectors and a water source heat pump has been proposed. Mushroom drying was examined experimentally in the drying system. Solar energy (SE) system and heat pump (HP) system can be used separately or together. A computer program has been developed for the system. Drying air temperature, relative humidity, weight of product values, etc. were monitored and controlled with different scenarios by using PLC. This system is cheap, good quality and sustainable and it is modeled for good quality product and increased efficiency. Thus, products could be dried with less energy input and more controlled conditions. Mushrooms were dried at 45 °C and 55 °C drying air temperature and 310 kg/h mass flow rate. Mushrooms were dried from initial moisture content 13.24 g water/g dry matter (dry basis) to final moisture content 0.07 g water/g dry matter (dry basis). Mushrooms were dried by using HP system, SE system and SAHP system respectively at 250–220 min, at 270–165 min and at 230–190 min. The coefficients of performance of system (COP) are calculated in a range from 2.1 to 3.1 with respect to the results of experiments. The energy utilization ratios (EURs) were found to vary between 0.42 and 0.66. Specific moisture extraction rate (SMER) values were found to vary between 0.26 and 0.92 kg/kW h

  18. A rice husk gasifier for paddy drying

    International Nuclear Information System (INIS)

    Mirani, A.A.; Kalwar, S.A.; Ahmad, M.

    2013-01-01

    Due to energy crisis and constant increase in the price of fossil fuels, the world's trend changes to renewable sources of energy like solar, wind and biomass gasification. Substantial biomass potential is available in Pakistan in the form of agriculture or forest residue (rice straw, rice husk, cotton stalks, corn cobs, wood chips, wood saw, etc.). These can be best utilised for the production of producer gas or synthetic gas that can be used for drying of agricultural crops. The drying process is an important activity of post harvest processing for long-term storage. Rice husk is nowadays commonly used for biomass gasification and its heat content value is about 15MJ/kg. It constitutes about 30 percent of rice production. A rice husk gasifier was developed and evaluated on paddy drying at Japan International Cooperation Agency (JICA), Tsukuba International Center (TBIC), Japan. Rice husk gasifier has following major components; husk feeding system, ash chamber, burner, centrifugal fan, drying chamber, gasifier reactor, air duct and an electric motor of 0.37kW. The average drying plenum air temperature was recorded as 45 degree C during the drying process. The paddy 'IR 28' from initial moisture content of 24% was dried up to 14% moisture content for about 3.33h consuming 3kg/h of rice husk. The efficiency was found to be 58%. The rice husk gasifier can also be used for drying the fruits and vegetables, provided that heat exchanger should be attached with it. The overall performance of rice husk gasifier was satisfactory and will be beneficial for small scale farmers, food processors and millers as well. (author)

  19. Effectiveness of Combined Tear Film Therapy in Patients with Evaporative Dry Eye with Short Tear Film Breakup Time.

    Science.gov (United States)

    Kim, Yung Hui; Kang, Yeon Soo; Lee, Hyo Seok; Choi, Won; You, In Cheon; Yoon, Kyung Chul

    2017-10-01

    The aim of this study was to evaluate the effectiveness of combined tear film therapy targeted to aqueous, mucin, and lipid layers in patients with refractory evaporative dry eye (EDE) with short tear film breakup time (TBUT). The patients who had EDE with short TBUT and severe symptoms refractory to artificial tears were treated with hyaluronic acid (HA) 0.15% and diquafosol tetrasodium (DQS) 3% (Group 1), HA and carbomer-based lipid-containing eyedrops (Liposic EDO Gel, LPO) (Group 2), or HA, DQS, and LPO (Group 3). Ocular Surface Disease Index (OSDI) score, visual analog scale (VAS) symptom score, TBUT, Schirmer score, and corneal and conjunctival staining scores were evaluated, and noninvasive tear film breakup time (NIBUT) and tear meniscus height were measured using Keratograph ® 5 M before and 1 and 3 months after treatment. OSDI scores, VAS scores, TBUT, and NIBUT were improved at 1 and 3 months after treatment in all groups (all P film layers was most effective in improving ocular symptoms and tear film quality.

  20. Spray-drying nanocapsules in presence of colloidal silica as drying auxiliary agent: formulation and process variables optimization using experimental designs.

    Science.gov (United States)

    Tewa-Tagne, Patrice; Degobert, Ghania; Briançon, Stéphanie; Bordes, Claire; Gauvrit, Jean-Yves; Lanteri, Pierre; Fessi, Hatem

    2007-04-01

    Spray-drying process was used for the development of dried polymeric nanocapsules. The purpose of this research was to investigate the effects of formulation and process variables on the resulting powder characteristics in order to optimize them. Experimental designs were used in order to estimate the influence of formulation parameters (nanocapsules and silica concentrations) and process variables (inlet temperature, spray-flow air, feed flow rate and drying air flow rate) on spray-dried nanocapsules when using silica as drying auxiliary agent. The interactions among the formulation parameters and process variables were also studied. Responses analyzed for computing these effects and interactions were outlet temperature, moisture content, operation yield, particles size, and particulate density. Additional qualitative responses (particles morphology, powder behavior) were also considered. Nanocapsules and silica concentrations were the main factors influencing the yield, particulate density and particle size. In addition, they were concerned for the only significant interactions occurring among two different variables. None of the studied variables had major effect on the moisture content while the interaction between nanocapsules and silica in the feed was of first interest and determinant for both the qualitative and quantitative responses. The particles morphology depended on the feed formulation but was unaffected by the process conditions. This study demonstrated that drying nanocapsules using silica as auxiliary agent by spray drying process enables the obtaining of dried micronic particle size. The optimization of the process and the formulation variables resulted in a considerable improvement of product yield while minimizing the moisture content.

  1. Desorption isotherms, drying characteristics and qualities of glace tropical fruits undergoing forced convection solar drying

    Energy Technology Data Exchange (ETDEWEB)

    Jamradloedluk, Jindaporn; Wiriyaumpaiwong, Songchai [Mahasarakham Univ. Khamriang, Kantarawichai, Mahasarakham (Thailand)

    2008-07-01

    Solar energy, a form of sustainable energy, has a great potential for a wide variety of applications because it is abundant and accessible, especially for countries located in the tropical region. Drying process is one of the prominent techniques for utilization of solar energy. This research work proposes a forced convection solar drying of osmotically pretreated fruits viz. mango, guava, and pineapple. The fruit cubes with a dimension of 1cm x 1cm x 1cm were immersed in 35% w./w. sucrose solution prior to the drying process. Drying kinetics, color and hardness of the final products obtained from solar drying were investigated and compared with those obtained from open air-sun drying. Desorption isotherms of the osmosed fruits were also examined and five mathematical models were used to fit the desorption curves. Experimental results revealed that solar drying provided higher drying rate than natural sun drying. Color of glace fruit processed by solar drying was more intense, indicated by lower value of lightness and higher value of yellowness, than that processed by sun drying. Hardness of the products dehydrated by both drying methods, however, was not significantly different (p>0.05). Validation of the mathematical models developed showed that the GAB model was most effective for describing desorption isotherms of osmotically pretreated mango and pineapple whereas Peleg's model was most effective for describing desorption isotherms of osmotically pretreated guava. (orig.)

  2. Drying kinetics of RDF: Experimental investigation and modeling

    Directory of Open Access Journals (Sweden)

    Słomka-Polonis Karolina

    2018-01-01

    Full Text Available An experimental study was performed to determine the drying characteristics of an oversized fraction of RDF alternative fuel using a laboratory scale hot air dryer at a variety air temperatures and a constant air velocity. For this research the industrial RDF was derived from a Regional Municipal Waste Treatment Facility near the city of Kraków, Poland. The samples of RDF were prepared in two forms: ovesized (unmodified condition and shreded in a two-drum crusher. In addition, the RDF was sorted into three groups of samples: paper, plastic, textiles. Each form of RDF and each group of samples were dried in hot air dryer at temperatures of 50, 70 i 90 °C and a constant air velocity of 1,5 [m·s-1]. The loss of the the samples mass were measured in a continues manner until the equilibrum moisture content was reached. The effective moisture diffusivity [m2·s-1] and activation energies [kJ·mol-1] was amounted. The analysis of the course of moisture content change concludes that that the drying of the RDF alternative fuel occured mainly in the II period of the process during which the transport of water content was carried out by diffusion. And, to a lesser extent, with the surface heat transfer in II period. Based on the calculated data there was a model determined which presented the best possible matching of the course of moisture content change.

  3. Status of work at PNL supporting dry storage of spent fuel

    International Nuclear Information System (INIS)

    Cunningham, M.E.; McKinnon, M.A.; Michener, T.E.; Thomas, L.E.; Thornhill, C.K.

    1992-01-01

    Three projects related to dry storage of light-water reactor spent fuel are being conducted at Pacific Northwest Laboratory. Performance testing of six dry storage systems (four metal casks and two concrete storage systems) has been completed and results compiled. Two computer codes for predicting spent fuel and storage system thermal performance, COBRA-SFS and HYDRA-II, have been developed and have been reviewed by the US Nuclear Regulatory Commission. Air oxidation testing of spent fuel was conducted from 1984 through 1990 to obtain data to support recommendations of temperature-time limits for air dry storage for periods up to 40 years

  4. Does urban vegetation mitigate air pollution in northern conditions?

    International Nuclear Information System (INIS)

    Setälä, Heikki; Viippola, Viljami; Rantalainen, Anna-Lea; Pennanen, Arto; Yli-Pelkonen, Vesa

    2013-01-01

    It is generally accepted that urban vegetation improves air quality and thereby enhances the well-being of citizens. However, empirical evidence on the potential of urban trees to mitigate air pollution is meager, particularly in northern climates with a short growing season. We studied the ability of urban park/forest vegetation to remove air pollutants (NO 2 , anthropogenic VOCs and particle deposition) using passive samplers in two Finnish cities. Concentrations of each pollutant in August (summer; leaf-period) and March (winter, leaf-free period) were slightly but often insignificantly lower under tree canopies than in adjacent open areas, suggesting that the role of foliage in removing air pollutants is insignificant. Furthermore, vegetation-related environmental variables (canopy closure, number and size of trees, density of understorey vegetation) did not explain the variation in pollution concentrations. Our results suggest that the ability of urban vegetation to remove air pollutants is minor in northern climates. -- Highlights: ► The ability of northern urban vegetation to remove air pollutants is minor. ► Vegetation-related environmental variables had no effect on air pollution levels. ► The ability of vegetation to clean air did not differ between summer and winter. ► Dry deposition passive samplers proved applicable in urban air pollution study. -- The ability of urban vegetation to remove air pollutants seems to be minor in northern climates

  5. Comportement en flexion des bétons fibrés sous chargement cyclique

    Directory of Open Access Journals (Sweden)

    Boulekbache Bensaid

    2014-04-01

    Full Text Available Ce papier présente les résultats d’une étude expérimentale sur le comportement en flexion des bétons de fibres métalliques. On étudie l’effet de la rhéologie du béton sur l’orientation des fibres et l’influence de l’orientation sur les propriétés mécaniques. La rigidité de l’ancrage des fibres étudiée par les essais cycliques est liée aux caractéristiques rhéologiques et mécaniques de la matrice. Les résultats montrent que la fluidité des bétons est un paramètre essentiel de l’orientation des fibres. Dès lors que l’on obtient une orientation dans le sens de l’efficacité mécanique, la résistance à la flexion est nettement améliorée.

  6. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional...... mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have...... not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical...

  7. Energy and exergy analyses of solar drying process of pistachio

    Energy Technology Data Exchange (ETDEWEB)

    Midilli, A [University of Nigde (Turkey). Dept. of Mechanical Engineering; Kucuk, H [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Mechanical Engineering

    2003-05-01

    This paper is concerned with the energy and exergy analyses of the drying process of shelled and unshelled pistachios using a solar drying cabinet. Using the first law of thermodynamics, energy analysis was carried to estimate the amounts of energy gained from solar air collectors and the ratios of energy utilization. However, exergy analysis was accomplished to determine the location, type, and magnitude of exergy losses during the solar drying process by applying the second law of thermodynamics. It was deduced that the exergy losses took place mostly in the 15th shelf where the available energy was less utilized. Moreover, the shelled and unshelled pistachios are sufficiently dried in the ranges between 40 and 60{sup o}C and 37 and 62% of relative humidity at 1.23 m s{sup -1} of drying air velocity in 6 h despite the exergy losses of 0.15-3.08 kJ kg{sup -1}. (Author)

  8. Controlling a hurricane by altering its internal climate

    Science.gov (United States)

    Mardhekar, D.

    2010-09-01

    Atmospheric hazards, like the fury of a hurricane, can be controlled by altering its internal climate. The hurricane controlling technique suggested is eco-friendly, compatible with hurricane size, has a sound scientific base and is practically possible. The key factor is a large scale dilution of the hurricane fuel, vapour, in the eye wall and spiral rain bands where condensation causing vapor volume reduction (a new concept which can be explained by Avogadro's law) and latent heat release drive the storm. This can be achieved by installing multiple storage tanks containing dry liquefied air on the onshore and offshore coastal regions and islands, preferably underground, in the usual path of a hurricane. Each storage tank is designed to hold and release dry liquefied air of around 100,000 tons. Satellite tracking of hurricanes can locate the eye wall and the spiral rain bands. The installed storage tanks coming under these areas will rapidly inject dry air in huge quantities thereby diluting the vapour content of the vapour-rich air in the eye wall and in the spiral rain bands. This will result in reduced natural input of vapour-rich air, reduced release of latent heat, reduced formation of the low pressure zone due to condensation and volume reduction of the vapor, expansion of the artificially introduced dry air as it goes up occupying a larger space with the diluted fuel, absorption of energy from the system by low temperature of the artificially introduced air. It will effect considerable condensation of the vapor near the sea surface thus further starving the hurricane of its fuel in its engine. Seeding materials, or microscopic dust as suggested by Dr. Daniel Rosenfeld in large quantities may also be introduced via the flow of the injected dry air in order to enhance the hurricane controlling ability. All the above factors are in favour of retarding the hurricane's wind speed and power. The sudden weakening of hurricane Lili was found to be partially caused

  9. Improvement in greenhouse solar drying using inclined north wall reflection

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab (India); Arora, Sadhna [Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab (India)

    2009-09-15

    A conventional greenhouse solar dryer of 6 m{sup 2} x 4 m{sup 2} floor area (east-west orientation) was improved for faster drying using inclined north wall reflection (INWR) under natural as well as forced convection mode. To increase the solar radiation availability onto the product (to be dried) during extreme summer months, a temporary inclined wall covered with aluminized reflector sheet (of 50 {mu}m thickness and reflectance 0.93) was raised inside the greenhouse just in front of the vertical transparent north wall. By doing so, product fully received the reflected beam radiation (which otherwise leaves through the north wall) in addition to the direct total solar radiation available on the horizontal surface during different hours of drying. The increment in total solar radiation input enhanced the drying rate of the product by increasing the inside air and crop temperature of the dryer. Inclination angle of the reflective north wall with vertical ({beta}) was optimized for various selective widths of the tray W (1.5, 2, 2.5 and 3 m) and for different realistic heights of existing vertical north wall (h) at 25 N, 30 N and 35 N latitudes (hot climatic zones). Experimental performance of the improved dryer was tested during the month of May 2008 at Ludhiana (30.56 N) climatic conditions, India by drying bitter gourd (Momordica charantia Linn) slices. Results showed that by using INWR under natural convection mode of drying, greenhouse air and crop temperature increased by 1-6.7 C and 1-4 C, respectively, during different drying hours as compared to, when INWR was not used and saved 13.13% of the total drying time. By using INWR under forced convection mode of drying, greenhouse air and crop temperature increased by 1-4.5 C and 1-3 C, respectively, during different drying hours as compared to, when INWR was not used and saved 16.67% of the total drying time. (author)

  10. Development of a dynamic drying model for for a combustion grate; Framtagande av en dynamisk torkmodell foer en foerbraenningsrost

    Energy Technology Data Exchange (ETDEWEB)

    Broden, Henrik; Ramstroem, Erik [TPS Termiska Processer AB, Nykoeping (Sweden)

    2005-02-01

    mainly transported by convection. This model exhibit the same difficulty as the second model maintaining a burning char layer on the topside. A number of control system step responses have been calculated. The results show that control actions, which but comprise grate feeding only temporarily changes the fuel bed extension. After a course of curving in, the bed take in a steady state, which is almost identical to the initial position. The step answer analysis indicates that actions, which also include changes in primary air stoichiometry are more efficient methods to permanently change the bed extension and course of drying. By combining combustion theory with knowledge on fuel bed feeding the project has created a novel tool to estimate the short and long term consequences of control actions during grate combustion. The primary field of application for the model in its present design is step answer analysis.

  11. Dry fractionation for production of functional pea protein concentrates

    NARCIS (Netherlands)

    Pelgrom, P.J.M.; Vissers, A.M.; Boom, R.M.; Schutyser, M.A.I.

    2013-01-01

    Dry milling in combination with air classification was evaluated as an alternative to conventional wet extraction of protein from yellow field peas (Pisum sativum). Major advantages of dry fractionation are retention of native functionality of proteins and its lower energy and water use. Peas were

  12. Freeze-drying wet digital prints: An option for salvage?

    International Nuclear Information System (INIS)

    Juergens, M C; Schempp, N

    2010-01-01

    On the occasion of the collapse of the Historical Archive of the City of Cologne in March 2009 and the ensuing salvage effort, questions were raised about the use of freeze-drying for soaked digital prints, a technique that has not yet been evaluated for these materials. This study examines the effects of immersion, air-drying, drying in a blotter stack, freezing and freeze-drying on 35 samples of major digital printing processes. The samples were examined visually before, during and after testing; evaluation of the results was qualitative. Results show that some prints were already damaged by immersion alone (e.g. bleeding inks and soluble coatings) to the extent that the subsequent choice of drying method made no significant difference any more. For those samples that did survive immersion, air-drying proved to be crucial for water-sensitive prints, since any contact with the wet surface caused serious damage. Less water-sensitive prints showed no damage throughout the entire procedure, regardless of drying method. Some prints on coated media suffered from minor surface disruption up to total delamination of the surface coating due to the formation of ice crystals during shock-freezing. With few exceptions, freeze-drying did not cause additional damage to any of the prints that hadn't already been damaged by freezing. It became clear that an understanding of the process and materials is important for choosing an appropriate drying method.

  13. Techno-economic analysis of a roof-integrated solar air heating system for drying fruit and vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Sreekumar, A. [Dept. of Physics, Cochin University of Science and Technology, Kochi 682 022 (India)

    2010-11-15

    The solar air heater was 46 m{sup 2} and recorded a maximum temperature of 76.6 C. The dryer was loaded with 200 kg of fresh pineapple slices 5 mm thick. The initial moisture content of 82% was reduced to the desired level (<10%) within 8 h. The performance of the dryer was analyzed in detail by three methods namely annualized cost, present worth of annual savings, and present worth of cumulative savings. The cost of drying 1 kg pineapple worked out to Rs. 11 which was roughly half of that of an electric dryer. The payback period worked out to 0.54 year, much less than the estimated life of the system (20 years). (author)

  14. Techno-economic analysis of a roof-integrated solar air heating system for drying fruit and vegetables

    International Nuclear Information System (INIS)

    Sreekumar, A.

    2010-01-01

    The solar air heater was 46 m 2 and recorded a maximum temperature of 76.6 deg. C. The dryer was loaded with 200 kg of fresh pineapple slices 5 mm thick. The initial moisture content of 82% was reduced to the desired level (<10%) within 8 h. The performance of the dryer was analyzed in detail by three methods namely annualized cost, present worth of annual savings, and present worth of cumulative savings. The cost of drying 1 kg pineapple worked out to Rs. 11 which was roughly half of that of an electric dryer. The payback period worked out to 0.54 year, much less than the estimated life of the system (20 years).

  15. Effects of Temperature and Slice Thickness on Drying Kinetics of Pumpkin Slices

    OpenAIRE

    Kongdej LIMPAIBOON

    2011-01-01

    Dried pumpkin slice is an alternative crisp food product. In this study, the effects of temperature and slice thickness on the drying characteristics of pumpkin were studied in a lab-scale tray dryer, using hot air temperatures of 55, 60 and 65 °C and 2, 3 and 4 mm slice thickness at a constant air velocity of 1.5 m/s. The initial moisture content of the pumpkin samples was 900.5 % (wb). The drying process was carried out until the final moisture content of product was 100.5 % (wb). The resul...

  16. Applied molecular simulations over FER-, TON- and AEL-type zeolites

    NARCIS (Netherlands)

    Domokos, L.; Lefferts, Leonardus; Seshan, Kulathuiyer; Lercher, J.A.

    2001-01-01

    Interaction and transport of representative (un)saturated hydrocarbon molecules involved in the proposed reaction network of n-butene isomerization in zeolites FER, TON, and AEL have been studied by classic molecular modeling calculations. Docking of the guest molecules into the zeolite frameworks

  17. Short term effect of air pollution, noise and heat waves on preterm births in Madrid (Spain).

    Science.gov (United States)

    Arroyo, Virginia; Díaz, Julio; Ortiz, Cristina; Carmona, Rocío; Sáez, Marc; Linares, Cristina

    2016-02-01

    Preterm birth (PTB) refers to delivery before 37 weeks of gestation and represents the leading cause of early-life mortality and morbidity in developed countries. PTB can lead to serious infant health outcomes. The etiology of PTB remains uncertain, but epidemiologic studies have consistently shown elevated risks with different environmental variables as traffic-related air pollution (TRAP). The aim of the study was to evaluate with time series methodology the short-term effect of air pollutants, noise levels and ambient temperature on the number of births and preterm births occurred in Madrid City during the 2001-2009 period. A time-series analysis was performed to assess the short term impact of daily mean concentrations (µg/m(3)) of PM2.5 and PM10, O3 and NO2. Measurements of Acoustic Pollution in dB(A) analyzed were: Leqd, equivalent diurnal noise level and Leqn, equivalent nocturnal noise level. Maximum and Minimum daily temperature (°C), mean Humidity in the air (%) and Atmospheric Pressure (HPa), were included too. Linear trends, seasonality, as well as the autoregressive nature of the series itself were controlled. We added as covariate the day of the week too. Autoregressive over-dispersed Poisson regression models were performed and the environmental variables were included with short-term lags (from 0 to 7 days) in reference to the date of birth. Firstly, simple models for the total number of births and preterm births were done separately. In a second stage, a model for total births adjusted for preterm births was performed. A total of 298,705 births were analyzed. The results of the final models were expressed in relative risks (RRs) for interquartile increase. We observed evidence of a short term effect at Lag 0, for the following environmental variables analyzed, PM2.5 (RR: 1.020; 95% CI:(1.008 1.032)) and O3 (RR: 1.012; 95% CI:(1.002 1.022)) concentrations and Leqd (RR: 1.139; 95% CI:( (1.124 1.154)) for the total number of births, and besides

  18. Effect of Drying Method on the Permeability Coefficient of Oak Wood (Quercus infactoria

    Directory of Open Access Journals (Sweden)

    Shuboo Salehpour

    2014-05-01

    Full Text Available In this study, the effect of drying method on the permeability coefficient of the oak wood (Quercus infectoria Oliv was studied. Freshly-cut logs of oak were prepared from Oureman, the east area of Kourdistan in Iran. Then, boards with nominal thickness of 6 cm were cut. The boards were dried using two methods. In the first method, the boards were air dried to the moisture content close to FSP for 45 days and then they were kiln dried using T5-D1 schedule. In the second method, the boards were dried from green condition to the final moisture content of 10% using T5-D1 schedule. Then, the permeability coefficient in the transverse and longitudinal directions in both heartwood and sapwood regions was measured, separately. Results showed that the permeability of oak boards dried by kiln drying method both in the transverse and longitudinal directions and also in the heartwood and sapwood regions was greater than that of those dried by the combined method (air drying + kiln drying.

  19. Improved drying rate diagnostics for saturated fuel debris at the INEEL

    International Nuclear Information System (INIS)

    Childs, K.; Christensen, A.

    1999-01-01

    A fuel canning station (FCS) has been operated for ∼2 yr to prepare for the dry storage of a variety of spent reactor fuels stored in pools at the Idaho National Engineering and Environmental Laboratory (INEEL). The FCS dewaters the fuel and then passivates possibly pyrophoric components in the fuel. Fuel-loaded canisters are placed into a heated insert, the canister is connected to a vacuum system, and the fuel is heated under a vacuum to remove the water. The dewatering system must also verify that the water was removed. The dryness criteria state that the canister pressure shall not exceed a defined pressure for a specified isolation time. Dewatering did not work well for defected TRIGA elements that had corroded in pool storage, leaving the intact fuel meat mixed with a bed of fines from metal oxides and from sludge that continuously accumulated within the pool. Dewatering these cans proved to be very time consuming. Fueled canisters were heated to 60 C and evacuated between 5 and 10 torr. At these conditions, intact fuels were rapidly dried (<10 h). TRIGA drying periods extended to 9 days. Dryness was qualitatively monitored using the canister pressure-control valve position. The valve closes as the gas flow rate declines, providing an indication that drying is complete. However, the valve remained open when drying TRIGA fuel, leaving no indication of dryness. In addition, dryness could not be verified because the canister pressure exceeded the defined pressure during isolation. Air leakage into the evacuated canister prevented the dryness from being verified. Air in-leakage and water vapor cannot easily be discriminated by the aforementioned procedures. Because the canister design does not seal above atmospheric pressure, a drying temperature that yielded a vapor pressure less than atmospheric pressure was chosen. A sufficiently long isolation test could then determine if air was accumulating in the canister; however, the low temperature reduced the drying

  20. Response of Physiological Growth Indices and Bulb Dry Yield of Onion (Allium cepa L. Genotypes to Priming and Seed Size

    Directory of Open Access Journals (Sweden)

    M. Izadkhah

    2016-02-01

    randomized complete block design with three replications. Experiment treatments included priminig at four levels: hydropriming, osmopriming (in %2KNO3, priminig with falomin amino acid (in 2% and control (without priming. Seed samples of the two cultivars were sieved by slotted screens and placed into three groups of seed diameter size: small, medium and large and cultivars at two levels: Red Azarshahr and Zarghun. The physiological growth indices such as total dry matter, leaf area index, crop growth rate, net assimilation rate, bulb growth rate and bulb fresh and dry yield were studied. Results and Discussion Results of field experiment showed that seed priming improved growth indices such as dry matter accumulation (DMA, crop growth rate (CGR, net assimilation rate (NAR, relative growth rate (RGR, bulb growth rate (BGR and leaf aria index (LAI in both cultivars. The highest bulb fresh, dry yield and dry matter percentage (54400, 6800 kg/ha and11/80 % belonged to priminig with folammine amino acid, respectively. The results of growth analysis indicated that the maximum and minimum growth indices values were obtained from large and small seeds, respectively. Mean comparison showed that the highest bulb fresh yield (53.26 ton/ha, bulb dry yield (9.95 ton/ha and bulb dry matter (11.47 % were achieved from large seeds. Mean comparison indicated that the highest bulb fresh yield (43.40 ton/ha, bulb dry yield (5.43 ton/ha and bulb dry matter (11.47 % were observed in Red Azarshahr. Conclusions Seed priming treatments improved bulb fresh and dry yield, total dry matter, leaf area index, crop growth rate, bulb growth rate, relative growth rate and net assimilation rate as compared to the unprimed. Among the treatments, seed priming with Falomin Amino Acid 2% was more effective than the potassium nitrite 2% and hydropriming. Large seed size significantly increased the bulb fresh and dry yield and physiological growth indices. The highest bulb fresh and dry yield, total dry matter

  1. Gridded emission inventory of short-chain chlorinated paraffins and its validation in China.

    Science.gov (United States)

    Jiang, Wanyanhan; Huang, Tao; Mao, Xiaoxuan; Wang, Li; Zhao, Yuan; Jia, Chenhui; Wang, Yanan; Gao, Hong; Ma, Jianmin

    2017-01-01

    China produces approximately 20%-30% of the total global chlorinated paraffins (CPs). The establishment of a short-chain CP (SCCP) emission inventory is a significant step toward risk assessment and regulation of SCCPs in China and throughout the globe. This study developed a gridded SCCPs emission inventory with a 1/4° longitude by 1/4° latitude resolution from 2008 to 2012 for China, which was based on the total annual CPs emissions for the nation. The total national SCCPs emission during this 5-year period was 5651.5 tons. An additive in metal cutting fluids was a major emission source in China, contributing 2680.2 tons to the total atmospheric emissions of SCCPs from 2008 to 2012, followed by the production of CPs (2281.8 tons), plasticizers (514.3 tons), flame retardants (108.6 tons), and net import (66.6 tons). Most of these emission sources are located along the eastern seaboard of China and southern China. A coupled atmospheric transport model was employed to simulate environmental contamination by SCCPs using the gridded emission inventory of SCCPs from 2008 to 2012 as the model initial conditions. Simulated atmospheric and soil concentrations were compared with field monitoring data to validate the emission inventory. The results showed good consistency between modeled and field sampling data, supporting the reliability and credibility of the gridded SCCPs emission inventory that was developed in the present study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Validation of drying models and rehydration characteristics of betel (Piper betel L.) leaves.

    Science.gov (United States)

    Balasubramanian, S; Sharma, R; Gupta, R K; Patil, R T

    2011-12-01

    Effect of temperature on drying behaviour of betel leaves at drying air temperatures of 50, 60 and 70°C was investigated in tunnel as well as cabinet dryer. The L* and b* values increased whereas, a* values decreased, as the drying air temperature increased from 50 to 70°C in both the dryers, but the colour values remained higher for cabinet dryer than tunnel dryer in all cases. Eleven different drying models were compared according to their coefficients of determination (R(2)), root mean square error (RMSE) and chi square (χ (2)) to estimate drying curves. The results indicated that, logarithmic model and modified Page model could satisfactorily describe the drying curve of betel leaves for tunnel drying and cabinet dryer, respectively. In terms of colour quality, drying of betel leaves at 60°C in tunnel dryer and at 50°C in cabinet dryer was found optimum whereas, rehydration at 40°C produced the best acceptable product.

  3. Study of short atmospheric pressure dc glow microdischarge in air

    Science.gov (United States)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  4. Estimating Air Pollution Removal Through an Analysis of Vegetation Communities in Government Canyon State Natural Area

    Science.gov (United States)

    Medrano, Nicolas W.

    Ambient air pollution is a major issue in urban environments, causing negative health impacts and increasing costs for metropolitan economies. Vegetation has been shown to remove these pollutants at a substantial rate. This study utilizes the i-Tree Eco (UFORE) and i-Tree Canopy models to estimate air pollution removal services provided by trees in Government Canyon State Natural Area (GCSNA), an approximately 4,700 hectare area in San Antonio, Texas. For i-Tree Eco, a stratified project of the five prominent vegetation types was completed. A comparison of removal services provided by vegetation communities indicated there was no significant difference in removal rates. Total pollution removal of GCSNA was estimated to be 239.52 metric tons/year at a rate of 64.42 kg/ha of tree cover/year. By applying this value to the area within Bexar County, Texas belonging to the Balcones Canyonlands ecoregion, it was determined that for 2013 an estimated 2,598.45 metric tons/year of air pollution was removed at a health value to society of 19.4 million. This is a reduction in pollution removal services since 2003, in which 3,050.35 metric tons/year were removed at a health value of 22.8 million. These results suggest urban sprawl taking place in San Antonio is reducing air pollution removal services provided by trees.

  5. Balancing mechanical strength with bioactivity in chitosan-calcium phosphate 3D microsphere scaffolds for bone tissue engineering: air- vs. freeze-drying processes.

    Science.gov (United States)

    Nguyen, D T; McCanless, J D; Mecwan, M M; Noblett, A P; Haggard, W O; Smith, R A; Bumgardner, J D

    2013-01-01

    The objective of this study was to evaluate the potential benefit of 3D composite scaffolds composed of chitosan and calcium phosphate for bone tissue engineering. Additionally, incorporation of mechanically weak lyophilized microspheres within those air-dried (AD) was considered for enhanced bioactivity. AD microsphere, alone, and air- and freeze-dried microsphere (FDAD) 3D scaffolds were evaluated in vitro using a 28-day osteogenic culture model with the Saos-2 cell line. Mechanical testing, quantitative microscopy, and lysozyme-driven enzymatic degradation of the scaffolds were also studied. FDAD scaffold showed a higher concentration (p < 0.01) in cells per scaffold mass vs. AD constructs. Collagen was ∼31% greater (p < 0.01) on FDAD compared to AD scaffolds not evident in microscopy of microsphere surfaces. Alternatively, AD scaffolds demonstrated a superior threefold increase in compressive strength over FDAD (12 vs. 4 MPa) with minimal degradation. Inclusion of FD spheres within the FDAD scaffolds allowed increased cellular activity through improved seeding, proliferation, and extracellular matrix production (as collagen), although mechanical strength was sacrificed through introduction of the less stiff, porous FD spheres.

  6. The short-term effects of air pollutants on respiratory disease mortality in Wuhan, China: comparison of time-series and case-crossover analyses.

    Science.gov (United States)

    Ren, Meng; Li, Na; Wang, Zhan; Liu, Yisi; Chen, Xi; Chu, Yuanyuan; Li, Xiangyu; Zhu, Zhongmin; Tian, Liqiao; Xiang, Hao

    2017-01-13

    Few studies have compared different methods when exploring the short-term effects of air pollutants on respiratory disease mortality in Wuhan, China. This study assesses the association between air pollutants and respiratory disease mortality with both time-series and time-stratified-case-crossover designs. The generalized additive model (GAM) and the conditional logistic regression model were used to assess the short-term effects of air pollutants on respiratory disease mortality. Stratified analyses were performed by age, sex, and diseases. A 10 μg/m 3 increment in SO 2 level was associated with an increase in relative risk for all respiratory disease mortality of 2.4% and 1.9% in the case-crossover and time-series analyses in single pollutant models, respectively. Strong evidence of an association between NO 2 and daily respiratory disease mortality among men or people older than 65 years was found in the case-crossover study. There was a positive association between air pollutants and respiratory disease mortality in Wuhan, China. Both time-series and case-crossover analyses consistently reveal the association between three air pollutants and respiratory disease mortality. The estimates of association between air pollution and respiratory disease mortality from the case-crossover analysis displayed greater variation than that from the time-series analysis.

  7. Development of Solar Drying Model for Selected Cambodian Fish Species

    OpenAIRE

    Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan

    2014-01-01

    A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h...

  8. Effects of drying method, storage period and carbon: nitrogen ratio ...

    African Journals Online (AJOL)

    Taghwo

    2012-12-03

    Dec 3, 2012 ... African Journal of Environmental Science and Technology Vol. 6(12), pp. .... Drying method 2 (method 2) involved air drying field- fresh soil ... then packed in polyethylene bags and stored at -10°C until inorganic N extraction ...

  9. Factors affecting viability of Bifidobacterium bifidum during spray drying.

    Science.gov (United States)

    Shokri, Zahra; Fazeli, Mohammad Reza; Ardjmand, Mehdi; Mousavi, Seyyed Mohammad; Gilani, Kambiz

    2015-01-25

    There is substantial clinical data supporting the role of Bifidobacterium bifidum in human health particularly in benefiting the immune system and suppressing intestinal infections. Compared to the traditional lyophilization, spray-drying is an economical process for preparing large quantities of viable microorganisms. The technique offers high production rates and low operating costs but is not usually used for drying of substances prone to high temperature. The aim of this study was to establish the optimized environmental factors in spray drying of cultured bifidobacteria to obtain a viable and stable powder. The experiments were designed to test variables such as inlet air temperature, air pressure and also maltodextrin content. The combined effect of these variables on survival rateand moisture content of bacterial powder was studied using a central composite design (CCD). Sub-lethal heat-adaptation of a B. bifidum strain which was previously adapted to acid-bile-NaCl led to much more resistance to high outlet temperature during spray drying. The resistant B. bifidum was supplemented with cost friendly permeate, sucrose, yeast extract and different amount of maltodextrin before it was fed into a Buchi B-191 mini spray-dryer. Second-order polynomials were established to identify the relationship between the responses andthe three variables. Results of verification experiments and predicted values from fitted correlations were in close agreement at 95% confidence interval. The optimal values of the variables for maximum survival and minimum moisture content of B. bifidum powder were as follows: inlet air temperature of 111.15°C, air pressure of 4.5 bar and maltodextrin concentration of 6%. Under optimum conditions, the maximum survival of 28.38% was achieved while moisture was maintained at 4.05%. Viable and cost effective spray drying of Bifidobacterium bifidum could be achieved by cultivating heat and acid adapted strain into the culture media containing

  10. Fuzzy logic, artificial neural network and mathematical model for prediction of white mulberry drying kinetics

    Science.gov (United States)

    Jahedi Rad, Shahpour; Kaveh, Mohammad; Sharabiani, Vali Rasooli; Taghinezhad, Ebrahim

    2018-05-01

    The thin-layer convective- infrared drying behavior of white mulberry was experimentally studied at infrared power levels of 500, 1000 and 1500 W, drying air temperatures of 40, 55 and 70 °C and inlet drying air speeds of 0.4, 1 and 1.6 m/s. Drying rate raised with the rise of infrared power levels at a distinct air temperature and velocity and thus decreased the drying time. Five mathematical models describing thin-layer drying have been fitted to the drying data. Midlli et al. model could satisfactorily describe the convective-infrared drying of white mulberry fruit with the values of the correlation coefficient (R 2=0.9986) and root mean square error of (RMSE= 0.04795). Artificial neural network (ANN) and fuzzy logic methods was desirably utilized for modeling output parameters (moisture ratio (MR)) regarding input parameters. Results showed that output parameters were more accurately predicted by fuzzy model than by the ANN and mathematical models. Correlation coefficient (R 2) and RMSE generated by the fuzzy model (respectively 0.9996 and 0.01095) were higher than referred values for the ANN model (0.9990 and 0.01988 respectively).

  11. Short-Term Exposure to Ambient Air Pollution and Biomarkers of Systemic Inflammation: The Framingham Heart Study.

    Science.gov (United States)

    Li, Wenyuan; Dorans, Kirsten S; Wilker, Elissa H; Rice, Mary B; Ljungman, Petter L; Schwartz, Joel D; Coull, Brent A; Koutrakis, Petros; Gold, Diane R; Keaney, John F; Vasan, Ramachandran S; Benjamin, Emelia J; Mittleman, Murray A

    2017-09-01

    The objective of this study is to examine associations between short-term exposure to ambient air pollution and circulating biomarkers of systemic inflammation in participants from the Framingham Offspring and Third Generation cohorts in the greater Boston area. We included 3996 noncurrent smoking participants (mean age, 53.6 years; 54% women) who lived within 50 km from a central air pollution monitoring site in Boston, MA, and calculated the 1- to 7-day moving averages of fine particulate matter (diameterpollution was associated with higher levels of C-reactive protein, interleukin-6, and tumor necrosis factor receptor 2 but not fibrinogen or tumor necrosis factor α in individuals residing in the greater Boston area. © 2017 American Heart Association, Inc.

  12. MATHEMATICAL MODELING OF ORANGE SEED DRYING KINETICS

    Directory of Open Access Journals (Sweden)

    Daniele Penteado Rosa

    2015-06-01

    Full Text Available Drying of orange seeds representing waste products from juice processing was studied in the temperatures of 40, 50, 60 and 70 °C and drying velocities of 0.6, 1.0 and 1.4 m/s. Experimental drying kinetics of orange seeds were obtained using a convective air forced dryer. Three thin-layer models: Page model, Lewis model, and the Henderson-Pabis model and the diffusive model were used to predict the drying curves. The Henderson-Pabis and the diffusive models show the best fitting performance and statistical evaluations. Moreover, the temperature dependence on the effective diffusivity followed an Arrhenius relationship, and the activation energies ranging from 16.174 to 16.842 kJ/mol

  13. Hybrid response surface methodology-artificial neural network optimization of drying process of banana slices in a forced convective dryer.

    Science.gov (United States)

    Taheri-Garavand, Amin; Karimi, Fatemeh; Karimi, Mahmoud; Lotfi, Valiullah; Khoobbakht, Golmohammad

    2018-06-01

    The aim of the study is to fit models for predicting surfaces using the response surface methodology and the artificial neural network to optimize for obtaining the maximum acceptability using desirability functions methodology in a hot air drying process of banana slices. The drying air temperature, air velocity, and drying time were chosen as independent factors and moisture content, drying rate, energy efficiency, and exergy efficiency were dependent variables or responses in the mentioned drying process. A rotatable central composite design as an adequate method was used to develop models for the responses in the response surface methodology. Moreover, isoresponse contour plots were useful to predict the results by performing only a limited set of experiments. The optimum operating conditions obtained from the artificial neural network models were moisture content 0.14 g/g, drying rate 1.03 g water/g h, energy efficiency 0.61, and exergy efficiency 0.91, when the air temperature, air velocity, and drying time values were equal to -0.42 (74.2 ℃), 1.00 (1.50 m/s), and -0.17 (2.50 h) in the coded units, respectively.

  14. Short-term Elevation of Fine Particulate Matter Air Pollution and Acute Lower Respiratory Infection.

    Science.gov (United States)

    Horne, Benjamin D; Joy, Elizabeth A; Hofmann, Michelle G; Gesteland, Per H; Cannon, John B; Lefler, Jacob S; Blagev, Denitza P; Korgenski, E Kent; Torosyan, Natalie; Hansen, Grant I; Kartchner, David; Pope Iii, C Arden

    2018-04-13

    Nearly 60% of U.S. children live in counties with PM2.5 concentrations above air quality standards. Understanding the relationship between ambient air pollution exposure and health outcomes informs actions to reduce exposure and disease risk. To evaluate the association between ambient PM2.5 levels and healthcare encounters for acute lower respiratory infection (ALRI). Using an observational case-crossover design, subjects (N=146,397) were studied if they had an ALRI diagnosis and resided on Utah's Wasatch Front. PM2.5 air pollution concentrations were measured using community-based air quality monitors between 1999 and 2016. Odds ratios (OR) for ALRI healthcare encounters were calculated after stratification by ages 0-2, 3-17, and 18+ years. Approximately 77% (n=112,467) of subjects were 0-2 years of age. The odds of ALRI encounter for these young children increased within 1 week of elevated PM2.5 and peaked after 3 weeks with a cumulative 28-day OR= 1.15 per +10 μg/m3 (95% CI= 1.12, 1.19). ALRI encounters with diagnosed and laboratory-confirmed RSV and influenza increased following elevated ambient PM2.5 levels. Similar elevated odds for ALRI were also observed for older children, although the number of events and precision of estimates were much lower. In this large sample of urban/suburban patients, short-term exposure to elevated PM2.5 air pollution was associated with greater healthcare utilization for ALRI in both young children, older children, and adults. Further exploration is needed of causal interactions between PM2.5 and ALRI.

  15. Studies on the radiation drying method for grain, 2: A good drying method of paddy rice from the viewpoint of the drying rate and the crack generation of rice

    International Nuclear Information System (INIS)

    Horibe, K.; Nakagawa, K.; Tohjo, T.

    1990-01-01

    A drying rate of paddy rice in a solar heat drying plant was studied. Solar-heated air at the upper part of a plastic house was blasted to the surface of the layer of paddy rice which was piled on the floor of the house. The drying rate increased with higher wind velocity, but it was found that the velocity was limited to 6m/s by the crack generation of the paddy rice. The effects of the layer thickness, the number of layer agitations and the heat supplied on the drying rate at a given wind velocity (6m/s) were expressed with a multiple regression equation. Then, the equation positively proposed appropriate conditions for effective operation of the plant in fine days

  16. Cross-Hedging Distillers Dried Grains: Exploring Corn and Soybean Meal Futures Contracts

    OpenAIRE

    Brinker, Adam J.; Parcell, Joseph L.; Dhuyvetter, Kevin C.

    2007-01-01

    Ethanol mandates and high fuel prices have led to an increase in the number of ethanol plants in the U.S. in recent years. In turn, this has led to an increase in the production of distillers dried grains (DDGs) as a co-product of ethanol production. DDG production in 2006 is estimated to be near 11 million tons. A sharp increase in ethanol production and thus DDGs is expected in 2007 with an increase with the number of ethanol plants. As with most competitive industries, there is some level ...

  17. Drying of Ceramic Hollow Bricks in an Industrial Tunnel Dryer: A Finite Volume Analysis

    Directory of Open Access Journals (Sweden)

    F Tavares

    2016-10-01

    Full Text Available This paper aims to study the drying of industrial hollow bricks in a tunnel dryer cross flow type. The theoretical model is based on mass and energy conservation equations applied to air and product. To validate the methodology, numerical and experimental results for the moisture content and the temperature of brick during the drying in an industrial scale are compared and a good correlation was obtained. Results of moisture content and temperature of the product, and temperature, relative humidity and absolute humidity of drying air as a function of drying time and position in the dryer are presented and analyzed.

  18. Moisture Distribution in Broccoli: Measurements by MRI Hot Air Drying Experiments

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Gerkema, E.; Vergeldt, F.J.; As, van H.; Boxtel, van A.J.B.

    2011-01-01

    ABSTRACT The internal moisture distribution that arise in food products during drying, is a key factor for the retention of quality attributes. To reveal the course of moisture content in a product, internal moisture profiles in broccoli florets are measured by MRI imaging during drying experiments

  19. Moisture distribution in broccoli: measurements by MRI hot air drying experiments

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Gerkema, E.; Vergeldt, F.J.; As, van H.; Boxtel, van A.J.B.

    2011-01-01

    The internal moisture distribution that arise in food products during drying, is a key factor for the retention of quality attributes. To reveal the course of moisture content in a product, internal moisture profiles in broccoli florets are measured by MRI imaging during drying experiments with

  20. Qualitative Indices of Istamaran Date Variety Affected by Various Drying Methods

    Directory of Open Access Journals (Sweden)

    E. Mehryar

    2015-09-01

    Full Text Available Drying of fruits and vegetables is one of the oldest methods for preserving foods. Drying not only affects the moisture content of the product, but also changes other physical, chemical and biological properties of the product including enzymatic activity, microbial spoilage, viscosity, hardness, taste and aroma. In order to study the occurring changes in dried product, qualitative characteristics including shrinkage, color and water rehydration are commonly evaluated. The purpose of this research was to study the effect of drying methods on qualitative indices for dried Istamaran dates. The drying methods were hot air, microwave and vacuum drying. The photos of the final product were taken using a digital camera. Then, color parameters (L*, a* and b* of the samples were measured using Photoshop software. The amount of shrinkage for dried product was determined by liquid displacement method. For evaluating rehydration ability, water absorption capacity (WAC, dry matter holding capacity (DHC, and rehydration ability (RA were also estimated. Results showed that the effect of drying method on WAC, DHC, and RA was significant (p<0.01. Means comparison revealed that the structural damage into the final dried product occurred by microwave method was higher than that for hot air and vacuum drying methods. Drying method did not lead to any significant difference among shrinkage values. Drying temperature influenced shrinkage more than drying time. Analysis of variance showed that the effect of drying method on L*, a* and b* parameters was not significant. Since the temperature of drying in microwave method is very high, it is possible that caramelization occurs during this method. This phenomenon can be considered as the reason of color darkness caused by microwave method.