WorldWideScience

Sample records for short glass fibers

  1. Modelling of the glass fiber length and the glass fiber length distribution in the compounding of short glass fiber-reinforced thermoplastics

    Science.gov (United States)

    Kloke, P.; Herken, T.; Schöppner, V.; Rudloff, J.; Kretschmer, K.; Heidemeyer, P.; Bastian, M.; Walther, Dridger, A.

    2014-05-01

    The use of short glass fiber-reinforced thermoplastics for the production of highly stressed parts in the plastics processing industry has experienced an enormous boom in the last few years. The reasons for this are primarily the improvements to the stiffness and strength properties brought about by fiber reinforcement. These positive characteristics of glass fiber-reinforced polymers are governed predominantly by the mean glass fiber length and the glass fiber length distribution. It is not enough to describe the properties of a plastics component solely as a function of the mean glass fiber length [1]. For this reason, a mathematical-physical model has been developed for describing the glass fiber length distribution in compounding. With this model, it is possible on the one hand to optimize processes for the production of short glass fiber-reinforced thermoplastics, and, on the other, to obtain information on the final distribution, on the basis of which much more detailed statements can be made about the subsequent properties of the molded part. Based on experimental tests, it was shown that this model is able to accurately describe the change in glass fiber length distribution in compounding.

  2. Influence of the Processing Parameters on the Fiber-Matrix-Interphase in Short Glass Fiber-Reinforced Thermoplastics

    Directory of Open Access Journals (Sweden)

    Anna Katharina Sambale

    2017-06-01

    Full Text Available The interphase in short fiber thermoplastic composites is defined as a three-dimensional, several hundred nanometers-wide boundary region at the interface of fibers and the polymer matrix, exhibiting altered mechanical properties. This region is of key importance in the context of fiber-matrix adhesion and the associated mechanical strength of the composite material. An interphase formation is caused by morphological, as well as thermomechanical processes during cooling of the plastic melt close to the glass fibers. In this study, significant injection molding processing parameters are varied in order to investigate the influence on the formation of an interphase and the resulting mechanical properties of the composite. The geometry of the interphase is determined using nano-tribological techniques. In addition, the influence of the glass fiber sizing on the geometry of the interphase is examined. Tensile tests are used in order to determine the resulting mechanical properties of the produced short fiber composites. It is shown that the interphase width depends on the processing conditions and can be linked to the mechanical properties of the short fiber composite.

  3. NUMERICAL ESTIMATION OF EFFECTIVE ELASTIC MODULI OF SYNTACTIC FOAMS REINFORCED BY SHORT GLASS FIBERS

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2016-03-01

    Full Text Available The mechanical properties of hollow glass microsphere/epoxy resin syntactic foams reinforced by short glass fibers are studied using representative volume elements. Both the glass fibers and the hollow glass microspheres exhibit random arrangement in the epoxy resin. The volume fraction and wall thickness of hollow glass microspheres and the volume fraction of glass fibers are considered as parameters. It is observed that the elastic modulus values of syntactic foams decrease with the increase of microsphere volume fraction when the microsphere relative wall thickness is lower. However, it increases with the increase of microsphere volume fraction when the relative wall thickness exceeds a critical value. The elastic modulus value goes through a maximum when the relative wall thickness is around 0.06 at 25 % volume fraction of microspheres. The addition of glass fibers reduces the critical wall thickness values of the microspheres and increases the mechanical properties of the composites. The highest stress lies on the equatorial plane perpendicular to the loading direction. Adding fibers reduces the large stress distribution areas on the microspheres, and the fibers aligned with the loading direction play an important load-bearing role.

  4. Improving the interfacial and mechanical properties of short glass fiber/epoxy composites by coating the glass fibers with cellulose nanocrystals

    Science.gov (United States)

    A. Asadi; M. Miller; Robert Moon; K. Kalaitzidou

    2016-01-01

    In this study, the interfacial and mechanical properties of cellulose nanocrystals (CNC) coated glass fiber/epoxy composites were investigated as a function of the CNC content on the surface of glass fibers (GF). Chopped GF rovings were coated with CNC by immersing the GF in CNC (0–5 wt%) aqueous suspensions. Single fiber fragmentation (SFF) tests showed that the...

  5. Replacement of glass particles by multidirectional short glass fibers in experimental composites: Effects on degree of conversion, mechanical properties and polymerization shrinkage.

    Science.gov (United States)

    Bocalon, Anne C E; Mita, Daniela; Narumyia, Isabela; Shouha, Paul; Xavier, Tathy A; Braga, Roberto Ruggiero

    2016-09-01

    To test the null hypothesis that the replacement of a small fraction of glass particles with random short glass fibers does not affect degree of conversion (DC), flexural strength (FS), fracture toughness (FT) and post-gel polymerization shrinkage (PS) of experimental composites. Four experimental photocurable composites containing 1 BisGMA:1 TEGDMA (by weight) and 60vol% of fillers were prepared. The reinforcing phase was constituted by barium glass particles (2μm) and 0%, 2.5%, 5.0% or 7.5% of silanated glass fibers (1.4mm in length, 7-13μm in diameter). DC (n=4) was obtained using near-FTIR. FS (n=10) was calculated via biaxial flexural test and FT (n=10) used the "single edge notched beam" method. PS at 5min (n=8) was determined using the strain gage method. Data were analyzed by ANOVA/Tukey test (DC, FS, PS) or Kruskal-Wallis/Dunn's test (FT, alpha: 5% for both tests). DC was similar among groups (p>0.05). Only the composite containing 5.0% of fibers presented lower FS than the control (pglass fibers significantly increased fracture toughness and reduced post-gel shrinkage of experimental composites. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Stimulated Raman scattering in soft glass fluoride fibers

    DEFF Research Database (Denmark)

    Petersen, Christian; Dupont, Sune; Agger, Christian

    2011-01-01

    We have measured the absolute Raman gain spectrum in short fluoride soft glass fibers with a pump wavelength of 1650nm. We found a peak gain of gR ¼ 4:0 2 × 10−14mW−1.......We have measured the absolute Raman gain spectrum in short fluoride soft glass fibers with a pump wavelength of 1650nm. We found a peak gain of gR ¼ 4:0 2 × 10−14mW−1....

  7. Influence of Hygrothermal Aging on Poisson’s Ratio of Thin Injection-Molded Short Glass Fiber-Reinforced PA6

    OpenAIRE

    Thomas Illing; Heinrich Gotzig; Marcus Schoßig; Christian Bierögel; Wolfgang Grellmann

    2016-01-01

    The hygrothermal aging of short glass fiber-reinforced polyamide 6 materials (PA6 GF) represents a major problem, especially in thin-walled components, such as in the automotive sector. In this study, therefore, the thickness and the glass fiber content of PA6 GF materials were varied and the materials were exposed to hygrothermal aging. The temperature and relative humidity were selected in the range from −40 °C up to 85 °C, and from 10% up to 85% relative humidity (RH). In the dry-as-molded...

  8. Micromechanical modeling of short glass-fiber reinforced thermoplastics-Isotropic damage of pseudograins

    International Nuclear Information System (INIS)

    Kammoun, S.; Brassart, L.; Doghri, I.; Delannay, L.; Robert, G.

    2011-01-01

    A micromechanical damage modeling approach is presented to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced composite materials. The practical use of the approach is for injection molded thermoplastic parts reinforced with short glass fibers. The modeling is proceeded as follows. The representative volume element is decomposed into a set of pseudograins, the damage of which affects progressively the overall stiffness and strength up to total failure. Each pseudograin is a two-phase composite with aligned inclusions having same aspect ratio. A two-step mean-field homogenization procedure is adopted. In the first step, the pseudograins are homogenized individually according to the Mori-Tanaka scheme. The second step consists in a self-consistent homogenization of homogenized pseudograins. An isotropic damage model is applied at the pseudograin level. The model is implemented as a UMAT in the finite element code ABAQUS. Model is shown to reproduce the strength and the anisotropy (Lankford coefficient) during uniaxial tensile tests on samples cut under different directions relative to the injection flow direction.

  9. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  10. Recent Progress In Infrared Chalcogenide Glass Fibers

    Science.gov (United States)

    Bornstein, A.; Croitoru, N.; Marom, E.

    1984-10-01

    Chalcogenide glasses containing elements like As, Ge, Sb and Se have been prepared. A new technique of preparing the raw material and subsequently drawing fibers has been devel-oped in order to avoid the forming of oxygen compounds. The fibers have been drawn by cru-cible and rod method from oxygen free raw material inside an Ar atmosphere glove box. The fibers drawn to date with air and glass cladding have a diameter of 50-500 pm and length of several meterd. Preliminary attenuation measurements indicate that the attentuation is better than 0.1 dB/cm and it is not affected even when the fiber is bent to 2 cm circular radius. The fibes were testes a CO laser beam and were not damaged at power densities below 10 kW/2cm2 CW &100 kw/cm using short pulses 75 n sec. The transmitted power density was 0.8 kW/cm2 which is an appropriate value to the needed for cutting and ablation of human tissues.

  11. Mechanical Characterization and Fractography of Glass Fiber/Polyamide (PA6) Composites

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Pillai, Saju; Charca, Samuel

    2015-01-01

    The mechanical properties of the glass fiber reinforced Polyamide (PA6) composites made by prepreg tapes and commingled yarns were studied by in-plane compression, short-beam shear, and flexural tests. The composites were fabricated with different fiber volume contents (prepregs—47%, 55%, 60%, an...

  12. Preliminary characterization of glass fiber sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2013-01-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus...... the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had...

  13. Development of new radiopaque glass fiber posts

    Energy Technology Data Exchange (ETDEWEB)

    Furtos, Gabriel, E-mail: gfurtos@yahoo.co.uk [Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, Cluj-Napoca (Romania); Baldea, Bogdan [Dep. of Prosthodontics, Faculty of Dental Medicine, Timisoara (Romania); Silaghi-Dumitrescu, Laura [Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, Cluj-Napoca (Romania)

    2016-02-01

    The aim of this study was to analyze the radiopacity and filler content of three experimental glass fiber posts (EGFP) in comparison with other glass/carbon fibers and metal posts from the dental market. Three EGFP were obtained by pultrusion of glass fibers in a polymer matrix based on 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)-phenyl]propane (bis-GMA) and triethyleneglycol dimethacrylate (TEGDMA) monomers. Using intraoral sensor disks 27 posts, as well as mesiodistal sections of human molar and aluminum step wedges were radiographed for evaluation of radiopacity. The percentage compositions of fillers by weight and volume were investigated by combustion analysis. Two EGFP showed radiopacity higher than enamel. The commercial endodontic posts showed radiopacity as follows: higher than enamel, between enamel and dentin, and lower than dentin. The results showed statistically significant differences (p < 0.05) when evaluated with one-way ANOVA statistical analysis. According to combustion analyses, the filler content of the tested posts ranges between 58.84 wt.% and 86.02 wt.%. The filler content of the tested EGFP ranged between 68.91 wt.% and 79.04 wt.%. EGFP could be an alternative to commercial glass fiber posts. Future glass fiber posts are recommended to present higher radiopacity than dentin and perhaps ideally similar to or higher than that of enamel, for improved clinical detection. The posts with a lower radiopacity than dentin should be considered insufficiently radiopaque. The radiopacity of some glass fiber posts is not greatly influenced by the amount of filler. - Highlights: • AR glass fibers for dental applications • AR glass fibers have a great potential for obtaining radiopaque glass fiber posts. • Experimental AR glass fiber posts could be an alternative to commercial glass fiber posts for clinical application.

  14. Development of new radiopaque glass fiber posts

    International Nuclear Information System (INIS)

    Furtos, Gabriel; Baldea, Bogdan; Silaghi-Dumitrescu, Laura

    2016-01-01

    The aim of this study was to analyze the radiopacity and filler content of three experimental glass fiber posts (EGFP) in comparison with other glass/carbon fibers and metal posts from the dental market. Three EGFP were obtained by pultrusion of glass fibers in a polymer matrix based on 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)-phenyl]propane (bis-GMA) and triethyleneglycol dimethacrylate (TEGDMA) monomers. Using intraoral sensor disks 27 posts, as well as mesiodistal sections of human molar and aluminum step wedges were radiographed for evaluation of radiopacity. The percentage compositions of fillers by weight and volume were investigated by combustion analysis. Two EGFP showed radiopacity higher than enamel. The commercial endodontic posts showed radiopacity as follows: higher than enamel, between enamel and dentin, and lower than dentin. The results showed statistically significant differences (p < 0.05) when evaluated with one-way ANOVA statistical analysis. According to combustion analyses, the filler content of the tested posts ranges between 58.84 wt.% and 86.02 wt.%. The filler content of the tested EGFP ranged between 68.91 wt.% and 79.04 wt.%. EGFP could be an alternative to commercial glass fiber posts. Future glass fiber posts are recommended to present higher radiopacity than dentin and perhaps ideally similar to or higher than that of enamel, for improved clinical detection. The posts with a lower radiopacity than dentin should be considered insufficiently radiopaque. The radiopacity of some glass fiber posts is not greatly influenced by the amount of filler. - Highlights: • AR glass fibers for dental applications • AR glass fibers have a great potential for obtaining radiopaque glass fiber posts. • Experimental AR glass fiber posts could be an alternative to commercial glass fiber posts for clinical application.

  15. Mechanical characterization of glass fiber (woven roving/chopped strand mat E-glass fiber) reinforced polyester composites

    Science.gov (United States)

    Bhaskar, V. Vijaya; Srinivas, Kolla

    2017-07-01

    Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.

  16. Radiation-induced crosslinking of short Fiber-filled polytetrafluoroethylene (PTFE)

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Udagawa, Akira; Morita, Yousuke

    1999-02-01

    The radiation-induced crosslinking of PTFE mixed with short fibers as glass or carbon fibers was studied for processing the composite materials. The crosslinking behaviors did not change by mixing of the fiber under the irradiation condition in oxygen-free atmosphere at temperature at temperature of 330degC - 350degC. The effect of reinforcement by the fibers in the fabricated composite materials was supposed to be a morphological change of PTFE because and adhesion between PTFE and the fibers was hardly observed in the composite materials. (author)

  17. High-efficiency ytterbium-free erbium-doped all-glass double cladding silicate glass fiber for resonantly-pumped fiber lasers.

    Science.gov (United States)

    Qiang, Zexuan; Geng, Jihong; Luo, Tao; Zhang, Jun; Jiang, Shibin

    2014-02-01

    A highly efficient ytterbium-free erbium-doped silicate glass fiber has been developed for high-power fiber laser applications at an eye-safe wavelength near 1.55 μm. Our preliminary experiments show that high laser efficiency can be obtained from a relatively short length of the gain fiber when resonantly pumped at 1535 nm in both core- and cladding-pumping configurations. With a core-pumping configuration as high as 75%, optical-to-optical efficiency and 4 W output power were obtained at 1560 nm from a 1 m long gain fiber. When using a cladding-pumping configuration, approximately 13 W output power with 67.7% slope efficiency was demonstrated from a piece of 2 m long fiber. The lengths of silicate-based gain fiber are much shorter than their silica-based counterparts used in other experiments, which is significantly important for high-power narrow-band and/or pulsed laser applications.

  18. Phosphate-based glass fiber vs. bulk glass: Change in fiber optical response to probe in vitro glass reactivity.

    Science.gov (United States)

    Massera, J; Ahmed, I; Petit, L; Aallos, V; Hupa, L

    2014-04-01

    This paper investigates the effect of fiber drawing on the thermal and structural properties as well as on the glass reactivity of a phosphate glass in tris(hydroxymethyl)aminomethane-buffered (TRIS) solution and simulated body fluid (SBF). The changes induced in the thermal properties suggest that the fiber drawing process leads to a weakening and probable re-orientation of the POP bonds. Whereas the fiber drawing did not significantly impact the release of P and Ca, an increase in the release of Na into the solution was noticed. This was probably due to small structural reorientations occurring during the fiber drawing process and to a slight diffusion of Na to the fiber surface. Both the powders from the bulk and the glass fibers formed a Ca-P surface layer when immersed in SBF and TRIS. The layer thickness was higher in the calcium and phosphate supersaturated SBF than in TRIS. This paper for the first time presents the in vitro reactivity and optical response of a phosphate-based bioactive glass (PBG) fiber when immersed in SBF. The light intensity remained constant for the first 48h after which a decrease with three distinct slopes was observed: the first decrease between 48 and 200h of immersion could be correlated to the formation of the Ca-P layer at the fiber surface. After this a faster decrease in light transmission was observed from 200 to ~425h in SBF. SEM analysis suggested that after 200h, the surface of the fiber was fully covered by a thin Ca-P layer which is likely to scatter light. For immersion times longer than ~425h, the thickness of the Ca-P layer increased and thus acted as a barrier to the dissolution process limiting further reduction in light transmission. The tracking of light transmission through the PBG fiber allowed monitoring of the fiber dissolution in vitro. These results are essential in developing new bioactive fiber sensors that can be used to monitor bioresponse in situ. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Fiber glass reinforced structural materials for aerospace application

    Science.gov (United States)

    Bartlett, D. H.

    1968-01-01

    Evaluation of fiber glass reinforced plastic materials concludes that fiber glass construction is lighter than aluminum alloy construction. Low thermal conductivity and strength makes the fiber glass material useful in cryogenic tank supports.

  20. Simulation of Glass Fiber Forming Processes

    DEFF Research Database (Denmark)

    Von der Ohe, Renate

    Two glass fiber forming processes have been simulated using FEM, which are the drawing of continuous glass fibers for reinforcement purposes and the spinning of discontinuous glass fibers - stone wool for insulation. The aim of this work was to set up a numerical model for each process, and to use...... this model in finding relationships between the production conditions and the resulting fiber properties. For both processes, a free surface with large deformation and radiative and convective heat transfer must be taken into account. The continuous fiber drawing has been simulated successfully......, and parametric studies have been made. Several properties that characterize the process have been calculated, and the relationship between the fictive temperature and the cooling rate of the fibers has been found. The model for the discontinuous fiber spinning was brought to the limits of the commercial code...

  1. The Durability and Performance of Short Fibers for a Newly Developed Alkali-Activated Binder

    Directory of Open Access Journals (Sweden)

    Henrik Funke

    2016-03-01

    Full Text Available This study reports the development of a fiber-reinforced alkali-activated binder (FRAAB with an emphasis on the performance and the durability of the fibers in the alkaline alkali-activated binder (AAB-matrix. For the development of the matrix, the reactive components granulated slag and coal fly ash were used, which were alkali-activated with a mixture of sodium hydroxide (2–10 mol/L and an aqueous sodium silicate solution (SiO2/Na2O molar ratio: 2.1 at ambient temperature. For the reinforcement of the matrix integral fibers of alkali-resistant glass (AR-glass, E-glass, basalt, and carbon with a fiber volume content of 0.5% were used. By the integration of these short fibers, the three-point bending tensile strength of the AAB increased strikingly from 4.6 MPa (no fibers up to 5.7 MPa (carbon after one day. As a result of the investigations of the alkali resistance, the AR-glass and the carbon fibers showed the highest durability of all fibers in the FRAAB-matrix. In contrast to that, the weight loss of E-glass and basalt fibers was significant under the alkaline condition. According to these results, only the AR-glass and the carbon fibers reveal sufficient durability in the alkaline AAB-matrix.

  2. Preliminary characterization of glass fiber sizing

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard Petersen, H.; Almdal, K. [Technical Univ. of Denmark. DTU Nanotech, Kgs. Lyngby (Denmark); Kusano, Y.; Broendsted, P. [Technical Univ. of Denmark. DTU Wind Energy, Risoe Campus, Roskilde (Denmark)

    2013-09-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had amounts of bonded and physisorbed sizing similar to what has been presented in literature. An estimated sizing thickness was found to be approximately 100 nm. It is indicated that an epoxy-resin containing film former and a polyethylene oxide lubricant are present, yet no silanes or other sizing components were identified in the extractant. (Author)

  3. Thermoset composite recycling: Properties of recovered glass fiber

    DEFF Research Database (Denmark)

    Beauson, Justine; Fraisse, Anthony; Toncelli, C.

    2015-01-01

    Recycling of glass fiber thermoset polymer composite is a challenging topic and a process able to recover the glass fibers original properties in a limited cost is still under investigation. This paper focuses on the recycling technique separating the glass fiber from the matrix material. Four...

  4. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes

    KAUST Repository

    Zhang, Xiaoyuan; Cheng, Shaoan; Liang, Peng; Huang, Xia; Logan, Bruce E.

    2011-01-01

    The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely

  5. Y-Si-Al-O-N Glass Fibers.

    Science.gov (United States)

    The excellent mechanical properties and outstanding water corrosion resistance of Y -Si-Al-O- N glasses indicate that they are attractive candidate...materials for forming into high performance glass fibers. Fibers of glasses containing, respectively,3.2 and 6.6 wt% N were drawn freehand in air, and

  6. Optical and mechanical anisotropy of oxide glass fibers

    DEFF Research Database (Denmark)

    Deubener, J.; Yue, Yuanzheng

    2012-01-01

    products [1], whereas stretching (frozen-in strain) results in optical and mechanical anisotropy of glass fibers, which is quantified inter alia by the specific birefringence [2]. The paper will stress the later effects by combining previous results on the structural origins of birefringence...... and anisotropic shrinkage in silica and phosphate fibers with recent studies on relaxation of optical anisotropy in E-glass fibers [3,4].......Upon fiber drawing, glass forming oxide melts are thermally quenched and mechanically stretched. High cooling rates (up to 106 K/min) of quenched glass fibres lead to higher enthalpy state of liquids, thereby, to higher fictive temperature than regular quenching (e.g. 20 K/min) of bulk glass...

  7. Highly Doped Phosphate Glass Fibers for Compact Lasers and Amplifiers: A Review

    Directory of Open Access Journals (Sweden)

    Nadia Giovanna Boetti

    2017-12-01

    Full Text Available In recent years, the exploitation of compact laser sources and amplifiers in fiber form has found extensive applications in industrial and scientific fields. The fiber format offers compactness, high beam quality through single-mode regime and excellent heat dissipation, thus leading to high laser reliability and long-term stability. The realization of devices based on this technology requires an active medium with high optical gain over a short length to increase efficiency while mitigating nonlinear optical effects. Multicomponent phosphate glasses meet these requirements thanks to the high solubility of rare-earth ions in their glass matrix, alongside with high emission cross-sections, chemical stability and high optical damage threshold. In this paper, we review recent advances in the field thanks to the combination of highly-doped phosphate glasses and innovative fiber drawing techniques. We also present the main performance achievements and outlook both in continuous wave (CW and pulsed mode regimes.

  8. Physical Properties of AR-Glass Fibers in Continuous Fiber Spinning Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji-Sun; Lee, MiJai; Lim, Tae-Young; Lee, Youngjin; Jeon, Dae-Woo; Kim, Jin-Ho [Korea Institute of Ceramic Engineering and Technology, Jinju (Korea, Republic of); Hyun, Soong-Keun [Inha University, Incheon (Korea, Republic of)

    2017-04-15

    In this study, a glass fiber is fabricated using a continuous spinning process from alkali resistant (AR) glass with 4 wt%zirconia. In order to confirm the melting properties of the marble glass, the raw material is placed into a Pt crucible and melted at 1650 ℃ for 2 h, and then annealed. In order to confirm the transparency of the clear marble glass, the visible transmittance is measured and the fiber spinning condition is investigated by using high temperature viscosity measurements. A change in the diameter is observed according to the winding speed in the range of 100–900 rpm; it is also verified as a function of the fiberizing temperature in the range of 1200–1260 ℃. The optimum winding speed and spinning temperature are 500 rpm and 1240 ℃, respectively. The properties of the prepared spinning fiber are confirmed using optical microscope, tensile strength, modulus, and alkali-resistant tests.

  9. Improved terbium-doped, lithium-loaded glass scintillator fibers

    International Nuclear Information System (INIS)

    Spector, G.B.; McCollum, T.; Spowart, A.R.

    1993-01-01

    An improved terbium-doped, 6 Li-loaded glass scintillator has been drawn into fibers. Tests indicate that the neutron detection response of the fibers is superior to the response with fibers drawn from the original terbium-doped glass. The new fibers offer less attenuation (1/e length of ∝40 cm) and improved gamma ray/neutron discrimination. The improved fibers will be incorporated in a scintillator fiber optic long counter for neutron detection. (orig.)

  10. Benefits of glass fibers in solar fiber optic lighting systems.

    Science.gov (United States)

    Volotinen, Tarja T; Lingfors, David H S

    2013-09-20

    The transmission properties and coupling of solar light have been studied for glass core multimode fibers in order to verify their benefits for a solar fiber optic lighting system. The light transportation distance can be extended from 20 m with plastic fibers to over 100 m with the kind of glass fibers studied here. A high luminous flux, full visible spectrum, as well as an outstanding color rendering index (98) and correlated color temperature similar to the direct sun light outside have been obtained. Thus the outstanding quality of solar light transmitted through these fibers would improve the visibility of all kinds of objects compared to fluorescent and other artificial lighting. Annual relative lighting energy savings of 36% in Uppsala, Sweden, and 76% in Dubai were estimated in an office environment. The absolute savings can be doubled by using glass optical fibers, and are estimated to be in the order of 550 kWh/year in Sweden and 1160 kWh/year in Dubai for one system of only 0.159 m(2) total light collecting area. The savings are dependent on the fiber length, the daily usage time of the interior, the type of artificial lighting substituted, the system light output flux, and the available time of sunny weather at the geographic location.

  11. Interactions between the glass fiber coating and oxidized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ku-Herrera, J.J., E-mail: jesuskuh@live.com.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Nistal, A. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Cauich-Rodríguez, J.V. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Rubio, F.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Bartolo-Pérez, P. [Departamento de Física Aplicada, Cinvestav, Unidad Mérida, C.P., 97310 Mérida, Yucatán (Mexico)

    2015-03-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  12. Interactions between the glass fiber coating and oxidized carbon nanotubes

    International Nuclear Information System (INIS)

    Ku-Herrera, J.J.; Avilés, F.; Nistal, A.; Cauich-Rodríguez, J.V.; Rubio, F.; Rubio, J.; Bartolo-Pérez, P.

    2015-01-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible

  13. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes.

    Science.gov (United States)

    Smirnov, A; Yasinskii, V M; Filimonenko, D S; Rostova, E; Dietler, G; Sekatskii, S K

    2018-01-01

    In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO 2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000-6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.

  14. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes

    Directory of Open Access Journals (Sweden)

    A. Smirnov

    2018-01-01

    Full Text Available In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm and the probe’s tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000–6000 of the TF + probe system (Cherkun et al., 2006. We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.

  15. Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts

    Science.gov (United States)

    Köbler, Jonathan; Schneider, Matti; Ospald, Felix; Andrä, Heiko; Müller, Ralf

    2018-06-01

    For short fiber reinforced plastic parts the local fiber orientation has a strong influence on the mechanical properties. To enable multiscale computations using surrogate models we advocate a two-step identification strategy. Firstly, for a number of sample orientations an effective model is derived by numerical methods available in the literature. Secondly, to cover a general orientation state, these effective models are interpolated. In this article we develop a novel and effective strategy to carry out this interpolation. Firstly, taking into account symmetry arguments, we reduce the fiber orientation phase space to a triangle in R^2 . For an associated triangulation of this triangle we furnish each node with an surrogate model. Then, we use linear interpolation on the fiber orientation triangle to equip each fiber orientation state with an effective stress. The proposed approach is quite general, and works for any physically nonlinear constitutive law on the micro-scale, as long as surrogate models for single fiber orientation states can be extracted. To demonstrate the capabilities of our scheme we study the viscoelastic creep behavior of short glass fiber reinforced PA66, and use Schapery's collocation method together with FFT-based computational homogenization to derive single orientation state effective models. We discuss the efficient implementation of our method, and present results of a component scale computation on a benchmark component by using ABAQUS ®.

  16. Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts

    Science.gov (United States)

    Köbler, Jonathan; Schneider, Matti; Ospald, Felix; Andrä, Heiko; Müller, Ralf

    2018-04-01

    For short fiber reinforced plastic parts the local fiber orientation has a strong influence on the mechanical properties. To enable multiscale computations using surrogate models we advocate a two-step identification strategy. Firstly, for a number of sample orientations an effective model is derived by numerical methods available in the literature. Secondly, to cover a general orientation state, these effective models are interpolated. In this article we develop a novel and effective strategy to carry out this interpolation. Firstly, taking into account symmetry arguments, we reduce the fiber orientation phase space to a triangle in R^2 . For an associated triangulation of this triangle we furnish each node with an surrogate model. Then, we use linear interpolation on the fiber orientation triangle to equip each fiber orientation state with an effective stress. The proposed approach is quite general, and works for any physically nonlinear constitutive law on the micro-scale, as long as surrogate models for single fiber orientation states can be extracted. To demonstrate the capabilities of our scheme we study the viscoelastic creep behavior of short glass fiber reinforced PA66, and use Schapery's collocation method together with FFT-based computational homogenization to derive single orientation state effective models. We discuss the efficient implementation of our method, and present results of a component scale computation on a benchmark component by using ABAQUS ®.

  17. Effect of short fiber reinforcement on the properties of recycled poly(ethylene terephthalate)/poly(ethylene naphthalate) blends

    International Nuclear Information System (INIS)

    Karsli, Nevin Gamze; Yesil, Sertan; Aytac, Ayse

    2013-01-01

    Highlights: ► Short fiber reinforcement to the r-PET/PEN blend improved to the tensile strength. ► Fiber reinforcement increased the storage modulus of r-PET/PEN blend. ► CF reinforced composite has the highest storage modulus value. - Abstract: In this study, short carbon (CF), glass (GF) and hybrid carbon/glass fiber reinforced recycled poly(ethylene terephthalate)/poly(ethylene 2,6-naphthalate) (r-PET/PEN) blends were prepared by melt mixing method. The mechanical, thermal and morphological properties of composites were investigated by using tensile tests, differential scanning calorimeter, dynamic mechanical analyzer and scanning electron microscopy. The microscopic analysis showed that there is a better interfacial interaction between fiber and polymer matrix for CF reinforced composite. It was found that addition of short fiber reinforcement to the r-PET/PEN blend improved the tensile strength and Young’s modulus values more than the addition of PEN into r-PET. According to DMA analysis, fiber reinforcement increased the storage modulus of composites when compared with r-PET/PEN blend and among them storage modulus of CF reinforced composite was the highest. It was concluded that mechanical properties of r-PET can be enhanced with addition of PEN and more efficiently with short fiber reinforcement

  18. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    Science.gov (United States)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  19. Magnetically sensitive nanodiamond-doped tellurite glass fibers.

    Science.gov (United States)

    Ruan, Yinlan; Simpson, David A; Jeske, Jan; Ebendorff-Heidepriem, Heike; Lau, Desmond W M; Ji, Hong; Johnson, Brett C; Ohshima, Takeshi; Afshar V, Shahraam; Hollenberg, Lloyd; Greentree, Andrew D; Monro, Tanya M; Gibson, Brant C

    2018-01-19

    Traditional optical fibers are insensitive to magnetic fields, however many applications would benefit from fiber-based magnetometry devices. In this work, we demonstrate a magnetically sensitive optical fiber by doping nanodiamonds containing nitrogen vacancy centers into tellurite glass fibers. The fabrication process provides a robust and isolated sensing platform as the magnetic sensors are fixed in the tellurite glass matrix. Using optically detected magnetic resonance from the doped nanodiamonds, we demonstrate detection of local magnetic fields via side excitation and longitudinal collection. This is a first step towards intrinsically magneto-sensitive fiber devices with future applications in medical magneto-endoscopy and remote mineral exploration sensing.

  20. Thermomechanical analyses of phenolic foam reinforced with glass fiber mat

    International Nuclear Information System (INIS)

    Zhou, Jintang; Yao, Zhengjun; Chen, Yongxin; Wei, Dongbo; Wu, Yibing

    2013-01-01

    Highlights: • Over 10% glass fiber was used to reinforce phenolic foam in the shape of glass fiber mat. • Nucleating agents were used together with glass fiber mat and improved tensile strength of phenolic foam by 215.6%. • Nucleating agents lead to a smaller bubble size of phenolic foam. • The glass transition temperature of phenolic foam remained unchanged during the reinforcement. - Abstract: In this paper, thermomechanical analysis (TMA) and dynamic mechanical analysis were employed to study the properties of phenolic foam reinforced with glass fiber mat. Unreinforced phenolic foam was taken as the control sample. Mechanical tests and scanning electron microscopy were performed to confirm the results of TMA. The results show that glass fiber mat reinforcement improves the mechanical performance of phenolic foam, and nucleating agents improve it further. Phenolic foam reinforced with glass fiber mat has a smaller thermal expansion coefficient compared with unreinforced foam. The storage modulus of the reinforced phenolic foam is also higher than that in unreinforced foam, whereas the loss modulus of the former is lower than that of the latter. The glass transition temperature of the phenolic foam matrix remains unchanged during the reinforcement

  1. Ytterbium-Phosphate Glass for Microstructured Fiber Laser

    Directory of Open Access Journals (Sweden)

    Ryszard Stępień

    2014-06-01

    Full Text Available In the paper, we report on the development of a synthesis and melting method of phosphate glasses designed for active microstructured fiber manufacturing. Non-doped glass synthesized in a P2O5-Al2O3-BaO-ZnO-MgO-Na2O oxide system served as the matrix material; meanwhile, the glass was doped with 6 mol% (18 wt% of Yb2O3, as fiber core. The glasses were well-fitted in relation to optical (refractive index and thermal proprieties (thermal expansion coefficient, rheology. The fiber with the Yb3+-doped core, with a wide internal photonic microstructure for a laser pump, as well as with a high relative hole size in the photonic outer air-cladding, was produced. The laser built on the basis of this fiber enabled achieving 8.07 W of output power with 20.5% slope efficiency against the launched pump power, in single-mode operation M2 = 1.59, from a 53 cm-long cavity.

  2. From Selenium- to Tellurium-Based Glass Optical Fibers for Infrared Spectroscopies

    Directory of Open Access Journals (Sweden)

    Jacques Lucas

    2013-05-01

    Full Text Available Chalcogenide glasses are based on sulfur, selenium and tellurium elements, and have been studied for several decades regarding different applications. Among them, selenide glasses exhibit excellent infrared transmission in the 1 to 15 µm region. Due to their good thermo-mechanical properties, these glasses could be easily shaped into optical devices such as lenses and optical fibers. During the past decade of research, selenide glass fibers have been proved to be suitable for infrared sensing in an original spectroscopic method named Fiber Evanescent Wave Spectroscopy (FEWS. FEWS has provided very nice and promising results, for example for medical diagnosis. Then, some sophisticated fibers, also based on selenide glasses, were developed: rare-earth doped fibers and microstructured fibers. In parallel, the study of telluride glasses, which can have transmission up to 28 µm due to its atom heaviness, has been intensified thanks to the DARWIN mission led by the European Space Agency (ESA. The development of telluride glass fiber enables a successful observation of CO2 absorption band located around 15 µm. In this paper we review recent results obtained in the Glass and Ceramics Laboratory at Rennes on the development of selenide to telluride glass optical fibers, and their use for spectroscopy from the mid to the far infrared ranges.

  3. Fracture detection in concrete by glass fiber cloth reinforced plastics

    Science.gov (United States)

    Shin, Soon-Gi; Lee, Sung-Riong

    2006-04-01

    Two types of carbon (carbon fiber and carbon powder) and a glass cloth were used as conductive phases and a reinforcing fiber, respectively, in polymer rods. The carbon powder was used for fabricating electrically conductive carbon powder-glass fiber reinforced plastic (CP-GFRP) rods. The carbon fiber tows and the CP-GFRP rods were adhered to mortar specimens using epoxy resin and glass fiber cloth. On bending, the electrical resistance of the carbon fiber tow attached to the mortar specimen increased greatly after crack generation, and that of the CP-GFRP rod increased after the early stages of deflection in the mortar. Therefore, the CP-GFRP rod is superior to the carbon fiber tow in detecting fractures. Also, by reinforcing with a glass fiber cloth reinforced plastic, the strength of the mortar specimens became more than twice as strong as that of the unreinforced mortar.

  4. Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates

    International Nuclear Information System (INIS)

    Chang, P.-Y.; Yeh, P.-C.; Yang, J.-M.

    2008-01-01

    The fatigue crack initiation behavior of a high modulus and hybrid boron/glass/aluminum fiber/metal laminate (FML) was investigated experimentally and analytically. Two types of hybrid boron/glass/aluminum FMLs were fabricated and studied, which consisted of aluminum alloy sheets as the metal layers and a mixture of boron fibers and glass fibers as the composite layers. For the first type, the boron fiber/prepreg and the glass fiber/prepreg were used separately in the composite layers, and for the second type, the boron fibers and the glass fibers were mingled together to form a hybrid boron/glass/prepreg composite layer. These hybrid FMLs were consolidated using an autoclave curing process. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, would improve the fatigue crack initiation life of the Al sheet. The experimental results clearly showed that the fatigue crack initiation lives for both types of hybrid boron/glass/aluminum FMLs were superior to the monolithic aluminum alloy under the same loading condition. An analytical approach was proposed to calculate the fatigue crack initiation lives of hybrid boron/glass/aluminum FMLs based on the classical laminate theory and the small-crack theory. A good correlation was obtained between the predictions and the experimental results

  5. Fiber glass-bioactive glass composite for bone replacing and bone anchoring implants.

    Science.gov (United States)

    Vallittu, Pekka K; Närhi, Timo O; Hupa, Leena

    2015-04-01

    Although metal implants have successfully been used for decades, devices made out of metals do not meet all clinical requirements, for example, metal objects may interfere with some new medical imaging systems, while their stiffness also differs from natural bone and may cause stress-shielding and over-loading of bone. Peer-review articles and other scientific literature were reviewed for providing up-dated information how fiber-reinforced composites and bioactive glass can be utilized in implantology. There has been a lot of development in the field of composite material research, which has focused to a large extent on biodegradable composites. However, it has become evident that biostable composites may also have several clinical benefits. Fiber reinforced composites containing bioactive glasses are relatively new types of biomaterials in the field of implantology. Biostable glass fibers are responsible for the load-bearing capacity of the implant, while the dissolution of the bioactive glass particles supports bone bonding and provides antimicrobial properties for the implant. These kinds of combination materials have been used clinically in cranioplasty implants and they have been investigated also as oral and orthopedic implants. The present knowledge suggests that by combining glass fiber-reinforced composite with particles of bioactive glass can be used in cranial implants and that the combination of materials may have potential use also as other types of bone replacing and repairing implants. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Faraday rotation influence factors in tellurite-based glass and fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiuling; Wang, Qingwei [Henan University of Technology, School of Materials Science and Engineering, Zhengzhou, Henan (China); Wang, Hui; Chen, Qiuping [Politecnico di Torino, Department of Applied Science and Technology, Turin (Italy)

    2015-09-15

    The Faraday rotation influence factors in tellurite-based glass and fibers were studied by experiments and simulations. TeO{sub 2}-ZnO-Na{sub 2}O-BaO glass family was fabricated and characterized in terms of the thermal and magneto-optical properties. Two core-cladding pairs for two fibers were selected from fabricated glasses. The Verdet constants of the glasses and fibers were measured at different wavelengths using a homemade optical bench, and the Verdet constant of fiber was close to that of the bulk glass. The influence from external factors (wavelength, laser power and magnetic field) and internal factors (thermal expansion coefficient difference, refractive index and Verdet constant of core and cladding) on Faraday rotation in fibers was investigated and discussed, and the purpose of this study is to improve the Faraday rotation in tellurite fibers for MO device applications both from internal material property match and external parameter configuration in measurement. (orig.)

  7. Faraday rotation influence factors in tellurite-based glass and fibers

    International Nuclear Information System (INIS)

    Chen, Qiuling; Wang, Qingwei; Wang, Hui; Chen, Qiuping

    2015-01-01

    The Faraday rotation influence factors in tellurite-based glass and fibers were studied by experiments and simulations. TeO 2 -ZnO-Na 2 O-BaO glass family was fabricated and characterized in terms of the thermal and magneto-optical properties. Two core-cladding pairs for two fibers were selected from fabricated glasses. The Verdet constants of the glasses and fibers were measured at different wavelengths using a homemade optical bench, and the Verdet constant of fiber was close to that of the bulk glass. The influence from external factors (wavelength, laser power and magnetic field) and internal factors (thermal expansion coefficient difference, refractive index and Verdet constant of core and cladding) on Faraday rotation in fibers was investigated and discussed, and the purpose of this study is to improve the Faraday rotation in tellurite fibers for MO device applications both from internal material property match and external parameter configuration in measurement. (orig.)

  8. CO2-laser-assisted processing of glass fiber-reinforced thermoplastic composites

    Science.gov (United States)

    Brecher, Christian; Emonts, Michael; Schares, Richard Ludwig; Stimpfl, Joffrey

    2013-02-01

    To fully exploit the potential of fiber-reinforced thermoplastic composites (FRTC) and to achieve a broad industrial application, automated manufacturing systems are crucial. Investigations at Fraunhofer IPT have proven that the use of laser system technology in processing FRTC allows to achieve high throughput, quality, flexibility, reproducibility and out-of-autoclave processing simultaneously. As 90% of the FRP in Europe1 are glass fiber-reinforced a high impact can be achieved by introducing laser-assisted processing with all its benefits to glass fiber-reinforced thermoplastics (GFRTC). Fraunhofer IPT has developed the diode laser-assisted tape placement (laying and winding) to process carbon fiber-reinforced thermoplastic composites (CFRTC) for years. However, this technology cannot be transferred unchanged to process milky transparent GFRTC prepregs (preimpregnated fibers). Due to the short wavelength (approx. 980 nm) and therefore high transmission less than 20% of the diode laser energy is absorbed as heat into non-colored GFRTC prepregs. Hence, the use of a different wave length, e.g. CO2-laser (10.6 μm) with more than 90% laser absorption, is required to allow the full potential of laser-assisted processing of GFRTC. Also the absorption of CO2-laser radiation at the surface compared to volume absorption of diode laser radiation is beneficial for the interlaminar joining of GFRTC. Fraunhofer IPT is currently developing and investigating the CO2-laser-assisted tape placement including new system, beam guiding, process and monitoring technology to enable a resource and energy efficient mass production of GFRP composites, e.g. pipes, tanks, masts. The successful processing of non-colored glass fiber-reinforced Polypropylene (PP) and Polyphenylene Sulfide (PPS) has already been proven.

  9. MICROWAVE INDUCED DEGRADATION OF GLASS FIBER REINFORCED POLYESTER FOR FIBER AND RESIN RECOVERY

    DEFF Research Database (Denmark)

    Ucar, Hülya; Nielsen, Rudi Pankratz; Søgaard, Erik Gydesen

    A solvolysis process to depolymerize the resin in glass fiber reinforced composites and recover the glass fibers has been investigated using microwave induced irradiation. The depolymerization was carried out in HNO3 with concentrations in the range of 1M-7M and in KOH with concentrations ranging...

  10. Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers

    International Nuclear Information System (INIS)

    Seneschal, Karine; Smektala, Frederic; Bureau, Bruno; Floch, Marie Le; Jiang Shibin; Luo, Tao; Lucas, Jacques; Peyghambarian, Nasser

    2005-01-01

    New phosphate glasses have been developed in order to incorporate high rare-earth ions concentrations. These glasses present a great chemical stability and a high optical quality. The phosphate glass network is open, very flexible, with a linkage of the tetrahedrons very disordered and contains a larger number of non-bridging oxygens (66%). The great stability and resistance against crystallization associated with the possibility to incorporate high doping concentration of rare-earth ions in these phosphate glasses make them very good candidates for the realization of ultra short single mode amplifiers with a high gain at 1.55 μm

  11. Continuous drawing of Bi-Ca-Sr-Cu-O glass fibers from a preform

    International Nuclear Information System (INIS)

    Zheng, H.; Hu, Y.; Mackenzie, J.D.

    1991-01-01

    Several issues related to drawing Bi-Ca-Sr-Cu-O glass fibers from a preform are discussed. Continuous drawing of Bi-Ca-Sr-Cu-O glass fibers was successfully accomplished. Bi-Ca-Sr-Cu-O glass fibers are drawn above the crystallization temperature. Minimizing crystallization of the glass preforms is a key for successful drawing of the glass fibers. Two effective means, high glass melting temperature and V 2 O 5 doping, have been used to minimize the crystallization of the preforms, thus assuring the continuous drawing of Bi-Ca-Sr-Cu-O glass fibers

  12. Effect of fiber content on the properties of glass fiber-phenolic matrix composite

    International Nuclear Information System (INIS)

    Zaki, M.Y.; Shahid, M.R.; Subhani, T.; Sharif, M.N.

    2003-01-01

    Glass fiber-Phenolic matrix composite is used for the manufacturing of parts /components related to electronic and aerospace industry due to its high strength, dimensional stability and excellent electrical insulation properties. The evaluation of this composite material is necessary prior to make parts/components of new designs. In the present research, thermosetting phenolic plastic was reinforced with E-glass fiber in different fiber-to-resin ratios to produce composites of different compositions. Mechanical and electrical properties of these composite materials were evaluated with reference to the effect of fiber content variation in phenolic resin. (author)

  13. Ceramic fiber reinforced glass-ceramic matrix composite

    Science.gov (United States)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  14. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions.

    Science.gov (United States)

    Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2017-10-01

    To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.

  15. On turbulence structure in vertical pipe flow of fiber suspensions [refractivity, flow measurement, turbulent flow, glass fibers, fluid flow

    International Nuclear Information System (INIS)

    Steen, M.

    1989-01-01

    A suspension of glass fibers in alcohol has been used to investigate a upward vertical developing pipe flow. The refractive index of the alcohol was matched to that of the glass fibers, making the whole suspension transparent. Laser Doppler Anemometry (LDA) was applied, and fluid velocities could then be measured for consistencies up to c = 12 g/l. Radial profiles of axial U-velocity and turbulence spectra have been recorded at various positions (z/D = 2, 5, 36) downstream of an orifice (step) with 64% open area. Measurements were taken for different consistencies (c = 1.2, 12 g/l), fiber lengths (l = 1, 3 mm) and Reynolds numbers (R e = 8.5 ⋅ 10 3 , 6.5 ⋅ 10 4 ). The fiber crowding factor (n f ) has been used to discuss the observed effects of the present fibers on momentum transfer and turbulence structure. The results show both an increase (l= 1 mm, c= 1.2 g/l) and decrease (l=3 mm, c = 12 g/l) in turbulence levels in the presence of fibers. Suspensions with long fibers at the highest consistency show plug flow in parts of the core. This causes damping of the turbulence mainly at smaller length scales. For short fibers at low consistency, the increased turbulent energy was mainly observed at small length scales in the spectrum. (author)

  16. Optimization of the contents of hollow glass microsphere and sodium hexametaphosphate for glass fiber vacuum insulation panel

    Science.gov (United States)

    Li, C. D.; Chen, Z. F.; Zhou, J. M.

    2016-07-01

    In this paper, various additive amounts of hollow glass microspheres (HGMs) and sodium hexametaphosphate (SHMP) powders were blended with flame attenuated glass wool (FAGW) to form hybrid core materials (HCMs) through the wet method. Among them, the SHMP was dissolved in the glass fiber suspension and coated on the surface of glass fibers while the HGMs were insoluble in the glass fiber suspension and filled in the fiber-fiber pores. The average pore diameter of the FAGW/HGM HCMs was 8-11 μm which was near the same as that of flame attenuated glass fiber mats (FAGMs, i.e., 10.5 µm). The tensile strength of the SHMP coated FAGMs was enhanced from 160 N/m to 370 N/m when SHMP content increased from 0 wt.% to 0.2 wt.%. By contrast, the tensile strength of the FAGW/HGM HCMs decreased from 160 N/m to 40 N/m when HGM content increased from 0 wt.% to 50 wt.%. Both the FAGW/HGM HCMs and SHMP coated FAGMs were vacuumed completely to form vacuum insulation panels (VIPs). The results showed that both the addition of SHMP and HGM led a slight increase in the thermal conductivity of the corresponding VIPs. To obtain a high-quality VIP, the optimal SHMP content and HGM content in glass fiber suspension was 0.12-0.2 wt.% and 0 wt.%.

  17. Effects of glass fibers on the properties of micro molded plastic parts

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Gasparin, Stefania

    2011-01-01

    Glass fibers are used to reinforce plastics and to improve their mechanical properties. But plastic filled with glass fibers is a concern for molding of micro scale plastic parts. The aim of this paper is to investigate the effects of glass fiber on the replication quality and mechanical properties...... of polymeric thin ribs. It investigates the effect of feature size and gate location on distribution of glass fibers inside the molded parts. The results from this work indicate that glass filled plastic materials have poor replication quality and nonhomogeneous mechanical properties due to the nonuniform...

  18. Synthesis of nanocrystals in KNb(Ge,Si)O5 glasses and chemical etching of nanocrystallized glass fibers

    International Nuclear Information System (INIS)

    Enomoto, Itaru; Benino, Yasuhiko; Fujiwara, Takumi; Komatsu, Takayuki

    2006-01-01

    The nanocrystallization behavior of 25K 2 O-25Nb 2 O 5 -(50-x)GeO 2 -xSiO 2 glasses with x=0,25,and50 (i.e., KNb(Ge,Si)O 5 glasses) and the chemical etching behavior of transparent nanocrystallized glass fibers have been examined. All glasses show nanocrystallization, and the degree of transparency of the glasses studied depends on the heat treatment temperature. Transparent nanocrystallized glasses can be obtained if the glasses are heat treated at the first crystallization peak temperature. Transparent nanocrystallized glass fibers with a diameter of about 100μm in 25K 2 O-25Nb 2 O 5 -50GeO 2 are fabricated, and fibers with sharpened tips (e.g., the taper length is about 450μm and the tip angle is about 12 o ) are obtained using a meniscus chemical etching method, in which etching solutions of 10wt%-HF/hexane and 10M-NaOH/hexane are used. Although the tip (aperture size) has not a nanoscaled size, the present study suggests that KNb(Ge,Si)O 5 nanocrystallized glass fibers have a potential for new near-field optical fiber probes with high refractive indices of around n=1.8 and high dielectric constants of around ε=58 (1kHz, room temperature)

  19. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes

    KAUST Repository

    Zhang, Xiaoyuan

    2011-01-01

    The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely-spaced electrodes, and cathode supporters were used to avoid water gaps between the separator and cathode that can reduce power production. The maximum power density with a separator and supporter and a single cathode was 75±1W/m3. Removing the separator decreased power by 8%. Adding a second cathode increased power to 154±1W/m3. Current was increased by connecting two MFCs connected in parallel. These results show that brush anodes, combined with a glass fiber separator and a plastic mesh supporter, produce a useful MFC architecture that is inherently scalable due to good insulation between the electrodes and a compact architecture. © 2010 Elsevier Ltd.

  20. Mechanical characterization of SiC particulate & E-glass fiber reinforced Al 3003 hybrid metal matrix composites

    Science.gov (United States)

    Narayana, K. S. Lakshmi; Shivanand, H. K.

    2018-04-01

    Metal matrix composites constitute a class of low cost high quality materials which offer high performance for various industrial applications. The orientation of this research is towards the study of mechanical properties of as cast silicon carbide (SiC) particulates and Short E-Glass fibers reinforced Aluminum matrix composites (AMCs). The Hybrid metal matrix composite is developed by reinforcing SiC particulates of 100 microns and short E-Glass fibers of 2-3 mm length with Al 3003 in different compositions. The vortex method of stir casting was employed, in which the reinforcements were introduced into the vortex created by the molten metal by means of mechanical stirrer. The mechanical properties of the prepared metal matrix composites were analyzed. From the studies it was noticed that an improvement in mechanical properties of the reinforced alloys compared to unreinforced alloys.

  1. Amorphous silicon thin-film solar cells on glass fiber textiles

    Energy Technology Data Exchange (ETDEWEB)

    Plentz, Jonathan, E-mail: jonathan.plentz@leibniz-ipht.de; Andrä, Gudrun; Pliewischkies, Torsten; Brückner, Uwe; Eisenhawer, Björn; Falk, Fritz

    2016-02-15

    Graphical abstract: - Highlights: • Amorphous silicon solar cells on textile glass fiber fabrics are demonstrated. • Open circuit voltages of 883 mV show shunt-free contacting on non-planar fabrics. • Short-circuit current densities of 3.7 mA/cm{sup 2} are limited by transmission losses. • Fill factors of 43.1% and pseudo fill factors of 70.2% show high series resistance. • Efficiencies of 1.4% and pseudo efficiencies of 2.1% realized on textile fabrics. - Abstract: In this contribution, amorphous silicon thin-film solar cells on textile glass fiber fabrics for smart textiles are prepared and the photovoltaic performance is characterized. These solar cells on fabrics delivered open circuit voltages up to 883 mV. This shows that shunt-free contacting of the solar cells was successful, even in case of non-planar fabrics. The short-circuit current densities up to 3.7 mA/cm{sup 2} are limited by transmission losses in a 10 nm thin titanium layer, which was used as a semi-transparent contact. The low conductivity of this layer limits the fill factor to 43.1%. Pseudo fill factors, neglecting the series resistance, up to 70.2% were measured. Efficiencies up to 1.4% and pseudo efficiencies up to 2.1% were realized on textile fabrics. A transparent conductive oxide could further improve the efficiency to above 5%.

  2. Silver metaphosphate glass wires inside silica fibers--a new approach for hybrid optical fibers.

    Science.gov (United States)

    Jain, Chhavi; Rodrigues, Bruno P; Wieduwilt, Torsten; Kobelke, Jens; Wondraczek, Lothar; Schmidt, Markus A

    2016-02-22

    Phosphate glasses represent promising candidates for next-generation photonic devices due to their unique characteristics, such as vastly tunable optical properties, and high rare earth solubility. Here we show that silver metaphosphate wires with bulk optical properties and diameters as small as 2 µm can be integrated into silica fibers using pressure-assisted melt filling. By analyzing two types of hybrid metaphosphate-silica fibers, we show that the filled metaphosphate glass has only negligible higher attenuation and a refractive index that is identical to the bulk material. The presented results pave the way towards new fiber-type optical devices relying on metaphosphate glasses, which are promising materials for applications in nonlinear optics, sensing and spectral filtering.

  3. Investigating the Properties of Asphalt Concrete Containing Glass Fibers and Nanoclay

    Directory of Open Access Journals (Sweden)

    Hasan Taherkhani

    2016-06-01

    Full Text Available The performance of asphaltic pavements during their service life is highly dependent on the mechanical properties of the asphaltic layers. Therefore, in order to extend their service life, scientists and engineers are constantly trying to improve the mechanical properties of the asphaltic mixtures. One common method of improving the performance of asphaltic mixtures is using different types of additives. This research investigated the effects of reinforcement by randomly distributed glass fibers and the simultaneous addition of nanoclayon some engineering properties of asphalt concrete have been investigated. The properties of a typical asphalt concrete reinforced by different percentages of glass fibers were compared with those containing both the fibers and nanoclay. Engineering properties, including Marshall stability, flow, Marshall quotient, volumetric properties and indirect tensile strength were studied. Glass fibers were used in different percentages of 0.2, 0.4 and 0.6% (by weight of total mixture, and nanoclay was used in 2, 4 and 6% (by the weight of bitumen. It was found that the addition of fibers proved to be more effective than the nanoclay in increasing the indirect tensile strength. However, nanoclay improved the resistance of the mixture against permanent deformation better than the glass fibers. The results also showed that the mixture reinforced by 0.2% of glass fiber and containing 6% nanoclay possessed the highest Marshall quotient, and the mixture containing 0.6% glass fibers and 2% nanoclay possessedthe highest indirect tensile strength.

  4. Energy absorption at high strain rate of glass fiber reinforced mortars

    Directory of Open Access Journals (Sweden)

    Fenu Luigi

    2015-01-01

    Full Text Available In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF was finally evaluated.

  5. Preparation and investigation of Ge-S-I glasses for infrared fiber optics

    Science.gov (United States)

    Velmuzhov, A. P.; Sukhanov, M. V.; Plekhovich, A. D.; Snopatin, G. E.; Churbanov, M. F.; Iskhakova, L. D.; Ermakov, R. P.; Kotereva, T. V.; Shiryaev, V. S.

    2016-02-01

    Glass samples of [GeSx]90I10 (x = 1.5, 1.7, 2.0, 2.3, 2.45, 2.6) compositions were prepared, and some their thermal, optical properties as well as tendency to crystallization were investigated. The compositional dependences of glass transition temperature, volume fraction of crystallized phase and activation energy of glass formation (Eg) have nonmonotonic character with a maximum for [GeS2.0]90I10 glass. Glasses of 85.8GeS2-14.2GeI4 and [GeS1.5]90I10 compositions are identified as promising for preparation of optical fiber. For the first time, Ge-S-I glass fibers were produced. Minimum optical losses in 85.8GeS2-14.2GeI4 glass fiber were 2.7 dB/m at a wavelength of 5.1 μm, and that in [GeS1.5]90I10 glass fiber were 14.5 dB/m at 5.5 μm.

  6. High-Strength / High Alkaline Resistant Fe-Phosphate Glass Fibers as Concrete Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Mariano Velez

    2008-03-31

    Calcium-iron-phosphate glasses were developed whose chemical durabilities in alkaline solutions (pH 13) were comparable or superior to those of commercial alkaline-resistant (AR) silica-based glasses. However, the tensile strength of Ca-Fe-phosphate fibers, after being exposed to alkaline environments, including wet Portland cement pastes, is lower than that of current AR silicate fibers. Another series of Ca-Fe-phosphate glasses were developed with excellent chemical durability in strong acidic solutions (H2SO4, HF), indicating potential applications where silica-based fibers degrade very quickly, including E-glass. The new Ca-Fe-phosphate glasses can be melted and processed 300 to 500°C lower than silica-based glasses. This offers the possibility of manufacturing glass fibers with lower energy costs by 40-60% and the potential to reduce manufacturing waste and lower gas emissions. It was found that Ca-Fe-phosphate melts can be continuously pulled into fibers depending on the slope of the viscosity-temperature curve and with viscosity ~100 poise, using multi-hole Pt/Rh bushings.

  7. Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite

    Directory of Open Access Journals (Sweden)

    Pankaj Pandey

    2016-05-01

    Full Text Available In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA, specific gravity (SG, coefficient of linear thermal expansion (CLTE, flexural and compression properties, and hardness. The mechanical properties of hybridized samples showed mixed trends compared to the unhybridized samples, but hybridization with glass fiber reduced water absorption by 37% and 43% for flax and hemp-agave PU composites respectively.

  8. Dynamic Mechanical and Thermal Properties of Bagasse/Glass Fiber/Polypropylene Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mehdi Roohani

    2016-06-01

    Full Text Available This work aims to evaluate the thermal and dynamic mechanical properties of bagasse/glass fiber/polypropylene hybrid composites. Composites were prepared by the melt compounding method and their properties were characterized by differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA. DSC results found that with incorporation of bagasse and glass fiber the melting temperature (Tm and the crystallisation temperature (Tc shift to higher temperatures and the degree of crystallinity (Xc increase. These findings suggest that the fibers played the role of a nucleating agent in composites. Dynamic mechanical analysis indicated that by the incorporation of bagasse and glass fiber into polypropylene, the storage modulus ( and the loss modulus ( increase whereas the mechanical loss factor (tanδ decrease. To assess the effect of reinforcement with increasing temperature, the effectiveness coefficient C was calculated at different temperature ranges and revealed that, at the elevated temperatures, improvement of mechanical properties due to the presence of fibers was more noticeable. The fiber-matrix adhesion efficiency determined by calculating of adhesion factor A in terms of the relative damping of the composite (tan δc and the polymer (tan δpand volume fraction of the fibers (Фf. Calculated adhesion factor A values indicated that by adding glass fiber to bagasse/polypropylene system, the fiber-matrix adhesion improve. Hybrid composite containing 25% bagasse and 15% glass fiber showed better fiber-matrix adhesion.

  9. Mechanical Characterization of Basalt and Glass Fiber Epoxy Composite Tube

    OpenAIRE

    Lapena, Mauro Henrique; Marinucci, Gerson

    2017-01-01

    The application of basalt fibers are possible in many areas thanks to its multiple and good properties. It exhibits excellent resistance to alkalis, similar to glass fiber, at a much lower cost than carbon and aramid fibers. In the present paper, a comparative study on mechanical properties of basalt and E-glass fiber composites was performed. Results of apparent hoop tensile strength test of ring specimens cut from tubes and the interlaminar shear stress (ILSS) test are presented. Tensile te...

  10. Alkali-resistant glass fiber reinforced high strength concrete in simulated aggressive environment

    International Nuclear Information System (INIS)

    Kwan, W.H.; Cheah, C.B.; Ramli, M.; Chang, K.Y.

    2018-01-01

    The durability of the alkali-resistant (AR) glass fiber reinforced concrete (GFRC) in three simulated aggresive environments, namely tropical climate, cyclic air and seawater and seawater immersion was investigated. Durability examinations include chloride diffusion, gas permeability, X-ray diffraction (XRD) and scanning electron microscopy examination (SEM). The fiber content is in the range of 0.6 % to 2.4 %. Results reveal that the specimen containing highest AR glass fiber content suffered severe strength loss in seawater environment and relatively milder strength loss under cyclic conditions. The permeability property was found to be more inferior with the increase in the fiber content of the concrete. This suggests that the AR glass fiber is not suitable for use as the fiber reinforcement in concrete is exposed to seawater. However, in both the tropical climate and cyclic wetting and drying, the incorporation of AR glass fiber prevents a drastic increase in permeability. [es

  11. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide.

    Science.gov (United States)

    Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il

    2013-05-10

    Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents.

  12. In vitro cytotoxicity of Manville Code 100 glass fibers: Effect of fiber length on human alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Jones William

    2006-03-01

    Full Text Available Abstract Background Synthetic vitreous fibers (SVFs are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes. SVFs conventionally include three major categories: fibrous glass, rock/slag/stone (mineral wool, and ceramic fibers. Previous in vitro studies from our laboratory demonstrated length-dependent cytotoxic effects of glass fibers on rat alveolar macrophages which were possibly associated with incomplete phagocytosis of fibers ≥ 17 μm in length. The purpose of this study was to examine the influence of fiber length on primary human alveolar macrophages, which are larger in diameter than rat macrophages, using length-classified Manville Code 100 glass fibers (8, 10, 16, and 20 μm. It was hypothesized that complete engulfment of fibers by human alveolar macrophages could decrease fiber cytotoxicity; i.e. shorter fibers that can be completely engulfed might not be as cytotoxic as longer fibers. Human alveolar macrophages, obtained by segmental bronchoalveolar lavage of healthy, non-smoking volunteers, were treated with three different concentrations (determined by fiber number of the sized fibers in vitro. Cytotoxicity was assessed by monitoring cytosolic lactate dehydrogenase release and loss of function as indicated by a decrease in zymosan-stimulated chemiluminescence. Results Microscopic analysis indicated that human alveolar macrophages completely engulfed glass fibers of the 20 μm length. All fiber length fractions tested exhibited equal cytotoxicity on a per fiber basis, i.e. increasing lactate dehydrogenase and decreasing chemiluminescence in the same concentration-dependent fashion. Conclusion The data suggest that due to the larger diameter of human alveolar macrophages, compared to rat alveolar macrophages, complete phagocytosis of longer fibers can occur with the human cells. Neither incomplete phagocytosis nor length-dependent toxicity was

  13. Physicochemical properties of discontinuous S2-glass fiber reinforced resin composite.

    Science.gov (United States)

    Huang, Qiting; Qin, Wei; Garoushi, Sufyan; He, Jingwei; Lin, Zhengmei; Liu, Fang; Vallittu, Pekka K; Lassila, Lippo V J

    2018-01-30

    The objective of this study was to investigate several physicochemical properties of an experimental discontinuous S2-glass fiber-reinforced resin composite. The experimental composite was prepared by mixing 10 wt% of discontinuous S2-glass fibers with 27.5 wt% of resin matrix and 62.5 wt% of particulate fillers. Flexural strength (FS) and modulus (FM), fracture toughness (FT), work of fracture (WOF), double bond conversion (DC), Vickers hardness, volume shrinkage (VS) and fiber length distribution were determined. These were compared with two commercial resin composites. The experimental composite showed the highest FS, WOF and FT compared with two control composites. The DC of the experimental composite was comparable with controls. No significant difference was observed in VS between the three tested composites. The use of discontinuous glass fiber fillers with polymer matrix and particulate fillers yielded improved physical properties and substantial improvement was associated with the use of S2-glass fiber.

  14. Studies on fabrication of glass fiber reinforced composites using polymer blends

    Science.gov (United States)

    Patel, R. H.; Kachhia, P. H.; Patel, S. N.; Rathod, S. T.; Valand, J. K.

    2018-05-01

    Glass fiber reinforced PVC/NBR composites have been fabricated via hot compression moulding process. PVC is brittle in nature and thus lower thermal stability. Therefore, to improve the toughness of PVC, NBR was incorporated in certain proportions. As both are polar and thus they are compatible. To improve the strength property further, these blends were used to fabricate glass fiber reinforced composites. SEM micrograph shows good wettability of the blend with glass fibers resulting in proper bonding which increase the strength of the composites.

  15. Fiber fuse light-induced continuous breakdown of silica glass optical fiber

    CERN Document Server

    Todoroki, Shin-ichi

    2014-01-01

    This book describes the fiber fuse phenomenon that causes a serious problem for the present optical communication systems. High-power light often brings about catastrophic damage to optical devices. Silica glass optical fibers with ultralow transmission loss are not the exception. A fiber fuse appears in a heated region of the fiber cable delivering a few watts of light and runs toward the light source destroying its core region. Understanding this phenomenon is a necessary first step in the development of future optical communication systems. This book provides supplementary videos and photog

  16. Effect of fiber content on flexural properties of glass fiber-reinforced polyamide-6 prepared by injection molding.

    Science.gov (United States)

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-07-26

    The use of non-metal clasp denture (NMCD) materials may seriously affect the remaining tissues because of the low rigidity of NMCD materials such as polyamides. The purpose of this study was to develop a high-rigidity glass fiber-reinforced thermoplastic (GFRTP) composed of E-glass fiber and polyamide-6 for NMCDs using an injection molding. The reinforcing effects of fiber on the flexural properties of GFRTPs were investigated using glass fiber content ranging from 0 to 50 mass%. Three-point bending tests indicated that the flexural strength and elastic modulus of a GFRTP with a fiber content of 50 mass% were 5.4 and 4.7 times higher than those of unreinforced polyamide-6, respectively. The result showed that the physical characteristics of GFRTPs were greatly improved by increasing the fiber content, and the beneficial effects of fiber reinforcement were evident. The findings suggest that the injection-molded GFRTPs are adaptable to NMCDs because of their excellent mechanical properties.

  17. Environmental resistance and mechanical performance of basalt and glass fibers

    International Nuclear Information System (INIS)

    Wei Bin; Cao Hailin; Song Shenhua

    2010-01-01

    The treated basalt and glass fibers with sodium hydroxide and hydrochloric acid solutions for different times were analyzed, respectively. This paper summarized the mass loss ratio and the strength maintenance ratios of the fibers after treatment. The fibers' surface corrosion morphologies were characterized using scanning electron microscopy and their compositions were detected using energy dispersive X-ray spectroscopy. The acid resistance was much better than the alkali resistance for the basalt fibers. Nevertheless, for the glass fibers the situation is different: the acid resistance was almost the same as the alkali resistance. Among the two types of aqueous environments evaluated, the alkali solution is the most aggressive to the fibers' surface. The possible corrosion mechanisms are revealed.

  18. Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates

    Science.gov (United States)

    Yeh, Po-Ching

    2011-12-01

    This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.

  19. Flexural properties of polyethylene, glass and carbon fiber-reinforced resin composites for prosthetic frameworks.

    Science.gov (United States)

    Maruo, Yukinori; Nishigawa, Goro; Irie, Masao; Yoshihara, Kumiko; Minagi, Shogo

    2015-01-01

    High flexural properties are needed for fixed partial denture or implant prosthesis to resist susceptibility to failures caused by occlusal overload. The aim of this investigation was to clarify the effects of four different kinds of fibers on the flexural properties of fiber-reinforced composites. Polyethylene fiber, glass fiber and two types of carbon fibers were used for reinforcement. Seven groups of specimens, 2 × 2 × 25 mm, were prepared (n = 10 per group). Four groups of resin composite specimens were reinforced with polyethylene, glass or one type of carbon fiber. The remaining three groups served as controls, with each group comprising one brand of resin composite without any fiber. After 24-h water storage in 37°C distilled water, the flexural properties of each specimen were examined with static three-point flexural test at a crosshead speed of 0.5 mm/min. Compared to the control without any fiber, glass and carbon fibers significantly increased the flexural strength (p glass fiber (p glass fibers (p > 0.05). Fibers could, therefore, improve the flexural properties of resin composite and carbon fibers in longitudinal form yielded the better effects for reinforcement.

  20. Characterization and reactivity of sodium aluminoborosilicate glass fiber surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Rivera, Lymaris, E-mail: luo105@psu.edu [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Bakaev, Victor A.; Banerjee, Joy [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Mueller, Karl T. [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States); Pantano, Carlo G. [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2016-05-01

    Highlights: • XPS revealed that these fiber surfaces contain sodium carbonate weathering products. • IGC–MS data confirms the products of acetic acid reaction with sodium carbonate. • NMR data shows two closely spaced, but distinct sodium carboxylate peaks. • Acetic acid reacts with both sodium in the glass and sodium in the sodium carbonate. - Abstract: Multicomponent complex oxides, such as sodium aluminoborosilicate glass fibers, are important materials used for thermal insulation in buildings and homes. Although the surface properties of single oxides, such as silica, have been extensively studied, less is known about the distribution of reactive sites at the surface of multicomponent oxides. Here, we investigated the reactivity of sodium aluminoborosilicate glass fiber surfaces for better understanding of their interface chemistry and bonding with acrylic polymers. Acetic acid (with and without a {sup 13}C enrichment) was used as a probe representative of the carboxylic functional groups in many acrylic polymers and adhesives. Inverse gas chromatography coupled to a mass spectrometer (IGC–MS), and solid state nuclear magnetic resonance (NMR), were used to characterize the fiber surface reactions and surface chemical structure. In this way, we discovered that both sodium ions in the glass surface, as well as sodium carbonate salts that formed on the surface due to the intrinsic reactivity of this glass in humid air, are primary sites of interaction with the carboxylic acid. Surface analysis by X-ray photoelectron spectroscopy (XPS) confirmed the presence of sodium carbonates on these surfaces. Computer simulations of the interactions between the reactive sites on the glass fiber surface with acetic acid were performed to evaluate energetically favorable reactions. The adsorption reactions with sodium in the glass structure provide adhesive bonding sites, whereas the reaction with the sodium carbonate consumes the acid to form sodium-carboxylate, H

  1. Structural and optical properties of antimony-germanate-borate glass and glass fiber co-doped Eu3+ and Ag nanoparticles.

    Science.gov (United States)

    Zmojda, Jacek; Kochanowicz, Marcin; Miluski, Piotr; Baranowska, Agata; Pisarski, Wojciech A; Pisarska, Joanna; Jadach, Renata; Sitarz, Maciej; Dorosz, Dominik

    2018-08-05

    In the paper analysis of structural and luminescent properties of antimony-germanate-borate glasses and glass fiber co-doped with 0.6AgNO 3 /0.2Eu 2 O 3 are presented. Heat treatment of the fabricated glass and optical fiber (400 °C, 12 h) enabled to obtain Ag nanoparticles (NPs) with average size 30-50 nm on their surface. It has been proofed that silver ions migrate to the glass surface, where they are reduced to Ag 0 nanoparticles. Simultaneously, FTIR analysis showed that heat treatment of the glass and optical fiber increases the local symmetry of the Eu 3+ site. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. High-Power ZBLAN Glass Fiber Lasers: Review and Prospect

    Directory of Open Access Journals (Sweden)

    Xiushan Zhu

    2010-01-01

    Full Text Available ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF, considered as the most stable heavy metal fluoride glass and the excellent host for rare-earth ions, has been extensively used for efficient and compact ultraviolet, visible, and infrared fiber lasers due to its low intrinsic loss, wide transparency window, and small phonon energy. In this paper, the historical progress and the properties of fluoride glasses and the fabrication of ZBLAN fibers are briefly described. Advances of infrared, upconversion, and supercontinuum ZBLAN fiber lasers are addressed in detail. Finally, constraints on the power scaling of ZBLAN fiber lasers are analyzed and discussed. ZBLAN fiber lasers are showing promise of generating high-power emissions covering from ultraviolet to mid-infrared considering the recent advances in newly designed optical fibers, beam-shaped high-power pump diodes, beam combining techniques, and heat-dissipating technology.

  3. Durability-Based Design Criteria for a Chopped-Glass-Fiber Automotive Structural Composite; TOPICAL

    International Nuclear Information System (INIS)

    Battiste, R.L.; Corum, J.M.; Ren, W.; Ruggles, M.B.

    1999-01-01

    This report provides recommended durability-based design criteria for a chopped-glass-fiber reinforced polymeric composite for automotive structural applications. The criteria closely follow the framework of an earlier criteria document for a continuous-strand-mat (CSM) glass-fiber reference composite. Together these design criteria demonstrate a framework that can be adapted for future random-glass-fiber composites for automotive structural applications

  4. Improvement of the piezoelectric properties of glass fiber-reinforced epoxy composites by poling treatment

    International Nuclear Information System (INIS)

    Oh, S M; Hwang, H Y

    2013-01-01

    Recently, a new non-destructive method has been proposed for damage monitoring of glass fiber-reinforced polymer composite materials using the piezoelectric characteristics of a polymeric matrix. Several studies of the piezoelectric properties of unidirectional glass fiber epoxy composites and damage monitoring of double-cantilever beams have supported the claim that the piezoelectric method is feasible and powerful enough to monitor the damage of glass fiber epoxy composites. Generally, conventional piezoelectric materials have higher piezoelectric characteristics through poling treatment. In this work, we investigated the change of the piezoelectric properties of glass fiber-reinforced epoxy composites before and after poling treatment. The piezoelectric constants (d 33 ) of glass fiber-reinforced epoxy composites increased by more than 400%. Also, x-ray diffraction tests revealed that poling treatment changed the degree of crystallinity of the epoxy matrix, and this led to the improvement of the piezoelectric characteristics of glass fiber-reinforced epoxy composites. (paper)

  5. The effect of silanated and impregnated fiber on the tensile strength of E-glass fiber reinforced composite retainer

    Directory of Open Access Journals (Sweden)

    Niswati Fathmah Rosyida

    2015-12-01

    Full Text Available Background: Fiber reinforced composite (FRC is can be used in dentistry as an orthodontic retainer. FRC  still has a limitations because of to  a weak bonding between fibers and matrix. Purpose: This research was aimed to evaluate the effect of silane as coupling agent and fiber impregnation on the tensile strength of E-glass FRC. Methods: The samples of this research were classified into two groups each of which consisted of three subgroups, namely the impregnated fiber group (original, 1x addition of silane, 2x addition of silane and the non-impregnated fiber group (original, 1x addition of silane, 2x addition of silane. The tensile strength was measured by a universal testing machine. The averages of the tensile strength in all groups then were compared by using Kruskal Wallis and Mann Whitney post hoc tests. Results: The averages of the tensile strength (MPa in the impregnated fiber group can be known as follow; original impregnated fiber (26.60±0.51, 1x addition of silane (43.38±4.42, and 2x addition of silane (36.22±7.23. The averages of tensile strength (MPa in the non-impregnated fiber group can also be known as follow; original non-impregnated fiber (29.38±1.08, 1x addition of silane (29.38±1.08, 2x addition of silane (12.48±2.37. Kruskal Wallis test showed that there was a significant difference between the impregnated fiber group and the non-impregnated fiber group (p<0.05. Based on the results of post hoc test, it is also known that the addition of silane in the impregnated fiber group had a significant effect on the increasing of the tensile strength of E-glass FRC (p<0.05, while the addition of silane in the non-impregnated fiber group had a significant effect on the decreasing of the tensile strength of E-glass FRC. Conclusion: It can be concluded that the addition of silane in the non-silanated fiber group can increase the tensile strength of E-glass FRC, but the addition of silane in the silanated fiber group can

  6. Multifunctionality in epoxy/glass fibers composites with graphene interphase

    OpenAIRE

    Mahmood, Haroon

    2017-01-01

    In this project, the synergetic effect of a graphene interphase in epoxy/glass fibers composites was investigated by coating glass fibers (GF) with graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets by an electrophoretic deposition (EPD) technique. Graphite oxide was prepared using modified Hummers method in which raw graphite powder was oxidized using potassium permanganate (KMnO4) in acidic solution. Using ultrasonic technique, the graphite oxide was dispersed homogenously in w...

  7. Experimental Investigation of Thermal Properties in Glass Fiber Reinforced with Aluminium

    Science.gov (United States)

    Irudaya raja, S. Joseph; Vinod Kumar, T.; Sridhar, R.; Vivek, P.

    2017-03-01

    A test method of a Guarded heat flow meter are used to measure the thermal conductivity of glass fiber and filled with a aluminum powder epoxy composites using an instrument in accordance with ASTM. This experimental study reveals that the incorporation of aluminum and glass fiber reinforced results in enhancement of thermal conductivity of epoxy resin and thereby improves its heat transfer capability. Fiber metal laminates are good candidates for advanced automobile structural applications due to their high categorical mechanical and thermal properties. The most consequential factor in manufacturing of these laminates is the adhesive bonding between aluminum and FRP layers. Here several glass-fiber reinforced aluminum were laminates with different proportion of bonding adhesion were been manufactured. It was observed that the damage size is more preponderant in laminates with poor interfacial adhesion compared to that of laminates with vigorous adhesion between aluminum and glass layers numerically calculated ones and it is found that the values obtained for various composite models using experimental testing method.

  8. Isothermal and hygrothermal agings of hybrid glass fiber/carbon fiber composite

    Science.gov (United States)

    Barjasteh, Ehsan

    in the oxygen-transport properties (diffusivity and solubility of oxygen). The effect of thermal aging on mechanical properties of the aged composites was investigated. A relationship was derived relating TOL to tensile strength of the hybrid composite. The tensile strength remained essentially unchanged by thermal oxidation after 52 weeks of exposure. On the contrary, the oxidation resulted in a decrease in short-beam-shear (SBS) strength (a matrix-dominated property) due to degradation of matrix and fiber/matrix interface strength. However, the filled composites showed a lower reduction in SBS strength than that of the unfilled one for an identical duration of exposure. In addition, the effect of thermal aging on glass transition temperature (T g) was determined for isothermal exposures at 180ºC and 200ºC. The simultaneous effects of post-curing and thermal degradation resulted in the change in Tg during exposure. Another study on the composite rod was performed to investigate the sorption kinetics and the effects of moisture on mechanical and physical properties. Sorption curves were obtained for both hybrid and non-hybrid composite rods to determine characteristic parameters, including the diffusion coefficient (D) and the maximum moisture uptake (Minfinity ). The moisture uptake for the hybrid composites generally exhibited Fickian behavior (no hybridization effects), behaving much like non-hybrid composites. A two-dimensional diffusion model was employed to calculate moisture diffusivities in the longitudinal direction. Interfaces and thermally-induced residual stresses affected the moisture diffusion. In addition, the effect of hygrothermal aging on glass transition temperature (Tg), short beam shear strength (SBS), and tensile strength was determined for hygrothermal exposure at 60°C and 85% relative humidity (RH). Property retention and reversibility of property degradation was also measured. Microscopic inspection revealed no evidence of damage

  9. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  10. Effect of Manufacturing Method to Tensile Properties of Hybrid Composite Reinforced by Natural (Agel Leaf Fiber) and Glass Fibers

    Science.gov (United States)

    Nugroho, A.; Abdurohman, K.; Kusmono; Hestiawan, H.; Jamasri

    2018-04-01

    This paper described the effect of different type of manufacturing method to tensile properties of hybrid composite woven agel leaf fiber and glass fiber as an alternative of LSU structure material. The research was done by using 3 ply of woven agel leaf fiber (ALF) and 3 ply of glass fiber (wr200) while the matrix was using unsaturated polyester. Composite manufacturing method used hand lay-up and vacuum bagging. Tensile test conducted with Tensilon universal testing machine, specimen shape and size according to standard size ASTM D 638. Based on tensile test result showed that the tensile strength of agel leaf fiber composite with unsaturated polyester matrix is 54.5 MPa by hand lay-up and 84.6 MPa with vacuum bagging method. From result of tensile test, hybrid fiber agel composite and glass fiber with unsaturated polyester matrix have potential as LSU structure.

  11. Consumer perception of risk associated with filters contaminated with glass fibers.

    Science.gov (United States)

    Cummings, K M; Hastrup, J L; Swedrock, T; Hyland, A; Perla, J; Pauly, J L

    2000-09-01

    The filters in Eclipse, a new cigarette-like smoking article marketed by R. J. Reynolds Tobacco Company, are contaminated with glass fibers, fragments, and particles. Reported herein are the results of a study in which consumers were questioned about their opinions as to whether exposure to glass fibers in such a filter poses an added health risk beyond that from smoking and whether the manufacturer has an obligation to inform consumers about the glass contamination problem. The study queried 137 adults who were interviewed while waiting at a Division of Motor Vehicles office in Erie County, New York in 1997. All but one person expressed the view that the presence of glass fibers on the filters poses an added health risk beyond that associated with exposure to tobacco smoke alone. Nearly all expressed the position that the cigarette manufacturer has a duty to inform the public about the potential for glass exposure.

  12. Influence of Glass Fiber on Fresh and Hardened Properties of Self Compacting Concrete

    Science.gov (United States)

    Bharathi Murugan, R.; Haridharan, M. K.; Natarajan, C.; Jayasankar, R.

    2017-07-01

    The practical need of self-compacting concrete (SCC) is increasing due to increase in the infrastructure competence all over the world. The effective way of increasing the strength of concrete and enhance the behaviour under extreme loading (fire) is the keen interest. Glass fibers were added for five different of volume fractions (0%, 0.1%, 0.3%, 0.5% and 0.6%) to determine the optimum percentage of glass fiber without compensating the fresh properties and enhanced hardened properties of SCC concrete. The fresh state of concrete is characterized by slump flow, T-50cm slump flow, and V-funnel and L- box tests. The results obtained in fresh state are compared with the acceptance criteria of EFNARC specification. Concrete specimens were casted to evaluate the hardened properties such as compressive strength, split tensile strength, flexural strength and modulus of elasticity. Incorporation the glass fiber into SCC reduces the workability but within the standard specification. The hardened properties of SCC glass fiber reinforced concrete were enhanced, due to bridging the pre-existing micro cracks in concrete by glass fiber addition.

  13. Evaluating the mechanical properties of E-Glass fiber/carbon fiber reinforced interpenetrating polymer networks

    Directory of Open Access Journals (Sweden)

    G. Suresh

    2015-02-01

    Full Text Available A series of vinyl ester and polyurethane interpenetrating polymer networks were prepared by changing the component ratios of VER (Vinyl ester and PU (Polyurethane and the polymerization process was confirmed with Fourier Transform infrared spectroscopy. IPN (Inter Penetrating Polymer Network - VER/PU reinforced Glass and carbon fiber composite laminates were made using the Hand lay up technique. The Mechanical properties of the E-glass and carbon fiber specimens were compared from tests including Tensile, Compressive, Flexural, ILSS (Inter Laminar Shear Strength, Impact & Head Deflection Test (HDT. The IPN Reinforced Carbon fiber specimen showed better results in all the tests than E-Glass fibre reinforced IPN laminate with same thickness of the specimen, according to ASTM standards. It was found that the combination of 60%VER and 40%PU IPN exhibits better impact strength and maximum elongation at break, but at the slight expense of mechanical properties such as tensile, compressive, flexural, ILSS properties. The morphology of the unreinforced and reinforced composites was analyzed with help of scanning electron microscopy.

  14. Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials.

    Science.gov (United States)

    Chung, In; Jang, Joon I; Malliakas, Christos D; Ketterson, John B; Kanatzidis, Mercouri G

    2010-01-13

    We report that the one-dimensional polar selenophosphate compounds APSe(6) (A = K, Rb), which show crystal-glass phase-change behavior, exhibit strong second harmonic generation (SHG) response in both crystal and glassy forms. The crystalline materials are type-I phase-matchable with SHG coefficients chi((2)) of 151.3 and 149.4 pm V(-1) for K(+) and Rb(+) salts, respectively, which is the highest among phase-matchable nonlinear optical (NLO) materials with band gaps over 1.0 eV. The glass of APSe(6) exhibits comparable SHG intensities to the top infrared NLO material AgGaSe(2) without any poling treatments. APSe(6) exhibit excellent mid-IR transparency. We demonstrate that starting from noncentrosymmetric phase-change materials such as APSe(6) (A = K, Rb), we can obtain optical glass fibers with strong, intrinsic, and temporally stable second-order nonlinear optical (NLO) response. The as-prepared glass fibers exhibit SHG and difference frequency generation (DFG) responses over a wide range of wavelengths. Raman spectroscopy and pair distribution function (PDF) analyses provide further understanding of the local structure in amorphous state of KPSe(6) bulk glass and glass fiber. We propose that this approach can be widely applied to prepare permanent NLO glass from materials that undergo a phase-change process.

  15. Remote Fiber Laser Cutting System for Dismantling Glass Melter - 13071

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, Takashi; Miura, Noriaki [IHI Corporation, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Oowaki, Katsura; Kawaguchi, Isao [IHI Inspection and Instrumentation Co., Ltd, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Miura, Yasuhiko; Ino, Tooru [Japan Nuclear Fuel Limited, 4-108, Aza Okitsuke, Oaza Obuchi, Rokkasho-Mura, Kamikita-gun, Aomori (Japan)

    2013-07-01

    Since 2008, the equipment for dismantling the used glass melter has been developed in High-level Liquid Waste (HLW) Vitrification Facility in the Japanese Rokkasho Reprocessing Plant (RRP). Due to the high radioactivity of the glass melter, the equipment requires a fully-remote operation in the vitrification cell. The remote fiber laser cutting system was adopted as one of the major pieces of equipment. An output power of fiber laser is typically higher than other types of laser and so can provide high-cutting performance. The fiber laser can cut thick stainless steel and Inconel, which are parts of the glass melter such as casings, electrodes and nozzles. As a result, it can make the whole of the dismantling work efficiently done for a shorter period. Various conditions of the cutting test have been evaluated in the process of developing the remote fiber cutting system. In addition, the expected remote operations of the power manipulator with the laser torch have been fully verified and optimized using 3D simulations. (authors)

  16. Investigation of mechanical properties of hemp/glass fiber reinforced nano clay hybrid composites

    Science.gov (United States)

    Unki, Hanamantappa Ningappa; Shivanand, H. K.; Vidyasagar, H. N.

    2018-04-01

    Over the last twenty to thirty years composite materials have been used in engineering field. Composite materials possess high strength, high strength to weight ratio due to these facts composite materials are becoming popular among researchers and scientists. The major proportion of engineering materials consists of composite materials. Composite materials are used in vast applications ranging from day-to-day household articles to highly sophisticated applications. In this paper an attempt is made to prepare three different composite materials using e-glass and Hemp. In this present investigation hybrid composite of Hemp, Glass fiber and Nano clay will be prepared by Hand-layup technique. The glass fiber used in this present investigation is E-glass fiber bi-directional: 90˚ orientation. The composite samples will be made in the form of a Laminates. The wt% of nanoclay added in the preparation of sample is 20 gm constant. The fabricated composite Laminate will be cut into corresponding profiles as per ASTM standards for Mechanical Testing. The effect of addition of Nano clay and variation of Hemp/glass fibers will be studied. In the present work, a new Hybrid composite is developed in which Hemp, E glass fibers is reinforced with epoxy resin and with Nano clay.

  17. Investigation of mechanical properties of kenaf, hemp and E-glass fiber reinforced composites

    Science.gov (United States)

    Dinesh, Veena; Shivanand, H. K.; Vidyasagar, H. N.; Chari, V. Srinivasa

    2018-04-01

    Recently the use of fiber reinforced polymer composite in the automobile, aerospace overwhelming designing sectors has increased tremendously due to the ecological issues and health hazard possessed by the synthetic fiber during disposal and manufacturing. The paper presents tensile strength, flexural strength and hardness of kenaf-E glass-kenaf, hemp-E glass-hemp and kenaf-E glass-hemp fiber reinforced polyester composites. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses of each combination. In addition to the physical and mechanical properties, processing methods and application of kenaf and hemp fiber composites is also discussed.

  18. Chemically etched sharpened tip of transparent crystallized glass fibers with nonlinear optical Ba2TiSi2O8 nanocrystals

    International Nuclear Information System (INIS)

    Enomoto, Itaru; Benino, Yasuhiko; Komatsu, Takayuki; Fujiwara, Takumi

    2007-01-01

    Glass fibers with a diameter of ∼100 μm are drawn by just pulling up melts of 40BaO·20TiO 2 ·40SiO 2 glass, and transparent crystallized glass fibers consisting of nonlinear optical fresnoite Ba 2 TiSi 2 O 8 nanocrystals (particle size: ∼100-200 nm) are fabricated by crystallization of glass fibers. Precursor glass fibers and nanocrystallized glass fibers are etched chemically using a meniscus method, in which an etching solution of 0.1wt%-HF/hexane is used. Glass fibers with sharpened tips (e.g., the taper length is ∼L=200 μm and the tip angle is ∼θ=23deg) are obtained. It is found that etched nanocrystallized glass fibers also have sharpened tips (L=50 μm, θ=80deg). Compared with precursor glass fibers, nanocrystallized glass fibers show a high resistance against chemical etching in a 0.1 wt%HF solution. Although sharpened tips in nanocrystallized glass fibers do not have nanoscaled apertures, the present study suggests that nanocrystallized glass fibers showing second harmonic generations would have a potential for fiber-type light control optical devices. (author)

  19. Study of lanthanum aluminum silicate glasses for passive and active optical fibers

    Science.gov (United States)

    Schuster, K.; Litzkendorf, D.; Grimm, S.; Kobelke, J.; Schwuchow, A.; Ludwig, A.; Leich, M.; Jetschke, S.; Dellith, J.; Auguste, J.-L.; Leparmentier, S.; Humbert, G.; Werner, G.

    2013-03-01

    We report on SiO2-Al2O3-La2O3 glasses - with and without Yb2O3 - suitable for nonlinear and fiber laser applications. We also present successful supercontinuum generation and fiber laser operation around 1060 nm in step-index fibers. We have optimized the glass compositions in terms of thermal and optical requirements for both a high La2O3 (24 mol%) and Yb2O3(6 mol%) concentration. The aluminum concentration was adjusted to about 21 mol% Al2O3 to increase the solubility of lanthanum and ytterbium in the glass beyond possible MCVD based techniques. The glasses have been characterized by dilatometrical methods to find transition temperatures from 860 to 880°C and thermal expansion coefficients between 4.1 and 7.0 × 10-6 K-1. Structured step index fibers with a SiO2-Al2O3-La2O3 core and silica cladding have been realized showing a fiber loss minimum of about 500 dB/km at 1200 nm wavelength. The chromatic dispersion could be adjusted to shift the zero dispersion wavelength (ZDW) close to the pump wavelength of 1550 nm in a supercontinuum generation setup. First fiber laser experiments show an efficiency of about 41 % with a remarkably reduced photodarkening compared to MCVD based fibers.

  20. Fabrication and physical properties of glass-fiber-reinforced thermoplastics for non-metal-clasp dentures.

    Science.gov (United States)

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-11-01

    Recently, non-metal-clasp dentures (NMCDs) made from thermoplastic resins such as polyamide, polyester, polycarbonate, and polypropylene have been used as removable partial dentures (RPDs). However, the use of such RPDs can seriously affect various tissues because of their low rigidity. In this study, we fabricated high-rigidity glass-fiber-reinforced thermoplastics (GFRTPs) for use in RPDs, and examined their physical properties such as apparent density, dynamic hardness, and flexural properties. GFRTPs made from E-glass fibers and polypropylene were fabricated using an injection-molding. The effects of the fiber content on the GFRTP properties were examined using glass-fiber contents of 0, 5, 10, 20, 30, 40, and 50 mass%. Commercially available denture base materials and NMCD materials were used as controls. The experimental densities of GFRTPs with various fiber contents agreed with the theoretical densities. Dynamic micro-indentation tests confirmed that the fiber content does not affect the GFRTP surface properties such as dynamic hardness and elastic modulus, because most of the reinforcing glass fibers are embedded in the polypropylene. The flexural strength increased from 55.8 to 217.6 MPa with increasing glass-fiber content from 0 to 50 mass%. The flexural modulus increased from 1.75 to 7.42 GPa with increasing glass-fiber content from 0 to 50 mass%, that is, the flexural strength and modulus of GFRTP with a fiber content of 50 mass% were 3.9 and 4.2 times, respectively, those of unreinforced polypropylene. These results suggest that fiber reinforcement has beneficial effects, and GFRTPs can be used in NMCDs because their physical properties are better than those of controls. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2254-2260, 2017. © 2016 Wiley Periodicals, Inc.

  1. Chalcogenide glass hollow core microstructured optical fibers

    Directory of Open Access Journals (Sweden)

    Vladimir S. eShiryaev

    2015-03-01

    Full Text Available The recent developments on chalcogenide glass hollow core microstructured optical fibers (HC-MOFs are presented. The comparative analysis of simulated optical properties for chalcogenide HC-MOFs of negative-curvature with different size and number of capillaries is given. The technique for the manufacture of microstructured chalcogenide preforms, which includes the assembly of the substrate glass tube and 8-10 capillaries, is described. Further trends to improve the optical transmission in chalcogenide NCHCFs are considered.

  2. Effects of accelerated artificial daylight aging on bending strength and bonding of glass fibers in fiber-embedded maxillofacial silicone prostheses.

    Science.gov (United States)

    Hatamleh, Muhanad M; Watts, David C

    2010-07-01

    The purpose of this study was to test the effect of different periods of accelerated artificial daylight aging on bond strength of glass fiber bundles embedded into maxillofacial silicone elastomer and on bending strength of the glass fiber bundles. Forty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer. Specimens were randomly allocated into four groups, and each group was subjected to different periods of accelerated daylight aging as follows (in hours); 0, 200, 400, and 600. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2)) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. Also a three-point bending test was performed to evaluate bending strength of the fiber bundles. One-way ANOVA and Bonferroni post hoc tests were carried out to detect statistical significance (p aging only. After 200 hours of exposure to artificial daylight and moisture conditions, bond strength between glass fibers and heat-cured silicones is optimal, and the bending strength of the glass fiber bundles is enhanced.

  3. Microstructured fibers with high lanthanum oxide glass core for nonlinear applications

    Science.gov (United States)

    Kobelke, J.; Schuster, K.; Litzkendorf, D.; Schwuchow, A.; Kirchhof, J.; Bartelt, H.; Tombelaine, V.; Leproux, P.; Couderc, V.; Labruyere, A.

    2009-05-01

    We demonstrate a low loss microstructured fiber (MOF) with a high nonlinear glass core and silica holey cladding. The substitution of mostly used silica as core material of microstructured fibers by lanthanum oxide glass promises a high nonlinear conversion efficiency for supercontinuum (SC) generation. The glass composition is optimized in terms of thermochemical and optical requirements. The glass for the MOF core has a high lanthanum oxide concentration (10 mol% La2O3) and a good compatibility with the silica cladding. This is performed by adding a suitable alumina concentration up to 20 mol%. The lanthanum oxide glass preform rods were manufactured by melting technique. Besides purity issues the material homogeneity plays an important role to achieve low optical loss. The addition of fluorides allows the better homogenization of the glass composition in the preform volume by refining. The minimum attenuation of an unstructured fiber drawn from this glass is about 0.6 dB/m. It is mostly caused by decreasing of scattering effects. The microstructured silica cladding allows the considerable shifting of dispersive behavior of the MOF for an optimal pump light conversion. The MOF shows zero dispersion wavelengths (ZDW) of 1140 nm (LP01 mode) and 970 nm (LP11 mode). The supercontinuum generation was investigated with a 1064 nm pump laser (650 ps). It shows a broad band emission between 500 nm and 2200 nm.

  4. Damage Modeling Of Injection-Molded Short- And Long-Fiber Thermoplastics

    International Nuclear Information System (INIS)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.; Phelps, Jay; Tucker, Charles L. III

    2009-01-01

    This article applies the recent anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has been implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.

  5. Characterization and morphological properties of glass fiber ...

    African Journals Online (AJOL)

    Characterization and morphological properties of glass fiber reinforced epoxy composites fabricated under varying degrees of hand lay-up techniques. ... Hence, these composites are projected to possess better dimensional stability adaptable for high performance structural applications. Keywords: composite, interfacial ...

  6. All-Glass Fiber Amplifier Pumped by Ultra-High Brightness Pumps

    Science.gov (United States)

    2016-02-15

    coating can exceed its long-term damage threshold. Such a concern obviously does not apply to a fiber with gold protective coating [14]. Thus in... coated triple-clad fibers, we are developing triple-clad Yb fiber with gold coating for improved thermal management. 2.1 Pump laser The two...is still an acrylate coating outside the glass clad for fiber handling and protection . Calculation shows that the temperature of the fiber acrylate

  7. Two Octaves Supercontinuum Generation in Lead-Bismuth Glass Based Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Ryszard Buczynski

    2014-06-01

    Full Text Available In this paper we report a two octave spanning supercontinuum generation in a bandwidth of 700–3000 nm in a single-mode photonic crystal fiber made of lead-bismuth-gallate glass. To our knowledge this is the broadest supercontinuum reported in heavy metal oxide glass based fibers. The fiber was fabricated using an in-house synthesized glass with optimized nonlinear, rheological and transmission properties in the range of 500–4800 nm. The photonic cladding consists of 8 rings of air holes. The fiber has a zero dispersion wavelength (ZDW at 1460 nm. Its dispersion is determined mainly by the first ring of holes in the cladding with a relative hole size of 0.73. Relative hole size of the remaining seven rings is 0.54, which allows single mode performance of the fiber in the infrared range and reduces attenuation of the fundamental mode. The fiber is pumped into anomalous dispersion with 150 fs pulses at 1540 nm. Observed spectrum of 700–3000 nm was generated in 2 cm of fiber with pulse energy below 4 nJ. A flatness of 5 dB was observed in 950–2500 nm range.

  8. Flexible, Heat-Resistant, and Flame-Retardant Glass Fiber Nonwoven/Glass Platelet Composite Separator for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Ulrich Schadeck

    2018-04-01

    Full Text Available A new type of high-temperature stable and self-supporting composite separator for lithium-ion batteries was developed consisting of custom-made ultrathin micrometer-sized glass platelets embedded in a glass fiber nonwoven together with a water-based sodium alginate binder. The physical and electrochemical properties were investigated and compared to commercial polymer-based separators. Full-cell configuration cycling tests at different current rates were performed using graphite and lithium iron phosphate as electrode materials. The glass separator was high-temperature tested and showed a stability up to at least 600 °C without significant shrinking. Furthermore, it showed an exceptional wettability for non-aqueous electrolytes. The electrochemical performance was excellent compared to commercially available polymer-based separators. The results clearly show that glass platelets integrated into a glass fiber nonwoven performs remarkably well as a separator material in lithium-ion batteries and show high-temperature stability.

  9. Anisotropy and compression/tension asymmetry of PP containing soft and hard particles and short glass fibers

    Directory of Open Access Journals (Sweden)

    A. M. Hartl

    2015-07-01

    Full Text Available Polypropylene (PP composites are used in a wide range of structural applications. Except for fiber reinforced PP, most PP particle composites are commonly considered to be isotropic or at least quasi-isotropic. In this paper, however, the anisotropy of several PP composites containing soft (rubber and hard (talc particles and glass fibers is characterized in detail in terms of the material microstructure as well as the resulting mechanical properties in monotonic tensile and compressive experiments. The microstructural investigations showed that all composites displayed a certain surface-core layer structure of distinctly different orientation patterns and with a higher degree of orientation in the surface layer. Also in mechanical testing an anisotropic behavior was observed with the degree of anisotropy being more pronounced in tension than compression. Moreover, the compression/tension asymmetry also strongly depends on filler type and orientation.

  10. Infrared Supercontinuum Generation in Soft-glass Fibers

    DEFF Research Database (Denmark)

    Agger, Christian

    This Ph.D.-project presents numerical simulations of supercontinuum (SC) generation in optical fiber laser systems based on various soft-glass materials. Extensive numerical modeling is performed in order to understand and characterize the generated SC. This includes a review of the generalized...

  11. Laser printed glass planar lightwave circuits with integrated fiber alignment structures

    Science.gov (United States)

    Desmet, A.; Radosavljevic, A.; Missinne, J.; Van Thourhout, D.; Van Steenberge, G.

    2018-02-01

    Femtosecond laser inscription allows straightforward manufacturing of glass planar lightwave circuits such as waveguides, interferometers, directional couplers, resonators and more complex structures. Fiber alignment structures are needed to facilitate communication with the glass planar lightwave circuit. In this study, a technique is described to create optical waveguides and alignment structures in the same laser exposure step. Using an industrial ytterbium-doped 1030 nm fiber laser pulses of 400 fs were focused into glass with a 0.4 NA objective causing permanent alteration of the material. Depending on laser parameters this modification allows direct writing of waveguides or the creation of channels after exposing the irradiated volumes to an etchant such as KOH. Writing of channels and waveguides with different laser powers, frequencies, polarisations, stage translation speeds and scan densities were investigated in fused silica and borosilicate glass. Waveguides with controlled dimensions were created, as well as etched U-grooves with a diameter of 126 μm and a sidewall roughness Ra of 255 nm. Cut back measurements were performed giving a waveguide propagation loss of 1.1 dB/cm in borosilicate glass. A coupling loss of 0.7 dB was measured for a transition between the waveguide and standard single mode fiber at 1550 nm, using index matching liquid. The described technique eliminates active alignment requirements and is useful for many applications such as microfluidic sensing, PLCs, fan-out connectors for multicore fibers and quantum optical networks.

  12. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers.

    Science.gov (United States)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-30

    A glass-ceramic optical fiber containing Ba 2 TiSi 2 O 8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba 2 TiSi 2 O 8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  13. Online Structural-Health Monitoring of Glass Fiber-Reinforced Thermoplastics Using Different Carbon Allotropes in the Interphase

    Directory of Open Access Journals (Sweden)

    Michael Thomas Müller

    2018-06-01

    Full Text Available An electromechanical response behavior is realized by nanostructuring the glass fiber interphase with different highly electrically conductive carbon allotropes like carbon nanotubes (CNT, graphene nanoplatelets (GNP, or conductive carbon black (CB. The operational capability of these multifunctional glass fibers for an online structural-health monitoring is demonstrated in endless glass fiber-reinforced polypropylene. The electromechanical response behavior, during a static or dynamic three-point bending test of various carbon modifications, shows qualitative differences in the signal quality and sensitivity due to the different aspect ratios of the nanoparticles and the associated electrically conductive network densities in the interphase. Depending on the embedding position within the glass fiber-reinforced composite compression, shear and tension loadings of the fibers can be distinguished by different characteristics of the corresponding electrical signal. The occurrence of irreversible signal changes during the dynamic loading can be attributed to filler reorientation processes caused by polymer creeping or by destruction of electrically conductive paths by cracks in the glass fiber interphase.

  14. Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings

    KAUST Repository

    Mulle, Matthieu; Wafai, Husam; Yudhanto, Arief; Lubineau, Gilles; Yaldiz, R.; Schijve, W.; Verghese, N.

    2015-01-01

    Hot-press molding of glass-fiber-reinforced polypropylene (GFPP) laminates was monitored using longitudinally and transversely embedded fiber Bragg gratings (FBGs) at different locations in unidirectional laminates. The optical sensors proved

  15. Effect of discrete glass fibers on the behavior of R.C. Beams exposed to fire

    Directory of Open Access Journals (Sweden)

    Magdy Riad

    2017-08-01

    Full Text Available The main objective of this paper is to investigate the effect of adding discrete glass fibers on the behavior of reinforced concrete (RC beams under different fire and cooling conditions. Eighteen beams with different concrete compressive strengths were tested to study the behavior of reinforced concrete (RC beams containing discrete glass fibers when exposed to different fire and cooling conditions. Nine beams were prepared from normal strength concrete (NSC with compressive strength equal to 35 MPa while the other beams were prepared from high strength concrete (HSC with compressive strength equal to 60 MPa. The beams contained different contents of discrete glass fibers. The modes of failure of tested specimens show that the crack patterns change according to fire condition and fiber content. Analysis of test results show that adding discrete glass fibers to NSC increased the residual stiffness of the tested specimens after firing and decreased the rate of the deflection gain during firing. Also adding fibers to concrete has a limited positive effect on the ultimate strength of the specimens compared to the control specimens. Its effect on deflection due to fire is more pronounced. Finally, the recommended optimum ratio of discrete glass fibers is not more than 0.5% of the total concrete weight.

  16. Proof-testing and probabilistic lifetime estimation of glass fibers for sensor applications.

    Science.gov (United States)

    Komachiya, M; Minamitani, R; Fumino, T; Sakaguchi, T; Watanabe, S

    1999-05-01

    The mechanical reliability of sensing glass fiber is one of the important problems in the practical use of fiber-optic sensors. To ensure long-term reliability on a mass-production level, a method of proof-testing is applied to a sensing glass fiber that will be subjected to mechanical deformation in its service situation. We propose to employ a higher strain level (screening level) in the proof-testing with a fiber-recoating technique that can suppress excessive damage during the testing. We consider a standard lifetime of 15 years of automotive applications and ensure a practical level of failure probability by a model calculation by using the strength data of a prototype fiber with the method of fracture-mechanics theory.

  17. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    Braga, R.A., E-mail: roney.braga@fiat.com.br [FIAT Automóveis S.A., Teardown, CEP 32530-000 Betim, MG (Brazil); Magalhaes, P.A.A., E-mail: pamerico@pucminas.br [PUC—MINAS, Instituto Politécnico, CEP 30535-610 Belo Horizonte, MG (Brazil)

    2015-11-01

    This work describes the study to investigate and compare the mechanical and thermal properties of raw jute and glass fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with glass fiber. Epoxy resin, jute and glass fibers were laminated in three weight ratios (69/31/0, 68/25/7 and 64/18/19) respectively to form composites. The tensile, flexural, impact, density, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that the addition of jute fiber and glass fiber in epoxy, increases the density, the impact energy, the tensile strength and the flexural strength, but decreases the loss mass in function of temperature and the water absorption. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope. - Highlights: • The work is the study of the mechanical of raw jute and glass fiber with epoxy resin. • The mechanical properties increased with more proportions of glass fibers. • The density of E69-J31-V0 was the lower. • The flexural strength did not have a significant increase. • The water absorption of E69-J31-V0 was the best.

  18. Glass pipette-carbon fiber microelectrodes for evoked potential recordings

    Directory of Open Access Journals (Sweden)

    Moraes M.F.D.

    1997-01-01

    Full Text Available Current methods for recording field potentials with tungsten electrodes make it virtually impossible to use the same recording electrode also as a lesioning electrode, for example for histological confirmation of the recorded site, because the lesioning procedure usually wears off the tungsten tip. Therefore, the electrode would have to be replaced after each lesioning procedure, which is a very high cost solution to the problem. We present here a low cost, easy to make, high quality glass pipette-carbon fiber microelectrode that shows resistive, signal/noise and electrochemical coupling advantages over tungsten electrodes. Also, currently used carbon fiber microelectrodes often show problems with electrical continuity, especially regarding electrochemical applications using a carbon-powder/resin mixture, with consequent low performance, besides the inconvenience of handling such a mixture. We propose here a new method for manufacturing glass pipette-carbon fiber microelectrodes with several advantages when recording intracerebral field potentials

  19. Numerical study of the glass-glass transition in short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Zaccarelli, Emanuela; Sciortino, Francesco; Tartaglia, Piero

    2004-01-01

    We report extensive numerical simulations in the glass region for a simple model of short-ranged attractive colloids, the square well model. We investigate the behaviour of the density autocorrelation function and of the static structure factor in the region of temperatures and packing fractions where a glass-glass transition is expected according to theoretical predictions. We strengthen our observations by studying both waiting time and history dependence of the numerical results. We provide evidence supporting the possibility that activated bond-breaking processes destabilize the attractive glass, preventing the full observation of a sharp glass-glass kinetic transition

  20. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions

    International Nuclear Information System (INIS)

    Chen, Sisi; Yang, Qingbo; Brow, Richard K.; Liu, Kun; Brow, Katherine A.; Ma, Yinfa

    2017-01-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. - Highlights: • Novel dynamic flow cell culture modules were designed. • Bioactive glass fibers were evaluated for their effects on VEGF secretion. • Borate-based glass fibers stimulate VEGF secretion under dynamic condition. • CuO and ZnO doped borate-based glass fibers stimulate the greatest VEGF release.

  1. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sisi [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Yang, Qingbo [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Brow, Richard K. [Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Liu, Kun [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Brow, Katherine A. [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Ma, Yinfa [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); and others

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. - Highlights: • Novel dynamic flow cell culture modules were designed. • Bioactive glass fibers were evaluated for their effects on VEGF secretion. • Borate-based glass fibers stimulate VEGF secretion under dynamic condition. • CuO and ZnO doped borate-based glass fibers stimulate the greatest VEGF release.

  2. Mechanical and abrasive wear characterization of bidirectional and chopped E-glass fiber reinforced composite materials

    International Nuclear Information System (INIS)

    Siddhartha,; Gupta, Kuldeep

    2012-01-01

    Highlights: ► Bi-directional and chopped E-glass fiber reinforced epoxy composites are fabricated. ► Three body abrasive wear behavior of fabricated composites has been assessed. ► Results are validated against existing microscopic models of Lancaster and Wang. ► Tensile strength of bi-directional E-glass fiber reinforced composites increases. ► Chopped glass fiber composites are found better in abrasive wear situations. -- Abstract: Bi-directional and chopped E-glass fiber reinforced epoxy composites are fabricated in five different (15, 20, 25, 30 and 35) wt% in an epoxy resin matrix. The mechanical characterization of these composites is performed. The three body abrasive wear behavior of fabricated composites has been assessed under different operating conditions. Abrasive wear characteristics of these composites are successfully analysed using Taguchi’s experimental design scheme and analysis of variance (ANOVA). The results obtained from these experiments are also validated against existing microscopic models of Ratner-Lancaster and Wang. It is observed that quite good linear relationships is held between specific wear rate and reciprocal of ultimate strength and strain at tensile fracture of these composites which is an indicative that the experimental results are in fair agreement with these existing models. Out of all composites fabricated it is found that tensile strength of bi-directional E-glass fiber reinforced composites increases because of interface strength enhancement. Chopped glass fiber reinforced composites are observed to perform better than bi-directional glass fiber reinforced composites under abrasive wear situations. The morphology of worn composite specimens has been examined by scanning electron microscopy (SEM) to understand about dominant wear mechanisms.

  3. The applicability of alkaline-resistant glass fiber in cement mortar of road pavement: Corrosion mechanism and performance analysis

    Directory of Open Access Journals (Sweden)

    Qin Xiaochun

    2017-11-01

    Full Text Available The main technical requirements of road pavement concrete are high flexural strength and fatigue durability. Adding glass fiber into concrete could greatly increase flexural strength and wearing resistance of concrete. However, glass fiber has the great potential of corrosion during the cement hydration, which will directly affect the long-term performance and strength stability. In this paper, accelerated corrosion experiments have been done to find out the corrosion mechanism and property of alkali-resistant glass fiber in cement mortar. The applicability and practicability of alkaline-resistant glass fiber in road concrete have been illustrated in the analysis of flexural strength changing trend of cement mortar mixed with different proportions of activated additives to protect the corrosion of glass fiber by cement mortar. The results have shown that a 30% addition of fly ash or 10% addition of silica fume to cement matrix could effectively improve the corrosion resistance of alkali-resistant glass fiber. The optimal mixing amount of alkali-resistant glass fiber should be about 1.0 kg/m3 in consideration of ensuring the compressive strength of reinforced concrete in road pavement. The closest-packing method has been adopted in the mixture ratio design of alkali-resistant glass fiber reinforced concrete, not only to reduce the alkalinity of the cement matrix through large amount addition of activated additives but also to greatly enhance the flexural performance of concrete with the split pressure ratio improvement of 12.5–16.7%. The results suggested a prosperous application prospect for alkaline-resistant glass fiber reinforced concrete in road pavement.

  4. Radiographic testing of glass fiber reinforced plastic materials

    International Nuclear Information System (INIS)

    Babylas, E.

    1976-01-01

    The microradiography of glass fiber reinforced polymers allowed to obtain informations on the growth of defects during molding. A relation was established between microstructure and routine radiography. The conditions needed for obtaining good quality radiograms are analyzed [fr

  5. THE PROPERTIES OF GUIDED ELECTROMAGNETIC FIELD MODES ON THE GaAs-BASED FIBER GLASS AND LASERS

    Directory of Open Access Journals (Sweden)

    Mustafa TEMİZ

    1999-03-01

    Full Text Available On the lasers or fiber optic communication electromagnetic waves are transmitted by confining and guiding between special layer's or fiber glass respectively. It is desired that electric and magnetic waves are in the active region of the lasers and in the core of the fiber glass. It is obtained by making more larger the of refractive index of the regions. On this work, the behavior and varying of the electric and magnetic waves and the effects on the electromagnetic waves in the fiber glass and lasers are investigated.

  6. Study on vibration alleviating properties of glass fiber reinforced polymer concrete through orthogonal tests

    International Nuclear Information System (INIS)

    Bai Wenfeng; Zhang Jianhua; Yan Peng; Wang Xinli

    2009-01-01

    Polymer concrete (PC), because of its good vibration alleviating properties, is a proper material for elementary machine parts in high-precision machine tools. Glass fiber was applied in PC to improve its mechanical properties, and the material obtained is called glass fiber reinforced polymer concrete (GFRPC). The best parameter to estimate the vibration alleviating property is damping ratio. Orthogonal tests were carried out to prepare GFRPC specimens with different component proportions. Damping ratio of the GFRPC specimens was measured. The effect of the factors considered in the experiments on damping ratio of GFRPC was studied. Results of the tests show that granite proportion plays the most important role in determining damping ratio of GFRPC, then flexibilizer dosage and glass fiber length, while epoxy resin dosage and glass fiber dosage play a comparatively less important part. Detailed descriptions were made about how the considered factors affect damping ratio of GFRPC in this paper

  7. Fiber Fabrication Facility for Non-Oxide and Specialty Glasses

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Unique facility for the research, development, and fabrication of non-oxide and specialty glasses and fibers in support of Navy/DoD programs.DESCRIPTION:...

  8. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites.

    Science.gov (United States)

    Braga, R A; Magalhaes, P A A

    2015-11-01

    This work describes the study to investigate and compare the mechanical and thermal properties of raw jute and glass fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with glass fiber. Epoxy resin, jute and glass fibers were laminated in three weight ratios (69/31/0, 68/25/7 and 64/18/19) respectively to form composites. The tensile, flexural, impact, density, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that the addition of jute fiber and glass fiber in epoxy, increases the density, the impact energy, the tensile strength and the flexural strength, but decreases the loss mass in function of temperature and the water absorption. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms

    DEFF Research Database (Denmark)

    Markos, Christos; Kubat, Irnis; Bang, Ole

    2014-01-01

    The combination of chalcogenide glasses with polymer photonic crystal fibers (PCFs) is a difficult and challenging task due to their different thermo-mechanical material properties. Here we report the first experimental realization of a hybrid polymer-chalcogenide PCF with integrated As2S3 glass...... nanofilms at the inner surface of the air-channels of a poly-methyl-methacrylate (PMMA) PCF. The integrated high refractive index glass films introduce distinct antiresonant transmission bands in the 480-900 nm wavelength region. We demonstrate that the ultra-high Kerr nonlinearity of the chalcogenide glass...

  10. Abrasion Resistance and Mechanical Properties of Waste-Glass-Fiber-Reinforced Roller-compacted Concrete

    Science.gov (United States)

    Yildizel, S. A.; Timur, O.; Ozturk, A. U.

    2018-05-01

    The potential use of waste glass fibers in roller-compacted concrete (RCC) was investigated with the aim to improve its performance and reduce environmental effects. The research was focused on the abrasion resistance and compressive and flexural strengths of the reinforced concrete relative to those of reference mixes without fibers. The freeze-thaw resistance of RCC mixes was also examined. It was found that the use of waste glass fibers at a rate of 2 % increased the abrasion resistance of the RCC mixes considerably.

  11. Effects of glass fiber mesh with different fiber content and structures on the compressive properties of complete dentures.

    Science.gov (United States)

    Yu, Sang-Hui; Cho, Hye-Won; Oh, Seunghan; Bae, Ji-Myung

    2015-06-01

    No study has yet evaluated the strength of complete dentures reinforced with glass fiber meshes with different content and structures. The purpose of this study was to compare the reinforcing effects of glass fiber mesh with different content and structures with that of metal mesh in complete dentures. Two types of glass fiber mesh were used: SES mesh (SES) and glass cloth (GC2, GC3, and GC4). A metal mesh was used for comparison. The complete dentures were made by placing the reinforcement 1 mm away from the tissue surface. A control group was prepared without any reinforcement (n=10). The compressive properties were measured by a universal testing machine at a crosshead speed of 5 mm/min. The results were analyzed with the Kruskal-Wallis test and the Duncan multiple range test (α=.05). The fracture resistance of the SES group was significantly higher than that of the control, GC4, and metal groups (asymptotic P=.004), but not significantly different from the GC2 and GC3 groups. The toughness of the SES and GC3 groups was significantly higher than that of the others (asymptotic Pglass fiber mesh seemed more important than the structures. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Glass fiber effect on mechanical properties of Eco-SCC

    Science.gov (United States)

    Prasad M. L., V.; Loksesh, G.; Ramanjaneyulu, B.; Venkatesh, S.; Mousumi, K.

    2017-07-01

    Sustainable Construction encouraging the use of recycled materials and implies adoption of fewer natural resources in buildings and other infrastructure. In this paper Quarry Dust (QD) is used as partial replacement for River Sand (RS) to make Self Compacting Concrete (SCC) of grade M40. Glass fiber is used as strengthening material to the developed concrete. The present study mainly focused to develop Eco-SCC using QD. In this study it was found that, for developing Eco-SCC, what is the optimum dosage of replacement of QD in RS. Fresh properties of SCC are satisfying the EFNARC specifications and also target strength is achieved. Further it is concluded that, with the glass fiber addition there is an improvement in the split and flexural strength values.

  13. Ferromagnetic glass ceramics and glass fibers based on the composition of SiO{sub 2}-CaO-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Fe{sub 2}O{sub 3} glass system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianan, E-mail: lja@qlu.edu.cn; Zhu, Chaofeng; Zhang, Meimei; Zhang, Yanfei; Yang, Xuena

    2017-03-15

    Ferromagnetic glass-ceramics and glass fibers were obtained by the melt-method from the glass system SiO{sub 2}-CaO-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Fe{sub 2}O{sub 3} without performing any nucleation and crystallization heat treatments. Glass-ceramics and glass fibers were characterized by x-ray diffraction, scanning and transmission electron microscopy, magnetic measurements, and thermal expansion instrument. The influence of alumina content on the spontaneous crystallization of magnetite, magnetism properties and thermal expansion performances in glass were investigated. We examined the crystallization behavior of the glasses and found that the spontaneous crystallization capacity of magnetite and magnetism properties in base glass increases with increasing the content of alumina. The ferromagnetic glass fibers containing magnetite nano-crystals are also obtained. - Highlights: • Magnetite nano-crystals are formed spontaneously in the investigated glass systems. • The crystallization behavior of the glasses with the alumina content is examined. • Ferromagnetic glass fibers containing magnetite nano-crystals are obtained.

  14. Evaluation of air jet erosion profiles in metal mesh supported SCR plate catalyst based on glass fiber concentrations

    Science.gov (United States)

    Rajath, S.; Nandakishora, Y.; Siddaraju, C.; Roy, Sukumar

    2018-04-01

    This paper explains the evaluation of erosion profiles in metal mesh supported SCR plate catalyst structures in which the glass fibers concentration in the catalyst material is considered as prime factor for erosion resistance and mechanical strength. The samples are prepared and tested at the specified and constant conditions like velocity as 30m/s, sand flow rate as 2g/min, average particle diameter 300 µm and all these samples were tested at different angles at impact preferably 15°,30°,45°,60°,75°,and 90° as per ASTM G76 standards. Say, if 5% glass fibers are present in catalyst material, then erosion resistance increases, but the density of glass fibers is very less because each glass fiber is approximately 20 microns in diameter and weight of individual is negligible. The composition in which 2% fiber is present has slightly higher erosion comparatively, but 3% glass fibers or more foreign inclusion like excessive binders can be eliminated that contributes much for the conversion of NOx. So 2% -3% glass fibers are preferred and optimized based on NOx conversion and erosion resistance property.

  15. Effect of surface treatment on mechanical properties of glass fiber/stainless steel wire mesh reinforced epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    N, Karunagaran [S.K.P Engineering College, Tiruvannamalai (India); A, Rajadurai [Anna University, Chennai (India)

    2016-06-15

    This paper investigates the effect of surface treatment for glass fiber, stainless steel wire mesh on tensile, flexural, inter-laminar shear and impact properties of glass fiber/stainless steel wire mesh reinforced epoxy hybrid composites. The glass fiber fabric is surface treated either by 1 N solution of sulfuric acid or 1 N solution of sodium hydroxide. The stainless steel wire mesh is also surface treated by either electro dissolution or sand blasting. The hybrid composites are fabricated using epoxy resin reinforced with glass fiber and fine stainless steel wire mesh by hand lay-up technique at room temperature. The hybrid composite consisting of acid treated glass fiber and sand blasted stainless steel wire mesh exhibits a good combination of tensile, flexural, inter-laminar shear and impact behavior in comparison with the composites made without any surface treatment. The fine morphological modifications made on the surface of the glass fiber and stainless steel wire mesh enhances the bonding between the resin and reinforcement which inturn improved the tensile, flexural, inter-laminar shear and impact properties.

  16. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M

    2003-07-15

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix.

  17. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    International Nuclear Information System (INIS)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M.

    2003-01-01

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix

  18. Fabrication of transparent superhydrophobic glass with fibered-silica network

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Shi, Zhenwu, E-mail: zwshi@suda.edu.cn [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Jiang, Yingjie; Xu, Chengyun; Wu, Zhuhui; Wang, Yanyan [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Peng, Changsi, E-mail: changsipeng@suda.edu.cn [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China)

    2017-06-15

    Highlights: • Superhydrophobic fibred-silica film with water contact angle of 166° and sliding angle of 1° was efficiently prepared using soot as template by CVD. • The film showed transmittance of 88% in visible range. • The superhydrophobic film possesses excellent mechanical robustness, chemical corrosion resistance, and thermal stability. • The superhydrophobic film showed outstanding self-cleaning behavior. - Abstract: In this paper, silica was deposited on the soot film pre-coated glass via chemical vapor deposition. Through calcination at 500 °C with the assistance of O{sub 2} airflow, the soot film was removed and a novel robust fibered-silica network film was then decorated onto the glass substrate. After modification with fluorosilane, the surface water contact angle (WCA) was 166° and sliding angle (SA) was 1° which behaves a good self-cleaning for the as-prepared glass. And its average transmittance was still over 88% in visible wavelength. Moreover, this fibered-silica coating showed a strong tolerance for heavy water droplets, acid/alkali corrosion, salt solution immersion and thermal treatment.

  19. Evidence for and implications of self-background of radon dosimeters with glass-fiber filters

    International Nuclear Information System (INIS)

    Put, L.W.; Lembrechts, J.; Graaf, E.R. van der; Stoop, P.

    2000-01-01

    The first national radon survey in the Netherlands was conducted in 1984 with passive radon dosimeters that contain glass-fiber diffusion filters. During the last few years, measurements of outdoor-radon concentrations and information in the literature suggested that these dosimeters may give falsely elevated readings. A systematic contribution would be present due to alpha particles from natural radionuclides in the glass-fiber filter producing tracks on the track-etch foil. In the framework of the quality assurance of their laboratories, the origin of this offset was systematically assessed by means of measurements of alpha and gamma radiation from the glass-fiber filters and by intercomparisons between different types of detectors at low radon concentrations. It was found that alpha particles from the decay of 214 Po in the glass-fiber filter are the main cause of the extra tracks (only 12% originates from decay of 212 Po), leading, for this type of filter, to an offset in concentration of approximately 8 Bq m -3 . The implications of this offset are discussed

  20. Ho3+-doped AlF3-TeO2-based glass fibers for 2.1 µm laser applications

    Science.gov (United States)

    Wang, S. B.; Jia, Z. X.; Yao, C. F.; Ohishi, Y.; Qin, G. S.; Qin, W. P.

    2017-05-01

    Ho3+-doped AlF3-TeO2-based glass fibers based on AlF3-BaF2-CaF2-YF3-SrF2-MgF2-TeO2 glasses are fabricated by using a rod-in-tube method. The glass rod including a core and a thick cladding layer is prepared by using a suction method, where the thick cladding layer is used to protect the core from the effect of surface crystallization during the fiber drawing. By inserting the glass rod into a glass tube, the glass fibers with relatively low loss (~2.3 dB m-1 @ 1560 nm) are prepared. By using a 38 cm long Ho3+-doped AlF3-TeO2-based glass fiber as the gain medium and a 1965 nm fiber laser as the pump source, 2065 nm lasing is obtained for a threshold pump power of ~220 mW. With further increasing the pump power to ~325 mW, the unsaturated output power of the 2065 nm laser is about 82 mW and the corresponding slope efficiency is up to 68.8%. The effects of the gain fiber length on the lasing threshold, the slope efficiency, and the operating wavelength are also investigated. Our experimental results show that Ho3+-doped AlF3-TeO2-based glass fibers are promising gain media for 2.1 µm laser applications.

  1. [A maxillary premolar reconstruction with a glass fiber reinforced post].

    Science.gov (United States)

    Viţalariu, Anca Mihaela; Antohe, Magda; Bahrim, Delia; Tatarciuc, Monica

    2006-01-01

    This paper presents the case of a 37 years old female patient who needed a reconstruction of an endodontic treated' second maxillary premolar. The patient presented large areas of occlusal abrasion caused by bruxism, therefore the solution consisted of a reconstruction with a non-metallic post reinforced with glass fibers. In such cases, the excessive occlusal forces developed by bruxism can produce a radicular fracture if the tooth would be reconstructed with a rigid metallic post. The glass-fiber reinforced post has some important qualities, which render it more suitable in most clinical cases: it is easy to use; has the ability to bond with restorative resins; decreases the risk of tooth fracture and provides better esthetics.

  2. Structural considerations in design of lightweight glass-fiber composite pressure vessels

    Science.gov (United States)

    Faddoul, J. R.

    1973-01-01

    The design concepts used for metal-lined glass-fiber composite pressure vessels are described, comparing the structural characteristics of the composite designs with each other and with homogeneous metal pressure vessels. Specific design techniques and available design data are identified. The discussion centers around two distinctly different design concepts, which provide the basis for defining metal lined composite vessels as either (1) thin-metal lined, or (2) glass fiber reinforced (GFR). Both concepts are described and associated development problems are identified and discussed. Relevant fabrication and testing experience from a series of NASA-Lewis Research Center development efforts is presented.

  3. Effective thermal conductivity of glass-fiber board and blanket standard reference materials

    International Nuclear Information System (INIS)

    Smith, D.R.; Hust, J.G.

    1983-01-01

    This chapter reports on measurements of effective thermal conductivity performed on a series of specimens of glass-fiber board and glass-fiber blanket. Explains that measurements of thermal conductivity were conducted as a function of temperature from 85 to 360 K, of temperature difference with T=10 to 100 K, of bulk density from 11 to 148 kg/m 3 and for nitrogen, argon, and helium inter-fiber fill gases at pressures from atmospheric to high vacuum. Analyzes and compares results with values from the published literature and National Bureau of Standards (NBS) certification data for similar material. Gives polynomial expressions for the functional relation between conductivity, temperature, and density for board and for blanket

  4. Grafting Carbon Nanotubes on Glass Fiber by Dip Coating Technique to Enhance Tensile and Interfacial Shear Strength

    Directory of Open Access Journals (Sweden)

    Bahador Dastorian Jamnani

    2015-01-01

    Full Text Available The effects of noncovalent bonding and mechanical interlocking of carbon nanotubes (CNT coating on tensile and interfacial strength of glass fiber were investigated. CNT were coated over glass fiber by a simple dip coating method. Acid treated CNT were suspended in isopropanol solution containing Nafion as binding agent. To achieve uniform distribution of CNT over the glass fiber, an optimized dispersion process was developed by two parameters: CNT concentration and soaking time. CNT concentration was varied from 0.4 to 2 mg/mL and soaking time was varied from 1 to 180 min. The provided micrographs demonstrated appropriate coating of CNT on glass fiber by use of CNT-Nafion mixture. The effects of CNT concentration and soaking time on coating layer were studied by performing single fiber tensile test and pull-out test. The obtained results showed that the optimum CNT concentration and soaking time were 1 mg/mL and 60 min, respectively, which led to significant improvement of tensile strength and interfacial shear stress. It was found that, at other concentrations and soaking times, CNT agglomeration or acutely curly tubes appeared over the fiber surface which caused a reduction of nanotubes interaction on the glass fiber.

  5. In-plane spectroscopy with optical fibers and liquid-filled APEX™ glass microcuvettes

    International Nuclear Information System (INIS)

    Gaillard, William R; Tantawi, Khalid Hasan; Williams, John D; Waddell, Emanuel; Fedorov, Vladimir

    2013-01-01

    Chemical etching and laser drilling of microstructural glass results in opaque or translucent sidewalls, limiting the optical analysis of glass microfluidic devices to top down or non-planar topologies. These non-planar observation topologies prevent each layer of a multilayered device from being independently optically addressed. However, novel photosensitive glass processing techniques in APEX™ have resulted in microfabricated glass structures with transparent sidewalls. Toward the goal of a transparent multilayered glass microfluidic device, this study demonstrates the ability to perform spectroscopy with optical fibers and microcuvettes fabricated in photosensitive APEX™ glass. (technical note)

  6. Taguchi analysis of extrusion variables and composition effects on the morphology and mechanical properties of EPR-g-MA toughened polyamide 6 and its composite with short glass fiber

    International Nuclear Information System (INIS)

    Shojaei, A.; Fereydoon, M.

    2009-01-01

    Various compositions of maleated ethylene-propylene-rubber (EPR-g-MA) toughened polyamide 6 without and with short glass fiber, i.e. 5-20 wt.% rubber and 5-20 wt.% fiber, are prepared using an industrial twin-screw extruder at different levels of feed rate (100-250 kg/h), screw speed (200-450 rpm) and barrel temperature (230-260 deg. C). Trial runs designed based on the Taguchi's orthogonal arrays are subjected to tensile, impact, scanning electron microscopy (SEM) and optical microscopy tests; and the results are used to perform the analysis of variance (ANOVA). It is shown that the rubber particle size decreases significantly by increasing the rubber content for the unreinforced blend. The results also indicate that the composition of the compounds is the most influential factor on the phase morphology and mechanical properties of both the unreinforced and reinforced blends compared to the extrusion variables. But the processing parameters can also influence the performance characteristics slightly. The most important processing parameter, among the others, is shown to be the mixing temperature, which decreases the fiber length greatly and leads to the thermo-mechanical degradation of the polymers above 240 deg. C

  7. Preparation, mechanical, and in vitro properties of glass fiber-reinforced polycarbonate composites for orthodontic application.

    Science.gov (United States)

    Tanimoto, Yasuhiro; Inami, Toshihiro; Yamaguchi, Masaru; Nishiyama, Norihiro; Kasai, Kazutaka

    2015-05-01

    Generally, orthodontic treatment uses metallic wires made from stainless steel, cobalt-chromium-nickel alloy, β-titanium alloy, and nickel-titanium (Ni-Ti) alloy. However, these wires are not esthetically pleasing and may induce allergic or toxic reactions. To correct these issues, in the present study we developed glass-fiber-reinforced plastic (GFRP) orthodontic wires made from polycarbonate and E-glass fiber by using pultrusion. After fabricating these GFRP round wires with a diameter of 0.45 mm (0.018 inch), we examined their mechanical and in vitro properties. To investigate how the glass-fiber diameter affected their physical properties, we prepared GFRP wires of varying diameters (7 and 13 µm). Both the GFRP with 13-µm fibers (GFRP-13) and GFRP with 7 µm fibers (GFRP-7) were more transparent than the metallic orthodontic wires. Flexural strengths of GFRP-13 and GFRP-7 were 690.3 ± 99.2 and 938.1 ± 95.0 MPa, respectively; flexural moduli of GFRP-13 and GFRP-7 were 25.4 ± 4.9 and 34.7 ± 7.7 GPa, respectively. These flexural properties of the GFRP wires were nearly equivalent to those of available Ni-Ti wires. GFRP-7 had better flexural properties than GFRP-13, indicating that the flexural properties of GFRP increase with decreasing fiber diameter. Using thermocycling, we found no significant change in the flexural properties of the GFRPs after 600 or 1,200 cycles. Using a cytotoxicity detection kit, we found that the glass fiber and polycarbonate components comprising the GFRP were not cytotoxic within the limitations of this study. We expect this metal-free GFRP wire composed of polycarbonate and glass fiber to be useful as an esthetically pleasing alternative to current metallic orthodontic wire. © 2014 Wiley Periodicals, Inc.

  8. Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass

    International Nuclear Information System (INIS)

    Chen Jihuan; Zhao Jiarong; Huang Xuguang; Huang Zhenjian

    2010-01-01

    A simple fiber-optic sensor based on Fabry-Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry-Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with a simple, solid, and compact structure.

  9. The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber-epoxy composite laminate

    Science.gov (United States)

    Konka, Hari P.; Wahab, M. A.; Lian, K.

    2012-01-01

    Piezoelectric fiber composite sensors (PFCSs) made from micro-sized lead zirconate titanate (PZT) fibers have many advantages over the traditional bulk PZT sensors for embedded sensor applications. PFCSs as embedded sensors will be an ideal choice to continuously monitor the stress/strain levels and health conditions of composite structures. PFCSs are highly flexible, easily embeddable, have high compatibility with composite structures, and also provides manufacturing flexibility. This research is focused on examining the effects of embedding PFCS sensors (macro-fiber composite (MFC) and piezoelectric fiber composite (PFC)) on the structural integrity of glass-fiber-epoxy composite laminates. The strengths of composite materials with embedded PFCSs and conventional PZT sensors were compared, and the advantages of PFCS sensors over PZTs were demonstrated. Initially a numerical simulation study is performed to understand the local stress/strain field near the embedded sensor region inside a composite specimen. High stress concentration regions were observed near the embedded sensor corner edge. Using PFCS leads to a reduction of 56% in longitudinal stress concentration and 38% in transverse stress concentration, when compared to using the conventional PZTs as embedded sensors. In-plane tensile, in-plane tension-tension fatigue, and short beam strength tests are performed to evaluate the strengths/behavior of the composite specimens containing embedded PFCS. From the tensile test it is observed that embedding PFCS and PZT sensors in the composite structures leads to a reduction in ultimate strength by 3 and 6% respectively. From the fatigue test results it is concluded that both embedded PFCS and PZT sensors do not have a significant effect on the fatigue behavior of the composite specimens. From the short beam strength test it is found that embedding PFCS and PZT sensors leads to a reduction in shear strength by 7 and 15% respectively. Overall the pure PZT sensors

  10. Monitoring Poisson's ratio of glass fiber reinforced composites as damage index using biaxial Fiber Bragg Grating sensors

    OpenAIRE

    Yılmaz, Çağatay; Yilmaz, Cagatay; Akalın, Çağdaş; Akalin, Cagdas; Kocaman, Esat Selim; Suleman, A.; Yıldız, Mehmet; Yildiz, Mehmet

    2016-01-01

    Damage accumulation in Glass Fiber Reinforced Polymer (GFRP) composites is monitored based on Poisson's ratio measurements for three different fiber stacking sequences subjected to both quasi-static and quasi-static cyclic tensile loadings. The sensor systems utilized include a dual-extensometer, a biaxial strain gage and a novel embedded-biaxial Fiber Bragg Grating (FBG) sensor. These sensors are used concurrently to measure biaxial strain whereby the evolution of Poisson's ratio as a functi...

  11. The influence of glass fibers on the morphology of β-nucleated isotactic polypropylene evaluated by differential scanning calorimetry

    Directory of Open Access Journals (Sweden)

    Janevski Aco

    2015-01-01

    Full Text Available The presence of fillers/fibers can significantly affect the polymorphic behavior of semi-crystalline polymers. The influence of glass fibers on morphology of β-nucleated iPP during isothermal and nonisothermal crystallization was analyzed in detail by DSC, and the kinetics and thermodynamic parameters were determined for the systems containing 10-60 % glass fibers. The presence of glass fibers in model composites with β-iPP has insignificant effect on the morphology of the polymer. Thermodynamic and kinetics parameters of crystallization of iPP in model composites are close to those obtained for the nucleated polymer. The relative content of β-crystalline phase is slightly affected by increasing glass fiber’s content from 10 % mas to 60 % mas, due to appearance of α-crystallites. However, the stability of β-crystalline phase is decreased by the increasing glass fibers content and there appeared certain amount of β1 and β2 phases which are known as disposed to recrystallization.

  12. Multiscale probabilistic modeling of a crack bridge in glass fiber reinforced concrete

    Directory of Open Access Journals (Sweden)

    Rypla R.

    2017-06-01

    Full Text Available The present paper introduces a probabilistic approach to simulating the crack bridging effects of chopped glass strands in cement-based matrices and compares it to a discrete rigid body spring network model with semi-discrete representation of the chopped strands. The glass strands exhibit random features at various scales, which are taken into account by both models. Fiber strength and interface stress are considered as random variables at the scale of a single fiber bundle while the orientation and position of individual bundles with respect to a crack plane are considered as random variables at the crack bridge scale. At the scale of the whole composite domain, the distribution of fibers and the resulting number of crack-bridging fibers is considered. All the above random effects contribute to the variability of the crack bridge performance and result in size-dependent behavior of a multiply cracked composite.

  13. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    Science.gov (United States)

    Nguyen Thi, T. B.; Yokoyama, A.; Ota, K.; Kodama, K.; Yamashita, K.; Isogai, Y.; Furuichi, K.; Nonomura, C.

    2014-05-01

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.

  14. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Jefferson Ricardo PEREIRA

    2014-10-01

    Full Text Available OBJECTIVE: The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs and resinmodified glass ionomer cements (RMGICs. MATERIAL AND METHODS: Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. RESULTS: Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05. The post level did not influence the bond strength of fiber posts to root dentin (P=0.148. The major cause of failure was cohesive at the cement for all GICs and RMGICs. CONCLUSIONS: Except for Ionoseal, all cements provided satisfactory bond strength values.

  15. Intrinsic strength of sodium borosilicate glass fibers by using a two-point bending technique

    International Nuclear Information System (INIS)

    Nishikubo, Y; Yoshida, S; Sugawara, T; Matsuoka, J

    2011-01-01

    Flaws existing on glass surface can be divided into two types, extrinsic and intrinsic. Although the extrinsic flaws are generated during processing and using, the intrinsic flaws are regarded as structural defects which result from thermal fluctuation. It is known that the extrinsic flaws determine glass strength, but effects of the intrinsic flaws on the glass strength are still unclear. Since it is considered that the averaged bond-strength and the intrinsic flaw would affect the intrinsic strength, the intrinsic strength of glass surely depends on the glass composition. In this study, the intrinsic failure strain of the glass fibers with the compositions of 20Na 2 O-40xB 2 O 3 -(80-40x)SiO 2 (mol%, x = 0, 0.5, 1.0, 1.5) were measured by using a two-point bending technique. The failure strength was estimated from the failure strain and Young's modulus of glass. It is elucidated that two-point bending strength of glass fiber decreases with increasing B 2 O 3 content in glass. The effects of the glass composition on the intrinsic strength are discussed in terms of elastic and inelastic deformation behaviors prior to fracture.

  16. Bismuth silicate glass: A new choice for 2 μm fiber lasers

    Science.gov (United States)

    Ding, Jia; Zhao, Guoying; Tian, Ying; Chen, Wei; Hu, Lili

    2012-11-01

    We report on a new Yb3+/Tm3+/Ho3+ co-doped bismuth silicate glass: SiO2-Bi2O3-R2O (R = Li, Na, K) for 2 μm fiber lasers. Bi2O3 was introduced into alkali silicate glass to optimize 2 μm emission properties. Physical, chemical and spectroscopic properties of Yb3+/Tm3+/Ho3+ co-doped SiO2-Bi2O3-R2O (SBR) glass were presented. The Yb3+/Tm3+/Ho3+ co-doped SBR glass shows excellent thermal stability (ΔT = 162 °C), an intense 2.0 μm emission pumped by 980 nm LD with a lifetime of 1.33 ms and width of 168 nm, large maximum emission cross section of Ho3+ (5.3 × 10-21 cm2), thus large σemτ product (7.049 × 10-24 cm2 s), which suggest its application in 2 μm fiber lasers.

  17. Short-pulse propagation in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina

    Fiber optical parametric amplifiers (FOPAs) are attractive because they can provide large gain over a broad range of central wavelengths, depending only on the availability of a suitable pump laser. In addition, FOPAs are suitable for the realization of all-optical signal processing functionalities...... transfer can be reduced in saturated F OPAs. In order to characterize propagation impairments such as dispersion and Kerr effect, affecting signals reaching multi-terabit per second per channel, short pulses on the order of 500 fs need to be considered. Therefore, a short pulses fiber laser source...... is implemented to obtain an all-fiber system. The advantages of all fiber-systems are related to their reliability, long-term stability and compactness. Fiber optical parametric chirped pulse amplification is promising for the amplification of such signals thanks to the inherent compatibility of FOPAs with fiber...

  18. Effects of moisture on glass fiber-reinforced polymer composites

    DEFF Research Database (Denmark)

    Alzamora Guzman, Vladimir Joel; Brøndsted, Povl

    2015-01-01

    performance of wind turbine blades over their lifetime. Here, environmental moisture conditions were simulated by immersing glass fiber-reinforced polymer specimens in salt water for a period of up to 8 years. The mechanical properties of specimens were analyzed before and after immersion to evaluate...

  19. Fracture strengths of chair-side-generated veneers cemented with glass fibers.

    Science.gov (United States)

    Turkaslan, S; Bagis, B; Akan, E; Mutluay, M M; Vallittu, P K

    2015-01-01

    CAD/CAM (computer-aided design and computer-aided manufacturing) systems have refreshed the idea of chair-side production of restorations, but the fracture of ceramic veneers remains a problem. Cementation with glass fibers may improve the fracture strengths and affect the failure modes of CAD/CAM-generated ceramic veneers. Therefore, this study compared the fracture strengths of ceramic veneers produced at chair side and cemented with or without glass fibers with those of composite veneers. Thirty intact mandibular incisors were randomly divided into three groups ( n = 10) and treated with CAD/CAM-fabricated veneers cemented with dual-cure composite resin luting cement (CRLC; Group 1), CAD/CAM-fabricated veneers cemented with a glass fiber network (GFN) and dual-cure CRLC (Group 2), and a direct particulate filler composite veneer constructed utilizing fiber and a restorative composite resin (Group 3). The specimens were tested with a universal testing machine after thermal cycling treatment. The loads at the start of fracture were the lowest for traditionally fabricated composite veneers and higher for CAD/CAM-generated. Veneers cemented either without or with the GFN. The failure initiation loads (N) for the veneers were 798.92 for Group 1, 836.27 for Group 2, and 585.93 for Group 3. The predominant failure mode is adhesive failure between the laminates and teeth for Group 1, cohesive failure in the luting layer for Group 2, and cohesive laminate failure for Group 3, which showed chipping and small fractures. Ceramic material is a reliable alternative for veneer construction at chair side. Fibers at the cementation interface may improve the clinical longevity and provide higher fracture strength values.

  20. Short range order of selenite glasses

    Czech Academy of Sciences Publication Activity Database

    Neov, S.; Gerasimova, I.; Yordanov, S.; Lakov, L.; Mikula, Pavol; Lukáš, Petr

    1999-01-01

    Roč. 40, č. 2 (1999), s. 111-112 ISSN 0031-9090 R&D Projects: GA AV ČR KSK1010104 Keywords : short range * selenite glasses Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.822, year: 1999

  1. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions.

    Science.gov (United States)

    Chen, Sisi; Yang, Qingbo; Brow, Richard K; Liu, Kun; Brow, Katherine A; Ma, Yinfa; Shi, Honglan

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Influences of chemical aging on the surface morphology and crystallization behavior of basaltic glass fibers

    DEFF Research Database (Denmark)

    Lund, Majbritt Deichgræber; Yue, Yuanzheng

    2008-01-01

    The impact of aging in high humidity and water on the surface morphology and crystallization behavior of basaltic glass fibers has been studied using scanning electron microscopy, transmission electron microscopy, calorimetry and X-ray diffraction. The results show that interaction between...... the fibers and the surrounding media (high humidity or water at 70 C) leads to chemical changes strongly affecting the surface morphology. The crystallization peak temperature of the basaltic glass fibers are increased without changing the onset temperature, this may be caused by a chemical depletion...

  3. Midinfrared optical rogue waves in soft glass photonic crystal fiber

    DEFF Research Database (Denmark)

    Buccoliero, Daniel; Steffensen, Henrik; Ebendorff-Heidepriem, Heike

    2011-01-01

    We investigate numerically the formation of extreme events or rogue waves in soft glass tellurite fibers and demonstrate that optical loss drastically diminishes shot-to-shot fluctuations characteristic of picosecond pumped supercontinuum (SC). When loss is neglected these fluctuations include...... distributions. Our results thus implicitly show that rogue waves will not occur in any SC spectrum that is limited by loss, such as commercial silica fiber based SC sources. © 2011 Optical Society of America....

  4. Optimized process for recovery of glass- and carbon fibers with retained mechanical properties by means of near- and supercritical fluids

    DEFF Research Database (Denmark)

    Sokoli, Hülya U.; Beauson, Justine; Simonsen, Morten E.

    2017-01-01

    on the resin degradation efficiency and the quality of the recovered glass and carbon fibers. Supercritical acetone at 260 ºC, 60 bar and a c/s ratio up to 2.1 g/mL could achieve nearly complete degradation of the resin. The glass fibers were recovered with up to 89% retained tensile strength compared...... to the virgin glass fibers. The use of near-critical water reduced the tensile strength of the glass fibers by up to 65%, whereas the carbon fibers were recovered with retained tensile strength compared to the virgin carbon fibers using water or acetone.......Degradation of hybrid fiber composites using near-critical water or supercritical acetone has been investigated in this study. Process parameters such as temperature (T= 260-300 ºC), pressure (p = 60-300 bar) and composite/solvent (c/s = 0.29-2.1 g/mL) ratio were varied to determine the effect...

  5. Tm-Yb Doped Optical Fiber Performance with Variation of Host-Glass Composition

    Directory of Open Access Journals (Sweden)

    Anirban Dhar

    2014-01-01

    Full Text Available The fabrication process of Thulium-Ytterbium doped optical fiber comprising different host glass through the Modified Chemical Vapor Deposition (MCVD coupled with solution doping technique is presented. The material and optical performance of different fibers are compared with special emphasis on their lasing efficiency for 2 µm application.

  6. Pr3 + -doped GeSx-based glasses for fiber amplifiers at 1.3 µm

    Science.gov (United States)

    Simons, D. R.; Faber, A. J.; de Waal, H.

    1995-03-01

    The photoluminescence properties of Pr3+ -doped GeS x -based glasses are studied and compared with those of other sulfide and fluoride glasses. The possibility of highly pump-power-efficient fiber amplifiers based on these GeSx-containing glasses in the telecommunications window at 1.3 mu m is discussed.

  7. Exotic Optical Fibers and Glasses: Innovative Material Processing Opportunities in Earth's Orbit.

    Science.gov (United States)

    Cozmuta, Ioana; Rasky, Daniel J

    2017-09-01

    Exotic optical fibers and glasses are the platform material for photonics applications, primarily due to their superior signal transmission (speed, low attenuation), with extending bandwidth deep into the infrared, exceeding that of silica fibers. Gravitational effects (convection sedimentation) have a direct impact on the phase diagram of these materials and influence melting properties, crystallization temperatures, and viscosity of the elemental mix during the manufacturing process. Such factors constitute limits to the yield, transmission quality, and strength and value of these fibers; they also constrain the range of applications. Manufacturing in a gravity-free environment such as the Earth's Orbit also helps with other aspects of the fabrication process (i.e., improved form factor of the manufacturing unit, sustainability). In this article, revolutionary developments in the field of photonics over the past decade merge with the paradigm shift in the privatization of government-owned capabilities supporting a more diverse infrastructure (parabolic, suborbital, orbital), reduced price, and increased frequency to access space and the microgravity environment. With the increased dependence on data (demand, bandwidth, efficiency), space and the microgravity environment provide opportunities for optimized performance of these exotic optical fibers and glasses underlying the development of enabling technologies to meet future data demand. Existing terrestrial markets (Internet, telecommunications, market transactions) and emerging space markets (on-orbit satellite servicing, space manufacturing, space resources, space communications, etc.) seem to converge, and this innovative material processing opportunity of exotic optical fibers and glasses might just be that "killer app": technologically competitive, economically viable, and with the ability to close the business case.

  8. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Science.gov (United States)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  9. The use of maleic anhydride-modified polypropylene for performance enhancement in continuous glass fiber-reinforced polypropylene composites

    NARCIS (Netherlands)

    Rijsdijk, H.A.; Contant, M.; Peijs, A.A.J.M.; Miravete, A.

    1993-01-01

    The influence of maleic anhydride-modified polypropylene (m-PP) on static mech. properties of continuous glass fiber-reinforced polypropylene (PP) composites was studied. M-PP was added to the PP homopolymer to improve the adhesion between the matrix and the glass fiber. Three-point bending tests

  10. Synthesis of biodegradable polymer/glass fiber composite by EB irradiation and its biodegradability

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Doam Thi The

    2006-01-01

    A composite was synthesized by irradiation of poly (butylene succinate), PBS and glass fiber (GF) in the presence of a polyfunctional monomer, trimethallyl isocyanurate (TMAIC), which accelerates gel formation of the matrix (PBS). The highest gel fraction was achieved at 1% concentration of TMAIC at the dose level of 200 kGy. Mechanical properties of the composites were highly dependent on the gel fraction of the polymer and volume fraction of glass fiber reinforcement in the composite. Optimal conditions to synthesize a PBS/GF composite reaching maximum value of bending strength were 1% TMAIC, 67% fiber volume fraction, and radiation dose of 200 kGy. These synthesized PBS/GF composites can be degraded by enzymes produced by the microorganism population in soil. (author)

  11. Production of continuous glass fiber using lunar simulant

    Science.gov (United States)

    Tucker, Dennis S.; Ethridge, Edwin C.; Curreri, Peter A.

    1991-01-01

    The processing parameters and mechanical properties of glass fibers pulled from simulated lunar basalt are tested. The simulant was prepared using a plasma technique. The composition is representative of a low titanium mare basalt (Apollo sample 10084). Lunar gravity experiments are to be performed utilizing parabolic aircraft free-fall maneuvers which yield 30 seconds of 1/6-g per maneuver.

  12. Pr3+-doped GeSx-based glasses for fiber amplifiers at 1.3 mm

    NARCIS (Netherlands)

    Simons, D.R.; Faber, A.J.; Waal, de H.

    1995-01-01

    The luminescence of Pr3+-doped GeSx-based glasses were studied and compared with those of other sulfide and fluoride glasses. The possibility of highly pump-power-efficient fiber amplifiers based on these GeSx-contg. glasses in the telecommunications window at 1.3 mm is discussed. [on SciFinder (R)

  13. Monotonic and cyclic responses of impact polypropylene and continuous glass fiber-reinforced impact polypropylene composites at different strain rates

    KAUST Repository

    Yudhanto, Arief; Lubineau, Gilles; Wafai, Husam; Mulle, Matthieu; Pulungan, Ditho Ardiansyah; Yaldiz, R.; Verghese, N.

    2016-01-01

    Impact copolymer polypropylene (IPP), a blend of isotactic polypropylene and ethylene-propylene rubber, and its continuous glass fiber composite form (glass fiber-reinforced impact polypropylene, GFIPP) are promising materials for impact

  14. A glass fiber-reinforced composite - bioactive glass cranioplasty implant: A case study of an early development stage implant removed due to a late infection.

    Science.gov (United States)

    Posti, Jussi P; Piitulainen, Jaakko M; Hupa, Leena; Fagerlund, Susanne; Frantzén, Janek; Aitasalo, Kalle M J; Vuorinen, Ville; Serlo, Willy; Syrjänen, Stina; Vallittu, Pekka K

    2015-03-01

    This case study describes the properties of an early development stage bioactive glass containing fiber-reinforced composite calvarial implant with histology that has been in function for two years and three months. The patient is a 33-year old woman with a history of substance abuse, who sustained a severe traumatic brain injury later unsuccessfully treated with an autologous bone flap and a custom-made porous polyethylene implant. She was thereafter treated with developmental stage glass fiber-reinforced composite - bioactive glass implant. After two years and three months, the implant was removed due to an implant site infection. The implant was analyzed histologically, mechanically, and in terms of chemistry and dissolution of bioactive glass. Mechanical integrity of the load bearing fiber-reinforced composite part of the implant was not affected by the in vivo period. Bioactive glass particles demonstrated surface layers of hydroxyapatite like mineral and dissolution, and related increase of pH was considerably less after two and three months period than that for fresh bioactive glass. There was a difference in the histology of the tissues inside the implant areas near to the margin of the implant that absorbed blood during implant installation surgery, showed fibrous tissue with blood vessels, osteoblasts, collagenous fibers with osteoid formation, and tiny clusters of more mature hard tissue. In the center of the implant, where there was less absorbed blood, only fibrous tissue was observed. This finding is in line with the combined positron emission tomography - computed tomography examination with (18F)-fluoride marker, which demonstrated activity of the mineralizing bone by osteoblasts especially at the area near to the margin of the implant 10 months after implantation. Based on these promising reactions found in the bioactive glass containing fiber-reinforced composite implant that has been implanted for two years and three months, calvarial

  15. Study of the Effect of Reinforced Glass Fibers on Fatigue Properties for Composite Materials

    Directory of Open Access Journals (Sweden)

    Mohamed G. Hamad

    2013-05-01

    Full Text Available This  research  included  the  study of  the effect  of  reinforced  glass fibers  on  fatigue  properties  for composite materials. Polyester  resin  is used  as  connective  material(matrix in two types  of  glass  fibers  for reinforced. The  first  type  is regular  glass fibers  (woven  roving with the  directional(0-90, the second  is  glass  fibers  with  the  random  direction. The first type is the panels with regular reinforced (0-90, and with number of layer (1,2.The  second  type  is  the  panels with random  reinforced  and  with  number  of  layers (1,2. The  results  and  the  laboratory  examinations  for  the samples  reinforce  with  fibers  have  manifested (0-90  that there  is  a decrease  in the number  of  cycles  to the  fatigue  limit  when  the  number  of  reinforce  layers  have  increased . And  an elasticity of this  type  of  samples  are decreased  by  increasing  the number  of  reinforced  layers  with  fiber  .We  find  the  random  reinforced  number  of  fatigue  cycles  for the samples  with  two  layers  of  random  reinforced  are  decreased  more  than the samples  with  one  layer of random  reinforced .

  16. Effect of Different Fillers on Adhesive Wear Properties of Glass Fiber Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    E. Feyzullahoğlu

    2017-12-01

    Full Text Available Polymeric composites are used for different aims as substitute of traditional materials such as metals; due to their improved strength at small specific weight. The fiber reinforced polymer (FRP composite material consists of polymeric matrix and reinforcing material. Polymeric materials are commonly reinforced with synthetic fibers such as glass and carbon. The glass fiber reinforced polyester (GFRP composites are used with different filler materials. The aim of this study is to investigate the effects of different filler materials on adhesive wear behavior of GFRP. In this experimental study; polymetilmetacrilat (PMMA, Glass beads (GB and Glass sand (GS were used as filling material in GFRP composite samples. The adhesive wear behaviors of samples were carried out using ball on disc type tribometer. The friction force and coefficient of friction were measured during the test. The volume loss and wear rate values of samples were calculated according to test results. Barcol hardness values of samples were measured. The densities of samples were measured. Results show that the wear resistance of GB filled GFRP composite samples was much more than non-filled and PMMA filled GFRP composite samples.

  17. Investigations on the Broadband Shielding Effectiveness of Metallized Glass Fiber

    National Research Council Canada - National Science Library

    Coburn, William

    1998-01-01

    ...) is an E-glass fiber metallized with Al and processed into a nonwoven mat. When formed into a mat, the MGFs lead to an effective sample conductivity, sigma eff, which is the parameter of interest for electromagnetic shielding in the RF region...

  18. Hybrid carbon/glass fiber composites: Micromechanical analysis of structure–damage resistance relationships

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Dai, Gaoming

    2014-01-01

    A computational study of the effect of microstructure of hybrid carbon/glass fiber composites on their strength is presented. Unit cells with hundreds of randomly located and misaligned fibers of various properties and arrangements are subject to tensile and compression loading, and the evolution...... strength than pure composites, while the strength of hybrid composites under inform force loading increases steadily with increasing the volume content of carbon fibers....... of fiber damages is analyzed in numerical experiments. The effects of fiber clustering, matrix properties, nanoreinforcement, load sharing rules on the strength and damage resistance of composites are studied. It was observed that hybrid composites under uniform displacement loading might have lower...

  19. Dynamic compressive properties and failure mechanism of glass fiber reinforced silica hydrogel

    International Nuclear Information System (INIS)

    Yang Jie; Li Shukui; Yan Lili; Huo Dongmei; Wang Fuchi

    2010-01-01

    The dynamic compressive properties of glass fiber reinforced silica (GFRS) hydrogel were investigated using a spilt Hopkinson pressure bar. Failure mechanism of GFRS hydrogel was studied by scanning electron microscopy (SEM). Result showed that dynamic compressive stresses were much higher than the quasi-static compressive stresses at the same strain. The dynamic compressive strength was directly proportional to the strain rate with same sample dimensions. The dynamic compressive strength was directly proportional to the sample basal area at same strain rate. Dynamic compressive failure strain was small. At high strain rates, glass fibers broke down and separated from the matrix, pores shrank rapidly. Failure resulted from the increase of lateral tensile stress in hydrogel under dynamic compression.

  20. Fiber sensor on the basis of Ge26As17Se25Te32 glass for FEWS analysis

    Science.gov (United States)

    Velmuzhov, A. P.; Shiryaev, V. S.; Sukhanov, M. V.; Kotereva, T. V.; Churbanov, M. F.; Zernova, N. S.; Plekhovich, A. D.

    2018-01-01

    The high-purity Ge26As17Se25Te32 glass sample was prepared by chemical distillation purification method. This glass is characterized by high value of glass transition temperature (263°С), high optical transparency in the spectral range of 2-10 μm, and low content of residual impurities. The Ge26As17Se25Te32 glass rods were drawn into single-index fibers using the "rod" method and the single crucible technique. The optical losses in the 400 μm diameter fiber, fabricated by the "rod" method, were within 0.3-1 dB/m in the spectral range 5.2-9.3 μm. The minimum optical losses in the 320 μm diameter fiber, fabricated by the "crucible" technique, were 1.6-1.7 dB/m in the spectral range 6-8.5 μm. Using these Ge26As17Se25Te32 glass fibers as a sensor, the aqueous solutions of acetone (0-20 mol.%) and ethanol (0-90 mol.%) were analyzed by fiber evanescent wave spectroscopy. Peculiarities in the change of the integrated intensity and spectral position of absorption bands of these organic substances in dependence on the analyte composition and the length of the sensitive zone were established.

  1. Effects of bond primers on bending strength and bonding of glass fibers in fiber-embedded maxillofacial silicone prostheses.

    Science.gov (United States)

    Hatamleh, Muhanad M; Watts, David C

    2011-02-01

    To evaluate the effect of three commonly used bond primers on the bending strength of glass fibers and their bond strength to maxillofacial silicone elastomer after 360 hours of accelerated daylight aging. Eighty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer M511 (Cosmesil). Twenty fiber bundles served as control and did not receive surface treatment with primers, whereas the remaining 60 fibers were treated with three primers (n = 20): G611 (Principality Medical), A-304 (Factor II), and A-330-Gold (Factor II). Forty specimens were dry stored at room temperature (23 ± 1°C) for 24 hours, and the remaining specimens were aged using an environmental chamber under accelerated exposure to artificial daylight for 360 hours. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2) ) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. A 3-point bending test was performed to evaluate the bending strength of the fiber bundles. One-way Analysis of Variance (ANOVA), Bonferroni post hoc test, and an independent t-test were carried out to detect statistical significances (p accelerated daylight aging. Treatment with primer and accelerated daylight aging increased bending strength of glass fibers. © 2011 by The American College of Prosthodontists.

  2. Experimental Investigations on the effect of Additive on the Tensile Properties of Fiber Glass Fabric Lamina

    Science.gov (United States)

    Nava Sai Divya, A.; Raghu Kumar, B., Dr; Lakshmi Narayana, G., Dr

    2017-09-01

    The main objective of this work is to investigate the effect of additives on tensile behaviour of fiber glass fabric at lamina level to explore an alternative skin material for the outer body of aerospace applications and machines. This experimental work investigates the effect of silica concentration in epoxy resin lapox L-12 on the tensile properties of glass fabric lamina of 4H-satin weave having 3.6 mm thickness. The lamina was prepared by using hand lay-up method and tests were conducted on it. Various tensile properties values obtained from experimentation were compared for four glass fiber lamina composites fabricated by adding the silica powder to resin bath. The effect of variations in silica concentration (0% SiO2, 5% SiO2, 10% SiO2 and 15% SiO2) on the tensile properties of prepared material revealed that maximum stiffness was obtained at 15% and yield strength at 10% SiO2 concentration in glass fiber lamina. Increasing the silica concentration beyond 10% had led to deterioration in the material properties. The experimentation that was carried out on test specimen was reasonably successful as the effect of silica powder as an additive in glass fiber lamina enhanced the mechanical properties up to certain limit. The underpinning microscopic behaviour at the source of these observations will be investigated in a follow up work.

  3. Flexure and impact properties of glass fiber reinforced nylon 6-polypropylene composites

    Science.gov (United States)

    Kusaseh, N. M.; Nuruzzaman, D. M.; Ismail, N. M.; Hamedon, Z.; Azhari, A.; Iqbal, A. K. M. A.

    2018-03-01

    In recent years, polymer composites are rapidly developing and replacing the metals or alloys in numerous engineering applications. These polymer composites are the topic of interests in industrial applications such as automotive and aerospace industries. In the present research study, glass fiber (GF) reinforced nylon 6 (PA6)-polypropylene (PP) composite specimens were prepared successfully using injection molding process. Test specimens of five different compositions such as, 70%PA6+30%PP, 65%PA6+30%PP+5%GF, 60%PA6+30%PP+10%GF, 55%PA6+30%PP+15%GF and 50%PA6+30%PP+20%GF were prepared. In the experiments, flexure and impact tests were carried out. The obtained results revealed that flexure and impact properties of the polymer composites were significantly influenced by the glass fiber content. Results showed that flexural strength is low for pure polymer blend and flexural strength of GF reinforced composite increases gradually with the increase in glass fiber content. Test results also revealed that the impact strength of 70%PA6+30%PP is the highest and 55%PA6+30%PP+15%GF composite shows moderate impact strength. On the other hand, 50%PA6+30%PP+20%GF composite shows low toughness or reduced impact strength.

  4. A Comparative Study of Natural Fiber and Glass Fiber Fabrics Properties with Metal or Oxide Coatings

    International Nuclear Information System (INIS)

    Lusis, Andrej; Pentjuss, Evalds; Bajars, Gunars; Sidorovicha, Uljana; Strazds, Guntis

    2015-01-01

    Rapidly growing global demand for technical textiles industries is stimulated to develop new materials based on hybrid materials (yarns, fabrics) made from natural and glass fibres. The influence of moisture on the electrical properties of metal and metal oxide coated bast (flax, hemp) fibre and glass fibre fabrics are studied by electrical impedance spectroscopy and thermogravimetry. The bast fibre and glass fiber fabrics are characterized with electrical sheet resistance. The method for description of electrical sheet resistance of the metal and metal oxide coated technical textile is discussed. The method can be used by designers to estimate the influence of moisture on technical data of new metal coated hybrid technical textile materials and products

  5. Real time sensing of structural glass fiber reinforced composites by using embedded PVA - carbon nanotube fibers

    Directory of Open Access Journals (Sweden)

    Marioli-Riga Z.

    2010-06-01

    Full Text Available Polyvinyl alcohol - carbon nanotube (PVA-CNT fibers had been embedded to glass fiber reinforced polymers (GFRP for the structural health monitoring of the composite material. The addition of the conductive PVA-CNT fiber to the nonconductive GFRP material aimed to enhance its sensing ability by means of the electrical resistance measurement method. The test specimen’s response to mechanical load and the in situ PVA-CNT fiber’s electrical resistance measurements were correlated for sensing and damage monitoring purposes. The embedded PVA-CNT fiber worked as a sensor in GFRP coupons in tensile loadings. Sensing ability of the PVA-CNT fibers was also demonstrated on an integral composite structure. PVA-CNT fiber near the fracture area of the structure recorded very high values when essential damage occurred to the structure. A finite element model of the same structure was developed to predict axial strains at locations of the integral composite structure where the fibers were embedded. The predicted FEA strains were correlated with the experimental measurements from the PVA-CNT fibers. Calculated and experimental values were in good agreement, thus enabling PVA-CNT fibers to be used as strain sensors.

  6. A Method for Cobalt and Cesium Leaching from Glass Fiber in HEPA Filter

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Lee, Suk Chol; Yang, Hee Chul; Yoon, In Ho; Choi, Wang Kyu; Moon, Jei Kwon

    2011-01-01

    A great amount of radioactive waste has been generated during the operation of nuclear facilities. Recently, the storage space of a radioactive waste storage facility in the Korea Atomic Energy Research Institute (KAERI) was almost saturated with many radioactive wastes. So, the present is a point of time that a volume reduction of the wastes in a radioactive waste storage facility needs. There are spent HEPA filter wastes of about 2,226 sets in the radioactive waste storage facility in KAERI. All these spent filter wastes have been stored in accordance with their original form without any treatment. Up to now a compression treatment of these spent HEPA filters has been carried out to repack the compressed spent HEPA filters into a 200 liter drum for their volume reduction. Frame and separator are contaminated with a low concentration of nuclide, while the glass fiber is contaminated with a high concentration of nuclide. So, for the disposal of the glass filter to the environment, the glass fiber should be leached to lower its radioactive concentration first and then must be stabilized by solidification and so on. Therefore, it is necessary to develop a leaching process of glass fiber in a HEPA filter. Leaching is a separation technology, which is often used to remove a metal or a nuclide from a solid mixture with the help of a liquid solvent

  7. PLASTIC SHRINKAGE CONTROLLING EFFECT BY POLYPROPYLENE SHORT FIBER WITH HYDROPHILY

    Science.gov (United States)

    Hosoda, Akira; Sadatsuki, Yoshitomo; Oshima, Akihiro; Ishii, Akina; Tsubaki, Tatsuya

    The aim of this research is to clarify the mechanism of controlling plastic shrinkage crack by adding small amout of synthetic short fiber, and to propose optimum polypropylene short fiber to control plastic shrinkage crack. In this research, the effect of the hydrophily of polypropylene fiber was investigated in the amount of plastic shrinkage of mortar, total area of plastic shrinkage crack, and bond properties between fiber and mortar. The plastic shrinkage test of morar was conducted under high temperature, low relative humidity, and constant wind velocity. When polypropylene fiber had hydrophily, the amount of plastic shrinkage of mortar was restrained, which was because cement paste in morar was captured by hydrophilic fiber and then bleeding of mortar was restrained. With hydrophily, plastic shrinkage of mortar was restrained and bridging effect was improved due to better bond, which led to remarkable reduction of plastic shrinkage crack. Based on experimental results, the way of developing optimum polypropylene short fiber for actual construction was proposed. The fiber should have large hydrophily and small diameter, and should be used in as small amount as possible in order not to disturb workability of concrete.

  8. Optical and electrical characterizations of multifunctional silver phosphate glass and polymer-based optical fibers.

    Science.gov (United States)

    Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès

    2017-03-03

    In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO 3 -WO 3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO 3 -WO 3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10 -3 and 10 -1  S·cm -1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording.

  9. Interlaminar/interfiber failure of unidirectional glass fiber reinforced composites used for wind turbine blades

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Overgaard, Lars C. T.; M. Daniel,, Isaac

    2013-01-01

    A unidirectional glass fiber/epoxy composite was characterized under multi-axial loading by testing off-axis specimens under uniaxial tension and compression at various angles relative to the fiber direction. Iosipescu shear tests were performed with both symmetric and asymmetric specimens. Tests...

  10. Fabrication of optical fiber of zinc tin borophosphate glass with zero photoelastic constant

    Science.gov (United States)

    Saitoh, Akira; Oba, Yuya; Takebe, Hiromichi

    2015-10-01

    An optical fiber made of zinc tin boro-phosphate glass having a zero photoelastic constant, good water durability, and excluding hazardous elements was drawn from a prepared preform for use in a fiber-type current sensor device. The proposed cladding compositions enable single-mode propagation for a wavelength of 1550 nm, which is estimated from the difference in the refractive index between the core and cladding compositions. The drawing conditions should be controlled since the multiple-component glass is very sensitive to changes in viscosity and crystal precipitation during the heat-treated stretching of the preform. The temperature dependence of viscosity in the core and cladding reveals the feasibility of drawing.

  11. In vitro bioactivity and cytotoxicity of chemically treated glass fibers

    Directory of Open Access Journals (Sweden)

    Ângela Leão Andrade

    2004-12-01

    Full Text Available Samples of a commercial glass fiber FM® (Fiber Max were used to test the efficacy of a chemical sol-gel surface treatment to enhance their bioactivity. After treatment with tetraethoxysilane (TEOS, individual fiber samples were soaked into a simulated body fluid (SBF solution, from which they were removed at intervals of 5 and 10 days. Micrographs obtained by scanning electron microscopy (SEM analysis of samples chemically treated with TEOS revealed the formation of a hydroxyapatite (HA coating layer after 5 days into SBF solution. Fourier transform infrared spectroscopic (FTIR analyses confirmed that the coating layer has P-O vibration bands characteristic of HA. The in vitro cytotoxicity was evaluated using a direct contact test, minimum essential medium elution test (ISO 10993-5 and MTT assay. Fibers immersed in SBF and their extracts exhibited lower cytotoxicity than the controls not subjected to immersion, suggesting that SBF treatment improves the biocompatibility of the fiber.

  12. Glass and Process Development for the Next Generation of Optical Fibers: A Review

    Directory of Open Access Journals (Sweden)

    John Ballato

    2017-03-01

    Full Text Available Applications involving optical fibers have grown considerably in recent years with intense levels of research having been focused on the development of not only new generations of optical fiber materials and designs, but also on new processes for their preparation. In this paper, we review the latest developments in advanced materials for optical fibers ranging from silica, to semi-conductors, to particle-containing glasses, to chalcogenides and also in process-related innovations.

  13. Thermo-tunable hybrid photonic crystal fiber based on solution-processed chalcogenide glass nanolayers

    DEFF Research Database (Denmark)

    Markos, Christos

    2016-01-01

    the air-capillaries of the fiber based on a solution-processed glass approach. The deposited high-index layers revealed antiresonant transmission windows from similar to 500 nm up to similar to 1300 nm. We experimentally demonstrate for the first time the possibility to thermally-tune the revealed....../degrees C at 1300 nm. The proposed fiber device could potentially constitute an efficient route towards realization of monolithic tunable fiber filters or sensing elements....

  14. Application of sandwich honeycomb carbon/glass fiber-honeycomb composite in the floor component of electric car

    Science.gov (United States)

    Sukmaji, I. C.; Wijang, W. R.; Andri, S.; Bambang, K.; Teguh, T.

    2017-01-01

    Nowadays composite is a superior material used in automotive component due to its outstanding mechanical behavior. The sandwich polypropylene honeycomb core with carbon/glass fiber composite skin (SHCG) as based material in a floor component of electric car application is investigated in the present research. In sandwich structure form, it can absorb noise better compare with the conventional material [1]. Also in present paper, Finite Element Analysis (FEA) of SHCG as based material for floor component of the electric car is analyzed. The composite sandwich is contained with a layer uniform carbon fiber and mixing non-uniform carbon-glass fiber in upper and lower skin. Between skins of SHCG are core polypropylene honeycomb that it have good flexibility to form following dies profile. The variables of volume fraction ratio of carbon/glass fiber in SHCG skin are 20/80%, 30/70%, and 50/50%. The specimen of SHCG is tested using the universal testing machine by three points bending method refers to ASTM C393 and ASTM C365. The cross point between tensile strength to the volume fraction the mixing carbon/glass line and ratio cost line are the searched material with good mechanical performance and reasonable cost. The point is 30/70 volume fraction of carbon/glass fiber. The result of the testing experiment is become input properties of model structure sandwich in FEA simulation. FEA simulation approach is conducted to find critical strength and factor of complex safety geometry against varied distributed passenger loads of a floor component the electric car. The passenger loads variable are 80, 100, 150, 200, 250 and 300 kg.

  15. Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber

    Directory of Open Access Journals (Sweden)

    Juliano Fiorelli

    2003-06-01

    Full Text Available An experimental analysis of pinewood beams (Pinus caribea var hondurensis reinforced with glass and/or carbon fibers is discussed. The theoretical model employed to calculate the beam's bending strength takes into account the timber's ultimate limit states of tensile strength and failure by compression, considering a model of fragile elastic tension and plastic elastic compression. The validity of the theoretical model is confirmed by a comparison of the theoretical and experimental results, while the efficiency of the fiber reinforcement is corroborated by the increased strength and stiffness of the reinforced timber beams.

  16. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    Science.gov (United States)

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  17. Comparison between three glass fiber post cementation techniques.

    Science.gov (United States)

    Migliau, Guido; Piccoli, Luca; Di Carlo, Stefano; Pompa, Giorgio; Besharat, Laith Konstantinos; Dolci, Marco

    2017-01-01

    The aim of this experimental study was to compare the traditional cement systems with those of the latest generation, to assess if indeed these could represent of viable substitutes in the cementation of indirect restorations, and in the specific case of endodontic posts. The assessment of the validity of the cementing methods was performed according to the test of the push-out, conducted on sections obtained from the roots of treated teeth. The samples were divided into three groups. Group A (10 samples): etching for 30 seconds with 37% orthophosphoric acid (Superlux-Thixo-etch-DMG) combined with a dual-curing adhesive system (LuxaBond-Total Etch-DMG), dual-cured resin-composite cement (LuxaCore-DMG) and glass fiber posts (LuxaPost-DMG). Group B (10 samples): self-adhesive resin cement (Breeze-Pentron Clinical) and glass fiber posts (LuxaPost-DMG). Group C (10 samples): 3 steps light-curing, self-etching, self-conditioning bonding agent (Contax-Total-etch-DMG), dual-cured resin-composite cement (LuxaCore-DMG) and glass fiber posts (LuxaPost-DMG). The survey was conducted by examining the breaking resistance of the post-cement-tooth complex, subjected to a mechanical force. Statistical analysis was performed using SPSS Inc. ver. 13.0, Chicago, IL, USA. Group A values of bond strenth ranged from a minimum of 10.14 Mpa to a maximum value of 14.73 Mpa with a mean value of 12.58 Mpa. In Group B the highest value of bond strength was 6.54 Mpa and the minimum 5.55 Mpa. The mean value of the bond strength for the entire group was 6.58 Mpa. In Group C the highest bond strength was 6.59 Mpa whereas the lowest bond strength was 4.84 Mpa. Mean value of the bond strength of Group C was calculated at 5.7 Mpa. Etching with orthophosphoric acid combined with a dual-curing adhesive system and a dual-cured resin-composite cement was the technique that guaranteed the highest bond strength. Lowest bond strength values were obtained when dual self-adhesive cement was used.

  18. Fabry-Perot interferometer fiber tip sensor based on a glass microsphere glued at the etched end of multimode fiber

    Science.gov (United States)

    Chen, Weiping P.; Wang, Dongning N.; Xu, Ben; Wang, Zhaokun K.; Zhao, Chun-Liu

    2017-05-01

    We demonstrate an optical Fabry-Perot interferometer fiber tip sensor based on a glass microsphere glued at the etched end of a multimode fiber. The fiber device is miniature and robust, with a convenient reflection mode of operation, a high temperature sensitivity of 202.6 pm/°C within the range from 5°C to 90°C, a good refractive index sensitivity of ˜119 nm/RIU within the range from 1.331 to 1.38, and a gas pressure sensitivity of 0.19 dB/MPa.

  19. Reinforcement of tire tread and radiator hose rubbers with short aramid fibers

    OpenAIRE

    Shirazi, Morteza; Noordermeer, Jacobus W.M.

    2010-01-01

    Short fiber reinforced rubber composites have gained great importance due to their advantages in processing and low cost, coupled with high strength. Reinforcement with short fibers offers attractive features such as design flexibility, high modulus, tear strength, etc. The degree of reinforcement depends upon many parameters, such as: the nature of the rubber matrix, the type of fiber, the concentration and orientation of the fibers, fiber to rubber adhesion to generate a strong interface, f...

  20. Radiological results for samples collected on paired glass- and cellulose-fiber filters at the Sandia complex, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    Mizell, Steve A.; Shadel, Craig A.

    2016-01-01

    Airborne particulates are collected at U.S. Department of Energy sites that exhibit radiological contamination on the soil surface to help assess the potential for wind to transport radionuclides from the contamination sites. Collecting these samples was originally accomplished by drawing air through a cellulose-fiber filter. These filters were replaced with glass-fiber filters in March 2011. Airborne particulates were collected side by side on the two filter materials between May 2013 and May 2014. Comparisons of the sample mass and the radioactivity determinations for the side-by-side samples were undertaken to determine if the change in the filter medium produced significant results. The differences in the results obtained using the two filter types were assessed visually by evaluating the time series and correlation plots and statistically by conducting a nonparametric matched-pair sign test. Generally, the glass-fiber filters collect larger samples of particulates and produce higher radioactivity values for the gross alpha, gross beta, and gamma spectroscopy analyses. However, the correlation between the radioanalytical results for the glass-fiber filters and the cellulose-fiber filters was not strong enough to generate a linear regression function to estimate the glass-fiber filter sample results from the cellulose-fiber filter sample results.

  1. Glass fiber reinforced concrete for terrestrial photovoltaic arrays

    Science.gov (United States)

    Maxwell, H.

    1979-01-01

    The use of glass-fiber-reinforced concrete (GRC) as a low-cost structural substrate for terrestrial solar cell arrays is discussed. The properties and fabrication of glass-reinforced concrete structures are considered, and a preliminary design for a laminated solar cell assembly built on a GRC substrate is presented. A total cost for such a photovoltaic module, composed of a Korad acrylic plastic film front cover, an aluminum foil back cover, an ethylene/vinyl acetate pottant/adhesive and a cotton fabric electrical isolator in addition to the GRC substrate, of $9.42/sq m is projected, which is less than the $11.00/sq m cost goal set by the Department of Energy. Preliminary evaluations are concluded to have shown the design capabilities and cost effectiveness of GRC; however, its potential for automated mass production has yet to be evaluated.

  2. Consideration of reinforcement mechanism in the short fiber mixing granular materials by granular element simulations

    Science.gov (United States)

    Mori, Kentaro; Kaneko, Kenji; Hashizume, Yutaka

    2017-06-01

    The short fiber mixing method is well known as one of the method to improve the strength of gran- ular soils in geotechnical engineering. Mechanical properties of the short fiber mixing granular materials are influenced by many factors, such as the mixture ratio of the short fiber, the material of short fiber, the length, and the orientation. In particular, the mixture ratio of the short fibers is very important in mixture design. In the past study, we understood that the strength is reduced by too much short fiber mixing by a series of tri-axial compression experiments. Namely, there is "optimum mixture ratio" in the short fiber mixing granular soils. In this study, to consider the mechanism of occurrence of the optimum mixture ratio, we carried out the numerical experiments by granular element method. As the results, we can understand that the strength decrease when too much grain-fiber contact points exist, because a friction coefficient is smaller than the grain-grain contact points.

  3. Novel Application of Glass Fibers Recovered From Waste Printed Circuit Boards as Sound and Thermal Insulation Material

    Science.gov (United States)

    Sun, Zhixing; Shen, Zhigang; Ma, Shulin; Zhang, Xiaojing

    2013-10-01

    The aim of this study is to investigate the feasibility of using glass fibers, a recycled material from waste printed circuit boards (WPCB), as sound absorption and thermal insulation material. Glass fibers were obtained through a fluidized-bed recycling process. Acoustic properties of the recovered glass fibers (RGF) were measured and compared with some commercial sound absorbing materials, such as expanded perlite (EP), expanded vermiculite (EV), and commercial glass fiber. Results show that RGF have good sound absorption ability over the whole tested frequency range (100-6400 Hz). The average sound absorption coefficient of RGF is 0.86, which is prior to those of EP (0.81) and EV (0.73). Noise reduction coefficient analysis indicates that the absorption ability of RGF can meet the requirement of II rating for sound absorbing material according to national standard. The thermal insulation results show that RGF has a fair low thermal conductivity (0.046 W/m K), which is comparable to those of some insulation materials (i.e., EV, EP, and rock wool). Besides, an empirical dependence of thermal conductivity on material temperature was determined for RGF. All the results showed that the reuse of RGF for sound and thermal insulation material provided a promising way for recycling WPCB and obtaining high beneficial products.

  4. Characterization of Glass Fiber Separator Material for Lithium Batteries

    Science.gov (United States)

    Subbarao, S.; Frank, H.

    1984-01-01

    Characterization studies were carried out on a glass fiber paper that is currently employed as a separator material for some LiSOCl2 primary cells. The material is of the non-woven type made from microfilaments of E-type glass and contains an ethyl acrylate binder. Results from extraction studies and tensile testing revealed that the binder content and tensile strength of the paper were significantly less than values specified by the manufacturer. Scanning electron micrographs revealed the presence of clusters of impurities many of which were high in iron content. Results of emission spectroscopy revealed high overall levels of iron and leaching, followed by atomic absorption measurements, revealed that essentially all of this iron is soluble in SOCl2.

  5. Fatigue resistance and stiffness of glass fiber-reinforced urethane dimethacrylate composite.

    Science.gov (United States)

    Narva, Katja K; Lassila, Lippo V J; Vallittu, Pekka K

    2004-02-01

    Retentive properties of cast metal clasps decrease over time because of metal fatigue. Novel fiber-reinforced composite materials are purported to have increased fatigue resistance compared with metals and may offer a solution to the problem of metal fatigue. The aim of this study was to investigate the fatigue resistance and stiffness of E-glass fiber-reinforced composite. Twelve cylindrical fiber-reinforced composite test cylinders (2 mm in diameter and 60 mm in length) were made from light-polymerized urethane dimethacrylate monomer with unidirectional, single-stranded, polymer preimpregnated E-glass fiber reinforcement. Six cylinders were stored in dry conditions and 6 in distilled water for 30 days before testing. Fatigue resistance was measured by a constant-deflection fatigue test with 1 mm of deflection across a specimen span of 11 mm for a maximum of 150,000 loading cycles. The resistance of the cylinder against deflection was measured (N) and the mean values of the force were compared by 1-way analysis of variance (alpha = .05). The flexural modulus (GPa) was calculated for the dry and water-stored cylinders for the first loading cycle. Scanning electron microscopy was used to assess the distribution of the fibers, and the volume percent of fibers and polymer were assessed by combustion analysis. The test cylinders did not fracture due to fatigue following 150,000 loading cycles. Flexural modulus at the first loading cycle was 18.9 (+/- 2.9) GPa and 17.5 (+/- 1.7) GPa for the dry and water-stored cylinders, respectively. The mean force required to cause the first 1-mm deflection was 33.5 (+/- 5.2) N and 37.7 (+/- 3.6) N for the dry and water stored cylinders, respectively; however, the differences were not significant. After 150,000 cycles the mean force to cause 1-mm deflection was significantly reduced to 23.4 (+/- 8.5) N and 13.1 (+/- 3.5) N, respectively (P fiber- and polymer-rich areas within the specimens and indicated that individual fibers were

  6. Preparation and Characterization of UPR/ LNR/ Glass Fiber Composite by using Unsaturated Polyester Resin (PET) from PET Wastes

    International Nuclear Information System (INIS)

    Siti Farhana Hisham; Ishak Ahmad; Rusli Daik

    2011-01-01

    UPR/ LNR/ glass fibre composite had been prepared by using unsaturated polyester resin (UPR) based from recycled PET product. PET waste was recycled by glycolysis process and the glycides product was then reacted with maleic anhydride to produce unsaturated polyester resin. The preparation of UPR/ LNR blends were conducted by varying the amount of LNR addition to the resin ranging from 0-7.5 % (wt). The composition of UPR/LNR blend with good mechanical properties had been selected as a matrix of the glass fiber reinforced composite. Glass fibre was also treated by (3-Amino propil)triethoxysilane as a coupling agent. From the result, the addition of 2.5 % LNR in UPR had showed the optimum mechanical and morphological properties where the elastomer particle's were well dispersed in the matrix with smaller size. The silane treatment on the glass fiber increased the tensile and impact strength values of the UPR/ LNR/ GF composite compared to untreated fiber reinforcement. (author)

  7. Tribological analysis of nano clay/epoxy/glass fiber by using Taguchi’s technique

    International Nuclear Information System (INIS)

    Senthil Kumar, M.S.; Mohana Sundara Raju, N.; Sampath, P.S.; Vivek, U.

    2015-01-01

    Highlights: • To study the tribological property of modified epoxy with and without E glass fiber. • To analyze the tribological property of specimens by Taguchi’s technique and ANOVA. • To investigate the surface morphology of test specimens with SEM. - Abstract: In this work, a detailed analysis was performed to profoundly study the tribological property of various nano clay (Cloisite 25A) loaded epoxy, with and without inclusion of E-glass fiber using Taguchi’s technique. For this purpose, the test samples were prepared according to the ASTM standard, and the test was carried out with the assistance of pin-on-disk machine. To proceed further, L 25 orthogonal array was constructed to evaluate the tribological property with four control variables such as filler content, normal load, sliding velocity and sliding distance at each level. The results indicated that the combination of factors greatly influenced the process to achieve the minimum wear and coefficient of friction. Overall, the experiment results depicted least wear and friction coefficient for fiber reinforced laminates. In the same way, appreciable wear and friction coefficient was noted for without fiber laminates. Additionally, the SN ratio results too exhibited the similar trend. Moreover, ANOVA analysis revealed that the fiber inclusion on laminates has lesser contribution on coefficient of friction and wear when compared to without fiber laminates. At last, the microstructure behavior of the test samples was investigated with an assistance of Scanning Electron Microscope (SEM) to analyze the surface morphology

  8. Chemical and topological short-range order in metallic glasses

    International Nuclear Information System (INIS)

    Vincze, I.; Schaafsma, A.S.; Van der Woude, F.; Kemeny, T.; Lovas, A.

    1980-10-01

    Moessbauer spectroscopy is applied to the study of chemical short-range order in (Fe,Ni)B metallic glasses. It is found that the atomic arrangement in melt-quenched glasses closely resembles that of the crystalline counterparts (Fe 3 B is tetragonal, Ni 3 B is orthorombic). The distribution of transition metal atoms is not random at high Ni concentrations: Ni atoms prefer a neighbourhood with a higher boron coordination. (P.L.)

  9. The effect of pressure changes during simulated diving on the pull out strength of glass fiber posts

    Directory of Open Access Journals (Sweden)

    Meenal Nitin Gulve

    2013-01-01

    Conclusion: Dentist should consider using resin reinforced glass ionomer or resin cement, for the cementation of glass fiber post, for the patients such as divers, who are likely to be exposed to pressure cycling.

  10. Glass fiber-reinforced thermoplastics for use in metal-free removable partial dentures: combined effects of fiber loading and pigmentation on color differences and flexural properties.

    Science.gov (United States)

    Tanimoto, Yasuhiro; Nagakura, Manamu; Nishiyama, Norihiro

    2018-02-21

    The purpose of this study was to investigate the combined effects of fiber loading and pigmentation on the color differences and flexural properties of glass fiber-reinforced thermoplastics (GFRTPs), for use in non-metal clasp dentures (NMCDs). The GFRTPs consisted mainly of E-glass fibers, a polypropylene matrix, and a coloring pigment: the GFRTPs with various fiber loadings (0, 10, and 20mass%) and pigmentations (0, 1, 2, and 4mass%) were fabricated by using an injection molding. The color differences of GFRTPs were measured based on the Commission Internationale de l'Eclairage (CIE) Lab color system, by comparing with a commercially available NMCD. The flexural properties of GFRTPs were evaluated by using a three-point bending test, according to International Standards Organization (ISO) specification number 20795-1. The visible colors of GFRTPs with pigment contents of 2mass% were acceptable for gingival color, and the glass fibers harmonized well with the resins. The ΔE* values of the GFRTPs with pigment contents of 2mass% obtained by using the CIE Lab system were lowest at all fiber loadings. For GFRTPs with fiber contents of 10 and 20mass% at 2mass% pigment content, these GFRTPs surpassed the ISO 20795-1 specification regarding flexural strength (> 60MPa) and modulus (> 1.5GPa). A combination of the results of color difference evaluation and mechanical examination indicates that the GFRTPs with fiber contents of 10 or 20mass%, and with pigment contents of 2mass% have acceptable esthetic appearance and sufficient rigidity for NMCDs. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  11. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2016-01-01

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber...... preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed...... SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured...

  12. Experimental study of fiber-glass plastic work pieces contour milling

    Science.gov (United States)

    Trushin, N. N.; Lisitsin, V. N.

    2018-03-01

    The article represents the results of study of cut and feed speed influence on wear of monolithic hard alloy end milling cutter during cutting of foiled fiber-glass plastic sheets, used for printed-circuit boards’ production. The peculiarities and problems of cutting layered materials are described. The most effective feed and cut speed values are determined by cutter wear analysis.

  13. Achieving Hydrogen Storage Goals through High-Strength Fiber Glass - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong [PPG Industries, Inc., Cheswick, PA (United States); Johnson, Kenneth I. [PPG Industries, Inc., Cheswick, PA (United States); Newhouse, Norman L. [PPG Industries, Inc., Cheswick, PA (United States)

    2017-06-05

    Led by PPG and partnered with Hexagon Lincoln and Pacific Northwest National Laboratory (PNNL), the team recently carried out a project “Achieving Hydrogen Storage Goals through High-Strength Fiber Glass”. The project was funded by DOE’s Fuel Cell Technologies office within the Office of Energy Efficiency and Renewable Energy, starting on September 1, 2014 as a two-year project to assess technical and commercial feasibilities of manufacturing low-cost, high-strength glass fibers to replace T700 carbon fibers with a goal of reducing the composite total cost by 50% of the existing, commercial 700 bar hydrogen storage tanks used in personal vehicles.

  14. Role of Fiber Length on Phagocytosis & Inflammatory Response

    Science.gov (United States)

    Turkevich, Leonid; Stark, Carahline; Champion, Julie

    2014-03-01

    Asbestos fibers have long been associated with lung cancer death. The inability of immune cells (e.g. macrophages) to effectively remove asbestos leads to chronic inflammation and disease. This study examines the role of fiber length on toxicity at the cellular level using model glass fibers. A major challenge is obtaining single diameter fibers but differing in length. Samples of 1 micron diameter fibers with different length distributions were prepared: short fibers (less than 15 microns) by aggressive crushing, and long fibers (longer than 15 microns) by successive sedimentation. Time-lapse video microscopy monitored the interaction of MH-S murine alveolar macrophages with the fibers: short fibers were easily internalized by the macrophages, but long fibers resisted internalization over many hours. Production of TNF- α (tumor necrosis factor alpha), a general inflammatory secreted cytokine, and Cox-2 (cyclo-oxygenase-2), an enzyme that produces radicals, each exhibited a dose-dependence that was greater for long than for short fibers. These results corroborate the importance of fiber length in both physical and biochemical cell response and support epidemiological observations of higher toxicity for longer fibers.

  15. Coating of carbon short fibers with thin ceramic layers by chemical vapor deposition

    International Nuclear Information System (INIS)

    Hackl, Gerrit; Gerhard, Helmut; Popovska, Nadejda

    2006-01-01

    Carbon short fiber bundles with a length of 6 mm were uniformly coated using specially designed, continuous chemical vapor deposition (CVD) equipment. Thin layers of titanium nitride, silicon nitride (SiC) and pyrolytic carbon (pyC) were deposited onto several kilograms of short fibers in this large scale CVD reactor. Thermo-gravimetric analyses and scanning electron microscopy investigations revealed layer thicknesses between 20 and 100 nm on the fibers. Raman spectra of pyC coated fibers show a change of structural order depending on the CVD process parameters. For the fibers coated with SiC, Raman investigations showed a deposition of amorphous SiC. The coated carbon short fibers will be applied as reinforcing material in composites with ceramic and metallic matrices

  16. Study on the influence of design parameters on the damping property of glass fiber reinforced epoxy composite

    Science.gov (United States)

    Bhattacharjee, A.; Nanda, B. K.

    2018-04-01

    Fiber reinforced composites are widely used in industrial applications due to their high strength, light weight and ease in manufacturing. In applications such as automotive, aerospace and structural parts, the components are subjected to unwanted vibrations which reduce their service life, accuracy as well as increases noise. Therefore, it is essential to avoid the detrimental effects of vibrations by enhancing their damping characteristics. The current research deals with estimating the damping properties of Glass fiber reinforced epoxy (GFRE) composites. Processing of the GFRE composites is carried out using hand-lay technique. Various design parameters such as number of glass fiber layers, orientation of fibers and weight ratio are varied while manufacturing GFRE composites. The effects of variation of these design parameters on damping property of GFRE composites are studied extensively.

  17. Novel High Temperature and Radiation Resistant Infrared Glasses and Optical Fibers for Sensing in Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballato, John [Clemson Univ., SC (United States)

    2018-01-22

    One binary and three series of ternary non-oxide pure sulfide glasses compositions were investigated with the goal of synthesizing new glasses that exhibit high glass transition (Tg) and crystallization (Tc) temperatures, infrared transparency, and reliable glass formability. The binary glass series consisted of Ges2 and La2S3 and the three glass series in the x(nBaS + mLa2S3) + (1-2x)GeS2 ternary system have BaS:La2S3 modifier ratios of 1:1, 1:2, and 2:1 with . With these glasses, new insights were realized as to how ionic glasses form and how glass modifiers affect both structure and glass formability. All synthesized compositions were characterized by Infrared (IR) and Raman spectroscopies and differential thermal analysis (DTA) to better understand the fundamental structure, optical, and thermal characteristics of the glasses. After a range of these glasses were synthesized, optimal compositions were formed into glass disks and subjected to gamma irradiation. Glass disks were characterized both before and after irradiation by microscope imaging, measuring the refractive index, density, and UV-VIS-IR transmission spectra. The final total dose the samples were subjected to was ~2.5 MGy. Ternary samples showed a less than 0.4% change in density and refractive index and minimal change in transmission window. The glasses also resisted cracking as seen in microscope images. Overall, many glass compositions were developed that possess operating temperatures above 500 °C, where conventional chalcogenide glasses such as As2S3 and have Tgs from ~200-300 °C, and these glasses have a greater than Tc – Tg values larger than 100 °C and this shows that these glasses have good thermal stability of Tg such that they can be fabricated into optical fibers and as such can be considered candidates for high temperature infrared fiber optics. Initial fiber fabrication efforts showed that selected glasses could be drawn but larger

  18. Thermally controlled mid-IR band-gap engineering in all-glass chalcogenide microstructured fibers: a numerical study

    DEFF Research Database (Denmark)

    Barh, Ajanta; Varshney, Ravi K.; Pal, Bishnu P.

    2017-01-01

    Presence of photonic band-gap (PBG) in an all-glass low refractive index (RI) contrast chalcogenide (Ch) microstructured optical fibers (MOFs) is investigated numerically. The effect of external temperature on the position of band-gap is explored to realize potential fiber-based wavelength filters....... Then the temperature sensitivity of band-gaps is investigated to design fiber-based mid-IR wavelength filters/sensors....

  19. Effects of Kenaf Fiber Orientation on Mechanical Properties and Fatigue Life of Glass/Kenaf Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mohaiman Jaffar Sharba

    2015-12-01

    Full Text Available The objectives of this work were to investigate the effect of kenaf fiber alignment on the mechanical and fatigue properties of kenaf/glass hybrid sandwich composites. Three types of kenaf fibers were used, namely, non-woven random mat, unidirectional twisted yarn, and plain-woven kenaf. A symmetric sandwich configuration was constructed with glass as the shell and kenaf as the core with a constant kenaf/glass weight ratio of 30/70% and a volume fraction of 35%. Tensile, compression, flexural, and fully reversed fatigue tests were conducted, and a morphological study of the tensile failure surface of each hybrid composite was carried out. The non-woven mat kenaf hybrid had poor properties for all tests, while the unidirectional kenaf hybrid composite possessed higher tensile strength and similar compressive properties compared with the woven kenaf. Hybridization with kenaf fibers improved the fatigue degradation coefficient of the final composites to 6.2% and 6.4% for woven and unidirectional kenaf, respectively, compared with 7.9% for non-woven. Because woven kenaf hybrid composite is lightweight, environment friendly, and has a considerable balance in static and fatigue strengths with low fatigue sensitivity in bidirectional planes compared to glass, it is strongly recommended for structural applications.

  20. The influence of glass fibers on elongational viscosity studied by means of optical coherence tomography and X-ray computed tomography

    International Nuclear Information System (INIS)

    Aigner, M.; Köpplmayr, T.; Lang, C.; Burzic, I.; Miethlinger, J.; Salaberger, D.; Buchsbaum, A.; Leitner, M.; Heise, B.; Schausberger, S. E.; Stifter, D.

    2014-01-01

    We report on the flow characteristics of glass-fiber-reinforced polymers in elongational rheometry. Unlike polymers with geometrically isotropic fillers, glass-fiber-reinforced polymers exhibit flow behavior and rheology that depend heavily on the orientation, the length distribution and the content of the fibers. One of the primary objectives of this study was to determine the effect of fiber orientation, concentration and distribution on the entrance pressure drop by means of optical coherence tomography (OCT), full-field optical coherence microscopy (FF-OCM), and X-ray computed tomography (X-CT). Both pressure drop and melt flow were analyzed using a special elongation die (Thermo Scientific X-Die [3]) for inline measurements. Samples with a variety of fiber volume fractions, fiber lengths and processing temperatures were measured

  1. The influence of glass fibers on elongational viscosity studied by means of optical coherence tomography and X-ray computed tomography

    Science.gov (United States)

    Aigner, M.; Salaberger, D.; Buchsbaum, A.; Heise, B.; Schausberger, S. E.; Köpplmayr, T.; Lang, C.; Leitner, M.; Stifter, D.; Burzic, I.; Miethlinger, J.

    2014-05-01

    We report on the flow characteristics of glass-fiber-reinforced polymers in elongational rheometry. Unlike polymers with geometrically isotropic fillers, glass-fiber-reinforced polymers exhibit flow behavior and rheology that depend heavily on the orientation, the length distribution and the content of the fibers. One of the primary objectives of this study was to determine the effect of fiber orientation, concentration and distribution on the entrance pressure drop by means of optical coherence tomography (OCT), full-field optical coherence microscopy (FF-OCM), and X-ray computed tomography (X-CT). Both pressure drop and melt flow were analyzed using a special elongation die (Thermo Scientific X-Die [3]) for inline measurements. Samples with a variety of fiber volume fractions, fiber lengths and processing temperatures were measured.

  2. Reinforcement of Recycled Foamed Asphalt Using Short Polypropylene Fibers

    Directory of Open Access Journals (Sweden)

    Yongjoo Kim

    2013-01-01

    Full Text Available This paper presents the reinforcing effects of the inclusion of short polypropylene fibers on recycled foamed asphalt (RFA mixture. Short polypropylene fibers of 10 mm length with a 0.15% by weight mixing ratio of the fiber to the asphalt binder were used. The Marshall stability test, the indirect tensile strength test, the resilient modulus test, and wheel tracking test of the RFA mixtures were conducted. The test results were compared to find out the reinforcing effects of the inclusion of the fiber and the other mixtures, which included the conventional recycled foamed asphalt (RFA mixtures; the cement reinforced recycled foamed asphalt (CRFA mixtures; the semihot recycled foamed asphalt (SRFA mixtures; and recycled hot-mix asphalt (RHMA mixtures. It is found that the FRFA mixture shows higher Marshall stability than the RFA and SRFA mixtures, higher indirect tensile strength than the RFA mixture, and higher rut resistance than the RFA, SRFA, and RHMA mixtures as seen from the wheel tracking test.

  3. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2010-01-01

    Separators are needed in microbial fuel cells (MFCs) to reduce electrode spacing and preventing electrode short circuiting. The use of nylon and glass fiber filter separators in single-chamber, air-cathode MFCs was examined for their effect on performance. Larger pore nylon mesh were used that had regular mesh weaves with pores ranging from 10 to 160 μm, while smaller pore-size nylon filters (0.2-0.45 μm) and glass fiber filters (0.7-2.0 μm) had a more random structure. The pore size of both types of nylon filters had a direct and predictable effect on power production, with power increasing from 443 ± 27 to 650 ± 7 mW m-2 for pore sizes of 0.2 and 0.45 μm, and from 769 ± 65 to 941 ± 47 mW m-2 for 10 to 160 μm. In contrast, changes in pore sizes of the glass fiber filters resulted in a relatively narrow change in power (732 ± 48 to 779 ± 43 mW m-2) for pore sizes of 0.7 to 2 μm. An ideal separator should increase both power density and Coulombic efficiency (CE). However, CEs measured for the different separators were inversely correlated with power production, demonstrating that materials which reduced the oxygen diffusion into the reactor also hindered proton transport to the cathode, reducing power production through increased internal resistance. Our results highlight the need to develop separators that control oxygen transfer and facilitate proton transfer to the cathode. © 2010 The Royal Society of Chemistry.

  4. Frequency and deflection analysis of cenosphere/glass fiber interply hybrid composite cantilever beam

    Science.gov (United States)

    Bharath, J.; Joladarashi, Sharnappa; Biradar, Srikumar; Kumar, P. Naveen

    2018-04-01

    Interply hybrid laminates contain plies made of two or more different composite systems. Hybrid composites have unique features that can be used to meet specified design requirements in a more cost-effective way than nonhybrid composites. They offer many advantages over conventional composites including balanced strength and stiffness, enhanced bending and membrane mechanical properties, balanced thermal distortion stability, improved fatigue/impact resistance, improved fracture toughness and crack arresting properties, reduced weight and cost. In this paper an interply hybrid laminate composite containing Cenosphere reinforced polymer composite core and glass fiber reinforced polymer composite skin is analysied and effect of volume fraction of filler on frequency and load v/s deflection of hybrid composite are studied. Cenosphere reinforced polymer composite has increased specific strength, specific stiffness, specific density, savings in cost and weight. Glass fiber reinforced polymer composite has higher torsional rigidity when compared to metals. These laminate composites are fabricated to meet several structural applications and hence there is a need to study their vibration and deflection properties. Experimental investigation starts with fabrication of interply hybrid composite with cores of cenosphere reinforced epoxy composite volume fractions of CE 15, CE 25, CE15_UC as per ASTM E756-05C, and glasss fiber reinforced epoxy skin, cast product of required dimension by selecting glass fibre of proper thickness which is currently 0.25mm E-glass bidirectional woven glass fabric having density 2500kg/m3, in standard from cast parts of size 230mmX230mmX5mm in an Aluminum mould. Modal analysis of cantilever beam is performed to study the variation of natural frequency with strain gauge and the commercially available Lab-VIEW software and deflection in each of the cases by optical Laser Displacement Measurement Sensor to perform Load versus Deflection Analysis

  5. Microstructural evaluation and flexural mechanical behavior of pultruded glass fiber composites

    International Nuclear Information System (INIS)

    Chacon, Y.G.; Paciornik, S.; D'Almeida, J.R.M.

    2010-01-01

    Research highlights: → Mosaic images fully characterize the microstructure of heterogeneous materials. → Mosaic images have advantages over microscopy techniques using single fields. → UV and water immersion aging are minimized at the fibers' direction. → UV radiation produced marked changes on the composite surface. - Abstract: The microstructure of a pultruded glass fiber-reinforced composite was fully characterized using digital image analysis. A mosaic technique was used to analyze the entire thickness along specimens' cross-sections, enabling the visualization of the fiber, resin and filler spatial distribution. The advantages of this technique over the usual analysis on single fields, is presented and discussed. The fiber spatial distribution was correlated with flexural mechanical properties as a function of the specimens' position along the length and across the cross section of the composite. The influence of aging by immersion in distilled water and by UV radiation on flexural properties was also analyzed. Minor variation due to aging occurred when longitudinal specimens were tested. Transversally to the fibers, the matrix-dominated composite properties were more affected.

  6. Reinforcement of tire tread and radiator hose rubbers with short aramid fibers

    NARCIS (Netherlands)

    Shirazi, Morteza; Noordermeer, Jacobus W.M.

    2010-01-01

    Short fiber reinforced rubber composites have gained great importance due to their advantages in processing and low cost, coupled with high strength. Reinforcement with short fibers offers attractive features such as design flexibility, high modulus, tear strength, etc. The degree of reinforcement

  7. Development of suspended core soft glass fibers for far-detuned parametric conversion

    Science.gov (United States)

    Rampur, Anupamaa; Ciąćka, Piotr; Cimek, Jarosław; Kasztelanic, Rafał; Buczyński, Ryszard; Klimczak, Mariusz

    2018-04-01

    Light sources utilizing χ (2) parametric conversion combine high brightness with attractive operation wavelengths in the near and mid-infrared. In optical fibers, it is possible to use χ (3) degenerate four-wave mixing in order to obtain signal-to-idler frequency detuning of over 100 THz. We report on a test series of nonlinear soft glass suspended core fibers intended for parametric conversion of 1000-1100 nm signal wavelengths available from an array of mature lasers into the near-to-mid-infrared range of 2700-3500 nm under pumping with an erbium sub-picosecond laser system. The presented discussion includes modelling of the fiber properties, details of their physical development and characterization, and experimental tests of parametric conversion.

  8. Influence of mold temperature associated with glass fiber on the mechanical and thermal properties of a (PA6/GF/MMT) nanocomposite

    International Nuclear Information System (INIS)

    Damiani, Renato Adriano

    2017-01-01

    This work describes the second of a series of studies of the effects of injection molding conditions on the mechanical and thermal properties of Polyamide 6/Glass Fiber/Montmorillonite (PA6/GF/MMT) composites and was motivated by the lack of information about how the processing variables influence on the properties of three-phase composites containing fiber glass. By this time, the effects of the injection molding temperature associated with the fiber glass percentage on the mechanical and thermal properties of the composite are investigated. Some samples were processed, following a statistical experimental factorial planning, varying the mold temperature and the fiber glass percentage and maintaining 5 wt % of the MMT. The samples were submitted to tensile and flexural tests, XRD, SEM and DSC. The studies showed that an increase in the mold temperature and the fiber percentage improves the maximum tensile and flexural stresses. The increased mold temperature slows the cooling rate, which, over time, decreases the degree of crystallinity. However, there is an increase in the intercalation of the polymeric chains and the nanoclay lamellae, and the structure forms with fewer defects. (author)

  9. Influence of mold temperature associated with glass fiber on the mechanical and thermal properties of a (PA6/GF/MMT) nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, Renato Adriano, E-mail: eng.damiani@hotmail.com [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil). Programa de Pos-Graduacao em Ciencias e Engenharia de Materiais; Duarte, Glaucea Warmeling; Riella, Humberto Gracher, E-mail: gwduarte@gmail.com, E-mail: huberto.riella@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Programa de Pos-Graduacao em Engenharia Quimica; Silva, Luciano Luiz; Mello, Josiane Maria Muneron de; Fiori, Marcio Antonio; Batiston, Eduardo Roberto, E-mail: marciofiori@gmail.com, E-mail: lucianols@unochapeco.edu.br, E-mail: josimello@unochapeco.edu.br, E-mail: erbatiston@unochapeco.edu.br [Universidade Comunitaria da Regiao de Chapeco (UNOCHAPECO), Chapeco, SC (Brazil)

    2017-01-15

    This work describes the second of a series of studies of the effects of injection molding conditions on the mechanical and thermal properties of Polyamide 6/Glass Fiber/Montmorillonite (PA6/GF/MMT) composites and was motivated by the lack of information about how the processing variables influence on the properties of three-phase composites containing fiber glass. By this time, the effects of the injection molding temperature associated with the fiber glass percentage on the mechanical and thermal properties of the composite are investigated. Some samples were processed, following a statistical experimental factorial planning, varying the mold temperature and the fiber glass percentage and maintaining 5 wt % of the MMT. The samples were submitted to tensile and flexural tests, XRD, SEM and DSC. The studies showed that an increase in the mold temperature and the fiber percentage improves the maximum tensile and flexural stresses. The increased mold temperature slows the cooling rate, which, over time, decreases the degree of crystallinity. However, there is an increase in the intercalation of the polymeric chains and the nanoclay lamellae, and the structure forms with fewer defects. (author)

  10. Influence of thermal cycling on flexural properties of composites reinforced with unidirectional silica-glass fibers.

    Science.gov (United States)

    Meriç, Gökçe; Ruyter, I Eystein

    2008-08-01

    The purpose was to investigate the effect of water storage and thermal cycling on the flexural properties of differently sized unidirectional fiber-reinforced composites (FRCs) containing different quantities of fibers. The effect of fiber orientation on the thermal expansion of FRCs as well as how the stresses in the composites can be affected was considered. An experimental polymeric base material was reinforced with silica-glass fibers. The cleaned and silanized fibers were sized with either linear PBMA-size or crosslinked PMMA-size. For the determination of flexural properties and water uptake, specimens were processed with various quantities of differently sized unidirectional fibers. Water uptake of FRC was measured. Water immersed specimens were thermally cycled for 500 and 12,000 cycles (5 degrees C/55 degrees C). Flexural properties of "dry" and wet specimens with and without thermal cycling were determined by a three-point bending test. The linear coefficients of thermal expansion (LCTE) for FRC samples with different fiber orientations were determined using a thermomechanical analyzer. Water uptake of the FRC specimens increased with a decrease in fiber content of the FRC. Flexural properties of FRCs improved with increasing fiber content, whereas the flexural properties were not influenced significantly by water and thermal cycling. Fiber orientation had different effects on LCTE of FRCs. Unidirectional FRCs had two different LCTE in longitudinal and transverse directions whereas bidirectional FRCs had similar LCTE in two directions and a higher one in the third direction. The results of the study suggest that the surface-treated unidirectional silica-glass FRC can be used for long-term clinical applications in the oral cavity.

  11. Relining effects on the push-out shear bond strength of glass fiber posts

    Directory of Open Access Journals (Sweden)

    Adriana Rosado Valente ANDRIOLI

    Full Text Available Abstract Introduction The correct use of glass fiber posts in endodontically treated teeth is essential for the clinical success of restorative treatment. Objective This study evaluated the push-out shear bond strength of relined (R or non-relined (NR glass fiber posts, cemented with self-adhesive resin cement [RelyXTM U100 (U100] and conventional resin cement [RelyXTM ARC (ARC]. Material and method Sixty human single-rooted teeth were endodontically treated and divided into ARC-NR; U100-NR; ARC-R; U100-R groups. The teeth were sectioned into cervical, middle and apical thirds, and subjected to the push-out test. Bond strength was analyzed by the Friedman test; cement and post types were compared by the Mann Whitney test. The pattern of failures was evaluated with digital camera through images at 200x magnification, and was classified as adhesive (at the cement/dentin or cement/post interface, cohesive (cement or post, and mixed failures. Result In ARC-NR, bond strength values were higher in the cervical third; in U100-NR and ARC-R they were similar between the thirds. In U100-R, in the cervical and middle thirds the bond strength values were similar, and there was lower value in the apical third. For non-relined glass fiber posts, the highest mean bond strength values were observed with self-adhesive resin cement. Whereas, relined posts cemented with conventional resin cement had stronger cement layer in comparison with non-relined fiber posts. Conclusion The post relining technique was efficient in ARC-R. ARC-NR and U100-R showed improved bond strength in the cervical region of canal walls. The main failures were adhesive at the cement-post interface.

  12. Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites

    International Nuclear Information System (INIS)

    Lin Tiesong; Jia Dechang; He Peigang; Wang Meirong; Liang Defu

    2008-01-01

    A kind of sheet-like carbon fiber preform was developed using short fibers (2, 7 and 12 mm, respectively) as starting materials and used to strengthen a geopolymer. Mechanical properties, fracture behavior, microstructure and toughening mechanisms of the as-prepared composites were investigated by three-point bending test, optical microscope and scanning electron microscopy. The results show that the short carbon fibers disperse uniformly in geopolymer matrix. The C f /geopolymer composites exhibit apparently improved mechanical properties and an obvious noncatastrophic failure behavior. The composite reinforced by the carbon fibers of 7 mm in length shows a maximum flexural strength as well as the highest work of facture, which are nearly 5 times and more than 2 orders higher than that of the geopolymer matrix, respectively. The predominant strengthening and toughening mechanisms are attributed to the apparent fiber bridging and pulling-out effect based on the weak fiber/matrix interface as well as the sheet-like carbon fiber preform

  13. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    Science.gov (United States)

    Bouaricha, Leyla; Henni, Ahmed Djafar; Lancelot, Laurent

    2017-12-01

    A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand) with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°), and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%).

  14. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    Directory of Open Access Journals (Sweden)

    Bouaricha Leyla

    2017-12-01

    Full Text Available A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°, and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%.

  15. Dynamic mechanical and dielectric behavior of banana–glass hybrid fiber reinforced polyester composites.

    CSIR Research Space (South Africa)

    Pothan, LA

    2009-01-01

    Full Text Available Hybrid composites of glass and banana fiber (obtained from the pseudo stem of Musa sapientum) in polyester matrix, are subjected to dynamic mechanical analysis over a range of temperature and three different frequencies. The effect of temperature...

  16. Recycled Glass Fiber Reinforced Polymer Composites Incorporated in Mortar for Improved Mechanical Performance

    Science.gov (United States)

    2017-12-11

    Glass fiber reinforced polymer (GFRP) recycled from retired wind turbines was implemented in mortar as a volumetric replacement of sand during the two phases of this study. In Phase I, the mechanically refined GFRP particle sizes were sieved for four...

  17. Effect of the Volume Fraction of Jute Fiber on the Interlaminar Shear Stress and Tensile Behavior Characteristics of Hybrid Glass/Jute Fiber Reinforced Polymer Composite Bar for Concrete Structures

    Directory of Open Access Journals (Sweden)

    Chan-Gi Park

    2016-01-01

    Full Text Available Hybrid glass/jute fiber reinforced polymer (HGJFRP composite bars were manufactured for concrete structures, and their interlaminar shear stress and tensile performance were evaluated. HGJFRP composite bars were manufactured using a combination of pultrusion and braiding processes. Jute fiber was surface-treated with a silane coupling agent. The mixing ratio of the fiber to the vinyl ester used in the HGJFRP composite bars was 7 : 3. Jute fiber was used to replace glass fiber in proportions of 0, 30, 50, 70, and 100%. The interlaminar shear stress decreased as the proportion of jute fiber increased. Fractures appeared due to delamination between the surface-treated component and the main part of the HGJFRP composite bar. Tensile load-strain curves with 50% jute fiber exhibited linear behavior. With a jute fiber volume fraction of 70%, some plastic deformation occurred. A jute fiber mixing ratio of 100% resulted in a display of linear elastic brittle behavior from the fiber; however, when the surface of the fiber was coated with poly(vinyl acetate, following failure, the jute fiber exhibited partial load resistance. The tensile strength decreased as the jute fiber content increased; however, the tensile strength did not vary linearly with jute fiber content.

  18. Partial Replacement of Glass Fiber by Woven Kenaf in Hybrid Composites and its Effect on Monotonic and Fatigue Properties

    Directory of Open Access Journals (Sweden)

    Mohaiman Jaffar Sharba

    2016-02-01

    Full Text Available Natural–synthetic fiber hybrid composites offer a combination of high mechanical properties from the synthetic fibers and the advantages of renewable fibers to produce a material with highly specific and determined properties. In this study, plain-woven kenaf/glass reinforced unsaturated polyester (UP hybrid composites were fabricated using the hand lay-up method with a cold hydraulic press in a sandwich-configuration laminate. The glass was used as a shell with kenaf as a core, with an approximate total fiber content of 40%. Three glass/kenaf weight ratios percentages of (70/30% (H1, (55/45% (H2, and (30/70% (H3 were used to fabricate hybrid composites. Also pure glass/UP and kenaf/UP were fabricated for comparison purposes. Monotonic tests, namely tensile, compression, and flexural strengths of the composites, were performed. The morphological properties of tensile and compression failure of kenaf and hybrid composites were studied. In addition, uniaxial tensile fatigue life of hybrid composites were conducted and evaluated. The results revealed that the hybrid composite (H1 offered a good balance and the best static properties, but in tensile fatigue loading (H3 displayed low fatigue sensitivity when compared with the other hybrid composites.

  19. 2.45 GHz Microwave Processing and Its Influence on Glass Fiber Reinforced Plastics

    Science.gov (United States)

    Zaremba, Swen

    2018-01-01

    During the production of fiber-reinforced composite materials, liquid resin is introduced into the fiber material and cured, i.e., hardened. An elevated temperature is needed for this curing. Microwave curing of composites has been investigated for some time, but it has mostly been done using small domestic or laboratory equipment. However, no investigation has been carried out using an industrial-sized chamber-microwave for glass fiber-reinforced plastic (GFRP). Here, we show that microwave curing produces laminates of the same quality as oven-cured ones. The study shows that, if the process is done right, GFRP samples can be produced with an industrial scale microwave. Even if not fully cured, microwave samples show a glass transition temperature measured with DMA (Tg-DMA) that is comparable to the Tg-DMA according to the proposed cure cycle on the data sheet. Specific microwave-cured configurations show better inter-laminar shear strength than oven specimens. The results show that microwave-based heat introduction can be a beneficial curing method for GFRP laminates. A microwave-optimized process is faster and leads to better mechanical properties. PMID:29783684

  20. Short-range structure and thermal properties of barium tellurite glasses

    Science.gov (United States)

    Kaur, Amarjot; Khanna, Atul; Gonzàlez, Fernando

    2017-05-01

    BaO-TeO2 glasses containing 10 to 20 BaO mol% were prepared and characterized by X-ray diffraction, density measurements, differential scanning calorimetry and Raman spectroscopy. Glass density decreases with increase in BaO concentration from 10 to 20 mol%, due to replacement of heavier TeO2 by lighter BaO, however glass transition temperature (Tg) increases significantly from a value of 318°C to 327°C due to increase in average single bond enthalpy of the tellurite network. Raman studies found that glass short-range structure consists of TeO4 and TeO3 structural units and BaO modifies the network by producing the structural transformation: TeO4→ TeO3.

  1. MECHANICAL AND THERMO–MECHANICAL PROPERTIES OF BI-DIRECTIONAL AND SHORT CARBON FIBER REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    G. AGARWAL

    2014-10-01

    Full Text Available This paper based on bidirectional and short carbon fiber reinforced epoxy composites reports the effect of fiber loading on physical, mechanical and thermo-mechanical properties respectively. The five different fiber loading, i.e., 10wt. %, 20wt. %, 30wt. %, 40wt. % and 50wt. % were taken for evaluating the above said properties. The physical and mechanical properties, i.e., hardness, tensile strength, flexural strength, inter-laminar shear strength and impact strength are determined to represent the behaviour of composite structures with that of fiber loading. Thermo-mechanical properties of the material are measured with the help of Dynamic Mechanical Analyser to measure the damping capacity of the material that is used to reduce the vibrations. The effect of storage modulus, loss modulus and tan delta with temperature are determined. Finally, Cole–Cole analysis is performed on both bidirectional and short carbon fiber reinforced epoxy composites to distinguish the material properties of either homogeneous or heterogeneous materials. The results show that with the increase in fiber loading the mechanical properties of bidirectional carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, as far as Loss modulus, storage modulus is concerned bidirectional carbon fiber shows better damping behaviour than short carbon fiber reinforced composites.

  2. An anisotropic elasto-viscoplastic model for short-fiber reinforced polymers

    NARCIS (Netherlands)

    Amiri Rad, A.; Govaert, L.E.; van Dommelen, J.A.W.

    2017-01-01

    The influence of flow on the fiber orientation in injection molding of short-fiber composites leads to both anisotropy and inhomogeneity of the mechanical response. An anisotropic elasto-viscoplastic constitutive model is developed to capture the anisotropic and time-dependent behavior and

  3. An Anisotropic Elasto-Viscoplastic Model for Short-Fiber Reinforced Polymers

    NARCIS (Netherlands)

    Amiri Rad, A.; Govaert, L.E.; van Dommelen, J.A.W.

    2018-01-01

    The influence of flow on the fiber orientation in injection molding of short-fiber composites leads to both anisotropy and inhomogeneity of the mechanical response. An anisotropic elasto-viscoplastic constitutive model is developed to capture the anisotropic and time-dependent behavior and

  4. Scintillating-Glass-Fiber neutron sensors, their application and performance for plutonium detection and monitoring

    International Nuclear Information System (INIS)

    Seymour, R.S.; Richardson, B.; Morichi, M.; Bliss, M.; Craig, R.A.; Sunberg, D.S.

    1998-01-01

    Most neutron detection sensors presently employ 3 He gas-filled detectors. Despite their excellent performance and widespread use, there are significant limitations to this technology. A significant alternative neutron sensor utilizing neutron-active material incorporated into a glass scintillator is presented that offers novel commercial sensors not possible or practical with gas tube technology. The scintillating optical fiber permits sensors with a multitude of sizes ranging from devices of a single fiber of 150μm to sensors with tens of thousands of fibers with areas as large as 5m 2 depending on the neutron flux to be measured. A second significant advantage is the use of high-speed electronics that allow a greater dynamic range, not possible with gas detectors. These sensors are flexible, conformable and less sensitive to vibration that optimizes the source-to-detector geometry and provides robust performance in field applications. The glass-fibers are sensitive to both gamma rays and neutrons. However the coincidence electronics are optimized for neutron to gamma ray discrimination allowing very sensitive measurements with a low false-alarm rate. Applications include SNM surveillance, material control and accountability (MC and A), safeguard inspections, Pu health physics / bioassay and environmental characterization. (author)

  5. Effects of Fiber Content on Mechanical Properties of CVD SiC Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites

    Science.gov (United States)

    Bansal, Narottam P.

    1996-01-01

    Unidirectional CVD SiC(f)(SCS-6) fiber-reinforced strontium aluminosilicate (SAS) glass-ceramic matrix composites containing various volume fractions, approximately 16 to 40 volume %, of fibers were fabricated by hot pressing at 1400 C for 2 h under 27.6 MPa. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase formed, with complete absence of the undesired hexacelsian phase, in the matrix. Room temperature mechanical properties were measured in 3-point flexure. The matrix microcracking stress and the ultimate strength increased with increase in fiber volume fraction, reached maximum values for V(sub f) approximately equal to 0.35, and degraded at higher fiber loadings. This degradation in mechanical properties is related to the change in failure mode, from tensile at lower V(sub f) to interlaminar shear at higher fiber contents. The extent of fiber loading did not have noticeable effect on either fiber-matrix debonding stress, or frictional sliding stress at the interface. The applicability of micromechanical models in predicting the mechanical properties of the composites was also examined. The currently available theoretical models do not appear to be useful in predicting the values of the first matrix cracking stress, and the ultimate strength of the SCS-6/SAS composites.

  6. Effect of kenaf short fiber loading on mechanical properties of biocomposites

    Science.gov (United States)

    Andilolo, J.; Nikmatin, S.; Nugroho, N.; Alatas, H.; Wismogroho, A. S.

    2017-05-01

    The research of biocomposite product with kenaf (Hibiscus cannabinus) short fiber as a filler and Acrylonitrile Butadiene Styrene (ABS) as the matrix had been done to understand the mechanical properties of this material. Kenaf short fiber was obtained from mechanical sieving after doing the mechanical milling. TAPPI method has been done to determine the chemical properties. In order to form a granular biocomposite a single screw extruder was performed with a variation of particle loading 10 and 15%. The original of acrylonitrile butadiene styrene (ABS) has been used as matrix. The fabrication of speciment had been done by molding injection process. Mechanical properties test was done by ASTM standarization. The results showed the density of the fibers of 1.008 g/cm3 with a fiber length of 897.07 µm and a diameter of 66.38 µm. Tensile strength of kenaf short fiber loading 10 and 15% was 23.522 ± 8.36 MPa and 20.739 ± 6.79 MPa, respectively. The tensile properties showed a decreasing trend as the fiber loading was increased. The values of impact strength were 68.657 ± 4.89 kJ m-2 and 82.090 ± 5.56 kJ m-2, respectively and the hardness values were 96.60 ± 6.03 HR and 105.20 ± 13.17 HR, respectively. Kenaf fiber can be a good reinforcement candidate for high performance polymer bio-composites.

  7. Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.

    Science.gov (United States)

    Repovsky, Daniel; Jane, Eduard; Palszegi, Tibor; Slobodnik, Marek; Velic, Dusan

    2013-10-21

    Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si-O-Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non-silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm(2) if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL(-1), respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha ) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL(-1), respectively. The pH-dependent zeta-potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non-silanized glass fiber surface and the silane film have similar zeta potentials ranging

  8. Solidification microstructures in a short fiber reinforced alloy composite containing different fiber fractions

    Directory of Open Access Journals (Sweden)

    JING Qing-xiu

    2006-02-01

    Full Text Available The solidification microstructures and micro-segregation of a fiber reinforced Al-9 Cu alloy, containing different volume fractions of Al2O3 short fibers about 6 μm diameter and made by squeeze casting have been studied. The results indicate that as volume fraction of fiber Vf increases, the size of final grains becomes finer in the matrix. If λf /λ>1, the fibers have almost no influence on the solidification behavior of the matrix, so the final grains grow coarse, where λf is the average inter-fiber spacing and λ is the secondary dendrite arm spacing. While if λf /λ<1, the growth of crystals in the matrix is affected significantly by the fibers and the grain size is reduced to the value of the inter-fiber spacing. The fibers influence the average length of a solidification volume element L of the matrix and also influence the solidification time θt of the matrix. As a result of fibers influencing L and θt, the micro-segregation in the matrix is improved when the composite contains more fibers, although the level of the improvement is slight. The Clyne-Kurz model can be used to semi-quantitatively analyze the relationship between Vf and the volume fraction fe of the micro-segregation eutectic structure.

  9. Preparation and investigation of [GeSe4]100-xIx glasses as promising materials for infrared fiber sensors

    Science.gov (United States)

    Velmuzhov, A. P.; Sukhanov, M. V.; Shiryaev, V. S.; Plekhovich, A. D.; Kotereva, T. V.; Snopatin, G. E.; Gerasimenko, V. V.; Pushkin, A. A.

    2016-10-01

    The glasses of [GeSe4]100-xIx (x = 1, 3, 5, 8, 10) compositions are prepared; their thermal properties, transparency in the mid-IR range and stability against crystallization are investigated. The glass transition temperature (Tg) in this system decreases monotonically with increasing iodine content from the value of Tg = 176 °C at x = 1 to Tg = 129 °C at x = 10. It has been determined by X-ray diffraction method that the addition of iodine reduces the volume fraction of the crystalline phase in glasses after annealing at 350 °C. Using a single crucible technique, the rod of [GeSe4]95I5 glass was drawn into a single-index fiber of 300 μm diameter and 10 m length. The optical losses were 2-3 dB/m in the spectral range 2.5-8 μm; the minimum optical losses were 1.7 dB/m at a wavelength of 5.5 μm. The content of impurity hydrogen in the form of Se-H in the fiber was about 3.6 ppm(wt), impurity oxygen in the form of Ge-O is 1 ppm(wt). The possibility of use of such [GeSe4]95I5 glass single-index fiber for infrared analysis of liquids by example of crude oil and water solutions of acetone has been demonstrated.

  10. Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Drews, Joanna Maria

    2011-01-01

    . The efficiency of such a plasma treatment at atmospheric pressure can be further improved by ultrasonic irradiation onto the surface during the treatment. In the present work glass fiber reinforced polyester (GFRP) plates are treated using an atmospheric pressure gliding arc with and without ultrasonic...

  11. Degradation of glass-fiber reinforced plastics by low temperature irradiation

    International Nuclear Information System (INIS)

    Nishijima, S.; Nishiura, T.; Ueno, S.; Tsukazaki, Y.; Okada, T.; Okada, T.M.; Miyata, K.; Kodaka, H.

    1998-01-01

    Low-temperature irradiation effects of glass-fiber reinforced plastics (GFRP) have been investigated in terms of mechanical properties such as interlaminar shear strength and creep, in order to obtain the selection standard of insulating materials of superconducting magnets used for fusion reactor. It was revealed that the degradation of interlaminar shear strength was strongly dependent of characteristics of matrix and/or glass/epoxy interface. Especially, the research has been carried out towards the creep behaviour of epoxy which is the matrix of GFRP, by both experimental and simulation method. It was suggested that the synergistic effects was observed in creep test. From the molecular dynamics simulation it was found that the cage effects was the one of the main reason of the stress effects of creep behavior under irradiation. (author)

  12. Short-range structure and thermal properties of lead tellurite glasses

    Science.gov (United States)

    Hirdesh, Kaur, Amarjot; Khanna, Atul; Gonzàlez, Fernando

    2017-05-01

    PbO-TeO2 glasses having composition: xPbO-(100 - x)TeO2 (x = 10, 15 and 20 mol%) were prepared by melt quenching and characterized by X-ray diffraction, density measurements, differential scanning calorimetry and Raman spectroscopy. Glass density increases from 5.89 to 6.22 g cm-3 with increase in PbO concentration from 10 to 20 mol%, due to the replacement of TeO2 by heavier PbO. DSC studies found that glass transition temperature (Tg) decreases from a value of 295°C to 281°C. Raman studies found that glass short-range structure consists of TeO4 and TeO3 structural units and that PbO modifies the network by the structural transformation: TeO4 to TeO3.

  13. Study on processing parameters of glass cutting by nanosecond 532 nm fiber laser

    Science.gov (United States)

    Wang, Jin; Gao, Fan; Xiong, Baoxing; Zhang, Xiang; Yuan, Xiao

    2018-03-01

    The processing parameters of soda-lime glass cutting with several nanosecond 532 nm pulsed fiber laser are studied in order to obtain sufficiently large ablation rate and better processing quality. The influences of laser processing parameters on effective cutting speed and cutting quality of 1 2 mm thick soda-lime glass are studied. The experimental results show that larger laser pulse energy will lead to higher effective cutting speed and larger maximum edge collapse of the front side of the glass samples. Compared with that of 1.1 mm thick glass samples, the 2.0 mm thick glass samples is more difficult to cut. With the pulse energy of 51.2 μJ, the maximum edge collapse is more than 200 μm for the 2.0 mm thick glass samples. In order to achieve the high effective cutting speed and good cutting quality at the same time, the dual energy overlapping method is used to obtain the better cutting performance for the 2.0 mm thick glass samples, and the cutting speed of 194 mm/s and the maximum edge collapse of less than 132 μm are realized.

  14. Fabrication and characterization of chromium-doped nanophase separated yttria-alumina-silica glass-based optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Debjit; Dhar, Anirban; Das, Shyamal; Paul, Mukul C. [Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Kir' yanov, Alexander V. [Centro de Investigaciones en Optica, Guanajuato (Mexico); Bysakh, Sandip [Electron Microscopic Section, Material Characterization Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India)

    2015-08-15

    The basic material and optical properties of chromium-doped nanophase-separated yttria-alumina-silica (YAS) glass based optical preforms and fibers, fabricated through the modified chemical vapor deposition process in conjunction with solution doping technique under suitable thermal annealing conditions are reported. The size of the phase-separated particles within the core of the annealed preform is around 20-30 nm which is significantly reduced to around 5.0 nm in the drawn fiber. The absorption spectra of fibers drawn from the annealed and non-annealed preform samples revealed the presence of Cr{sup 4+}, Cr{sup 3+}, and Cr{sup 6+} specie. Numerically, extinction of absorption drops ∝3-3.5 times for the annealed sample as a result of nano-phase restructuration during annealing process. Intense broadband emission (within 500-800 nm) in case of the annealed preform sample is observed as compared to the non-annealed one and is associated with the presence of Cr{sup 3+} ions in nanostructured environment inside the YAS core glass. The final fibers show broadband emission ranging from 900 to 1400 nm under pumping at 1064 nm which is attributed mainly to the presence of Cr{sup 3+}/Cr{sup 4+} ions. The fabricated fibers seem to be a potential candidate for the development of fiber laser sources for the visible and near-infra ranges and for effective Q-switching units for ∝1-1.1 μm all-fiber ytterbium lasers. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Role of the Short Distance Order in Glass Reactivity

    Directory of Open Access Journals (Sweden)

    María Vallet-Regi

    2018-03-01

    Full Text Available In 2005, our group described for the first time the structural characterization at the atomic scale of bioactive glasses and the influence of the glasses’ nanostructure in their reactivity in simulated body fluids. In that study, two bioactive sol-gel glasses with composition 80%SiO2–20%CaO and 80%SiO2–17%CaO–3%P2O5 (in mol-% were characterized by High-Resolution Transmission Electron Microscopy (HRTEM. Such characterization revealed unknown features of the glasses’ structure at the local scale that allowed the understanding of their different in vitro behaviors as a consequence of the presence or absence of P2O5. Since then, the nanostructure of numerous bioactive glasses, including melt-prepared, sol-gel derived, and mesoporous glasses, was investigated by HRTEM, Nuclear Magnetic Resonance (NMR spectroscopy, Molecular Dynamics (MD simulations, and other experimental techniques. These studies have shown that although glasses are amorphous solids, a certain type of short distance order, which greatly influences the in vitro and in vivo reactivity, is always present. This paper reviews the most significant advances in the understanding of bioactive glasses that took place in the last years as a result of the growing knowledge of the glasses’ nanostructure.

  16. Role of the Short Distance Order in Glass Reactivity

    Science.gov (United States)

    2018-01-01

    In 2005, our group described for the first time the structural characterization at the atomic scale of bioactive glasses and the influence of the glasses’ nanostructure in their reactivity in simulated body fluids. In that study, two bioactive sol-gel glasses with composition 80%SiO2–20%CaO and 80%SiO2–17%CaO–3%P2O5 (in mol-%) were characterized by High-Resolution Transmission Electron Microscopy (HRTEM). Such characterization revealed unknown features of the glasses’ structure at the local scale that allowed the understanding of their different in vitro behaviors as a consequence of the presence or absence of P2O5. Since then, the nanostructure of numerous bioactive glasses, including melt-prepared, sol-gel derived, and mesoporous glasses, was investigated by HRTEM, Nuclear Magnetic Resonance (NMR) spectroscopy, Molecular Dynamics (MD) simulations, and other experimental techniques. These studies have shown that although glasses are amorphous solids, a certain type of short distance order, which greatly influences the in vitro and in vivo reactivity, is always present. This paper reviews the most significant advances in the understanding of bioactive glasses that took place in the last years as a result of the growing knowledge of the glasses’ nanostructure. PMID:29534481

  17. A device for uranium series leaching from glass fiber in HEPA filter

    International Nuclear Information System (INIS)

    Gye-Nam Kim; Hye-Min Park; Wang-Kyu Choi; Jei-Kwon Moon

    2012-01-01

    For the disposal of a high efficiency particulate air (HEPA) glass filter into the environment, the glass fiber should be leached to lower its radioactive concentration to the clearance level. To derive an optimum method for the removal of uranium series from a HEPA glass fiber, five methods were applied in this study. That is, chemical leaching by a 4.0 M HNO 3 -0.1 M Ce(IV) solution, chemical leaching by a 5 wt% NaOH solution, chemical leaching by a 0.5 M H 2 O 2 -1.0 M Na 2 CO 3 solution, chemical consecutive chemical leaching by a 4.0 M HNO 3 solution, and repeated chemical leaching by a 4.0 M HNO 3 solution were used to remove the uranium series. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after leaching for 5 h by the 4.0 M HNO 3 -0.1 M Ce(IV) solution were 2.1, 0.3, 1.1, and 1.2 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after leaching for 36 h by 4.0 M HNO 3 -0.1 M Ce(IV) solution were 76.9, 3.4, 63.7, and 71.9 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after leaching for 8 h by a 0.5 M H 2 O 2 -1.0 M Na 2 CO 3 solution were 8.9, 0.0, 1.91, and 6.4 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after consecutive leaching for 8 h by the 4.0 M HNO 3 solution were 2.08, 0.12, 1.55, and 2.0 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after three repetitions of leaching for 3 h by the 4.0 M HNO 3 solution were 0.02, 0.02, 0.29, and 0.26 Bq/g. Meanwhile, the removal efficiencies of 238 U, 235 U, 226 Ra, and 234 Th from the waste solution after its precipitation-filtration treatment with NaOH and alum for reuse of the 4.0 M HNO 3 waste solution were 100, 100, 93.3, and 100%. (author)

  18. Glass fiber sensors for detecting special nuclear materials at portal and monitor stations

    International Nuclear Information System (INIS)

    Hull, C.D.; Seymour, R.; Crawford, T.; Bliss, M.; Craig, R.A.

    2001-01-01

    Nuclear Safeguards and Security Systems LLC (NucSafe) participated in the Illicit Trafficking Radiation Assessment Program (ITRAP) recently conducted by the Austrian Research Center, Seibersdorf (ARCS) for IAEA, INTERPOL, and the World Customs Organization (IAEA, in press). This presentation reviews ITRAP test results of NucSafe instrumentation. NucSafe produces stationary, mobile, and hand-held systems that use neutron and gamma ray sensors to detect Special Nuclear Materials (SNM). Neutron sensors are comprised of scintillating glass fibers (trade name 'PUMA' for Pu Materials Analysis), which provide several advantages over 3 He and 10 BF 3 tubes. PUMA 6 Li glass fiber sensors offer greater neutron sensitivity and dynamic counting range with significantly less microphonic susceptibility than tubes, while eliminating transport and operational hazards. PUMA sensors also cost less per active area than gas tubes, which is important since rapid neutron detection at passenger, freight, and vehicle portals require large sensor areas to provide the required sensitivity

  19. Thermal performance of glass fiber reinforced intumescent fire retardant coating for structural applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Ullah, Sami; Aziz, Hammad, E-mail: engr.hammad.aziz03@gmail.com; Omar, Nor Sharifah [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Tronoh 31750 Perak (Malaysia)

    2015-07-22

    The results of influence of glass fiber addition into the basic intumescent coating formulation towards the enhancement of its thermal insulation properties are presented. The intumescent coatings were formulated from expandable graphite, ammonium polyphosphate, melamine, boric acid, bisphenol A epoxy resin BE-188, polyamide amine H-2310 hardener and fiberglass (FG) of length 3.0 mm. Eight intumescent formulations were developed and the samples were tested for their fire performance by burning them at 450°C, 650°C and 850°C in the furnace for two hours. The effects of each fire test at different temperatures; low and high temperature were evaluated. Scanning Electron Microscope, X-Ray Diffraction technique and Thermo Gravimetric Analysis were conducted on the samples to study the morphology, the chemical components of char and the residual weight of the coatings. The formulation, FG08 containing 7.0 wt% glass fiber provided better results with enhanced thermal insulation properties of the coatings.

  20. Flexural Behavior of RC Members Using Externally Bonded Aluminum-Glass Fiber Composite Beams

    Directory of Open Access Journals (Sweden)

    Ki-Nam Hong

    2014-03-01

    Full Text Available This study concerns improvement of flexural stiffness/strength of concrete members reinforced with externally bonded, aluminum-glass fiber composite (AGC beams. An experimental program, consisting of seven reinforced concrete slabs and seven reinforced concrete beams strengthened in flexure with AGC beams, was initiated under four-point bending in order to evaluate three parameters: the cross-sectional shape of the AGC beam, the glass fiber fabric array, and the installation of fasteners. The load-deflection response, strain distribution along the longitudinal axis of the beam, and associated failure modes of the tested specimens were recorded. It was observed that the AGC beam led to an increase of the initial cracking load, yielding load of the tension steels and peak load. On the other hand, the ductility of some specimens strengthened was reduced by more than 50%. The A-type AGC beam was more efficient in slab specimens than in beam specimens and the B-type was more suitable for beam specimens than for slabs.

  1. Effect of Reinforcement Using Stainless Steel Mesh, Glass Fibers, and Polyethylene on the Impact Strength of Heat Cure Denture Base Resin - An In Vitro Study.

    Science.gov (United States)

    Murthy, H B Mallikarjuna; Shaik, Sharaz; Sachdeva, Harleen; Khare, Sumit; Haralur, Satheesh B; Roopa, K T

    2015-06-01

    The impact strength of denture base resin is of great concern and many approaches have been made to strengthen acrylic resin dentures. The objective of this study was to compare the impact strength of the denture base resin with and without reinforcement and to evaluate the impact strength of denture base resin when reinforced with stainless steel mesh, glass fiber, and polyethylene fibers in the woven form. The specimens (maxillary denture bases) were fabricated using a standard polyvinylsiloxane mold with conventional heat cured polymethyl methacrylate resin. The specimens were divided into four groups (n = 10). Group I specimens or control group were not reinforced. Group II specimens were reinforced with stainless steel mesh and Group III and Group IV specimens were reinforced with three percent by weight of glass fibers and polyethylene fibers in weave form respectively. All the specimens were immersed in water for 1-week before testing. The impact strength was measured with falling weight impact testing machine. One-way analysis of variance and Tukey's post-hoc test were used for statistical analysis. Highest impact strength values were exhibited by the specimens reinforced with polyethylene fibers followed by glass fibers, stainless steel mesh, and control group. Reinforcement of maxillary complete dentures showed a significant increase in impact strength when compared to unreinforced dentures. Polyethylene fibers exhibit better impact strength followed by glass fibers and stainless steel mesh. By using pre-impregnated glass and polyethylene fibers in woven form (prepregs) the impact strength of the denture bases can be increased effectively.

  2. Behaviour of reinforced columns with E_Glass fiber and carbon fiber

    OpenAIRE

    BOUCHELAGHEM Hafida; BEZAZI Abederrezak; Benzanache Naziha; SCARPA Fabrizio

    2018-01-01

    Externally bonded reinforcement using Fiber Reinforced Polymer (FRP) is a good response to the concern represented by the need for rehabilitation of concrete structures. These techniques are more and more attractive because of their fast and low labour costs, very good strength to weight ratio, good fatigue properties, and non-corrosive characteristics of FRP. The present work is an experimental study investigating the mechanical behaviour under a uni-axial loading of short concrete columns r...

  3. Apparent interfacial shear strength of short-flax-fiber/starch acetate composites

    DEFF Research Database (Denmark)

    Andersons, J.; Modniks, J.; Joffe, R.

    2016-01-01

    The paper deals with an indirect industry-friendly method for identification of the interfacial shear strength (IFSS) in a fully bio-based composite. The IFSS of flax fiber/starch acetate is evaluated by a modified Bowyer and Bader method based on an analysis of the stress-strain curve of a short......-fiber-reinforced composite in tension. A shear lag model is developed for the tensile stress-strain response of short-fiber-reinforced composites allowing for an elastic-perfectly plastic stress transfer. Composites with different fiber volume fractions and a variable content of plasticizer have been analyzed. The apparent...... IFSS of flax/starch acetate is within the range of 5.5-20.5 MPa, depending on composition of the material. The IFSS is found to be greater for composites with a higher fiber loading and to decrease with increasing content of plasticizer. The IFSS is equal or greater than the yield strength of the neat...

  4. Flexural Progressive Failure of Carbon/Glass Interlayer and Intralayer Hybrid Composites.

    Science.gov (United States)

    Wang, Qingtao; Wu, Weili; Gong, Zhili; Li, Wei

    2018-04-17

    The flexural progressive failure modes of carbon fiber and glass fiber (C/G) interlayer and intralayer hybrid composites were investigated in this work. Results showed that the bending failure modes for interlayer hybrid composites are determined by the layup structure. Besides, the bending failure is characterized by the compression failure of the upper layer, when carbon fiber tends to distribute in the upper layer, the interlayer hybrid composite fails early, the failure force is characterized by a multi-stage slightly fluctuating decline and the fracture area exhibits a diamond shape. While carbon fiber distributes in the middle or bottom layer, the failure time starts late, and the failure process exhibits one stage sharp force/stress drop, the fracture zone of glass fiber above the carbon layers presents an inverted trapezoid shape, while the fracture of glass fiber below the carbon layers exhibits an inverted triangular shape. With regards to the intralayer hybrid composites, the C/G hybrid ratio plays a dominating role in the bending failure which could be considered as the mixed failures of four structures. The bending failure of intralayer hybrid composites occurs in advance since carbon fiber are located in each layer; the failure process shows a multi-stage fluctuating decline, and the decline slows down as carbon fiber content increases, and the fracture sound release has the characteristics of a low intensity and high frequency for a long time. By contrast, as glass fiber content increases, the bending failure of intralayer composites is featured with a multi-stage cliff decline with a high amplitude and low frequency for a short-time fracture sound release.

  5. hybrid effect on the mechanical properties of sisal fiber and e-glass

    African Journals Online (AJOL)

    cles was added and the “mix” was vigorously stirred and poured into a mould. Appropriate quantities of fibers (sisal or E-glass) were im- pregnated in the “resin mix” which ultimately cured to give a solid laminate. 2.3. Tensile test. Standard tensile specimens were cut from the hybrid and non-hybrid composite lami-. Nigerian ...

  6. Mechanical and Morphological Properties of Short Nylon Fiber Reinforced Acrylonitrile-Butadiene Rubber Composites

    Directory of Open Access Journals (Sweden)

    S.H. Mohseniyan

    2010-12-01

    Full Text Available Acrylonitrile butadiene rubber (NBR composites are prepared from waste nylon 66 short fiber using a two-roll mill mixer. The effects of fiber content and bonding agent on the mechanical and morphological properties of the composites are studied. The curing characteristics of the composites have been studied by using cure rheometer. The cure and scorch time of the composites decrease while cure rate is increased when short fiber content is increased. The mechanical properties of the composites show improvement in both longitudinal and transverse directions with increase in short fiber content. The adhesion between the fiber and rubber is enhanced by using a dry bonding system consisting of resorcinol, xamethylenetetramine and hydrated silica (HRH. The swelling behavior of the composites in N,N-dimethylformamide is tested to find the effect of bonding agent on adhesion strength of the matrix and fibers. Fracture surface morphology of composites is studied by scanning electron microscopy. The restriction to swelling is higher for composites containing bonding agent, especially, in the longitudinal direction. The morphology of the fracture surface shows less fiber pull out when the bonding agent is introduced.

  7. Short, intermediate and mesoscopic range order in sulfur-rich binary glasses

    International Nuclear Information System (INIS)

    Bychkov, E.; Miloshova, M.; Price, D.L.; Benmore, C.J.; Lorriaux, A.

    2006-01-01

    Pulsed neutron and high-energy X-ray diffraction, small-angle neutron scattering, Raman spectroscopy and DSC were used to study structural changes on the short, intermediate and mesoscopic range scale for sulfur-rich AsS x (x (ge) 1.5) and GeS x (x (ge) 2) glasses. Two structural regions were found in the both systems. (1) Between stoichiometric (As 2 S 3 and GeS 2 ) and 'saturated' (AsS 2.2 and GeS 2.7 ) compositions, excessive sulfur atoms form sulfur dimers and/or short chains, replacing bridging sulfur in corner-sharing AsS 3/2 and GeS 4/2 units. (2) Above the 'saturated' compositions at (As) x system) appear in the glass network. The glasses become phase separated with the domains of 20-50 (angstrom), presumably enriched with sulfur rings. The longer chains Sn are not stable and crystallize to c-S 8 on ageing of a few days to several months, depending on composition.

  8. Dissolution of short and long rockwool and glasswool fibers by macrophages in flowthrough cell culture.

    Science.gov (United States)

    Luoto, K; Holopainen, M; Kangas, J; Kalliokoski, P; Savolainen, K

    1998-07-01

    Dissolution of MMVF (man-made vitreous fibers) by macrophages has previously been studied utilizing cell cultures in wells. A new, more dynamic method has been developed to explore the effects of macrophages on MMVF dissolution. In this method, the culture medium flows through a membrane on which the macrophages and fibers are placed. The dissolution of short and long rockwool and glasswool fibers was investigated in the present study by macrophages by assessing the dissolution of Si (silicon), Fe (iron), and Al (aluminium) from the fibers. Dissolution of these elements usually increased as a function of time. Generally, the dissolution of elements from the fibers in the flowthrough culture exceeded that observed with the culture in wells system. The dissolution of glasswool fibers was greater in medium than in cell culture, whereas the opposite was true for rockwool fibers. Dissolution of Si was greater from glasswool than from rockwool fibers, while the opposite was true for Fe and Al. Macrophages that had phagocytized fibers in flowthrough culture contained Si, and there were also precipitations with Si in the samples. The fibers in the flowthrough culture also exhibited surface changes such as breakings, pittings, etching, and peeling. The short rockwool fibers tended to fracture more than short glasswool fibers, while long glasswool fibers were more extensively broken than short glasswool fibers. The results with this new, dynamic, flowthrough culture method with macrophages demonstrate that this method provides valuable information on the abilities of macrophages to dissolve MMVF leading to subsequent morphological changes of fibers.

  9. Factors influencing reinforcement and NR and EPDM rubbers with short aramid fibers

    NARCIS (Netherlands)

    Sadatshirazi, S.; Noordermeer, Jacobus W.M.

    2011-01-01

    Among short fiber reinforced composites, those with rubbery matrices have gained great importance due to the advantages they have in processing and low cost, coupled with high strength. These composites combine the elastic behavior of rubbers with strength and stiffness of fibers. Aramid fibers have

  10. Pr{sup 3+}-doped GeS{sub {ital x}}-based glasses for fiber amplifiers at 1.3 {mu}m

    Energy Technology Data Exchange (ETDEWEB)

    Simons, D.R.; Faber, A.J.; de Waal, H. [Glass Technology, Eindhoven University of Technology, P.O. Box 595, 5600 AN Eindhoven (Netherlands)

    1995-03-01

    The photoluminescence properties of Pr{sup 3+}-doped GeS{sub {ital x}}-based glasses are studied and compared with those of other sulfide and fluoride glasses. The possibility of highly pump-power-efficient fiber amplifiers based on these GeS{sub {ital x}}-containing glasses in the telecommunications window at 1.3 {mu}m is discussed.

  11. "Brick-and-Mortar" Nanostructured Interphase for Glass-Fiber-Reinforced Polymer Composites.

    Science.gov (United States)

    De Luca, Francois; Sernicola, Giorgio; Shaffer, Milo S P; Bismarck, Alexander

    2018-02-28

    The fiber-matrix interface plays a critical role in determining composite mechanical properties. While a strong interface tends to provide high strength, a weak interface enables extensive debonding, leading to a high degree of energy absorption. Balancing these conflicting requirements by engineering composite interfaces to improve strength and toughness simultaneously still remains a great challenge. Here, a nanostructured fiber coating was realized to manifest the critical characteristics of natural nacre, at a reduced length scale, consistent with the surface curvature of fibers. The new interphase contains a high proportion (∼90 wt %) of well-aligned inorganic platelets embedded in a polymer; the window of suitable platelet dimensions is very narrow, with an optimized platelet width and thickness of about 130 and 13 nm, respectively. An anisotropic, nanostructured coating was uniformly and conformally deposited onto a large number of 9 μm diameter glass fibers, simultaneously, using self-limiting layer-by-layer assembly (LbL); this parallel approach demonstrates a promising strategy to exploit LbL methods at scale. The resulting nanocomposite interphase, primarily loaded in shear, provides new mechanisms for stress dissipation and plastic deformation. The energy released by fiber breakage in tension appear to spread and dissipate within the nanostructured interphase, accompanied by stable fiber slippage, while the interfacial strength was improved up to 30%.

  12. Intermediate- and short-range order in phosphorus-selenium glasses

    International Nuclear Information System (INIS)

    Bytchkov, Aleksei; Hennet, Louis; Price, David L.; Miloshova, Mariana; Bychkov, Eugene; Kohara, Shinji

    2011-01-01

    State-of-the-art neutron and x-ray diffraction measurements have been performed to provide a definitive picture of the intermediate- and short-range structures of P x Se 1-x glasses spanning two glass regions, x 0.025-0.54 and 0.64-0.84. Liquid P 4 Se 3 and amorphous red P and Se were also measured. Detailed information was obtained about the development with increasing phosphorous concentration of intermediate-range order on the length scale ∼6 A ring , based on the behavior of the first sharp diffraction peak. Attention is also paid to the feature in the structure factor at 7.5 A ring -1 , identified in earlier numerical simulations, provides further evidence of the existence of molecular units. The real-space transforms yield a reliable statistical picture of the changing short-range order as x increases, using the information about types and concentrations of local structural units provided by previous NMR measurements to interpret the trends observed.

  13. Laser-induced nonlinear crystalline waveguide on glass fiber format and diode-pumped second harmonic generation

    Science.gov (United States)

    Shi, Jindan; Feng, Xian

    2018-03-01

    We report a diode pumped self-frequency-doubled nonlinear crystalline waveguide on glass fiber. A ribbon fiber has been drawn on the glass composition of 50GeO2-25B2O3-25(La,Yb)2O3. Surface channel waveguides have been written on the surface of the ribbon fiber, using space-selective laser heating method with the assistance of a 244 nm CW UV laser. The Raman spectrum of the written area indicates that the waveguide is composed of structure-deformed nonlinear (La,Yb)BGeO5 crystal. The laser-induced surface wavy cracks have also been observed and the forming mechanism of the wavy cracks has been discussed. Efficient second harmonic generation has been observed from the laser-induced crystalline waveguide, using a 976 nm diode pump. 13 μW of 488 nm output has been observed from a 17 mm long waveguide with 26.0 mW of launched diode pump power, corresponding to a normalized conversion efficiency of 4.4%W-1.

  14. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    International Nuclear Information System (INIS)

    Jukola, H.; Nikkola, L.; Tukiainen, M.; Kellomaeki, M.; Ashammakhi, N.; Gomes, M. E.; Reis, R. L.; Chiellini, F.; Chiellini, E.

    2008-01-01

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-ε-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 deg. C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 deg. C with the decomposition of starch and continued at 400 deg. C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications

  15. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    Science.gov (United States)

    Jukola, H.; Nikkola, L.; Gomes, M. E.; Chiellini, F.; Tukiainen, M.; Kellomäki, M.; Chiellini, E.; Reis, R. L.; Ashammakhi, N.

    2008-02-01

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-ɛ-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 °C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 °C with the decomposition of starch and continued at 400 °C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.

  16. Mechanical characterization of epoxy composite with multiscale reinforcements: Carbon nanotubes and short carbon fibers

    International Nuclear Information System (INIS)

    Rahmanian, S.; Suraya, A.R.; Shazed, M.A.; Zahari, R.; Zainudin, E.S.

    2014-01-01

    Highlights: • Multiscale composite was prepared by incorporation of carbon nanotubes and fibers. • Carbon nanotubes were also grown on short carbon fibers to enhance stress transfer. • Significant improvements were achieved in mechanical properties of composites. • Synergic effect of carbon nanotubes and fibers was demonstrated. - Abstract: Carbon nanotubes (CNT) and short carbon fibers were incorporated into an epoxy matrix to fabricate a high performance multiscale composite. To improve the stress transfer between epoxy and carbon fibers, CNT were also grown on fibers through chemical vapor deposition (CVD) method to produce CNT grown short carbon fibers (CSCF). Mechanical characterization of composites was performed to investigate the synergy effects of CNT and CSCF in the epoxy matrix. The multiscale composites revealed significant improvement in elastic and storage modulus, strength as well as impact resistance in comparison to CNT–epoxy or CSCF–epoxy composites. An optimum content of CNT was found which provided the maximum stiffness and strength. The synergic reinforcing effects of combined fillers were analyzed on the fracture surface of composites through optical and scanning electron microscopy (SEM)

  17. Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite

    Energy Technology Data Exchange (ETDEWEB)

    Arun Prakash, V.R., E-mail: vinprakash101@gmail.com; Rajadurai, A., E-mail: rajadurai@annauniv.edu.in

    2016-10-30

    Highlights: • Particles dimension have reduced using Ball milling process. • Importance of surface modification was explored. • Surface modification has been done to improve adhesion of fiber/particles with epoxy. • Mechanical properties has been increased by adding modified fiber and particles. • Thermal properties have been increased. - Abstract: In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee’s disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved

  18. Can Plant-Based Natural Flax Replace Basalt and E-Glass for Fiber-Reinforced Polymer Tubular Energy Absorbers? A Comparative Study on Quasi-Static Axial Crushing

    Directory of Open Access Journals (Sweden)

    Libo Yan

    2017-12-01

    Full Text Available Using plant-based natural fibers to substitute glass fibers as reinforcement of composite materials is of particular interest due to their economic, technical, and environmental significance. One potential application of plant-based natural fiber reinforced polymer (FRP composites is in automotive engineering as crushable energy absorbers. Current study experimentally investigated and compared the energy absorption efficiency of plant-based natural flax, mineral-based basalt, and glass FRP (GFRP composite tubular energy absorbers subjected to quasi-static axial crushing. The effects of number of flax fabric layer, the use of foam filler and the type of fiber materials on the crashworthiness characteristics, and energy absorption capacities were discussed. In addition, the failure mechanisms of the hollow and foam-filled flax, basalt, and GFRP tubes in quasi-static axial crushing were analyzed and compared. The test results showed that the energy absorption capabilities of both hollow and foam-filled energy absorbers made of flax were superior to the corresponding energy absorbers made of basalt and were close to energy absorbers made of glass. This study, therefore, indicated that flax fiber has the great potential to be suitable replacement of basalt and glass fibers for crushable energy absorber application.

  19. Evidence for and implications of self-background of radon dosimeters with glass-fiber filters

    NARCIS (Netherlands)

    Put, L.W.; Lembrechts, J.; van der Graaf, E.R.; Stoop, P.

    The first national radon survey in the Netherlands was conducted in 1984 with passive radon dosimeters that contain glass-fiber diffusion filters. During the last few years, measurements of outdoor-radon concentrations and information in the literature suggested to us that these dosimeters may give

  20. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    Science.gov (United States)

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  1. Ultrasound enhanced 50 Hz plasma treatment of glass-fiber-reinforced polyester at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Singh, Shailendra Vikram

    2013-01-01

    Glass-fiber-reinforced polyester (GFRP) plates are treated using a 50Hz dielectric barrier discharge at a peak-to-peak voltage of 30 kV in helium at atmospheric pressure with and without ultrasonic irradiation to study adhesion improvement. The ultrasonic waves at the fundamental frequency...

  2. CHARACTERIZATION OF COMMERCIALLY AVAILABLE ALKALI RESISTANT GLASS FIBER FOR CONCRETE REINFORCEMENT AND CHEMICAL DURABILITY COMPARISON WITH SrO-Mn2O3-Fe2O3-MgO-ZrO2-SiO2 (SMFMZS SYSTEM GLASSES

    Directory of Open Access Journals (Sweden)

    Göktuğ GÜNKAYA

    2012-12-01

    Full Text Available According to the relevant literature, the utilization of different kind of glass fibers in concrete introduces positive effect on the mechanical behavior, especially toughness. There are many glassfibers available to reinforce concretes. Glass fiber composition is so important because it may change the properties such as strength, elastic modulus and alkali resistance. Its most important property to be used in concrete is the alkali resistance. Some glasses of SrO–MgO–ZrO2–SiO2 (SMZS quaternary system, such as 26SrO, 20MgO, 14ZrO2, 40SiO2 (Zrn glass, have been found to be highly alkali resistant thanks to their high ZrO2 and MgO contents. Previous researches on these glasses with MnO and/or Fe2O3 partially replacing SrO have been made with the aim of improving the chemical resistance and decreasing the production cost.The main target of the present study, first of all, was to characterize commercially available alkali resistant glass fiber for concrete reinforcement and then to compare its alkali durability with those of the SrO-Mn2O3-Fe2O3-MgO-ZrO2-SiO2 (SMFMZS system glasses. For such purposes, XRF, Tg-DTA, alkali resistance tests and SEM analysis conducted with EDX were employed. According tothe alkali endurance test results it was revealed that some of the SMFMZS system glass powders are 10 times resistant to alkali environments than the commercial glass fibers used in this study.Therefore, they can be considered as alternative filling materials on the evolution of chemically resistant concrete structures.

  3. Study on mechanical properties of fly ash impregnated glass fiber reinforced polymer composites using mixture design analysis

    International Nuclear Information System (INIS)

    Satheesh Raja, R.; Manisekar, K.; Manikandan, V.

    2014-01-01

    Highlights: • FRP with and without fly ash filler were prepared. • Mechanical properties of composites were analyzed. • Mixture Design Method was used to model the system. • Experimental and mathematical model results were compared. - Abstract: This paper describes the mechanical behavior of fly ash impregnated E-glass fiber reinforced polymer composite (GFRP). Initially the proportion of fiber and resin were optimized from the analysis of the mechanical properties of the GFRP. It is observed that the 30 wt% of E-glass in the GFRP without filler material yields better results. Then, based on the optimized value of resin content, the varying percentage of E-glass and fly ash was added to fabricate the hybrid composites. Results obtained in this study were mathematically evaluated using Mixture Design Method. Predictions show that 10 wt% addition of fly ash with fiber improves the mechanical properties of the composites. The fly ash impregnated GFRP yields significant improvement in mechanical strength compared to the GFRP without filler material. The surface morphologies of the fractured specimens were characterized using Scanning Electron Microscope (SEM). The chemical composition and surface morphology of the fly ash is analyzed by using Energy Dispersive Spectroscopy (EDS) and Scanning Electron Microscope

  4. Natural Fiber Composites: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Westman, Matthew P.; Fifield, Leonard S.; Simmons, Kevin L.; Laddha, Sachin; Kafentzis, Tyler A.

    2010-03-07

    The need for renewable fiber reinforced composites has never been as prevalent as it currently is. Natural fibers offer both cost savings and a reduction in density when compared to glass fibers. Though the strength of natural fibers is not as great as glass, the specific properties are comparable. Currently natural fiber composites have two issues that need to be addressed: resin compatibility and water absorption. The following preliminary research has investigated the use of Kenaf, Hibiscus cannabinus, as a possible glass replacement in fiber reinforced composites.

  5. Fatigue damage mechanisms in short fiber reinforced PBT+PET GF30

    International Nuclear Information System (INIS)

    Klimkeit, B.; Castagnet, S.; Nadot, Y.; Habib, A. El; Benoit, G.; Bergamo, S.; Dumas, C.; Achard, S.

    2011-01-01

    Research highlights: → Final macroscopic cracking only affects the few last percent of the lifetime → Classical approach based on fracture surface observation is not sufficient to characterize micro-mechanisms → Different techniques (scanning electron microscopy, replica technique, infra-red imaging) are compared to the macroscopic mechanical behavior evolution (stiffness, viscous damping, ratcheting effect) → The influence of surrounding fibers on some observed damage processes is being evidenced for the first time. - Abstract: The fatigue damage of a glass-reinforced PolyButylene Terephthalate and PolyEthylene Terephthalate with the fiber volume fraction of 30% (PBT+PET GF30) is investigated by means of various techniques. Fatigue tests at R = 0.1 are carried out on dogbone specimens and tubular specimens with different fiber orientations. The macroscopic evolution of the material behavior is evaluated and fatigue damage mechanisms are observed with a replica technique, Infrared imaging and scanning electron microscopy. A fatigue damage scenario is finally proposed. It is shown that the propagation of a single macroscopic crack is not the major fatigue mechanism under fatigue loading. Damage is spatially distributed in the material and the classical circular crack at the end of the fiber is confirmed as the based fatigue mechanisms. It is also shown that the damage observed alongside the fibers is related to spatial distribution of fiber rather than stress distribution around one single fiber.

  6. Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm

    Science.gov (United States)

    Zhou, Dechun; Bai, Xuemei; Zhou, Hang

    2017-03-01

    Ho3+/Tm3+ co-doped 50TeO2-25GeO2-3WO3-5La2O3-3Nb2O5-5Li2O-9BaF2 glass fiber is prepared with the rod-tube drawing method of 15 μm core diameter and 125 μm inner cladding diameter applied in the 2.0 μm-infrared laser. The 2.0 μm luminescence properties of the core glass are researched and the fluorescence intensity variation for different Tm3+ doping concentration is systematically analyzed. The results show that the 2.0 μm luminescence of Ho3+ is greatly influenced by the doping concentration ratio of Ho3+ to Tm3+ and that the maximum fluorescence intensity of the core glass can be obtained and its emission cross section can reach 0.933 × 10-21 cm2 when the sensitized proportion of holmium to thulium is 0.3 to 0.7 (mol%). Simultaneously, the maximum phonon energy of the core glass sample is 753 cm-1, which is significantly lower than that of silicate, gallate and germanate glass and the smaller matrix phonon energy can be conductive to the increase 2.0 μm-band emission intensity. The continuous laser with the maximum laser output power of 0.993 W and 2051 nm -wavelength of 31.9%-slope efficiency is output within the 0.5 m glass fiber and the experiment adopts 1560 nm erbium-doped fiber laser(EDFL) as the pump source and the self-built all-fiber laser. Therefore, the glass fiber has excellent laser characteristics and it is suitable for the 2.0 μm-band laser.

  7. The effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resin: An in vitro study

    Directory of Open Access Journals (Sweden)

    Nayana Anasane

    2013-01-01

    Full Text Available Background : Denture fracture is an unresolved problem in complete denture prosthodontics. However, the repaired denture often experiences a refracture at the repaired site due to poor transverse strength. Hence, this study was conducted to evaluate the effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resins. Materials and Methods: A total of 135 specimens of heat polymerized polymethyl methacrylate resin of dimensions 64 × 10 × 2.5 mm were fabricated. Fifteen intact specimens served as the control and 120 test specimens were divided into four groups (30 specimens each, depending upon the joint surface contour (butt, bevel, rabbet and round, with two subgroups based on type of the repair. Half of the specimens were repaired with plain repair resin and the other half with glass fibers reinforced repair resin. Transverse strength of the specimens was determined using three-point bending test. The results were analyzed using one-way ANOVA and Tukey post-hoc test (α= 0.05. Results: Transverse strength values for all repaired groups were significantly lower than those for the control group ( P < 0.001 (88.77 MPa, with exception of round surface design repaired with glass fiber reinforced repair resin (89.92 MPa which was significantly superior to the other joint surface contours ( P < 0.001. Glass fiber reinforced resin significantly improved the repaired denture base resins as compared to the plain repair resin ( P < 0.001. Conclusion: Specimens repaired with glass fiber reinforced resin and round surface design exhibited highest transverse strength; hence, it can be advocated for repair of denture base resins.

  8. Flexural creep of coated SiC-fiber-reinforced glass-ceramic composites

    International Nuclear Information System (INIS)

    Sun, E.Y.

    1995-01-01

    This study reports the flexural creep behavior of a fiber-reinforced glass-ceramic and associated changes in microstructure. SiC fibers were coated with a dual layer of SiC/BN to provide a weak interface that was stable at high temperatures. Flexural creep, creep-rupture, and creep-strain recovery experiments were conducted on composite material and barium-magnesium aluminosilicate matrix from 1,000 to 1,200 C. Below 1,130 C, creep rates were extremely low (∼10 -9 s -1 ), preventing accurate measurement of the stress dependence. Above 1,130 C, creep rates were in the 10 -8 s -1 range. The creep-rupture strength of the composite at 1,100 C was about 75--80% of the fast fracture strength. Creep-strain recovery experiments showed recovery of up to 90% under prolonged unloading. Experimental creep results from the composite and the matrix were compared, and microstructural observations by TEM were employed to assess the effectiveness of the fiber coatings and to determine the mechanism(s) of creep deformation and damage

  9. Ultra-short pulse delivery at high average power with low-loss hollow core fibers coupled to TRUMPF's TruMicro laser platforms for industrial applications

    Science.gov (United States)

    Baumbach, S.; Pricking, S.; Overbuschmann, J.; Nutsch, S.; Kleinbauer, J.; Gebs, R.; Tan, C.; Scelle, R.; Kahmann, M.; Budnicki, A.; Sutter, D. H.; Killi, A.

    2017-02-01

    Multi-megawatt ultrafast laser systems at micrometer wavelength are commonly used for material processing applications, including ablation, cutting and drilling of various materials or cleaving of display glass with excellent quality. There is a need for flexible and efficient beam guidance, avoiding free space propagation of light between the laser head and the processing unit. Solid core step index fibers are only feasible for delivering laser pulses with peak powers in the kW-regime due to the optical damage threshold in bulk silica. In contrast, hollow core fibers are capable of guiding ultra-short laser pulses with orders of magnitude higher peak powers. This is possible since a micro-structured cladding confines the light within the hollow core and therefore minimizes the spatial overlap between silica and the electro-magnetic field. We report on recent results of single-mode ultra-short pulse delivery over several meters in a lowloss hollow core fiber packaged with industrial connectors. TRUMPF's ultrafast TruMicro laser platforms equipped with advanced temperature control and precisely engineered opto-mechanical components provide excellent position and pointing stability. They are thus perfectly suited for passive coupling of ultra-short laser pulses into hollow core fibers. Neither active beam launching components nor beam trackers are necessary for a reliable beam delivery in a space and cost saving packaging. Long term tests with weeks of stable operation, excellent beam quality and an overall transmission efficiency of above 85 percent even at high average power confirm the reliability for industrial applications.

  10. Single-longitudinal mode distributed-feedback fiber laser with low-threshold and high-efficiency

    Science.gov (United States)

    Jiang, Man; Zhou, Pu; Gu, Xijia

    2018-01-01

    Single-frequency fiber laser has attracted a lot of interest in recent years due to its numerous application potentials in telecommunications, LIDAR, high resolution sensing, atom frequency standard, etc. Phosphate glass fiber is one of the candidates for building compact high gain fiber lasers because of its capability of high-concentration of rare-earth ions doping in fiber core. Nevertheless, it is challenging for the integration of UV-written intra-core fiber Bragg gratings into the fiber laser cavity due to the low photosensitivity of phosphate glass fiber. The research presented in this paper will focus on demonstration of UV-written Bragg gratings in phosphate glass fiber and its application in direct-written short monolithic single-frequency fiber lasers. Strong π-phase shift Bragg grating structure is direct-inscribed into the Er/Yb co-doped gain fiber using an excimer laser, and a 5-cm-long phase mask is used to inscribe a laser cavity into the Er/Yb co-doped phosphate glass fibers. The phase mask is a uniform mask with a 50 μm gap in the middle. The fiber laser device emits output power of 10.44 mW with a slope efficiency of 21.5% and the threshold power is about 42.8 mW. Single-longitudinal mode operation is validated by radio frequency spectrum measurement. Moreover, the output spectrum at the highest power shows an excellent optical signal to noise ratio of about 70 dB. These results, to the best of our knowledge, show the lowest power threshold and highest efficiency among the reports that using the same structure to achieve single-longitudinal mode laser output.

  11. Prevention of cancer risk of workers of glass fibers manufacture

    Directory of Open Access Journals (Sweden)

    G.F. Mukhammadieva

    2016-09-01

    Full Text Available In the process of producing of continuous glass fiber workers are exposed to complex impact of carcinogenic chemicals released into the air of the working area (including formaldehyde, epichlorohydrin, ethane acids, aerosol of mineral oil. The penetrating effect of harmful substances through the skin is enhanced by the fine glass dust, which has a traumatic and irritating effect. Aggravating factors of the impact of lubricants on the body of the operators is the increased temperature and the excess of heat radiation. A risk factor is also the unfavorable climate of the workplace. Among the professional patients (71 person of 170 examined employees most of persons aged 50–59 years. The average age of the patients at the time of detection of hyperkeratosis was 51,9 ± 0,9 years, skin cancer – 57,3 ± 1,7 years. Professional skin neoplasms were diagnosed mainly in workers who have been working for more than 10 years (average period of 12.6 ± 2.4 years. The period of transformation of limited hyperkeratosis to the skin cancer was on average 5–8 years. It was found that the molecular-genetic factors predisposing to the development of professional skin lesions are polymorphic variants of the gene suppressor of tumor growth TP53 (Ex4 + 119G>C, IVS3 16 bp Del/Ins and IVS6+62A>G. It has been shown that the development of preventive measures aimed at reducing the risk of occupational diseases is relevant and should include the interaction of administration, engineering and technical staff of the enterprise, labor protection service, Rospotrebnadzor specialists, doctors specialized in occupational diseases and the workers themselves. The complex of measures of primary and secondary prevention of health problems is suggested. The necessity of including the continuous glass fiber production to the list of carcinogen production processes, presented in national normative documents.

  12. Glass fiber -reinforced plastic tapered poles for transmission and distribution lines: development and experimental study

    International Nuclear Information System (INIS)

    Ibrahim, S.; Burachysnsky, V.; Polyzois, D.

    1999-01-01

    A research project to develop lightweight poles for use in power transmission and distribution lines and involving the use of glass fiber-reinforced plastic using the filament winding process is described. Twelve full scale specimen poles were designed, fabricated and subjected to cantilever bending to test failure modes. The test parameters included fiber orientation, ratio of longitudinal-to-circumferential fiber, and the number of layers. Results showed that local buckling was the most dominant failure mode, attributable to the high radius-to-thickness ratio of the specimen poles. Overall, however, these fiber-reinforced plastic poles compared favourably to wooden poles in carrying capacity with significant weight reduction. Lateral displacement at ultimate loads did not exceed the acceptable limit of 10 per cent of the specimen free length. 7 refs., 3 tabs., 2 figs

  13. Voronoi polygons and self-consistent technique used to compute the airflow resistivity of randomly placed fibers in glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    2002-01-01

    is constant, and equal to the constant current value. A computation of resistivity from fiber density and diameter will be presented for a model of glass wool that consists of parallel randomly placed fibers with equal diameters. The computation is based on Voronoi polygons, and the results will be compared...

  14. Influence of fiber type and coating on the composite properties of EPDM compounds reinforced with short aramid fibers

    NARCIS (Netherlands)

    Hintze, C.; Sadatshirazi, S.; Wiessner, S.; Talma, Auke; Heinrich, G.; Noordermeer, Jacobus W.M.

    2013-01-01

    There is a renewed interest in the application of short aramid fibers in elastomers because of the considerable improvement in mechanical and dynamic properties of the corresponding rubber composites. Possible applications of short aramid fiber–reinforced elastomers are tires, dynamically loaded

  15. The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber–epoxy composite laminate

    International Nuclear Information System (INIS)

    Konka, Hari P; Wahab, M A; Lian, K

    2012-01-01

    Piezoelectric fiber composite sensors (PFCSs) made from micro-sized lead zirconate titanate (PZT) fibers have many advantages over the traditional bulk PZT sensors for embedded sensor applications. PFCSs as embedded sensors will be an ideal choice to continuously monitor the stress/strain levels and health conditions of composite structures. PFCSs are highly flexible, easily embeddable, have high compatibility with composite structures, and also provides manufacturing flexibility. This research is focused on examining the effects of embedding PFCS sensors (macro-fiber composite (MFC) and piezoelectric fiber composite (PFC)) on the structural integrity of glass-fiber–epoxy composite laminates. The strengths of composite materials with embedded PFCSs and conventional PZT sensors were compared, and the advantages of PFCS sensors over PZTs were demonstrated. Initially a numerical simulation study is performed to understand the local stress/strain field near the embedded sensor region inside a composite specimen. High stress concentration regions were observed near the embedded sensor corner edge. Using PFCS leads to a reduction of 56% in longitudinal stress concentration and 38% in transverse stress concentration, when compared to using the conventional PZTs as embedded sensors. In-plane tensile, in-plane tension–tension fatigue, and short beam strength tests are performed to evaluate the strengths/behavior of the composite specimens containing embedded PFCS. From the tensile test it is observed that embedding PFCS and PZT sensors in the composite structures leads to a reduction in ultimate strength by 3 and 6% respectively. From the fatigue test results it is concluded that both embedded PFCS and PZT sensors do not have a significant effect on the fatigue behavior of the composite specimens. From the short beam strength test it is found that embedding PFCS and PZT sensors leads to a reduction in shear strength by 7 and 15% respectively. Overall the pure PZT

  16. Hybrid Carbon-Glass Fiber/Toughened Epoxy Thick Composite Joints Subject to Drop-Weight and Ballistic Impacts

    National Research Council Canada - National Science Library

    Liaw, Benjamin; Delale, Feridun

    2007-01-01

    ... No. DAAD19-02-R-0010 to conduct research on hybrid carbon-S2 glass fiber/toughened epoxy thick-section, hybrid interwoven composite joints subject to drop-weight and ballistic impacts. Dr. Basavaraju B. Raju of U.S...

  17. Osteoconductive properties of two different bioactive glass forms (powder and fiber) combined with collagen

    Science.gov (United States)

    Magri, Angela Maria Paiva; Fernandes, Kelly Rossetti; Ueno, Fabio Roberto; Kido, Hueliton Wilian; da Silva, Antonio Carlos; Braga, Francisco José Correa; Granito, Renata Neves; Gabbai-Armelin, Paulo Roberto; Rennó, Ana Claudia Muniz

    2017-11-01

    Bioactive Glasses (BG) is a group of synthetic silica-based materials with the unique ability to bond to living bone and can be used in bone repair. Although the osteogenic potential of BG, this material may have not present sufficient osteoconductive and osteoinductive properties to allow bone regeneration, especially in compromised situations. In order to overcome this limitation, it was proposed the combination the BG in two forms (powder and fiber) combined with collagen type I (COL-1). The aim of this study was to evaluate the BG/COL-based materials in terms of morphological characteristics, physicochemical features and mineralization. Additionally, the second objective was to investigate and compare the osteoconductive properties of two different bioactive glass forms (powder and fiber) enriched or not with collagen using a tibial bone defect model in rats. For this, four different formulations (BG powder - BGp, BG powder enriched with collagen - BGp/Col, BG fibers - BGf and BGp fibers enriched with collagen - BGf/Col) were developed. The physicochemical and morphological modifications were analyzed by SEM, FTIR, calcium assay and pH measurement. For in vivo evaluations, histopathology, morphometrical and immunohistochemistry were performed in a tibial defect in rats. The FTIR analysis indicated that BGp and BGf maintained the characteristic peaks for this class of material. Furthermore, the calcium assay showed an increased Ca uptake in the BG fibers. The pH measurements revealed that BGp (with or without collagen) presented higher pH values compared to BGf. In addition, the histological analysis demonstrated no inflammation for all groups at the site of the injury, besides a faster material degradation and higher bone ingrowth for groups with collagen. The immunohistochemistry analysis demonstrated Runx-2 and Rank-L expression for all the groups. Those findings support that BGp with collagen can be a promising alternative for treating fracture of difficult

  18. Machining of glass fiber reinforced polyamide

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available The machinability of a 30 wt% glass fiber reinforced polyamide (PA was investigated by means of drilling tests. A disk was cut from an extruded rod and drilled on the flat surface: thrust was acquired during drilling at different drilling speed, feed rate and drill diameter. Differential scanning calorimetry (DSC and indentation were used to characterize PA so as to evaluate the intrinsic lack of homogeneity of the extruded material. In conclusion, it was observed that the chip formation mechanism affects the thrust dependence on the machining parameters. A traditional modeling approach is able to predict thrust only in presence of a continuous chip. In some conditions, thrust increases as drilling speed increases and feed rate decreases; this evidence suggests not to consider the general scientific approach which deals the machining of plastics in analogy with metals. Moreover, the thrust can be significantly affected by the workpiece fabrication effect, as well as by the machining parameters; therefore, the fabrication effect is not negligible in the definition of an optimum for the machining process.

  19. LABORATORY EVALUATION ON PERFORMANCE OF GLASS FIBER REINFORCED PLASTIC MORTAR PIPE CULVERTS

    OpenAIRE

    Huawang Shi; Lianyu Wei

    2018-01-01

    This paper investigated the performance and behaviour of glass fiber reinforced plastic mortar (FRPM) pipes under different loading conditions. FRPM pipes with inner diameter of 1500 mm were prefabricated in factory. Mechanics performance testing (ring and axial compressive strength and elastic modulus), stiffness and fatigue test were carried out in laboratory. Ring stiffness test provided pipe stiffness (PS) which is a function of geometry and material type of pipe through parallel plate lo...

  20. Impact properties of aluminium - glass fiber reinforced plastics sandwich panels

    Directory of Open Access Journals (Sweden)

    Mathivanan Periasamy

    2012-06-01

    Full Text Available Aluminium - glass fiber reinforced plastics (GFRP sandwich panels are hybrid laminates consisting of GFRP bonded with thin aluminum sheets on either side. Such sandwich materials are increasingly used in airplane and automobile structures. Laminates with varying aluminium thickness fractions, fiber volume fractions and orientation in the layers of GFRP were fabricated by hand lay up method and evaluated for their impact performance by conducting drop weight tests under low velocity impacts. The impact energy required for initiating a crack in the outer aluminium layer as well as the energy required for perforation was recorded. The impact load-time history was also recorded to understand the failure behavior. The damage depth and the damage area were measured to evaluate the impact resistance. Optical photography and scanning electron micrographs were taken to visualize the crack and the damage zone. The bidirectional cross-ply hybrid laminate (CPHL has been found to exhibit better impact performance and damage resistance than the unidirectional hybrid laminate (UDHL. Increase in aluminium thickness fraction (Al tf and fiber volume fraction (Vf resulted in an increase in the impact energy required for cracking and perforation. On an overall basis, the sandwich panels exhibited better impact performance than the monolithic aluminium.

  1. Micropatterning of nanocomposite polymer scaffolds using sacrificial phosphate glass fibers for tendon tissue engineering applications.

    Science.gov (United States)

    Alshomer, Feras; Chaves, Camilo; Serra, Tiziano; Ahmed, Ifty; Kalaskar, Deepak M

    2017-04-01

    This study presents a simple and reproducible method of micropatterning the novel nanocomposite polymer (POSS-PCU) using a sacrificial phosphate glass fiber template for tendon tissue engineering applications. The diameters of the patterned scaffolds produced were dependent on the diameter of the glass fibers (15 μm) used. Scaffolds were tested for their physical properties and reproducibility using various microscopy techniques. For the first time, we show that POSS-PCU supports growth of human tenocytes cells. Furthermore, we show that cellular alignment, their biological function and expression of various tendon related proteins such as scleraxis, collagen I and III, tenascin-C are significantly elevated on the micropatterned polymer surfaces compared to flat samples. This study demonstrated a simple, reproducible method of micropatterning POSS-PCU nanocomposite polymer for novel tendon repair applications, which when provided with physical cues could help mimic the microenvironment of tenocytes cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. FeCoNi coated glass fibers in composite sheets for electromagnetic absorption and shielding behaviors

    Science.gov (United States)

    Lee, Joonsik; Jung, Byung Mun; Lee, Sang Bok; Lee, Sang Kwan; Kim, Ki Hyeon

    2017-09-01

    To evaluate the electromagnetic (EM) absorption and shield of magnetic composite sheet, we prepared the FeCoNi coated glass fibers filled in composite sheet. The FeCoNi was coated by electroless plating on glass fiber as a filler. The coated FeCoNi found that consist of mixtures of bcc and fcc phase. The magnetization and coercivity of coated FeCoNi are about 110 emu/g and 57 Oe, respectively. The permittivity and permeability of the FeCoNi composite sheet were about 21 and 1, respectively. Power absorption increased 95% with the increment of frequency up to 10 GHz. Inter-decoupling of this composite sheet showed maximum 30 dB at around 5.3 GHz, which is comparable to that of a conductive Cu foil. Shielding effectiveness (SE) was measured by using rectangular waveguide method. SE of composite obtained about 37 dB at X-band frequency region.

  3. Optimization for Tribological Properties of Glass Fiber-Reinforced PTFE Composites with Grey Relational Analysis

    Directory of Open Access Journals (Sweden)

    Firojkhan Pathan

    2016-01-01

    Full Text Available Most recent history shows that polytetrafluoroethylene (PTFE is widely used as antifrictional materials in industry for wide speed range. A high antifriction property of PTFE makes it suitable for dry friction bearing. Main disadvantage of using PTFE is its high wear rate, so extensive research had been carried out to improve the wear resistance with addition of filler material. This study focuses on four input parameters load, sliding speed, sliding distance, and percentage of glass fiber as a filler material. Taguchi method was used for experimentation; each parameter is having 3 levels with L27 orthogonal array. Grey relational analysis is used to convert multiple response parameters, namely, wear and coefficient of friction, into single grey relation grade. The optimal input parameters were selected based on the S/N ratio. It was observed that load 3 kg, sliding speed 5.1836 m/s (900 rpm, sliding distance 2 km, and 15% of glass fiber are optimal input parameters for PTFE without significantly affecting the wear rate and coefficient of friction.

  4. Eliminating Crystals in Non-Oxide Optical Fiber Preforms and Optical Fibers

    Science.gov (United States)

    Tucker, Dennis S.; LaPointe, Michael R.

    2012-01-01

    Non ]oxide fiber optics such as heavy metal fluoride and chalcogenide glasses are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. The addition of rare earths such as erbium, enable these materials to be used as fiber laser and amplifiers. Some of these glasses however are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. Previously two research teams found that microgravity suppressed crystallization in heavy metal fluoride glasses. Looking for a less expensive method to suppress crystallization, ground based research was performed utilizing an axial magnetic field. The experiments revealed identical results to those obtained via microgravity processing. This research then led to a patented process for eliminating crystals in optical fiber preforms and the resulting optical fibers. In this paper, the microgravity results will be reviewed as well as patents and papers relating to the use of magnetic fields in various material and glass processing applications. Finally our patent to eliminate crystals in non ]oxide glasses utilizing a magnetic field will be detailed.

  5. Absorbing Property of Multi-layered Short Carbon Fiber Absorbing Coating

    OpenAIRE

    Liu, Zhaohui; Tao, Rui; Ban, Guodong; Luo, Ping

    2018-01-01

    The radar absorbing coating was prepared with short carbon fiber asabsorbent and waterborne polyurethane (WPU) as matrix resin. The coating’s absorbing property was tested with vectornetwork analyzer, using aramid honeycomb as air layer which was matched withcarbon fiber coating. The results demonstrate that the single-layered carbonfiber absorbing coating presented relatively poor absorbing property when thelayer was thin, and the performance was slightly improved after the matched airlayer ...

  6. EFFECT OF GAMMA RAY IRRADIATION ON INTERLAMINAR SHEAR STRENGTH OF GLASS FIBER REINFORCED PLASTICS AT 77 K

    International Nuclear Information System (INIS)

    Nishimura, A.; Nishijima, S.; Izumi, Y.

    2008-01-01

    It is known that an organic material is damaged by gamma ray irradiation, and the strength after irradiation has dependence on the gamma ray dose. These issues are important not only to make global understanding of electric insulating performance of glass fiber reinforced plastics (GFRP) under irradiation condition but also to develop new insulation materials. This paper presents the dependence of fracture mode and interlaminar shear strength (ILSS) on the material and the gamma ray irradiation effect on the fracture mode and the ILSS. 6 mm radius loading nose and supports were used to prompt ILS fracture for a short beam test. A 2.5 mm thick small specimen machined out of a 13 mm thick G-10CR GFRP plate (sliced specimen) showed lower ILSS and translaminar shear (TLS) fracture, although the same size specimen prepared from a 2.5 mm G-10CR GFRP plate (non-sliced specimen) showed ILS fracture and the higher ILSS. Both type of specimens showed the degradation of ILSS after gamma ray irradiation. The fracture mode of the non-sliced specimen changed from ILS to TLS fracture and no bending fracture was observed. The resistance to shear deformation of glass cloth/epoxy laminate structure would be damaged by the irradiation

  7. Intra-Laminar Fracture Toughness of Glass Fiber Reinforced Polymer By Using Theory, Experimentation and FEA

    Science.gov (United States)

    Firojkhan, Pathan; Tanpure, Kshitijit; Dawale, Ajinkya; Patil, Shital

    2018-04-01

    Fiber reinforced polymer (FRP) composites are widely use in aerospace, marine, auto-mobile and civil engineering applications because of their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance and potentially high durability. The purpose of this research is to experimentally investigate the mechanical and fracture properties of glass-fiber reinforced polyester composite material, 450 g/m 2 randomly distributed glass-fiber mat also known as woven strand mat with polyester resin as a matrix. The samples have been produced by the conventional hand layup process and the specimens were prepared as per the ASTM standards. The tensile test was performed on the composite specimens using Universal testing machine (UTM) which are used for the finite element simulation of composite Layered fracture model. The mechanical properties were evaluated from the stress vs. strain curve obtained from the test result. Later, fracture tests were performed on the CT specimen. In case of CT specimen the load vs. Displacement plot obtained from the experimental results was used to determine the fracture properties of the composite. The failure load of CT specimen using FEA is simulated which gives the Stress intensity factor by using FEA. Good agreement between the FEA and experimental results was observed.

  8. Visible and near infrared up-conversion luminescence in Yb3+/Tm3+ co-doped yttria-alumino-silicate glass based optical fibers

    International Nuclear Information System (INIS)

    Halder, Arindam; Chandra Paul, Mukul; Wadi Harun, Sulaiman; Kumar Bhadra, Shyamal; Bysakh, Sandip; Das, Shyamal; Pal, Mrinmay

    2013-01-01

    We report blue light up-conversion (UC) emission in Yb–Tm co-doped nano-phase separated yttria-alumino-silicate (YAS) glass based D-shaped with low-index cladding optical fibers. Y 2 O 3 creates an environment of nano structured YAS glass phases with Yb and Tm rich zone into the core glass which confirmed from TEM analyses. This kind of glass host assists in distributing of Yb and Tm rich zone uniformly throughout the core region. Yb and Tm doped regions exist mainly into nano YAS phases, defined as RE rich nano YAS-RE phases. All samples exhibit UC luminescence peaks at 483 nm, 650 nm and 817 nm for Tm 3+ and 1044 nm for Yb 3+ under excitation by 975 nm laser light. In such type of nano-engineered glass–ceramic based host, almost all the Yb ions transferred its energy to the nearer Tm ions. In particular 483 nm emission is attributed to 1 G 4 → 3 H 6 transition through a three step resonance energy transfer (ET) from excited Yb 3+ . The highest emission intensity is obtained with a concentration of 0.5 wt% Tm 3+ and 2.0 wt% Yb 3+ . The ET between Yb 3+ and Tm 3+ is increased with increase of Yb 3+ concentration with respect to Tm 3+ . The experimental fluorescence life-times of Tm 3+ upconversion emission at visible wavelengths into such kind of fiber is reported under 975 nm pump excitation. The present study is important for development of an efficient tunable 483 nm fluorescence light source. -- Highlights: • We report nano-phase separated YAS glass host based Yb–Tm co-doped optical fibers. • Almost all the Yb transferred its energy to the neighboring Tm ions. • We report strong UC luminescence peaks at 483 nm and 817 nm wavelengths. • We report third ET coefficient as 1.6723 Hz for such kind of Yb–Tm codoped fiber. • We report suitable fiber as an efficient tunable 483 nm fluorescence light source

  9. Multifunctional glass fiber/polyamide composites with thermal energy storage/release capability

    Directory of Open Access Journals (Sweden)

    G. Fredi

    2018-04-01

    Full Text Available Thermoplastic composite laminates with thermal energy storage (TES capability were prepared by combining a glass fabric, a polyamide 12 (PA12 matrix and two different phase change materials (PCMs, i.e. a paraffinic wax microencapsulated in melamine-formaldehyde shells and a paraffin shape stabilized with carbon nanotubes. The melt flow index of the PA12/PCM blends decreased with the PCM concentration, especially in the systems with shape stabilized wax. Differential scanning calorimetry showed that, for the matrices with microcapsules, the values of enthalpy were approximately the 70% of the theoretical values, which was attributed to the fracture of some microcapsules. Nevertheless, most of the energy storage capability was preserved. On the other hand, much lower relative enthalpy values were measured on the composites with shape stabilized wax, due to a considerable paraffin leakage or degradation. The subsequent characterization of the glass fabric laminates highlighted that the fiber and void volume fractions were comparable for all the laminates except for that with the higher amount of shape stabilized wax, where the high viscosity of the matrix led to a low fiber volume fraction and higher void content. The mechanical properties of the laminates were only slightly impaired by PCM addition, while a more sensible drop of the elastic modulus, of the stress at break and of the interlaminar shear strength could be observed in the shape stabilized wax systems.

  10. Joining of aluminum sheet and glass fiber reinforced polymer using extruded pins

    Science.gov (United States)

    Conte, Romina; Buhl, Johannes; Ambrogio, Giuseppina; Bambach, Markus

    2018-05-01

    The present contribution proposes a new approach for joining sheet metal and fiber reinforced composites. The joining process draws upon a Friction Stir Forming (FSF) process, which is performed on the metal sheet to produce slender pins. These pins are used to pierce through the composite. Joining is complete by forming a locking head out of the part if the pin sticks out of the composite. Pins of different diameters and lengths were produced from EN AW-1050 material, which were joined to glass fiber reinforced polyamide-6. The strength of the joint has been experimentally tested in order to understand the effect of the process temperature on the pins strength and therefore on the joining. The results demonstrate the feasibility of this new technique, which uses no excess material.

  11. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide

    OpenAIRE

    Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il

    2013-01-01

    Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this stud...

  12. Effect of fiber extensibility on the fracture toughness of short fiber or brittle matrix composites

    International Nuclear Information System (INIS)

    Jain, L.K.; Wetherhold, R.C.

    1992-01-01

    A micromechanical model based on probabilistic principles is proposed to determine the effective fracture toughness increment and the bridging stress-crack opening displacement relationship for brittle matrix composites reinforced with short, poorly bonded fibers. Emphasis is placed on studying the effect of fiber extensibility on the bridging stress and the bridging fracture energy, and to determine its importance in cementitious matrix composites. Since the fibers may not be in an ideal aligned or random state, the analysis is placed in sufficiently general terms to consider any prescribable fiber orientation distribution. The model incorporates the snubbing effect observed during pull-out of fibers inclined at an angle to the crack face normal. In addition, the model allows the fibers to break; any fiber whose load meets or exceeds a single-valued failure stress will fracture rather than pull out. The crack bridging results may be expressed as the sum of results for inextensible fibers and an additional term due to fiber extensibility. An exact analysis is given which gives the steady-state bridging toughness G directly, but presents a non-linear problem for the bridging stress-crack opening (σ b -γ) relationship. An approximate analysis is then presented which gives both G and σ b -γ directly. To illustrate the effect extensibility on bridging stress and fracture energy increment due to bridging fibers, a comparison with the inextensible fiber case is provided. It is found that effect of extensibility on fracture energy is negligible for common materials systems. However extensibility may have a significant effect on the bridging stress-crack opening relationship. The effect of other physical and material parameters such as fiber length, fiber orientation and snubbing friction coefficient is also studied. 28 refs., 9 figs., 1 tab

  13. A study on thermal residual stresses in the matrix and fiber of a misoriented short fiber composite

    International Nuclear Information System (INIS)

    Son, Bong Jin; Lee, Joon Hyun

    1994-01-01

    An elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two special cases of fiber misorientation; two-dimensional in-plane and three-dimensional axisymmetric. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. The model is more general than past models and it is able to treat prior analyses of the simpler composite systems as extream cases. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for both in-plane and axisymmetric fiber misorientation. Fiber volume fraction, aspect ratio, and disturbution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distrubution type for both in-plane and axisymmetric misorientation.

  14. Methods for evaluating tensile and compressive properties of plastic laminates reinforced with unwoven glass fibers

    Science.gov (United States)

    Karl Romstad

    1964-01-01

    Methods of obtaining strength and elastic properties of plastic laminates reinforced with unwoven glass fibers were evaluated using the criteria of the strength values obtained and the failure characteristics observed. Variables investigated were specimen configuration and the manner of supporting and loading the specimens. Results of this investigation indicate that...

  15. MECHANICAL CHARACTERIZATION AND ANALYSIS OF RANDOMLY DISTRIBUTED SHORT BANANA FIBER REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    R. K. Misra

    2014-03-01

    Full Text Available Short banana fiber reinforced composites have been prepared in laboratory to determine mechanical properties. It has been observed that as soon as the percentage of the banana fiber increases slightly there is a tremendous increase in ultimate tensile strength, % of strain and young modulus of elasticity. Reinforcement of banana fibers in epoxy resin increases stiffness and decreases damping properties of the composites. Therefore, 2.468% banana fiber reinforced composite plate stabilizes early as compared to 7.7135 % banana fiber reinforced composite plate but less stiff as compared to 7.7135 % banana fiber reinforced composite plate

  16. Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber.

    Science.gov (United States)

    Li, Kefeng; Zhang, Guang; Hu, Lili

    2010-12-15

    We report, for the first time to the best of our knowledge, a watt level cw fiber laser at ~2 μm from a piece of 40-cm-long newly developed highly thulium-doped (3.76 × 10(20) ions/cm(3)) tungsten tellurite glass double cladding fiber pumped by a commercial 800 nm laser diode. The maximum output power of the fiber laser reaches 1.12 W. The slope efficiency and the optical-optical efficiency with respect to the absorbed pump are 20% and 16%, respectively. The lasing threshold is 1.46 W, and the lasing wavelength is centered at 1937 nm.

  17. Long-term physical ageing in As-Se glasses with short chalcogen chains

    International Nuclear Information System (INIS)

    Golovchak, R; Shpotyuk, O; Kozdras, A; Vlcek, M; Bureau, B; Kovalskiy, A; Jain, H

    2008-01-01

    Long-term physical ageing of chalcogenide glasses, which occurs over tens of years, is much less understood than the short-term ageing. With Se-rich underconstrained As 30 Se 70 glass as a model composition (consisting of Se n chains with n≤3 on average), a microscopic model is developed for this phenomenon by combining information from differential scanning calorimetry, extended x-ray absorption fine structure, Raman, and 77 Se solid state nuclear magnetic resonance spectroscopies. The accompanying changes in the electronic structure of these glasses are investigated by x-ray photoelectron spectroscopy. The data suggest ageing from cooperative relaxation, presumably involving bond switching or reconfiguration of As-Se-Se-As fragments

  18. Long-term physical ageing in As-Se glasses with short chalcogen chains

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R; Shpotyuk, O [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska street, Lviv, UA-79031 (Ukraine); Kozdras, A [Faculty of Physics of Opole University of Technology, 75, Ozimska street, Opole, 45370 (Poland); Vlcek, M [Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Pardubice, 532 10 Pardubice (Czech Republic); Bureau, B [Verres et Ceramiques, UMR CNRS 6226 Sciences Chimiques de Rennes, University of Rennes, 1, Campus de Beaulieu, Rennes, 35042 (France); Kovalskiy, A; Jain, H [Department of Materials Science and Engineering, Lehigh University, 5, East Packer Avenue, Bethlehem, PA 18015-3195 (United States)

    2008-06-18

    Long-term physical ageing of chalcogenide glasses, which occurs over tens of years, is much less understood than the short-term ageing. With Se-rich underconstrained As{sub 30}Se{sub 70} glass as a model composition (consisting of Se{sub n} chains with n{<=}3 on average), a microscopic model is developed for this phenomenon by combining information from differential scanning calorimetry, extended x-ray absorption fine structure, Raman, and {sup 77}Se solid state nuclear magnetic resonance spectroscopies. The accompanying changes in the electronic structure of these glasses are investigated by x-ray photoelectron spectroscopy. The data suggest ageing from cooperative relaxation, presumably involving bond switching or reconfiguration of As-Se-Se-As fragments.

  19. Influence of fiber upon the radiation degradation of fiber-reinforced plastics

    International Nuclear Information System (INIS)

    Udagawa, Akira

    1992-01-01

    Influences of fiber upon the radiation degradation of fiber-reinforced plastics were investigated by using 2 MeV electrons. Radiation resistances were evaluated from the three-point bending strength of the fiber laminates which used bisphenol A-type epoxy resin as a matrix. Carbon fiber laminates had higher radiation resistance values than the laminates made of glass fiber. Model laminates using polyethylene as a matrix were prepared in order to examine the differences between carbon fiber and glass fiber filler, the relation between gel fraction and absorbed dose was established. When the polyethylene was filled in the carbon fiber, forming the gel was strikingly delayed. This result suggests that radiation protective action existing in carbon fiber to matrix resin is the main cause of the higher radiation resistance of carbon fiber reinforced plastics. (author)

  20. SBIR-Long fluoride fiber

    Science.gov (United States)

    Jaeger, Raymond E.; Vacha, Lubos J.

    1987-08-01

    This report summarizes results obtained under a program aimed at developing new techniques for fabricating long lengths of heavy metal fluoride glass (HMFG) optical fiber. A new method for overcladding conventional HMFG preforms with a low melting oxide glass was developed, and improvements in the rotational casting method were made to increase preform length. The resulting composite glass canes consist of a fluoride glass overcoat layer to enhance strength and chemical durability. To show feasibility, prototype optical fiber preforms up to 1.6 cm in diameter with lengths of 22 cm were fabricated. These were drawn into optical fibers with lengths up to 900 meters.

  1. Thermostimulated transitions of radiation colour centers in fiber light guides on the base of pure quartz glass

    International Nuclear Information System (INIS)

    Abramov, A.V.; Dianov, E.M.; Karpechev, V.N.; Kornienko, L.S.; Rybaltovskij, A.O.; Chernov, P.V.

    1987-01-01

    Study on properties and characteristics of induced absorption (IA) in glass fiber light guides (GFLG) with a pure quartz glass core is continued. Effect of thermal-stimulated construction of colour radiation centers (CRC) giving induced absorption bands at 670, 550, and 380 nm has been detected. Effective temperatures of these IA band annealings have been determined as well as bands at 340 nm and induced absorption IR edge. Positions of IA band halfwidths and maxima on the assumption that IA bands have the Gauss form. It is assumed that CRC photo- and thermostimulated construction may occur with participation of physically dissolved in a glass grid gases or their radiolysis products

  2. Commercial Production of Heavy Metal Fluoride Glass Fiber in Space

    Science.gov (United States)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    1998-01-01

    International Space Station Alpha (ISSA) will provide a platform not only for materials research but also a possible means to produce products in space which cannot be easily produced on the ground. Some products may even be superior to those now produced in unit gravity due to the lack of gravity induced convection effects. Our research with ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN glass) has shown that gravity does indeed play a major role in the crystallization behavior of this material. At the present time ZBLAN is being produced on earth in fiber optic form for use in surgical lasers and fiber optic lasers among other applications. High attenuation coefficients, however, have kept this material from being used in other applications such as long haul data transmission links. The high attenuation coefficients are due to impurities which can be removed through improved processing techniques and crystals which can only be removed or prevented from forming by processing in a reduced gravity environment.

  3. Study on the Effect of Different Fe2O3/ZrO2 Ratio on the Properties of Silicate Glass Fibers

    Directory of Open Access Journals (Sweden)

    Jianxun Liu

    2017-01-01

    Full Text Available A series of silicate glass fibers with different ratios of Fe2O3/ZrO2 were prepared, and their corrosion resistance, mass loss, and strength loss were characterized. The crystallization and melting properties of the fibers were analyzed by differential scanning calorimetry (DSC, high temperature viscometer, and high temperature microscope. The results show that the deformation temperature, sphere temperature, hemisphere temperature, and crystallization temperature of the fiber initially decrease and then increase with the increase of Fe2O3/ZrO2 ratio, while the molding temperature decreases with the increase of the ratio of Fe2O3/ZrO2. When the ratio is close to 1 : 1, its alkali resistance is almost same as that of AR-glass fiber, and the drawing process performance is better. However, with the increase of the ratio, its alkali resistance continues to decline and the poor wire drawing performance is not conducive to the drawing operation.

  4. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars.

    Science.gov (United States)

    Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V

    2002-08-20

    The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case.

  5. Influence of the curing cycles on the fatigue performance of unidirectional glass fiber reinforced epoxy composites

    DEFF Research Database (Denmark)

    Hüther, Jonas; Brøndsted, Povl

    2016-01-01

    During the manufacturing process of fiber reinforced polymers the curing reaction of the resin results in shrinkage of the resin and introduces internal stresses in the composites. When curing at higher temperatures in order to shorten up the processing time, higher curing stresses and thermal...... to different levels of internal stresses. The mechanical properties, static strength and fatigue life time, are measured in three different directions of the material, i.e. the fiber direction, 0°, the 30° off axis direction, and the 90° direction transverse to the fiber direction. It is experimentally...... demonstrated that the resulting residual stresses barely influences the quasi-static mechanical properties of reinforced glass-fiber composites. It is found that the fatigue performance in the 0° direction is significantly influenced by the internal stresses, whereas the fatigue performance in the off axes...

  6. Mechanical Property Evaluation of Palm/Glass Sandwiched Fiber Reinforced Polymer Composite in Comparison with few natural composites

    Science.gov (United States)

    Raja Dhas, J. Edwin; Pradeep, P.

    2017-10-01

    Natural fibers available plenty can be used as reinforcements in development of eco friendly polymer composites. The less utilized palm leaf stalk fibers sandwiched with artificial glass fibers was researched in this work to have a better reinforcement in preparing a green composite. The commercially available polyester resin blend with coconut shell filler in nano form was used as matrix to sandwich these composites. Naturally available Fibers of palm leaf stalk, coconut leaf stalk, raffia and oil palm were extracted and treated with potassium permanganate solution which enhances the properties. For experimentation four different plates were fabricated using these fibers adopting hand lay-up method. These sandwiched composite plates are further machined to obtain ASTM standards Specimens which are mechanically tested as per standards. Experimental results reveal that the alkali treated palm leaf stalk fiber based polymer composite shows appreciable results than the others. Hence the developed composite can be recommended for fabrication of automobile parts.

  7. Influence of antimicrobial solutions in the decontamination and adhesion of glass-fiber posts to root canals

    Science.gov (United States)

    HARAGUSHIKU, Gisele Aihara; BACK, Eduardo Donato Eing Engelke; TOMAZINHO, Paulo Henrique; BARATTO, Flares; FURUSE, Adilson Yoshio

    2015-01-01

    Objective This study evaluated the effect of root canal disinfectants on the elimination of bacteria from the root canals, as well as their effect on glass-fiber posts bond strength. Material and Methods Fifty-three endodontically treated root canals had post spaces of 11 mm in length prepared and contaminated with E. faecalis. For CFU/ml analysis, eight teeth were contaminated for 1 h or 30 days (n=4). Teeth were decontaminated with 5% NaOCl, 2% CHX, or distilled water. As control, no decontamination was conducted. After decontamination, sterile paper points were used to collect samples, and CFU/ml were counted. For push-out, three groups were evaluated (n=15): irrigation with 2.5% NaOCl, 2% CHX, or sterile distilled water. A bonding agent was applied to root canal dentin, and a glass-fiber post was cemented with a dual-cured cement. After 24 h, 1-mm-thick slices of the middle portion of root canals were obtained and submitted to the push-out evaluation. Three specimens of each group were evaluated in scanning electron microscopy (SEM). Data were analyzed with one-way ANOVA and Dunnett’s T3 test (α=0.05). Results The number of CFU/ml increased from 1 h to 30 days of contamination in control and sterile distilled water groups. Decontamination with NaOCl was effective only when teeth were contaminated for 1 h. CHX was effective at both contamination times. NaOCl did not influence the bond strength (p>0.05). Higher values were observed with CHX (pcontaminated root canals both in reducing the bacterial contamination and in improving the glass-fiber post bonding. PMID:26398518

  8. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  9. Poliolefinas reforçadas com fibras vegetais curtas: sisal × curauá Polyolefins reinforced with short vegetal fibers: sisal vs. curauá

    Directory of Open Access Journals (Sweden)

    Márcia A. S. Spinacé

    2011-01-01

    Full Text Available É crescente o interesse nos compósitos poliméricos reforçados com fibras vegetais curtas em substituição às fibras de vidro, pois as fibras naturais provêm de fontes renováveis, não são abrasivas aos equipamentos de processamento, são biodegradáveis, e possuem baixa densidade comparada às fibras de vidro. Elas apresentam início de degradação em torno de 200 °C, sendo adequadas para reforçar poliolefinas que são processadas até essa temperatura ou termofíxos. Várias fibras vegetais vêm sendo usadas como reforço, dentre elas o curauá e o sisal; no entanto, há grande controvérsia na literatura sobre as propriedades finais dos compósitos. Neste trabalho comparamos as propriedades de compósitos de polietileno de alta densidade ou polipropileno com 20% em massa de fibras curtas de sisal ou de curauá com ou sem agentes de acoplagem. Todos foram processados por extrusão e moldados por injeção, exatamente nas mesmas condições, e os resultados foram comparados em termos das propriedades mecânicas. As fibras de curauá apresentam resistência à tração superior às fibras de sisal e os compósitos com fibras de curauá apresentaram resistência à tração e flexão ligeiramente superior aos compósitos com fibra de sisal. No caso da resistência ao impacto a situação se inverte. Como o sisal é mais frágil que o curauá, durante o processamento ocorre maior quebra da fibra provocando essa diferenciação nas propriedades mecânicas dos compósitos.There is growing interest in reinforced polymer composites using short vegetal fibers to replace glass fibers for several reasons. The composite fibers are produced from renewable resources, being biodegradable and less abrasive to the processing equipment, in addition to possessing a lower density than the glass fibers. Since their thermal degradation onset is at 200 °C, they can be used to reinforce thermoplastics processed below this temperature and thermosets

  10. Reinforcing effect of glass-fiber mesh on complete dentures in a test model with a simulated oral mucosa.

    Science.gov (United States)

    Yu, Sang-Hui; Oh, Seunghan; Cho, Hye-Won; Bae, Ji-Myung

    2017-11-01

    Studies that evaluated the strength of complete dentures reinforced with glass-fiber mesh or metal mesh on a cast with a simulated oral mucosa are lacking. The purpose of this in vitro study was to compare the mechanical properties of maxillary complete dentures reinforced with glass-fiber mesh with those of metal mesh in a new test model, using a simulated oral mucosa. Complete dentures reinforced with 2 types of glass-fiber mesh, SES mesh (SES) and glass cloth (GC) and metal mesh (metal) were fabricated. Complete dentures without any reinforcement were prepared as a control (n=10). The complete dentures were located on a cast with a simulated oral mucosa, and a load was applied on the posterior artificial teeth bilaterally. The fracture load, elastic modulus, and toughness of a complete denture were measured using a universal testing machine at a crosshead speed of 5 mm/min. The fracture load and elastic modulus were analyzed using 1-way analysis of variance, and the toughness was analyzed with the Kruskal-Wallis test (α=.05). The Tukey multiple range test was used as a post hoc test. The fracture load and toughness of the SES group was significantly higher than that of the metal and control groups (P<.05) but not significantly different from that of the GC group. The elastic modulus of the metal group was significantly higher than that of the control group (P<.05), and no significant differences were observed in the SES and GC groups. Compared with the control group, the fracture load and toughness of the SES and GC groups were higher, while those of the metal group were not significantly different. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Quick analytical separation of glucose and fructose with impregnated woven glass fiber

    International Nuclear Information System (INIS)

    Jones, S.C.

    1978-01-01

    (1) A wide separation of glucose and fructose was obtained in 30 min with simple, inexpensive equipment using polysilicic impregnated woven glass fiber and the solvent acetone-n-butanol-1 M H 3 BO 3 (50:40:10). (2) A calibration of a radiochromatogram scanner was performed for 11 C. (3) Three Rsub(F) values could be compared to provide positive chemical identification of [ 11 C]glucose and [ 11 C]fructose. (4) Radiochemical composition and approximate specific activity were determined from a small aliquot (1-4 μl). (Auth.)

  12. Alkaline resistant phosphate glasses and method of preparation and use thereof

    Science.gov (United States)

    Brow, Richard K.; Reis, Signo T.; Velez, Mariano; Day, Delbert E.

    2010-01-26

    A substantially alkaline resistant calcium-iron-phosphate (CFP) glass and methods of making and using thereof. In one application, the CFP glass is drawn into a fiber and dispersed in cement to produce glass fiber reinforced concrete (GFRC) articles having the high compressive strength of concrete with the high impact, flexural and tensile strength associated with glass fibers.

  13. Impact of iron chelators on short-term dissolution of basaltic glass

    Science.gov (United States)

    Perez, Anne; Rossano, Stéphanie; Trcera, Nicolas; Verney-Carron, Aurélie; Huguenot, David; van Hullebusch, Eric D.; Catillon, Gilles; Razafitianamaharavo, Angelina; Guyot, François

    2015-08-01

    Although microorganisms seem to play an important role in the alteration processes of basaltic glasses in solution, the elementary mechanisms involved remain unclear in particular with regard to the role of organic ligands excreted by the cells. Two glasses, one with Fe and one without Fe were synthesized to model basaltic glass compositions. Fe in the glass was mostly Fe(III) for enhancing interaction with siderophores, yet with small but significant amounts of Fe(II) (between 10% and 30% of iron). The prepared samples were submitted to abiotic alteration experiments in buffered (pH 6.4) diluted solutions of metal-specific ligands, namely oxalic acid (OA, 10 mM), desferrioxamine (DFA, 1 mM) or 2,2‧-bipyridyl (BPI, 1 mM). Element release from the glass into the solution after short term alteration (maximum 1 week) was measured by ICP-OES, and normalized mass losses and relative release ratios (with respect to Si) were evaluated for each element in each experimental condition. The presence of organic ligands had a significant effect on the dissolution of both glasses. Trivalent metals chelators (OA, DFA) impacted on the release of Fe3+ and Al3+, and thus on the global dissolution of both glasses, enhancing all release rates and dissolution stoichiometry (release rates were increased up to 7 times for Al or Fe). As expected, the mostly divalent metal chelator BPI interacted preferentially with Ca2+, Mg2+ and Fe2+. This study thus allows to highlight the central roles of iron and aluminium in interaction with some organic ligands in the alteration processes of basaltic glasses. It thus provides a step toward understanding the biological contribution of this fundamental geological process.

  14. Short- and medium-range order in a Zr73Pt27 glass: Experimental and simulation studies

    International Nuclear Information System (INIS)

    Wang, S.Y.; Wang, C.Z.; Li, M.Z.; Huang, L.; Ott, R.T.; Kramer, M.J.; Sordelet, D.J.; Ho, K.M.

    2008-01-01

    The structure of a Zr 73 Pt 27 metallic glass, which forms a Zr 5 Pt 3 (Mn 5 Si 3 -type) phase having local atomic clusters with distorted icosahedral coordination during the primary crystallization, has been investigated by means of x-ray diffraction and combining ab initio molecular-dynamics (MD) and reverse Monte Carlo (RMC) simulations. The ab initio MD simulation provides an accurate description of short-range structural and chemical ordering in the glass. A three-dimensional atomistic model of 18?000 atoms for the glass structure has been generated by the RMC method utilizing both the structure factor S(k) from x-ray diffraction experiment and the partial pair-correlation functions from ab initio MD simulation. Honeycutt and Andersen index and Voronoi cell analyses, respectively, were used to characterize the short- and medium-range order in the atomistic structure models generated by ab initio MD and RMC simulations. The ab initio results show that an icosahedral type of short-range order is predominant in the glass state. Furthermore, analysis of the atomic model from the constrained RMC simulations reveals that the icosahedral-like clusters are packed in arrangements having higher-order correlations, thus establishing medium-range topological order up to two or three cluster shells.

  15. Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites.

    Science.gov (United States)

    Jayaramudu, J; Reddy, G Siva Mohan; Varaprasad, K; Sadiku, E R; Sinha Ray, S; Varada Rajulu, A

    2013-04-02

    The development of commercially viable "green products", based on natural resources for the matrices and reinforcements, in a wide range of applications, is on the rise. The present paper focuses on Sterculia urens short fiber reinforced pure cellulose matrix composite films. The morphologies of the untreated and 5% NaOH (alkali) treated S. urens fibers were observed by SEM. The effect of 5% NaOH treated S. urens fiber (5, 10, 15 and 20% loading) on the mechanical properties and thermal stability of the composites films is discussed. This paper presents the developments made in the area of biodegradable S. urens short fiber/cellulose (SUSF/cellulose) composite films, buried in the soil and later investigated by the (POM), before and after biodegradation has taken place. SUSF/cellulose composite films have great potential in food packaging and for medical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Influence of antimicrobial solutions in the decontamination and adhesion of glass-fiber posts to root canals

    Directory of Open Access Journals (Sweden)

    Gisele Aihara HARAGUSHIKU

    2015-08-01

    Full Text Available AbstractObjective This study evaluated the effect of root canal disinfectants on the elimination of bacteria from the root canals, as well as their effect on glass-fiber posts bond strength.Material and Methods Fifty-three endodontically treated root canals had post spaces of 11 mm in length prepared and contaminated with E. faecalis. For CFU/ml analysis, eight teeth were contaminated for 1 h or 30 days (n=4. Teeth were decontaminated with 5% NaOCl, 2% CHX, or distilled water. As control, no decontamination was conducted. After decontamination, sterile paper points were used to collect samples, and CFU/ml were counted. For push-out, three groups were evaluated (n=15: irrigation with 2.5% NaOCl, 2% CHX, or sterile distilled water. A bonding agent was applied to root canal dentin, and a glass-fiber post was cemented with a dual-cured cement. After 24 h, 1-mm-thick slices of the middle portion of root canals were obtained and submitted to the push-out evaluation. Three specimens of each group were evaluated in scanning electron microscopy (SEM. Data were analyzed with one-way ANOVA and Dunnett’s T3 test (α=0.05.Results The number of CFU/ml increased from 1 h to 30 days of contamination in control and sterile distilled water groups. Decontamination with NaOCl was effective only when teeth were contaminated for 1 h. CHX was effective at both contamination times. NaOCl did not influence the bond strength (p>0.05. Higher values were observed with CHX (p<0.05. SEM showed formation of resin tags in all groups.Conclusion CHX showed better results for the irrigation of contaminated root canals both in reducing the bacterial contamination and in improving the glass-fiber post bonding.

  17. Effect of Forging Parameters on Low Cycle Fatigue Behaviour of Al/Basalt Short Fiber Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    R. Karthigeyan

    2013-01-01

    Full Text Available This paper deals with metal matrix composites (MMCs of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10 basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  18. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    Science.gov (United States)

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  19. Interlaminar fracture of random short-fiber SMC composite

    Science.gov (United States)

    Wang, S. S.; Suemasu, H.; Zahlan, N. M.

    1984-01-01

    In the experimental phase of the present study of the interlaminar fracture behavior of a randomly oriented short fiber sheet molding compound (SMC) composite, the double cantilever beam fracture test is used to evaluate the mode I interlaminar fracture toughness of different composite thicknesses. In the analytical phase of this work, a geometrically nonlinear analysis is introduced in order to account for large deflections and nonlinear load deflection curves in the evaluation of interlaminar fracture toughness. For the SMC-R50 material studied, interlaminar toughness is an order of magnitude higher than that of unreinforced neat resin, due to unusual damage mechanisms ahead of the crack tip, together with significant fiber bridging across crack surfaces. Composite thickness effects on interlaminar fracture are noted to be appreciable, and a detailed discussion is given on the influence of SMC microstructure.

  20. Push-out bond strengths of different dental cements used to cement glass fiber posts.

    Science.gov (United States)

    Pereira, Jefferson Ricardo; Lins do Valle, Accácio; Ghizoni, Janaina Salomon; Lorenzoni, Fábio César; Ramos, Marcelo Barbosa; Barbosa, Marcelo Ramos; Dos Reis Só, Marcus Vinícius

    2013-08-01

    Since the introduction of glass fiber posts, irreversible vertical root fractures have become a rare occurrence; however, adhesive failure has become the primary failure mode. The purpose of this study was to evaluate the push-out bond strength of glass fiber posts cemented with different luting agents on 3 segments of the root. Eighty human maxillary canines with similar root lengths were randomly divided into 8 groups (n=10) according to the cement assessed (Rely X luting, Luting and Lining, Ketac Cem, Rely X ARC, Biscem, Duo-link, Rely X U100, and Variolink II). After standardized post space preparation, the root dentin was pretreated for dual-polymerizing resin cements and untreated for the other cements. The mixed luting cement paste was inserted into post spaces with a spiral file and applied to the post surface that was seated into the canal. After 7 days, the teeth were sectioned perpendicular to their long axis into 1-mm-thick sections. The push-out test was performed at a speed of 0.5 mm/min until extrusion of the post occurred. The results were evaluated by 2-way ANOVA and the all pairwise multiple comparison procedures (Tukey test) (α=.05). ANOVA showed that the type of interaction between cement and root location significantly influenced the push-out strength (Pcements and glass ionomer cements showed significantly higher values compared to dual-polymerizing resin cements. In all root segments, dual-polymerizing resin cements provided significantly lower bond strength. Significant differences among root segments were found only for Duo-link cement. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  1. 1887 nm lasing in Tm3+-doped TeO2-BaF2-Y2O3 glass microstructured fibers

    Science.gov (United States)

    Wang, Shunbin; Yao, Chuanfei; Jia, Zhixu; Qin, Guanshi; Qin, Weiping

    2017-04-01

    In this paper, we demonstrate ∼2 μm lasing in Tm3+-doped fluorotellurite microstructured fibers. The Tm3+-doped fibers are based on TeO2-BaF2-Y2O3 glasses and fabricated by using a rod-in-tube method. Under the pump of a 1570 nm Er3+-doped fiber laser, lasing at 1887 nm is obtained in a ∼42.5 cm long Tm3+-doped fiber with a threshold pump power of 94 mW. As the pump power increases to 780 mW, the obtained maximum unsaturated power reaches up to ∼408 mW with a slop efficiency of ∼58.1%. This result indicates that the Tm3+-doped fluorotellurite fibers are promising gain media for ∼2 μm fiber lasers.

  2. Magnetomechanically induced long period fiber gratings

    International Nuclear Information System (INIS)

    Causado-Buelvas, Jesus D.; Gomez-Cardona, Nelson D.; Torres, Pedro

    2008-01-01

    In this work, we report a simple, flexible method to create long period fiber gratings mechanically by controlling the repulsion/attraction force between two magnets that pressing a plate with a periodic array of small glass cylinders to a short length of optical fiber. Via the photoelastic effect, the pressure points induce the required periodic refractive index modulation to create the LPFG. We found that the induced device exhibits spectral characteristics similar to those of other types of LPFG. As the optical properties of LPFGs are directly related to the nature of the applied perturbations, we show, to our knowledge for the frrst time, how is the evolution of birefringence effects in mechanically induced LPFGs

  3. Fabrication and characterization of special microstructured fibers

    Science.gov (United States)

    Kobelke, J.; Schuster, K.; Schwuchow, A.; Litzkendorf, D.; Spittel, R.; Kirchhof, J.; Bartelt, H.

    2011-05-01

    Microstructured optical fibers (MOFs) as a novel type of light guiding media typically combine structural elements with very different chemical and optical behavior, e.g. silica - air, silica - high refractive index glasses. The applicative potential is very manifold: devices for telecommunication, nonlinear optics, sensing devices, fiber based gas lasers, etc. We report about preparation and characterization of selected total internal reflection (TIR) guiding MOFs: Air Clad Fiber, Suspended Core Fiber and heavy metal oxide (HMO) glass core MOFs. We fabricated Air Clad Fibers with extreme air fraction. The bridge width of about 0.13 μm corresponds to a numerical aperture (NA) of about 0.6. Suspended core fibers for evanescent sensing were prepared by pressurized drawing of arrangements of three and four capillaries. By inflating the cavities the NA was increased up to 0.68. Material combined MOFs were prepared for nonlinear application (e.g. supercontinuum generation) with lanthanum aluminum silicate glass core. Thermochemical and optical behaviors of high nonlinear core glass candidates were investigated for alumina concentration up to 20 mol% and lanthanum oxide concentration up to 24 mol% in silica matrix. The manufactured HMO glass core MOF with a La2O3 concentration of 10 mol% shows a similar background loss level like the unstructured HMO glass fiber about 1 dB/m.

  4. Thermal energy harvesting for large-scale applications using MWCNT-grafted glass fibers and polycarbonate-MWCNT nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Tzounis, L., E-mail: ltzounis@physics.auth.gr [Leibniz-Institut für Polymerforschung Dresden e.V., IPF, Hohe Str. 6, D-01069 Dresden (Germany); Technische Universität Dresden, Helmholtzstraße 10, 01069 Dresden (Germany); Laboratory for Thin Films-Nanosystems and Nanometrolo (Greece); Liebscher, M.; Stamm, M. [Leibniz-Institut für Polymerforschung Dresden e.V., IPF, Hohe Str. 6, D-01069 Dresden, Germany and Technische Universität Dresden, Helmholtzstraße 10, 01069 Dresden (Germany); Mäder, E.; Pötschke, P. [Leibniz-Institut für Polymerforschung Dresden e.V., IPF, Hohe Str. 6, D-01069 Dresden (Germany); Logothetidis, S., E-mail: logot@auth.gr [Laboratory for Thin Films-Nanosystems and Nanometrology (LTFN), Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)

    2015-02-17

    The thermoelectric properties of multi-wall carbon nanotube (MWCNT) -grafted glass fiber yarns (GF-CNT) and their epoxy model composites, as well as of polymer nanocomposites consisting of a polycarbonate (PC) matrix filled with differently functionalized MWCNTs have been examined. The GF-CNT hierarchical multi-scale structures were prepared by dip coating glass fiber yarns in a solution of carbonyl chloride modified MWCNTs; MWCNT-COCl (at a concentration of 0.5 mg/ml) under Ar atmosphere. The resulting GF-CNT exhibited high electrical conductivity (σ = 2.1×10{sup 3} S/m) due to the dense MWCNT deposited networks. The fiber surface morphology was investigated by scanning electron microscopy (SEM). The GF-CNT showed Seebeck coefficient (S); S = 16.8 μV/K, and power factor (P.F); P.F = 0.59 μW/mK−2. The high electrical conductivity of the GF-CNT is a key parameter for an optimum thermoelectric performance, since it can facilitate the flow of the thermally induced charge carriers upon being exposed to a temperature gradient. Polycarbonate/MWCNT nanocomposites were prepared by small-scale melt-mixing process using a microcompounder. Unfunctionalized, carboxyl (-COOH) and hydroxyl (-OH) modified MWCNTs were incorporated in PC at a constant amount of 2.5 wt.%, concentration above the electrical percolation threshold. The amount of MWCNTs was kept low to understand the fundamental aspects of their physical properties and their correlation to the composite morphology, as revealed by transmission electron microscopy (TEM). It was found that different functional groups can affect the thermoelectric performance and the conductivity of the nanocomposites. Namely, the highest Seebeck coefficient (S) was found for the composite containing carboxyl functionalized MWCNTs (11.3 μV/K), due to the highest oxygen content of MWCNTs proven by X-Ray Photoelectron spectroscopy (XPS). It is believed that MWCNT-grafted glass fibers as reinforcements in composite structural

  5. Thermal energy harvesting for large-scale applications using MWCNT-grafted glass fibers and polycarbonate-MWCNT nanocomposites

    International Nuclear Information System (INIS)

    Tzounis, L.; Liebscher, M.; Stamm, M.; Mäder, E.; Pötschke, P.; Logothetidis, S.

    2015-01-01

    The thermoelectric properties of multi-wall carbon nanotube (MWCNT) -grafted glass fiber yarns (GF-CNT) and their epoxy model composites, as well as of polymer nanocomposites consisting of a polycarbonate (PC) matrix filled with differently functionalized MWCNTs have been examined. The GF-CNT hierarchical multi-scale structures were prepared by dip coating glass fiber yarns in a solution of carbonyl chloride modified MWCNTs; MWCNT-COCl (at a concentration of 0.5 mg/ml) under Ar atmosphere. The resulting GF-CNT exhibited high electrical conductivity (σ = 2.1×10 3 S/m) due to the dense MWCNT deposited networks. The fiber surface morphology was investigated by scanning electron microscopy (SEM). The GF-CNT showed Seebeck coefficient (S); S = 16.8 μV/K, and power factor (P.F); P.F = 0.59 μW/mK−2. The high electrical conductivity of the GF-CNT is a key parameter for an optimum thermoelectric performance, since it can facilitate the flow of the thermally induced charge carriers upon being exposed to a temperature gradient. Polycarbonate/MWCNT nanocomposites were prepared by small-scale melt-mixing process using a microcompounder. Unfunctionalized, carboxyl (-COOH) and hydroxyl (-OH) modified MWCNTs were incorporated in PC at a constant amount of 2.5 wt.%, concentration above the electrical percolation threshold. The amount of MWCNTs was kept low to understand the fundamental aspects of their physical properties and their correlation to the composite morphology, as revealed by transmission electron microscopy (TEM). It was found that different functional groups can affect the thermoelectric performance and the conductivity of the nanocomposites. Namely, the highest Seebeck coefficient (S) was found for the composite containing carboxyl functionalized MWCNTs (11.3 μV/K), due to the highest oxygen content of MWCNTs proven by X-Ray Photoelectron spectroscopy (XPS). It is believed that MWCNT-grafted glass fibers as reinforcements in composite structural materials

  6. Analyses of kinetic glass transition in short-range attractive colloids based on time-convolutionless mode-coupling theory.

    Science.gov (United States)

    Narumi, Takayuki; Tokuyama, Michio

    2017-03-01

    For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant, the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the volume fraction. In addition, a schematic model of three control parameters is investigated analytically. It is thus confirmed that TMCT can describe the glass-glass transition and higher-order singularities even in such a schematic model.

  7. Effect of internal short fibers, steel reinforcement, and surface layer on impact and penetration resistance of concrete

    Directory of Open Access Journals (Sweden)

    Ali Abd_Elhakam Aliabdo

    2013-09-01

    Full Text Available This paper presents an experimental program to investigate the impact and penetration resistance of concrete. The research work is divided into two approaches. These approaches are effect of concrete constituents and effect of surface layer. Effect of concrete aggregate type, w/c ratio, fiber type, fiber shape, fiber volume fraction, and steel reinforcement is considered in the first approach. The second approach includes using fiber reinforced concrete and glass fiber reinforced polymer as surface layers. The evaluating tests include standard impact test according to ASTM D 1557 and suggested simulated penetration test to measure the impact and penetration resistance of concrete. The test results of plain and fibrous concrete from ASTM D 1557 method indicated that steel fiber with different configurations and using basalt have a great positive effect on impact resistance of concrete. Moreover, the simulated penetration test indicates that steel fibers are more effective than propylene fibers, type of coarse aggregate has negligible effect, and steel fiber volume fraction has a more significant influence than fiber shape for reinforced concrete test panels. Finally, as expectable, surface properties of tested concrete panels have a significant effect on impact and penetration resistance.

  8. New Erbium Doped Antimony Glasses for Laser and Glass ...

    African Journals Online (AJOL)

    Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses.

  9. Radiation modification of glass fiber - reinforced plastics

    International Nuclear Information System (INIS)

    Allayarov, S.R.; Smirnov, Yu.N.; Lesnichaya, V.A.; Ol'khov, Yu.A.; Belov, G.P.; Dixon, D.A.; Kispert, L.D.

    2007-01-01

    Modification of glass fiber - reinforced plastics (GFRPs) by gamma-irradiation has been researched to receipt of polymeric composite materials. They were produced by the film - technology method and the cheapest thermoplastics (polythene, polyamide were used as polymeric matrixes for their manufacture. GFRPs were irradiated with Co 60 gamma-rays from a Gammatok-100 source in air and in vacuum. The strength properties of GFRPs and initial polymeric matrixes were investigated before and after radiolysis. Molecular - topological structure of the polymeric matrixes were tested by the method of thermomechanical spectroscopy. The strength properties of GFRPs depend on a parity of speeds of structural (physical) and chemical modification of the polymeric matrixes. These two processes proceed simultaneously. The structural modification includes physical transformation of polymers at preservation of their chemical structure. Covalent bonds between various macromolecules or between macromolecules and surface of fiberglasses are formed at the chemical modification of polymeric matrixes induced by radiation. Action of ionizing radiation on the used polymeric matrix results to its structurization (polythene) or to destruction (polyamide). Increasing of durability of GFRPs containing polythene is caused by formation of the optimum molecular topological structure of the polymeric matrix. (authors)

  10. Time-Dependent Deformation Modelling for a Chopped-Glass Fiber Composite for Automotive Durability Design Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Ren, W

    2001-08-24

    Time-dependent deformation behavior of a polymeric composite with chopped-glass-fiber reinforcement was investigated for automotive applications, The material under stress was exposed to representative automobile service environments. Results show that environment has substantial effects on time-dependent deformation behavior of the material. The data were analyzed and experimentally-based models developed for the time-dependent deformation behavior as a basis for automotive structural durability design criteria.

  11. Crash worthy capacity of a hybridized epoxy-glass fiber aluminum columnar tube using repeated axial resistive force

    International Nuclear Information System (INIS)

    Paruka, Perowansa; Siswanto, Waluyo Adi; Maleque, Md Abdul; Shah, Mohd Kamal Mohd

    2015-01-01

    A combination of aluminum columnar member with composite laminate to form a hybrid structure can be used as collapsible energy absorbers especially in automotive vehicular structures to protect occupants and cargo. A key advantage of aluminum member in composite is that it provides ductile and stable plastic collapse mechanisms with progressive deformation in a stable manner by increasing energy absorption during collision. This paper presents an experimental investigation on the influence of the number of hybrid epoxy glass layers in overwrap composite columnar tubes. Three columnar tube specimens were used and fabricated by hand lay-up method. Aluminum square hollow shape was combined with externally wrapped by using an isophthalic epoxy resin reinforced with glass fiber skin with an orientation angle of 0 .deg. /90 .deg. The aluminum columnar tube was used as reference material. Crushed hybrid-composite columnar tubes were prepared using one, two, and three layers to determine the crash worthy capacity. Quasi-static crush test was conducted using INSTRON machine with an axial loading. Results showed that crush force and the number of layers were related to the enhancement of energy absorption before the collapse of columnar tubes. The energy absorption properties of the crushed hybrid-composite columnar tubes improved significantly with the addition of layers in the overwrap. Microscopic analysis on the modes of epoxy-glass fiber laminate failure was conducted by using scanning electron microscopy.

  12. Crash worthy capacity of a hybridized epoxy-glass fiber aluminum columnar tube using repeated axial resistive force

    Energy Technology Data Exchange (ETDEWEB)

    Paruka, Perowansa [Jalan Politeknik, Kota Kinabalu (Malaysia); Siswanto, Waluyo Adi [Universiti Tun Hussein Onn Malaysia, Parit Raja (Malaysia); Maleque, Md Abdul [Universiti Islam Antarabangsa Malaysia, Kuala Lumpur (Malaysia); Shah, Mohd Kamal Mohd [Universiti Malaysia Sabah, Kota Kinabalu (Malaysia)

    2015-05-15

    A combination of aluminum columnar member with composite laminate to form a hybrid structure can be used as collapsible energy absorbers especially in automotive vehicular structures to protect occupants and cargo. A key advantage of aluminum member in composite is that it provides ductile and stable plastic collapse mechanisms with progressive deformation in a stable manner by increasing energy absorption during collision. This paper presents an experimental investigation on the influence of the number of hybrid epoxy glass layers in overwrap composite columnar tubes. Three columnar tube specimens were used and fabricated by hand lay-up method. Aluminum square hollow shape was combined with externally wrapped by using an isophthalic epoxy resin reinforced with glass fiber skin with an orientation angle of 0 .deg. /90 .deg. The aluminum columnar tube was used as reference material. Crushed hybrid-composite columnar tubes were prepared using one, two, and three layers to determine the crash worthy capacity. Quasi-static crush test was conducted using INSTRON machine with an axial loading. Results showed that crush force and the number of layers were related to the enhancement of energy absorption before the collapse of columnar tubes. The energy absorption properties of the crushed hybrid-composite columnar tubes improved significantly with the addition of layers in the overwrap. Microscopic analysis on the modes of epoxy-glass fiber laminate failure was conducted by using scanning electron microscopy.

  13. Glasses, ceramics, and composites from lunar materials

    Science.gov (United States)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  14. Polymer optical fiber tapering using chemical solvent and polishing

    Science.gov (United States)

    Supian, L. S.; Syuhaimi Ab-Rahman, Mohd; Arsad, Norhana

    2017-11-01

    A method for developing polymer optical fiber (POF) directional coupler is introduced where the initial procedure includes using chemical solvent to remove the cladding, and bare out the core in order to align the unclad center of the fiber with other similar fiber to develop a coupler. The process is safe, simple, inexpensive and require low operation skill. The etched fiber offers improvement to the performance of various POF devices, i.e, couplers and sensors. Instead of relying only on silica or glass fiber, POF now can be used as an alternative to improve the network performance in short distance communication system. The measurement parameters laid out offer great outcomes. However, the couplers intended to be developed is yet to be realized, where deeper research and various experiments are needed in order to develop a simple but optimum performance coupler that can be used for various applications.

  15. Polymer optical fiber tapering using chemical solvent and polishing

    Directory of Open Access Journals (Sweden)

    Supian L. S.

    2017-01-01

    Full Text Available A method for developing polymer optical fiber (POF directional coupler is introduced where the initial procedure includes using chemical solvent to remove the cladding, and bare out the core in order to align the unclad center of the fiber with other similar fiber to develop a coupler. The process is safe, simple, inexpensive and require low operation skill. The etched fiber offers improvement to the performance of various POF devices, i.e, couplers and sensors. Instead of relying only on silica or glass fiber, POF now can be used as an alternative to improve the network performance in short distance communication system. The measurement parameters laid out offer great outcomes. However, the couplers intended to be developed is yet to be realized, where deeper research and various experiments are needed in order to develop a simple but optimum performance coupler that can be used for various applications.

  16. Quantification of defects depth in glass fiber reinforced plastic plate by infrared lock-in thermography

    Energy Technology Data Exchange (ETDEWEB)

    Ranjit, Shrestha; Kim, Won Tae [Kongju National University, Cheonan (Korea, Republic of); Choi, Man Yong [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-03-15

    The increasing use of composite materials in various industries has evidenced the need for development of more effective nondestructive evaluation methodologies in order to reduce rejected parts and to optimize production cost. Infrared thermography is a noncontact, fast and reliable non-destructive evaluation technique that has received vast and growing attention for diagnostic and monitoring in the recent years. This paper describes the quantitative analysis of artificial defects in Glass fiber reinforced plastic plate by using Lockin infrared thermography. The experimental analysis was performed at several excitation frequencies to investigate the sample ranging from 2.946 Hz down to 0.019 Hz and the effects of each excitation frequency on defect detachability. The four point method was used in post processing of every pixel of thermal images using the MATLAB programming language. The relationship between the phase contrast with defects depth and area was examined. Finally, phase contrast method was used to calculate the defects depth considering the thermal diffusivity of the material being inspected and the excitation frequency for which the defect becomes visible. The obtained results demonstrated the effectiveness of Lock-in infrared thermography as a powerful measurement technique for the inspection of Glass fiber reinforced plastic structures.

  17. Short fiber-reinforced composite restorations: A review of the current literature.

    Science.gov (United States)

    Garoushi, Sufyan; Gargoum, Ausama; Vallittu, Pekka K; Lassila, Lippo

    2018-02-25

    A newly-recommended method for restoring large cavities is the biomimetic approach of using short fiber-reinforced composite (SFRC) as dentine-replacing material. The aim of the current review was to present an overview of SFRC and to give the clinician a detailed understanding of this new material and treatment strategy based on available-literature review. A thorough literature search was done up to December 2017. The range of relevant publications was surveyed using PubMed and Google Scholar. From the search results, articles related to our search terms were only considered. The search terms used were "short fiber-reinforced composite", "everX posterior", and "fiber-reinforced composite restorations". Of the assessed articles selected (N = 70), most were laboratory-based research with various test specimen designs prepared according to the ISO standard or with extracted teeth; only four articles were clinical reports. A common finding was that by combining the SFRC as a bulk base with conventional composite, the load-bearing capacity and failure mode of the material combination were improved, as compared to plain conventional composite restoration. In the reviewed studies, the biomimetic restoration technique of using SFRC showed promising characteristics, and therefore, might be recommended as an alternative treatment option for large cavities. © 2018 John Wiley & Sons Australia, Ltd.

  18. Characterization and Morphological Properties of Glass Fiber ...

    African Journals Online (AJOL)

    PROF HORSFALL

    used as the matrix for the glass fibre-epoxy resin formation. E- Glass fibre ... reinforcement of composites, coatings of materials, and other ..... composite for the manufacture of glass-ceramic materials ... reinforced epoxy composites with carbon.

  19. Streak camera measurements of laser pulse temporal dispersion in short graded-index optical fibers

    International Nuclear Information System (INIS)

    Lerche, R.A.; Phillips, G.E.

    1981-01-01

    Streak camera measurements were used to determine temporal dispersion in short (5 to 30 meter) graded-index optical fibers. Results show that 50-ps, 1.06-μm and 0.53-μm laser pulses can be propagated without significant dispersion when care is taken to prevent propagation of energy in fiber cladding modes

  20. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites.

    Science.gov (United States)

    Invernizzi, Marta; Natale, Gabriele; Levi, Marinella; Turri, Stefano; Griffini, Gianmarco

    2016-07-16

    Glass (GFR) and carbon fiber-reinforced (CFR) dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D) printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C) thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride) as hardener and (2,4,6,-tris(dimethylaminomethyl)phenol) as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

  1. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites

    Directory of Open Access Journals (Sweden)

    Marta Invernizzi

    2016-07-01

    Full Text Available Glass (GFR and carbon fiber-reinforced (CFR dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride as hardener and (2,4,6,-tris(dimethylaminomethylphenol as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

  2. Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings

    KAUST Repository

    Mulle, Matthieu

    2015-12-29

    Hot-press molding of glass-fiber-reinforced polypropylene (GFPP) laminates was monitored using longitudinally and transversely embedded fiber Bragg gratings (FBGs) at different locations in unidirectional laminates. The optical sensors proved to efficiently characterize some material properties; for example, strain variations could be related physical change of the laminate, revealing key transition points such as the onset of melt or solidification. These results were confirmed through some comparison with traditional techniques such as differential scanning calorimetry. After the GFPP plate was released from the mold, residual strains were estimated. Because cooling rate is an important process parameter in thermoplastics, affecting crystallinity and ultimately residual strain, two different conditions (22 and 3 °C/min) were investigated. In the longitudinal direction, results were nearly identical while in the transverse direction results showed a 20% discrepancy. Coefficients of thermal expansion (CTE) were also identified during a post-process heating procedure using the embedded FBGs and compared to the results of a thermo-mechanical analysis. Again, dissimilarities were observed for the transverse direction. With regards to through the thickness properties, no differences were observed for residual strains or for CTEs.

  3. Hybrid carbon-glass fiber/toughened epoxy thick composites subject to drop-weight and ballistic impacts

    Science.gov (United States)

    Sevkat, Ercan

    The goals of this study are to investigate the low velocity and ballistic impact response of thick-section hybrid fiber composites at room temperature. Plain-woven S2-Glass and IM7 Graphite fabrics are chosen as fiber materials reinforcing the SC-79 epoxy. Four different types of composites consisting of alternating layers of glass and graphite woven fabric sheets are considered. Tensile tests are conducted using 98 KN (22 kip) MTS testing machine equipped with environmental chamber. Low-velocity impact tests are conducted using an Instron-Dynatup 8250 impact test machine equipped with an environmental chamber. Ballistic impact tests are performed using helium pressured high-speed gas-gun. Tensile tests results were used to define the material behavior of the hybrid and non-hybrid composites in Finite Element modeling. The low velocity and ballistic impact tests showed that hybrid composites performance was somewhere between non-hybrid woven composites. Using woven glass fabrics as outer skin improved the impact performance of woven graphite composite. However hybrid composites are prone to delamination especially between dissimilar layers. The ballistic limit velocity V50 hybrid composites were higher that of woven graphite composite and lower than that of woven glass composite. Both destructive cross-sectional micrographs and nondestructive ultrasonic techniques are used to evaluate the damage created by impact. The Finite Element code LS-DYNA is chosen to perform numerical simulations of low velocity and ballistic impact on thick-section hybrid composites. The damage progression in these composites shows anisotropic nonlinearity. The material model to describe this behavior is not available in LS-DYNA material library. Initially, linear orthotropic material with damage (Chan-Chan Model) is employed to simulate some of the experimental results. Then, user-defined material subroutine is incorporated into LS-DYNA to simulate the nonlinear behavior. The

  4. Communication with diode laser: short distance line of sight communication using fiber optics

    International Nuclear Information System (INIS)

    Mirza, A.H.

    1999-01-01

    The objective of this project is to carry audio signal from transmitting station to a short distance receiving station along line of sight and also communication through fiber optics is performed, using diode laser light as carrier. In this project optical communication system, modulation techniques, basics of laser and causes of using diode laser are discussed briefly. Transmitter circuit and receiver circuit are fully described. Communication was performed using pulse width modulation technique. Optical fiber communication have many advantages over other type of conventional communication techniques. This report contains the description of optical fiber communication and compared with other communication systems. (author)

  5. Short-range order analysis and some physical properties of InxSe1-x glasses

    International Nuclear Information System (INIS)

    El-Kabany, N.

    2012-01-01

    Bulk In x Se 1-x (with x=5-25 at%) glasses were prepared using the melt-quench technique. Short range order(SRO) was examined by the X-ray diffraction using Cu(k α ) radiation in the wave vector interval 0.28≤k≤6.5 A 0-1 .The SRO parameters have been obtained from the radial distribution function. The inter-atomic distance obtained from the first and second peak are r 1 =0.263 and r 2 =0.460 nm, which is equivalent In-Se and Se-Se bond length. The fundamental structural unit for the studied glasses is In 2 Se 3 pyramid. Using the differential scanning calorimetry (DSC), the crystallization mechanism of In x Se 1-x chalcogenide glass has been studied. The glass transition activation energy (E g ) is 289±0.3 kj/mol.There is a correlation amongst the glass forming ability, bond strength and the number of lone pair electrons. The utility of the Gibbs-Di Marzio relation was achieved by estimating T g theoretically.

  6. Fractography of glass

    CERN Document Server

    Tressler, Richard

    1994-01-01

    As the first major reference on glass fractography, contributors to this volume offer a comprehensive account of the fracture of glass as well as various fracture surface topography Contributors discuss optical fibers, glass containers, and flatglass fractography In addition, papers explore fracture origins; the growth of the original flaws of defects; and macroscopic fracture patterns from which fracture patterns evolve This volume is complete with photographs and schematics

  7. Estimation of Wear Behavior of Polyphenylene Sulphide Composites Reinforced with Glass/Carbon Fibers, Graphite and Polytetrafluoroethylene, by Pin-on-disc Test

    Directory of Open Access Journals (Sweden)

    M.A.C. Besnea

    2015-03-01

    Full Text Available Wear behavior of polyphenylene sulphide composites was investigated according to load and test speed. Two types of materials were studied: first, with 40 wt% glass fiber, and second, with 10 wt% carbon fiber, 10 wt% graphite and 10 wt%. Tribological tests were performed on the universal tribometer UMT-2, using a pin-on-disc device. The friction coefficient and wear rate for the composites were analyzed. As a result of experimental tests, it was established that polymer composite with polyphenylene sulphide matrix, carbon fibers, graphite and polytetrafluorethylene exhibit good wear behavior under operating conditions.

  8. Time-Dependent Deformation Modelling for a Chopped-Glass Fiber Composite for Automotive Durability Design Criteria; FINAL

    International Nuclear Information System (INIS)

    Ren, W

    2001-01-01

    Time-dependent deformation behavior of a polymeric composite with chopped-glass-fiber reinforcement was investigated for automotive applications, The material under stress was exposed to representative automobile service environments. Results show that environment has substantial effects on time-dependent deformation behavior of the material. The data were analyzed and experimentally-based models developed for the time-dependent deformation behavior as a basis for automotive structural durability design criteria

  9. Thermo-Mechanical Properties of Unsaturated Polyester Reinforced with SiliconCarbide Powder And with Chopped Glass Fiber

    Directory of Open Access Journals (Sweden)

    Bushra Hosnie Musa

    2018-02-01

    Full Text Available The work studied the effectoffine silicon carbide (SiC powder with (0,3,5,7wt % on the thermal conductivity and mechanical properties of unsaturated polyester composite in the presence of a fixed amount of chopped glass fiber. The hand lay-up technique was employed to preparethe required samples. Results showed that tensile, impact strength and thermal conductivity increased with increasing the weight fraction of reinforced materials.

  10. Seismic Performance of High-Ductile Fiber-Reinforced Concrete Short Columns

    Directory of Open Access Journals (Sweden)

    Mingke Deng

    2018-01-01

    Full Text Available This study mainly aims to investigate the effectiveness of high-ductile fiber-reinforced concrete (HDC as a means to enhance the seismic performance of short columns. Six HDC short columns and one reinforced concrete (RC short column were designed and tested under lateral cyclic loading. The influence of the material type (concrete or HDC, axial load, stirrup ratio, and shear span ratio on crack patterns, hysteresis behavior, shear strength, deformation capacity, energy dissipation, and stiffness degradation was presented and discussed, respectively. The test results show that the RC short column failed in brittle shear with poor energy dissipation, while using HDC to replace concrete can effectively improve the seismic behavior of the short columns. Compared with the RC short column, the shear strength of HDC specimens was improved by 12.6–30.2%, and the drift ratio and the energy dissipation increases were 56.9–88.5% and 237.7–336.7%, respectively, at the ultimate displacement. Additionally, the prediction model of the shear strength for RC columns based on GB50010-2010 (Chinese code can be safely adopted to evaluate the shear strength of HDC short columns.

  11. Bond strength of resin cement to dentin and to surface-treated posts of titanium alloy, glass fiber, and zirconia

    DEFF Research Database (Denmark)

    Sahafi, Alireza; Peutzfeldt, Anne; Asmussen, Erik

    2003-01-01

    PURPOSE: To determine the effect of surface treatments on bond strength of two resin cements (ParaPost Cement and Panavia F) to posts of titanium alloy (ParaPost XH), glass fiber (ParaPost Fiber White), and zirconia (Cerapost), and to dentin. MATERIALS AND METHODS: After embedding, planar surfaces...... of posts (n = 9 to 14) and human dentin (n = 10) were obtained by grinding. The posts received one of three surface treatments: 1. roughening (sandblasting, hydrofluoric acid etching), 2. application of primer (Alloy Primer, Metalprimer II, silane), or 3. roughening followed by application of primer...

  12. Neutron diffraction study on the medium and short-range order of ternary chalcogenide glasses

    Czech Academy of Sciences Publication Activity Database

    Neov, S.; Gerasimova, I.; Skordeva, E.; Arsova, D.; Pamukchieva, V.; Mikula, Pavol; Lukáš, Petr; Sonntag, R.

    1999-01-01

    Roč. 34, - (1999), s. 3669-3676 ISSN 0022-2461 R&D Projects: GA ČR GV202/97/K038 Keywords : neutron diffraction * short-range order * chalcogenide glasses Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.786, year: 1999

  13. Bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber composite: biomechanical properties and biocompatibility.

    Science.gov (United States)

    Qiao, Bo; Li, Jidong; Zhu, Qingmao; Guo, Shuquan; Qi, Xiaotong; Li, Weichao; Wu, Jun; Liu, Yang; Jiang, Dianming

    2014-01-01

    An ideal bone plate for internal fixation of bone fractures should have good biomechanical properties and biocompatibility. In this study, we prepared a new nondegradable bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber (n-HA/PA66/GF) composite. A breakage area on the n-HA/PA66/GF plate surface was characterized by scanning electron microscopy. Its mechanical properties were investigated using bone-plate constructs and biocompatibility was evaluated in vitro using bone marrow-derived mesenchymal stem cells. The results confirmed that adhesion between the n-HA/PA66 matrix and the glass fibers was strong, with only a few fibers pulled out at the site of breakage. Fractures fixed by the n-HA/PA66/GF plate showed lower stiffness and had satisfactory strength compared with rigid fixation using a titanium plate. Moreover, the results with regard to mesenchymal stem cell morphology, MTT assay, Alizarin Red S staining, enzyme-linked immunosorbent assay, and reverse transcription polymerase chain reaction for alkaline phosphatase and osteocalcin showed that the n-HA/PA66/GF composite was suitable for attachment and proliferation of mesenchymal stem cells, and did not have a negative influence on matrix mineralization or osteogenic differentiation of mesenchymal stem cells. These observations indicate that the n-HA/PA66/GF plate has good biomechanical properties and biocompatibility, and may be considered a new option for internal fixation in orthopedic surgery.

  14. A statistical approach to determine the effects of nuclear glass components on the short and long term glass alteration

    International Nuclear Information System (INIS)

    Advocat, Th.; Tovena, I.; Vernaz, E.; Larche, F.; Phan Tan Luu, R.

    1997-01-01

    The experimentation plan methodology may be a powerful tool to design statistical models able to calculate quantitative leach rates as a function of glass compositions. The investigation discussed here implemented an experimentation plan methodology covering a wide range of glass composition variations with two major objectives: - identify the effects of the main component oxides of R7T7 glass (SiO 2 , B 2 O 3 , Al 2 O 3 , Na 2 O+Li 2 O, additive oxides, Fission Products oxides, actinide oxides) on the dissolution rates far and close to equilibrium; - and develop a statistical model relating the measured initial dissolution rate with the selected oxide compositions. A second-degree silica-based model was developed to express the initial dissolution rates at 100 deg C according to the oxide weight percentage of 6 major oxides or oxide groups. The model is qualified by comparison with independent experimental results. For the short term, far from saturation conditions (confined media), plotting the effects of the oxides clearly showed that SiO 2 , Al 2 O 3 and the additive oxides enhanced glass durability at 100 deg C, while B 2 O 3 and Na 2 O+Li 2 O diminished the initial corrosion resistance. For the long term, plotting the effects of the oxides showed that additive oxides, Al 2 O 3 and SiO 2 enhanced glass durability at 90 deg C, in that order, while Na 2 O+Li 2 O still diminished the corrosion resistance. The fission products and actinide oxides and ZrO 2 have apparently a slight beneficial effect on the glass durability, under saturation conditions (long term). (author)

  15. Study on basalt fiber parameters affecting fiber-reinforced mortar

    Science.gov (United States)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  16. Short cellulosic fiber/starch acetate composites — micromechanical modeling of Young’s modulus

    DEFF Research Database (Denmark)

    Madsen, Bo; Joffe, Roberts; Peltola, Heidi

    2011-01-01

    This study is presented to predict the Young’s modulus of injection-molded short cellulosic fiber/plasticized starch acetate composites with variable fiber and plasticizer content. A modified rule of mixtures model is applied where the effect of porosity is included, and where the fiber weight...... (density and Young’s modulus). The measured Young’s modulus of the composites varies in the range 1.1—8.3 GPa, and this is well predicted by the model calculations. A property diagram is presented to be used for the tailor-making of composites with Young’s modulus in the range 0.2—10 GPa....

  17. Glass consistency and glass performance

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  18. [Influence of retainer design on fixation strength of resin-bonded glass fiber reinforced composite fixed cantilever dentures].

    Science.gov (United States)

    Petrikas, O A; Voroshilin, Iu G; Petrikas, I V

    2013-01-01

    Fiber-reinforced composite (FRC) fixed partial dentures (FPD) have become an accepted part of the restorative dentist's armamentarium. The aim of this study was to evaluate in vitro the influence of retainer design on the strength of two-unit cantilever resin-bonded glass FRC-FPDs. Four retainer designs were tested: a dual wing, a dual wing + horizontal groove, a dual wing + occlusal rest and a step-box. Of each design on 7 human mandibular molars, FRC-FPDs of a premolar size were produced. The FRC framework was made of resin Revolution (Kerr) impregnated glass fibers (GlasSpan, GlasSpan) and veneered with hybrid resin composite (Charisma, Kulzer). Revolution (Kerr) was used as resin luting cement. FRC-FPDs were loaded to failure in a universal testing machine. T (Student's)-test was used to evaluate the data. The four designs were analyzed with finite element analysis (FEA) to reveal the stress distribution within the tooth/restoration complex. Significantly lower fracture strengths were observed with inlay-retained FPDs (step-box: 172±11 N) compared to wing-retained FPDs (poptimal design for replacement of a single premolar by means of a two-unit cantilever FRC-FPDs.

  19. Paper-based microfluidics with high resolution, cut on a glass fiber membrane for bioassays.

    Science.gov (United States)

    Fang, Xueen; Wei, Shasha; Kong, Jilie

    2014-03-07

    In this report, we describe a simple, low-cost, straight forward and highly reproducible fabrication method of microfluidic systems. This system was cut on a glass fiber membrane by a common cutter without using any other sophisticated equipment or organic solvents. This format represents a novel type of paper-based microfluidics with high resolution of the microchannel down to ~137 μm, comparable to those made by conventional photolithography. We successfully applied this method to microfluidics to create a star micro-array format of multiplexed urine tests in this study.

  20. Flexural strength using Steel Plate, Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) on reinforced concrete beam in building technology

    Science.gov (United States)

    Tarigan, Johannes; Patra, Fadel Muhammad; Sitorus, Torang

    2018-03-01

    Reinforced concrete structures are very commonly used in buildings because they are cheaper than the steel structures. But in reality, many concrete structures are damaged, so there are several ways to overcome this problem, by providing reinforcement with Fiber Reinforced Polymer (FRP) and reinforcement with steel plates. Each type of reinforcements has its advantages and disadvantages. In this study, researchers discuss the comparison between flexural strength of reinforced concrete beam using steel plates and Fiber Reinforced Polymer (FRP). In this case, the researchers use Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) as external reinforcements. The dimension of the beams is 15 x 25 cm with the length of 320 cm. Based on the analytical results, the strength of the beam with CFRP is 1.991 times its initial, GFRP is 1.877 times while with the steel plate is 1.646 times. Based on test results, the strength of the beam with CFRP is 1.444 times its initial, GFRP is 1.333 times while the steel plate is 1.167 times. Based on these test results, the authors conclude that beam with CFRP is the best choice for external reinforcement in building technology than the others.

  1. Identification of Bloch-modes in hollow-core Photonic Crystal Fiber cladding

    DEFF Research Database (Denmark)

    Couny, F.; Benabid, F.; Roberts, John

    2007-01-01

    We report on the experimental visualization of the cladding Bloch-modes of a hollow-core photonic crystal fiber. Both spectral and spatial field information is extracted using the approach, which is based on measurement of the near-field and Fresnel-zone that results after propagation over a short...... length of fiber. A detailed study of the modes near the edges of the band gap shows that it is formed by the influence of three types of resonator: the glass interstitial apex, the silica strut which joins the neighboring apexes, and the air hole. The cladding electromagnetic field which survives...

  2. Dynamic mechanical analysis and high strain-rate energy absorption characteristics of vertically aligned carbon nanotube reinforced woven fiber-glass composites

    Science.gov (United States)

    The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT) forests grown on woven fiber-glass (FG) layer and embedded within 10 layers of woven FG, with polyester (PE) and...

  3. Polymer fiber detectors for photoacoustic imaging

    Science.gov (United States)

    Grün, Hubert; Berer, Thomas; Pühringer, Karoline; Nuster, Robert; Paltauf, Günther; Burgholzer, Peter

    2010-02-01

    Photoacoustic imaging is a novel imaging method for medical and biological applications, combining the advantages of Diffuse Optical Imaging (high contrast) and Ultrasonic Imaging (high spatial resolution). A short laser pulse hits the sample. The absorbed energy causes a thermoelastic expansion and thereby launches a broadband ultrasonic wave (photoacoustic signal). The distribution of absorbed energy density is reconstructed from measurements of the photoacoustic signals around the sample. For collecting photoacoustic signals either point like or extended, integrating detectors can be used. The latter integrate the pressure at least in one dimension, e.g. along a line. Thereby, the three dimensional imaging problem is reduced to a two dimensional problem. For a tomography device consisting of a scanning line detector and a rotating sample, fiber-based detectors made of polymer have been recently introduced. Fiber-based detectors are easy to use and possess a constant, high spatial resolution over their entire active length. Polymer fibers provide a better impedance matching and a better handling compared with glass fibers which were our first approach. First measurement results using polymer fiber detectors and some approaches for improving the performance are presented.

  4. Investigation on Stress-Rupture Behavior of a Chopped-Glass-Fiber Composite for Automotive Durability Design Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Ren, W

    2001-08-24

    Practical and inexpensive testing methods were developed to investigate stress-rupture properties of a polymeric composite with chopped glass fiber reinforcement for automotive applications. The material was tested in representative automotive environments to generate experimental data. The results indicate that environments have substantial effects on the stress-rupture behavior. The data were analyzed and developed into stress-rupture design criteria to address one of the durability aspects of the material for automotive structural applications.

  5. New Fiber Reinforced Waterless Concrete for Extraterrestrial Structural Applications

    Science.gov (United States)

    Toutanji, H.; Tucker, D.; Ethridge, E.

    2005-01-01

    Commercial use of sulfur concrete on Earth is well established, particularly in corrosive, e.g., acid and salt, environments. Having found troilite (FeS) on the Moon raises the question of using extracted sulfur as a lunar construction mate: iii an attractive alternative to conventional concrete as it does not require water For the purpose of this paper it is assumed that lunar ore is mined, refined, and the raw sulfur processed with appropriate lunar regolith to form, for example, brick and beam elements. Glass fibers produced from regolith were used as a reinforcement to improve the mechanical properties of the sulfur concrete. Glass fibers and glass rebar were produced by melting the lunar regolith simulant. Lunar regolith stimulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline 46100 high temperature MoSi2 furnace at melting temperatures of 1450 to 1600G. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The viability of sulfur concrete as a construction material for extraterrestrial application is presented. The mechanical properties of the glass fiber reinforced sulfur concrete were investigated.

  6. Effects of glass fibres on the filling of polymeric thin ribs

    DEFF Research Database (Denmark)

    Ollgaard, Claus; Sundberg, Oliver; Vesth, Kirstine

    the effects of the glass fibers on the replication of polymeric ribs. - Investigate fibers orientations based on the injection parameters - Geometrical size effect on the amount of glass fibers in the post moulded plastic parts. Several tests were carried and analyzed in order to investigate the three project...

  7. Carbon storage potential in natural fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Pervaiz, Muhammad; Sain, Mohini M. [Faculty of Forestry, Advanced Wood Composite Group, Earth Science Center, University of Toronto, 33 Willcocks Street, Toronto, Ont. (Canada) M5S 3B3

    2003-11-01

    The environmental performance of hemp based natural fiber mat thermoplastic (NMT) has been evaluated in this study by quantifying carbon storage potential and CO{sub 2} emissions and comparing the results with commercially available glass fiber composites. Non-woven mats of hemp fiber and polypropylene matrix were used to make NMT samples by film-stacking method without using any binder aid. The results showed that hemp based NMT have compatible or even better strength properties as compared to conventional flax based thermoplastics. A value of 63 MPa for flexural strength is achieved at 64% fiber content by weight. Similarly, impact energy values (84-154 J/m) are also promising. The carbon sequestration and storage by hemp crop through photosynthesis is estimated by quantifying dry biomass of fibers based on one metric ton of NMT. A value of 325 kg carbon per metric ton of hemp based composite is estimated which can be stored by the product during its useful life. An extra 22% carbon storage can be achieved by increasing the compression ratio by 13% while maintaining same flexural strength. Further, net carbon sequestration by industrial hemp crop is estimated as 0.67 ton/h/year, which is compatible to all USA urban trees and very close to naturally, regenerated forests. A comparative life cycle analysis focused on non-renewable energy consumption of natural and glass fiber composites shows that a net saving of 50 000 MJ (3 ton CO{sub 2} emissions) per ton of thermoplastic can be achieved by replacing 30% glass fiber reinforcement with 65% hemp fiber. It is further estimated that 3.07 million ton CO{sub 2} emissions (4.3% of total USA industrial emissions) and 1.19 million m{sup 3} crude oil (1.0% of total Canadian oil consumption) can be saved by substituting 50% fiber glass plastics with natural fiber composites in North American auto applications. However, to compete with glass fiber effectively, further research is needed to improve natural fiber processing

  8. Laser Processing of Carbon Fiber Reinforced Plastics - Release of Carbon Fiber Segments During Short-pulsed Laser Processing of CFRP

    Science.gov (United States)

    Walter, Juergen; Brodesser, Alexander; Hustedt, Michael; Bluemel, Sven; Jaeschke, Peter; Kaierle, Stefan

    Cutting and ablation using short-pulsed laser radiation are promising technologies to produce or repair CFRP components with outstanding mechanical properties e.g. for automotive and aircraft industry. Using sophisticated laser processing strategies and avoiding excessive heating of the workpiece, a high processing quality can be achieved. However, the interaction of laser radiation and composite material causes a notable release of hazardous substances from the process zone, amongst others carbon fiber segments or fibrous particles. In this work, amounts and geometries of the released fiber segments are analyzed and discussed in terms of their hazardous potential. Moreover, it is investigated to what extent gaseous organic process emissions are adsorbed at the fiber segments, similar to an adsorption of volatile organic compounds at activated carbon, which is typically used as filter material.

  9. Glass fiber reinforced polyester in the works of Tous and Fargas

    Directory of Open Access Journals (Sweden)

    D. Hernández Falagán

    2017-06-01

    Full Text Available The architects Enric Tous (1925; t 1952 and Josep Maria Fargas (1926-2011, t 1952 achieved remarkable success during the 1960s and 1970s thanks to their commitment to technical experimentation and exploration of new construction systems. Among their most significant contributions is the incorporation of polyester reinforced with glass fiber as a material applied to solutions of light facades. This article tracks the origin, context, and results they obtained with this material. We propose an approach to the GRC material through the experience developed by the architects, analyzing the characteristics and specific implications of the systems proposed in their projects. Through this reading, the industrial initiative implemented by Tous and Fargas is put into value, and the key aspects that limited the progression of the construction system are detected.

  10. A statistical approach to determine the effects of nuclear glass components on the short and long term glass alteration

    Energy Technology Data Exchange (ETDEWEB)

    Advocat, Th; Tovena, I; Vernaz, E [CEA Valrho, Dir. de l' Energie Nucleaire, DEN, 30 - Marcoule (France); Larche, F [Montpellier-2 Univ., 34 (France); Phan Tan Luu, R [Faculte de St Jerome, 13 - Marseille (France)

    1997-07-01

    The experimentation plan methodology may be a powerful tool to design statistical models able to calculate quantitative leach rates as a function of glass compositions. The investigation discussed here implemented an experimentation plan methodology covering a wide range of glass composition variations with two major objectives: - identify the effects of the main component oxides of R7T7 glass (SiO{sub 2}, B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, Na{sub 2}O+Li{sub 2}O, additive oxides, Fission Products oxides, actinide oxides) on the dissolution rates far and close to equilibrium; - and develop a statistical model relating the measured initial dissolution rate with the selected oxide compositions. A second-degree silica-based model was developed to express the initial dissolution rates at 100 deg C according to the oxide weight percentage of 6 major oxides or oxide groups. The model is qualified by comparison with independent experimental results. For the short term, far from saturation conditions (confined media), plotting the effects of the oxides clearly showed that SiO{sub 2}, Al{sub 2}O{sub 3} and the additive oxides enhanced glass durability at 100 deg C, while B{sub 2}O{sub 3} and Na{sub 2}O+Li{sub 2}O diminished the initial corrosion resistance. For the long term, plotting the effects of the oxides showed that additive oxides, Al{sub 2}O{sub 3} and SiO{sub 2} enhanced glass durability at 90 deg C, in that order, while Na{sub 2}O+Li{sub 2}O still diminished the corrosion resistance. The fission products and actinide oxides and ZrO{sub 2} have apparently a slight beneficial effect on the glass durability, under saturation conditions (long term). (author)

  11. Contribution to the improved ultrasonic testing of glass fiber-reinforced polymers based on analytic modeling; Beitrag zur Verbesserung der Ultraschallpruefung glasfaserverstaerkter Polymere auf der Grundlage analytischer Modellierung

    Energy Technology Data Exchange (ETDEWEB)

    Gripp, S.

    2001-04-01

    The non-destructive testing of acoustic anisotropic materials like fiber composites has been evaluated. Modelling enabled predictions about wave deflection, direction of wave propagation, and refractive angle of ultrasonic waves in these media. Thus, measurements could be carried out using unidirectional glass-fiber composites.

  12. Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides.

    Science.gov (United States)

    Nikoofard, Narges; Maghsoodi, Fahimeh

    2018-04-07

    Self-assembly of A 6 D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A 6 D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.

  13. Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides

    Science.gov (United States)

    Nikoofard, Narges; Maghsoodi, Fahimeh

    2018-04-01

    Self-assembly of A6D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A6D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.

  14. Fourier transform infrared (FTIR) fiber optic monitoring of composites during cure in an autoclave

    Science.gov (United States)

    Druy, Mark A.; Elandjian, Lucy; Stevenson, William A.; Driver, Richard D.; Leskowitz, Garett M.

    1990-01-01

    Real-time in situ monitoring of the chemical states of epoxy resins was investigated during cure in an autoclave using infrared evanescent spectroscopy. Fiber evanescent sensors were developed which may be sandwiched between the plies of the prepreg sample. A short length of sapphire fiber was used as the sensor cell portion of the fiber probe. Heavy metal fluoride glass optical fiber cables were designed for connecting the FTIR spectrometer to the sensor fiber within the autoclave. The sapphire fibers have outstanding mechanical thermal properties which should permit their use as an embedded link in all thermoset composites. The system is capable of operation at a temperature of 250 C for periods up to 8 hours without major changes to the fiber transmission. A discussion of the selection of suitable sensor fibers, the construction of a fiber-optic interface, and the interpretation of in situ infrared spectra of the curing process is presented.

  15. Mechanical and Morphological Properties of Waste Short Nylon Fibers and Nanoclay Reinforced NR/SBR Rubber Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mohammad Andideh

    2013-02-01

    Full Text Available Natural rubber and styrene butadiene rubber (NR/SBR reinforced with short nylon fibers along with nanoclay (Cloisite 15A hybrid composites were prepared in an internal and a two roll-mill mixer by a three-step mixingprocess. The effects of fiber content at a constant loading of 3 wt% nanoclay were studied on the microstructure, mechanical and morphological properties of the prepared nanocomposites. The adhesion between the fiber and the rubber was enhanced by the addition of a dry bonding system consisting of resorcinol, hexamethylene tetramine and hydrated silica (HRH. The curing characteristics of the composites were determined and subsequently vulcanized at 150°C using a hot press. It was observed that the cure time and swelling index of the composites decreased while maximum torque, and cure rate increased with increasing of short fiber and nanoclay contents. Thestructure and fracture surface morphology of the nanocomposites were characterized using X-ray diffraction, scanning electron microscopy. X-ray diffraction results of nanocomposites indicated that the interlayer distance of silicate layers increased. The mechanical properties (tensile, tear strength, elongation-at-break and hardness ofnanocomposites containing virgin and waste fibers in the longitudinal direction are compared.

  16. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND GLASS AMPLIFICATION

    Directory of Open Access Journals (Sweden)

    B. Tioua

    2015-07-01

    Full Text Available Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses. In this poster will offer new doped erbium glasses synthesized in silicate crucibles were obtained in the combination Sb2O3-WO3-Na2O. Several properties are measured and correlated with glass compositions. The absorption spectral studies have been performed for erbium doped glasses. The intensities of various absorption bands of the doped glasses are measured and the Judd-Ofelt parameters have been computed. From the theory of Judd-Ofelt, various radiative properties, such as transition probability, branching ratio and radiative life time for various emission levels of these doped glasses have been determined and reported. These results confirm the ability of antimony glasses for glass amplification.

  17. Mechanical property evaluation of natural fiber coir composite

    International Nuclear Information System (INIS)

    Harish, S.; Michael, D. Peter; Bensely, A.; Lal, D. Mohan; Rajadurai, A.

    2009-01-01

    The fiber which serves as a reinforcement in reinforced plastics may be synthetic or natural. Past studies show that only artificial fibers such as glass, carbon etc., have been used in fiber-reinforced plastics. Although glass and other synthetic fiber-reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of coir, a natural fiber abundantly available in India. Natural fibers are not only strong and lightweight but also relatively very cheap. In the present work, coir composites are developed and their mechanical properties are evaluated. Scanning electron micrographs obtained from fractured surfaces were used for a qualitative evaluation of the interfacial properties of coir/epoxy and compared with glass fiber/epoxy. These results indicate that coir can be used as a potential reinforcing material for making low load bearing thermoplastic composites

  18. Short range structural models of the glass transition temperatures and densities of 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former glasses.

    Science.gov (United States)

    Bischoff, Christian; Schuller, Katherine; Martin, Steve W

    2014-04-03

    The 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former (MGF) glass system exhibits a nonlinear and nonadditive negative change in the Na(+) ion conductivity as one glass former, PS5/2, is exchanged for the other, GeS2. This behavior, known as the mixed glass former effect (MGFE), is also manifest in a negative deviation from the linear interpolation of the glass transition temperatures (T(g)) of the binary end-member glasses, x = 0 and x = 1. Interestingly, the composition dependence of the densities of these ternary MGF glasses reveals a slightly positive MGFE deviation from a linear interpolation of the densities of the binary end-member glasses, x = 0 and x = 1. From our previous studies of the structures of these glasses using IR, Raman, and NMR spectroscopies, we find that a disproportionation reaction occurs between PS7/2(4-) and GeS3(2-) units into PS4(3-) and GeS5/2(1-) units. This disproportionation combined with the formation of Ge4S10(4-) anions from GeS5/2(1-) groups leads to the negative MGFE in T(g). A best-fit model of the T(g)s of these glasses was developed to quantify the amount of GeS5/2(1-) units that form Ge4S10(4-) molecular anions in the ternary glasses (∼ 5-10%). This refined structural model was used to develop a short-range structural model of the molar volumes, which shows that the slight densification of the ternary glasses is due to the improved packing efficiency of the germanium sulfide species.

  19. Fatigue Damage Evaluation of Short Carbon Fiber Reinforced Plastics Based on Phase Information of Thermoelastic Temperature Change.

    Science.gov (United States)

    Shiozawa, Daiki; Sakagami, Takahide; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi

    2017-12-06

    Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft, or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to evaluate fatigue damage in short carbon fiber composites. The distribution of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damage was detected from the distribution of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was more clearly detected than before by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the property that carbon fiber shows opposite phase thermoelastic temperature change.

  20. LABORATORY EVALUATION ON PERFORMANCE OF GLASS FIBER REINFORCED PLASTIC MORTAR PIPE CULVERTS

    Directory of Open Access Journals (Sweden)

    Huawang Shi

    2018-04-01

    Full Text Available This paper investigated the performance and behaviour of glass fiber reinforced plastic mortar (FRPM pipes under different loading conditions. FRPM pipes with inner diameter of 1500 mm were prefabricated in factory. Mechanics performance testing (ring and axial compressive strength and elastic modulus, stiffness and fatigue test were carried out in laboratory. Ring stiffness test provided pipe stiffness (PS which is a function of geometry and material type of pipe through parallel plate loading test (PPLT. The fatigue test and micro-structure measure method were used to evaluate the durability effects of FRPM under repeated compression load. Results indicated that FRPM pipes had better mechanic performances as the road culverts under soils. It may be helpful for the design and construction of FRPM culverts.

  1. Ultrasonic assisted consolidation of commingled thermoplastic/glass fibers rovings

    Directory of Open Access Journals (Sweden)

    Francesca eLionetto

    2015-04-01

    Full Text Available Thermoplastic matrix composites are finding new applications in different industrial area thanks to their intrinsic advantages related to environmental compatibility and processability. The approach presented in this work consists in the development of a technology for the simultaneous deposition and consolidation of commingled thermoplastic rovings through to the application of high energy ultrasound. An experimental equipment, integrating both fiber impregnation and ply consolidation in a single process, has been designed and tested. It is made of an ultrasonic welder, whose titanium sonotrode is integrated on a filament winding machine. During winding, the commingled roving is at the same time in contact with the mandrel and the horn. The intermolecular friction generated by ultrasound is able to melt the thermoplastic matrix and impregnate the reinforcement fibers. The heat transfer phenomena occurring during the in situ consolidation were simulated solving by finite element (FE analysis an energy balance accounting for the heat generated by ultrasonic waves and the melting characteristics of the matrix. To this aim, a calorimetric characterization of the thermoplastic matrix has been carried out to obtain the input parameters for the model. The FE analysis has enabled to predict the temperature distribution in the composite during heating and cooling The simulation results have been validated by the measurement of the temperature evolution during ultrasonic consolidation.The reliability of the developed consolidation equipment was proved by producing hoop wound cylinder prototypes using commingled continuous E-glass rovings and Polypropylene (PP filaments. The consolidated composite cylinders are characterized by high mechanical properties, with values comparable with the theoretical ones predicted by the micromechanical analysis.

  2. Detection of gamma rays using scintillation optical fibers

    International Nuclear Information System (INIS)

    Park, J. W.; Hong, S. B.

    2002-01-01

    Scintillating optical fibers have several advantages over other conventional materials used for radiation detection. We have used glass and plastic scintillating fibers to detect gamma rays emitted from 60 Co and 137 Cs, and beta rays from 90 Sr. The sensors are constructed of single strand or multi-strand fibers of 1 mm diameter. The glass scintillating fiber used contains cerium-activated lithium-silicate as scintillating material and the plastic scintillating fiber used is Bicron model BCF-12. In this paper, we report the pulse-height spectra obtained by both sensor types, and analyze them in the aspect of their usability for radiation detectors. Our investigation suggests that the glass fiber can be used to develop gamma ray detectors which will function in high and low gamma ray flux environments. Use of the sensor for the beta ray detection was not satisfactory. The plastic fiber sensor did not work satisfactorily for the weak gamma sources, but did produce somewhat promising results. The scintillating plastic fiber offers some feasibility as beta ray sensor material

  3. Recycling polyethylene terephthalate wastes as short fibers in Strain-Hardening Cementitious Composites (SHCC).

    Science.gov (United States)

    Lin, Xiuyi; Yu, Jing; Li, Hedong; Lam, Jeffery Y K; Shih, Kaimin; Sham, Ivan M L; Leung, Christopher K Y

    2018-05-26

    As an important portion of the total plastic waste bulk but lack of reuse and recycling, the enormous amounts of polyethylene terephthalate (PET) solid wastes have led to serious environmental issues. This study explores the feasibility of recycling PET solid wastes as short fibers in Strain-Hardening Cementitious Composites (SHCCs), which exhibit strain-hardening and multiple cracking under tension, and therefore have clear advantages over conventional concrete for many construction applications. Based on micromechanical modeling, fiber dispersion and alkali resistance, the size of recycled PET fibers was first determined. Then the hydrophobic PET surface was treated with NaOH solution followed by a silane coupling agent to achieve the dual purpose of improving the fiber/matrix interfacial frictional bond (from 0.64 MPa to 0.80 MPa) and enhancing the alkali resistance for applications in alkaline cementitious environment. With surface treatment, recycling PET wastes as fibers in SHCCs is a promising approach to significantly reduce the material cost of SHCCs while disposing hazardous PET wastes in construction industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Predicting fiber refractive index from a measured preform index profile

    Science.gov (United States)

    Kiiveri, P.; Koponen, J.; Harra, J.; Novotny, S.; Husu, H.; Ihalainen, H.; Kokki, T.; Aallos, V.; Kimmelma, O.; Paul, J.

    2018-02-01

    When producing fiber lasers and amplifiers, silica glass compositions consisting of three to six different materials are needed. Due to the varying needs of different applications, substantial number of different glass compositions are used in the active fiber structures. Often it is not possible to find material parameters for theoretical models to estimate thermal and mechanical properties of those glass compositions. This makes it challenging to predict accurately fiber core refractive index values, even if the preform index profile is measured. Usually the desired fiber refractive index value is achieved experimentally, which is expensive. To overcome this problem, we analyzed statistically the changes between the measured preform and fiber index values. We searched for correlations that would help to predict the Δn-value change from preform to fiber in a situation where we don't know the values of the glass material parameters that define the change. Our index change models were built using the data collected from preforms and fibers made by the Direct Nanoparticle Deposition (DND) technology.

  5. Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water-ethanol mixture

    Science.gov (United States)

    Van, Hieu Le; Buczynski, Ryszard; Long, Van Cao; Trippenbach, Marek; Borzycki, Krzysztof; Manh, An Nguyen; Kasztelanic, Rafal

    2018-01-01

    We present experimental and simulation results of the zero-dispersion shift in photonics crystal fibers infiltrated with water-ethanol mixture. The fiber based on the fused silica glass with a hexagonal lattice consists of seven rings of air-holes filled by liquid. We show that it is possible to shift the zero-dispersion wavelength by 35 ps/nm/km when changing the temperature by 60 °C, and by 42 ps/nm/km when changing the concentration of ethanol from 0 to 100%. The results also show that for the optical fiber filed with pure ethanol the flattened part of the dispersion shifts from anomalous to the normal regime at temperatures below -70 °C.

  6. Carbon Fiber Mirror for a CubeSat Telescope

    Science.gov (United States)

    Kim, Young-Soo; Jang, Jeong Gyun; Kim, Jihun; Nam, Uk Won

    2017-08-01

    Telescope mirrors made by carbon fibers have been increasingly used especially for space applications, and they may replace the traditional glass mirrors. Glass mirrors are easy to fabricate, but needed to be carefully handled as they are brittle. Other materials have also been considered for telescope mirrors, such as metals, plastics, and liquids even. However glass and glass ceramics are still commonly and dominantly used.Carbon fiber has mainly been used for mechanical supports like truss structure and telescope tubes, as it is stiff and light-weight. It can also be a good material for telescope mirrors, as it has additional merits of non-brittle and very low thermal expansion. Therefore, carbon fiber mirror would be suitable for space telescopes which should endure the harsh vibration conditions during launch.A light-weight telescope made by carbon fiber has been designed for a small satellite which would have much less weight than conventional ones. In this poster, mirror materials are reviewed, and a design of carbon fiber telescope is presented and discussed.

  7. Fabrication of highly nonlinear germano-silicate glass optical fiber incorporated with PbTe semiconductor quantum dots using atomization doping process and its optical nonlinearity.

    Science.gov (United States)

    Ju, Seongmin; Watekar, Pramod R; Han, Won-Taek

    2011-01-31

    Germano-silicate glass optical fiber incorporated with PbTe semiconductor quantum dots (SQDs) in the core was fabricated by using the atomization process in modified chemical vapor deposition (MCVD) process. The absorption bands attributed to PbTe semiconductor quantum dots in the fiber core were found to appear at around 687 nm and 1055 nm. The nonlinear refractive index measured by the long-period fiber grating (LPG) pair method upon pumping with laser diode at 976.4 nm was estimated to be ~1.5 × 10(-16) m2/W.

  8. The effect of surface modification of glass fiber on the performance of poly(lactic acid) composites: Graphene oxide vs. silane coupling agents

    Science.gov (United States)

    Jing, Mengfan; Che, Junjin; Xu, Shuman; Liu, Zhenwei; Fu, Qiang

    2018-03-01

    In this work, a comparison study was carried out to investigate the efficacy of glass fiber (GF) in reinforcing poly(lactic acid) (PLA) by using traditional silane coupling agents (GF-S) and novel graphene oxide (GF-GO) as surface modifiers. The crystallization behavior of the PLA matrix was investigated by differential scanning calorimetry. The mechanical performances and the thermomechanical properties of the composites were evaluated by uniaxial tensile testing and dynamic mechanical analysis, respectively. For neat GF without any treatment, the poor interfacial adhesion and the sharp shortening of the GF length result in the relatively poor mechanical performances of PLA/GF composites. However, the incorporation of GF-S significantly improves the mechanical strength and keeps relatively good toughness of the composites, while GF-GO exhibits excellent nucleation ability for PLA and could moderately increase the modulus of the composites. The thermomechanical properties of the composites are improved markedly resulting from the crystallinity increase. The different surface modification of glass fiber influences the crystallinity of matrix, the interfacial interaction and the length of fiber, which altogether affect the mechanical performances of the prepared PLA/GF composites.

  9. Investigation on Stress-Rupture Behavior of a Chopped-Glass-Fiber Composite for Automotive Durability Design Criteria; FINAL

    International Nuclear Information System (INIS)

    Ren, W

    2001-01-01

    Practical and inexpensive testing methods were developed to investigate stress-rupture properties of a polymeric composite with chopped glass fiber reinforcement for automotive applications. The material was tested in representative automotive environments to generate experimental data. The results indicate that environments have substantial effects on the stress-rupture behavior. The data were analyzed and developed into stress-rupture design criteria to address one of the durability aspects of the material for automotive structural applications

  10. Conduction noise absorption by fiber-reinforced epoxy composites with carbon nanotubes

    International Nuclear Information System (INIS)

    Lee, Ok Hyoung; Kim, Sung-Soo; Lim, Yun-Soo

    2011-01-01

    Nearly all electronic equipment is susceptible to malfunction as a result of electromagnetic interference. In this study, glass fiber, and carbon fiber as a type reinforcement and epoxy as a matrix material were used to fabricate composite materials. In an attempt to increase the conduction noise absorption, carbon nanotubes were grown on the surface of glass fibers and carbon fibers. A microstrip line with characteristic impedance of 50 Ω in connection with network analyzer was used to measure the conduction noise absorption. In comparing a glass fiber/epoxy composite with a GF-CNT/Ep composite, it was demonstrated that the CNTs significantly influence the noise absorption property mainly due to increase in electric conductivity. In the carbon fiber composites, however, the effectiveness of CNTs on the degree of electric conductivity is negligible, resulting in a small change in reflection and transmission of an electromagnetic wave. - Research Highlights: → In this study, glass fiber and carbon fiber as a type reinforcement and epoxy as a matrix material were used to fabricate composite materials. In an attempt to increase the conduction noise absorption, carbon nanotubes (CNTs) were grown on the surface of glass fibers and carbon fibers. A microstrip line with characteristic impedance of 50 Ω in connection with network analyzer was used to measure the conduction noise absorption. → In comparing a glass fiber/epoxy composite with a GF-CNT/Ep composite, it was demonstrated that the CNTs significantly influence the noise absorption property mainly due to increase in electric conductivity. In the carbon fiber composites, however, the effectiveness of CNTs on the degree of electric conductivity is negligible, resulting in a small change in reflection and transmission of an electromagnetic wave.

  11. Improvement of the mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves.

    Science.gov (United States)

    Ning, Huiming; Li, Yuan; Hu, Ning; Cao, Yanping; Yan, Cheng; Azuma, Takesi; Peng, Xianghe; Wu, Liangke; Li, Jinhua; Li, Leilei

    2014-06-01

    The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m -2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%-73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.

  12. Influence of screw holes and gamma sterilization on properties of phosphate glass fiber-reinforced composite bone plates.

    Science.gov (United States)

    Han, Na; Ahmed, Ifty; Parsons, Andrew J; Harper, Lee; Scotchford, Colin A; Scammell, Brigitte E; Rudd, Chris D

    2013-05-01

    Polymers prepared from polylactic acid (PLA) have found a multitude of uses as medical devices. For a material that degrades, the main advantage is that an implant would not necessitate a second surgical event for removal. In this study, fibers produced from a quaternary phosphate-based glass (PBG) in the system 50P2O5-40CaO-5Na2O-5Fe2O3 were used to reinforce PLA polymer. The purpose of this study was to assess the effect of screw holes in a range of PBG-reinforced PLA composites with varying fiber layup and volume fraction. The flexural properties obtained showed that the strength and modulus values increased with increasing fiber volume fraction; from 96 MPa to 320 MPa for strength and between 4 GPa and 24 GPa for modulus. Furthermore, utilizing a larger number of thinner unidirectional (UD) fiber prepreg layers provided a significant increase in mechanical properties, which was attributed to enhanced wet out and thus better fiber dispersion during production. The effect of gamma sterilization via flexural tests showed no statistically significant difference between the sterilized and nonsterilized samples, with the exception of the modulus values for samples with screw holes. Degradation profiles revealed that samples with screw holes degraded faster than those without screw holes due to an increased surface area for the plates with screw holes in PBS up to 30 days. Scanning electron microscope (SEM) analysis revealed fiber pullout before and after degradation. Compared with various fiber impregnation samples, with 25% volume fraction, 8 thinner unidirectional prepreg stacked samples had the shortest fiber pull-out lengths in comparison to the other samples investigated.

  13. Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO₂-laser annealing.

    Science.gov (United States)

    Lai, Man-Hong; Lim, Kok-Sing; Gunawardena, Dinusha S; Yang, Hang-Zhou; Chong, Wu-Yi; Ahmad, Harith

    2015-03-01

    In this work, we have demonstrated thermal stress relaxation in regenerated fiber Bragg gratings (RFBGs) by using direct CO₂-laser annealing technique. After the isothermal annealing and slow cooling process, the Bragg wavelength of the RFBG has been red-shifted. This modification is reversible by re-annealing and rapid cooling. It is repeatable with different cooling process in the subsequent annealing treatments. This phenomenon can be attributed to the thermal stress modification in the fiber core by means of manipulation of glass transition temperature with different cooling rates. This finding in this investigation is important for accurate temperature measurement of RFBG in dynamic environment.

  14. Preparation of a biomimetic composite scaffold from gelatin/collagen and bioactive glass fibers for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Esmaeel; Azami, Mahmoud [Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Kajbafzadeh, Abdol-Mohammad [Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Department of Pediatric Urology, Children' s Hospital Medical Center, Tehran, Iran (IRI) (Iran, Islamic Republic of); Moztarzadeh, Fatollah [Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Faridi-Majidi, Reza [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shamousi, Atefeh; Karimi, Roya [Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ai, Jafar, E-mail: jafar_ai@tums.ac.ir [Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Brain and Spinal Injury Research Center (BASIR), Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-02-01

    Bone tissue is a composite material made of organic and inorganic components. Bone tissue engineering requires scaffolds that mimic bone nature in chemical and mechanical properties. This study proposes a novel method for preparing composite scaffolds that uses sub-micron bioglass fibers as the organic phase and gelatin/collagen as the inorganic phase. The scaffolds were constructed by using freeze drying and electro spinning methods and their mechanical properties were enhanced by using genipin crosslinking agent. Electron microscopy micrographs showed that the structure of composite scaffolds were porous with pore diameters of approximately 70–200 μm, this was again confirmed by mercury porosimetery. These pores are suitable for osteoblast growth. The diameters of the fibers were approximately 150–450 nm. Structural analysis confirmed the formation of desirable phases of sub-micron bioglass fibers. Cellular biocompatibility tests illustrated that scaffolds containing copper ion in the bioglass structure had more cell growth and osteoblast attachment in comparison to copper-free scaffolds. - Highlights: • Fabrication of 45S5 sub-micron bioglass fiber using electrospinning method. • Production of copper doped submicron bioglass fibers on 45S5 bioglass base by electrospinning sol gel route method. • Incorporation of bioglass/Cu-bioglass sub-micron fibers into gelatin/collagen matrix to form biomimetic composite scaffold which were non-cytotoxic according to MTT assay. • Discovering that copper can decrease the glass transition temperatures and enhance osteoblast cell adhesion and viability.

  15. Preparation of a biomimetic composite scaffold from gelatin/collagen and bioactive glass fibers for bone tissue engineering

    International Nuclear Information System (INIS)

    Sharifi, Esmaeel; Azami, Mahmoud; Kajbafzadeh, Abdol-Mohammad; Moztarzadeh, Fatollah; Faridi-Majidi, Reza; Shamousi, Atefeh; Karimi, Roya; Ai, Jafar

    2016-01-01

    Bone tissue is a composite material made of organic and inorganic components. Bone tissue engineering requires scaffolds that mimic bone nature in chemical and mechanical properties. This study proposes a novel method for preparing composite scaffolds that uses sub-micron bioglass fibers as the organic phase and gelatin/collagen as the inorganic phase. The scaffolds were constructed by using freeze drying and electro spinning methods and their mechanical properties were enhanced by using genipin crosslinking agent. Electron microscopy micrographs showed that the structure of composite scaffolds were porous with pore diameters of approximately 70–200 μm, this was again confirmed by mercury porosimetery. These pores are suitable for osteoblast growth. The diameters of the fibers were approximately 150–450 nm. Structural analysis confirmed the formation of desirable phases of sub-micron bioglass fibers. Cellular biocompatibility tests illustrated that scaffolds containing copper ion in the bioglass structure had more cell growth and osteoblast attachment in comparison to copper-free scaffolds. - Highlights: • Fabrication of 45S5 sub-micron bioglass fiber using electrospinning method. • Production of copper doped submicron bioglass fibers on 45S5 bioglass base by electrospinning sol gel route method. • Incorporation of bioglass/Cu-bioglass sub-micron fibers into gelatin/collagen matrix to form biomimetic composite scaffold which were non-cytotoxic according to MTT assay. • Discovering that copper can decrease the glass transition temperatures and enhance osteoblast cell adhesion and viability.

  16. Multi-layer porous fiber-reinforced composites for implants: in vitro calcium phosphate formation in the presence of bioactive glass.

    Science.gov (United States)

    Nganga, Sara; Zhang, Di; Moritz, Niko; Vallittu, Pekka K; Hupa, Leena

    2012-11-01

    Glass-fiber-reinforced composites (FRCs), based on bifunctional methacrylate resin, have recently shown their potential for use as durable cranioplasty, orthopedic and oral implants. In this study we suggest a multi-component sandwich implant structure with (i) outer layers out of porous FRC, which interface the cortical bone, and (ii) inner layers encompassing bioactive glass granules, which interface with the cancellous bone. The capability of Bioglass(®) 45S5 granules (100-250μm) to induce calcium phosphate formation on the surface of the FRC was explored by immersing the porous FRC-Bioglass laminates in simulated body fluid (SBF) for up to 28d. In both static (agitated) and dynamic conditions, bioactive glass granules induced precipitation of calcium phosphate at the laminate surfaces as confirmed by scanning electron microscopy. The proposed dynamic flow system is useful for the in vitro simulation of bone-like apatite formation on various new porous implant designs containing bioactive glass and implant material degradation. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Effects of sea water environment on glass fiber reinforced plastic materials used for marine civil engineering constructions

    International Nuclear Information System (INIS)

    Garcia-Espinel, J.D.; Castro-Fresno, D.; Parbole Gayo, P.; Ballester-Muñoz, F.

    2015-01-01

    Highlights: • Seawater environment over composite material that are suitable for civil applications. • Seawater intake is linked to tensile and flexural strength degradation in GFC. • Fatigue performance of glass composites is similar in seawater environment than in air. - Abstract: Glass fiber composites (GFRP) are common in civil engineering projects, but not in marine structures. One reason is that seawater effects degrade GFRP composites mechanical properties and interlaminar shear strength (ILSS). Here, influence of seawater environment is studied to determine the best composite materials for marine civil engineer applications, studying the influence of several factors in their mechanical properties. This is to determine safety factors to use in the design of structural calculations for marine applications. Glass/epoxy composites are the safest materials to use in marine civil structures as mechanical properties degradation becomes stabilized after moisture saturation level. UV and water cyclic analysis must be done to determine affection to transversal strength. Only vinylester GFRP has problems with biodegradation. GFRP fatigue performance is not influenced by seawater environment

  18. Polarization-preserving holey fibers

    DEFF Research Database (Denmark)

    Broeng, Jes; Mogilevtsev, Dmitri; Libori, Stig E. Barkou

    2001-01-01

    In this work we suggest and discuss a microstructure of air capillaries with elliptical cross-section in a tread of glass that gives opportunity for Creation of polarization-preserving fiber with very small beat length between the fundamental modes of different polarization......In this work we suggest and discuss a microstructure of air capillaries with elliptical cross-section in a tread of glass that gives opportunity for Creation of polarization-preserving fiber with very small beat length between the fundamental modes of different polarization...

  19. A novel computer-aided method to fabricate a custom one-piece glass fiber dowel-and-core based on digitized impression and crown preparation data.

    Science.gov (United States)

    Chen, Zhiyu; Li, Ya; Deng, Xuliang; Wang, Xinzhi

    2014-06-01

    Fiber-reinforced composite dowels have been widely used for their superior biomechanical properties; however, their preformed shape cannot fit irregularly shaped root canals. This study aimed to describe a novel computer-aided method to create a custom-made one-piece dowel-and-core based on the digitization of impressions and clinical standard crown preparations. A standard maxillary die stone model containing three prepared teeth each (maxillary lateral incisor, canine, premolar) requiring dowel restorations was made. It was then mounted on an average value articulator with the mandibular stone model to simulate natural occlusion. Impressions for each tooth were obtained using vinylpolysiloxane with a sectional dual-arch tray and digitized with an optical scanner. The dowel-and-core virtual model was created by slicing 3D dowel data from impression digitization with core data selected from a standard crown preparation database of 107 records collected from clinics and digitized. The position of the chosen digital core was manually regulated to coordinate with the adjacent teeth to fulfill the crown restorative requirements. Based on virtual models, one-piece custom dowel-and-cores for three experimental teeth were milled from a glass fiber block with computer-aided manufacturing techniques. Furthermore, two patients were treated to evaluate the practicality of this new method. The one-piece glass fiber dowel-and-core made for experimental teeth fulfilled the clinical requirements for dowel restorations. Moreover, two patients were treated to validate the technique. This novel computer-aided method to create a custom one-piece glass fiber dowel-and-core proved to be practical and efficient. © 2013 by the American College of Prosthodontists.

  20. Evanescent field infrared spectroscopy using chalcogenide glass fiber

    International Nuclear Information System (INIS)

    Katz Moti

    1992-06-01

    In the last few years a simple and cheap fiber-optics based spectroscopy method was developed for the investigation of liquids, pastes gases and thin layers. The fiber is immersed in the sample, and the investigated material becomes the fiber cladding. the interaction between the guided radiation in the fiber and the specimen is taking place by evanescent field which extends outside the fiber. This work concentrates in the quantitative characterization of the absorption of the evanescent field by the fiber cladding (the specimen). This subject was dealt with only briefly in the earlier works, and the aim of this work is to obtain a comprehensive understanding of this issue. (author)

  1. Temperature and Vibration Dependence of the Faraday Effect of Gd₂O₃ NPs-Doped Alumino-Silicate Glass Optical Fiber.

    Science.gov (United States)

    Ju, Seongmin; Kim, Jihun; Linganna, Kadathala; Watekar, Pramod R; Kang, Seong Gu; Kim, Bok Hyeon; Boo, Seongjae; Lee, Youjin; An, Yong Ho; Kim, Cheol Jin; Han, Won-Taek

    2018-03-27

    All-optical fiber magnetic field sensor based on the Gd₂O₃ nano-particles (NPs)-doped alumino-silicate glass optical fiber was developed, and its temperature and vibration dependence on the Faraday Effect were investigated. Uniformly embedded Gd₂O₃ NPs were identified to form in the core of the fiber, and the measured absorption peaks of the fiber appearing at 377 nm, 443 nm, and 551 nm were attributed to the Gd₂O₃ NPs incorporated in the fiber core. The Faraday rotation angle (FRA) of the linearly polarized light was measured at 650 nm with the induced magnetic field by the solenoid. The Faraday rotation angle was found to increase linearly with the magnetic field, and it was about 18.16° ± 0.048° at 0.142 Tesla (T) at temperatures of 25 °C-120 °C, by which the estimated Verdet constant was 3.19 rad/(T∙m) ± 0.01 rad/(T∙m). The variation of the FRA with time at 0.142 T and 120 °C was negligibly small (-9.78 × 10 -4 °/min). The variation of the FRA under the mechanical vibration with the acceleration below 10 g and the frequency above 50 Hz was within 0.5°.

  2. Fabrication of polycrystalline silicon thin films on glass substrates using fiber laser crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Dao, Vinh Ai; Han, Kuymin; Heo, Jongkyu; Kyeong, Dohyeon; Kim, Jaehong; Lee, Youngseok; Kim, Yongkuk; Jung, Sungwook; Kim, Kyunghae [Information and Communication Device Laboratory, School of Information and Communication Engineering, Sungkyunkwan University (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.k [Information and Communication Device Laboratory, School of Information and Communication Engineering, Sungkyunkwan University (Korea, Republic of)

    2009-05-29

    Laser crystallization of amorphous silicon (a-Si), using a fiber laser of {lambda} = 1064 nm wavelength, was investigated. a-Si films with 50 nm thickness deposited on glass were prepared by a plasma enhanced chemical vapor deposition. The infrared fundamental wave ({lambda} = 1064 nm) is not absorbed by amorphous silicon (a-Si) films. Thus, different types of capping layers (a-CeO{sub x}, a-SiN{sub x}, and a-SiO{sub x}) with a desired refractive index, n and thickness, d were deposited on the a-Si surface. Crystallization was a function of laser energy density, and was performed using a fiber laser. The structural properties of the crystallized films were measured via Raman spectra, a scanning electron microscope (SEM), and an atomic force microscope (AFM). The relationship between film transmittance and crystallinity was discussed. As the laser energy density increased from 10-40 W, crystallinity increased from 0-90%. However, the higher laser density adversely affected surface roughness and uniformity of the grain size. We found that favorable crystallization and uniformity could be accomplished at the lower energy density of 30 W with a-SiO{sub x} as the capping layer.

  3. Crack-closing of cement mortar beams using NiTi cold-drawn SMA short fibers

    Science.gov (United States)

    Choi, Eunsoo; Kim, Dong Joo; Chung, Young-Soo; Kim, Hee Sun; Jung, Chungsung

    2015-01-01

    In this study, crack-closing tests of mortar beams reinforced by shape memory alloy (SMA) short fibers were performed. For this purpose, NiTi SMA fibers with a diameter of 0.965 mm and a length of 30 mm were made from SMA wires of 1.0 mm diameter by cold drawing. Four types of SMA fibers were prepared, namely, straight and dog-bone-shaped fiber and the two types of fibers with paper wrapping in the middle of the fibers. The paper provides an unbonded length of 15 mm. For bending tests, six types of mortar beams with the dimensions of 40 mm × 40 mm × 160 mm (B×H×L) were prepared. The SMA fibers were placed at the bottom center of the beams along with an artificial crack of 10 mm depth and 1 mm thickness. This study investigated the influence of SMA fibers on the flexural strength of the beams from the measured force- deflection curves. After cracking, the beams were heated at the bottom by fire to activate the SMA fibers. Then, the beams recovered the deflection, and the cracks were closed. This study evaluated crack-closing capacity using the degree of crack recovery and deflection-recovery factor. The first factor is estimated from the crack-width before and after crack-closing, and the second one is obtained from the downward deflection due to loading and the upward deflection due to the closing force of the SMA fibers.

  4. Bending test in epoxy composites reinforced with continuous and aligned PALF fibers

    Directory of Open Access Journals (Sweden)

    Gabriel Oliveira Glória

    2017-10-01

    Full Text Available Sustainable actions aiming to prevent increasing worldwide pollution are motivating the substitution of environmentally friendly materials for conventional synthetic ones. A typical example is the use of natural lignocellulosic fiber (LCF as reinforcement of polymer composites that have traditionally been reinforced with glass fiber. Both scientific research and engineering applications support the use of numerous LCFs composites. The pineapple fiber (PALF, extracted from the leaves of Ananas comosus, is considered a LCF with potential for composite reinforcement. However, specific mechanical properties and microstructural characterization are still necessary for this purpose. Therefore, the objective of this short work is to evaluate the flexural properties, by means of three points, bend tests, of epoxy composites incorporated with up to 30 vol% of PALF. Results reveal that continuous and aligned fibers significantly increase the flexural strength. Scanning electron microscopy disclosed the fracture mechanism responsible for this reinforcement. Keywords: Pineapple fibers, PALF, Flexural properties, Bending test, Epoxy composites, Fracture mechanism

  5. Effect of the impact directions, of the fibers and of the aging on the glass fibers composite resistance

    International Nuclear Information System (INIS)

    Vina, J.; Arguelles, A.; Zenasni, R.; Ouinas, D.

    2006-01-01

    Usually, composites of epoxy matrix reinforced with glass fiber are used in the fabrication of wind turbine blades. This material has an anisotropic structure and its mechanical properties are not the same in all the directions. The impact strength was evaluated from the mechanical tests carried out in two perpendicular directions. The effect of aging was analyzed immersing the specimens into water to 70 C, during different periods of time. From the results of the tests, the dynamic fracture toughness (Kid) and the resilience (KCV) were obtained. An important difference was obtained between the specimens taken out in the blade direction and in the perpendicular direction. The aging specimens, in the two directions, have showed continuous decrements in the dynamic toughness and resilience, from the first period of immersion of 15 days until 180 days. (authors)

  6. Discrete meso-element simulation of the failure behavior of short-fiber composites under dynamic loading

    International Nuclear Information System (INIS)

    Liu Wenyan; Tang, Z.P.; Liu Yunxin

    2000-01-01

    In recent years, more attention has been paid to a better understanding of the failure behavior and mechanism of heterogeneous materials at the meso-scale level. In this paper, the crack initiation and development in epoxy composites reinforced with short steel fibers under dynamic loading were simulated and analyzed with the 2D Discrete Meso-Element Dynamic Method. Results show that the damage process depends greatly on the binding property between matrix and fibers

  7. Guiding hard x rays with glass polycapillary fiber

    International Nuclear Information System (INIS)

    Xiao, Q.F.; Ponomarev, I.Y.; Kolomitsev, A.I.; Gibson, D.M.; Dilmanian, F.A.; Nachaliel, E.

    1993-01-01

    X rays can be guided through a polycapillary fiber by multiple total reflections from the smooth channel walls of the fiber. Using monochromatic Synchrotron Radiation at energies of 22 and 44 keV, we measured the efficiency of transmission of x rays through polycapillary fibers with channel diameters of about 13 μm. Efficiencies of 57.3% and 54.5% for 22 keV and 44 keV x rays, respectively, were obtained with a 120-mm-long straight polycapillary fiber aligned with the incident beam. These values are close to the open fraction of the fiber, which is about 60%. In addition, transmission efficiency was measured as a function of the tilt angle between the incident beam and the axis of the fiber. We also measured the transmission efficiency as a function of the deflection angle for a 114-mm-long curved polycapillary fiber. The measurements are compared with a ray-tracing simulation

  8. Application of Judd-Ofelt Theory Upon Chlofluorophosphate Glass ...

    African Journals Online (AJOL)

    A series of erbium doped glasses chlorofluorophosphates were prepared and characterized. The absorption spectra were analyzed to determine the Judd-Ofelt parameters. The optical performance of these doped glasses suggesting the relevance of these glasses for optical fiber/ wave guide lasers and optical amplifiers.

  9. Nonlinear Properties of Soft Glass Waveguides

    DEFF Research Database (Denmark)

    Steffensen, Henrik

    -infrared applications and the THz applications. In the mid-infrared, it is investigated whether soft glasses are a suitable candidate for supercontinuum generation (SCG). A few commercially available fluoride fibers are tested for their zero dispersion wavelength (ZDW), a key property when determining the possibility......This thesis builds around the investigation into using soft glass materials for midinfrared and THz applications. Soft glasses is a term that cov ers a wide range of chemical compositions where many are yet to be fully investigated. The work in this thesis is separated in two parts, the mid...... of SCG in a fiber. A group of soft glasses, namely the chalcogenides, are known to display two photon absorption (TPA) which could potentially limit the SCG when this is initiated within the frequency range where this nonlinear process occur. An analytic model is presented to estimate the soliton self...

  10. Evolution of short range order in Ar: Liquid to glass and solid transitions-A computational study

    Science.gov (United States)

    Shor, Stanislav; Yahel, Eyal; Makov, Guy

    2018-04-01

    The evolution of the short range order (SRO) as a function of temperature in a Lennard-Jones model liquid with Ar parameters was determined and juxtaposed with thermodynamic and kinetic properties obtained as the liquid was cooled (heated) and transformed between crystalline solid or glassy states and an undercooled liquid. The Lennard-Jones system was studied by non-equilibrium molecular dynamics simulations of large supercells (approximately 20000 atoms) rapidly cooled or heated at selected quenching rates and at constant pressure. The liquid to solid transition was identified by discontinuities in the atomic volume and molar enthalpy; the glass transition temperature range was identified from the temperature dependence of the self-diffusion. The SRO was studied within the quasi-crystalline model (QCM) framework and compared with the Steinhardt bond order parameters. Within the QCM it was found that the SRO evolves from a bcc-like order in the liquid through a bct-like short range order (c/a=1.2) in the supercooled liquid which persists into the glass and finally to a fcc-like ordering in the crystalline solid. The variation of the SRO that results from the QCM compares well with that obtained with Steinhardt's bond order parameters. The hypothesis of icosahedral order in liquids and glasses is not supported by our results.

  11. The restoration of a maxillary central incisor fracture with the original crown fragment using a glass fiber-reinforced post: a clinical report.

    Science.gov (United States)

    Durkan, Rukiye Kaplan; Ozel, M Birol; Celik, Davut; Bağiş, Bora

    2008-12-01

    This report describes an esthetic, conservative, and economical alternative restoration technique for a fractured central incisor using the patient's own tooth crown piece and a bondable reinforcement glass fiber. Although the long-term durability of this adhesive post core restoration remains unknown, it remains successful after 1 year.

  12. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan; Cheng, Shaoan; Huang, Xia; Logan, Bruce E.

    2010-01-01

    on performance. Larger pore nylon mesh were used that had regular mesh weaves with pores ranging from 10 to 160 μm, while smaller pore-size nylon filters (0.2-0.45 μm) and glass fiber filters (0.7-2.0 μm) had a more random structure. The pore size of both types

  13. Design and analysis of a novel latch system implementing fiber-reinforced composite materials

    Science.gov (United States)

    Guevara Arreola, Francisco Javier

    The use of fiber-reinforced composite materials have increased in the last four decades in high technology applications due to their exceptional mechanical properties and low weight. In the automotive industry carbon fiber have become popular exclusively in luxury cars because of its high cost. However, Carbon-glass hybrid composites offer an effective alternative to designers to implement fiber-reinforced composites into several conventional applications without a considerable price increase maintaining most of their mechanical properties. A door latch system is a complex mechanism that is under high loading conditions during car accidents such as side impacts and rollovers. Therefore, the Department of Transportation in The United States developed a series of tests that every door latch system comply in order to be installed in a vehicle. The implementation of fiber-reinforced composite materials in a door latch system was studied by analyzing the material behavior during the FMVSS No. 206 transverse test using computational efforts and experimental testing. Firstly, a computational model of the current forkbolt and detent structure was developed. Several efforts were conducted in order to create an effective and time efficient model. Two simplified models were implemented with two different contact interaction approaches. 9 composite materials were studied in forkbolt and 5 in detent including woven carbon fiber, unidirectional carbon fiber, woven carbon-glass fiber hybrid composites and unidirectional carbon-glass fiber hybrid composites. The computational model results showed that woven fiber-reinforced composite materials were stiffer than the unidirectional fiber-reinforced composite materials. For instance, a forkbolt made of woven carbon fibers was 20% stiffer than a forkbolt made of unidirectional fibers symmetrically stacked in 0° and 90° alternating directions. Furthermore, Hybrid composite materials behaved as expected in forkbolt noticing a decline

  14. Packaging of active fiber composites for improved sensor performance

    International Nuclear Information System (INIS)

    Melnykowycz, M; Barbezat, M; Koller, R; Brunner, A J

    2010-01-01

    Active fiber composites (AFC) composed of lead zirconate titanate (PZT) fibers embedded in an epoxy matrix and sandwiched between two interdigitated electrodes provide a thin and flexible smart material device which can act as a sensor or actuator. The thin profiles of AFC make them ideal for integration in glass or carbon fiber composite laminates. However, due to the low tensile limit of the PZT fibers, AFC can fail at strains below the tensile limit of many composites. This makes their use as a component in an active laminate design somewhat undesirable. In the current work, tensile testing of smart laminates composed of AFC integrated in glass fiber laminates was conducted to assess the effectiveness of different packaging strategies for improving AFC sensor performance at high strains relative to the tensile limit of the AFC. AFC were encased in carbon fiber, silicon, and pre-stressed carbon fiber to improve the tensile limit of the AFC when integrated in glass fiber laminates. By laminating AFC with pre-stressed carbon fiber, the tensile limit and strain sensor ability of the AFC were significantly improved. Acoustic emission monitoring was used and the results show that PZT fiber breakage was reduced due to the pre-stressed packaging process

  15. Alkali-resistant glass fiber reinforced high strength concrete in simulated aggressive environment; Hormigón de altas resistencia reforzado con fibras de vidrio resistentes a alcalis en ambientes agresivos simulados.

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, W.H.; Cheah, C.B.; Ramli, M.; Chang, K.Y.

    2018-04-01

    The durability of the alkali-resistant (AR) glass fiber reinforced concrete (GFRC) in three simulated aggresive environments, namely tropical climate, cyclic air and seawater and seawater immersion was investigated. Durability examinations include chloride diffusion, gas permeability, X-ray diffraction (XRD) and scanning electron microscopy examination (SEM). The fiber content is in the range of 0.6 % to 2.4 %. Results reveal that the specimen containing highest AR glass fiber content suffered severe strength loss in seawater environment and relatively milder strength loss under cyclic conditions. The permeability property was found to be more inferior with the increase in the fiber content of the concrete. This suggests that the AR glass fiber is not suitable for use as the fiber reinforcement in concrete is exposed to seawater. However, in both the tropical climate and cyclic wetting and drying, the incorporation of AR glass fiber prevents a drastic increase in permeability. [Spanish] Este trabajo se centra en el estudio de la durabilidad de hormigón reforzado con fibra de vidrio resistente a álcalis (CRFVRA) en tres ambientes agresivos simulados como son, condiciones de clima tropical, ciclos de aire y agua de mar e inmersión marina. Los tests de durabilidad incluyeron la difusión de cloruros, permeabilidad de gas, difracción de rayos X (XRD) y evaluacion por microscopía electrónica de barrido (SEM). Los contenidos de fibra evaluados estuvieron en el rango desde 0.6% hasta 2.4%. Los resultados revelan que la muestra que contiene el mayor porcentaje de fibra sufre una severa pérdida de resistencia en condiciones de agua de mar, y una menor disminución de resistencia bajo condiciones cíclicas. Su permeabilidad disminuyó al incrementar el contenido de fibras en el hormigón. Lo anterior sugiere que el refuerzo con fibra resistente a alcalinos no es adecuado para su uso en hormigón en ambiente de agua de mar. Sin embargo, bajo condiciones de clima

  16. Tribological Behavior of TiC/a-C : H-Coated and Uncoated Steels Sliding Against Phenol-Formaldehyde Composite Reinforced with PTFE and Glass Fibers

    NARCIS (Netherlands)

    Shen, J.T.; Pei, Y.T.; Hosson, J.Th.M. De

    2013-01-01

    Tribological experiments on phenol-formaldehyde composite reinforced with polytetrafluoroethylene (PTFE) and glass fibers were performed against 100Cr6 steel and TiC/a-C:H thin film-coated 100Cr6 steel. In both cases, the coefficient of friction increases with increasing sliding distance until a

  17. A Theoretical Model for Estimation of Yield Strength of Fiber Metal Laminate

    Science.gov (United States)

    Bhat, Sunil; Nagesh, Suresh; Umesh, C. K.; Narayanan, S.

    2017-08-01

    The paper presents a theoretical model for estimation of yield strength of fiber metal laminate. Principles of elasticity and formulation of residual stress are employed to determine the stress state in metal layer of the laminate that is found to be higher than the stress applied over the laminate resulting in reduced yield strength of the laminate in comparison with that of the metal layer. The model is tested over 4A-3/2 Glare laminate comprising three thin aerospace 2014-T6 aluminum alloy layers alternately bonded adhesively with two prepregs, each prepreg built up of three uni-directional glass fiber layers laid in longitudinal and transverse directions. Laminates with prepregs of E-Glass and S-Glass fibers are investigated separately under uni-axial tension. Yield strengths of both the Glare variants are found to be less than that of aluminum alloy with use of S-Glass fiber resulting in higher laminate yield strength than with the use of E-Glass fiber. Results from finite element analysis and tensile tests conducted over the laminates substantiate the theoretical model.

  18. Analysis of Nd3+:glass, solar-pumped, high-powr laser systems

    Science.gov (United States)

    Zapata, L. E.; Williams, M. D.

    1989-01-01

    The operating characteristics of Nd(3+):glass lasers energized by a solar concentrator were analyzed for the hosts YAG, silicate glass, and phosphate glass. The modeling is based on the slab zigzag laser geometry and assumes that chemical hardening methods for glass are successful in increasing glass hardness by a factor of 4. On this basis, it was found that a realistic 1-MW solar-pumped laser might be constructed from phosphate glass 4 sq m in area and 2 mm thick. If YAG were the host medium, a 1-MW solar-pumped laser need only be 0.5 sq m in area and 0.5 cm thick, which is already possible. In addition, Nd(3+) doped glass fibers were found to be excellent solar-pumped laser candidates. The small diameter of fibers eliminates thermal stress problems, and if their diameter is kept small (10 microns), they propagate a Gaussian single mode which can be expanded and transmitted long distances in space. Fiber lasers could then be used for communications in space or could be bundled and the individual beams summed or phase-matched for high-power operation.

  19. Changes in short-chain fatty acid plasma profile incurred by dietary fiber composition

    DEFF Research Database (Denmark)

    Knudsen, Knud Erik Bach; Jørgensen, Henry Johs. Høgh; Theil, Peter Kappel

    2016-01-01

    Pigs were used as model for humans to study the impact of dietary fiber (DF), the main substrate for microbial fermentation, on plasma profile of short-chain fatty acids (SCFA; acetate, propionate, and butyrate). Six female pigs fitted with catheters in the portal vein and mesenteric artery and w...... higher net absorption of butyrate (2.4–4.0 vs. 1.6 mmol/h; P ...Pigs were used as model for humans to study the impact of dietary fiber (DF), the main substrate for microbial fermentation, on plasma profile of short-chain fatty acids (SCFA; acetate, propionate, and butyrate). Six female pigs fitted with catheters in the portal vein and mesenteric artery...... >> arabinoxylan >> β-glucan, whereas in the WWG, WAF, and RAF, diets it was arabinoxylan >> cellulose > β-glucan. The diets were fed to the pigs during 3 wk in a crossover design. Within an experimental week, WFL was supplied on Days 1 through 3 and WWG, WAF, or RAF was supplied during Days 4 through 7. Fasting...

  20. Effect of surface treatments on the flexural properties and adhesion of glass fiber-reinforced composite post to self-adhesive luting agent and radicular dentin.

    Science.gov (United States)

    Elnaghy, Amr M; Elsaka, Shaymaa E

    2016-01-01

    This study evaluated the effect of different surface treatments on the flexural properties and adhesion of glass fiber post to self-adhesive luting agent and radicular dentin. Seventy-five single-rooted human teeth were prepared to receive a glass fiber post (Reblida). The posts were divided into five groups according to the surface treatment: Gr C (control; no treatment), Gr S (silanization for 60 s), Gr AP (airborne-particle abrasion), Gr HF (etching with 9 % hydrofluoric acid for 1 min), and Gr M10 (etching with CH2Cl2 for 10 min). Dual-cure self-adhesive luting agent (Rely X Unicem) was applied to each group for testing the adhesion using micropush-out test. Failure types were examined with stereomicroscope and surface morphology of the posts was characterized using a scanning electron microscopy (SEM). Flexural properties of posts were assessed using a three-point bending test. Data were analyzed using ANOVA and Tukey's HSD test. Statistical significance was set at the 0.05 probability level. Groups treated with M10 showed significantly higher bond strength than those obtained with other surface treatments (P C > S > AP > HF. Most failure modes were adhesive type of failures between dentin and luting agent (48.2%). SEM analysis revealed that the fiber post surfaces were modified after surface treatments. The surface treatments did not compromise the flexural properties of fiber posts. Application of M10 to the fiber post surfaces enhanced the adhesion to self-adhesive luting agent and radicular dentin.

  1. Fluid flow analysis of E-glass fiber reinforced pipe joints in oil and gas industry

    Science.gov (United States)

    Bobba, Sujith; Leman, Z.; Zainuddin, E. S.; Sapuan, S. M.

    2018-04-01

    Glass Fiber reinforced composites have become increasingly important over the past few years and now they are the first choice materials for fabricating pipes with low weight in combination with high strength and stiffness. In Oil And Gas Industry, The Pipelines transporting heavy crude oil are subjected to variable pressure waves causing fluctuating stress levels in the pipes. Computational Fluid Dynamics (CFD) analysis was performed using solid works flow stimulation software to study the effects of these pressure waves on some specified joints in the pipes. Depending on the type of heavy crude oil being used, the flow behavior indicated a considerable degree of stress levels in certain connecting joints, causing the joints to become weak over a prolonged period of use. This research proposes a new perspective that is still required to be developed regarding the change of the pipe material, fiber winding angle in those specified joints and finally implementing cad wind technology to check the output result of the stress levels so that the life of the pipes can be optimized.

  2. Monotonic and cyclic responses of impact polypropylene and continuous glass fiber-reinforced impact polypropylene composites at different strain rates

    KAUST Repository

    Yudhanto, Arief

    2016-03-08

    Impact copolymer polypropylene (IPP), a blend of isotactic polypropylene and ethylene-propylene rubber, and its continuous glass fiber composite form (glass fiber-reinforced impact polypropylene, GFIPP) are promising materials for impact-prone automotive structures. However, basic mechanical properties and corresponding damage of IPP and GFIPP at different rates, which are of keen interest in the material development stage and numerical tool validation, have not been reported. Here, we applied monotonic and cyclic tensile loads to IPP and GFIPP at different strain rates (0.001/s, 0.01/s and 0.1/s) to study the mechanical properties, failure modes and the damage parameters. We used monotonic and cyclic tests to obtain mechanical properties and define damage parameters, respectively. We also used scanning electron microscopy (SEM) images to visualize the failure mode. We found that IPP generally exhibits brittle fracture (with relatively low failure strain of 2.69-3.74%) and viscoelastic-viscoplastic behavior. GFIPP [90]8 is generally insensitive to strain rate due to localized damage initiation mostly in the matrix phase leading to catastrophic transverse failure. In contrast, GFIPP [±45]s is sensitive to the strain rate as indicated by the change in shear modulus, shear strength and failure mode.

  3. Rare-earth-doped fluorozirconate fiber lasers

    International Nuclear Information System (INIS)

    Brierly, M.C.; France, P.W.; Moore, M.W.; Davey, S.T.

    1988-01-01

    Rare-earth-doped fiber lasers fabricated using silica-based fibers are rapidly becoming an established technology. Simultaneously, in the search for lower losses to achieve longer repeaterless communications links, another fiber technology based on fluorozirconate glasses is emerging. Fluorozirconate glass systems are known to be suitable laser hosts, and the authors have already reported Nd-doped fiber lasers using this technology. Recently the authors have used a 0.5-m length of 44-μm core fluorozirconate fiber doped with 1000 ppm of Nd 3+ ions in a longitudinally pumped Fabry-Perot cavity with a 90% output coupler. They observed lasing at 1.05 μm with a threshold of 33-mW launched power at 514 nm and a slope efficiency of 16.8%. The authors attribute this improvement to the higher dopant concentration, better fiber to mirror coupling, and more optimum output coupler reflectivity. In addition the same fiber used with two high-reflector mirrors at 1.35μm produced lasing at 1.35μm with a threshold of 60-mW launched power

  4. Breaking the glass ceiling: hollow OmniGuide fibers

    Science.gov (United States)

    Johnson, Steven G.; Ibanescu, Mihai; Skorobogatiy, Maksim A.; Weisberg, Ori; Engeness, Torkel D.; Soljacic, Marin; Jacobs, Steven A.; Joannopoulos, John D.; Fink, Yoel

    2002-04-01

    We argue that OmniGuide fibers, which guide light within a hollow core by concentric multilayer films having the property of omnidirectional reflection, have the potential to lift several physical limitations of silica fibers. We show how the strong confinement in OmniGuide fibers greatly suppresses the properties of the cladding materials: even if highly lossy and nonlinear materials are employed, both the intrinsic losses and nonlinearities of silica fibers can be surpassed by orders of magnitude. This feat, impossible to duplicate in an index-guided fiber with existing materials, would open up new regimes for long-distance propagation and dense wavelength-division multiplexing (DWDM). The OmniGuide-fiber modes bear a strong analogy to those of hollow metallic waveguides; from this analogy, we are able to derive several general scaling laws with core radius. Moreover, there is strong loss discrimination between guided modes, depending upon their degree of confinement in the hollow core: this allows large, ostensibly multi-mode cores to be used, with the lowest-loss TE01 mode propagating in an effectively single-mode fashion. Finally, because this TE01 mode is a cylindrically symmetrical ('azimuthally' polarized) singlet state, it is immune to polarization-mode dispersion (PMD), unlike the doubly-degenerate linearly-polarized modes in silica fibers that are vulnerable to birefringence.

  5. Effect of nanoparticles and nanofibers on Mode I fracture toughness of fiber glass reinforced polymeric matrix composites

    International Nuclear Information System (INIS)

    Kelkar, Ajit D.; Mohan, Ram; Bolick, Ronnie; Shendokar, Sachin

    2010-01-01

    Graphical abstract: Use of alumina nanoparticles and TEOS electrospun nanofibers at the interfaces of glass fiber plies to develop delamination resistant epoxy polymeric composites and compare their Mode I fracture toughness characteristics. - Abstract: In the recent past, the research involving the fabrication and processing of reinforced polymer nanocomposites has increased significantly. These new materials are enabling in the discovery, development and incorporation of improved nanocomposite materials with effective manufacturing methodologies for several defense and industrial applications. These materials eventually will allow the full utilization of nanocomposites in not only reinforcing applications but also in multifunctional applications where sensing and the unique optical, thermal, electrical and magnetic properties of nanoparticles can be combined with mechanical reinforcement to offer the greatest opportunities for significant advances in material design and function. This paper presents two methods and material systems for processing and integration of the nanomaterial constituents, namely: (a) dispersing alumina nanoparticles using high energy mixing (using ultrasonication, high shear mixing and pulverization) and (b) electrospinning technique to manufacture nanofibers. These reinforced polymer nanocomposites and the processing methodologies are likely to provide effective means of improving the interlaminar properties of woven fiber glass composites compared to the traditional methods such as stitching and Z-pinning. The electrospinning technology relies on the creation of nanofibers with improved molecular orientation with reduced concentration of fiber imperfections and crystal defects. Electrospinning process utilizes surface tension effects created by electrostatic forces acting on liquid droplets, creating numerous nanofibers. These nanofibers thus have potential to serve as through-the-thickness reinforcing agents in woven composites. While

  6. Evaluation of Mechanical Properties of Glass Fiber Posts Subjected to Laser Surface Treatments.

    Science.gov (United States)

    Barbosa Siqueira, Carolina; Spadini de Faria, Natália; Raucci-Neto, Walter; Colucci, Vivian; Alves Gomes, Erica

    2016-10-01

    The aim of this study was to evaluate the influence of laser irradiation on flexural strength, elastic modulus, and surface roughness and morphology of glass fiber posts (GFPs). Laser treatment of GFPs has been introduced to improve its adhesion properties. A total of 40 GFPs were divided into 4 groups according to the irradiation protocol: GC-no irradiation, GYAG-irradiation with erbium:yttrium-aluminum-garnet [Er:YAG], GCR-irradiation with erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG), and GDI-irradiation with diode laser. The GFP roughness and morphology were evaluated through laser confocal microscopy before and after surface treatment. Three-point bending flexural test measured flexural strength and elastic modulus. Data about elastic modulus and flexural strength were subjected to one-way ANOVA and Bonferroni test (p properties of GFPs.

  7. Weather ability studies of phenolic resin coated woods and glass fiber reinforced laminates

    International Nuclear Information System (INIS)

    Munir, A.; Hussain, R.; Rizvi, M.H.; Ahmed, F.

    1997-01-01

    Phenolic resins have made a major breakthrough in the field of high technology in 80's. These are now active participants of h igh tech' areas ranging from electronics, computers, communication, outer space, aerospace, advanced materials, bio materials and technology. A phenol - formaldehyde (1:1.5) resin having resin content of 70% synthesized in the laboratory has been applied for wood coating and reinforcing glass fiber. The weatherability and solvent resistance of these items have been studied and results discussed keeping in view the envisaged application for structural materials and chemical equipment. The toxic materials released during contact with solvents for chemical applications and during degradation general have been monitored. The results are discussed with reference to environmental pollution due to these resins and their composites under different conditions. (authors)

  8. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying

    Science.gov (United States)

    Zhou, Ting; Cheng, Xudong; Pan, Yuelei; Li, Congcong; Gong, Lunlun; Zhang, Heping

    2018-04-01

    In order to maintain the integrity, glass fiber (GF) reinforced silica aerogel composites were synthesized using methltrimethoxysilane (MTMS) and water glass co-precursor by freeze drying method. The composites were characterized by scanning electron microscopy, Brunauer-Emmett-Teller analysis, uniaxial compressive test, three-point bending test, thermal conductivity analysis, contact angle test, TG-DSC analysis. It was found that the molar ratio of MTMS/water glass could significantly affect the properties of composites. The bulk density and thermal conductivity first decreased and then increased with the increasing molar ratio. The composites showed remarkable mechanical strength and flexibility compared with pure silica aerogel. Moreover, when the molar ratio is 1.8, the composites showed high specific surface area (870.9 m2/g), high contact angle (150°), great thermal stability (560 °C) and low thermal conductivity (0.0248 W/m·K). These outstanding properties indicate that GF/aerogels have broad prospects in the field of thermal insulation.

  9. Short-range order in Fe-based metallic glasses: Wide-angle X-ray scattering studies

    International Nuclear Information System (INIS)

    Babilas, Rafał; Hawełek, Łukasz; Burian, Andrzej

    2014-01-01

    The local atomic structure of the Fe 80 B 20 , Fe 70 Nb 10 B 20 and Fe 62 Nb 8 B 30 glasses prepared in the form of ribbons has been studied by wide-angle X-ray scattering. Structural information about the amorphous ribbons has been derived from analysis of the radial distribution functions using the least-squares curve-fitting method. The obtained structural parameters indicate that Fe–Fe, Fe–B, Fe–Nb and Nb–B contributions are involved in the near-neighbor coordination spheres. The possible similarities of the local atomic arrangement in the investigated glasses and the crystalline Fe 3 B, Fe 23 B 6 and bcc Fe structures are also discussed. - Graphical abstract: Pair distribution functions (a) and best-fit model and experimental radial distribution functions for Fe 80 B 20 (b), Fe 70 Nb 10 B 20 (c) and Fe 62 Nb 8 B 30 (d) metallic glasses. - Highlights: • The short-range ordering in the Fe-based metallic glasses is presented. • The results of RDF function have been analyzed using the least-squares method. • The Fe–Fe, Fe–B, Fe–Nb or Nb–B contributions are involved in coordination spheres. • The structural unit is distorted triangular prism containing B, Fe or Nb atoms. • Similarities of atomic arrangement in glassy and crystalline structures are discussed

  10. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    Science.gov (United States)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  11. Glass-based integrated optical splitters: engineering oriented research

    Science.gov (United States)

    Hao, Yinlei; Zheng, Weiwei; Yang, Jianyi; Jiang, Xiaoqing; Wang, Minghua

    2010-10-01

    Optical splitter is one of most typical device heavily demanded in implementation of Fiber To The Home (FTTH) system. Due to its compatibility with optical fibers, low propagation loss, flexibility, and most distinguishingly, potentially costeffectiveness, glass-based integrated optical splitters made by ion-exchange technology promise to be very attractive in application of optical communication networks. Aiming at integrated optical splitters applied in optical communication network, glass ion-exchange waveguide process is developed, which includes two steps: thermal salts ion-exchange and field-assisted ion-diffusion. By this process, high performance optical splitters are fabricated in specially melted glass substrate. Main performance parameters of these splitters, including maximum insertion loss (IL), polarization dependence loss (PDL), and IL uniformity are all in accordance with corresponding specifications in generic requirements for optic branching components (GR-1209-CORE). In this paper, glass based integrated optical splitters manufacturing is demonstrated, after which, engineering-oriented research work results on glass-based optical splitter are presented.

  12. Cavity Formation Modeling of Fiber Fuse in Single-Mode Optical Fibers

    Directory of Open Access Journals (Sweden)

    Yoshito Shuto

    2017-01-01

    Full Text Available The evolution of a fiber-fuse phenomenon in a single-mode optical fiber was studied theoretically. To clarify both the silica-glass densification and cavity formation, which have been observed in fiber fuse propagation, we investigated a nonlinear oscillation model using the Van Der Pol equation. This model was able to phenomenologically explain both the densification of the core material and the formation of periodic cavities in the core layer as a result of a relaxation oscillation.

  13. Correlation between short-range order, optical properties and UV-absorption ability in tellurate glasses; Poster M7

    Energy Technology Data Exchange (ETDEWEB)

    Burger, H; Tews, W; Vogel, W; Kozhukharov, V [Jena Univ. (Germany)

    1989-01-01

    Tellurate glasses, with as second components Al[sub 2]O[sub 3], PbO, PbF[sub 2], PbCl[sub 2], PbBr[sub 2], PbSO[sub 4], ZnO, B[sub 2]O[sub 3], P[sub 2]O[sub 5], Li[sub 2]O, Na[sub 2]O, K[sub 2]O, MgO and BaO as well as some glasses from ternary TeO[sub 2]-P[sub 2]O[sub 5]-RO systems (R is Pb, Ba and Zn ions), have been investigated. Transmittance spectra in UV and VIS region of some selected glasses have been measured. A correlation between optical properties and UV absorption edge of the transmittance have been done. Using p[sup 31]-NMR spectroscopy the structural changes on short-range level order are studied. A strong influence on the refraction and dispersion values as well as UV-absorption ability of the glasses is established. For p[sup 31] -NMR spectroscopy investigations of crystalline phosphotellurites and related phosphotellurite glasses the TeO[sub 2]-P[sub 2]O[sub 5B]aO ternary system have been chosen. (author).

  14. Effects of short fiber reinforcement and mean stress on tensile fatigue strength characteristics of polyethersulfone; Tansen`i kyoka porieterusaruhon no hippari hiro tokusei ni oyobosu heikin oryoku no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Furue, H.; Nonaka, K. [Mechanical Engineering Lab., Tsukuba, Ibaraki (Japan)

    1996-01-15

    Thermoplastics are often reinforced with short fibers with aims of improvement of their strengths, rigidities and hardness or maintenance of their dimensional stabilities. Such short fiber reinforced plastic materials have more expectation for high performance plastics. Authors already examined of some effects of reinforced fiber and of orientation in injection molding on flexural fatigue characteristics of the injection-molded high performance thermoplastic materials. However, the examination of short fiber reinforced effects on fatigue strength characteristics was not always sufficient. In this study, in order to obtain a guiding principle for fatigue resistant design of the short fiber reinforced injection molding materials, polyethersulfones (PES) was examined on its tensile fatigue strength and an effect of short fiber reinforcement for improvement of its fundamental dynamic properties on its fatigue characteristics. Especially, its fatigue life characteristics was elucidated mainly on relationship of mean stress, stress amplitude and number of repeating fracture in tensile fatigue behavior. 10 refs., 15 figs., 2 tabs.

  15. Short vegetal-fiber reinforced HDPE—A study of electron-beam radiation treatment effects on mechanical and morphological properties

    International Nuclear Information System (INIS)

    Ferreira, Maiara S.; Sartori, Mariana N.; Oliveira, Rene R.; Guven, Olgun; Moura, Esperidiana A.B.

    2014-01-01

    Graphical abstract: - Highlights: • HDPE reinforced with short piassava fiber composites were prepared by melt-mixing processing. • Glycidyl methacrylate (GMA) was tested as a radiation cross-linking agent. • The materials were irradiated with 100 and 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. • The better interfacial adhesion between fiber and HDPE matrix was observed for composites with GMA addition irradiated with radiation dose of 200 kGy. - Abstract: The effects of electron-beam radiation treatment on fiber-matrix adhesion and mechanical properties of short piassava fibers reinforced high density polyethylene (HDPE) matrix were studied. Glycidyl methacrylate (GMA) was added at 2.5% and 5.0% (on piassava fiber wt) as a cross-linking agent and the effects upon the properties of the resulting composites treated by electron-beam radiation were also examined. HDPE reinforced with short piassava fiber composites was prepared by melt-mixing processing, using a twin screw extruder machine. The materials were irradiated with 100 and 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. Material samples were submitted to mechanical and thermo-mechanical tests and SEM analyses. Correlation between properties was discussed. The comparison of mechanical and thermo-mechanical properties of the composites showed that electron-beam radiation treatment produced a significant improvement in mechanical properties, when compared with the non-irradiated composite sample and neat HDPE. Scanning electron microscopy (SEM) studies of the composite failure surfaces indicated that there was an improved adhesion between fiber and matrix. Examination of the failure surfaces indicated dependence of the interfacial adhesion upon the radiation dose and GMA content. Better interfacial adhesion between fiber and HDPE matrix was observed for composites with 5.0% GMA addition and treated with electron

  16. Short vegetal-fiber reinforced HDPE—A study of electron-beam radiation treatment effects on mechanical and morphological properties

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Maiara S.; Sartori, Mariana N.; Oliveira, Rene R. [Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, zip code 05508-000 São Paulo, SP (Brazil); Guven, Olgun [Hacettepe University, Department of Chemistry, Polymer Chemistry Division, Beytepe, zip code 06800 Ankara (Turkey); Moura, Esperidiana A.B., E-mail: eabmoura@ipen.br [Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, zip code 05508-000 São Paulo, SP (Brazil)

    2014-08-15

    Graphical abstract: - Highlights: • HDPE reinforced with short piassava fiber composites were prepared by melt-mixing processing. • Glycidyl methacrylate (GMA) was tested as a radiation cross-linking agent. • The materials were irradiated with 100 and 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. • The better interfacial adhesion between fiber and HDPE matrix was observed for composites with GMA addition irradiated with radiation dose of 200 kGy. - Abstract: The effects of electron-beam radiation treatment on fiber-matrix adhesion and mechanical properties of short piassava fibers reinforced high density polyethylene (HDPE) matrix were studied. Glycidyl methacrylate (GMA) was added at 2.5% and 5.0% (on piassava fiber wt) as a cross-linking agent and the effects upon the properties of the resulting composites treated by electron-beam radiation were also examined. HDPE reinforced with short piassava fiber composites was prepared by melt-mixing processing, using a twin screw extruder machine. The materials were irradiated with 100 and 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. Material samples were submitted to mechanical and thermo-mechanical tests and SEM analyses. Correlation between properties was discussed. The comparison of mechanical and thermo-mechanical properties of the composites showed that electron-beam radiation treatment produced a significant improvement in mechanical properties, when compared with the non-irradiated composite sample and neat HDPE. Scanning electron microscopy (SEM) studies of the composite failure surfaces indicated that there was an improved adhesion between fiber and matrix. Examination of the failure surfaces indicated dependence of the interfacial adhesion upon the radiation dose and GMA content. Better interfacial adhesion between fiber and HDPE matrix was observed for composites with 5.0% GMA addition and treated with electron

  17. Influence of retainer design on two-unit cantilever resin-bonded glass fiber reinforced composite fixed dental prostheses: an in vitro and finite element analysis study.

    Science.gov (United States)

    Keulemans, Filip; De Jager, Niek; Kleverlaan, Cornelis J; Feilzer, Albert J

    2008-10-01

    The aim of this study was to evaluate in vitro the influence of retainer design on the strength of two-unit cantilever resin-bonded glass fiber-reinforced composite (FRC) fixed dental prostheses (FDP). Four retainer designs were tested: a proximal box, a step-box, a dual wing, and a step-box-wing. Of each design on 8 human mandibular molars, FRC-FDPs of a premolar size were produced. The FRC framework was made of resin impregnated unidirectional glass fibers (Estenia C&B EG Fiber, Kuraray) and veneered with hybrid resin composite (Estenia C&B, Kuraray). Panavia F 2.0 (Kuraray) was used as resin luting cement. FRC-FDPs were loaded to failure in a universal testing machine. One-way ANOVA and Tukey's post-hoc test were used to evaluate the data. The four designs were analyzed with finite element analysis (FEA) to reveal the stress distribution within the tooth/restoration complex. Significantly lower fracture strengths were observed with inlay-retained FDPs (proximal box: 300 +/- 65 N; step-box: 309 +/- 37 N) compared to wing-retained FDPs (p optimal design for replacement of a single premolar by means of a two-unit cantilever FRC-FDPs.

  18. Raman band intensities of tellurite glasses.

    Science.gov (United States)

    Plotnichenko, V G; Sokolov, V O; Koltashev, V V; Dianov, E M; Grishin, I A; Churbanov, M F

    2005-05-15

    Raman spectra of TeO2-based glasses doped with WO3, ZnO, GeO2, TiO2, MoO3, and Sb2O3 are measured. The intensity of bands in the Raman spectra of MoO3-TeO2 and MoO3-WO3-TeO2 glasses is shown to be 80-95 times higher than that for silica glass. It is shown that these glasses can be considered as one of the most promising materials for Raman fiber amplifiers.

  19. PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery.

    Science.gov (United States)

    Cao, K; Liu, Y; Olkhov, A A; Siracusa, V; Iordanskii, A L

    2018-02-01

    Fibers of poly(L-lactic acid) (PLLA)/polyhydroxybutyrate (PHB) with different concentrations of the drug dipyridamole (DPD) were prepared using solvent-free melt electrospinning to obtain a polymeric drug delivery system. The electrospun fibers were morphologically, structurally, thermally, and dynamically characterized. Crazes that resemble lotus root crevices were interestingly observed in the 7:3 PLLA/PHB fibers with 1% DPD. The crystallinity of PLLA slightly decreased as PHB was incorporated, and the addition of DPD significantly reduced the melting temperature of the composite. The interactions between PLLA and PHB mainly occurred at a proportion of 7:3, and drug encapsulation in the fibers was verified. The kinetic profiles of drug release demonstrated the predominant multiple patterns involving a diffusional stage in the short-term mode of release and kinetic process related to the hydrolysis of the biopolymers. Furthermore, the dynamic behavior of the polymer molecules was evaluated based on the segmental mobility using probe electron spin resonance spectroscopy. The segmental mobility in the amorphous fraction of PLLA decreased with increasing PLLA content. The 9:1 PLLA/PHB system was more resistant to polymer hydrolysis than to the 7:3 system and the rate of diffusion transport was approximately two times higher for the 7:3 PLLA/PHB fibers than for the 9:1 PLLA/PHB fibers.

  20. Analysis of Capillary Coating Die Flow in an Optical Fiber Coating Applicator

    OpenAIRE

    Kyoungjin Kim

    2011-01-01

    Viscous heating becomes significant in the high speed resin coating process of glass fibers for optical fiber manufacturing. This study focuses on the coating resin flows inside the capillary coating die of optical fiber coating applicator and they are numerically simulated to examine the effects of viscous heating and subsequent temperature increase in coating resin. Resin flows are driven by fast moving glass fiber and the pressurization at the coating die inlet, while ...

  1. Effect of rare earth hypophosphite and melamine cyanurate on fire performance of glass-fiber reinforced poly(1,4-butylene terephthalate) composites

    International Nuclear Information System (INIS)

    Yang, Wei; Tang, Gang; Song, Lei; Hu, Yuan; Yuen, Richard K.K.

    2011-01-01

    Highlights: ► We synthesize and characterize two types of rare earth hypophosphite (REHP). ► REHP and melamine cyanurate are used as flame retardants. ► We prepare fire retarded glass-fiber/poly(1,4-butylene terephthalate) composites. ► The flammability of these composites is significantly reduced. - Abstract: This work mainly deals with a novel flame retardant system for glass-fiber reinforced poly(1,4-butylene terephthalate) (GRPBT) composites using trivalent rare earth hypophosphite (REHP) and melamine cyanurate (MC) through melt blending method. Firstly, two types of REHP, lanthanum hypophosphite and cerium hypophosphite, were synthesized and characterized. Thermal gravimetric analysis (TGA) was employed to investigate the thermal decomposition behavior of REHP and flame retardant treated GRPBT composites. Thermal combustion properties were measured using microscale combustion calorimeter. Fire performance was evaluated by limiting oxygen index, Underwriters Laboratories 94 and cone calorimeter. The results showed that the flammability of GRPBT is significantly reduced by the incorporation of the flame retardant mixture. Mechanism analysis revealed that the addition of MC reduces the condensed phase effect of REHP, but improves the flame inhibition in gas phase.

  2. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  3. Study of the compressive behavior of short concrete columns confined by fiber reinforced composite

    International Nuclear Information System (INIS)

    Benzaid, Riad; Mesbah, Habib; Chikh, Nasr eddine

    2009-01-01

    Fiber reinforced polymer (FRP) composites are very attractive for use in civil engineering applications due to their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance, light weight, and potentially high durability. There is a growing interest in the use of FRP for strengthening of concrete structures such as buildings, bridges, chimneys, etc. This is mainly due to their tailorable performance characteristics, ease of application, and low life cycle costs. The present paper deals with the analysis of experimental results, in terms of load carrying capacity and strains, obtained from tests on circular and square prismatic high strength concrete specimens, strengthened with external E-glass fiber reinforced polymer (GFRP). The parameters considered are the number of composite layers, the corner radius for square shape, and the relation of GFRP confinement with steel reinforcement. All the test specimens were loaded to failure in axial compression and the behavior of the specimens in the axial directions was investigated. The obtained results showed that the efficiency of the confinement was very sensitive to the specimen cross section geometry (circular and square) and the confining stress expressed in the number of the GFRP sheet layers applied. In square cross sections, the stress-strain curve was influenced by the radius to which the corners of the section are rounded off, in order to avoid the breakage of the fibers. (author)

  4. Short Jute Fiber Reinforced Polypropylene Composites: Effect of Nonhalogenated Fire Retardants

    Directory of Open Access Journals (Sweden)

    Sk. Sharfuddin Chestee

    2017-01-01

    Full Text Available Short jute fiber reinforced polypropylene (PP composites were prepared using a single screw extrusion moulding. Jute fiber content in the composites is optimized with the extent of mechanical properties, and composites with 20% jute show higher mechanical properties. Dissimilar concentrations of several fire retardants (FRs, such as magnesium oxide (MO, aluminum oxide (AO, and phosphoric acid (PA, were used in the composites. The addition of MO, AO, and PA improved the fire retardancy properties (ignition time, flame height, and total firing time of the composites. Ignition time for 30% MO, flame height for 30% PA, and total firing time for 20% MO content composites showed good results which were 8 sec, 1 inch, and 268 sec, respectively. Mechanical properties (tensile strength, tensile modulus, bending strength, bending modulus, and elongation at break, degradation properties (soil test, weathering test, and percentage of weight loss, and water uptake were studied.

  5. Improved patterning of ITO coated with gold masking layer on glass substrate using nanosecond fiber laser and etching

    International Nuclear Information System (INIS)

    Tan, Nguyen Ngoc; Hung, Duong Thanh; Anh, Vo Tran; BongChul, Kang; HyunChul, Kim

    2015-01-01

    Highlights: • A new patterning method for ITO thin film is introduced. • Gold thin film is important in decrease spikes formed in ITO patterning process. • The laser pulse width occupies a significant effect the patterning surface quality. • Etching process is the effective method to remove the spikes at rims of pattern. • A considerable improvement over patterning quality is obtained by proposed method. - Abstract: In this paper, an indium–tin oxide (ITO) thin-film patterning method for higher pattern quality and productivity compared to the short-pulsed laser direct writing method is presented. We sputtered a thin ITO layer on a glass substrate, and then, plated a thin gold layer onto the ITO layer. The combined structure of the three layers (glass–ITO–gold) was patterned using laser-induced plasma generated by an ytterbium pulsed fiber laser (λ = 1064 nm). The results showed that the process parameters of 50 mm/s in scanning speed, 14 ns pulse duration, and a repetition rate of 7.5 kHz represented optimum conditions for the fabrication of ITO channels. Under these conditions, a channel 23.4 μm wide and 20 nm deep was obtained. However, built-up spikes (∼15 nm in height) resulted in a decrease in channel quality, and consequently, short circuit occurred at some patterned positions. These built-up spikes were completely removed by dipping the ITO layer into an etchant (18 wt.% HCl). A gold masking layer on the ITO surface was found to increase the channel surface quality without any decrease in ITO thickness. Moreover, the effects of repetition rate, scanning speed, and etching characteristics on surface quality were investigated

  6. Improved patterning of ITO coated with gold masking layer on glass substrate using nanosecond fiber laser and etching

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Nguyen Ngoc; Hung, Duong Thanh; Anh, Vo Tran [High Safety Vehicle Core Technology Research Center, Department of Mechanical & Automotive Engineering, Inje University, Gimhae (Korea, Republic of); BongChul, Kang, E-mail: kbc@kumoh.ac.kr [Department of Inteligent Mechanical Engineering, Kumoh National Institute of Technology, Gumi (Korea, Republic of); HyunChul, Kim, E-mail: mechkhc@inje.ac.kr [High Safety Vehicle Core Technology Research Center, Department of Mechanical & Automotive Engineering, Inje University, Gimhae (Korea, Republic of)

    2015-05-01

    Highlights: • A new patterning method for ITO thin film is introduced. • Gold thin film is important in decrease spikes formed in ITO patterning process. • The laser pulse width occupies a significant effect the patterning surface quality. • Etching process is the effective method to remove the spikes at rims of pattern. • A considerable improvement over patterning quality is obtained by proposed method. - Abstract: In this paper, an indium–tin oxide (ITO) thin-film patterning method for higher pattern quality and productivity compared to the short-pulsed laser direct writing method is presented. We sputtered a thin ITO layer on a glass substrate, and then, plated a thin gold layer onto the ITO layer. The combined structure of the three layers (glass–ITO–gold) was patterned using laser-induced plasma generated by an ytterbium pulsed fiber laser (λ = 1064 nm). The results showed that the process parameters of 50 mm/s in scanning speed, 14 ns pulse duration, and a repetition rate of 7.5 kHz represented optimum conditions for the fabrication of ITO channels. Under these conditions, a channel 23.4 μm wide and 20 nm deep was obtained. However, built-up spikes (∼15 nm in height) resulted in a decrease in channel quality, and consequently, short circuit occurred at some patterned positions. These built-up spikes were completely removed by dipping the ITO layer into an etchant (18 wt.% HCl). A gold masking layer on the ITO surface was found to increase the channel surface quality without any decrease in ITO thickness. Moreover, the effects of repetition rate, scanning speed, and etching characteristics on surface quality were investigated.

  7. Kinetic arrest and glass-glass transition in short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Sztucki, M.; Narayanan, T.; Belina, G.; Moussaied, A.; Pignon, F.; Hoekstra, H.

    2006-01-01

    A thermally reversible repulsive hard-sphere to sticky-sphere transition was studied in a model colloidal system over a wide volume fraction range. The static microstructure was obtained from high resolution small angle x-ray scattering, the colloid dynamics was probed by dynamic x-ray and light scattering, and supplementary mechanical properties were derived from bulk rheology. At low concentration, the system shows features of gas-liquid type phase separation. The bulk phase separation is presumably interrupted by a gelation transition at the intermediate volume fraction range. At high volume fractions, fluid-attractive glass and repulsive glass-attractive glass transitions are observed. It is shown that the volume fraction of the particles can be reliably deduced from the absolute scattered intensity. The static structure factor is modeled in terms of an attractive square-well potential, using the leading order series expansion of Percus-Yevick approximation. The ensemble-averaged intermediate scattering function shows different levels of frozen components in the attractive and repulsive glassy states. The observed static and dynamic behavior are consistent with the predictions of a mode-coupling theory and numerical simulations for a square-well attractive system

  8. Tellurite composite microstructured optical fibers with ultra-flattened and zero dispersion

    Science.gov (United States)

    Duan, Zhongchao; Liao, Meisong; Tomas, Kohoutek; Tong, Hoangtuan; Asano, Koji; Suzuki, Takenobu; Ohishi, Yasutake

    2012-04-01

    We report the fabrication of tellurite composite microstructured optical fiber (CMOF) with ultra-flattened zero dispersion (+/-3 ps/nm/Km) over 200nm band. To obtain this dispersion profile together with high nonlinearity, one ring of air holes and two layers of glass cladding are employed in the tellurite CMOF. The core of fiber is made of TeO2-Li2O-WO3 -MoO3-Nb2O5 (TLWMN) tellurite glass which possesses high linear and nonlinear refractive indices. The refractive index (n) at 1544nm and nonlinear refractive index (n2) of TLWMN glass is 2.08 and 3.78×10-11 esu, respectively. TeO2-ZnO-Na2O-La2O3 (TZNL) glass with n of 1.96 at 1544 nm and TeO2-ZnO-Li2O-Na2O-P2O5 (TZLNP) glass with low refractive index n of 1.63 at 1544 nm are used as the first cladding and the second cladding, respectively. Six small air holes are located between the core and the first glass cladding. Such kind of fiber with ~1.7 μm core and ~0.6 μm air holes are fabricated by a rod-in-tube method. The chromatic dispersion of the fiber is calculated by the fully vectorial finite difference method (FV-FDM) and becomes (+/-3 ps/nm/Km) in the wide range from 1.53 μm to 1.72 μm. And the nonlinear coefficient of present fiber is about 3.47 m-1W-1 which is much higher than that of silica MOFs. Furthermore, broad and flattened supercontinuum generation is demonstrated in 30-cm-long fiber with femtosecond laser pumping at 1557 nm. This kind of fiber has promising potential in nonlinear applications owing to the high nonlinearity and flattened dispersion profile.

  9. Celsian Glass-Ceramic Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Dicarlo, James A.

    1996-01-01

    Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.

  10. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers

    Science.gov (United States)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang

    2008-11-01

    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  11. Dry sliding wear behavior of epoxy composite reinforced with short palmyra fibers

    International Nuclear Information System (INIS)

    Biswal, Somen; Satapathy, Alok

    2016-01-01

    The present work explores the possibility of using palmyra fiber as a replacement for synthetic fiber in conventional polymer composites for application against wear. An attempt has been made in this work to improve the sliding wear resistance of neat epoxy by reinforcing it with short palmyra fibers (SPF). Epoxy composites with different proportions (0, 4, 8 and 12 wt. %) of SPF are fabricated by conventional hand lay-up technique. Dry sliding wear tests are performed on the composite samples using a pin-on-disc test rig as per ASTM G 99-05 standards under various operating parameters. Design of experiment approach based on Taguchi's L16 Orthogonal Arrays is used for the analysis of the wear. This parametric analysis reveals that the SPF content is the most significant factor affecting the wear process followed by the sliding velocity. The sliding wear behavior of these composites under an extensive range of test conditions is predicted by a model based on the artificial neural network (ANN). A well trained ANN has been used to predict the sliding wear response of epoxy based composites over a wide range. (paper)

  12. Advanced digital signal processing for short haul optical fiber transmission beyond 100G

    Science.gov (United States)

    Kikuchi, Nobuhiko

    2017-01-01

    Significant increase of intra and inter data center traffic has been expected by the rapid spread of various network applications like SNS, IoT, mobile and cloud computing, and the needs for ultra-high speed and cost-effective short- to medium-reach optical fiber links beyond 100-Gbit/s is becoming larger and larger. Such high-speed links typically use multilevel modulation to lower signaling speed, which in turn face serious challenges in limited loss budget and waveform distortion tolerance. One of the promising techniques to overcome them is the use of advanced digital signal processing (DSP) and we review various DSP applications for short-to-medium reach applications.

  13. Static and dynamic mechanical properties of alkali treated unidirectional continuous Palmyra Palm Leaf Stalk Fiber/jute fiber reinforced hybrid polyester composites

    International Nuclear Information System (INIS)

    Shanmugam, D.; Thiruchitrambalam, M.

    2013-01-01

    Highlights: • New type of hybrid composite with Palmyra Palm Leaf Stalk Fibers (PPLSF) and jute. • Composites fabricated with continuous, unidirectional fibers. • Alkali treatment and hybridizing jute imparted good static and dynamic properties. • Properties are comparable with well know natural/glass fiber composites. • New hybrid composite can be an alternative in place of synthetic fiber composites. - Abstract: Alkali treated continuous Palmyra Palm Leaf Stalk Fiber (PPLSF) and jute fibers were used as reinforcement in unsaturated polyester matrix and their static and dynamic mechanical properties were evaluated. Continuous PPLSF and jute fibers were aligned unidirectionally in bi-layer arrangement and the hybrid composites were fabricated by compression molding process. Positive hybrid effect was observed for the composites due to hybridization. Increasing jute fiber loading showed a considerable increase in tensile and flexural properties of the hybrid composites as compared to treated PPLSF composites. Scanning Electron microscopy (SEM) of the fractured surfaces showed the nature of fiber/matrix interface. The impact strength of the hybrid composites were observed to be less compared to pure PPLSF composites. Addition of jute fibers to PPLSF and alkali treatment of the fibers has enhanced the storage and loss modulus of the hybrid composites. A positive shift of Tan δ peaks to higher temperature and reduction in the peak height of the composites was also observed. The composites with higher jute loading showed maximum damping behavior. Overall the hybridization was found to be efficient showing increased static and dynamic mechanical properties. A comparative study of properties of this hybrid composite with other hybrids made out of using natural/glass fibers is elaborated. Hybridization of alkali treated jute and PPLSF has resulted in enhanced properties which are comparable with other natural/glass fiber composites thus increasing the scope of

  14. Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI

    Energy Technology Data Exchange (ETDEWEB)

    Magro, Elsa [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Cavale Blanche, Service de Neurochirurgie, Pole Neurolocomoteur, Brest (France); Moreau, Tristan; Gibaud, Bernard [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); Seizeur, Romuald [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Cavale Blanche, Service de Neurochirurgie, Pole Neurolocomoteur, Brest (France); INSERM UMR 1101 LaTIM, Brest (France); Morandi, Xavier [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Pontchaillou, Service de Neurochirurgie, Rennes (France)

    2012-11-15

    Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness. Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness. The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers. These results raise questions about the functional role of these MRI tracks and their relation with laterality. (orig.)

  15. Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI

    International Nuclear Information System (INIS)

    Magro, Elsa; Moreau, Tristan; Gibaud, Bernard; Seizeur, Romuald; Morandi, Xavier

    2012-01-01

    Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness. Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness. The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers. These results raise questions about the functional role of these MRI tracks and their relation with laterality. (orig.)

  16. Hardware-efficient signal generation of layered/enhanced ACO-OFDM for short-haul fiber-optic links.

    Science.gov (United States)

    Wang, Qibing; Song, Binhuang; Corcoran, Bill; Boland, David; Zhu, Chen; Zhuang, Leimeng; Lowery, Arthur J

    2017-06-12

    Layered/enhanced ACO-OFDM is a promising candidate for intensity modulation and direct-detection based short-haul fiber-optic links due to its both power and spectral efficiency. In this paper, we firstly demonstrate a hardware-efficient real-time 9.375 Gb/s QPSK-encoded layered/enhanced asymmetrical clipped optical OFDM (L/E-ACO-OFDM) transmitter using a Virtex-6 FPGA. This L/E-ACO-OFDM signal is successfully transmitted over 20-km uncompensated standard single-mode fiber (S-SMF) using a directly modulated laser. Several methods are explored to reduce the FPGA's logic resource utilization by taking advantage of the L/E-ACO-OFDM's signal characteristics. We show that the logic resource occupation of L/E-ACO-OFDM transmitter is almost the same as that of DC-biased OFDM transmitter when they achieve the same spectral efficiency, proving its great potential to be used in a real-time short-haul optical transmission link.

  17. Radiation effects in silicate glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Howitt, D.G.

    1988-01-01

    The study of radiation effects in complex silicate glasses has received renewed attention because of their use in special applications such as high level nuclear waste immobilization and fiber optics. Radiation changes the properties of these glasses by altering their electronic and atomic configurations. These alterations or defects may cause dilatations or microscopic phase changes along with absorption centers that limit the optical application of the glasses. Atomic displacements induced in the already disordered structure of the glasses may affect their use where heavy irradiating particles such as alpha particles, alpha recoils, fission fragments, or accelerated ions are present. Large changes (up to 1%) in density may result. In some cases the radiation damage may be severe enough to affect the durability of the glass in aqueous solutions. In the paper, the authors review the literature concerning radiation effects on density, durability, stored energy, microstructure and optical properties of silicate glasses. Both simple glasses and complex glasses used for immobilization of nuclear waste are considered

  18. Irradiation conditions for fiber laser bonding of HAp-glass ceramics with bovine cortical bone.

    Science.gov (United States)

    Tadano, Shigeru; Yamada, Satoshi; Kanaoka, Masaru

    2014-01-01

    Orthopedic implants are widely used to repair bones and to replace articulating joint surfaces. It is important to develop an instantaneous technique for the direct bonding of bone and implant materials. The aim of this study was to develop a technique for the laser bonding of bone with an implant material like ceramics. Ceramic specimens (10 mm diameter and 1 mm thickness) were sintered with hydroxyapatite and MgO-Al2O3-SiO2 glass powders mixed in 40:60 wt% proportions. A small hole was bored at the center of a ceramic specimen. The ceramic specimen was positioned onto a bovine bone specimen and a 5 mm diameter area of the ceramic specimen was irradiated using a fiber laser beam (1070-1080 nm wavelength). As a result, the bone and the ceramic specimens bonded strongly under the irradiation conditions of a 400 W laser power and a 1.0 s exposure time. The maximum shear strength was 5.3 ± 2.3 N. A bonding substance that penetrated deeply into the bone specimen was generated around the hole in the ceramic specimen. On using the fiber laser, the ceramic specimen instantaneously bonded to the bone specimen. Further, the irradiation conditions required for the bonding were investigated.

  19. Digital predistortion of 75–110 GHz W-band frequency multiplier for fiber wireless short range access systems

    DEFF Research Database (Denmark)

    Zhao, Ying; Deng, Lei; Pang, Xiaodan

    2011-01-01

    be effectively pre-compensated. Without using costly W-band components, a transmission system with 26km fiber and 4m wireless transmission operating at 99.6GHz is experimentally validated. Adjacent-channel power ratio (ACPR) improvements for IQ-modulated vector signals are guaranteed and transmission......We present a W-band fiber-wireless transmission system based on a nonlinear frequency multiplier for high-speed wireless short range access applications. By implementing a baseband digital signal predistortion scheme, intensive nonlinear distortions induced in a sextuple frequency multiplier can...... performances for fiber and wireless channels are studied. This W-band predistortion technique is a promising candidate for applications in high capacity wireless-fiber access systems....

  20. Oxidation and diffusion process in the ferrous iron-bearing glass fibres near glass temperature

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; Korsgaard, Martin; Kirkegaard, Lise

    2004-01-01

    The Fe2+ oxidation and the network modifier diffusion in the Fe2+-bearing glass fibers are studied using differential scanning calorimetry (DSC), thermogravimetry (TG), and secondary neutral mass spectrometry (SNMS). The results show two couplings: 1) between the Fe2+ oxidation and the network...... of the Fe2+-bearing fibers with an average diameter of 3.5 m by knowing the heat-treatment conditions and vice versa....

  1. swelling characteristics and tensile properties of natural fiber rei

    African Journals Online (AJOL)

    USER

    The swelling behavior and tensile strength of natural fiber-reinforced plastic in premium motor spirit (PMS), dual ... with fibers usually of glass fiber, Kevlar and carbon have gained ... NIGERIAN JOURNAL OF TECHNOLOGY, VOL. 27 NO.2 ...

  2. Influence of Coating with Some Natural Based Materials on the Erosion Wear Behavior of Glass Fiber Reinforced Epoxy Resin

    OpenAIRE

    Aseel Basim Abdul Hussein; Emad Saadi AL-Hassani; Reem Alaa Mohamed

    2015-01-01

    In the present study, composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as a matrix, 6% volume fractions of glass fibers (G.F) as reinforcement and 3%, 6% volume fractions of preparation natural material (Rice Husk Ash, Carrot Powder, and Sawdust) as filler. Studied the erosion wear behavior and coating by natural wastes (Rice Husk Ash) with epoxy resin after erosion. The results showed the non – reinforced epoxy have lower resistance erosion than n...

  3. High alkali-resistant basalt fiber for reinforcing concrete

    International Nuclear Information System (INIS)

    Lipatov, Ya.V.; Gutnikov, S.I.; Manylov, M.S.; Zhukovskaya, E.S.; Lazoryak, B.I.

    2015-01-01

    Highlights: • Doping of basalt fiber with ZrSiO 4 increased its alkali resistance. • Alkali treatment results in formation of protective surface layer on fibers. • Morphology and chemical composition of surface layer were investigated. • Mechanical properties of fibers were analyzed by a Weibull distribution. • Zirconia doped basalt fibers demonstrate high performance in concrete. - Abstract: Basalt glasses and fibers with zirconia content in the range from 0 to 7 wt% were obtained using ZrSiO 4 as a zirconium source. Weight loss and tensile strength loss of fibers after refluxing in alkali solution were determined. Basalt fiber with 5.7 wt% ZrO 2 had the best alkali resistance properties. Alkali treatment results in formation of protective surface layer on fibers. Morphology and chemical composition of surface layer were investigated. It was shown that alkali resistance of zirconia doped basalt fibers is caused by insoluble compounds of Zr 4+ , Fe 3+ and Mg 2+ in corrosion layer. Mechanical properties of initial and leached fibers were evaluated by a Weibull distribution. The properties of basalt fibers with ZrSiO 4 were compared with AR-glass fibers. The performance of concrete with obtained fibers was investigated

  4. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....

  5. Supersonic Panel Flutter Test Results for Flat Fiber-Glass Sandwich Panels with Foamed Cores

    Science.gov (United States)

    Tuovila, W. J.; Presnell, John G., Jr.

    1961-01-01

    Flutter tests have been made on flat panels having a 1/4 inch-thick plastic-foam core covered with thin fiber-glass laminates. The testing was done in the Langley Unitary Plan wind tunnel at Mach numbers from 1.76 t o 2.87. The flutter boundary for these panels was found to be near the flutter boundary of thin metal panels when compared on the basis of an equivalent panel stiffness. The results also demonstrated that the depth of the cavity behind the panel has a pronounced influence on flutter. Changing the cavity depth from 1 1/2 inches to 1/2 inch reduced the dynamic pressure at start of flutter by 40 percent. No flutter was obtained when the spacers on the back of the panel were against the bottom of the cavity.

  6. PERBAIKAN KEKUATAN DAN DAKTILITAS KOLOM BETON BERTULANG YANG MENDAPAT BEBAN GEMPA MENGGUNAKAN GLASS FIBER REINFORCED POLYMER

    Directory of Open Access Journals (Sweden)

    Parmo Parmo

    2014-05-01

    Full Text Available Repairing the Strength and Ductility of Reinforced Concrete Column That Got Earthquake using Gla­ss Fiber Reinforced Polymer. This study aims to identify the additional strength and ductility of reinforced concrete columns af­ter being re­­­­tro­fitted using glass fiber reinforced polymer (GFRP and got the brunt of the earth­quake. This study uses two objects tested columns, which are being tested for three times. Each column size is 350 x 350 x 1100 mm with f'c = 20.34 MPa and fy = 549.94 MPa. The tes­t­ing is performed by giving a constant axial load of 748 kN and cyclic lateral load using con­trol displacement method in order to simulate the brunt of earth­quake. The results show an in­crea­se in lateral capacity of co­lumn by 43.96%. Re­tro­­fitting the column with GFRP has a duc­tile property, which is shown by the increase of the displacement ductility by 129.14% and curvature ductility by 118.27%.   Penelitian ini ber­tujuan untuk mengetahui penambahan kekuatan dan dak­ti­li­­­­tas kolom beton bertulang se­telah diretrofit menggunakan glass fiber reinforced po­ly­­­mer (GFRP dan mendapat be­ban gempa. Penelitian ini menggunakan benda ­uji dua buah kolom dengan tiga kali pengujian. Masing-masing ukuran kolom 350 x 350 x 1100 mm dengan f’c = 20,34 MPa dan fy = 549,94 MPa. Pengujian dilakukan de­ngan memberikan beban ak­sial konstan 748 kN dan beban lateral siklik yang meng­gu­nakan metode di­splacemet con­trol untuk mensimulasikan beban gempa. Hasil pe­ne­­­litian menunjukkan pe­ningkatan kapasitas lateral pada kolom sebesar 43,96%. Retrofit kolom dengan GFRP bersifat dak­tail yang ditunjukkan dengan meningkatnya daktilitas per­pindahan sebesar 129,14% dan dak­­­tilitas kurvatur se­besar 118,27%.

  7. Thermal Protection of Carbon Fiber-Reinforced Composites by Ceramic Particles

    Directory of Open Access Journals (Sweden)

    Baljinder Kandola

    2016-06-01

    Full Text Available The thermal barrier efficiency of two types of ceramic particle, glass flakes and aluminum titanate, dispersed on the surface of carbon-fiber epoxy composites, has been evaluated using a cone calorimeter at 35 and 50 kW/m2, in addition to temperature gradients through the samples’ thicknesses, measured by inserting thermocouples on the exposed and back surfaces during the cone tests. Two techniques of dispersing ceramic particles on the surface have been employed, one where particles were dispersed on semi-cured laminate and the other where their dispersion in a phenolic resin was applied on the laminate surface, using the same method as used previously for glass fiber composites. The morphology and durability of the coatings to water absorption, peeling, impact and flexural tension were also studied and compared with those previously reported for glass-fiber epoxy composites. With both methods, uniform coatings could be achieved, which were durable to peeling or water absorption with a minimal adverse effect on the mechanical properties of composites. While all these properties were comparable to those previously observed for glass fiber composites, the ceramic particles have seen to be more effective on this less flammable, carbon fiber composite substrate.

  8. The effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resin: An in vitro study.

    Science.gov (United States)

    Anasane, Nayana; Ahirrao, Yogesh; Chitnis, Deepa; Meshram, Suresh

    2013-03-01

    Denture fracture is an unresolved problem in complete denture prosthodontics. However, the repaired denture often experiences a refracture at the repaired site due to poor transverse strength. Hence, this study was conducted to evaluate the effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resins. A total of 135 specimens of heat polymerized polymethyl methacrylate resin of dimensions 64 × 10 × 2.5 mm were fabricated. Fifteen intact specimens served as the control and 120 test specimens were divided into four groups (30 specimens each), depending upon the joint surface contour (butt, bevel, rabbet and round), with two subgroups based on type of the repair. Half of the specimens were repaired with plain repair resin and the other half with glass fibers reinforced repair resin. Transverse strength of the specimens was determined using three-point bending test. The results were analyzed using one-way ANOVA and Tukey post-hoc test (α= 0.05). Transverse strength values for all repaired groups were significantly lower than those for the control group (P transverse strength; hence, it can be advocated for repair of denture base resins.

  9. Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors

    DEFF Research Database (Denmark)

    Fasano, Andrea; Woyessa, Getinet; Stajanca, Pavol

    2016-01-01

    Here we present the fabrication of a solid-core microstructured polymer optical fiber (mPOF) made of polycarbonate (PC), and report the first experimental demonstration of a fiber Bragg grating (FBG) written in a PC optical fiber. The PC used in this work has a glass transition temperature of 145°C...

  10. Tissue imaging using full field optical coherence microscopy with short multimode fiber probe

    Science.gov (United States)

    Sato, Manabu; Eto, Kai; Goto, Tetsuhiro; Kurotani, Reiko; Abe, Hiroyuki; Nishidate, Izumi

    2018-03-01

    In achieving minimally invasive accessibility to deeply located regions the size of the imaging probes is important. We demonstrated full-field optical coherence tomography (FF-OCM) using an ultrathin forward-imaging short multimode fiber (SMMF) probe of 50 μm core diameter, 125 μm diameter, and 7.4 mm length for optical communications. The axial resolution was measured to be 2.14 μm and the lateral resolution was also evaluated to be below 4.38 μm using a test pattern (TP). The spatial mode and polarization characteristics of SMMF were evaluated. Inserting SMMF to in vivo rat brain, 3D images were measured and 2D information of nerve fibers was obtained. The feasibility of an SMMF as an ultrathin forward-imaging probe in FF-OCM has been demonstrated.

  11. A novel thermoset polymer optical fiber

    NARCIS (Netherlands)

    Flipsen, T.A C; Steendam, R; Pennings, A.J; Hadziioannou, G

    Polymer optical fibers are being investigated with a view to overcoming some of the disadvantages of glass optical fibers in communications applications. Dense cross-linked polymers, such as the polyisocyanurate discussed here (see figure), have been found to be superior in some respects to the

  12. Neutron- and light-scattering studies of the liquid-to-glass and glass-to-glass transitions in dense copolymer micellar solutions

    International Nuclear Information System (INIS)

    Chen Weiren; Chen Sowhsin; Mallamace, Francesco; Glinka, Charles J.; Fratini, Emiliano

    2003-01-01

    Recent mode coupling theory (MCT) calculations show that if a short-range attractive interaction is added to the pure hard sphere system, one may observe a new type of glass originating from the clustering effect (the attractive glass) as a result of the attractive interaction. This is in addition to the known glass-forming mechanism due to the cage effect in the hard sphere system (the repulsive glass). The calculations also indicate that if the range of attraction is sufficiently short compared to the diameter of the particle, within a certain interval of volume fractions where the two glass-forming mechanisms nearly balance each other, varying the external control parameter, the effective temperature, makes the glass-to-liquid-to-glass reentrance and the glass-to-glass transitions possible. Here we present experimental evidence of both transitions, obtained from small-angle neutron-scattering and photon correlation measurements taken from dense L64 copolymer micellar solutions in heavy water. Varying the temperature in certain predicted volume fraction range triggers a sharp transition between these two different types of glass. In particular, according to MCT, there is an end point (called A 3 singularity) of this glass-to-glass transition line, beyond which the long-time dynamics of the two glasses become identical. Our findings confirm this theoretical prediction. Surprisingly, although the Debye-Waller factors, the long-time limit of the coherent intermediate scattering functions, of these two glasses obtained from photon correlation measurements indeed become identical at the predicted volume fraction, they exhibit distinctly different intermediate time relaxation. Furthermore, our experimental results obtained from volume fractions beyond the end point are characterized by the same features as the repulsive glass obtained before the end point. A complete phase diagram giving the boundaries of the structural arrest transitions for L64 micellar system is

  13. Opportunities and threats to natural fibers in technical applications

    CSIR Research Space (South Africa)

    Anandjiwala, RD

    2013-06-01

    Full Text Available fibers offer competitive specific tensile strength and stiffness, in some cases even better than glass fibers but fairly comparable to synthetic fibers, such as nylon, carbon and aramid (Figure 1). Besides, they offer other advantages, such as improved...

  14. Optical Fiber Spectroscopy

    Science.gov (United States)

    Buoncristiani, A. M.

    1999-01-01

    This is the final report of work done on NASA Grant NAG-1-443. The work covers the period from July 1, 1992 to December 1, 1998. During this period several distinct but related research studies and work tasks were undertaken. These different subjects are enumerated below with a description of the work done on each of them. The focus of the research was the development of optical fibers for use as distributed temperature and stress sensors. The initial concept was to utilize the utilize the temperature and stress dependence of emission from rare earth and transition metal ions substitutionally doped into crystalline or glass fibers. During the course of investigating this it became clear that fiber Bragg gratings provided a alternative for making the desired measurements and there was a shift of research focus on to include the photo-refractive properties of germano-silicate glasses used for most gratings and to the possibility of developing fiber laser sources for an integrated optical sensor in the research effort. During the course of this work several students from Christopher Newport University and other universities participated in this effort. Their names are listed below. Their participation was an important part of their education.

  15. Faraday rotation and photoluminescence in heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics.

    Science.gov (United States)

    Gao, Guojun; Winterstein-Beckmann, Anja; Surzhenko, Oleksii; Dubs, Carsten; Dellith, Jan; Schmidt, Markus A; Wondraczek, Lothar

    2015-03-10

    We report on the magneto-optical (MO) properties of heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb(3+) ion concentration of up to 9.7 × 10(21) cm(-3), the reported glass exhibits an absolute negative Faraday rotation of ~120 rad/T/m at 632.8 nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400-1500 nm is found for a Tb(3+) concentration of ~6.5 × 10(21) cm(-3). For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb(3+) photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of ~43% is achieved. The lifetime of photoluminescence is ~2.2 ms at a stimulated emission cross-section σem of ~1.1 × 10(-21) cm(2) for ~ 5.0 × 10(21) cm(-3) Tb(3+). This results in an optical gain parameter σem*τ of ~2.5 × 10(-24) cm(2)s, what could be of interest for implementation of a Tb(3+) fiber laser.

  16. Faraday rotation and photoluminescence in heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics

    Science.gov (United States)

    Gao, Guojun; Winterstein-Beckmann, Anja; Surzhenko, Oleksii; Dubs, Carsten; Dellith, Jan; Schmidt, Markus A.; Wondraczek, Lothar

    2015-01-01

    We report on the magneto-optical (MO) properties of heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb3+ ion concentration of up to 9.7 × 1021 cm−3, the reported glass exhibits an absolute negative Faraday rotation of ~120 rad/T/m at 632.8 nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400–1500 nm is found for a Tb3+ concentration of ~6.5 × 1021 cm−3. For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb3+ photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of ~43% is achieved. The lifetime of photoluminescence is ~2.2 ms at a stimulated emission cross-section σem of ~1.1 × 10−21 cm2 for ~ 5.0 × 1021 cm−3 Tb3+. This results in an optical gain parameter σem*τ of ~2.5 × 10−24 cm2s, what could be of interest for implementation of a Tb3+ fiber laser. PMID:25754819

  17. Investigation on Er{sup 3+}/Ho{sup 3+} co-doped silicate glass for ~2 µm fiber lasers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xueqiang; Huang, Feifei; Cheng, Jimeng; Fan, Xiaokang; Gao, Song [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate School of Chinese Academy of Science, Beijing 100039 (China); Zhang, Junjie [College of Materials Science and Technology, China Jiliang University, Hangzhou 310018 (China); Hu, Lili [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, Danping, E-mail: dpchen2008@aliyun.com [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-06-15

    A stable Er{sup 3+}/Ho{sup 3+} co-doped lead silicate glass is developed. Luminescent properties are recorded under pumping with 808 and 1550 nm lasers. Energy-transfer mechanism and efficiency are analyzed. Energy-transfer efficiency from Er{sup 3+}:{sup 4}I{sub 13/2} to Ho{sup 3+}:{sup 5}I{sub 7} reaches 93.8% at 3 mol% Ho{sub 2}O{sub 3} doping concentration. Strong luminescence is detected when pumped at 1550 nm because of efficient energy transfer from Er{sup 3+}:{sup 4}I{sub 13/2} to Ho{sup 3+}:{sup 5}I{sub 7}. Peak gain coefficient at 2056 nm is detected as 1.62 cm{sup −1}. The excellent luminescent property and high stability indicate that Er{sup 3+}/Ho{sup 3+} co-doped lead silicate glass can be applied in 2 µm fiber lasers. - Highlights: • Er{sup 3+}/Ho{sup 3+} co-doped silicate glasses with high stability are prepared. • Strong luminescence is detected under pump of 1550 nm lasers owing to efficient energy transfer from Er{sup 3+} to Ho{sup 3+}. • Transfer efficiency is calculated to be 93.8% when Ho{sub 2}O{sub 3} doping concentration is up to 3 mol%. • Gain coefficient peaks at 2056 nm to be 1.62 cm{sup −1}.

  18. STUDY JARINGAN FIBER-OPTIK dan SONET

    OpenAIRE

    Syarif, Syafruddin; Katu, Umar; Suyuti, Saidah

    2006-01-01

    Optical Fiber communication system is a communication system using fiber optic as a transmission media. This communication system is able to transmit information in high capacity and high fidelity. Fiber optic consist of cylinder glass, the inside part of the cylinder is called core surrounded a cladding. The outside part of this cylinder made by elastic plastic called coating. ?? Based on the bias index and the waves mode in light propagation, optic fiber can be elassified into...

  19. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  20. A variety of neutron sensors based on scintillating glass waveguides

    International Nuclear Information System (INIS)

    Bliss, M.; Craig, R.A.

    1995-05-01

    Pacific Northwest Laboratory (PNL) has fabricated cerium-activated, lithium-silicate glass scintillating fiber neutron sensors via a hot-downdraw process. These fibers typically have a transmission length (e -1 length) of greater than 2 meters. The underlying physics of, the properties of, and selected devices incorporating these fibers are described. These fibers constitute an enabling technology for a wide variety of neutron sensors