WorldWideScience

Sample records for short generation time

  1. Short irradiation time characteristics of the inverter type X-ray generator

    International Nuclear Information System (INIS)

    Miyazaki, Shigeru; Hara, Takamitu; Matutani, Kazuo; Saito, Kazuhiko.

    1994-01-01

    The linearity of the X-ray output is an important factor in radiography. It is a composite of the linearities of the X-ray tube voltage, the X-ray tube current, and the exposure time. This paper focuses on the linearity of exposure time. Non-linearity of the X-ray output for short-time exposure became a problem when the three-phase X-ray generator was introduced. This paper describes the inverter-type X-ray generator, which is expected to become predominant in the future. Previously, we investigated X-ray output linearity during short-time exposure using the technique of dynamic study. In this paper, we describe the application of a digital memory and a personal computer to further investigation. The non-linearity of the X-ray output was caused by irregular waveforms of the X-ray tube voltage found at the rise time and the fall time. When the rise time was about 0.6 ms, the non-linearity was about 2%, which is negligibly small. The non-linearity due to the fall time of the X-ray tube varied greatly according to the X-ray tube current. For the minimum irradiation time of 1 ms, 4% to 27% of the non-linearity was attributable to the fall time. The main cause was the stray capacitance of the X-ray high-voltage cables. When the X-ray tube current exceeded 400 mA, the rise time was almost equal to the fall time, and the problem did not occur. Consequently, the ideal generator should have a fall time which is equal to the rise time of the X-ray tube voltage. Strictly speaking, such a generator should have rectangular waveforms. (author)

  2. Determination of Permissible Short-Time Emergency Overloading of Turbo-Generators and Synchronous Compensators

    Directory of Open Access Journals (Sweden)

    V. A. Anischenko

    2011-01-01

    Full Text Available The paper shows that failure to take into account variable ratio of short-time emergency overloading of turbo-generators (synchronous compensators that can lead to underestimation of overloading capacity or impermissible insulation over-heating.A method has been developed for determination of permissible duration of short-time emergency over-loading that takes into account changes of over-loading ratio in case of a failure.

  3. Short-time action electric generators to power physical devices

    International Nuclear Information System (INIS)

    Glebov, I.A.; Kasharskij, Eh.G.; Rutberg, F.G.; Khutoretskij, G.M.

    1982-01-01

    Requirements to be met by power-supply sources of the native electrophysical facilities have been analyzed and trends in designing foreign electric machine units of short-time action have been considered. Specifications of a generator, manufactured in the form of synchronous bipolar turbogenerator with an all-forged rotor with indirect air cooling of the rotor and stator windings are presented. Front parts of the stator winding are additionally fixed using glass-textolite rings, brackets and gaskets. A flywheel, manufactured in the form of all-forged steel cylinder is joined directly with the generator rotor by means of a half-coupling. An acceleration asynchronous engine with a phase rotor of 4 MW nominal capacity is located on the opposite side of the flywheel. The generator peak power is 242 MVxA; power factor = 0.9; energy transferred to the load 5per 1 pulse =00 MJ; the flywheel weight 81 t

  4. High-voltage short-fall pulse generator

    International Nuclear Information System (INIS)

    Dolbilov, G.V.; Fateev, A.A.; Petrov, V.A.

    1986-01-01

    Powerful high-voltage pulses with short fall times and relatively low afterpulse amplitude are required for the deflection systems of accelerators. A generator is described that provides, into a 75-ohm load, a voltage pulse of up to 100 kV with a fall time of less than 1 nsec and a relative afterpulse amplitude of less than or equal to 15%. The generator employs a short-circuited ferrite-filled line in which shock waves are formed. A magnetic section is used to increase power. The switch is a TGI1-2500/50 thyratron. The main causes of afterpulses and methods for reducing their amplitude are examined

  5. Real-time energy resources scheduling considering short-term and very short-term wind forecast

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marco; Sousa, Tiago; Morais, Hugo; Vale, Zita [Polytechnic of Porto (Portugal). GECAD - Knowledge Engineering and Decision Support Research Center

    2012-07-01

    This paper proposes an energy resources management methodology based on three distinct time horizons: day-ahead scheduling, hour-ahead scheduling, and real-time scheduling. In each scheduling process the update of generation and consumption operation and of the storage and electric vehicles storage status are used. Besides the new operation conditions, the most accurate forecast values of wind generation and of consumption using results of short-term and very short-term methods are used. A case study considering a distribution network with intensive use of distributed generation and electric vehicles is presented. (orig.)

  6. Model documentation report: Short-Term Hydroelectric Generation Model

    International Nuclear Information System (INIS)

    1993-08-01

    The purpose of this report is to define the objectives of the Short- Term Hydroelectric Generation Model (STHGM), describe its basic approach, and to provide details on the model structure. This report is intended as a reference document for model analysts, users, and the general public. Documentation of the model is in accordance with the Energy Information Administration's (AYE) legal obligation to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). The STHGM performs a short-term (18 to 27- month) forecast of hydroelectric generation in the United States using an autoregressive integrated moving average (UREMIA) time series model with precipitation as an explanatory variable. The model results are used as input for the short-term Energy Outlook

  7. Short pulse neutron generator

    Science.gov (United States)

    Elizondo-Decanini, Juan M.

    2016-08-02

    Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and the switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.

  8. High voltage short plus generation based on avalanche circuit

    International Nuclear Information System (INIS)

    Hu Yuanfeng; Yu Xiaoqi

    2006-01-01

    Simulate the avalanche circuit in series with PSPICE module, design the high voltage short plus generation circuit by avalanche transistor in series for the sweep deflection circuit of streak camera. The output voltage ranges 1.2 KV into 50 ohm load. The rise time of the circuit is less than 3 ns. (authors)

  9. Evaluating the quality of scenarios of short-term wind power generation

    DEFF Research Database (Denmark)

    Pinson, Pierre; Girard, R.

    2012-01-01

    Scenarios of short-term wind power generation are becoming increasingly popular as input to multi-stage decision-making problems e.g. multivariate stochastic optimization and stochastic programming. The quality of these scenarios is intuitively expected to substantially impact the benets from...... their use in decision-making. So far however, their verication is almost always focused on their marginal distributions for each individual lead time only, thus overlooking their temporal interdependence structure. The shortcomings of such an approach are discussed. Multivariate verication tools, as well...... as diagnostic approaches based on event-based verication are then presented. Their application to the evaluation of various sets of scenarios of short-term wind power generation demonstrates them as valuable discrimination tools....

  10. Evaluating the quality of scenarios of short-term wind power generation

    International Nuclear Information System (INIS)

    Pinson, P.; Girard, R.

    2012-01-01

    Highlights: ► Presentation of the desirable properties of wind power generation scenarios. ► Description of various evaluation frameworks (univariate, multivariate, diagnostic). ► Highlighting of the properties of current approaches to scenario generation. ► Guidelines for future evaluation/benchmark exercises. -- Abstract: Scenarios of short-term wind power generation are becoming increasingly popular as input to multistage decision-making problems e.g. multivariate stochastic optimization and stochastic programming. The quality of these scenarios is intuitively expected to substantially impact the benefits from their use in decision-making. So far however, their verification is almost always focused on their marginal distributions for each individual lead time only, thus overlooking their temporal interdependence structure. The shortcomings of such an approach are discussed. Multivariate verification tools, as well as diagnostic approaches based on event-based verification are then presented. Their application to the evaluation of various sets of scenarios of short-term wind power generation demonstrates them as valuable discrimination tools.

  11. Activation analysis with neutron generators using short-lived radionuclides

    International Nuclear Information System (INIS)

    Salma, I.

    1993-01-01

    The short half-life involves a number of important differences in production, transportation and measurement of radionuclides, and in counting statistics as compared with those in traditional activation analysis. Experiments were performed to investigate the analytical possibilities and prospective utilization of short-lived radionuclides produced by 14-MeV neutron irradiation. A rapid pneumatic transfer system for use with neutron generators was installed and applied for detecting radionuclides with a half-life from 300 ms to 30 s. The transport time for samples with a total mass of 1-4 g is between 130 and 160 ms for pressurized air of 0.1-0.4 MPa. 11 elements were studied by the conventional activation method using both a typical pneumatic transport system (run time 3 s) and the fast pneumatic transport facility. The effect of the cyclic activation technique on the elemental sensitivities was also investigated. (orig.)

  12. Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.

    Science.gov (United States)

    Vinokurov, Nikolay A; Jeong, Young Uk

    2013-02-08

    We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device.

  13. Short Circuits of a 10 MW High Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2016-01-01

    Direct drive high temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits happen...... at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator’s equivalent circuits is developed to simulate short circuit faults. Afterwards, the model is used to study the transient performance of a 10 MW HTS wind turbine generator under four different short...... that the short circuits pose great challenges to the generator, and careful consideration should be given to protect the generator. The results presented in this paper would be beneficial to the design, operation and protection of an HTS wind turbine generator....

  14. Spatio-spectral analysis of ionization times in high-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Soifer, Hadas, E-mail: hadas.soifer@weizmann.ac.il [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Dagan, Michal; Shafir, Dror; Bruner, Barry D. [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Ivanov, Misha Yu. [Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London (United Kingdom); Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Serbinenko, Valeria; Barth, Ingo; Smirnova, Olga [Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Dudovich, Nirit [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2013-03-12

    Graphical abstract: A spatio-spectral analysis of the two-color oscillation phase allows us to accurately separate short and long trajectories and reconstruct their ionization times. Highlights: ► We perform a complete spatio-spectral analysis of the high harmonic generation process. ► We analyze the ionization times across the entire spatio-spectral plane of the harmonics. ► We apply this analysis to reconstruct the ionization times of both short and long trajectories. - Abstract: Recollision experiments have been very successful in resolving attosecond scale dynamics. However, such schemes rely on the single atom response, neglecting the macroscopic properties of the interaction and the effects of using multi-cycle laser fields. In this paper we perform a complete spatio-spectral analysis of the high harmonic generation process and resolve the distribution of the subcycle dynamics of the recolliding electron. Specifically, we focus on the measurement of ionization times. Recently, we have demonstrated that the addition of a weak, crossed polarized second harmonic field allows us to resolve the moment of ionization (Shafir, 2012) [1]. In this paper we extend this measurement and perform a complete spatio-spectral analysis. We apply this analysis to reconstruct the ionization times of both short and long trajectories showing good agreement with the quantum path analysis.

  15. Short Circuits of a 10-MW High-Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2017-01-01

    Direct Drive high-temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits take...... place at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator's equivalent circuits is developed to simulate short-circuit faults. Afterward, the model is used to study the transient performance of a 10-MW HTS wind turbine generator under four...... show that the short circuits pose great challenges to the generator, and careful consideration should be given to protect the generator. The findings presented in this paper would be beneficial to the design, operation and protection of an HTS wind turbine generator....

  16. Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.

    Science.gov (United States)

    Saller, Maximilian A C; Habershon, Scott

    2017-07-11

    Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.

  17. Short-term wind power forecasting: probabilistic and space-time aspects

    DEFF Research Database (Denmark)

    Tastu, Julija

    work deals with the proposal and evaluation of new mathematical models and forecasting methods for short-term wind power forecasting, accounting for space-time dynamics based on geographically distributed information. Different forms of power predictions are considered, starting from traditional point...... into the corresponding models are analysed. As a final step, emphasis is placed on generating space-time trajectories: this calls for the prediction of joint multivariate predictive densities describing wind power generation at a number of distributed locations and for a number of successive lead times. In addition......Optimal integration of wind energy into power systems calls for high quality wind power predictions. State-of-the-art forecasting systems typically provide forecasts for every location individually, without taking into account information coming from the neighbouring territories. It is however...

  18. Three-phase short circuit calculation method based on pre-computed surface for doubly fed induction generator

    Science.gov (United States)

    Ma, J.; Liu, Q.

    2018-02-01

    This paper presents an improved short circuit calculation method, based on pre-computed surface to determine the short circuit current of a distribution system with multiple doubly fed induction generators (DFIGs). The short circuit current, injected into power grid by DFIG, is determined by low voltage ride through (LVRT) control and protection under grid fault. However, the existing methods are difficult to calculate the short circuit current of DFIG in engineering practice due to its complexity. A short circuit calculation method, based on pre-computed surface, was proposed by developing the surface of short circuit current changing with the calculating impedance and the open circuit voltage. And the short circuit currents were derived by taking into account the rotor excitation and crowbar activation time. Finally, the pre-computed surfaces of short circuit current at different time were established, and the procedure of DFIG short circuit calculation considering its LVRT was designed. The correctness of proposed method was verified by simulation.

  19. Short-term forecasting model for aggregated regional hydropower generation

    International Nuclear Information System (INIS)

    Monteiro, Claudio; Ramirez-Rosado, Ignacio J.; Fernandez-Jimenez, L. Alfredo

    2014-01-01

    Highlights: • Original short-term forecasting model for the hourly hydropower generation. • The use of NWP forecasts allows horizons of several days. • New variable to represent the capacity level for generating hydroelectric energy. • The proposed model significantly outperforms the persistence model. - Abstract: This paper presents an original short-term forecasting model of the hourly electric power production for aggregated regional hydropower generation. The inputs of the model are previously recorded values of the aggregated hourly production of hydropower plants and hourly water precipitation forecasts using Numerical Weather Prediction tools, as well as other hourly data (load demand and wind generation). This model is composed of three modules: the first one gives the prediction of the “monthly” hourly power production of the hydropower plants; the second module gives the prediction of hourly power deviation values, which are added to that obtained by the first module to achieve the final forecast of the hourly hydropower generation; the third module allows a periodic adjustment of the prediction of the first module to improve its BIAS error. The model has been applied successfully to the real-life case study of the short-term forecasting of the aggregated hydropower generation in Spain and Portugal (Iberian Peninsula Power System), achieving satisfactory results for the next-day forecasts. The model can be valuable for agents involved in electricity markets and useful for power system operations

  20. A Novel Hybrid Model for Short-Term Forecasting in PV Power Generation

    Directory of Open Access Journals (Sweden)

    Yuan-Kang Wu

    2014-01-01

    Full Text Available The increasing use of solar power as a source of electricity has led to increased interest in forecasting its power output over short-time horizons. Short-term forecasts are needed for operational planning, switching sources, programming backup, reserve usage, and peak load matching. However, the output of a photovoltaic (PV system is influenced by irradiation, cloud cover, and other weather conditions. These factors make it difficult to conduct short-term PV output forecasting. In this paper, an experimental database of solar power output, solar irradiance, air, and module temperature data has been utilized. It includes data from the Green Energy Office Building in Malaysia, the Taichung Thermal Plant of Taipower, and National Penghu University. Based on the historical PV power and weather data provided in the experiment, all factors that influence photovoltaic-generated energy are discussed. Moreover, five types of forecasting modules were developed and utilized to predict the one-hour-ahead PV output. They include the ARIMA, SVM, ANN, ANFIS, and the combination models using GA algorithm. Forecasting results show the high precision and efficiency of this combination model. Therefore, the proposed model is suitable for ensuring the stable operation of a photovoltaic generation system.

  1. Active mode-locking of mid-infrared quantum cascade lasers with short gain recovery time.

    Science.gov (United States)

    Wang, Yongrui; Belyanin, Alexey

    2015-02-23

    We investigate the dynamics of actively modulated mid-infrared quantum cascade lasers (QCLs) using space- and time-domain simulations of coupled density matrix and Maxwell equations with resonant tunneling current taken into account. We show that it is possible to achieve active mode locking and stable generation of picosecond pulses in high performance QCLs with a vertical laser transition and a short gain recovery time by bias modulation of a short section of a monolithic Fabry-Perot cavity. In fact, active mode locking in QCLs with a short gain recovery time turns out to be more robust to the variation of parameters as compared to previously studied lasers with a long gain recovery time. We investigate the effects of spatial hole burning and phase locking on the laser output.

  2. MOSFET-based high voltage short pulse generator for ultrasonic transducer excitation

    Science.gov (United States)

    Hidayat, Darmawan; Setianto, Syafei, Nendi Suhendi; Wibawa, Bambang Mukti

    2018-02-01

    This paper presents the generation of a high-voltage short pulse for the excitation of high frequency ultrasonic transducers. This is highly required in the purpose of various ultrasonic-based evaluations, particularly when high resolution measurement is necessary. A high voltage (+760 V) DC voltage source was pulsated by an ultrafast switching MOSFET which was driven by a pulse generator circuit consisting of an astable multivibrator, a one-shot multivibrator with Schmitt trigger input and a high current MOSFET driver. The generated pulses excited a 200-kHz and a 1-MHz ultrasonic transducers and tested in the transmission mode propagation to evaluate the performances of the generated pulse. The test results showed the generator were able to produce negative spike pulses up to -760 V voltage with the shortest time-width of 107.1 nanosecond. The transmission-received ultrasonic waves show frequency oscillation at 200 and 961 kHz and their amplitudes varied with the voltage of excitation pulse. These results conclude that the developed pulse generator is applicable to excite transducer for the generation of high frequency ultrasonic waves.

  3. NMR transmit-receive system with short recovery time and effective isolation

    Science.gov (United States)

    Jurga, K.; Reynhardt, E. C.; Jurga, S.

    A transmit-receive system with a short recovery time and excellent isolation has been developed. The system operates in conjunction with an ENI Model 3200L broadband amplifier and a spin-lock NMR pulse spectrometer. The system has been tested in the frequency range 5.5 to 52 MHz and seems not to generate any background noise.

  4. Rapid growth, early maturation and short generation time in African annual fishes

    Czech Academy of Sciences Publication Activity Database

    Blažek, Radim; Polačik, Matej; Reichard, Martin

    2013-01-01

    Roč. 4, č. 24 (2013), s. 24 ISSN 2041-9139 R&D Projects: GA ČR(CZ) GAP506/11/0112 Institutional support: RVO:68081766 Keywords : extreme life history * annual fish * explosive growth * rapid maturation * generation time * killifish * diapause * vertebrate * reaction norm * Savanna Subject RIV: EG - Zoology Impact factor: 3.104, year: 2013 http://www.evodevojournal.com/content/4/1/24

  5. Potential barrier classification by short-time measurement

    International Nuclear Information System (INIS)

    Granot, Er'el; Marchewka, Avi

    2006-01-01

    We investigate the short-time dynamics of a delta-function potential barrier on an initially confined wave packet. There are mainly two conclusions: (A) At short times the probability density of the first particles that passed through the barrier is unaffected by it. (B) When the barrier is absorptive (i.e., its potential is imaginary) it affects the transmitted wave function at shorter times than a real potential barrier. Therefore, it is possible to distinguish between an imaginary and a real potential barrier by measuring its effect at short times only on the transmitting wave function

  6. Potential barrier classification by short-time measurement

    Science.gov (United States)

    Granot, Er'El; Marchewka, Avi

    2006-03-01

    We investigate the short-time dynamics of a delta-function potential barrier on an initially confined wave packet. There are mainly two conclusions: (A) At short times the probability density of the first particles that passed through the barrier is unaffected by it. (B) When the barrier is absorptive (i.e., its potential is imaginary) it affects the transmitted wave function at shorter times than a real potential barrier. Therefore, it is possible to distinguish between an imaginary and a real potential barrier by measuring its effect at short times only on the transmitting wave function.

  7. Three-dimensional ultrashort echo time MRI and Short T2 images generated from subtraction for determination of tumor burden in lung cancer: Preclinical investigation in transgenic mice.

    Science.gov (United States)

    Müller, Andreas; Jagoda, Philippe; Fries, Peter; Gräber, Stefan; Bals, Robert; Buecker, Arno; Jungnickel, Christopher; Beisswenger, Christoph

    2018-02-01

    To investigate the potential of 3D ultrashort echo time MRI and short T 2 images generated by subtraction for determination of total tumor burden in lung cancer. As an animal model of spontaneously developing non-small cell lung cancer, the K-rasLA1 transgenic mouse was used. Three-dimensional MR imaging was performed with radial k-space acquisition and echo times of 20 µs and 1 ms. For investigation of the short T 2 component in the recorded signal, subtraction images were generated from these data sets and used for consensus identification of tumors. Next, manual segmentation was performed on all MR images by two independent investigators. MRI data were compared with the results from histologic investigations and among the investigators. Tumor number and total tumor burden from imaging experiments correlated strongly with the results of histologic investigations. Intra- and interuser comparison showed highest correlations between the individual measurements for ultra-short TE MRI. Three-dimensional MRI protocols facilitate accurate tumor identification in mice harboring lung tumors. Ultrashort TE MRI is the superior imaging strategy when investigating lung tumors of miscellaneous size with 3D MR imaging strategies. Magn Reson Med 79:1052-1060, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Speckles generated by skewed, short-coherence light beams

    International Nuclear Information System (INIS)

    Brogioli, D; Salerno, D; Ziano, R; Mantegazza, F; Croccolo, F

    2011-01-01

    When a coherent laser beam impinges on a random sample (e.g. a colloidal suspension), the scattered light exhibits characteristic speckles. If the temporal coherence of the light source is too short, then the speckles disappear, along with the possibility of performing homodyne or heterodyne scattering detection or photon correlation spectroscopy. Here we investigate the scattering of a so-called ‘skewed coherence beam’, i.e. a short-coherence beam modified such that the field is coherent within slabs that are skewed with respect to the wave fronts. We show that such a beam generates speckles and can be used for heterodyne scattering detection, despite its short temporal coherence. Moreover, we show that the heterodyne signal is not affected by multiple scattering. We suggest that the phenomenon presented here can be used as a means of carrying out heterodyne scattering measurement with any short-coherence radiation, including x-rays. (paper)

  9. Short-time quantum dynamics of sharp boundaries potentials

    Energy Technology Data Exchange (ETDEWEB)

    Granot, Er' el, E-mail: erel@ariel.ac.il; Marchewka, Avi

    2015-02-15

    Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically.

  10. Short-time quantum dynamics of sharp boundaries potentials

    Science.gov (United States)

    Granot, Er'el; Marchewka, Avi

    2015-02-01

    Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically.

  11. Short-time quantum dynamics of sharp boundaries potentials

    International Nuclear Information System (INIS)

    Granot, Er'el; Marchewka, Avi

    2015-01-01

    Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically

  12. Time-frequency analysis of fusion plasma signals beyond the short-time Fourier transform paradigm: An overview

    International Nuclear Information System (INIS)

    Bizarro, Joao P.S.; Figueiredo, Antonio C.A.

    2008-01-01

    Performing a time-frequency (t-f) analysis on actual magnetic pick-up coil data from the JET tokamak, a comparison is presented between the spectrogram and the Wigner and Choi-Williams distributions. Whereas the former, which stems from the short-time Fourier transform and has been the work-horse for t-f signal processing, implies an unavoidable trade-off between time and frequency resolutions, the latter two belong to a later generation of distributions that yield better, if not optimal joint t-f localization. Topics addressed include signal representation in the t-f plane, frequency identification and evolution, instantaneous-frequency estimation, and amplitude tracking

  13. SHORT-RANGE WAKEFIELD IN A FLAT PILLBOX CAVITY GENERATED BY A SUB-RELATIVISTIC BEAM BUNCH

    International Nuclear Information System (INIS)

    WANG, H.; PALMER, R.B.; GALLARDO, J.

    2001-01-01

    The short-range wakefield between two parallel conducting plates generated by a sub-relativistic beam bunch has been solved analytically by the image charge method in time domain. Comparing with the traditional modal analysis in frequency domain, this algorithm simplifies the mathematics and reveals in greater details the physics of electromagnetic field generation, propagation, reflection and causality. The calculated results have an excellent agreement with MAFIA and ABC1 simulations in all range of beam velocities

  14. Development and application of the generator for the short-living nuclides production

    International Nuclear Information System (INIS)

    Tsejner, A.

    1979-01-01

    The results are stated of investigations by means of radioisotopes on the substance transfer in technological equipment. For these purposes, in most cases, nuclides with high gamma-activity are used and, if possible, having short half-life because the short half-life gives certain advantages in the cases when it is impossible to store radioactive substances in the technological equipment for a long time. It is noted that in connection with short half-life of the nucludes used for labelling and for the economic and radiation safety reasons, activity of these nuclides can not be high. It has been established that the most suitable nuclide for the labelling purpose is lanthanum-140 produced either in a nuclear reactor, or by means of separation from barium=-140 transforming into lanthanum-140 in an isotopic generator. Some methods of lanthanum separation from barium are described, in particular, in the isotopic generator described, barium is adsorbed on the cation-exchanger KPS-200 having high enough stability with respect to the ionozing radiations. As an eluent the 10 -2 M solution of the complexone (Na 2 - EDTA) was used. The complexone solution can be easely obtained and, because of the hydrolysis, it serves as a buffer solution. The data are given for radiation purity and yield of lanthanum-=140 [ru

  15. Coherent harmonics generated by a super-short electron pulse

    International Nuclear Information System (INIS)

    Ding Wu

    1996-01-01

    A novel mechanism generating superradiance harmonics is found. In this superradiance harmonics, the temporal width of harmonics is extremely short, the ratio of high harmonic fundamental wave is much higher than the known superradiance harmonics

  16. Multiple time-scale optimization scheduling for islanded microgrids including PV, wind turbine, diesel generator and batteries

    DEFF Research Database (Denmark)

    Xiao, Zhao xia; Nan, Jiakai; Guerrero, Josep M.

    2017-01-01

    A multiple time-scale optimization scheduling including day ahead and short time for an islanded microgrid is presented. In this paper, the microgrid under study includes photovoltaics (PV), wind turbine (WT), diesel generator (DG), batteries, and shiftable loads. The study considers the maximum...... efficiency operation area for the diesel engine and the cost of the battery charge/discharge cycle losses. The day-ahead generation scheduling takes into account the minimum operational cost and the maximum load satisfaction as the objective function. Short-term optimal dispatch is based on minimizing...

  17. Generation of ultra-short relativistic-electron-bunch by a laser wakefield

    NARCIS (Netherlands)

    Khachatryan, A.G.; Boller, Klaus J.; van Goor, F.A.

    2003-01-01

    The possibility of the generation of an ultra-short (about one micron long) relativistic (up to a few GeVs) electron-bunch in a moderately nonlinear laser wakefield excited in an underdense plasma by an intense laser pulse is investigated. The ultra-short bunch is formed by trapping, effective

  18. The effect of short recovery period investment on least-cost generation system expansion

    International Nuclear Information System (INIS)

    Yiqun He; David, A.K.; Fernando, P.N.

    1995-01-01

    The effect of the short recovery period of private investment on least-cost generation system expansion is analysed, and a trade-off method for generation system expansion, which gives consideration to both the least-cost strategy and the short recovery period of private investment, is presented. First, the optimal mix of generation units under a standard recovery period for all units is established, and then the surcharge, due to the difference between the short recovery period and the standard recovery period, is calculated and shared between all units. The former is an optimization to make best use of natural resources, and the latter is a trade-off method to spread the surcharge throughout the system. (Author)

  19. Generation of short electrical pulses based on bipolar transistorsny

    Directory of Open Access Journals (Sweden)

    M. Gerding

    2004-01-01

    Full Text Available A system for the generation of short electrical pulses based on the minority carrier charge storage and the step recovery effect of bipolar transistors is presented. Electrical pulses of about 90 ps up to 800 ps duration are generated with a maximum amplitude of approximately 7V at 50Ω. The bipolar transistor is driven into saturation and the base-collector and base-emitter junctions become forward biased. The resulting fast switch-off edge of the transistor’s output signal is the basis for the pulse generation. The fast switching of the transistor occurs as a result of the minority carriers that have been injected and stored across the base-collector junction under forward bias conditions. If the saturated transistor is suddenly reverse biased the pn-junction will appear as a low impedance until the stored charge is depleted. Then the impedance will suddenly increase to its normal high value and the flow of current through the junction will turn to zero, abruptly. A differentiation of the output signal of the transistor results in two short pulses with opposite polarities. The differentiating circuit is implemented by a transmission line network, which mainly acts as a high pass filter. Both the transistor technology (pnp or npn and the phase of the transfer function of the differentating circuit influence the polarity of the output pulses. The pulse duration depends on the transistor parameters as well as on the transfer function of the pulse shaping network. This way of generating short electrical pulses is a new alternative for conventional comb generators based on steprecovery diodes (SRD. Due to the three-terminal structure of the transistor the isolation problem between the input and the output signal of the transistor network is drastically simplified. Furthermore the transistor is an active element in contrast to a SRD, so that its current gain can be used to minimize the power of the driving signal.

  20. Decision time horizon for music genre classification using short time features

    DEFF Research Database (Denmark)

    Ahrendt, Peter; Meng, Anders; Larsen, Jan

    2004-01-01

    In this paper music genre classification has been explored with special emphasis on the decision time horizon and ranking of tapped-delay-line short-time features. Late information fusion as e.g. majority voting is compared with techniques of early information fusion such as dynamic PCA (DPCA......). The most frequently suggested features in the literature were employed including mel-frequency cepstral coefficients (MFCC), linear prediction coefficients (LPC), zero-crossing rate (ZCR), and MPEG-7 features. To rank the importance of the short time features consensus sensitivity analysis is applied...

  1. Retention time generates short-term phytoplankton blooms in a shallow microtidal subtropical estuary

    Science.gov (United States)

    Odebrecht, Clarisse; Abreu, Paulo C.; Carstensen, Jacob

    2015-09-01

    In this study it was hypothesised that increasing water retention time promotes phytoplankton blooms in the shallow microtidal Patos Lagoon estuary (PLE). This hypothesis was tested using salinity variation as a proxy of water retention time and chlorophyll a for phytoplankton biomass. Submersible sensors fixed at 5 m depth near the mouth of PLE continuously measured water temperature, salinity and pigments fluorescence (calibrated to chlorophyll a) between March 2010 and 12th of December 2011, with some gaps. Salinity variations were used to separate alternating patterns of outflow of lagoon water (salinity 24; 35% of the time). The two transition phases represented a rapid change from lagoon water outflow to marine water inflow and a more gradually declining salinity between the dominating inflow and outflow conditions. During the latter of these, a significant chlorophyll a increase relative to that expected from a linear mixing relationship was observed at intermediate salinities (10-20). The increase in chlorophyll a was positively related to the duration of the prior coastal water inflow in the PLE. Moreover, chlorophyll a increase was significantly higher during austral spring-summer than autumn-winter, probably due to higher light and nutrient availability in the former. Moreover, the retention time process operating on time scales of days influences the long-term phytoplankton variability in this ecosystem. Comparing these results with monthly data from a nearby long-term water quality monitoring station (1993-2011) support the hypothesis that chlorophyll a accumulations occur after marine inflow events, whereas phytoplankton does not accumulate during high water outflow, when the water residence time is short. These results suggest that changing hydrological pattern is the most important mechanism underlying phytoplankton blooms in the PLE.

  2. Short-time quantum propagator and Bohmian trajectories

    Science.gov (United States)

    de Gosson, Maurice; Hiley, Basil

    2013-12-01

    We begin by giving correct expressions for the short-time action following the work Makri-Miller. We use these estimates to derive an accurate expression modulo Δt2 for the quantum propagator and we show that the quantum potential is negligible modulo Δt2 for a point source, thus justifying an unfortunately largely ignored observation of Holland made twenty years ago. We finally prove that this implies that the quantum motion is classical for very short times.

  3. Short-time quantum propagator and Bohmian trajectories

    International Nuclear Information System (INIS)

    Gosson, Maurice de; Hiley, Basil

    2013-01-01

    We begin by giving correct expressions for the short-time action following the work Makri–Miller. We use these estimates to derive an accurate expression modulo Δt 2 for the quantum propagator and we show that the quantum potential is negligible modulo Δt 2 for a point source, thus justifying an unfortunately largely ignored observation of Holland made twenty years ago. We finally prove that this implies that the quantum motion is classical for very short times.

  4. Short generators without quantum computers : the case of multiquadratics

    NARCIS (Netherlands)

    Bauch, J.; Bernstein, D.J.; de Valence, H.; Lange, T.; van Vredendaal, C.; Coron, J.-S.; Nielsen, J.B.

    2017-01-01

    Finding a short element g of a number field, given the ideal generated by g, is a classic problem in computational algebraic number theory. Solving this problem recovers the private key in cryptosystems introduced by Gentry, Smart–Vercauteren, Gentry–Halevi, Garg– Gentry–Halevi, et al. Work over the

  5. Subdecoherence time generation and detection of orbital entanglement in quantum dots.

    Science.gov (United States)

    Brange, F; Malkoc, O; Samuelsson, P

    2015-05-01

    Recent experiments have demonstrated subdecoherence time control of individual single-electron orbital qubits. Here we propose a quantum-dot-based scheme for generation and detection of pairs of orbitally entangled electrons on a time scale much shorter than the decoherence time. The electrons are entangled, via two-particle interference, and transferred to the detectors during a single cotunneling event, making the scheme insensitive to charge noise. For sufficiently long detector dot lifetimes, cross-correlation detection of the dot charges can be performed with real-time counting techniques, providing for an unambiguous short-time Bell inequality test of orbital entanglement.

  6. Short-time quantum propagator and Bohmian trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Gosson, Maurice de, E-mail: maurice.degosson@gmail.com [Universität Wien, Fakultät für Mathematik, NuHAG, Wien 1090 (Austria); Hiley, Basil [University of London, Birkbeck College, Theoretical Physics Unit, London WC1E 7HX (United Kingdom)

    2013-12-06

    We begin by giving correct expressions for the short-time action following the work Makri–Miller. We use these estimates to derive an accurate expression modulo Δt{sup 2} for the quantum propagator and we show that the quantum potential is negligible modulo Δt{sup 2} for a point source, thus justifying an unfortunately largely ignored observation of Holland made twenty years ago. We finally prove that this implies that the quantum motion is classical for very short times.

  7. Generation of statistical scenarios of short-term wind power production

    DEFF Research Database (Denmark)

    Pinson, Pierre; Papaefthymiou, George; Klockl, Bernd

    2007-01-01

    Short-term (up to 2-3 days ahead) probabilistic forecasts of wind power provide forecast users with a paramount information on the uncertainty of expected wind generation. Whatever the type of these probabilistic forecasts, they are produced on a per horizon basis, and hence do not inform...... on the development of the forecast uncertainty through forecast series. This issue is addressed here by describing a method that permits to generate statistical scenarios of wind generation that accounts for the interdependence structure of prediction errors, in plus of respecting predictive distributions of wind...

  8. Very Short-term Nonparametric Probabilistic Forecasting of Renewable Energy Generation - with Application to Solar Energy

    DEFF Research Database (Denmark)

    Golestaneh, Faranak; Pinson, Pierre; Gooi, Hoay Beng

    2016-01-01

    Due to the inherent uncertainty involved in renewable energy forecasting, uncertainty quantification is a key input to maintain acceptable levels of reliability and profitability in power system operation. A proposal is formulated and evaluated here for the case of solar power generation, when only...... approach to generate very short-term predictive densities, i.e., for lead times between a few minutes to one hour ahead, with fast frequency updates. We rely on an Extreme Learning Machine (ELM) as a fast regression model, trained in varied ways to obtain both point and quantile forecasts of solar power...... generation. Four probabilistic methods are implemented as benchmarks. Rival approaches are evaluated based on a number of test cases for two solar power generation sites in different climatic regions, allowing us to show that our approach results in generation of skilful and reliable probabilistic forecasts...

  9. Micro-Doppler Ambiguity Resolution Based on Short-Time Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Jing-bo Zhuang

    2015-01-01

    Full Text Available When using a long range radar (LRR to track a target with micromotion, the micro-Doppler embodied in the radar echoes may suffer from ambiguity problem. In this paper, we propose a novel method based on compressed sensing (CS to solve micro-Doppler ambiguity. According to the RIP requirement, a sparse probing pulse train with its transmitting time random is designed. After matched filtering, the slow-time echo signals of the micromotion target can be viewed as randomly sparse sampling of Doppler spectrum. Select several successive pulses to form a short-time window and the CS sensing matrix can be built according to the time stamps of these pulses. Then performing Orthogonal Matching Pursuit (OMP, the unambiguous micro-Doppler spectrum can be obtained. The proposed algorithm is verified using the echo signals generated according to the theoretical model and the signals with micro-Doppler signature produced using the commercial electromagnetic simulation software FEKO.

  10. Ultrafast terawatt laser sources for high-field particle acceleration and short wavelength generation

    International Nuclear Information System (INIS)

    Downer, M.C.

    1996-01-01

    The Laser Sources working group concerned itself with recent advances in and future requirements for the development of laser sources relevant to high-energy physics (HEP) colliders, small scale accelerators, and the generation of short wave-length radiation. We heavily emphasized pulsed terawatt peak power laser sources for several reasons. First, their development over the past five years has been rapid and multi-faceted, and has made relativistic light intensity available to the advanced accelerator community, as well as the wider physics community, for the first time. Secondly, they have strongly impacted plasma-based accelerator research over the past two years, producing the first experimental demonstrations of the laser wakefield accelerator (LWFA) in both its resonantly-driven and self-modulated forms. Thirdly, their average power and wall-plug efficiency currently fall well short of projected requirements for future accelerators and other high average power applications, but show considerable promise for improving substantially over the next few years. A review of this rapidly emerging laser technology in the context of advanced accelerator research is therefore timely

  11. Short Circuits of a 10 MW High Temperature Superconducting Wind Turbine Generator

    NARCIS (Netherlands)

    Song, X.; Polinder, H.; Liu, D.; Mijatovic, Nenad; Holbøll, Joachim; Jensen, Bogi Bech

    Direct drive high temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits happen at

  12. Time-Optimal Real-Time Test Case Generation using UPPAAL

    DEFF Research Database (Denmark)

    Hessel, Anders; Larsen, Kim Guldstrand; Nielsen, Brian

    2004-01-01

    Testing is the primary software validation technique used by industry today, but remains ad hoc, error prone, and very expensive. A promising improvement is to automatically generate test cases from formal models of the system under test. We demonstrate how to automatically generate real...... test purposes or generated automatically from various coverage criteria of the model.......-time conformance test cases from timed automata specifications. Specifically we demonstrate how to fficiently generate real-time test cases with optimal execution time i.e test cases that are the fastest possible to execute. Our technique allows time optimal test cases to be generated using manually formulated...

  13. Generation of short optical pulses for laser fusion. M.L. report No. 2451

    International Nuclear Information System (INIS)

    Kuizenga, D.J.

    1975-06-01

    This report considers some of the problems involved in generating the required short pulses for the laser-fusion program. Short pulses are required to produce the laser fusion, and pulses produced synchronously with this primary pulse are required for plasma diagnostics. The requirements of these pulses are first described. Several methods are considered in order to generate pulses at 1.064 μ to drive the Nd:Glass amplifiers to produce laser fusion. Conditions for optimum energy extraction per short pulse for Nd:YAG and Nd:Glass lasers are given. Four methods are then considered to produce these pulses: (1) using a fast switch to chop the required pulse out of a much longer Q-switched pulse; (2) active mode locking; (3) passive mode locking; and (4) a combination of active and passive mode locking. The use of cavity dumping is also considered to increase the energy per short pulse

  14. Diagnosis of Short-Circuit Fault in Large-Scale Permanent-Magnet Wind Power Generator Based on CMAC

    Directory of Open Access Journals (Sweden)

    Chin-Tsung Hsieh

    2013-01-01

    Full Text Available This study proposes a method based on the cerebellar model arithmetic controller (CMAC for fault diagnosis of large-scale permanent-magnet wind power generators and compares the results with Error Back Propagation (EBP. The diagnosis is based on the short-circuit faults in permanent-magnet wind power generators, magnetic field change, and temperature change. Since CMAC is characterized by inductive ability, associative ability, quick response, and similar input signals exciting similar memories, it has an excellent effect as an intelligent fault diagnosis implement. The experimental results suggest that faults can be diagnosed effectively after only training CMAC 10 times. In comparison to training 151 times for EBP, CMAC is better than EBP in terms of training speed.

  15. Improving Music Genre Classification by Short-Time Feature Integration

    DEFF Research Database (Denmark)

    Meng, Anders; Ahrendt, Peter; Larsen, Jan

    2005-01-01

    Many different short-time features, using time windows in the size of 10-30 ms, have been proposed for music segmentation, retrieval and genre classification. However, often the available time frame of the music to make the actual decision or comparison (the decision time horizon) is in the range...... of seconds instead of milliseconds. The problem of making new features on the larger time scale from the short-time features (feature integration) has only received little attention. This paper investigates different methods for feature integration and late information fusion for music genre classification...

  16. Integrated Power Flow and Short Circuit Calculation Method for Distribution Network with Inverter Based Distributed Generation

    OpenAIRE

    Yang, Shan; Tong, Xiangqian

    2016-01-01

    Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverte...

  17. Integrated Power Flow and Short Circuit Calculation Method for Distribution Network with Inverter Based Distributed Generation

    Directory of Open Access Journals (Sweden)

    Shan Yang

    2016-01-01

    Full Text Available Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverter based distributed generation is proposed. The proposed method let the inverter based distributed generation be equivalent to Iθ bus, which makes it suitable to calculate the power flow of distribution network with a current limited inverter based distributed generation. And the low voltage ride through capability of inverter based distributed generation can be considered as well in this paper. Finally, some tests of power flow and short circuit current calculation are performed on a 33-bus distribution network. The calculated results from the proposed method in this paper are contrasted with those by the traditional method and the simulation method, whose results have verified the effectiveness of the integrated method suggested in this paper.

  18. Minimum short-circuit ratios for grid interconnection of wind farms with induction generators

    Energy Technology Data Exchange (ETDEWEB)

    Reginatto, Romeu; Rocha, Carlos [Western Parana State University (UNIOESTE), Foz do Iguacu, PR (Brazil). Center for Engineering and Exact Sciences], Emails: romeu@unioeste.br, croberto@unioeste.br

    2009-07-01

    This paper concerns the problem of determining the minimum value for the short-circuit ratio which is adequate for the interconnection of a given wind farms to a given grid point. First, a set of 3 criteria is defined in order to characterize the quality/safety of the interconnection: acceptable terminal voltage variations, a minimum active power margin, and an acceptable range for the internal voltage angle. Then, the minimum short circuit ratio requirement is determined for 6 different induction generator based wind turbines, both fixed-speed (with and without reactive power compensation) and variable-speed (with the following control policies: reactive power, power factor, and terminal voltage regulation). The minimum short-circuit ratio is determined and shown in graphical results for the 6 wind turbines considered, for X/R in the range 0-15, also analyzing the effect of more/less stringent tolerances for the interconnection criteria. It is observed that the tighter the tolerances the larger the minimum short-circuit ratio required. For the same tolerances in the interconnection criteria, a comparison of the minimum short circuit ratio required for the interconnection of both squirrel-cage and doubly-fed induction generators is presented, showing that the last requires much smaller values for the short-circuit ratio. (author)

  19. Timing generator of scientific grade CCD camera and its implementation based on FPGA technology

    Science.gov (United States)

    Si, Guoliang; Li, Yunfei; Guo, Yongfei

    2010-10-01

    The Timing Generator's functions of Scientific Grade CCD Camera is briefly presented: it generates various kinds of impulse sequence for the TDI-CCD, video processor and imaging data output, acting as the synchronous coordinator for time in the CCD imaging unit. The IL-E2TDI-CCD sensor produced by DALSA Co.Ltd. use in the Scientific Grade CCD Camera. Driving schedules of IL-E2 TDI-CCD sensor has been examined in detail, the timing generator has been designed for Scientific Grade CCD Camera. FPGA is chosen as the hardware design platform, schedule generator is described with VHDL. The designed generator has been successfully fulfilled function simulation with EDA software and fitted into XC2VP20-FF1152 (a kind of FPGA products made by XILINX). The experiments indicate that the new method improves the integrated level of the system. The Scientific Grade CCD camera system's high reliability, stability and low power supply are achieved. At the same time, the period of design and experiment is sharply shorted.

  20. Short recovery time NMR probe

    International Nuclear Information System (INIS)

    Ramia, M.E.; Martin, C.A.; Jeandrevin, S.

    2011-01-01

    A NMR probe for low frequency and short recovery time is presented in this work. The probe contains the tuning circuit, diode expanders and quarter wavelength networks to protect the receiver from both the amplifier noise and the coil ringing following the transmitter power pulse. It also possesses a coil damper which is activated by of non active components. The probe performance shows a recovery time of about of 15μs a sensitive Q factor reduction and an increase of the signal to noise ratio of about 68% during the reception at a work frequency of 2 MHz. (author)

  1. Broadband and short (10-ps) pulse generation on Nova

    International Nuclear Information System (INIS)

    Perry, M.D.; Browning, D.; Bibeau, C.; Patterson, F.G.; Wilcox, R.; Henesian, M.

    1990-01-01

    The ability to produce high power broadband pulses for purposes of focal spot beam smoothing has recently become an important issue in inertial confinement fusion (ICF). As the first step toward the generation and propagation of such pulses on Nova, the authors have performed a series of experiments with 10-ps pulses. Aside from the inherently broad bandwidth, these short pulses have important applications in ICF experiments and x-ray laser research. The author's experimental results are discussed. The short pulses were produced by diffraction grating pulse compression of chirped pulses formed from self-phase modulation in a single-mode 10-m fused silica fiber. Use of such a short fiber produces a nonlinearly chirped spectrum of 0.74 nm. The central nearly linearly chirped 0.26 nm is selected by polarization discrimination and compressed using 1800-line/mm diffraction gratings to a nearly Gaussian pulse of 10 ps FWHM with an energy contrast ratio of 20:1. This 1-nJ pulse is injected into a Nova amplifier chain with selected amplifiers unfired

  2. Job quality of short-time workers and perception and support from their managers

    OpenAIRE

    坂爪, 洋美

    2017-01-01

    The purpose of this study was to clarify the relationship between the characteristics of job quality that short-time workers occupied and the managers’ perception and support whose member has used short-time working hour system. A total of 559 first-line managers who has a member using short-time working hour system completed a web-based survey assessing job quality of short-time workers , the risk of using short-timeworking hour system, career perspective of short-time workers, and the suppo...

  3. Double-layer rotor magnetic shield performance analysis in high temperature superconducting synchronous generators under short circuit fault conditions

    Science.gov (United States)

    Hekmati, Arsalan; Aliahmadi, Mehdi

    2016-12-01

    High temperature superconducting, HTS, synchronous machines benefit from a rotor magnetic shield in order to protect superconducting coils against asynchronous magnetic fields. This magnetic shield, however, suffers from exerted Lorentz forces generated in light of induced eddy currents during transient conditions, e.g. stator windings short-circuit fault. In addition, to the exerted electromagnetic forces, eddy current losses and the associated effects on the cryogenic system are the other consequences of shielding HTS coils. This study aims at investigating the Rotor Magnetic Shield, RMS, performance in HTS synchronous generators under stator winding short-circuit fault conditions. The induced eddy currents in different circumferential positions of the rotor magnetic shield along with associated Joule heating losses would be studied using 2-D time-stepping Finite Element Analysis, FEA. The investigation of Lorentz forces exerted on the magnetic shield during transient conditions has also been performed in this paper. The obtained results show that double line-to-ground fault is of the most importance among different types of short-circuit faults. It was revealed that when it comes to the design of the rotor magnetic shields, in addition to the eddy current distribution and the associated ohmic losses, two phase-to-ground fault should be taken into account since the produced electromagnetic forces in the time of fault conditions are more severe during double line-to-ground fault.

  4. Short echo time, fast gradient-echo imaging

    International Nuclear Information System (INIS)

    Haacke, E.M.; Lenz, G.W.

    1987-01-01

    Present fast-gradient-echoes schemes can acquire volume data rapidly and are flexible in T1 or T1/T2 contrast behavior. However, sequences used to date employ echo time (TE) values of about 15 ms +- 5 and, because of in vivo field inhomogeneities (short T2), they suffer badly from signal loss near sinuses and tissue boundaries. The authors implemented sequences with TE = 4-6 ms and found significant improvement in image quality, especially at high fields. Examples with long TEs vs. short TEs are given in the knee, spine, head, and orbits. Further advantages include (1) faster repetition times (15 ms), (2) higher-quality spin-density or T1-weighted images, and (3) reduction of blood motion artifacts

  5. A hybrid approach for generating ultra-short bunches for advanced accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-01

    Generation of electron beams with high phase-space density, short bunch length and high peak current is an essential requirement for future linear colliders and bright electron beam sources. Unfortunately, such bunches cannot be produced directly from the source since forces from the mutual repulsion of electrons would destroy the brilliance of the beam within a short distance. Here, we detail a beam dynamics study of an innovative two-stage compression scheme that can generate ultra-short bunches without degrading the beam quality. In the first stage, the beam is compressed with an advanced velocity bunching technique in which the longitudinal phase space is rotated so that electrons on the bunch tail become faster than electrons in the bunch head. In the second stage, the beam is further compressed with a conventional magnetic chicane. With the aid of numerical simulations we show that our two-staged scheme is capable to increase the current of a 50 pC bunch to a notable factor of 100 while the emittance growth can be suppressed to 1% with appropriate tailoring of the initial beam distribution.

  6. Transient nanobubbles in short-time electrolysis

    NARCIS (Netherlands)

    Svetovoy, Vitaly; Sanders, Remco G.P.; Elwenspoek, Michael Curt

    2013-01-01

    Water electrolysis in a microsystem is observed and analyzed on a short-time scale of ∼10 μs. The very unusual properties of the process are stressed. An extremely high current density is observed because the process is not limited by the diffusion of electroactive species. The high current is

  7. Erosion resistant anti-ice surfaces generated by ultra short laser pulses

    NARCIS (Netherlands)

    Del Cerro, D.A.; Römer, G.R.B.E.; Huis in't Veld, A.J.

    2010-01-01

    Wetting properties of a wide range of materials can be modified by accurate laser micromachining with ultra short laser pulses. Controlling the surface topography in a micro and sub-micrometer scale allows the generation of water-repellent surfaces, which remain dry and prevent ice accumulation

  8. Multiple output timing and trigger generator

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Robert M. [Los Alamos National Laboratory; Dale, Gregory E [Los Alamos National Laboratory

    2009-01-01

    In support of the development of a multiple stage pulse modulator at the Los Alamos National Laboratory, we have developed a first generation, multiple output timing and trigger generator. Exploiting Commercial Off The Shelf (COTS) Micro Controller Units (MCU's), the timing and trigger generator provides 32 independent outputs with a timing resolution of about 500 ns. The timing and trigger generator system is comprised of two MCU boards and a single PC. One of the MCU boards performs the functions of the timing and signal generation (the timing controller) while the second MCU board accepts commands from the PC and provides the timing instructions to the timing controller. The PC provides the user interface for adjusting the on and off timing for each of the output signals. This system provides 32 output or timing signals which can be pre-programmed to be in an on or off state for each of 64 time steps. The width or duration of each of the 64 time steps is programmable from 2 {micro}s to 2.5 ms with a minimum time resolution of 500 ns. The repetition rate of the programmed pulse train is only limited by the time duration of the programmed event. This paper describes the design and function of the timing and trigger generator system and software including test results and measurements.

  9. Short-Term Bus Passenger Demand Prediction Based on Time Series Model and Interactive Multiple Model Approach

    Directory of Open Access Journals (Sweden)

    Rui Xue

    2015-01-01

    Full Text Available Although bus passenger demand prediction has attracted increased attention during recent years, limited research has been conducted in the context of short-term passenger demand forecasting. This paper proposes an interactive multiple model (IMM filter algorithm-based model to predict short-term passenger demand. After aggregated in 15 min interval, passenger demand data collected from a busy bus route over four months were used to generate time series. Considering that passenger demand exhibits various characteristics in different time scales, three time series were developed, named weekly, daily, and 15 min time series. After the correlation, periodicity, and stationarity analyses, time series models were constructed. Particularly, the heteroscedasticity of time series was explored to achieve better prediction performance. Finally, IMM filter algorithm was applied to combine individual forecasting models with dynamically predicted passenger demand for next interval. Different error indices were adopted for the analyses of individual and hybrid models. The performance comparison indicates that hybrid model forecasts are superior to individual ones in accuracy. Findings of this study are of theoretical and practical significance in bus scheduling.

  10. Nonlinear detection of disordered voice productions from short time series based on a Volterra-Wiener-Korenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu, E-mail: yuzhang@xmu.edu.cn [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Sprecher, Alicia J. [Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States); Zhao Zongxi [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Jiang, Jack J. [Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States)

    2011-09-15

    Highlights: > The VWK method effectively detects the nonlinearity of a discrete map. > The method describes the chaotic time series of a biomechanical vocal fold model. > Nonlinearity in laryngeal pathology is detected from short and noisy time series. - Abstract: In this paper, we apply the Volterra-Wiener-Korenberg (VWK) model method to detect nonlinearity in disordered voice productions. The VWK method effectively describes the nonlinearity of a third-order nonlinear map. It allows for the analysis of short and noisy data sets. The extracted VWK model parameters show an agreement with the original nonlinear map parameters. Furthermore, the VWK mode method is applied to successfully assess the nonlinearity of a biomechanical voice production model simulating irregular vibratory dynamics of vocal folds with a unilateral vocal polyp. Finally, we show the clinical applicability of this nonlinear detection method to analyze the electroglottographic data generated by 14 patients with vocal nodules or polyps. The VWK model method shows potential in describing the nonlinearity inherent in disordered voice productions from short and noisy time series that are common in the clinical setting.

  11. Nonlinear detection of disordered voice productions from short time series based on a Volterra-Wiener-Korenberg model

    International Nuclear Information System (INIS)

    Zhang Yu; Sprecher, Alicia J.; Zhao Zongxi; Jiang, Jack J.

    2011-01-01

    Highlights: → The VWK method effectively detects the nonlinearity of a discrete map. → The method describes the chaotic time series of a biomechanical vocal fold model. → Nonlinearity in laryngeal pathology is detected from short and noisy time series. - Abstract: In this paper, we apply the Volterra-Wiener-Korenberg (VWK) model method to detect nonlinearity in disordered voice productions. The VWK method effectively describes the nonlinearity of a third-order nonlinear map. It allows for the analysis of short and noisy data sets. The extracted VWK model parameters show an agreement with the original nonlinear map parameters. Furthermore, the VWK mode method is applied to successfully assess the nonlinearity of a biomechanical voice production model simulating irregular vibratory dynamics of vocal folds with a unilateral vocal polyp. Finally, we show the clinical applicability of this nonlinear detection method to analyze the electroglottographic data generated by 14 patients with vocal nodules or polyps. The VWK model method shows potential in describing the nonlinearity inherent in disordered voice productions from short and noisy time series that are common in the clinical setting.

  12. Short term hydroelectric power system scheduling with wind turbine generators using the multi-pass iteration particle swarm optimization approach

    International Nuclear Information System (INIS)

    Lee, T.-Y.

    2008-01-01

    This paper uses multi-pass iteration particle swarm optimization (MIPSO) to solve short term hydroelectric generation scheduling of a power system with wind turbine generators. MIPSO is a new algorithm for solving nonlinear optimal scheduling problems. A new index called iteration best (IB) is incorporated into particle swarm optimization (PSO) to improve solution quality. The concept of multi-pass dynamic programming is applied to modify PSO further and improve computation efficiency. The feasible operational regions of the hydro units and pumped storage plants over the whole scheduling time range must be determined before applying MIPSO to the problem. Wind turbine power generation then shaves the power system load curves. Next, MIPSO calculates hydroelectric generation scheduling. It begins with a coarse time stage and searching space and refines the time interval between two time stages and the search spacing pass by pass (iteration). With the cooperation of agents called particles, the near optimal solution of the scheduling problem can be effectively reached. The effects of wind speed uncertainty were also considered in this paper. The feasibility of the new algorithm is demonstrated by a numerical example, and MIPSO solution quality and computation efficiency are compared to those of other algorithms

  13. Conserved generation of short products at piRNA loci

    Directory of Open Access Journals (Sweden)

    Khorshid Mohsen

    2011-01-01

    Full Text Available Abstract Background The piRNA pathway operates in animal germ lines to ensure genome integrity through retrotransposon silencing. The Piwi protein-associated small RNAs (piRNAs guide Piwi proteins to retrotransposon transcripts, which are degraded and thereby post-transcriptionally silenced through a ping-pong amplification process. Cleavage of the retrotransposon transcript defines at the same time the 5' end of a secondary piRNA that will in turn guide a Piwi protein to a primary piRNA precursor, thereby amplifying primary piRNAs. Although several studies provided evidence that this mechanism is conserved among metazoa, how the process is initiated and what enzymatic activities are responsible for generating the primary and secondary piRNAs are not entirely clear. Results Here we analyzed small RNAs from three mammalian species, seeking to gain further insight into the mechanisms responsible for the piRNA amplification loop. We found that in all these species piRNA-directed targeting is accompanied by the generation of short sequences that have a very precisely defined length, 19 nucleotides, and a specific spatial relationship with the guide piRNAs. Conclusions This suggests that the processing of the 5' product of piRNA-guided cleavage occurs while the piRNA target is engaged by the Piwi protein. Although they are not stabilized through methylation of their 3' ends, the 19-mers are abundant not only in testes lysates but also in immunoprecipitates of Miwi and Mili proteins. They will enable more accurate identification of piRNA loci in deep sequencing data sets.

  14. Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.

    Science.gov (United States)

    Limongi, Roberto; Silva, Angélica M

    2016-11-01

    The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.

  15. Worst Asymmetrical Short-Circuit Current

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holmstrøm, O; Grastrup, L

    2010-01-01

    In a typical power plant, the production scenario and the short-circuit time were found for the worst asymmetrical short-circuit current. Then, a sensitivity analysis on the missing generator values was realized in order to minimize the uncertainty of the results. Afterward the worst asymmetrical...

  16. Extremely short light pulses: generation; diagnostics, and application in attosecond spectroscopy

    International Nuclear Information System (INIS)

    Iakovlev, V.

    2003-06-01

    The scope of the thesis includes the design of chirped mirrors, as well as theoretical investigations in the fields of high-harmonic generation and laser-dressed Auger decay, the unifying aspect being the presence of extremely short light pulses and physical processes taking place on a femtosecond scale. The main results of the research are the following: 1) It was shown that efficient global optimization of chirped mirrors is possible with an adapted version of the memetic algorithm (also known as hybrid genetic algorithm). 2) The analysis of high-harmonic spectra generated by a few-cycle laser pulse can reveal the electric field of the pulse in the vicinity of its envelope peak. The method developed for this purpose can also be regarded as a method to measure the carrier-envelope phase of laser pulses, which is more robust and has a larger range of applicability compared to the simple analysis of the cut-off region of high-harmonic spectra. 3) A quantum theory of time-resolved Auger spectroscopy was developed. Based on the essential states method, closed-form expressions for probability amplitudes were derived. The theory lays the foundation for the interpretation of experiments that probe electronic motion during atomic excitation, deexcitation, and ionization. (author)

  17. Short-time, high-dosage penicillin infusion therapy of syphilis

    DEFF Research Database (Denmark)

    Lomholt, Hans; Poulsen, Asmus; Brandrup, Flemming

    2003-01-01

    The optimal dosage and duration of penicillin treatment for the various stages of syphilis are not known. We present data on 20 patients with syphilis (primary, secondary or latent) treated with high-dose, short-time penicillin infusion therapy. Patients were given 10 MIU of penicillin G intraven......The optimal dosage and duration of penicillin treatment for the various stages of syphilis are not known. We present data on 20 patients with syphilis (primary, secondary or latent) treated with high-dose, short-time penicillin infusion therapy. Patients were given 10 MIU of penicillin G...

  18. Time-resolved X-ray studies using third generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Mills, D.M.

    1991-10-01

    The third generation, high-brilliance, hard x-ray, synchrotron radiation (SR) sources currently under construction (ESRF at Grenoble, France; APS at Argonne, Illinois; and SPring-8 at Harima, Japan) will usher in a new era of x-ray experimentation for both physical and biological sciences. One of the most exciting areas of experimentation will be the extension of x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high brilliance, and variable spectral bandwidth of these sources make them ideal for x-ray time-resolved studies. The temporal properties (bunch length, interpulse period, etc.) of these new sources will be summarized. Finally, the scientific potential and the technological challenges of time-resolved x-ray scattering from these new sources will be described. 13 refs., 4 figs

  19. A Statistical and Spectral Model for Representing Noisy Sounds with Short-Time Sinusoids

    Directory of Open Access Journals (Sweden)

    Myriam Desainte-Catherine

    2005-07-01

    Full Text Available We propose an original model for noise analysis, transformation, and synthesis: the CNSS model. Noisy sounds are represented with short-time sinusoids whose frequencies and phases are random variables. This spectral and statistical model represents information about the spectral density of frequencies. This perceptually relevant property is modeled by three mathematical parameters that define the distribution of the frequencies. This model also represents the spectral envelope. The mathematical parameters are defined and the analysis algorithms to extract these parameters from sounds are introduced. Then algorithms for generating sounds from the parameters of the model are presented. Applications of this model include tools for composers, psychoacoustic experiments, and pedagogy.

  20. A short history of fractal-Cantorian space-time

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2009-01-01

    The article attempts to give a short historical overview of the discovery of fractal-Cantorian space-time starting from the 17th century up to the present. In the last 25 years a great number of scientists worked on fractal space-time notably Garnet Ord in Canada, Laurent Nottale in France and Mohamed El Naschie in England who gave an exact mathematical procedure for the derivation of the dimensionality and curvature of fractal space-time fuzzy manifold.

  1. A short-time fading study of Al2O3:C

    International Nuclear Information System (INIS)

    Nascimento, L.F.; Vanhavere, F.; Silva, E.H.; Deene, Y. De

    2015-01-01

    This paper studies the short-time fading from Al 2 O 3 :C by measuring optically stimulated luminescence (OSL) signals (Total OSL: T OSL , and Peak OSL: P OSL ) from droplets and Luxel™ pellets. The influence of various bleaching regimes (blue, green and white) and light power is compared. The fading effect is the decay of the OSL signal in the dark at room temperature. Al 2 O 3 :C detectors were submitted to various bleaching regimes, irradiated with a reference dose and read out after different time spans. Investigations were carried out using 2 mm size droplet detectors, made of thin Al 2 O 3 :C powder mixed with a photocured polymer. Tests were compared to Luxel™-type detectors (Landauer Inc.). Short-time post-irradiation fading is present in OSL results (T OSL and P OSL ) droplets for time spans up to 200 s. The effect of short-time fading can be lowered/removed when treating the detectors with high-power and/or long time bleaching regimes; this result was observed in both T OSL and P OSL from droplets and Luxel™. - Highlights: • Droplet composed of thin powder of Al 2 O 3 :C was prepared using a photo-curable polymer. • Powder grain sizes ranged from 5 μm to 35 μm. • Short-time fading was measured for irradiated samples. • Various bleaching regimes and light power was tested. • Droplets were compared to a commercially dosimeter, Luxel™

  2. What do short-term and long-term relationships look like? Building the relationship coordination and strategic timing (ReCAST) model.

    Science.gov (United States)

    Eastwick, Paul W; Keneski, Elizabeth; Morgan, Taylor A; McDonald, Meagan A; Huang, Sabrina A

    2018-05-01

    Close relationships research has examined committed couples (e.g., dating relationships, marriages) using intensive methods that plot relationship development over time. But a substantial proportion of people's real-life sexual experiences take place (a) before committed relationships become "official" and (b) in short-term relationships; methods that document the time course of relationships have rarely been applied to these contexts. We adapted a classic relationship trajectory-plotting technique to generate the first empirical comparisons between the features of people's real-life short-term and long-term relationships across their entire timespan. Five studies compared long-term and short-term relationships in terms of the timing of relationship milestones (e.g., flirting, first sexual intercourse) and the occurrence/intensity of important relationship experiences (e.g., romantic interest, strong sexual desire, attachment). As romantic interest was rising and partners were becoming acquainted, long-term and short-term relationships were indistinguishable. Eventually, romantic interest in short-term relationships plateaued and declined while romantic interest in long-term relationships continued to rise, ultimately reaching a higher peak. As relationships progressed, participants evidenced more features characteristic of the attachment-behavioral system (e.g., attachment, caregiving) in long-term than short-term relationships but similar levels of other features (e.g., sexual desire, self-promotion, intrasexual competition). These data inform a new synthesis of close relationships and evolutionary psychological perspectives called the Relationship Coordination and Strategic Timing (ReCAST) model. ReCAST depicts short-term and long-term relationships as partially overlapping trajectories (rather than relationships initiated with distinct strategies) that differ in their progression along a normative relationship development sequence. (PsycINFO Database Record (c

  3. ESOL facility for the generation and radiochemical separation of short half-life fission products

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Meikrantz, D.H.; Baker, J.D.; Anderl, R.A.; Novick, V.J.; Greenwood, R.C.

    1988-01-01

    A facility has been developed at the Idaho National Engineering Laboratory (INEL) for the generation and rapid radiochemical separation of short half-life mixed fission products. This facility, referred to as the Idaho Elemental Separation On Line (ESOL), consists of electro-plated sources of spontaneously fissioning 252 Cf with a helium jet transport arrangement to continuously deliver short half-life, mixed fission products to the radiochemistry laboratory for rapid, computer controlled, radiochemical separations. 18 refs., 13 figs

  4. New GOES satellite synchronized time code generation

    Science.gov (United States)

    Fossler, D. E.; Olson, R. K.

    1984-01-01

    The TRAK Systems' GOES Satellite Synchronized Time Code Generator is described. TRAK Systems has developed this timing instrument to supply improved accuracy over most existing GOES receiver clocks. A classical time code generator is integrated with a GOES receiver.

  5. Optimum short-time polynomial regression for signal analysis

    Indian Academy of Sciences (India)

    A Sreenivasa Murthy

    the Proceedings of European Signal Processing Conference. (EUSIPCO) 2008. ... In a seminal paper, Savitzky and Golay [4] showed that short-time polynomial modeling is ...... We next consider a linearly frequency-modulated chirp with an exponentially .... 1 http://www.physionet.org/physiotools/matlab/ECGwaveGen/.

  6. Short Sleep Times Predict Obesity in Internal Medicine Clinic Patients

    Science.gov (United States)

    Buscemi, Dolores; Kumar, Ashwani; Nugent, Rebecca; Nugent, Kenneth

    2007-01-01

    Study Objectives: Epidemiological studies have demonstrated an association between short sleep times and obesity as defined by body mass index (BMI). We wanted to determine whether this association occurs in patients with chronic medical diagnoses since the number of confounding factors is likely higher in patients than the general population. Methods: Two hundred patients attending internal medicine clinics completed a survey regarding sleep habits, lifestyle characteristics, and medical diagnoses. An independent surveyor collected the information on the questionnaires and reviewed the medical records. Height and weight were measured by clinic personnel. Data were analyzed with multivariate logistic regression. Results: Subjects with short sleep times (< 7 hours) had an increased likelihood of obesity as defined by a BMI ≥ 30 kg/m2 when compared to the reference group of (8, 9] hours (odds ratio 2.93; 95% confidence interval, 1.06–8.09). There was a U-shaped relationship between obesity and sleep time in women but not in men. Young age (18 to 49 years), not smoking, drinking alcohol, hypertension, diabetes, and sleep apnea were also associated with obesity in the overall model. Conclusions: This study demonstrates an association between short sleep times and obesity in undifferentiated patients attending an internal medicine clinic using models adjusting for age, lifestyle characteristics, and some medical diagnoses. The U-shaped relationship in women suggests that sleep patterns may have gender specific associations. These observations provide the background for therapeutic trials in weight loss in patients with established medical problems. Citation: Buscemi D; Kumar A; Nugent R; Nugent K. Short sleep times predict obesity in internal medicine clinic patients. J Clin Sleep Med 2007;3(7):681–688. PMID:18198800

  7. Difference-based clustering of short time-course microarray data with replicates

    Directory of Open Access Journals (Sweden)

    Kim Jihoon

    2007-07-01

    Full Text Available Abstract Background There are some limitations associated with conventional clustering methods for short time-course gene expression data. The current algorithms require prior domain knowledge and do not incorporate information from replicates. Moreover, the results are not always easy to interpret biologically. Results We propose a novel algorithm for identifying a subset of genes sharing a significant temporal expression pattern when replicates are used. Our algorithm requires no prior knowledge, instead relying on an observed statistic which is based on the first and second order differences between adjacent time-points. Here, a pattern is predefined as the sequence of symbols indicating direction and the rate of change between time-points, and each gene is assigned to a cluster whose members share a similar pattern. We evaluated the performance of our algorithm to those of K-means, Self-Organizing Map and the Short Time-series Expression Miner methods. Conclusions Assessments using simulated and real data show that our method outperformed aforementioned algorithms. Our approach is an appropriate solution for clustering short time-course microarray data with replicates.

  8. Real-time mobile customer short message system design and implementation

    Science.gov (United States)

    Han, Qirui; Sun, Fang

    To expand the current mobile phone short message service, and to make the contact between schools, teachers, parents and feedback of the modern school office system more timely and conveniently, designed and developed the Short Message System based on the Linux platform. The state-of-the-art principles and designed proposals in the Short Message System based on the Linux platform are introduced. Finally we propose an optimized secure access authentication method. At present, many schools,vbusinesses and research institutions ratify the promotion and application the messaging system gradually, which has shown benign market prospects.

  9. Generation of attosecond electron beams in relativistic ionization by short laser pulses

    Science.gov (United States)

    Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.

    2018-03-01

    Ionization by relativistically intense short laser pulses is studied in the framework of strong-field quantum electrodynamics. Distinctive patterns are found in the energy probability distributions of photoelectrons, which are sensitive to the properties of a driving laser field. It is demonstrated that these electrons are generated in the form of solitary attosecond wave packets. This is particularly important in light of various applications of attosecond electron beams such as in ultrafast electron diffraction and crystallography, or in time-resolved electron microscopy of physical, chemical, and biological processes. We also show that, for intense laser pulses, high-energy ionization takes place in narrow regions surrounding the momentum spiral, the exact form of which is determined by the shape of a driving pulse. The self-intersections of the spiral define the momenta for which the interference patterns in the energy distributions of photoelectrons are observed. Furthermore, these interference regions lead to the synthesis of single-electron wave packets characterized by coherent double-hump structures.

  10. X-ray testing for short-time dynamic applications

    International Nuclear Information System (INIS)

    Kurfiss, Malte; Moser, Stefan; Popko, Gregor; Nau, Siegfried

    2017-01-01

    For nondestructive testing purposes new challenges are short-time dynamic processes. The application of x-ray flash tubes and modern high-speed cameras allows the observation of the opening of air-bags or the energy absorption of compressed tubes as occurring during a vehicle crash. Special algorithms designed for computerized tomography analyses allow the 3D reconstruction at individual time points of the dynamic process. Possibilities and limitations of the actual techniques are discussed.

  11. A coupled weather generator - rainfall-runoff approach on hourly time steps for flood risk analysis

    Science.gov (United States)

    Winter, Benjamin; Schneeberger, Klaus; Dung Nguyen, Viet; Vorogushyn, Sergiy; Huttenlau, Matthias; Merz, Bruno; Stötter, Johann

    2017-04-01

    The evaluation of potential monetary damage of flooding is an essential part of flood risk management. One possibility to estimate the monetary risk is to analyze long time series of observed flood events and their corresponding damages. In reality, however, only few flood events are documented. This limitation can be overcome by the generation of a set of synthetic, physically and spatial plausible flood events and subsequently the estimation of the resulting monetary damages. In the present work, a set of synthetic flood events is generated by a continuous rainfall-runoff simulation in combination with a coupled weather generator and temporal disaggregation procedure for the study area of Vorarlberg (Austria). Most flood risk studies focus on daily time steps, however, the mesoscale alpine study area is characterized by short concentration times, leading to large differences between daily mean and daily maximum discharge. Accordingly, an hourly time step is needed for the simulations. The hourly metrological input for the rainfall-runoff model is generated in a two-step approach. A synthetic daily dataset is generated by a multivariate and multisite weather generator and subsequently disaggregated to hourly time steps with a k-Nearest-Neighbor model. Following the event generation procedure, the negative consequences of flooding are analyzed. The corresponding flood damage for each synthetic event is estimated by combining the synthetic discharge at representative points of the river network with a loss probability relation for each community in the study area. The loss probability relation is based on exposure and susceptibility analyses on a single object basis (residential buildings) for certain return periods. For these impact analyses official inundation maps of the study area are used. Finally, by analyzing the total event time series of damages, the expected annual damage or losses associated with a certain probability of occurrence can be estimated for

  12. Comparative study of the hydrogen generation during short term station blackout (STSBO) in a BWR

    International Nuclear Information System (INIS)

    Polo-Labarrios, M.A.; Espinosa-Paredes, G.

    2015-01-01

    Highlights: • Comparative study of generation in a simulated STSBO severe accident. • MELCOR and SCDAP/RELAP5 codes were used to understanding the main phenomena. • Both codes present similar thermal-hydraulic behavior for pressure and boil off. • SCDAP/RELAP5 predicts 15.8% lower hydrogen production than MELCOR. - Abstract: The aim of this work is the comparative study of hydrogen generation and the associated parameters in a simulated severe accident of a short-term station blackout (STSBO) in a typical BWR-5 with Mark-II containment. MELCOR (v.1.8.6) and SCDAP/RELAP5 (Mod.3.4) codes were used to understand the main phenomena in the STSBO event through the results comparison obtained from simulations with these codes. Due that the simulation scope of SCDAP/RELAP5 is limited to failure of the vessel pressure boundary, the comparison was focused on in-vessel severe accident phenomena; with a special interest in the vessel pressure, boil of cooling, core temperature, and hydrogen generation. The results show that at the beginning of the scenario, both codes present similar thermal-hydraulic behavior for pressure and boil off of cooling, but during the relocation, the pressure and boil off, present differences in timing and order of magnitude. Both codes predict in similar time the beginning of melting material drop to the lower head. As far as the hydrogen production rate, SCDAP/RELAP5 predicts 15.8% lower production than MELCOR

  13. Generation of ultra short pulses by auto injection in the Nd: YAG laser

    International Nuclear Information System (INIS)

    Faria, I.C. de.

    1986-01-01

    Yhe work presented here, was concerned to the construction of a coherent light source in the near infrared region with pulses of 10 -10 seconds. The auto-injection technique was employed for generating these short pulses with posterior extraction of the pulse applied to a Nd=YAG-pulsed laser. (author) [pt

  14. Extracting biologically significant patterns from short time series gene expression data

    Directory of Open Access Journals (Sweden)

    McGinnis Thomas

    2009-08-01

    Full Text Available Abstract Background Time series gene expression data analysis is used widely to study the dynamics of various cell processes. Most of the time series data available today consist of few time points only, thus making the application of standard clustering techniques difficult. Results We developed two new algorithms that are capable of extracting biological patterns from short time point series gene expression data. The two algorithms, ASTRO and MiMeSR, are inspired by the rank order preserving framework and the minimum mean squared residue approach, respectively. However, ASTRO and MiMeSR differ from previous approaches in that they take advantage of the relatively few number of time points in order to reduce the problem from NP-hard to linear. Tested on well-defined short time expression data, we found that our approaches are robust to noise, as well as to random patterns, and that they can correctly detect the temporal expression profile of relevant functional categories. Evaluation of our methods was performed using Gene Ontology (GO annotations and chromatin immunoprecipitation (ChIP-chip data. Conclusion Our approaches generally outperform both standard clustering algorithms and algorithms designed specifically for clustering of short time series gene expression data. Both algorithms are available at http://www.benoslab.pitt.edu/astro/.

  15. Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression

    CERN Document Server

    Pompili, Riccardo; Bellaveglia, M; Biagioni, A; Castorina, G; Chiadroni, E; Cianchi, A; Croia, M; Di Giovenale, D; Ferrario, M; Filippi, F; Gallo, A; Gatti, G; Giorgianni, F; Giribono, A; Li, W; Lupi, S; Mostacci, A; Petrarca, M; Piersanti, L; Di Pirro, G; Romeo, S; Scifo, J; Shpakov, V; Vaccarezza, C; Villa, F

    2017-01-01

    The generation of ultra-short electron bunches with ultra-low timing-jitter relative to the photo-cathode (PC) laser has been experimentally proved for the first time at the SPARC_LAB test-facility (INFN-LNF, Frascati) exploiting a two-stage hybrid compression scheme. The first stage employs RF-based compression (velocity-bunching), which shortens the bunch and imprints an energy chirp on it. The second stage is performed in a non-isochronous dogleg line, where the compression is completed resulting in a final bunch duration below 90 fs (rms). At the same time, the beam arrival timing-jitter with respect to the PC laser has been measured to be lower than 20 fs (rms). The reported results have been validated with numerical simulations.

  16. Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression

    International Nuclear Information System (INIS)

    Pompili, R; Anania, M P; Bellaveglia, M; Biagioni, A; Castorina, G; Chiadroni, E; Croia, M; Giovenale, D Di; Ferrario, M; Gallo, A; Gatti, G; Cianchi, A; Filippi, F; Giorgianni, F; Giribono, A; Lupi, S; Mostacci, A; Petrarca, M; Piersanti, L; Li, W

    2016-01-01

    The generation of ultra-short electron bunches with ultra-low timing-jitter relative to the photo-cathode (PC) laser has been experimentally proved for the first time at the SPARC-LAB test-facility (INFN-LNF, Frascati) exploiting a two-stage hybrid compression scheme. The first stage employs RF-based compression (velocity-bunching), which shortens the bunch and imprints an energy chirp on it. The second stage is performed in a non-isochronous dogleg line, where the compression is completed resulting in a final bunch duration below 90 fs (rms). At the same time, the beam arrival timing-jitter with respect to the PC laser has been measured to be lower than 20 fs (rms). The reported results have been validated with numerical simulations. (paper)

  17. Time-series-based hybrid mathematical modelling method adapted to forecast automotive and medical waste generation: Case study of Lithuania.

    Science.gov (United States)

    Karpušenkaitė, Aistė; Ruzgas, Tomas; Denafas, Gintaras

    2018-05-01

    The aim of the study was to create a hybrid forecasting method that could produce higher accuracy forecasts than previously used 'pure' time series methods. Mentioned methods were already tested with total automotive waste, hazardous automotive waste, and total medical waste generation, but demonstrated at least a 6% error rate in different cases and efforts were made to decrease it even more. Newly developed hybrid models used a random start generation method to incorporate different time-series advantages and it helped to increase the accuracy of forecasts by 3%-4% in hazardous automotive waste and total medical waste generation cases; the new model did not increase the accuracy of total automotive waste generation forecasts. Developed models' abilities to forecast short- and mid-term forecasts were tested using prediction horizon.

  18. Internal and ancestral controls of cell-generation times

    Science.gov (United States)

    Kubitschek, H. E.

    1969-01-01

    Lateral and longitudinal correlations between related cells reveal associations between the generation times of cells for an intermediate period /three generations in bacteral cultures/. Generation times of progeny are influenced by nongenetic factors transmitted from their ancestors.

  19. Short optical pulse generation at 40 GHz with a bulk electro-absorption modulator packaged device

    Science.gov (United States)

    Langlois, Patrick; Moore, Ronald; Prosyk, Kelvin; O'Keefe, Sean; Oosterom, Jill A.; Betty, Ian; Foster, Robert; Greenspan, Jonathan; Singh, Priti

    2003-12-01

    Short optical pulse generation at 40GHz and 1540nm wavelength is achieved using fully packaged bulk quaternary electro-absorption modulator modules. Experimental results obtained with broadband and narrowband optimized packaged modules are presented and compared against empirical model predictions. Pulse duty cycle, extinction ratio and chirp are studied as a function of sinusoidal drive voltage and detuning between operating wavelength and modulator absorption band edge. Design rules and performance trade-offs are discussed. Low-chirp pulses with a FWHM of ~12ps and sub-4ps at a rate of 40GHz are demonstrated. Optical time-domain demultiplexing of a 40GHz to a 10GHz pulse train is also demonstrated with better than 20dB extinction ratio.

  20. A combination of HARMONIE short time direct normal irradiance forecasts and machine learning: The #hashtdim procedure

    Science.gov (United States)

    Gastón, Martín; Fernández-Peruchena, Carlos; Körnich, Heiner; Landelius, Tomas

    2017-06-01

    The present work describes the first approach of a new procedure to forecast Direct Normal Irradiance (DNI): the #hashtdim that treats to combine ground information and Numerical Weather Predictions. The system is centered in generate predictions for the very short time. It combines the outputs from the Numerical Weather Prediction Model HARMONIE with an adaptive methodology based on Machine Learning. The DNI predictions are generated with 15-minute and hourly temporal resolutions and presents 3-hourly updates. Each update offers forecasts to the next 12 hours, the first nine hours are generated with 15-minute temporal resolution meanwhile the last three hours present hourly temporal resolution. The system is proved over a Spanish emplacement with BSRN operative station in south of Spain (PSA station). The #hashtdim has been implemented in the framework of the Direct Normal Irradiance Nowcasting methods for optimized operation of concentrating solar technologies (DNICast) project, under the European Union's Seventh Programme for research, technological development and demonstration framework.

  1. Simple flight time calibration generator in PLL technique

    International Nuclear Information System (INIS)

    Lauch, J.

    1975-01-01

    Calibration and routine check-ups of flight time measuring systems can be carried out with the aid of defined flight time calibration spectra. This paper describes a simple flight time calibration generator capable of generating such calibration spectra in the form of line spectra or of a white spectrum. The flight time of the generator is adjustable in steps from 100 to 3,200 ns. The number of calibration lines can be set to 10 or to 20, resulting in line spacings ranging from 5 to 320 ns. The stop signals are generated by a crystal oscillator, the start signals are generated by a voltage-controlled oscillator locked in a phase control circuit. The start and stop rates can be adjusted in steps. (orig.) [de

  2. Short-pulse generation in a diode-end-pumped solid-state laser

    CSIR Research Space (South Africa)

    Ngcobo, S

    2010-09-01

    Full Text Available , Development of High Average Power Picosecond Laser Systems, Opto- Electronic Devices, (2002). INTRODUCTION A Nd:YVO4 modelocked laser has been constructed using a resonator designed according to the theoretical parameters. The laser produced pulses... theoretical PQSML,th of 2.08W. Short-Pulse Generation in a Diode-End-Pumped Solid-State Laser S. Ngcobo1,2, C. Bollig1 and H. Von Bergmann2 1CSIR National Laser Centre, PO Box 395, Pretoria, 0001, South Africa 2Laser Research Center, University...

  3. Objectives for next generation of practical short-range atmospheric dispersion models

    International Nuclear Information System (INIS)

    Olesen, H.R.; Mikkelsen, T.

    1992-01-01

    The proceedings contains papers from the workshop ''Objectives for Next Generation of Practical Short-Range Atmospheric Dispersion Models''. They deal with two types of models, namely models for regulatory purposes and models for real-time applications. The workshop was the result of an action started in 1991 for increased cooperation and harmonization within atmospheric dispersion modelling. The focus of the workshop was on the management of model development and the definition of model objectives, rather than on detailed model contents. It was the intention to identify actions that can be taken in order to improve the development and use of atmospheric dispersion models. The papers in the proceedings deal with various topics within the broad spectrum of matters related to up-to-date practical models, such as their scientific basis, requirements for model input and output, meteorological preprocessing, standardisation within modelling, electronic information exchange as a potentially useful tool, model evaluation and data bases for model evaluation. In addition to the papers, the proceedings contain summaries of the discussions at the workshop. These summaries point to a number of recommended actions which can be taken in order to improve ''modelling culture''. (AB)

  4. Measurement and deconvolution of detector response time for short HPM pulses: Part 1, Microwave diodes

    International Nuclear Information System (INIS)

    Bolton, P.R.

    1987-06-01

    A technique is described for measuring and deconvolving response times of microwave diode detection systems in order to generate corrected input signals typical of an infinite detection rate. The method has been applied to cases of 2.86 GHz ultra-short HPM pulse detection where pulse rise time is comparable to that of the detector; whereas, the duration of a few nanoseconds is significantly longer. Results are specified in terms of the enhancement of equivalent deconvolved input voltages for given observed voltages. The convolution integral imposes the constraint of linear detector response to input power levels. This is physically equivalent to the conservation of integrated pulse energy in the deconvolution process. The applicable dynamic range of a microwave diode is therefore limited to a smaller signal region as determined by its calibration

  5. Quality of Standard Reference Materials for Short Time Activation Analysis

    International Nuclear Information System (INIS)

    Ismail, S.S.; Oberleitner, W.

    2003-01-01

    Some environmental reference materials (CFA-1633 b, IAEA-SL-1, SARM-1,BCR-176, Coal-1635, IAEA-SL-3, BCR-146, and SRAM-5) were analysed by short-time activation analysis. The results show that these materials can be classified in three groups, according to their activities after irradiation. The obtained results were compared in order to create a quality index for determination of short-lived nuclides at high count rates. It was found that Cfta is not a suitable standard for determining very short-lived nuclides (half-lives<1 min) because the activity it produces is 15-fold higher than that SL-3. Biological reference materials, such as SRM-1571, SRM-1573, SRM-1575, SRM-1577, IAEA-392, and IAEA-393, were also investigated by a higher counting efficiency system. The quality of this system and its well-type detector for investigating short-lived nuclides was discussed

  6. A superconducting short period undulator for a harmonic generation FEL experiment

    International Nuclear Information System (INIS)

    Ingold, G.; Solomon, L.; Ben-Zvi, I.; Krinsky, S.; Li, D.; Lynch, D.; Sheehan, J.; Woodle, M.; Qiu, X.Z.; Yu, L.H.

    1993-01-01

    A three stage superconducting (SC) undulator for a high gain harmonic generation (HGE) FEL experiment in the infrared is under construction at the NSLS in collaboration with Grumman Corporation. A novel undulator technology suitable for short period (6-40mm) undulators will be employed for all three stages, the modulator, the dispersive section and the radiator. The undulator triples the frequency of a 10.4μm CO 2 seed laser. So far a 27 period (one third of the final radiator) prototype radiator has been designed, built and tested

  7. Supervised guiding long-short term memory for image caption generation based on object classes

    Science.gov (United States)

    Wang, Jian; Cao, Zhiguo; Xiao, Yang; Qi, Xinyuan

    2018-03-01

    The present models of image caption generation have the problems of image visual semantic information attenuation and errors in guidance information. In order to solve these problems, we propose a supervised guiding Long Short Term Memory model based on object classes, named S-gLSTM for short. It uses the object detection results from R-FCN as supervisory information with high confidence, and updates the guidance word set by judging whether the last output matches the supervisory information. S-gLSTM learns how to extract the current interested information from the image visual se-mantic information based on guidance word set. The interested information is fed into the S-gLSTM at each iteration as guidance information, to guide the caption generation. To acquire the text-related visual semantic information, the S-gLSTM fine-tunes the weights of the network through the back-propagation of the guiding loss. Complementing guidance information at each iteration solves the problem of visual semantic information attenuation in the traditional LSTM model. Besides, the supervised guidance information in our model can reduce the impact of the mismatched words on the caption generation. We test our model on MSCOCO2014 dataset, and obtain better performance than the state-of-the- art models.

  8. Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration

    Science.gov (United States)

    Stupakov, G.

    2018-04-01

    In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been carried out in linear approximation, where the plasma perturbation can be assumed small and plasma equations of motion linearized. This approximation breaks down in the blowout regime where a high-density electron driver expels plasma electrons from its path and creates a cavity void of electrons in its wake. In this paper, we develop a technique that allows us to calculate short-range longitudinal and transverse wakes generated by a witness bunch being accelerated inside the cavity. Our results can be used for studies of the beam loading and the hosing instability of the witness bunch in plasma-wakefield and laser-wakefield acceleration.

  9. Evaluation of scaling invariance embedded in short time series.

    Directory of Open Access Journals (Sweden)

    Xue Pan

    Full Text Available Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2. Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03 and sharp confidential interval (standard deviation ≤0.05. Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  10. Evaluation of scaling invariance embedded in short time series.

    Science.gov (United States)

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  11. Computation of the Short-Time Linear Canonical Transform with Dual Window

    Directory of Open Access Journals (Sweden)

    Lei Huang

    2017-01-01

    Full Text Available The short-time linear canonical transform (STLCT, which maps the time domain signal into the joint time and frequency domain, has recently attracted some attention in the area of signal processing. However, its applications are still limited due to the fact that selection of coefficients of the short-time linear canonical series (STLCS is not unique, because time and frequency elementary functions (together known as basis function of STLCS do not constitute an orthogonal basis. To solve this problem, this paper investigates a dual window solution. First, the nonorthogonal problem that suffered from original window is fulfilled by orthogonal condition with dual window. Then based on the obtained condition, a dual window computation approach of the GT is extended to the STLCS. In addition, simulations verify the validity of the proposed condition and solutions. Furthermore, some possible applied directions are discussed.

  12. Are anomalously short tunnelling times measurable?

    International Nuclear Information System (INIS)

    Delgado, V.; Muga, J.G.

    1996-01-01

    Low and Mende have analyzed the conditions that would make possible an actual measurement of an anomalously short traversal time through a potential barrier concluding that such a measurement cannot be made because it is not possible to describe the tunnelling of a wave packet initially close to the barrier by the open-quote open-quote usual wave packet space time analysis close-quote close-quote. We complement this work in several ways: It is argued that the described failure of the usual formalism occurs under a set of too restrictive conditions, some of them not physically motivated, so it does not necessarily imply the impossibility of such a measurement. However, by retaining only conditions well motivated on physical grounds we have performed a systematic numerical check which shows that the conclusion by Low and Mende is indeed generally valid. It is shown that, as speculated by Low and Mende, the process is dominated by over the barrier transmission. Copyright copyright 1996 Academic Press, Inc

  13. Self-generation of magnetic fields

    International Nuclear Information System (INIS)

    Dolan, T.J.

    2000-01-01

    The stars generate self-magnetic fields on large spatial scales and long time scales,and laser-produced plasmas generate intense self-magnetic fields on very short spatial and time scales. Two questions are posed : (1) Could a self-magnetic field be generated in a laboratory plasma with intermediate spatial and time scales? (2) If a self-magnetic field were generated,would it evolve towards a minimum energy state? If the answers turned out to be affirmative,then self-magnetic fields could possibly have interesting applications

  14. Coherent, Short-Pulse X-ray Generation via Relativistic Flying Mirrors

    Directory of Open Access Journals (Sweden)

    Masaki Kando

    2018-04-01

    Full Text Available Coherent, Short X-ray pulses are demanded in material science and biology for the study of micro-structures. Currently, large-sized free-electron lasers are used; however, the available beam lines are limited because of the large construction cost. Here we review a novel method to downsize the system as well as providing fully (spatially and temporally coherent pulses. The method is based on the reflection of coherent laser light by a relativistically moving mirror (flying mirror. Due to the double Doppler effect, the reflected pulses are upshifted in frequency and compressed in time. Such mirrors are formed when an intense short laser pulse excites a strongly nonlinear plasma wave in tenuous plasma. Theory, proof-of-principle, experiments, and possible applications are addressed.

  15. Directional short-time Fourier transform of distributions

    Directory of Open Access Journals (Sweden)

    Katerina Hadzi-Velkova Saneva

    2016-04-01

    Full Text Available Abstract In this paper we consider the directional short-time Fourier transform (DSTFT that was introduced and investigated in (Giv in J. Math. Anal. Appl. 399:100-107, 2013. We analyze the DSTFT and its transpose on test function spaces S ( R n $\\mathcal {S}(\\mathbb {R}^{n}$ and S ( Y 2 n $\\mathcal {S}(\\mathbb {Y}^{2n}$ , respectively, and prove the continuity theorems on these spaces. Then the obtained results are used to extend the DSTFT to spaces of distributions.

  16. Accurate estimation of short read mapping quality for next-generation genome sequencing

    Science.gov (United States)

    Ruffalo, Matthew; Koyutürk, Mehmet; Ray, Soumya; LaFramboise, Thomas

    2012-01-01

    Motivation: Several software tools specialize in the alignment of short next-generation sequencing reads to a reference sequence. Some of these tools report a mapping quality score for each alignment—in principle, this quality score tells researchers the likelihood that the alignment is correct. However, the reported mapping quality often correlates weakly with actual accuracy and the qualities of many mappings are underestimated, encouraging the researchers to discard correct mappings. Further, these low-quality mappings tend to correlate with variations in the genome (both single nucleotide and structural), and such mappings are important in accurately identifying genomic variants. Approach: We develop a machine learning tool, LoQuM (LOgistic regression tool for calibrating the Quality of short read mappings, to assign reliable mapping quality scores to mappings of Illumina reads returned by any alignment tool. LoQuM uses statistics on the read (base quality scores reported by the sequencer) and the alignment (number of matches, mismatches and deletions, mapping quality score returned by the alignment tool, if available, and number of mappings) as features for classification and uses simulated reads to learn a logistic regression model that relates these features to actual mapping quality. Results: We test the predictions of LoQuM on an independent dataset generated by the ART short read simulation software and observe that LoQuM can ‘resurrect’ many mappings that are assigned zero quality scores by the alignment tools and are therefore likely to be discarded by researchers. We also observe that the recalibration of mapping quality scores greatly enhances the precision of called single nucleotide polymorphisms. Availability: LoQuM is available as open source at http://compbio.case.edu/loqum/. Contact: matthew.ruffalo@case.edu. PMID:22962451

  17. Response probability and response time: a straight line, the Tagging/Retagging interpretation of short term memory, an operational definition of meaningfulness and short term memory time decay and search time.

    Science.gov (United States)

    Tarnow, Eugen

    2008-12-01

    The functional relationship between correct response probability and response time is investigated in data sets from Rubin, Hinton and Wenzel, J Exp Psychol Learn Mem Cogn 25:1161-1176, 1999 and Anderson, J Exp Psychol [Hum Learn] 7:326-343, 1981. The two measures are linearly related through stimulus presentation lags from 0 to 594 s in the former experiment and for repeated learning of words in the latter. The Tagging/Retagging interpretation of short term memory is introduced to explain this linear relationship. At stimulus presentation the words are tagged. This tagging level drops slowly with time. When a probe word is reintroduced the tagging level has to increase for the word to be properly identified leading to a delay in response time. The tagging time is related to the meaningfulness of the words used-the more meaningful the word the longer the tagging time. After stimulus presentation the tagging level drops in a logarithmic fashion to 50% after 10 s and to 20% after 240 s. The incorrect recall and recognition times saturate in the Rubin et al. data set (they are not linear for large time lags), suggesting a limited time to search the short term memory structure: the search time for recall of unusual words is 1.7 s. For recognition of nonsense words the corresponding time is about 0.4 s, similar to the 0.243 s found in Cavanagh (1972).

  18. PASTEURISASI HIGH TEMPERATURE SHORT TIME (HTST) SUSU TERHADAP Listeria monocytogenes PADA PENYIMPANAN REFRIGERATOR

    OpenAIRE

    SABIL, SYAHRIANA

    2015-01-01

    2015 SYAHRIANA SABIL (I 111 11 273). Pasteurisasi High Temperature Short Time (HTST) Susu terhadap Listeria monocytogenes pada Penyimpanan Refrigerator. Dibimbing oleh RATMAWATI MALAKA dan FARIDA NUR YULIATI. Pasteurisasi High Temperature Short Time (HTST) merupakan proses pemanasan susu di bawah titik didih yang diharapkan dapat membunuh Listeria monocytogenes (L. monocytogenes) karena bersifat patogen dan mengakibatkan listeriosis yang merupakan penyakit zoonosis. Tu...

  19. Time-dependent Bragg diffraction and short-pulse reflection by one-dimensional photonic crystals

    International Nuclear Information System (INIS)

    André, Jean-Michel; Jonnard, Philippe

    2015-01-01

    The time-dependence of the Bragg diffraction by one-dimensional photonic crystals and its influence on the short pulse reflection are studied in the framework of the coupled-wave theory. The indicial response of the photonic crystal is calculated and it appears that it presents a time-delay effect with a transient time conditioned by the extinction length. A numerical simulation is presented for a Bragg mirror in the x-ray domain and a pulse envelope modelled by a sine-squared shape. The potential consequences of the time-delay effect in time-dependent optics of short-pulses are emphasized. (paper)

  20. Time-resolved hard x-ray studies using third-generation synchrotron radiation sources (abstract)

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    The third-generation, high-brilliance, synchrotron radiation sources currently under construction will usher in a new era of x-ray research in the physical, chemical, and biological sciences. One of the most exciting areas of experimentation will be the extension of static x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high-brilliance, variable spectral bandwidth, and large particle beam energies of these sources make them ideal for hard x-ray, time-resolved studies. The primary focus of this presentation will be on the novel instrumentation required for time-resolved studies such as optics which can increase the flux on the sample or disperse the x-ray beam, detectors and electronics for parallel data collection, and methods for altering the natural time structure of the radiation. This work is supported by the U.S. Department of Energy, BES-Materials Science, under Contract No. W-31-109-ENG-38

  1. Short-time perturbation theory and nonrelativistic duality

    International Nuclear Information System (INIS)

    Whitenton, J.B.; Durand, B.; Durand, L.

    1983-01-01

    We give a simple proof of the nonrelativistic duality relation 2 sigma/sub bound/>roughly-equal 2 sigma/sub free/> for appropriate energy averages of the cross sections for e + e - →(qq-bar bound states) and e + e - →(free qq-bar pair), and calculate the corrections to the relation by relating W 2 sigma to the Fourier transform of the Feynman propagation function and developing a short-time perturbation series for that function. We illustrate our results in detail for simple power-law potentials and potentials which involve combinations of powers

  2. Equivalence between short-time biphasic and incompressible elastic material responses.

    Science.gov (United States)

    Ateshian, Gerard A; Ellis, Benjamin J; Weiss, Jeffrey A

    2007-06-01

    Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response deltatelasticity tensor, and K is the hydraulic permeability tensor of the solid matrix. Certain notes of caution are provided with regard to implementation issues, particularly when finite element formulations of incompressible elasticity employ an uncoupled strain energy function consisting of additive deviatoric and volumetric components.

  3. Flow characteristics of a pilot-scale high temperature, short time pasteurizer.

    Science.gov (United States)

    Tomasula, P M; Kozempel, M F

    2004-09-01

    In this study, we present a method for determining the fastest moving particle (FMP) and residence time distribution (RTD) in a pilot-scale high temperature, short time (HTST) pasteurizer to ensure that laboratory or pilot-scale HTST apparatus meets the Pasteurized Milk Ordinance standards for pasteurization of milk and can be used for obtaining thermal inactivation data. The overall dimensions of the plate in the pasteurizer were 75 x 115 mm, with a thickness of 0.5 mm and effective diameter of 3.0 mm. The pasteurizer was equipped with nominal 21.5- and 52.2-s hold tubes, and flow capacity was variable from 0 to 20 L/h. Tracer studies were used to determine FMP times and RTD data to establish flow characteristics. Using brine milk as tracer, the FMP time for the short holding section was 18.6 s and for the long holding section was 36 s at 72 degrees C, compared with the nominal times of 21.5 and 52.2 s, respectively. The RTD study indicates that the short hold section was 45% back mixed and 55% plug flow for whole milk at 72 degrees C. The long hold section was 91% plug and 9% back mixed for whole milk at 72 degrees C. This study demonstrates that continuous laboratory and pilot-scale pasteurizers may be used to study inactivation of microorganisms only if the flow conditions in the holding tube are established for comparison with commercial HTST systems.

  4. Nonlinear-optical generation of short-wavelength radiation controlled by laser-induced interference structures

    International Nuclear Information System (INIS)

    Popov, A K; Kimberg, V V

    1998-01-01

    A study is reported of the combined influence of laser-induced resonances in the energy continuum, of splitting of discrete resonances in the field of several strong radiations, and of absorption of the initial and generated radiations on totally resonant parametric conversion to the short-wavelength range. It is shown that the radiation power can be increased considerably by interference processes involving quantum transitions. (nonlinear optical phenomena and devices)

  5. Design spectra development considering short time histories

    International Nuclear Information System (INIS)

    Weiner, E.O.

    1983-01-01

    Two separate programs, MODQKE and MDOF, were written to provide a capability of obtaining equipment spectra from design spectra. MODQKE generates or modifies acceleration histories to conform with design spectra pertaining to, say, a foundation. MDOF is a simple linear modal superposition program that solves for equipment support histories using the design spectra conforming histories as input. Equipment spectra, then, are obtained from the support histories using MODQKE. MODQKE was written to modify or provide new histories with special attention paid to short seismic records. A technique from the open literature was borrowed to generate an initial history that approximates a given response spectrum. Further refinement is done with smoothing cycles in which several correction signals are added to the history in a way that produces a least squares fit between actual and prescribed spectra. Provision is made for history shaping, a baseline correction, and final scaling. MODQKE performance has been demonstrated with seven examples having zero to ten percent damping ratios, and 2.5 seconds to 20 seconds durations and a variety of target spectra. The examples show the program is inexpensive to use. MDOF is a simple modal superposition program. It has no eigensolver, and the user supplies mode shapes, frequencies, and participation factors as input. Floor spectra can be generated from design spectra by using a history from MODQKE that conforms to the design spectrum as input to MDOF. Floor motions from MDOF can be fed back to MODQKE without modification to obtain the floor spectra. A simple example is given to show how equipment mass effects can be incorporated into the MDOF solution. Any transient solution capability can be used to replace MDOF. For example, a direct transient approach may be desirable if both the equipment and floor structures are to be included in the model with different damping fractions. (orig./HP)

  6. A three-stage short-term electric power planning procedure for a generation company in a liberalized market

    International Nuclear Information System (INIS)

    Nabona, Narcis; Pages, Adela

    2007-01-01

    In liberalized electricity markets, generation companies bid their hourly generation in order to maximize their profit. The optimization of the generation bids over a short-term weekly period must take into account the action of the competing generation companies and the market-price formation rules and must be coordinated with long-term planning results. This paper presents a three stage optimization process with a data analysis and parameter calculation, a linearized unit commitment, and a nonlinear generation scheduling refinement. Although the procedure has been developed from the experience with the Spanish power market, with minor adaptations it is also applicable to any generation company participating in a competitive market system. (author)

  7. Neutron lifetime and generation time by KENO IV

    International Nuclear Information System (INIS)

    Hayashi, Masatoshi

    1991-01-01

    It is believed that Monte Carlo method is suitable to the calculation of neutron lifetime and generation time with reference to the life cycle viewpoint. This paper illustrates that those times obtained by Monte Carlo method are quite different from the results by perturbation method. The neutron lifetime and the generation time for bare and reflected reactors were investigated by the Monte Carlo program, KENO IV. the Monte Carlo procedure is based on tracking and recording the life history of neutrons in a realistic fashion in a fissionable system with minimum nuclear and geometric approximations. The KENO IV provides the multiplication factor, neutron lifetime and generation time simultaneously. The thermal spherical reactors for both bare and reflected reactors were studied using the KENO IV. The reflected reactor is surrounded with 30 cm thick light water. The atomic densities in the regions and the calculated results of the multiplication factor, neutron lifetime and generation time are given. The different definitions of these times between the Monte Carlo method and perturbation theory caused the difference of the results. (K.I.)

  8. Monte-Carlo Generation of Time Evolving Fission Chains

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, Jerome M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kim, Kenneth S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prasad, Manoj K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, Neal J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-08-01

    About a decade ago, a computer code was written to model neutrons from their “birth” to their final “death” in thermal neutron detectors (3He tubes): SrcSim had enough physics to track the neutrons in multiplying systems, appropriately increasing and decreasing the neutron population as they interacted by absorption, fission and leakage. The theory behind the algorithms assumed that all neutrons produced in a fission chain were all produced simultaneously, and then diffused to the neutron detectors. For cases where the diffusion times are long compared to the fission chains, SrcSim is very successful. Indeed, it works extraordinarily well for thermal neutron detectors and bare objects, because it takes tens of microseconds for fission neutrons to slow down to thermal energies, where they can be detected. Microseconds are a very long time compared to the lengths of the fission chains. However, this inherent assumption in the theory prevents its use to cases where either the fission chains are long compared to the neutron diffusion times (water-cooled nuclear reactors, or heavily moderated object, where the theory starts failing), or the fission neutrons can be detected shortly after they were produced (fast neutron detectors). For these cases, a new code needs to be written, where the underlying assumption is not made. The purpose of this report is to develop an algorithm to generate the arrival times of neutrons in fast neutron detectors, starting from a neutron source such as a spontaneous fission source (252Cf) or a multiplying source (Pu). This code will be an extension of SrcSim to cases where correlations between neutrons in the detectors are on the same or shorter time scales as the fission chains themselves.

  9. Greenhouse gas mitigation potential of short-rotation-coppice based generation of electricity in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.; Meyer-Aurich, A.; Kern, J.; Balasus, A.; Prochnow, A. [Leibniz Inst. of Agricultural Engineering, Potsdam (Germany)

    2010-07-01

    The generation of energy from wood biomass may help secure local energy supplies and reduce the greenhouse effect by substituting fossil resources with bio-based ones. In the case of short rotation coppice (SRC), bio-based resources can be generated by extensive agricultural production systems. They produce less carbon dioxide equivalent (CO{sub 2eq}) emissions than fossil resources. This paper reported on a study in which a model system was developed for a regional supply chain producing second generation bioenergy generated from SRC in eastern Germany. The study focuses on the generation of electricity and was compared to a business-as-usual reference system, based on the latest CO{sub 2} mitigation factors for renewable energies in the German power-generation mix. A life cycle assessment based on greenhouse gas (GHG) inventories was also conducted in which other factors were also considered, such as options for nutrient cycling. The key determinants for GHG mitigation with SRC were also discussed with regards to indirect land-use effects resulting from increased demand for land.

  10. Analysis of Seasonal Signal in GPS Short-Baseline Time Series

    Science.gov (United States)

    Wang, Kaihua; Jiang, Weiping; Chen, Hua; An, Xiangdong; Zhou, Xiaohui; Yuan, Peng; Chen, Qusen

    2018-04-01

    Proper modeling of seasonal signals and their quantitative analysis are of interest in geoscience applications, which are based on position time series of permanent GPS stations. Seasonal signals in GPS short-baseline (paper, to better understand the seasonal signal in GPS short-baseline time series, we adopted and processed six different short-baselines with data span that varies from 2 to 14 years and baseline length that varies from 6 to 1100 m. To avoid seasonal signals that are overwhelmed by noise, each of the station pairs is chosen with significant differences in their height (> 5 m) or type of the monument. For comparison, we also processed an approximately zero baseline with a distance of pass-filtered (BP) noise is valid for approximately 40% of the baseline components, and another 20% of the components can be best modeled by a combination of the first-order Gauss-Markov (FOGM) process plus white noise (WN). The TEM displacements are then modeled by considering the monument height of the building structure beneath the GPS antenna. The median contributions of TEM to the annual amplitude in the vertical direction are 84% and 46% with and without additional parts of the monument, respectively. Obvious annual signals with amplitude > 0.4 mm in the horizontal direction are observed in five short-baselines, and the amplitudes exceed 1 mm in four of them. These horizontal seasonal signals are likely related to the propagation of daily/sub-daily TEM displacement or other signals related to the site environment. Mismodeling of the tropospheric delay may also introduce spurious seasonal signals with annual amplitudes of 5 and 2 mm, respectively, for two short-baselines with elevation differences greater than 100 m. The results suggest that the monument height of the additional part of a typical GPS station should be considered when estimating the TEM displacement and that the tropospheric delay should be modeled cautiously, especially with station pairs with

  11. Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Niti [Department of Physics, Lovely Professional University, Phagwara, Punjab 144 402 (India); Nandan Gupta, Devki [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, Hyyong [Advanced Photonics Research Institute (APRI) and Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)

    2012-01-15

    In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.

  12. Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas

    International Nuclear Information System (INIS)

    Kant, Niti; Nandan Gupta, Devki; Suk, Hyyong

    2012-01-01

    In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.

  13. Modelling hot electron generation in short pulse target heating experiments

    Directory of Open Access Journals (Sweden)

    Sircombe N.J.

    2013-11-01

    Full Text Available Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  14. Innovation: study of 'ultra-short' time reactions

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    This short article presents the new Elyse facility of Orsay-Paris 11 university for the study of ultra-short chemical and biochemical phenomena. Elyse uses the 'pump-probe' technique which consists in two perfectly synchronized electron and photon pulses. It comprises a 3 to 9 MeV electron accelerator with a HF gun photo-triggered with a laser. Elyse can initiate reactions using ultra-short electron pulses (radiolysis) or ultra-short photon pulses (photolysis). (J.S.)

  15. Short time propagation of a singular wave function: Some surprising results

    Science.gov (United States)

    Marchewka, A.; Granot, E.; Schuss, Z.

    2007-08-01

    The Schrödinger evolution of an initially singular wave function was investigated. First it was shown that a wide range of physical problems can be described by initially singular wave function. Then it was demonstrated that outside the support of the initial wave function the time evolution is governed to leading order by the values of the wave function and its derivatives at the singular points. Short-time universality appears where it depends only on a single parameter—the value at the singular point (not even on its derivatives). It was also demonstrated that the short-time evolution in the presence of an absorptive potential is different than in the presence of a nonabsorptive one. Therefore, this dynamics can be harnessed to the determination whether a potential is absorptive or not simply by measuring only the transmitted particles density.

  16. Variable Power, Short Microwave Pulses Generation using a CW Magnetron

    Directory of Open Access Journals (Sweden)

    CIUPA, R.

    2011-05-01

    Full Text Available Fine control of microwave power radiation in medical and scientific applications is a challenging task. Since a commercial Continuous Wave (CW magnetron is the most inexpensive microwave device available today on the market, it becomes the best candidate for a microwave power generator used in medical diathermy and hyperthermia treatments or high efficiency chemical reactions using microwave reactors as well. This article presents a new method for driving a CW magnetron with short pulses, using a modified commercial Zero Voltage Switching (ZVS inverter, software driven by a custom embedded system. The microwave power generator designed with this method can be programmed for output microwave pulses down to 1% of the magnetron's power and allows microwave low frequency pulse modulation in the range of human brain electrical activity, intended for medical applications. Microwave output power continuous control is also possible with the magnetron running in the oscillating area, using a dual frequency Pulse Width Modulation (PWM, where the low frequency PWM pulse is modulating a higher resonant frequency required by the ZVS inverter's transformer. The method presented allows a continuous control of both power and energy (duty-cycle at the inverter's output.

  17. Generator of an exponential function with respect to time

    International Nuclear Information System (INIS)

    Janin, Paul; Puyal, Claude.

    1981-01-01

    This invention deals with an exponential function generator, and an application of this generator to simulating the criticality of a nuclear reactor for reactimeter calibration purposes. This generator, which is particularly suitable for simulating the criticality of a nuclear reactor to calibrate a reactimeter, can also be used in any field of application necessitating the generation of an exponential function in real time. In certain fields of thermodynamics, it is necessary to represent temperature gradients as a function of time. The generator might find applications here. Another application is nuclear physics where it is necessary to represent the attenuation of a neutron flux density with respect to time [fr

  18. Real-Time Optimization and Control of Next-Generation Distribution

    Science.gov (United States)

    -Generation Distribution Infrastructure Real-Time Optimization and Control of Next-Generation Distribution developing a system-theoretic distribution network management framework that unifies real-time voltage and Infrastructure | Grid Modernization | NREL Real-Time Optimization and Control of Next

  19. Corrections for the combined effects of decay and dead time in live-timed counting of short-lived radionuclides

    International Nuclear Information System (INIS)

    Fitzgerald, R.

    2016-01-01

    Studies and calibrations of short-lived radionuclides, for example "1"5O, are of particular interest in nuclear medicine. Yet counting experiments on such species are vulnerable to an error due to the combined effect of decay and dead time. Separate decay corrections and dead-time corrections do not account for this issue. Usually counting data are decay-corrected to the start time of the count period, or else instead of correcting the count rate, the mid-time of the measurement is used as the reference time. Correction factors are derived for both those methods, considering both extending and non-extending dead time. Series approximations are derived here and the accuracy of those approximations are discussed. - Highlights: • Derived combined effects of decay and dead time. • Derived for counting systems with extending or non-extending dead times. • Derived series expansions for both midpoint and decay-to-start-time methods. • Useful for counting experiments with short-lived radionuclides. • Examples given for "1"5O, used in PET scanning.

  20. Ultra-short time sciences. From the atto-second to the peta-watts

    International Nuclear Information System (INIS)

    2000-01-01

    This book presents the recent advances in the scientific and technical domains linked with ultra-short time physics. It deals first with the conceptual and technological aspects of ultra-intense and ultra-brief lasers. Then, it describes the different domains of research (atoms, molecules and aggregates; gaseous phase dynamics using the pump-probe technique; femto-chemistry in dense phase; condensed matter; plasma physics; consistent control; aerosols; functional femto-biology) and the different domains of application (medical diagnosis; ophthalmology; telecommunications; technological and industrial developments). A last part is devoted to the teaching of ultra-short time sciences. (J.S.)

  1. Marriage timing over the generations

    NARCIS (Netherlands)

    van Poppel, F.W.A.; Monden, C.; Mandemakers, K.

    2008-01-01

    Strong relationships have been hypothesized between the timing of marriage and the familial environment of the couple. Sociologists have identified various mechanisms via which the age at marriage in the parental generation might be related to the age at marriage of the children. In our paper we

  2. A Bayesian Method for Short-Term Probabilistic Forecasting of Photovoltaic Generation in Smart Grid Operation and Control

    Directory of Open Access Journals (Sweden)

    Gabriella Ferruzzi

    2013-02-01

    Full Text Available A new short-term probabilistic forecasting method is proposed to predict the probability density function of the hourly active power generated by a photovoltaic system. Firstly, the probability density function of the hourly clearness index is forecasted making use of a Bayesian auto regressive time series model; the model takes into account the dependence of the solar radiation on some meteorological variables, such as the cloud cover and humidity. Then, a Monte Carlo simulation procedure is used to evaluate the predictive probability density function of the hourly active power by applying the photovoltaic system model to the random sampling of the clearness index distribution. A numerical application demonstrates the effectiveness and advantages of the proposed forecasting method.

  3. Viruses as groundwater tracers: using ecohydrology to characterize short travel times in aquifers

    Science.gov (United States)

    Hunt, Randall J.; Borchardt, Mark A.; Bradbury, Kenneth R.

    2014-01-01

    Viruses are attractive tracers of short (population over time; therefore, the virus snapshot shed in the fecal wastes of an infected population at a specific point in time can serve as a marker for tracking virus and groundwater movement. The virus tracing approach and an example application are described to illustrate their ability to characterize travel times in high-groundwater velocity settings, and provide insight unavailable from standard hydrogeologic approaches. Although characterization of preferential flowpaths does not usually characterize the majority of other travel times occurring in the groundwater system (e.g., center of plume mass; tail of the breakthrough curve), virus approaches can trace very short times of transport, and thus can fill an important gap in our current hydrogeology toolbox.

  4. Entropy method combined with extreme learning machine method for the short-term photovoltaic power generation forecasting

    International Nuclear Information System (INIS)

    Tang, Pingzhou; Chen, Di; Hou, Yushuo

    2016-01-01

    As the world’s energy problem becomes more severe day by day, photovoltaic power generation has opened a new door for us with no doubt. It will provide an effective solution for this severe energy problem and meet human’s needs for energy if we can apply photovoltaic power generation in real life, Similar to wind power generation, photovoltaic power generation is uncertain. Therefore, the forecast of photovoltaic power generation is very crucial. In this paper, entropy method and extreme learning machine (ELM) method were combined to forecast a short-term photovoltaic power generation. First, entropy method is used to process initial data, train the network through the data after unification, and then forecast electricity generation. Finally, the data results obtained through the entropy method with ELM were compared with that generated through generalized regression neural network (GRNN) and radial basis function neural network (RBF) method. We found that entropy method combining with ELM method possesses higher accuracy and the calculation is faster.

  5. Psychometric properties of the Hebrew short version of the Zimbardo Time Perspective Inventory.

    Science.gov (United States)

    Orkibi, Hod

    2015-06-01

    The purpose of this study was to develop a short Hebrew version of the Zimbardo Time Perspective Inventory that can be easily administered by health professionals in research, therapy, and counseling. First, the empirical links of time perspective (TP) to subjective well-being and health protective and health risk behaviors are reviewed. Then, a brief account of the instrument's previous modifications is provided. Results of confirmatory factor analysis (N = 572) verified the five-factor structure of the short version and yielded acceptable internal consistency reliability for each factor. The correlation coefficients between the five subscales of the short (20 items) and the original (56 items) instruments were all above .79, indicating the suitability of the short version for assessing the five TP factors. Support for the discriminant and concurrent validity was also achieved, largely in agreement with previous findings. Finally, limitations and future directions are addressed, and potential applications in therapy and counseling are offered. © The Author(s) 2014.

  6. Time-resolved measurement of the quantum states of photons using two-photon interference with short-time reference pulses

    International Nuclear Information System (INIS)

    Ren Changliang; Hofmann, Holger F.

    2011-01-01

    To fully utilize the energy-time degree of freedom of photons for optical quantum-information processes, it is necessary to control and characterize the temporal quantum states of the photons at extremely short time scales. For measurements of the temporal coherence of the quantum states beyond the time resolution of available detectors, two-photon interference with a photon in a short-time reference pulse may be a viable alternative. In this paper, we derive the temporal measurement operators for the bunching statistics of a single-photon input state with a photon from a weak coherent reference pulse. It is shown that the effects of the pulse shape of the reference pulse can be expressed in terms of a spectral filter selecting the bandwidth within which the measurement can be treated as an ideal projection on eigenstates of time. For full quantum tomography, temporal coherence can be determined by using superpositions of reference pulses at two different times. Moreover, energy-time entanglement can be evaluated based on the two-by-two entanglement observed in the coherences between pairs of detection times.

  7. Control of ion beam generation in intense short pulse laser target interaction

    International Nuclear Information System (INIS)

    Nagashima, T.; Izumiyama, T.; Barada, D.; Kawata, S.; Gu, Y.J.; Wang, W.M.; Ma, Y.Y.; Kong, Q.

    2013-01-01

    In intense laser plasma interaction, several issues still remain to be solved for future laser particle acceleration. In this paper we focus on a control of generation of high-energy ions. In this study, near-critical density plasmas are employed and are illuminated by high intensity short laser pulses; we have successfully generated high-energy ions, and also controlled ion energy and the ion energy spectrum by multiple-stages acceleration. We performed particle-in-cell simulations in this paper. The first near-critical plasma target is illuminated by a laser pulse, and the ions accelerated are transferred to the next target. The next identical target is also illuminated by another identical large pulse, and the ion beam introduced is further accelerated and controlled. In this study four stages are employed, and finally a few hundreds of MeV of protons are realized. A quasi-monoenergetic energy spectrum is also obtained. (author)

  8. Application of short-time activation analysis in the sciences

    International Nuclear Information System (INIS)

    Grass, F.

    1991-01-01

    Short-time activation analysis has proved to be a valuable tool in nearly all fields of science. To take full advantage of this technique, it is favorable to use a fast transfer system and a high resolution high rate gamma-spectroscopy system for short lived gamma-emitters and a Cherenkov detector for the determination of hard beta-emitters. It is then possible to utilize sub-minute nuclides Li-8 (740 ms), B-12 (20 ms), F-20 (11.1 s), Y-89m (16 s), and Pb-207m (800 ms) for the determination of these elements. Besides these sub-minute nuclides which constitute the only possibility for neutron activation analysis of these elements there are a number of other elements which form longer lived nuclides on short irradiation. The analysis of the halogenides F, Cl, Br, I in waste water of a sewage incineration plant can be achieved with a single 20 s irradiation and two consecutive measurement of 20 and 600 s using Cl-38m, F-20, Br-79m as well as the longer lived Cl-38, Br-80, I-128

  9. The case of escape probability as linear in short time

    Science.gov (United States)

    Marchewka, A.; Schuss, Z.

    2018-02-01

    We derive rigorously the short-time escape probability of a quantum particle from its compactly supported initial state, which has a discontinuous derivative at the boundary of the support. We show that this probability is linear in time, which seems to be a new result. The novelty of our calculation is the inclusion of the boundary layer of the propagated wave function formed outside the initial support. This result has applications to the decay law of the particle, to the Zeno behaviour, quantum absorption, time of arrival, quantum measurements, and more.

  10. Acoustic leak detection of LMFBR steam generator

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi; Yoshida, Kazuo

    1993-01-01

    The development of a water leak detector with short response time for LMFBR steam generators is required to prevent the failure propagation caused by the sodium-water reaction and to maintain structural safety in steam generators. The development of an acoustic leak detector assuring short response time has attracted. The purpose of this paper is to confirm the basic detection feasibility of the active acoustic leak detector, and to investigate the leak detection method by erasing the background noise by spectrum analysis of the passive acoustic leak detector. From a comparison of the leak detection sensitivity of the active and the passive method, the active method is not influenced remarkably by the background noise, and it has possibility to detect microleakage with short response time. We anticipate a practical application of the active method in the future. (author)

  11. Generating k-independent variables in constant time

    DEFF Research Database (Denmark)

    Christiani, Tobias Lybecker; Pagh, Rasmus

    2014-01-01

    The generation of pseudorandom elements over finite fields is fundamental to the time, space and randomness complexity of randomized algorithms and data structures. We consider the problem of generating k-independent random values over a finite field F in a word RAM model equipped with constant...

  12. Grammar-based feature generation for time-series prediction

    CERN Document Server

    De Silva, Anthony Mihirana

    2015-01-01

    This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. Application of machine learning techniques to predict time-series continues to attract considerable attention due to the difficulty of the prediction problems compounded by the non-linear and non-stationary nature of the real world time-series. The performance of machine learning techniques, among other things, depends on suitable engineering of features. This book proposes a systematic way for generating suitable features using context-free grammar. A number of feature selection criteria are investigated and a hybrid feature generation and selection algorithm using grammatical evolution is proposed. The book contains graphical illustrations to explain the feature generation process. The proposed approaches are demonstrated by predicting the closing price of major stock market indices, peak electricity load and net hourly foreign exchange client trade volume. The proposed method ...

  13. The Short-Time Behaviour of VIX Implied Volatilities in a Multifactor Stochastic Volatility Framework

    DEFF Research Database (Denmark)

    Barletta, Andrea; Nicolato, Elisa; Pagliarani, Stefano

    error bounds for VIX futures, options and implied volatilities. In particular, we derive exact asymptotic results for VIX implied volatilities, and their sensitivities, in the joint limit of short time-to-maturity and small log-moneyness. The obtained expansions are explicit, based on elementary...... approximations of equity (SPX) options. However, the generalizations needed to cover the case of VIX options are by no means straightforward as the dynamics of the underlying VIX futures are not explicitly known. To illustrate the accuracy of our technique, we provide numerical implementations for a selection...... functions and they neatly uncover how the VIX skew depends on the specific choice of the volatility and the vol-of-vol processes. Our results are based on perturbation techniques applied to the infinitesimal generator of the underlying process. This methodology has been previously adopted to derive...

  14. Climate impact and energy efficiency from electricity generation through anaerobic digestion or direct combustion of short rotation coppice willow

    International Nuclear Information System (INIS)

    Ericsson, Niclas; Nordberg, Åke; Sundberg, Cecilia; Ahlgren, Serina; Hansson, Per-Anders

    2014-01-01

    Highlights: • Using LCA, CHP from willow use in biogas was compared with direct combustion. • Direct combustion was ninefold more energy-efficient. • Biogas had a much greater cooling effect on global mean surface temperature. • The effects of soil carbon changes on temperature over time differed. • Biogas had long-term temperature effects, direct combustion short-term effects. - Abstract: Short rotation coppice willow is an energy crop used in Sweden to produce electricity and heat in combined heat and power plants. Recent laboratory-scale experiments have shown that SRC willow can also be used for biogas production in anaerobic digestion processes. Here, life cycle assessment is used to compare the climate impact and energy efficiency of electricity and heat generated by these measures. All energy inputs and greenhouse gas emissions, including soil organic carbon fluxes were included in the life cycle assessment. The climate impact was determined using time-dependent life cycle assessment methodology. Both systems showed a positive net energy balance, but the direct combustion system delivered ninefold more energy than the biogas system. Both systems had a cooling effect on the global mean surface temperature change. The cooling impact per hectare from the biogas system was ninefold higher due to the carbon returned to soil with the digestate. Compensating the lower energy production of the biogas system with external energy sources had a large impact on the result, effectively determining whether the biogas scenario had a net warming or cooling contribution to the global mean temperature change per kWh of electricity. In all cases, the contribution to global warming was lowered by the inclusion of willow in the energy system. The use of time-dependent climate impact methodology shows that extended use of short rotation coppice willow can contribute to counteract global warming

  15. Generation of strong pulsed magnetic fields using a compact, short pulse generator

    Science.gov (United States)

    Yanuka, D.; Efimov, S.; Nitishinskiy, M.; Rososhek, A.; Krasik, Ya. E.

    2016-04-01

    The generation of strong magnetic fields (˜50 T) using single- or multi-turn coils immersed in water was studied. A pulse generator with stored energy of ˜3.6 kJ, discharge current amplitude of ˜220 kA, and rise time of ˜1.5 μs was used in these experiments. Using the advantage of water that it has a large Verdet constant, the magnetic field was measured using the non-disturbing method of Faraday rotation of a polarized collimated laser beam. This approach does not require the use of magnetic probes, which are sensitive to electromagnetic noise and damaged in each shot. It also avoids the possible formation of plasma by either a flashover along the conductor or gas breakdown inside the coil caused by an induced electric field. In addition, it was shown that this approach can be used successfully to investigate the interesting phenomenon of magnetic field enhanced diffusion into a conductor.

  16. The short time Fourier transform and local signals

    Science.gov (United States)

    Okumura, Shuhei

    In this thesis, I examine the theoretical properties of the short time discrete Fourier transform (STFT). The STFT is obtained by applying the Fourier transform by a fixed-sized, moving window to input series. We move the window by one time point at a time, so we have overlapping windows. I present several theoretical properties of the STFT, applied to various types of complex-valued, univariate time series inputs, and their outputs in closed forms. In particular, just like the discrete Fourier transform, the STFT's modulus time series takes large positive values when the input is a periodic signal. One main point is that a white noise time series input results in the STFT output being a complex-valued stationary time series and we can derive the time and time-frequency dependency structure such as the cross-covariance functions. Our primary focus is the detection of local periodic signals. I present a method to detect local signals by computing the probability that the squared modulus STFT time series has consecutive large values exceeding some threshold after one exceeding observation following one observation less than the threshold. We discuss a method to reduce the computation of such probabilities by the Box-Cox transformation and the delta method, and show that it works well in comparison to the Monte Carlo simulation method.

  17. Short time ahead wind power production forecast

    International Nuclear Information System (INIS)

    Sapronova, Alla; Meissner, Catherine; Mana, Matteo

    2016-01-01

    An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast. (paper)

  18. Short time ahead wind power production forecast

    Science.gov (United States)

    Sapronova, Alla; Meissner, Catherine; Mana, Matteo

    2016-09-01

    An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast.

  19. A deep learning framework for financial time series using stacked autoencoders and long-short term memory.

    Science.gov (United States)

    Bao, Wei; Yue, Jun; Rao, Yulei

    2017-01-01

    The application of deep learning approaches to finance has received a great deal of attention from both investors and researchers. This study presents a novel deep learning framework where wavelet transforms (WT), stacked autoencoders (SAEs) and long-short term memory (LSTM) are combined for stock price forecasting. The SAEs for hierarchically extracted deep features is introduced into stock price forecasting for the first time. The deep learning framework comprises three stages. First, the stock price time series is decomposed by WT to eliminate noise. Second, SAEs is applied to generate deep high-level features for predicting the stock price. Third, high-level denoising features are fed into LSTM to forecast the next day's closing price. Six market indices and their corresponding index futures are chosen to examine the performance of the proposed model. Results show that the proposed model outperforms other similar models in both predictive accuracy and profitability performance.

  20. Adaptive synchrosqueezing based on a quilted short-time Fourier transform

    Science.gov (United States)

    Berrian, Alexander; Saito, Naoki

    2017-08-01

    In recent years, the synchrosqueezing transform (SST) has gained popularity as a method for the analysis of signals that can be broken down into multiple components determined by instantaneous amplitudes and phases. One such version of SST, based on the short-time Fourier transform (STFT), enables the sharpening of instantaneous frequency (IF) information derived from the STFT, as well as the separation of amplitude-phase components corresponding to distinct IF curves. However, this SST is limited by the time-frequency resolution of the underlying window function, and may not resolve signals exhibiting diverse time-frequency behaviors with sufficient accuracy. In this work, we develop a framework for an SST based on a "quilted" short-time Fourier transform (SST-QSTFT), which allows adaptation to signal behavior in separate time-frequency regions through the use of multiple windows. This motivates us to introduce a discrete reassignment frequency formula based on a finite difference of the phase spectrum, ensuring computational accuracy for a wider variety of windows. We develop a theoretical framework for the SST-QSTFT in both the continuous and the discrete settings, and describe an algorithm for the automatic selection of optimal windows depending on the region of interest. Using synthetic data, we demonstrate the superior numerical performance of SST-QSTFT relative to other SST methods in a noisy context. Finally, we apply SST-QSTFT to audio recordings of animal calls to demonstrate the potential of our method for the analysis of real bioacoustic signals.

  1. Microwave pulse generation by photoconductive switching

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M.D.; Druce, R.L.

    1989-03-14

    Laser activated photoconductive semiconductor switching shows significant potential for application in high power microwave generation. Primary advantages of this concept are: small size, light weight, ruggedness, precise timing and phasing by optical control, and the potential for high peak power in short pulses. Several concepts have been suggested for microwave generation using this technology. They generally fall into two categories (1) the frozen wave generator or (2) tuned cavity modulation, both of which require only fast closing switches. We have been exploring a third possibility requiring fast closing and opening switches, that is the direct modulation of the switch at microwave frequencies. Switches have been fabricated at LLNL using neutron irradiated Gallium Arsenide which exhibit response times as short as 50 ps at low voltages. We are in the process of performing high voltage tests. So far, we have been able to generate 2.4 kV pulses with approximately 340 ps response time (FWHM) using approximately a 200..mu..J optical pulse. Experiments are continuing to increase the voltage and improve the switching efficiency. 3 refs., 6 figs.

  2. Microwave pulse generation by photoconductive switching

    Science.gov (United States)

    Pocha, M. D.; Druce, R. L.

    1989-03-01

    Laser activated photoconductive semiconductor switching shows significant potential for application in high power microwave generation. Primary advantages of this concept are: small size, light weight, ruggedness, precise timing and phasing by optical control, and the potential for high peak power in short pulses. Several concepts have been suggested for microwave generation using this technology. They generally fall into two categories: (1) the frozen wave generator, or (2) tuned cavity modulation, both of which require only fast closing switches. We have been exploring a third possibility requiring fast closing and opening switches, that is the direct modulation of the switch at microwave frequencies. Switches have been fabricated at LLNL using neutron irradiated Gallium Arsenide which exhibit response times as short as 50 ps at low voltages. We are in the process of performing high voltage tests. So far, we have been able to generate 2.4 kV pulses with approximately 340 ps response time (FWHM) using approximately a 200 microJ optical pulse. Experiments are continuing to increase the voltage and improve the switching efficiency.

  3. Generate tri-directional spectra-compatible time histories using HHT method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo; Xie, Wei-Chau, E-mail: xie@uwaterloo.ca; Pandey, Mahesh D.

    2016-11-15

    Highlights: • Hilbert–Huang Transform are applied to modify real earthquake records. • Generate tri-directional time histories compatible with target spectra. • Both GRS and FRS are considered as target spectra. • Target spectra with multiple damping ratios are considered. - Abstract: This paper proposes two algorithms to generate spectrum-compatible time histories based on two approaches recommended by USNRC Standard Review Plan 3.7.1. Hilbert–Huang Transform technique is used to analyze frequency contents and amplitudes of seed motions. Through adjusting the frequency contents and amplitudes of seed motions, spectrum-compatible time histories are obtained. The first algorithm is to generate tri-directional time histories compatible with multi-damping target design spectra (ground response spectra or floor response spectra). The second algorithm is to generate tri-directional time histories compatible with single-damping target design spectra. Examples are presented to demonstrate versatility of these two proposed algorithms to generate spectra-compatible time histories.

  4. Generate tri-directional spectra-compatible time histories using HHT method

    International Nuclear Information System (INIS)

    Li, Bo; Xie, Wei-Chau; Pandey, Mahesh D.

    2016-01-01

    Highlights: • Hilbert–Huang Transform are applied to modify real earthquake records. • Generate tri-directional time histories compatible with target spectra. • Both GRS and FRS are considered as target spectra. • Target spectra with multiple damping ratios are considered. - Abstract: This paper proposes two algorithms to generate spectrum-compatible time histories based on two approaches recommended by USNRC Standard Review Plan 3.7.1. Hilbert–Huang Transform technique is used to analyze frequency contents and amplitudes of seed motions. Through adjusting the frequency contents and amplitudes of seed motions, spectrum-compatible time histories are obtained. The first algorithm is to generate tri-directional time histories compatible with multi-damping target design spectra (ground response spectra or floor response spectra). The second algorithm is to generate tri-directional time histories compatible with single-damping target design spectra. Examples are presented to demonstrate versatility of these two proposed algorithms to generate spectra-compatible time histories.

  5. A stochastic dynamic model for optimal timing of investments in new generation capacity in restructured power systems

    International Nuclear Information System (INIS)

    Botterud, Audun; Korpaas, Magnus

    2007-01-01

    In this paper we formulate the power generation investment problem for a decentralised and profit-maximising investor operating in a restructured and competitive power system. In particular, we look at how uncertainty influences the optimal timing of investments in new power generation capacity. A real options approach is used to take long-term uncertainty in load growth, and its influence on future electricity prices, into account in the investment optimisation. In order to value the operational flexibility of a new power plant we use an electricity price model, where the spot price is a function of load level and installed generation capacity, in addition to short-term uncertainties and temporal fluctuations in the market. The investor's income from a capacity payment, which also can depend on the system's total capacity balance, can also be represented. Hence, with the optimisation model we can analyse power plant profitability and optimal timing of new investments under different market designs. In a case study from the Nordic electricity market we analyse the effect of uncertainty on optimal investment timing. We also examine how a fixed or variable capacity payment would influence the investment decision, and discuss the system consequences of the resulting investment strategies. (author)

  6. Short-term generation scheduling model of Fujian hydro system

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jinwen [School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)], E-mail: dr.jinwen.wang@gmail.com

    2009-04-15

    The Fujian hydropower system (FHS) is one of the provincial hydropower systems with the most complicated hydraulic topology in China. This paper describes an optimization program that is required by Fujian Electric Power Company Ltd. (FEPCL) to aid the shift engineers in making decisions with the short-term hydropower scheduling such that the generation benefit can be maximal. The problem involves 27 reservoirs and is formulated as a nonlinear and discrete programming. It is a very challenging task to solve such a large-scale problem. In this paper, the Lagrangian multipliers are introduced to decompose the primal problem into a hydro subproblem and many individual plant-based subproblems, which are respectively solved by the improved simplex-like method (SLM) and the dynamic programming (DP). A numerical example is given and the derived solution is very close to the optimal one, with the distance in benefit less than 0.004%. All the data needed for the numerical example are presented in detail for further tests and studies from more experts and researchers.

  7. Short-term generation scheduling model of Fujian hydro system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinwen [School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2009-04-15

    The Fujian hydropower system (FHS) is one of the provincial hydropower systems with the most complicated hydraulic topology in China. This paper describes an optimization program that is required by Fujian Electric Power Company Ltd. (FEPCL) to aid the shift engineers in making decisions with the short-term hydropower scheduling such that the generation benefit can be maximal. The problem involves 27 reservoirs and is formulated as a nonlinear and discrete programming. It is a very challenging task to solve such a large-scale problem. In this paper, the Lagrangian multipliers are introduced to decompose the primal problem into a hydro subproblem and many individual plant-based subproblems, which are respectively solved by the improved simplex-like method (SLM) and the dynamic programming (DP). A numerical example is given and the derived solution is very close to the optimal one, with the distance in benefit less than 0.004%. All the data needed for the numerical example are presented in detail for further tests and studies from more experts and researchers. (author)

  8. A filtering method to generate high quality short reads using illumina paired-end technology.

    Science.gov (United States)

    Eren, A Murat; Vineis, Joseph H; Morrison, Hilary G; Sogin, Mitchell L

    2013-01-01

    Consensus between independent reads improves the accuracy of genome and transcriptome analyses, however lack of consensus between very similar sequences in metagenomic studies can and often does represent natural variation of biological significance. The common use of machine-assigned quality scores on next generation platforms does not necessarily correlate with accuracy. Here, we describe using the overlap of paired-end, short sequence reads to identify error-prone reads in marker gene analyses and their contribution to spurious OTUs following clustering analysis using QIIME. Our approach can also reduce error in shotgun sequencing data generated from libraries with small, tightly constrained insert sizes. The open-source implementation of this algorithm in Python programming language with user instructions can be obtained from https://github.com/meren/illumina-utils.

  9. Multifractals embedded in short time series: An unbiased estimation of probability moment

    Science.gov (United States)

    Qiu, Lu; Yang, Tianguang; Yin, Yanhua; Gu, Changgui; Yang, Huijie

    2016-12-01

    An exact estimation of probability moments is the base for several essential concepts, such as the multifractals, the Tsallis entropy, and the transfer entropy. By means of approximation theory we propose a new method called factorial-moment-based estimation of probability moments. Theoretical prediction and computational results show that it can provide us an unbiased estimation of the probability moments of continuous order. Calculations on probability redistribution model verify that it can extract exactly multifractal behaviors from several hundred recordings. Its powerfulness in monitoring evolution of scaling behaviors is exemplified by two empirical cases, i.e., the gait time series for fast, normal, and slow trials of a healthy volunteer, and the closing price series for Shanghai stock market. By using short time series with several hundred lengths, a comparison with the well-established tools displays significant advantages of its performance over the other methods. The factorial-moment-based estimation can evaluate correctly the scaling behaviors in a scale range about three generations wider than the multifractal detrended fluctuation analysis and the basic estimation. The estimation of partition function given by the wavelet transform modulus maxima has unacceptable fluctuations. Besides the scaling invariance focused in the present paper, the proposed factorial moment of continuous order can find its various uses, such as finding nonextensive behaviors of a complex system and reconstructing the causality relationship network between elements of a complex system.

  10. Chirped or time modulated excitation compared to short pulses for photoacoustic imaging in acoustic attenuating media

    Science.gov (United States)

    Burgholzer, P.; Motz, C.; Lang, O.; Berer, T.; Huemer, M.

    2018-02-01

    In photoacoustic imaging, optically generated acoustic waves transport the information about embedded structures to the sample surface. Usually, short laser pulses are used for the acoustic excitation. Acoustic attenuation increases for higher frequencies, which reduces the bandwidth and limits the spatial resolution. One could think of more efficient waveforms than single short pulses, such as pseudo noise codes, chirped, or harmonic excitation, which could enable a higher information-transfer from the samples interior to its surface by acoustic waves. We used a linear state space model to discretize the wave equation, such as the Stoke's equation, but this method could be used for any other linear wave equation. Linear estimators and a non-linear function inversion were applied to the measured surface data, for onedimensional image reconstruction. The proposed estimation method allows optimizing the temporal modulation of the excitation laser such that the accuracy and spatial resolution of the reconstructed image is maximized. We have restricted ourselves to one-dimensional models, as for higher dimensions the one-dimensional reconstruction, which corresponds to the acoustic wave without attenuation, can be used as input for any ultrasound imaging method, such as back-projection or time-reversal method.

  11. Short locking time and low jitter phase-locked loop based on slope charge pump control

    International Nuclear Information System (INIS)

    Guo Zhongjie; Liu Youbao; Wu Longsheng; Wang Xihu; Tang Wei

    2010-01-01

    A novel structure of a phase-locked loop (PLL) characterized by a short locking time and low jitter is presented, which is realized by generating a linear slope charge pump current dependent on monitoring the output of the phase frequency detector (PFD) to implement adaptive bandwidth control. This improved PLL is created by utilizing a fast start-up circuit and a slope current control on a conventional charge pump PLL. First, the fast start-up circuit is enabled to achieve fast pre-charging to the loop filter. Then, when the output pulse of the PFD is larger than a minimum value, the charge pump current is increased linearly by the slope current control to ensure a shorter locking time and a lower jitter. Additionally, temperature variation is attenuated with the temperature compensation in the charge pump current design. The proposed PLL has been fabricated in a kind of DSP chip based on a 0.35 μm CMOS process. Comparing the characteristics with the classical PLL, the proposed PLL shows that it can reduce the locking time by 60% with a low peak-to-peak jitter of 0.3% at a wide operation temperature range. (semiconductor integrated circuits)

  12. Directional Overcurrent Relays Coordination Problems in Distributed Generation Systems

    Directory of Open Access Journals (Sweden)

    Jakub Ehrenberger

    2017-09-01

    Full Text Available This paper proposes a new approach to the distributed generation system protection coordination based on directional overcurrent protections with inverse-time characteristics. The key question of protection coordination is the determination of correct values of all inverse-time characteristics coefficients. The coefficients must be correctly chosen considering the sufficiently short tripping times and the sufficiently long selectivity times. In the paper a new approach to protection coordination is designed, in which not only some, but all the required types of short-circuit contributions are taken into account. In radial systems, if the pickup currents are correctly chosen, protection coordination for maximum contributions is enough to ensure selectivity times for all the required short-circuit types. In distributed generation systems, due to different contributions flowing through the primary and selective protections, coordination for maximum contributions is not enough, but all the short-circuit types must be taken into account, and the protection coordination becomes a complex problem. A possible solution to the problem, based on an appropriately designed optimization, has been proposed in the paper. By repeating a simple optimization considering only one short-circuit type, the protection coordination considering all the required short-circuit types has been achieved. To show the importance of considering all the types of short-circuit contributions, setting optimizations with one (the highest and all the types of short-circuit contributions have been performed. Finally, selectivity time values are explored throughout the entire protected section, and both the settings are compared.

  13. The role of short-time intensity and envelope power for speech intelligibility and psychoacoustic masking.

    Science.gov (United States)

    Biberger, Thomas; Ewert, Stephan D

    2017-08-01

    The generalized power spectrum model [GPSM; Biberger and Ewert (2016). J. Acoust. Soc. Am. 140, 1023-1038], combining the "classical" concept of the power-spectrum model (PSM) and the envelope power spectrum-model (EPSM), was demonstrated to account for several psychoacoustic and speech intelligibility (SI) experiments. The PSM path of the model uses long-time power signal-to-noise ratios (SNRs), while the EPSM path uses short-time envelope power SNRs. A systematic comparison of existing SI models for several spectro-temporal manipulations of speech maskers and gender combinations of target and masker speakers [Schubotz et al. (2016). J. Acoust. Soc. Am. 140, 524-540] showed the importance of short-time power features. Conversely, Jørgensen et al. [(2013). J. Acoust. Soc. Am. 134, 436-446] demonstrated a higher predictive power of short-time envelope power SNRs than power SNRs using reverberation and spectral subtraction. Here the GPSM was extended to utilize short-time power SNRs and was shown to account for all psychoacoustic and SI data of the three mentioned studies. The best processing strategy was to exclusively use either power or envelope-power SNRs, depending on the experimental task. By analyzing both domains, the suggested model might provide a useful tool for clarifying the contribution of amplitude modulation masking and energetic masking.

  14. A deep learning framework for financial time series using stacked autoencoders and long-short term memory

    Science.gov (United States)

    Bao, Wei; Rao, Yulei

    2017-01-01

    The application of deep learning approaches to finance has received a great deal of attention from both investors and researchers. This study presents a novel deep learning framework where wavelet transforms (WT), stacked autoencoders (SAEs) and long-short term memory (LSTM) are combined for stock price forecasting. The SAEs for hierarchically extracted deep features is introduced into stock price forecasting for the first time. The deep learning framework comprises three stages. First, the stock price time series is decomposed by WT to eliminate noise. Second, SAEs is applied to generate deep high-level features for predicting the stock price. Third, high-level denoising features are fed into LSTM to forecast the next day’s closing price. Six market indices and their corresponding index futures are chosen to examine the performance of the proposed model. Results show that the proposed model outperforms other similar models in both predictive accuracy and profitability performance. PMID:28708865

  15. A deep learning framework for financial time series using stacked autoencoders and long-short term memory.

    Directory of Open Access Journals (Sweden)

    Wei Bao

    Full Text Available The application of deep learning approaches to finance has received a great deal of attention from both investors and researchers. This study presents a novel deep learning framework where wavelet transforms (WT, stacked autoencoders (SAEs and long-short term memory (LSTM are combined for stock price forecasting. The SAEs for hierarchically extracted deep features is introduced into stock price forecasting for the first time. The deep learning framework comprises three stages. First, the stock price time series is decomposed by WT to eliminate noise. Second, SAEs is applied to generate deep high-level features for predicting the stock price. Third, high-level denoising features are fed into LSTM to forecast the next day's closing price. Six market indices and their corresponding index futures are chosen to examine the performance of the proposed model. Results show that the proposed model outperforms other similar models in both predictive accuracy and profitability performance.

  16. Subnanosecond-rise-time, low-impedance pulse generator

    International Nuclear Information System (INIS)

    Druce, R.; Vogtlin, G.

    1983-01-01

    This paper describes a fast rise, low-impedance pulse generator that has been developed at the Lawrence Livermore National Laboratory. The design specifications of this generator are: 50-kV operating voltage, 1-ohm output impedance, subnanosecond rise time, and a 2 to 10 nanosecond pulse length. High repetition rate is not required. The design chosen is a parallel-plate, folded Blumlein generator. A tack switch is utilized for its simple construction and high performance. The primary diagnostic is a capacitive voltage divider with a B probe used to measure the current waveform

  17. Subnanosecond-rise-time, low-impedance pulse generator

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.; Vogtlin, G.

    1983-06-03

    This paper describes a fast rise, low-impedance pulse generator that has been developed at the Lawrence Livermore National Laboratory. The design specifications of this generator are: 50-kV operating voltage, 1-ohm output impedance, subnanosecond rise time, and a 2 to 10 nanosecond pulse length. High repetition rate is not required. The design chosen is a parallel-plate, folded Blumlein generator. A tack switch is utilized for its simple construction and high performance. The primary diagnostic is a capacitive voltage divider with a B probe used to measure the current waveform.

  18. Subnanosecond-rise-time, low-impedance pulse generator

    Science.gov (United States)

    Druce, R.; Vigtlin, G.

    1983-06-01

    A fast rise, low impedance pulse generator developed at the Lawrence Livermore National Laboratory is described. The design specifications of this generator are: 50-kV operating voltage, 1-ohm output impedance, subnanosecond rise time, and a 2 to 10 nanosecond pulse length. High repetition rate is not required. The design chosen is a parallel plate, folded Blumlein generator. A tack switch is utilized for its simple construction and high performance. The primary diagnostic is a capacitive voltage divider with a B probe used to measure the current waveform.

  19. Modular High Voltage Pulse Converter for Short Rise and Decay Times

    NARCIS (Netherlands)

    Mao, S.

    2018-01-01

    This thesis explores a modular HV pulse converter technology with short rise and decay times. A systematic methodology to derive and classify HV architectures based on a modularization level of power building blocks of the HV pulse converter is developed to summarize existing architectures and

  20. GenHtr: a tool for comparative assessment of genetic heterogeneity in microbial genomes generated by massive short-read sequencing

    Directory of Open Access Journals (Sweden)

    Yu GongXin

    2010-10-01

    Full Text Available Abstract Background Microevolution is the study of short-term changes of alleles within a population and their effects on the phenotype of organisms. The result of the below-species-level evolution is heterogeneity, where populations consist of subpopulations with a large number of structural variations. Heterogeneity analysis is thus essential to our understanding of how selective and neutral forces shape bacterial populations over a short period of time. The Solexa Genome Analyzer, a next-generation sequencing platform, allows millions of short sequencing reads to be obtained with great accuracy, allowing for the ability to study the dynamics of the bacterial population at the whole genome level. The tool referred to as GenHtr was developed for genome-wide heterogeneity analysis. Results For particular bacterial strains, GenHtr relies on a set of Solexa short reads on given bacteria pathogens and their isogenic reference genome to identify heterogeneity sites, the chromosomal positions with multiple variants of genes in the bacterial population, and variations that occur in large gene families. GenHtr accomplishes this by building and comparatively analyzing genome-wide heterogeneity genotypes for both the newly sequenced genomes (using massive short-read sequencing and their isogenic reference (using simulated data. As proof of the concept, this approach was applied to SRX007711, the Solexa sequencing data for a newly sequenced Staphylococcus aureus subsp. USA300 cell line, and demonstrated that it could predict such multiple variants. They include multiple variants of genes critical in pathogenesis, e.g. genes encoding a LysR family transcriptional regulator, 23 S ribosomal RNA, and DNA mismatch repair protein MutS. The heterogeneity results in non-synonymous and nonsense mutations, leading to truncated proteins for both LysR and MutS. Conclusion GenHtr was developed for genome-wide heterogeneity analysis. Although it is much more time

  1. A Short-Term Outage Model of Wind Turbines with Doubly Fed Induction Generators Based on Supervisory Control and Data Acquisition Data

    Directory of Open Access Journals (Sweden)

    Peng Sun

    2016-10-01

    Full Text Available This paper presents a short-term wind turbine (WT outage model based on the data collected from a wind farm supervisory control and data acquisition (SCADA system. Neural networks (NNs are used to establish prediction models of the WT condition parameters that are dependent on environmental conditions such as ambient temperature and wind speed. The prediction error distributions are discussed and used to calculate probabilities of the operation of protection relays (POPRs that were caused by the threshold exceedance of the environmentally sensitive parameters. The POPRs for other condition parameters are based on the setting time of the operation of protection relays. The union probability method is used to integrate the probabilities of operation of each protection relay to predict the WT short term outage probability. The proposed method has been used for real 1.5 MW WTs with doubly fed induction generators (DFIGs. The results show that the proposed method is more effective in WT outage probability prediction than traditional methods.

  2. Eulerian short-time statistics of turbulent flow at large Reynolds number

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    2004-01-01

    An asymptotic analysis is presented of the short-time behavior of second-order temporal velocity structure functions and Eulerian acceleration correlations in a frame that moves with the local mean velocity of the turbulent flow field. Expressions in closed-form are derived which cover the viscous

  3. Rotor-System Log-Decrement Identification Using Short-Time Fourier-Transform Filter

    OpenAIRE

    Li, Qihang; Wang, Weimin; Chen, Lifang; Sun, Dan

    2015-01-01

    With the increase of the centrifugal compressor capability, such as large scale LNG and CO2 reinjection, the stability margin evaluation is crucial to assure the compressor work in the designed operating conditions in field. Improving the precision of parameter identification of stability is essential and necessary as well. Based on the time-varying characteristics of response vibration during the sine-swept process, a short-time Fourier transform (STFT) filter was introduced to increase the ...

  4. A filtering method to generate high quality short reads using illumina paired-end technology.

    Directory of Open Access Journals (Sweden)

    A Murat Eren

    Full Text Available Consensus between independent reads improves the accuracy of genome and transcriptome analyses, however lack of consensus between very similar sequences in metagenomic studies can and often does represent natural variation of biological significance. The common use of machine-assigned quality scores on next generation platforms does not necessarily correlate with accuracy. Here, we describe using the overlap of paired-end, short sequence reads to identify error-prone reads in marker gene analyses and their contribution to spurious OTUs following clustering analysis using QIIME. Our approach can also reduce error in shotgun sequencing data generated from libraries with small, tightly constrained insert sizes. The open-source implementation of this algorithm in Python programming language with user instructions can be obtained from https://github.com/meren/illumina-utils.

  5. Dimension reduction of frequency-based direct Granger causality measures on short time series.

    Science.gov (United States)

    Siggiridou, Elsa; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris

    2017-09-01

    The mainstream in the estimation of effective brain connectivity relies on Granger causality measures in the frequency domain. If the measure is meant to capture direct causal effects accounting for the presence of other observed variables, as in multi-channel electroencephalograms (EEG), typically the fit of a vector autoregressive (VAR) model on the multivariate time series is required. For short time series of many variables, the estimation of VAR may not be stable requiring dimension reduction resulting in restricted or sparse VAR models. The restricted VAR obtained by the modified backward-in-time selection method (mBTS) is adapted to the generalized partial directed coherence (GPDC), termed restricted GPDC (RGPDC). Dimension reduction on other frequency based measures, such the direct directed transfer function (dDTF), is straightforward. First, a simulation study using linear stochastic multivariate systems is conducted and RGPDC is favorably compared to GPDC on short time series in terms of sensitivity and specificity. Then the two measures are tested for their ability to detect changes in brain connectivity during an epileptiform discharge (ED) from multi-channel scalp EEG. It is shown that RGPDC identifies better than GPDC the connectivity structure of the simulated systems, as well as changes in the brain connectivity, and is less dependent on the free parameter of VAR order. The proposed dimension reduction in frequency measures based on VAR constitutes an appropriate strategy to estimate reliably brain networks within short-time windows. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Generation time and effective population size in Polar Eskimos

    Science.gov (United States)

    Matsumura, Shuichi; Forster, Peter

    2008-01-01

    North Greenland Polar Eskimos are the only hunter–gatherer population, to our knowledge, who can offer precise genealogical records spanning several generations. This is the first report from Eskimos on two key parameters in population genetics, namely, generation time (T) and effective population size (Ne). The average mother–daughter and father–son intervals were 27 and 32 years, respectively, roughly similar to the previously published generation times obtained from recent agricultural societies across the world. To gain an insight for the generation time in our distant ancestors, we calculated maternal generation time for two wild chimpanzee populations. We also provide the first comparison among three distinct approaches (genealogy, variance and life table methods) for calculating Ne, which resulted in slightly differing values for the Eskimos. The ratio of the effective to the census population size is estimated as 0.6–0.7 for autosomal and X-chromosomal DNA, 0.7–0.9 for mitochondrial DNA and 0.5 for Y-chromosomal DNA. A simulation of alleles along the genealogy suggested that Y-chromosomal DNA may drift a little faster than mitochondrial DNA in this population, in contrast to agricultural Icelanders. Our values will be useful not only in prehistoric population inference but also in understanding the shaping of our genome today. PMID:18364314

  7. Quantifying complexity of financial short-term time series by composite multiscale entropy measure

    Science.gov (United States)

    Niu, Hongli; Wang, Jun

    2015-05-01

    It is significant to study the complexity of financial time series since the financial market is a complex evolved dynamic system. Multiscale entropy is a prevailing method used to quantify the complexity of a time series. Due to its less reliability of entropy estimation for short-term time series at large time scales, a modification method, the composite multiscale entropy, is applied to the financial market. To qualify its effectiveness, its applications in the synthetic white noise and 1 / f noise with different data lengths are reproduced first in the present paper. Then it is introduced for the first time to make a reliability test with two Chinese stock indices. After conducting on short-time return series, the CMSE method shows the advantages in reducing deviations of entropy estimation and demonstrates more stable and reliable results when compared with the conventional MSE algorithm. Finally, the composite multiscale entropy of six important stock indices from the world financial markets is investigated, and some useful and interesting empirical results are obtained.

  8. Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media

    International Nuclear Information System (INIS)

    Shi, L W; Chen, Y H; Xu, B; Wang, Z C; Jiao, Y H; Wang, Z G

    2007-01-01

    In this review, the potential of mode-locked lasers based on advanced quantum-dot (QD) active media to generate short optical pulses is analysed. A comprehensive review of experimental and theoretical work on related aspects is provided, including monolithic-cavity mode-locked QD lasers and external-cavity mode-locked QD lasers, as well as mode-locked solid-state and fibre lasers based on QD semiconductor saturable absorber mirrors. Performance comparisons are made for state-of-the-art experiments. Various methods for improving important characteristics of mode-locked pulses such as pulse duration, repetition rate, pulse power, and timing jitter through optimization of device design parameters or mode-locking methods are addressed. In addition, gain switching and self-pulsation of QD lasers are also briefly reviewed, concluding with the summary and prospects. (topical review)

  9. Effects of Armature Winding Segmentation with Multiple Converters on the Short Circuit Torque of 10-MW Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2017-01-01

    Superconducting synchronous generators (SCSGs) are drawing more attention in large direct-drive wind turbine applications. Despite low weight and compactness, the short circuit torque of an SCSG may be too high for wind turbine constructions due to a large magnetic air gap of an SCSG. This paper...... aims at assessing the effects of armature winding segmentation on reducing the short circuit torque of 10-MW SCSGs. A concept of armature winding segmentation with multiple power electronic converters is presented. Four SCSG designs using different topologies are examined. Results show that armature...... winding segmentation effectively reduce the short circuit torque in all the four SCSG designs when one segment is shorted at the terminal....

  10. Numerical Analysis of Rotating Pumping Flows in Inter-Coil Rotor Cavities and Short Cooling Grooves of a Generator

    Directory of Open Access Journals (Sweden)

    Wei Tong

    2001-01-01

    Full Text Available An important characteristic of wall rotating-driven flows is the tendency of fluid with high angular momentum to be flung radially outward. For a generator, the rotor rotating-driven flow, usually referred to as the rotating pumping flow, plays an important role in rotor winding cooling. In this study, three-dimensional numerical analyzes are presented for turbulent pumping flow in the inter-coil rotor cavity and short cooling grooves of a generator. Calculations of the flow field and the mass flux distribution through the grooves were carried out in a sequence of four related cases Under an isothermal condition: (a pumping flow, which is the self-generated flow resulted from the rotor pumping action; (b mixing flow, which is the combination of the ventilating flow and pumping flow, under a constant density condition; (c mixing flow, with density modeled by the ideal gas law; and (d mixing flow, with different pressure differentials applied on the system. The comparisons of the results from these cases can provide useful information regarding the impacts of the ventilating flow, gas density, and system pressure differential on the mass flux distribution in the short cooling grooves. Results show that the pumping effect is strong enough to generate the cooling flow for rotor winding cooling. Therefore, for small- or mid-size generators ventilation fans may be eliminated. It also suggests that increasing the chimney dimension can improve the distribution uniformity of mass flux through the cooling grooves.

  11. Generation and prediction of time series by a neural network

    International Nuclear Information System (INIS)

    Eisenstein, E.; Kanter, I.; Kessler, D.A.; Kinzel, W.

    1995-01-01

    Generation and prediction of time series are analyzed for the case of a bit generator: a perceptron where in each time step the input units are shifted one bit to the right with the state of the leftmost input unit set equal to the output unit in the previous time step. The long-time dynamical behavior of the bit generator consists of cycles whose typical period scales polynomially with the size of the network and whose spatial structure is periodic with a typical finite wavelength. The generalization error on a cycle is zero for a finite training set, and global dynamical behaviors can also be learned in a finite time. Hence, a projection of a rule can be learned in a finite time

  12. Just-in-time characterization and certification of DOE-generated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arrenholz, D.A.; Primozic, F.J. [Benchmark Environmental Corp., Albuquerque, NM (United States); Robinson, M.A. [Los Alamos National Lab., NM (United States)

    1995-12-31

    Transportation and disposal of wastes generated by Department of Energy (DOE) activities, including weapons production and decontamination and decommissioning (D&D) of facilities, require that wastes be certified as complying with various regulations and requirements. These certification requirements are typically summarized by disposal sites in their specific waste acceptance criteria. Although a large volume of DOE wastes have been generated by past activities and are presently in storage awaiting disposal, a significant volume of DOE wastes, particularly from D&D projects. have not yet been generated. To prepare DOE-generated wastes for disposal in an efficient manner. it is suggested that a program of just-in-time characterization and certification be adopted. The goal of just-in-time characterization and certification, which is based on the just-in-time manufacturing process, is to streamline the certification process by eliminating redundant layers of oversight and establishing pro-active waste management controls. Just-in-time characterization and certification would rely on a waste management system in which wastes are characterized at the point of generation, precertified as they are generated (i.e., without iterative inspections and tests subsequent to generation and storage), and certified at the point of shipment, ideally the loading dock of the building from which the wastes are generated. Waste storage would be limited to accumulating containers for cost-efficient transportation.

  13. Just-in-time characterization and certification of DOE-generated wastes

    International Nuclear Information System (INIS)

    Arrenholz, D.A.; Primozic, F.J.; Robinson, M.A.

    1995-01-01

    Transportation and disposal of wastes generated by Department of Energy (DOE) activities, including weapons production and decontamination and decommissioning (D ampersand D) of facilities, require that wastes be certified as complying with various regulations and requirements. These certification requirements are typically summarized by disposal sites in their specific waste acceptance criteria. Although a large volume of DOE wastes have been generated by past activities and are presently in storage awaiting disposal, a significant volume of DOE wastes, particularly from D ampersand D projects. have not yet been generated. To prepare DOE-generated wastes for disposal in an efficient manner. it is suggested that a program of just-in-time characterization and certification be adopted. The goal of just-in-time characterization and certification, which is based on the just-in-time manufacturing process, is to streamline the certification process by eliminating redundant layers of oversight and establishing pro-active waste management controls. Just-in-time characterization and certification would rely on a waste management system in which wastes are characterized at the point of generation, precertified as they are generated (i.e., without iterative inspections and tests subsequent to generation and storage), and certified at the point of shipment, ideally the loading dock of the building from which the wastes are generated. Waste storage would be limited to accumulating containers for cost-efficient transportation

  14. Short-term memory loss over time without retroactive stimulus interference.

    Science.gov (United States)

    Cowan, Nelson; AuBuchon, Angela M

    2008-02-01

    A key question in cognitive psychology is whether information in short-term memory is lost as a function of time. Lewandowsky, Duncan, and Brown (2004) argued against that memory loss because forgetting in serial recall occurred to the same extent across serial positions regardless of the rate of recall. However, we believe Lewandowsky et al. (2004) only prevented one of two types of rehearsal; they did not prevent nonarticulatory rehearsal via attention. To prevent articulatory and nonarticulatory rehearsal without introducing interference, we presented unevenly timed stimuli for serial recall and, on some trials, required that the timing of stimuli be reproduced in the response. In those trials only, evidence of memory loss over time emerged. Further research is needed to identify whether this memory loss is decay or lost distinctiveness.

  15. Stochastic generation of hourly wind speed time series

    International Nuclear Information System (INIS)

    Shamshad, A.; Wan Mohd Ali Wan Hussin; Bawadi, M.A.; Mohd Sanusi, S.A.

    2006-01-01

    In the present study hourly wind speed data of Kuala Terengganu in Peninsular Malaysia are simulated by using transition matrix approach of Markovian process. The wind speed time series is divided into various states based on certain criteria. The next wind speed states are selected based on the previous states. The cumulative probability transition matrix has been formed in which each row ends with 1. Using the uniform random numbers between 0 and 1, a series of future states is generated. These states have been converted to the corresponding wind speed values using another uniform random number generator. The accuracy of the model has been determined by comparing the statistical characteristics such as average, standard deviation, root mean square error, probability density function and autocorrelation function of the generated data to those of the original data. The generated wind speed time series data is capable to preserve the wind speed characteristics of the observed data

  16. Ultra-short X-ray sources generated through laser-matter interaction and their applications

    International Nuclear Information System (INIS)

    Rousse, A.

    2004-04-01

    This work is dedicated to the sources of ultra-short X-rays. The K α source, the non-linear Thomson source, the betatron source and the X-γ source are presented. We show that a pump-probe experiment where the pump is a laser excitation and the probe is the X-K α ultra-short radiation, can be used to study the dynamics of material structure with a time resolution of 100 femtosecond. We describe 2 applications that have been achieved in the field of solid physics by using the diffraction technique with a time resolution in the range of the femtosecond. The first application has permitted the observation and characterization of the ultra-quick solid-phase transition that occurs on the surface of a semiconductor crystal. The second experiment deals with the role of optical phonons in the antecedent processes that lead to such ultra-quick solid-phase transitions. (A.C.)

  17. 4-channel time delayed pulse generator

    International Nuclear Information System (INIS)

    Wetzel, L.F.S.; Rossi, J.O.; Del Bosco, E.

    1987-02-01

    It is described the project of a 4-channel delayed pulse generator employed to trigger the plasma centrifuge experiment of the Laboratorio Associado de Plasmas. The circuit delivers pulses with amplitude of 15V, full width at half maximum of 50μs and rise time of 0.7μs. The maximum time delay is 100ms. There are two channels with a fine adjustment of 0-1ms. The system can be manually or automatically driven. (author) [pt

  18. A time-domain method to generate artificial time history from a given reference response spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Gang Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Song, Oh Seop [Dept. of Mechanical Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2016-06-15

    Seismic qualification by test is widely used as a way to show the integrity and functionality of equipment that is related to the overall safety of nuclear power plants. Another means of seismic qualification is by direct integration analysis. Both approaches require a series of time histories as an input. However, in most cases, the possibility of using real earthquake data is limited. Thus, artificial time histories are widely used instead. In many cases, however, response spectra are given. Thus, most of the artificial time histories are generated from the given response spectra. Obtaining the response spectrum from a given time history is straightforward. However, the procedure for generating artificial time histories from a given response spectrum is difficult and complex to understand. Thus, this paper presents a simple time-domain method for generating a time history from a given response spectrum; the method was shown to satisfy conditions derived from nuclear regulatory guidance.

  19. A time-domain method to generate artificial time history from a given reference response spectrum

    International Nuclear Information System (INIS)

    Shin, Gang Sik; Song, Oh Seop

    2016-01-01

    Seismic qualification by test is widely used as a way to show the integrity and functionality of equipment that is related to the overall safety of nuclear power plants. Another means of seismic qualification is by direct integration analysis. Both approaches require a series of time histories as an input. However, in most cases, the possibility of using real earthquake data is limited. Thus, artificial time histories are widely used instead. In many cases, however, response spectra are given. Thus, most of the artificial time histories are generated from the given response spectra. Obtaining the response spectrum from a given time history is straightforward. However, the procedure for generating artificial time histories from a given response spectrum is difficult and complex to understand. Thus, this paper presents a simple time-domain method for generating a time history from a given response spectrum; the method was shown to satisfy conditions derived from nuclear regulatory guidance

  20. Method to implement the CCD timing generator based on FPGA

    Science.gov (United States)

    Li, Binhua; Song, Qian; He, Chun; Jin, Jianhui; He, Lin

    2010-07-01

    With the advance of the PFPA technology, the design methodology of digital systems is changing. In recent years we develop a method to implement the CCD timing generator based on FPGA and VHDL. This paper presents the principles and implementation skills of the method. Taking a developed camera as an example, we introduce the structure, input and output clocks/signals of a timing generator implemented in the camera. The generator is composed of a top module and a bottom module. The bottom one is made up of 4 sub-modules which correspond to 4 different operation modes. The modules are implemented by 5 VHDL programs. Frame charts of the architecture of these programs are shown in the paper. We also describe implementation steps of the timing generator in Quartus II, and the interconnections between the generator and a Nios soft core processor which is the controller of this generator. Some test results are presented in the end.

  1. Time domain numerical calculations of the short electron bunch wakefields in resistive structures

    Energy Technology Data Exchange (ETDEWEB)

    Tsakanian, Andranik

    2010-10-15

    The acceleration of electron bunches with very small longitudinal and transverse phase space volume is one of the most actual challenges for the future International Linear Collider and high brightness X-Ray Free Electron Lasers. The exact knowledge on the wake fields generated by the ultra-short electron bunches during its interaction with surrounding structures is a very important issue to prevent the beam quality degradation and to optimize the facility performance. The high accuracy time domain numerical calculations play the decisive role in correct evaluation of the wake fields in advanced accelerators. The thesis is devoted to the development of a new longitudinally dispersion-free 3D hybrid numerical scheme in time domain for wake field calculation of ultra short bunches in structures with walls of finite conductivity. The basic approaches used in the thesis to solve the problem are the following. For materials with high but finite conductivity the model of the plane wave reflection from a conducting half-space is used. It is shown that in the conductive half-space the field components perpendicular to the interface can be neglected. The electric tangential component on the surface contributes to the tangential magnetic field in the lossless area just before the boundary layer. For high conducting media, the task is reduced to 1D electromagnetic problem in metal and the so-called 1D conducting line model can be applied instead of a full 3D space description. Further, a TE/TM (''transverse electric - transverse magnetic'') splitting implicit numerical scheme along with 1D conducting line model is applied to develop a new longitudinally dispersion-free hybrid numerical scheme in the time domain. The stability of the new hybrid numerical scheme in vacuum, conductor and bound cell is studied. The convergence of the new scheme is analyzed by comparison with the well-known analytical solutions. The wakefield calculations for a number of

  2. Thermonuclear Bursts with Short Recurrence Times from Neutron Stars Explained by Opacity-driven Convection

    Energy Technology Data Exchange (ETDEWEB)

    Keek, L. [X-ray Astrophysics Laboratory, Astrophysics Science Division, NASA/GSFC, Greenbelt, MD 20771 (United States); Heger, A., E-mail: laurens.keek@nasa.gov [Monash Center for Astrophysics, School of Physics and Astronomy, Monash University, Victoria, 3800 (Australia)

    2017-06-20

    Thermonuclear flashes of hydrogen and helium accreted onto neutron stars produce the frequently observed Type I X-ray bursts. It is the current paradigm that almost all material burns in a burst, after which it takes hours to accumulate fresh fuel for the next burst. In rare cases, however, bursts are observed with recurrence times as short as minutes. We present the first one-dimensional multi-zone simulations that reproduce this phenomenon. Bursts that ignite in a relatively hot neutron star envelope leave a substantial fraction of the fuel unburned at shallow depths. In the wake of the burst, convective mixing events driven by opacity bring this fuel down to the ignition depth on the observed timescale of minutes. There, unburned hydrogen mixes with the metal-rich ashes, igniting to produce a subsequent burst. We find burst pairs and triplets, similar to the observed instances. Our simulations reproduce the observed fraction of bursts with short waiting times of ∼30%, and demonstrate that short recurrence time bursts are typically less bright and of shorter duration.

  3. Mitigating Short-Term Variations of Photovoltaic Generation Using Energy Storage with VOLTTRON

    Science.gov (United States)

    Morrissey, Kevin

    A smart-building communications system performs smoothing on photovoltaic (PV) power generation using a battery energy storage system (BESS). The system runs using VOLTTRON(TM), a multi-agent python-based software platform dedicated to power systems. The VOLTTRON(TM) system designed for this project runs synergistically with the larger University of Washington VOLTTRON(TM) environment, which is designed to operate UW device communications and databases as well as to perform real-time operations for research. One such research algorithm that operates simultaneously with this PV Smoothing System is an energy cost optimization system which optimizes net demand and associated cost throughout a day using the BESS. The PV Smoothing System features an active low-pass filter with an adaptable time constant, as well as adjustable limitations on the output power and accumulated battery energy of the BESS contribution. The system was analyzed using 26 days of PV generation at 1-second resolution. PV smoothing was studied with unconstrained BESS contribution as well as under a broad range of BESS constraints analogous to variable-sized storage. It was determined that a large inverter output power was more important for PV smoothing than a large battery energy capacity. Two methods of selecting the time constant in real time, static and adaptive, are studied for their impact on system performance. It was found that both systems provide a high level of PV smoothing performance, within 8% of the ideal case where the best time constant is known ahead of time. The system was run in real time using VOLTTRON(TM) with BESS limitations of 5 kW/6.5 kWh and an adaptive update period of 7 days. The system behaved as expected given the BESS parameters and time constant selection methods, providing smoothing on the PV generation and updating the time constant periodically using the adaptive time constant selection method.

  4. Short-time existence of solutions for mean-field games with congestion

    KAUST Repository

    Gomes, Diogo A.

    2015-11-20

    We consider time-dependent mean-field games with congestion that are given by a Hamilton–Jacobi equation coupled with a Fokker–Planck equation. These models are motivated by crowd dynamics in which agents have difficulty moving in high-density areas. The congestion effects make the Hamilton–Jacobi equation singular. The uniqueness of solutions for this problem is well understood; however, the existence of classical solutions was only known in very special cases, stationary problems with quadratic Hamiltonians and some time-dependent explicit examples. Here, we demonstrate the short-time existence of C∞ solutions for sub-quadratic Hamiltonians.

  5. Modeling long correlation times using additive binary Markov chains: Applications to wind generation time series

    Science.gov (United States)

    Weber, Juliane; Zachow, Christopher; Witthaut, Dirk

    2018-03-01

    Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.

  6. Modeling long correlation times using additive binary Markov chains: Applications to wind generation time series.

    Science.gov (United States)

    Weber, Juliane; Zachow, Christopher; Witthaut, Dirk

    2018-03-01

    Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.

  7. Fast pulse beam generation systems for electron accelerators

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1977-01-01

    The fast pulse beam generation system to supply the SLAC storage ring, SPEAR, by the two one nanosecond bunch electron beam pulses is described. Generation of these pulses is accomplished with a combination of a fast pulsed grided gun and a synchronized transverse beam chopper. Fast gun based on spherical cathode-grid assembly has output current up to 2As. Fast pulse amplifier system can handle trains of short pulses with repetition rates up to 40 MHz during the 1.6 μs normal accelerating time. Chopping deflector system consists of a resonant coaxial line with the deflecting plates. The resonator frequency is 39.667 MHz. A schematic diagram of the resonant system is shown. The fast beam pickup system has a one hundred picosecond rise time overrall. Fast beam generation and chopper systems permit to generate almost any short or single bunch beam profile needed for experiments

  8. [Clinical characteristics of short tear film breakup time (BUT) -type dry eye].

    Science.gov (United States)

    Yamamoto, Yuji; Yokoi, Norihiko; Higashihara, Hisayo; Inagaki, Kayoko; Sonomura, Yukiko; Komuro, Aoi; Kinoshita, Shigeru

    2012-12-01

    To evaluate the clinical characteristics and management of short tear film breakup time (BUT) -type dry eye. Clinical background and post-treatment changes of symptoms in 77 patients with short BUT -type dry eye were investigated. Treatment consisted of artificial-tear eye-drop instillation and, if necessary, the addition of a low-density-level steroid, hyaluronic acid, a low-density-level cyclopentolate prepared by ourselves and punctal plugs inserted into the upper and lower lacrimal puncta. There were three times more women than men among the patients, and the peak age of occurrence was in the twenties in the men and in the sixties in the women. Our findings show that visual display terminal (VDT) work, contact lens (CL) wear, and changes in the sex hormones may initiate subjective symptoms. Some patients had simultaneous conjunctivochalasis, allergic conjunctivitis, and meibomian gland dysfunction. Nineteen patients (24.7%) were effectively treated with eye-drop instillation alone. Thirty-seven patients (48.1%) required punctal-plug insertion, which was completely effective in only 8 of them (21.6%). Mainly young men and menopausal women contract short BUT -type dry eye. Changes in sex hormones, VDT work and CL wear may be causal, and the disease cannot be controlled by eyedrop and punctal-plug treatment alone.

  9. Time-Elastic Generative Model for Acceleration Time Series in Human Activity Recognition.

    Science.gov (United States)

    Munoz-Organero, Mario; Ruiz-Blazquez, Ramona

    2017-02-08

    Body-worn sensors in general and accelerometers in particular have been widely used in order to detect human movements and activities. The execution of each type of movement by each particular individual generates sequences of time series of sensed data from which specific movement related patterns can be assessed. Several machine learning algorithms have been used over windowed segments of sensed data in order to detect such patterns in activity recognition based on intermediate features (either hand-crafted or automatically learned from data). The underlying assumption is that the computed features will capture statistical differences that can properly classify different movements and activities after a training phase based on sensed data. In order to achieve high accuracy and recall rates (and guarantee the generalization of the system to new users), the training data have to contain enough information to characterize all possible ways of executing the activity or movement to be detected. This could imply large amounts of data and a complex and time-consuming training phase, which has been shown to be even more relevant when automatically learning the optimal features to be used. In this paper, we present a novel generative model that is able to generate sequences of time series for characterizing a particular movement based on the time elasticity properties of the sensed data. The model is used to train a stack of auto-encoders in order to learn the particular features able to detect human movements. The results of movement detection using a newly generated database with information on five users performing six different movements are presented. The generalization of results using an existing database is also presented in the paper. The results show that the proposed mechanism is able to obtain acceptable recognition rates ( F = 0.77) even in the case of using different people executing a different sequence of movements and using different hardware.

  10. EVOLVING TO TYPE Ia SUPERNOVAE WITH SHORT DELAY TIMES

    International Nuclear Information System (INIS)

    Wang Bo; Chen Xuefei; Han Zhanwen; Meng Xiangcun

    2009-01-01

    The single-degenerate model is currently a favorable progenitor model for Type Ia supernovae (SNe Ia). Recent investigations on the white dwarf (WD) + He star channel of the single-degenerate model imply that this channel is noteworthy for producing SNe Ia. In this paper, we studied SN Ia birthrates and delay times of this channel via a detailed binary population synthesis approach. We found that the Galactic SN Ia birthrate from the WD + He star channel is ∼0.3 x 10 -3 yr -1 according to our standard model, and that this channel can explain SNe Ia with short delay times (∼4.5 x 10 7 -1.4 x 10 8 yr). Meanwhile, these WD + He star systems may be related to the young supersoft X-ray sources prior to SN Ia explosions.

  11. A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times

    DEFF Research Database (Denmark)

    Edmund, Jens Morgenthaler; Kjer, Hans Martin; Van Leemput, Koen

    2014-01-01

    including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT...... receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation...... significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI comparison. The mean dosimetric deviation for photons and protons compared to the CT was about 2% and highest in the gradient dose...

  12. Automatic Generation of Cycle-Approximate TLMs with Timed RTOS Model Support

    Science.gov (United States)

    Hwang, Yonghyun; Schirner, Gunar; Abdi, Samar

    This paper presents a technique for automatically generating cycle-approximate transaction level models (TLMs) for multi-process applications mapped to embedded platforms. It incorporates three key features: (a) basic block level timing annotation, (b) RTOS model integration, and (c) RTOS overhead delay modeling. The inputs to TLM generation are application C processes and their mapping to processors in the platform. A processor data model, including pipelined datapath, memory hierarchy and branch delay model is used to estimate basic block execution delays. The delays are annotated to the C code, which is then integrated with a generated SystemC RTOS model. Our abstract RTOS provides dynamic scheduling and inter-process communication (IPC) with processor- and RTOS-specific pre-characterized timing. Our experiments using a MP3 decoder and a JPEG encoder show that timed TLMs, with integrated RTOS models, can be automatically generated in less than a minute. Our generated TLMs simulated three times faster than real-time and showed less than 10% timing error compared to board measurements.

  13. Determination of rail wear and short-time wear measurements of rails applying radioisotopes

    International Nuclear Information System (INIS)

    Grohmann, H.D.

    1981-01-01

    An energetic model has been developed for calculating rail wear. Short-time wear tests on rails after surface activation and following activity measurements showed a good agreement with the calculated values

  14. Short-term adaptations as a response to travel time: results of a stated adaptation experimentincreases

    NARCIS (Netherlands)

    Psarra, I.; Arentze, T.A.; Timmermans, H.J.P.

    2016-01-01

    This study focused on short-term dynamics of activity-travel behavior as a response to travel time increases. It is assumed that short-term changes are triggered by stress, which is defined as the deviation between an individual’s aspirations and his or her daily experiences. When stress exceeds a

  15. Assessing the 5S ribosomal RNA heterogeneity in Arabidopsis thaliana using short RNA next generation sequencing data.

    Science.gov (United States)

    Szymanski, Maciej; Karlowski, Wojciech M

    2016-01-01

    In eukaryotes, ribosomal 5S rRNAs are products of multigene families organized within clusters of tandemly repeated units. Accumulation of genomic data obtained from a variety of organisms demonstrated that the potential 5S rRNA coding sequences show a large number of variants, often incompatible with folding into a correct secondary structure. Here, we present results of an analysis of a large set of short RNA sequences generated by the next generation sequencing techniques, to address the problem of heterogeneity of the 5S rRNA transcripts in Arabidopsis and identification of potentially functional rRNA-derived fragments.

  16. Short-term optimal wind power generation capacity in liberalized electricity markets

    International Nuclear Information System (INIS)

    Olsina, Fernando; Roescher, Mark; Larisson, Carlos; Garces, Francisco

    2007-01-01

    Mainly because of environmental concerns and fuel price uncertainties, considerable amounts of wind-based generation capacity are being added to some deregulated power systems. The rapid wind development registered in some countries has essentially been driven by strong subsidizing programs. Since wind investments are commonly isolated from market signals, installed wind capacity can be higher than optimal, leading to distortions of the power prices with a consequent loss of social welfare. In this work, the influence of wind generation on power prices in the framework of a liberalized electricity market has been assessed by means of stochastic simulation techniques. The developed methodology allows investigating the maximal wind capacity that would be profitably deployed if wind investments were subject to market conditions only. For this purpose, stochastic variables determining power prices are accurately modeled. A test system resembling the size and characteristics of the German power system has been selected for this study. The expected value of the optimal, short-term wind capacity is evaluated for a considerable number of random realizations of power prices. The impact of dispersing the wind capacity over statistical independent wind sites has also been evaluated. The simulation results reveal that fuel prices, installation and financing costs of wind investments are very influential parameters on the maximal wind capacity that might be accommodated in a market-based manner

  17. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens.

    Science.gov (United States)

    Jiang, Ning; Wang, Chao; Xue, Chenpeng; Li, Guilan; Lin, Shuqing; Qiu, Kun

    2017-06-26

    We propose a flat wideband chaos generation scheme that shows excellent time delay signature suppression effect, by injecting the chaotic output of general external cavity semiconductor laser into an optical time lens module composed of a phase modulator and two dispersive units. The numerical results demonstrate that by properly setting the parameters of the driving signal of phase modulator and the accumulated dispersion of dispersive units, the relaxation oscillation in chaos can be eliminated, wideband chaos generation with an efficient bandwidth up to several tens of GHz can be achieved, and the RF spectrum of generated chaotic signal is nearly as flat as uniform distribution. Moreover, the periodicity of chaos induced by the external cavity modes can be simultaneously destructed by the optical time lens module, based on this the time delay signature can be completely suppressed.

  18. Short-Term Change Detection in Wetlands Using Sentinel-1 Time Series

    DEFF Research Database (Denmark)

    Muro, Javier; Canty, Morton; Conradsen, Knut

    2016-01-01

    Automated monitoring systems that can capture wetlands’ high spatial and temporal variability are essential for their management. SAR-based change detection approaches offer a great opportunity to enhance our understanding of complex and dynamic ecosystems. We test a recently-developed time serie...... certain landscape changes are detected only by either the Landsat-based or the S1-omnibus method. The S1-omnibus method shows a great potential for an automated monitoring of short time changes and accurate delineation of areas of high variability and of slow and gradual changes....

  19. Short-Term Memory Loss Over Time Without Retroactive Stimulus Interference

    OpenAIRE

    Cowan, Nelson; AuBuchon, Angela M.

    2008-01-01

    A key question in cognitive psychology is whether information in short-term memory is lost as a function of time. Lewandowsky, Duncan, and Brown (2004) argued against that memory loss because forgetting in serial recall occurred to the same extent across serial positions regardless of the rate of recall. However, we believe Lewandowsky et al. only prevented one of two types of rehearsal; they did not prevent non-articulatory rehearsal via attention. To prevent articulatory and non-articulator...

  20. SHORT COMMUNICATION: Time measurement device with four femtosecond stability

    Science.gov (United States)

    Panek, Petr; Prochazka, Ivan; Kodet, Jan

    2010-10-01

    We present the experimental results of extremely precise timing in the sense of time-of-arrival measurements in a local time scale. The timing device designed and constructed in our laboratory is based on a new concept using a surface acoustic wave filter as a time interpolator. Construction of the device is briefly described. The experiments described were focused on evaluating the timing precision and stability. Low-jitter test pulses with a repetition frequency of 763 Hz were generated synchronously to the local time base and their times of arrival were measured. The resulting precision of a single measurement was typically 900 fs RMS, and a timing stability TDEV of 4 fs was achieved for time intervals in the range from 300 s to 2 h. To our knowledge this is the best value reported to date for the stability of a timing device. The experimental results are discussed and possible improvements are proposed.

  1. X-ray testing for short-time dynamic applications; Roentgenuntersuchungen fuer kurzzeitdynamische Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Kurfiss, Malte; Moser, Stefan; Popko, Gregor; Nau, Siegfried [Fraunhofer-Institut fuer Kurzzeitdynamik, Efringen-Kirchen (Germany). Ernst-Mach-Inst. (EMI)

    2017-08-01

    For nondestructive testing purposes new challenges are short-time dynamic processes. The application of x-ray flash tubes and modern high-speed cameras allows the observation of the opening of air-bags or the energy absorption of compressed tubes as occurring during a vehicle crash. Special algorithms designed for computerized tomography analyses allow the 3D reconstruction at individual time points of the dynamic process. Possibilities and limitations of the actual techniques are discussed.

  2. Long-Short Fund Performance Evaluation in Brazil

    Directory of Open Access Journals (Sweden)

    Fábio Augusto Reis Gomes

    2010-12-01

    Full Text Available Long-Short Funds should be able to provide positive returns, above the opportunity cost and independent of market conditions, once they can have both long and short positions. For this reason, this study aims to evaluate the Long-Short funds in Brazil, assessing whether customers of these products are buying just market returns (Beta, or if there is excess return (alpha independent of the stock market. Analyzing a sample of 76 funds from January 2, 2001 to March 31, 2008, using daily and monthly data, we found evidence that a small number of funds are able to generate excess return. Besides, this excess does not exhibit persistence. Finally, there is little or no evidence for market timing.

  3. FREQUENCY COMPONENT EXTRACTION OF HEARTBEAT CUES WITH SHORT TIME FOURIER TRANSFORM (STFT

    Directory of Open Access Journals (Sweden)

    Sumarna Sumarna

    2017-01-01

      Electro-acoustic human heartbeat detector have been made with the main parts : (a stetoscope (piece chest, (b mic condenser, (c transistor amplifier, and (d cues analysis program with MATLAB. The frequency components that contained in heartbeat. cues have also been extracted with Short Time Fourier Transform (STFT from 9 volunteers. The results of the analysis showed that heart rate appeared in every cue frequency spectrum with their harmony. The steps of the research were including detector instrument design, test and instrument repair, cues heartbeat recording with Sound Forge 10 program and stored in wav file ; cues breaking at the start and the end, and extraction/cues analysis using MATLAB. The MATLAB program included filter (bandpass filter with bandwidth between 0.01 – 110 Hz, cues breaking with hamming window and every part was calculated using Fourier Transform (STFT mechanism and the result were shown in frequency spectrum graph.   Keywords: frequency components extraction, heartbeat cues, Short Time Fourier Transform

  4. The loss of short-term visual representations over time: decay or temporal distinctiveness?

    Science.gov (United States)

    Mercer, Tom

    2014-12-01

    There has been much recent interest in the loss of visual short-term memories over the passage of time. According to decay theory, visual representations are gradually forgotten as time passes, reflecting a slow and steady distortion of the memory trace. However, this is controversial and decay effects can be explained in other ways. The present experiment aimed to reexamine the maintenance and loss of visual information over the short term. Decay and temporal distinctiveness models were tested using a delayed discrimination task, in which participants compared complex and novel objects over unfilled retention intervals of variable length. Experiment 1 found no significant change in the accuracy of visual memory from 2 to 6 s, but the gap separating trials reliably influenced task performance. Experiment 2 found evidence for information loss at a 10-s retention interval, but temporally separating trials restored the fidelity of visual memory, possibly because temporally isolated representations are distinct from older memory traces. In conclusion, visual representations lose accuracy at some point after 6 s, but only within temporally crowded contexts. These findings highlight the importance of temporal distinctiveness within visual short-term memory. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  5. Sensor-Generated Time Series Events: A Definition Language

    Science.gov (United States)

    Anguera, Aurea; Lara, Juan A.; Lizcano, David; Martínez, Maria Aurora; Pazos, Juan

    2012-01-01

    There are now a great many domains where information is recorded by sensors over a limited time period or on a permanent basis. This data flow leads to sequences of data known as time series. In many domains, like seismography or medicine, time series analysis focuses on particular regions of interest, known as events, whereas the remainder of the time series contains hardly any useful information. In these domains, there is a need for mechanisms to identify and locate such events. In this paper, we propose an events definition language that is general enough to be used to easily and naturally define events in time series recorded by sensors in any domain. The proposed language has been applied to the definition of time series events generated within the branch of medicine dealing with balance-related functions in human beings. A device, called posturograph, is used to study balance-related functions. The platform has four sensors that record the pressure intensity being exerted on the platform, generating four interrelated time series. As opposed to the existing ad hoc proposals, the results confirm that the proposed language is valid, that is generally applicable and accurate, for identifying the events contained in the time series.

  6. Effective description of the short-time dynamics in open quantum systems

    Science.gov (United States)

    Rossi, Matteo A. C.; Foti, Caterina; Cuccoli, Alessandro; Trapani, Jacopo; Verrucchi, Paola; Paris, Matteo G. A.

    2017-09-01

    We address the dynamics of a bosonic system coupled to either a bosonic or a magnetic environment and derive a set of sufficient conditions that allow one to describe the dynamics in terms of the effective interaction with a classical fluctuating field. We find that for short interaction times the dynamics of the open system is described by a Gaussian noise map for several different interaction models and independently on the temperature of the environment. In order to go beyond a qualitative understanding of the origin and physical meaning of the above short-time constraint, we take a general viewpoint and, based on an algebraic approach, suggest that any quantum environment can be described by classical fields whenever global symmetries lead to the definition of environmental operators that remain well defined when increasing the size, i.e., the number of dynamical variables, of the environment. In the case of the bosonic environment this statement is exactly demonstrated via a constructive procedure that explicitly shows why a large number of environmental dynamical variables and, necessarily, global symmetries, entail the set of conditions derived in the first part of the work.

  7. Time-Elastic Generative Model for Acceleration Time Series in Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Mario Munoz-Organero

    2017-02-01

    Full Text Available Body-worn sensors in general and accelerometers in particular have been widely used in order to detect human movements and activities. The execution of each type of movement by each particular individual generates sequences of time series of sensed data from which specific movement related patterns can be assessed. Several machine learning algorithms have been used over windowed segments of sensed data in order to detect such patterns in activity recognition based on intermediate features (either hand-crafted or automatically learned from data. The underlying assumption is that the computed features will capture statistical differences that can properly classify different movements and activities after a training phase based on sensed data. In order to achieve high accuracy and recall rates (and guarantee the generalization of the system to new users, the training data have to contain enough information to characterize all possible ways of executing the activity or movement to be detected. This could imply large amounts of data and a complex and time-consuming training phase, which has been shown to be even more relevant when automatically learning the optimal features to be used. In this paper, we present a novel generative model that is able to generate sequences of time series for characterizing a particular movement based on the time elasticity properties of the sensed data. The model is used to train a stack of auto-encoders in order to learn the particular features able to detect human movements. The results of movement detection using a newly generated database with information on five users performing six different movements are presented. The generalization of results using an existing database is also presented in the paper. The results show that the proposed mechanism is able to obtain acceptable recognition rates (F = 0.77 even in the case of using different people executing a different sequence of movements and using different

  8. Short-Term Photovoltaic Power Generation Forecasting Based on Multivariable Grey Theory Model with Parameter Optimization

    Directory of Open Access Journals (Sweden)

    Zhifeng Zhong

    2017-01-01

    Full Text Available Owing to the environment, temperature, and so forth, photovoltaic power generation volume is always fluctuating and subsequently impacts power grid planning and operation seriously. Therefore, it is of great importance to make accurate prediction of the power generation of photovoltaic (PV system in advance. In order to improve the prediction accuracy, in this paper, a novel particle swarm optimization algorithm based multivariable grey theory model is proposed for short-term photovoltaic power generation volume forecasting. It is highlighted that, by integrating particle swarm optimization algorithm, the prediction accuracy of grey theory model is expected to be highly improved. In addition, large amounts of real data from two separate power stations in China are being employed for model verification. The experimental results indicate that, compared with the conventional grey model, the mean relative error in the proposed model has been reduced from 7.14% to 3.53%. The real practice demonstrates that the proposed optimization model outperforms the conventional grey model from both theoretical and practical perspectives.

  9. Quantifying and Reducing Uncertainty in Correlated Multi-Area Short-Term Load Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yannan; Hou, Zhangshuan; Meng, Da; Samaan, Nader A.; Makarov, Yuri V.; Huang, Zhenyu

    2016-07-17

    In this study, we represent and reduce the uncertainties in short-term electric load forecasting by integrating time series analysis tools including ARIMA modeling, sequential Gaussian simulation, and principal component analysis. The approaches are mainly focusing on maintaining the inter-dependency between multiple geographically related areas. These approaches are applied onto cross-correlated load time series as well as their forecast errors. Multiple short-term prediction realizations are then generated from the reduced uncertainty ranges, which are useful for power system risk analyses.

  10. Measurement of short bunches

    International Nuclear Information System (INIS)

    Wang, D.X.

    1996-01-01

    In recent years, there has been increasing interest in short electron bunches for different applications such as short wavelength FELs, linear colliders, and advanced accelerators such as laser or plasma wakefield accelerators. One would like to meet various requirements such as high peak current, low momentum spread, high luminosity, small ratio of bunch length to plasma wavelength, and accurate timing. Meanwhile, recent development and advances in RF photoinjectors and various bunching schemes make it possible to generate very short electron bunches. Measuring the longitudinal profile and monitoring bunch length are critical to understand the bunching process and longitudinal beam dynamics, and to commission and operate such short bunch machines. In this paper, several commonly used measurement techniques for subpicosecond bunches and their relative advantages and disadvantages are discussed. As examples, bunch length related measurements at Jefferson Lab are presented. At Jefferson Lab, bunch lengths as short as 84 fs have been systematically measured using a zero-phasing technique. A highly sensitive Coherent Synchrotron Radiation (CSR) detector has been developed to noninvasively monitor bunch length for low charge bunches. Phase transfer function measurements provide a means of correcting RF phase drifts and reproducing RF phases to within a couple of tenths of a degree. The measurement results are in excellent agreement with simulations. A comprehensive bunch length control scheme is presented. (author)

  11. Measurement of short bunches

    International Nuclear Information System (INIS)

    Wang, D.X.

    1996-01-01

    In recent years, there has been increasing interest in short electron bunches for different applications such as short wavelength FELs, linear colliders, and advanced accelerators such as laser or plasma wakefield accelerators. One would like to meet various requirements such as high peak current, low momentum spread, high luminosity, small ratio of bunch length to plasma wavelength, and accurate timing. Meanwhile, recent development and advances in RF photoinjectors and various bunching schemes make it possible to generate very short electron bunches. Measuring the longitudinal profile and monitoring bunch length are critical to understand the bunching process and longitudinal beam dynamics, and to commission and operate such short bunch machines. In this paper, several commonly used measurement techniques for subpicosecond bunches and their relative advantages and disadvantages are discussed. As examples, bunch length related measurements at Jefferson lab are presented. At Jefferson Lab, bunch lengths s short as 84 fs have been systematically measured using a zero-phasing technique. A highly sensitive Coherent Synchrotron Radiation (CSR) detector has been developed to noninvasively monitor bunch length for low charge bunches. Phase transfer function measurements provide a means of correcting RF phase drifts and reproducing RF phases to within a couple of tenths of a degree. The measurement results are in excellent agreement with simulations. A comprehensive bunch length control scheme is presented

  12. High-order harmonic generation spectra and isolated attosecond pulse generation with a two-color time delayed pulse

    International Nuclear Information System (INIS)

    Feng Liqiang; Chu Tianshu

    2012-01-01

    Highlights: ► Investigation of HHG spectra and single isolated attosecond pulse generation. ► Irradiation from a model Ne atom by two-color time delayed pulse. ► Observation of time delay effect and relative phase effect. ► Revelation of the optimal condition for generating isolated attosecond pulse. ► Generation of a single isolated attosecond pulse of 45as. - Abstract: In this paper, we theoretically investigate the delay time effect on the high-order harmonic generation (HHG) when a model Ne atom is exposed to a two-color time delayed pulse, consisting of a 5fs/800 nm fundamental field and a 20fs/2000 nm controlling field. It shows that the HHG spectra are strongly sensitive to the delay time between the two laser fields, in particular, for the zero carrier-envelope phase (CEP) φ case (corresponding to the 800 nm fundamental field), the maximum cutoff energy has been achieved at zero delay time. However, with the introduction of the CEP (φ = 180°), the delay effect on HHG is changed, exhibiting a ‘U’ structure harmonic emission from −1 T to 1 T. In addition, the combinations of different controlling pulse frequencies and pulse intensities have also been considered, showing the similar results as the original controlling field case, but with some characteristics. Finally, by properly superposing the optimal harmonic spectrum, an isolated 45as pulse is generated without phase compensation.

  13. An analysis of short haul air passenger demand, volume 2

    Science.gov (United States)

    Blumer, T. P.; Swan, W. M.

    1978-01-01

    Several demand models for short haul air travel are proposed and calibrated on pooled data. The models are designed to predict demand and analyze some of the motivating phenomena behind demand generation. In particular, an attempt is made to include the effects of competing modes and of alternate destinations. The results support three conclusions: (1) the auto mode is the air mode's major competitor; (2) trip time is an overriding factor in intermodal competition, with air fare at its present level appearing unimportant to the typical short haul air traveler; and (3) distance appears to underly several demand generating phenomena, and therefore, must be considered very carefully to any intercity demand model. It may be the cause of the wide range of fare elasticities reported by researchers over the past 15 years. A behavioral demand model is proposed and calibrated. It combines the travel generating effects of income and population, the effects of modal split, the sensitivity of travel to price and time, and the effect of alternative destinations satisfying the trip purpose.

  14. An adaptive random search for short term generation scheduling with network constraints.

    Directory of Open Access Journals (Sweden)

    J A Marmolejo

    Full Text Available This paper presents an adaptive random search approach to address a short term generation scheduling with network constraints, which determines the startup and shutdown schedules of thermal units over a given planning horizon. In this model, we consider the transmission network through capacity limits and line losses. The mathematical model is stated in the form of a Mixed Integer Non Linear Problem with binary variables. The proposed heuristic is a population-based method that generates a set of new potential solutions via a random search strategy. The random search is based on the Markov Chain Monte Carlo method. The main key of the proposed method is that the noise level of the random search is adaptively controlled in order to exploring and exploiting the entire search space. In order to improve the solutions, we consider coupling a local search into random search process. Several test systems are presented to evaluate the performance of the proposed heuristic. We use a commercial optimizer to compare the quality of the solutions provided by the proposed method. The solution of the proposed algorithm showed a significant reduction in computational effort with respect to the full-scale outer approximation commercial solver. Numerical results show the potential and robustness of our approach.

  15. Development of a fast rise-time, high-voltage pulse generator

    International Nuclear Information System (INIS)

    Zhang Yanxia; Zhu Jie; Li Xianyou

    2006-01-01

    In order to test the attenuation of the system, a fast rise-time, high-voltage pulse generator is required for the fast pulse signal measurement. The paper presents the development of the generator. More emphasis is paid on the discussion of the difficulties occurring in the circuit debugging and their resolutions. The output rise-time of the generator is 700 ps, the amplitude is adjustable in the range of 0 to 500 V, the pulse-width is adjustable in the range of 4ns to 1μs. (authors)

  16. Time-resolved C-arm cone beam CT angiography (TR-CBCTA) imaging from a single short-scan C-arm cone beam CT acquisition with intra-arterial contrast injection

    Science.gov (United States)

    Li, Yinsheng; Garrett, John W.; Li, Ke; Wu, Yijing; Johnson, Kevin; Schafer, Sebastian; Strother, Charles; Chen, Guang-Hong

    2018-04-01

    Time-resolved C-arm cone-beam CT (CBCT) angiography (TR-CBCTA) images can be generated from a series of CBCT acquisitions that satisfy data sufficiency condition in analytical image reconstruction theory. In this work, a new technique was developed to generate TR-CBCTA images from a single short-scan CBCT data acquisition with contrast media injection. The reconstruction technique enabling this application is a previously developed image reconstruction technique, synchronized multi-artifact reduction with tomographic reconstruction (SMART-RECON). In this new application, the acquired short-scan CBCT projection data were sorted into a union of several sub-sectors of view angles and each sub-sector of view angles corresponds to an individual image volume to be reconstructed. The SMART-RECON method was then used to jointly reconstruct all of these individual image volumes under two constraints: (1) each individual image volume is maximally consistent with the measured cone-beam projection data within the corresponding view angle sector and (2) the nuclear norm of the image matrix is minimized. The difference between these reconstructed individual image volumes is used to generated the desired subtracted angiograms. To validate the technique, numerical simulation data generated from a fractal tree angiogram phantom were used to quantitatively study the accuracy of the proposed method and retrospective in vivo human subject studies were used to demonstrate the feasibility of generating TR-CBCTA in clinical practice.

  17. A general dead-time correction method based on live-time stamping. Application to the measurement of short-lived radionuclides.

    Science.gov (United States)

    Chauvenet, B; Bobin, C; Bouchard, J

    2017-12-01

    Dead-time correction formulae are established in the general case of superimposed non-homogeneous Poisson processes. Based on the same principles as conventional live-timed counting, this method exploits the additional information made available using digital signal processing systems, and especially the possibility to store the time stamps of live-time intervals. No approximation needs to be made to obtain those formulae. Estimates of the variances of corrected rates are also presented. This method is applied to the activity measurement of short-lived radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Methods for Free-Space Ultra-Short Solitary EMP Measurement

    Directory of Open Access Journals (Sweden)

    Petr Drexler

    2006-01-01

    Full Text Available There are some suitable methods for ultra-short solitary electromagnetic pulses (EMP measurement. The EMPs are generated by high power microwave generators. The characteristic of EMPs is high power level (Pmax = 250 MW and very short time duration (tp Î <1, 60> ns. Special requirements for measurement methods are placed because of the specific EMPs properties.Two suitable methods for this application are presented in the paper. The first – calorimetric method, utilizes the thermal impacts of microwave absorption. The second method presented – magneto-optic method, use the Faraday’s magneto-optic effect as a sensor principle. It was realized combined calorimetric sensor and there were made some experimental EMP measurements with good results. The sensor utilizing magneto-optic method is in development.

  19. Nonlinear response of vessel walls due to short-time thermomechanical loading

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kulak, R.F.

    1994-01-01

    Maintaining structural integrity of the reactor pressure vessel (RPV) during a postulated core melt accident is an important safety consideration in the design of the vessel. This study addresses the failure predictions of the vessel due to thermal and pressure loadings fro the molten core debris depositing on the lower head of the vessel. Different loading combinations were considered based on the dead load, yield stress assumptions, material response and internal pressurization. The analyses considered only short term failure (quasi static) modes, long term failure modes were not considered. Short term failure modes include plastic instabilities of the structure and failure due to exceeding the failure strain. Long term failure odes would be caused by creep rupture that leads to plastic instability of the structure. Due to the sort time durations analyzed, creep was not considered in the analyses presented

  20. Research on resistance characteristics of YBCO tape under short-time DC large current impact

    Science.gov (United States)

    Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen

    2017-06-01

    Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.

  1. Tantalum-178 - a short-lived nuclide for nuclear medicine: development of a potential generator system

    International Nuclear Information System (INIS)

    Neirinckx, R.D.; Jones, A.G.; Davis, M.A.; Harris, G.I.; Holman, B.L.

    1978-01-01

    We describe a chemical separation that may form the basis of a generator system for the short-lived radionuclide Ta-178 (T/sub 1/2/ = 9 min). The parent nuclide W-178 (T/sub 1/2/ = 21.7 days) is loaded on an anion-exchange column and the daughter eluted with a mixture of dilute hydrochloric acid and hydrogen peroxide. The yields of tantalum and the breakthrough of the tungsten parent as a function of the eluting conditions are discussed, and preliminary animal distribution data are presented for various treatments of the eluant solution

  2. Short version of the Zimbardo Time Perspective Inventory (ZTPI-short) with and without the Future-Negative scale, verified on nationally representative samples

    Czech Academy of Sciences Publication Activity Database

    Košťál, Jaroslav; Klicperová-Baker, Martina; Lukavská, K.; Lukavský, Jiří

    2016-01-01

    Roč. 25, č. 2 (2016), s. 169-192 ISSN 0961-463X Institutional support: RVO:68081740 Keywords : ZTPI * ZTPI-short * time perspective * temporal orientation * representative sample Subject RIV: AN - Psychology Impact factor: 1.206, year: 2016

  3. Development of a system for real-time measurements of metabolite transport in plants using short-lived positron-emitting radiotracers

    Science.gov (United States)

    Kiser, Matthew R.

    Over the past 200 years, the Earth's atmospheric carbon dioxide (CO 2) concentration has increased by more than 35%, and climate experts predict that CO2 levels may double by the end of this century. Understanding the mechanisms of resource management in plants is fundamental for predicting how plants will respond to the increase in atmospheric CO 2. Plant productivity sustains life on Earth and is a principal component of the planet's system that regulates atmospheric CO2 concentration. As such, one of the central goals of plant science is to understand the regulatory mechanisms of plant growth in a changing environment. Short-lived positron-emitting radiotracer techniques provide time-dependent data that are critical for developing models of metabolite transport and resource distribution in plants and their microenvironments. To better understand the effects of environmental changes on resource transport and allocation in plants, we have developed a system for real-time measurements of rnetabolite transport in plants using short-lived positron-emitting radio-tracers. This thesis project includes the design, construction, and demonstration of the capabilities of this system for performing real-time measurements of metabolite transport in plants. The short-lived radiotracer system described in this dissertation takes advantage of the combined capabilities and close proximity of two research facilities at. Duke University: the Triangle Universities Nuclear Laboratory (TUNL) and the Duke University Phytotron, which are separated by approximately 100 meters. The short-lived positron-emitting radioisotopes are generated using the 10-MV tandem Van de Graaff accelerator located in the main TUNL building, which provides the capability of producing short-lived positron-emitting isotopes such as carbon-11 (11C: 20 minute half-life), nitrogen-13 (13N; 10 minute half-life), fluorine-18 (18F; 110 minute half-life), and oxygen-15 (15O; 2 minute half-life). The radioisotopes may

  4. Forecast model of landslides in a short time

    International Nuclear Information System (INIS)

    Sanchez Lopez, Reinaldo

    2006-01-01

    The IDEAM in development of their functions as member of the national technical committee for the prevention and disasters attention (SNPAD) accomplishes the follow-up, monitoring and forecast in real time of the environmental dynamics that in extreme situations constitute threats and natural risks. One of the frequent dynamics and of greater impact is related to landslides, those that affect persistently the life of the persons, the infrastructure, the socioeconomic activities and the balance of the environment. The landslide in Colombia and in the world are caused mainly by effects of the rain, due to that, IDEAM has come developing forecast model, as an instrument for risk management in a short time. This article presents aspects related to their structure, operation, temporary space resolution, products, results, achievements and projections of the model. Conceptually, the model is support by the principle of the dynamic temporary - space, of the processes that consolidate natural hazards, particularly in areas where the man has come building the risk. Structurally, the model is composed by two sub-models; the general susceptibility of the earthly model and the critical rain model as a denotative factor, that consolidate the hazard process. In real time, the model, works as a GIS, permitting the automatic zoning of the landslides hazard for issue public advisory warming to help makers decisions on the risk that cause frequently these events, in the country

  5. Laser generation of proton beams for the production of short-lived positron emitting radioisotopes

    International Nuclear Information System (INIS)

    Spencer, I.; Ledingham, K.W.D.; Singhal, R.P.; McCanny, T.; McKenna, P.; Clark, E.L.; Krushelnick, K.; Zepf, M.; Beg, F.N.; Tatarakis, M.; Dangor, A.E.; Norreys, P.A.; Clarke, R.J.; Allott, R.M.; Ross, I.N.

    2001-01-01

    Protons of energies up to 37 MeV have been generated when ultra-intense lasers (up to 10 20 W cm -2 ) interact with hydrogen containing solid targets. These protons can be used to induce nuclear reactions in secondary targets to produce β + -emitting nuclei of relevance to the nuclear medicine community, namely 11 C and 13 N via (p, n) and (p,α) reactions. Activities of the order of 200 kBq have been measured from a single laser pulse interacting with a thin solid target. The possibility of using ultra-intense lasers to produce commercial amounts of short-lived positron emitting sources for positron emission tomography (PET) is discussed

  6. Broadband short pulse measurement by autocorrelation with a sum-frequency generation set-up

    International Nuclear Information System (INIS)

    Glotin, F.; Jaroszynski, D.; Marcouille, O.

    1995-01-01

    Previous spectral and laser pulse length measurements carried out on the CLIO FEL at wavelength λ=8.5 μm suggested that very short light pulses could be generated, about 500 fs wide (FWHM). For these measurements a Michelson interferometer with a Te crystal, as a non-linear detector, was used as a second order autocorrelation device. More recent measurements in similar conditions have confirmed that the laser pulses observed are indeed single: they are not followed by other pulses distant by the slippage length Nλ. As the single micropulse length is likely to depend on the slippage, more measurements at different wavelengths would be useful. This is not directly possible with our actual interferometer set-up, based on a phase-matched non-linear crystal. However, we can use the broadband non-linear medium provided by one of our users' experiments: Sum-Frequency Generation over surfaces. With such autocorrelation set-up, interference fringes are no more visible, but this is largely compensated by the frequency range provided. First tests at 8 μm have already been performed to validate the technic, leading to results similar to those obtained with our previous Michelson set-up

  7. Enhanced bioelectricity generation of air-cathode buffer-free microbial fuel cells through short-term anolyte pH adjustment.

    Science.gov (United States)

    Ren, Yueping; Chen, Jinli; Li, Xiufen; Yang, Na; Wang, Xinhua

    2018-04-01

    Short-term initial anolyte pH adjustment can relieve the performance deterioration of the single-chamber air-cathode buffer-free microbial fuel cell (BFMFC) caused by anolyte acidification. Adjusting the initial anolyte pH to 9 in 5 running cycles is the optimum strategy. The relative abundance of the electrochemically active Geobacter in the KCl-pH9-MFC anode biofilm increased from 59.01% to 75.13% after the short-term adjustment. The maximum power density (P max ) of the KCl-pH9-MFC was elevated from 316.4mW·m -2 to 511.6mW·m -2 , which was comparable with that of the PBS-MFC. And, after the short-term adjusting, new equilibrium between the anolyte pH and the anode biofilm electrochemical activity has been established in the BFMFC, which ensured the sustainability of the improved bioelectricity generation performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Development of High Temperature Short Time Vertebrate-Blood Pasteurization Equipment for Tsetse Fly Diets

    Energy Technology Data Exchange (ETDEWEB)

    Moravek, I; Lach, J [Department of Manufacturing Systems, Slovak Technical University Namestie Slobody 17 812 31 Bratislava (Slovakia); Takac, P [Institute of Zoology, SAV, Bratislava (Slovakia)

    2012-07-15

    Tsetse flies feed only on vertebrate blood, but the collection and processing of blood is expensive, it must be stored at -20{sup o}C requiring costly storage rooms and reliable electricity, and it must be irradiated to reduce bacterial contamination. This is tolerable for small colonies, but as colony size increases to service large- scale programmes, the supply and processing of blood becomes critical. Blood is normally collected from cattle at slaughter. This process is necessarily not aseptic, and large-scale collection is only possible where the animals are suspended for bleeding. One alternative to blood decontamination is using the High Temperature Short time Pasteurization (HTST) method. The food processing industry uses pasteurization to reduce bacterial load in a wide range of products. Our previous results indicated that for the control of the blood pasteurization process, to reach satisfactory bacteriological purity and at the same time to prevent the blood from coagulating, it is important to study temperature and time and also some other parameters that could predict blood coagulation. Crucial for blood coagulation is to study blood viscosity. Classical heat exchangers are not suitable for blood pasteurization. In such equipment the blood coagulation depends on temperature and time. Besides the relatively low temperatures, blood is coagulating with cumulative time until total shutdown of blood flow. After a series of experiments we found a solution using microwave systems. To verify the microwave heating concept, we built an experimental workstation. First we verified the accuracy of the applicator design from the aspect of output adaptation to the power source. Also we installed measuring equipment. This system complies with the requirements of quick heating with sufficiently high heat accumulation. By utilizing standard components for the base of the microwave generator, it is possible to markedly reduce the final price of the equipment. (author)

  9. Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation

    Directory of Open Access Journals (Sweden)

    Shin Yoshizawa

    2017-03-01

    Full Text Available A target tissue can be thermally coagulated in high-intensity focused ultrasound (HIFU treatment noninvasively. HIFU thermal treatments have been clinically applied to various solid tumors. One of the problems in HIFU treatments is a long treatment time. Acoustically driven microbubbles can accelerate the ultrasonic heating, resulting in the significant reduction of the treatment time. In this paper, a method named “trigger HIFU exposure” which employs cavitation microbubbles is introduced and its results are reviewed. A trigger HIFU sequence consists of high-intensity short pulses followed by moderate-intensity long bursts. Cavitation bubbles induced in a multiple focal regions by rapidly scanning the focus of high-intensity pulses enhanced the temperature increase significantly and produced a large coagulation region with high efficiency.

  10. Outline of the relativistic electron beam (REB) generator at Institute of Plasma Physics, Nagoya University

    International Nuclear Information System (INIS)

    Tsuzuki, Tetsuya

    1979-01-01

    The REB generators at the Institute of Plasma Physics are introduced. The generators Phoebus-2 and Phoebus-3 are main generators. The generators consist of a Marx generator (a condenser bank), a pulse forming line (PFL), a transmission line (TL) and a diode part. The rise time of current in the Marx generator must be short. The charge up time of the Phoebus-2 and the Phoebus-3 is less than 400 ns. The jitter is less than 10 ns. The dielectric material of the PFL is water, since the dielectric constant is large, and it makes self recovering. The inductance of gap at the edge of PFL should be small. The gap is useful for short rise time. The TL prevents the prepulse at the time of charging-up and works as an impedance transformer. The Phoebus-3 is connected to the torus system (SPAC-6) to make experiment on REB ring formation. (Kato, T.)

  11. Graphics processing unit (GPU) real-time infrared scene generation

    Science.gov (United States)

    Christie, Chad L.; Gouthas, Efthimios (Themie); Williams, Owen M.

    2007-04-01

    VIRSuite, the GPU-based suite of software tools developed at DSTO for real-time infrared scene generation, is described. The tools include the painting of scene objects with radiometrically-associated colours, translucent object generation, polar plot validation and versatile scene generation. Special features include radiometric scaling within the GPU and the presence of zoom anti-aliasing at the core of VIRSuite. Extension of the zoom anti-aliasing construct to cover target embedding and the treatment of translucent objects is described.

  12. Dead-Time Generation in Six-Phase Frequency Inverter

    Directory of Open Access Journals (Sweden)

    Aurelijus Pitrėnas

    2016-06-01

    Full Text Available In this paper control of multi-phase induction drives is discussed. Structure of six-phase frequency inverter is examined. The article deals with dead-time generation circuits in six-phase frequency inverter for transistor control signals. Computer models of dead-time circuits is created using LTspice software package. Simulation results are compared with experimental results of the tested dead-time circuits. Parameters obtained in simulation results are close to the parameters obtained in experimental results.

  13. A fuzzy inference model for short-term load forecasting

    International Nuclear Information System (INIS)

    Mamlook, Rustum; Badran, Omar; Abdulhadi, Emad

    2009-01-01

    This paper is concerned with the short-term load forecasting (STLF) in power system operations. It provides load prediction for generation scheduling and unit commitment decisions, and therefore precise load forecasting plays an important role in reducing the generation cost and the spinning reserve capacity. Short-term electricity demand forecasting (i.e., the prediction of hourly loads (demand)) is one of the most important tools by which an electric utility/company plans, dispatches the loading of generating units in order to meet system demand. The accuracy of the dispatching system, which is derived from the accuracy of the forecasting algorithm used, will determine the economics of the operation of the power system. The inaccuracy or large error in the forecast simply means that load matching is not optimized and consequently the generation and transmission systems are not being operated in an efficient manner. In the present study, a proposed methodology has been introduced to decrease the forecasted error and the processing time by using fuzzy logic controller on an hourly base. Therefore, it predicts the effect of different conditional parameters (i.e., weather, time, historical data, and random disturbances) on load forecasting in terms of fuzzy sets during the generation process. These parameters are chosen with respect to their priority and importance. The forecasted values obtained by fuzzy method were compared with the conventionally forecasted ones. The results showed that the STLF of the fuzzy implementation have more accuracy and better outcomes

  14. Pseudo-random bit generator based on lag time series

    Science.gov (United States)

    García-Martínez, M.; Campos-Cantón, E.

    2014-12-01

    In this paper, we present a pseudo-random bit generator (PRBG) based on two lag time series of the logistic map using positive and negative values in the bifurcation parameter. In order to hidden the map used to build the pseudo-random series we have used a delay in the generation of time series. These new series when they are mapped xn against xn+1 present a cloud of points unrelated to the logistic map. Finally, the pseudo-random sequences have been tested with the suite of NIST giving satisfactory results for use in stream ciphers.

  15. Short-time beta grain growth kinetics for a conventional titanium alloy

    International Nuclear Information System (INIS)

    Semiatin, S.L.; Sukonnik, I.M.

    1996-01-01

    The kinetics of beta grain growth during short-time, supertransus heat treatment of Ti-5Al-4V were determined using a salt-pot technique. The finite-time, subtransus temperature transient during salt-pot heating was quantified through measurements of the heat transfer coefficient characterizing conduction across the salt-titanium interface and a simple heat conduction analysis which incorporated this heat transfer coefficient. Grain size versus time data adjusted to account for the subtransus temperature transient were successfully fit to the parabolic grain growth law d n - d 0 n = kt exp(-Q/RT) using an exponent n equal to 2.0. Comparison of the present results to rapid, continuous heat treatment data in the literature for a similar titanium alloy revealed a number of semi-quantitative similarities

  16. Mood Expression in Real-Time Computer Generated Music using Pure Data

    DEFF Research Database (Denmark)

    Scirea, Marco; Nelson, Mark; Cheong, Yun-Gyung

    2014-01-01

    This paper presents an empirical study that investigated if procedurally generated music based on a set of musical features can elicit a target mood in the music listener. Drawn from the two-dimensional affect model proposed by Russell, the musical features that we have chosen to express moods...... are intensity, timbre, rhythm, and dissonances. The eight types of mood investigated in this study are being bored, content, happy, miserable, tired, fearful, peaceful, and alarmed. We created 8 short music clips using PD (Pure Data) programming language, each of them represents a particular mood. We carried...

  17. Role of short-time acoustic temporal fine structure cues in sentence recognition for normal-hearing listeners.

    Science.gov (United States)

    Hou, Limin; Xu, Li

    2018-02-01

    Short-time processing was employed to manipulate the amplitude, bandwidth, and temporal fine structure (TFS) in sentences. Fifty-two native-English-speaking, normal-hearing listeners participated in four sentence-recognition experiments. Results showed that recovered envelope (E) played an important role in speech recognition when the bandwidth was > 1 equivalent rectangular bandwidth. Removing TFS drastically reduced sentence recognition. Preserving TFS greatly improved sentence recognition when amplitude information was available at a rate ≥ 10 Hz (i.e., time segment ≤ 100 ms). Therefore, the short-time TFS facilitates speech perception together with the recovered E and works with the coarse amplitude cues to provide useful information for speech recognition.

  18. On the short-term predictability of fully digital chaotic oscillators for pseudo-random number generation

    KAUST Repository

    Radwan, Ahmed Gomaa

    2014-06-18

    This paper presents a digital implementation of a 3rd order chaotic system using the Euler approximation. Short-term predictability is studied in relation to system precision, Euler step size and attractor size and optimal parameters for maximum performance are derived. Defective bits from the native chaotic output are neglected and the remaining pass the NIST SP. 800-22 tests without post-processing. The resulting optimized pseudorandom number generator has throughput up to 17.60 Gbits/s for a 64-bit design experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.85%.

  19. On the short-term predictability of fully digital chaotic oscillators for pseudo-random number generation

    KAUST Repository

    Radwan, Ahmed Gomaa; Mansingka, Abhinav S.; Salama, Khaled N.; Zidan, Mohammed A.

    2014-01-01

    This paper presents a digital implementation of a 3rd order chaotic system using the Euler approximation. Short-term predictability is studied in relation to system precision, Euler step size and attractor size and optimal parameters for maximum performance are derived. Defective bits from the native chaotic output are neglected and the remaining pass the NIST SP. 800-22 tests without post-processing. The resulting optimized pseudorandom number generator has throughput up to 17.60 Gbits/s for a 64-bit design experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.85%.

  20. Accurate Short-Term Power Forecasting of Wind Turbines: The Case of Jeju Island’s Wind Farm

    OpenAIRE

    BeomJun Park; Jin Hur

    2017-01-01

    Short-term wind power forecasting is a technique which tells system operators how much wind power can be expected at a specific time. Due to the increasing penetration of wind generating resources into the power grids, short-term wind power forecasting is becoming an important issue for grid integration analysis. The high reliability of wind power forecasting can contribute to the successful integration of wind generating resources into the power grids. To guarantee the reliability of forecas...

  1. A compact nanosecond pulse generator for DBD tube characterization

    Science.gov (United States)

    Rai, S. K.; Dhakar, A. K.; Pal, U. N.

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  2. Photoluminescence decay dynamics in γ-Ga2O3 nanocrystals: The role of exclusion distance at short time scales

    Science.gov (United States)

    Fernandes, Brian; Hegde, Manu; Stanish, Paul C.; Mišković, Zoran L.; Radovanovic, Pavle V.

    2017-09-01

    We developed a comprehensive theoretical model describing the photoluminescence decay dynamics at short and long time scales based on the donor-acceptor defect interactions in γ-Ga2O3 nanocrystals, and quantitatively determined the importance of exclusion distance and spatial distribution of defects. We allowed for donors and acceptors to be adjacent to each other or separated by different exclusion distances. The optimal exclusion distance was found to be comparable to the donor Bohr radius and have a strong effect on the photoluminescence decay curve at short times. The importance of the exclusion distance at short time scales was confirmed by Monte Carlo simulations.

  3. The effect of long and short time oil shocks on economic growth in Iran

    OpenAIRE

    Sayyed Abdolmajid Jalae; Sanaz Mohammadi

    2012-01-01

    Oil is one of the strategic good so that price fluctuations and shocks of it have major effects on economic growth and recession in depended countries to revenues of it. In this study, it is tried that the effect of oil price shocks investigated in two types (short and long time) on Economic growth in Iran. Its Period is from 1974 to 2006. According it, oil price uncertainty is quantized by GARCH model and is determined the effects of oil price shocks on economic growth in Iran during a short...

  4. Hardware-efficient signal generation of layered/enhanced ACO-OFDM for short-haul fiber-optic links.

    Science.gov (United States)

    Wang, Qibing; Song, Binhuang; Corcoran, Bill; Boland, David; Zhu, Chen; Zhuang, Leimeng; Lowery, Arthur J

    2017-06-12

    Layered/enhanced ACO-OFDM is a promising candidate for intensity modulation and direct-detection based short-haul fiber-optic links due to its both power and spectral efficiency. In this paper, we firstly demonstrate a hardware-efficient real-time 9.375 Gb/s QPSK-encoded layered/enhanced asymmetrical clipped optical OFDM (L/E-ACO-OFDM) transmitter using a Virtex-6 FPGA. This L/E-ACO-OFDM signal is successfully transmitted over 20-km uncompensated standard single-mode fiber (S-SMF) using a directly modulated laser. Several methods are explored to reduce the FPGA's logic resource utilization by taking advantage of the L/E-ACO-OFDM's signal characteristics. We show that the logic resource occupation of L/E-ACO-OFDM transmitter is almost the same as that of DC-biased OFDM transmitter when they achieve the same spectral efficiency, proving its great potential to be used in a real-time short-haul optical transmission link.

  5. Short-time maximum entropy method analysis of molecular dynamics simulation: Unimolecular decomposition of formic acid

    Science.gov (United States)

    Takahashi, Osamu; Nomura, Tetsuo; Tabayashi, Kiyohiko; Yamasaki, Katsuyoshi

    2008-07-01

    We performed spectral analysis by using the maximum entropy method instead of the traditional Fourier transform technique to investigate the short-time behavior in molecular systems, such as the energy transfer between vibrational modes and chemical reactions. This procedure was applied to direct ab initio molecular dynamics calculations for the decomposition of formic acid. More reactive trajectories of dehydrolation than those of decarboxylation were obtained for Z-formic acid, which was consistent with the prediction of previous theoretical and experimental studies. Short-time maximum entropy method analyses were performed for typical reactive and non-reactive trajectories. Spectrograms of a reactive trajectory were obtained; these clearly showed the reactant, transient, and product regions, especially for the dehydrolation path.

  6. Clinical observation of one time short-pulse pattern scan laser pan-retinal photocoagulation for proliferative diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2016-04-01

    Full Text Available AIM: To investigate the clinical efficacy and benefit of short-pulse pattern scan laser(PASCALphotocoagulation for proliferative diabetic retinopathy(PDR.METHODS:Twenty-eight PDR patients(42 eyesunderwent short-pulse PASCAL pan-retinal photocoagulation(PRPwere analyzed.The best corrected visual acuity was ≥0.1 in 36 eyes, RESULTS: All the cases had no pain during the short-pulse PASCAL treatment.One year after treatments,the final visual acuity was improved in 6 eyes,kept stable in 28 eyes and decreased in 8 eyes; neovascularization were regressed in 18 eyes(43%, stable in 12 eyes(29%, uncontrolled in 12 eyes(29%. Five eyes(12%received vitrectomy due to vitreous hemorrhage.Compared with before operation, retina thickness in central fovea of macula and visual field had no obvious change after one-time PASCAL PRP(P>0.05. CONCLUSION:The one-time short-pulse PASCAL PRP could stabilize the progress of PDR safely, effectively and simply.

  7. Arbitrary digital pulse sequence generator with delay-loop timing

    Science.gov (United States)

    Hošák, Radim; Ježek, Miroslav

    2018-04-01

    We propose an idea of an electronic multi-channel arbitrary digital sequence generator with temporal granularity equal to two clock cycles. We implement the generator with 32 channels using a low-cost ARM microcontroller and demonstrate its capability to produce temporal delays ranging from tens of nanoseconds to hundreds of seconds, with 24 ns timing granularity and linear scaling of delay with respect to the number of delay loop iterations. The generator is optionally synchronized with an external clock source to provide 100 ps jitter and overall sequence repeatability within the whole temporal range. The generator is fully programmable and able to produce digital sequences of high complexity. The concept of the generator can be implemented using different microcontrollers and applied for controlling of various optical, atomic, and nuclear physics measurement setups.

  8. The effect of short-time active listening training.

    Science.gov (United States)

    Tatsumi, Asami; Sumiyoshi, Kenichi; Kawaguchi, Hitomi; Sano, Yukiko

    2010-01-01

    We conducted mental health training incorporating active listening for managers at a site of a general chemical company with 1,400 employees. Our purpose was to clarify the effect of active listening training of 2.5h. All subjects were managers. The mental health training was given to 229 managers, 21 times from May 2007 until March 2008. Surveys were conducted from May 2007 to September 2008. The training sessions were conducted in a company meeting room, starting at 2:00 p.m. The importance and significance of listening as a mental health measure and methods of active listening were explained in the training. Afterward, role-playing and follow-up discussions were done twice each. In summaries, participants wrote down what they noticed about listening and gave group presentations. The instructor commented on the presentations, and ended the session by passing out and explaining a paper summarizing what is important in listening. The training was evaluated with a questionnaire distributed at the completion of training, and questionnaires on implementation of what was learned were distributed 1, 3, and 6 mo later. The Active Listening Attitude Scale (ALAS; composed of two scales for method of listening and listening attitude) developed by Mishima et al. was also used before and 1, 3, and 6 mo after the training. In questionnaires distributed on the same day after training, 60% of the 212 respondents said the training time was just right, and 30.1% felt it was too short. The difficulty level of the training was considered appropriate by 77.8%, and 79.7% intended to implement what they had learned. Overall satisfaction was high at 85.9%. In the questionnaire 6 mo after training, 81.4% of the 145 respondents remembered the content of the training and 49.7% said they were practicing what they had learned. They responded that their conversations with subordinates about non-work topics had increased, and communication and support at work had become smoother. ALAS was

  9. New solutions for the short-time analysis of geothermal vertical boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Lamarche, Louis; Beauchamp, Benoit [Ecole de Technologie Supereure, 1100 Notre-Dame Ouest, Montreal (Canada)

    2007-04-15

    Many models, either numerical or analytical, have been proposed to analyse the thermal response of vertical heat exchangers that are used in ground coupled heat pump systems (GCHP). In both approaches, most of the models are valid after few hours of operation since they neglect the heat capacity of the borehole. This is valid for design purposes, where the time of interest is in the order of months and years. Recently, the short time response of vertical boreholes became a subject of interest. In this paper, we present a new analytical approach to treat this problem. It solves the exact solution for concentric cylinders and is a good approximation for the familiar U-tube configuration. (author)

  10. Generation of fast-rise time, repetitive, (sub) nanosecond, high-voltage pulses

    NARCIS (Netherlands)

    Huiskamp, T.; Pemen, A.J.M.

    2017-01-01

    In this contribution we present our fast-rise time nanosecond pulse generator, capable of generating up to 50 kV (positive and negative) rectangular pulses at a repetition rate of up to 1 kHz and with a rise time of less than 200 picoseconds. We focus on the general concepts involved in the design

  11. Burn-up measurements of LEU fuel for short cooling times

    International Nuclear Information System (INIS)

    Pereda B, C.; Henriquez A, C.; Klein D, J.; Medel R, J.

    2005-01-01

    The measurements presented in this work were made essentially at in-pool gamma-spectrometric facility, installed inside of the secondary pool of the RECH-1 research reactor, where the measured fuel elements are under 2 meters of water. The main reason for using the in-pool facility was because of its capability to measure the burning of fuel elements without having to wait so long, that is with only 5 cooling days, which are the usual times between reactor operations. Regarding these short cooling times, this work confirms again the possibility of using the 95 Zr as a promising burnup monitor, in spite of the rough approximations used to do it. These results are statistically reasonable within the range calculated using codes. The work corroborates previous results, presented in Santiago de Chile, and it suggests future improvements in that way. (author)

  12. A characterization of persistence at short times in the WFC3/IR detector

    Science.gov (United States)

    Gennaro, M.; Bajaj, V.; Long, K.

    2018-05-01

    Persistence in the WFC3/IR detector appears to decay as a power law as a function of time elapsed since the end of a stimulus. In this report we study departures from the power law at times shorter than a few hundreds seconds after the stimulus. In order to have better short-time cadence, we use the Multiaccum (.ima) files, which trace the accumulated charge in the pixels as function of time, rather than the final pipeline products (.flt files), which instead report the electron rate estimated via a linear fit to the accumulated charge vs. time relation. We note that at short times after the stimulus, the absolute change in persistence is the strongest, thus a linear fit to the accumulated signal (the .flt values) can be a poor representation of the strongly varying persistence signal. The already observed power-law decay of the persistence signal, still holds at shorter times, with typical values of the power law index, gamma in [-0.8,-1] for stimuli that saturate the WFC3 pixels. To a good degree of approximation, a single power law is a good fit to the persistence signal decay from 100 to 5000 seconds. We also detect a tapering-off in the power-law decay at increasingly shorter times. This change in behavior is of the order of Delta Gamma 0.02 - 0.05 when comparing power-law fits performed to the persistence signal from 0 up to 250 seconds and from 0 up to 4000 seconds after the stimulus, indicating that persistence decays slightly more rapidly as time progresses. Our results may suggest that for even shorter times, not probed by our study, the WFC3 persistence signal might deviate from a single power-law model.

  13. Short history of steam generators in the USSR

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The first power stations appeared in Russia in the late 1880s. Early pioneers in generator design are mentioned. Lenin considered power production essential for rapid industrialization. In the early 1920s power stations were designed to make use of local fuels: peat, brown coal, and anthracite culm. The high-pressure, once-through boiler technology was introduced in the 1930s. At the same time cogeneration was a widely used technology, and efforts were being made to increase boiler capacity. In 1939, in line with prewar policies of dispersing Soviet industry to protect it from enemy attack, boiler capacity was limited to 25 tons/hr. Almost all of the multi-drum boilers were destroyed as a result of WWII. A novel method of salvaging the boilers by welding 2 or 3 units together to make a single unit was implemented after the war. Research organizations are mentioned along with their specific contributions. Modern steam generators use boiler turbines and supercritical once-through boilers. It was only in the late 1950s that economic planners discovered that oil and gas in power stations was cost effective. In 1954 a 5-MW graphite-water reactor became the world's first nuclear power plant. For the next 20 years, two types of nuclear reactors began production: pressurized water-cooled, water-moderated reactors in the 200-400 MW range; and channel-type graphite-moderated, water-cooled reactors in the 100-200 MW range

  14. Short tip-big difference? First-in-man experience and procedural efficacy of pulmonary vein isolation using the third-generation cryoballoon.

    Science.gov (United States)

    Heeger, Christian-H; Wissner, Erik; Mathew, Shibu; Hayashi, Kentaro; Sohns, Christian; Reißmann, Bruno; Lemes, Christine; Maurer, Tilmann; Fink, Thomas; Saguner, Ardan M; Santoro, Francesco; Riedl, Johannes; Ouyang, Feifan; Kuck, Karl-Heinz; Metzner, Andreas

    2016-06-01

    The second-generation cryoballoon (CB2) provides effective and durable pulmonary vein isolation (PVI) associated with encouraging clinical outcome data. The novel third-generation cryoballoon (CB3) incorporates a 40 % shorter distal tip. This design change may translate into an increased rate of PVI real-time signal recording, facilitating an individualized ablation strategy using the time to effect (TTE). Thirty consecutive patients with paroxysmal or short-standing persistent atrial fibrillation underwent CB3-based PVI and were compared to 30 patients treated with the CB2. Individual freeze-cycle duration was set to TTE + 120 s for both groups. A total of 118 (CB3) and 119 (CB2) pulmonary veins (PV) were identified and all PVs successfully isolated utilizing the CB3 and CB2, respectively. The real-time PVI visualization rate was 74 % (CB3) and 40 % (CB2; p = 0.001) and the mean freeze-cycle duration 204 ± 88 s (CB3) and 215 ± 90 s (CB2; p = 0.15). Per individual PV, a shorter mean freeze-duration was found for the CB3 and the right superior PVs (188 ± 92 vs. 211 ± 124 s, p = 0.04) and right inferior PVs (192 ± 75 vs. 200 ± 37 s, p = 0.02). No differences were found for the left-sided PVs. A higher rate of real-time electrical PV recordings is seen using the novel CB3 as compared to CB2, which may facilitate an individualized ablation strategy using the TTE.

  15. Effect of pulse slippage on resonant second harmonic generation of a short pulse laser in a plasma

    International Nuclear Information System (INIS)

    Nitikant; Sharma, A K

    2004-01-01

    The process of second harmonic generation of an intense short pulse laser in a plasma is resonantly enhanced by the application of a magnetic wiggler. The wiggler of suitable wave number k-vector 0 provides necessary momentum to second harmonic photons to make harmonic generation a resonant process. The laser imparts an oscillatory velocity to electrons and exerts a longitudinal ponderomotive force on them at (2ω 1 ,2k-vector 1 ), where ω 1 and k-vector 1 are the frequency and the wave number of the laser, respectively. As the electrons acquire oscillatory velocity at the second harmonic, the wiggler magnetic field beats with it to produce a transverse second harmonic current at (2ω 1 ,2k-vector 1 +k-vector 0 ), driving the second harmonic electromagnetic radiation. However, the group velocity of the second harmonic wave is greater than that of the fundamental wave, hence, the generated pulse slips out of the main laser pulse and its amplitude saturates

  16. High-Temperature-Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells.

    Science.gov (United States)

    Kim, Minjin; Kim, Gi-Hwan; Oh, Kyoung Suk; Jo, Yimhyun; Yoon, Hyun; Kim, Ka-Hyun; Lee, Heon; Kim, Jin Young; Kim, Dong Suk

    2017-06-27

    Organic-inorganic hybrid metal halide perovskite solar cells (PSCs) are attracting tremendous research interest due to their high solar-to-electric power conversion efficiency with a high possibility of cost-effective fabrication and certified power conversion efficiency now exceeding 22%. Although many effective methods for their application have been developed over the past decade, their practical transition to large-size devices has been restricted by difficulties in achieving high performance. Here we report on the development of a simple and cost-effective production method with high-temperature and short-time annealing processing to obtain uniform, smooth, and large-size grain domains of perovskite films over large areas. With high-temperature short-time annealing at 400 °C for 4 s, the perovskite film with an average domain size of 1 μm was obtained, which resulted in fast solvent evaporation. Solar cells fabricated using this processing technique had a maximum power conversion efficiency exceeding 20% over a 0.1 cm 2 active area and 18% over a 1 cm 2 active area. We believe our approach will enable the realization of highly efficient large-area PCSs for practical development with a very simple and short-time procedure. This simple method should lead the field toward the fabrication of uniform large-scale perovskite films, which are necessary for the production of high-efficiency solar cells that may also be applicable to several other material systems for more widespread practical deployment.

  17. Short-term scheduling of an open-pit mine with multiple objectives

    Science.gov (United States)

    Blom, Michelle; Pearce, Adrian R.; Stuckey, Peter J.

    2017-05-01

    This article presents a novel algorithm for the generation of multiple short-term production schedules for an open-pit mine, in which several objectives, of varying priority, characterize the quality of each solution. A short-term schedule selects regions of a mine site, known as 'blocks', to be extracted in each week of a planning horizon (typically spanning 13 weeks). Existing tools for constructing these schedules use greedy heuristics, with little optimization. To construct a single schedule in which infrastructure is sufficiently utilized, with production grades consistently close to a desired target, a planner must often run these heuristics many times, adjusting parameters after each iteration. A planner's intuition and experience can evaluate the relative quality and mineability of different schedules in a way that is difficult to automate. Of interest to a short-term planner is the generation of multiple schedules, extracting available ore and waste in varying sequences, which can then be manually compared. This article presents a tool in which multiple, diverse, short-term schedules are constructed, meeting a range of common objectives without the need for iterative parameter adjustment.

  18. Generic short-time propagation of sharp-boundaries wave packets

    Science.gov (United States)

    Granot, E.; Marchewka, A.

    2005-11-01

    A general solution to the "shutter" problem is presented. The propagation of an arbitrary initially bounded wave function is investigated, and the general solution for any such function is formulated. It is shown that the exact solution can be written as an expression that depends only on the values of the function (and its derivatives) at the boundaries. In particular, it is shown that at short times (t << 2mx2/hbar, where x is the distance to the boundaries) the wave function propagation depends only on the wave function's values (or its derivatives) at the boundaries of the region. Finally, we generalize these findings to a non-singular wave function (i.e., for wave packets with finite-width boundaries) and suggest an experimental verification.

  19. Efficient Computation of Multiscale Entropy over Short Biomedical Time Series Based on Linear State-Space Models

    Directory of Open Access Journals (Sweden)

    Luca Faes

    2017-01-01

    Full Text Available The most common approach to assess the dynamical complexity of a time series across multiple temporal scales makes use of the multiscale entropy (MSE and refined MSE (RMSE measures. In spite of their popularity, MSE and RMSE lack an analytical framework allowing their calculation for known dynamic processes and cannot be reliably computed over short time series. To overcome these limitations, we propose a method to assess RMSE for autoregressive (AR stochastic processes. The method makes use of linear state-space (SS models to provide the multiscale parametric representation of an AR process observed at different time scales and exploits the SS parameters to quantify analytically the complexity of the process. The resulting linear MSE (LMSE measure is first tested in simulations, both theoretically to relate the multiscale complexity of AR processes to their dynamical properties and over short process realizations to assess its computational reliability in comparison with RMSE. Then, it is applied to the time series of heart period, arterial pressure, and respiration measured for healthy subjects monitored in resting conditions and during physiological stress. This application to short-term cardiovascular variability documents that LMSE can describe better than RMSE the activity of physiological mechanisms producing biological oscillations at different temporal scales.

  20. Calculation of the importance-weighted neutron generation time using MCNIC method

    International Nuclear Information System (INIS)

    Feghhi, S.A.H.; Shahriari, M.; Afarideh, H.

    2008-01-01

    In advanced nuclear power systems, such as ADS, the need for reliable kinetics parameters is of considerable importance because of the lower value for β eff due to the large amount of transuranic elements loaded in the core of those systems. All reactor kinetic parameters are weighted quantities. In other words each neutron with a given position and energy is weighted with its importance. Neutron generation time as an important kinetic parameter, in all nuclear power systems has a significant role in the analysis of fast transients. The difference between non-weighted neutron generation time; Λ; standard in most Monte Carlo codes; and the weighted one Λ + can be quite significant depending on the type of the system. In previous work, based on the physical concept of neutron importance, a new method; MCNIC; using the MCNP code has been introduced for the calculation of neutron importance in fissionable assemblies for all criticality states. In the present work the applicability of MCNIC method has been extended for the calculation of the importance-weighted neutron generation time. The influence of reflector thickness on importance-weighted neutron generation time has been investigated by the development of an auxiliary code, IWLA, for a hypothetic assembly. The results of these calculations were compared with the non-weighted neutron generation times calculated using the Monte Carlo code MCNP. The difference between the importance-weighted and non-weighted quantity is more significant in a reflected system and increases with reflector thickness

  1. Approaching the Processes in the Generator Circuit Breaker at Disconnection through Sustainability Concepts

    Directory of Open Access Journals (Sweden)

    Carmen A. Bulucea

    2013-03-01

    Full Text Available Nowadays, the electric connection circuits of power plants (based on fossil fuels as well as renewable sources entail generator circuit-breakers (GCBs at the generator terminals, since the presence of that electric equipment offers many advantages related to the sustainability of a power plant. In an alternating current (a.c. circuit the interruption of a short circuit is performed by the circuit-breaker at the natural passing through zero of the short-circuit current. During the current interruption, an electric arc is generated between the opened contacts of the circuit-breaker. This arc must be cooled and extinguished in a controlled way. Since the synchronous generator stator can flow via highly asymmetrical short-circuit currents, the phenomena which occur in the case of short-circuit currents interruption determine the main stresses of the generator circuit-breaker; the current interruption requirements of a GCB are significantly higher than for the distribution network circuit breakers. For shedding light on the proper moment when the generator circuit-breaker must operate, using the space phasor of the short-circuit currents, the time expression to the first zero passing of the short-circuit current is determined. Here, the manner is investigated in which various factors influence the delay of the zero passing of the short-circuit current. It is shown that the delay time is influenced by the synchronous machine parameters and by the load conditions which precede the short-circuit. Numerical simulations were conducted of the asymmetrical currents in the case of the sudden three-phase short circuit at the terminals of synchronous generators. Further in this study it is emphasized that although the phenomena produced in the electric arc at the terminals of the circuit-breaker are complicated and not completely explained, the concept of exergy is useful in understanding the physical phenomena. The article points out that just after the short

  2. Identification of the structure parameters using short-time non-stationary stochastic excitation

    Science.gov (United States)

    Jarczewska, Kamila; Koszela, Piotr; Śniady, PaweŁ; Korzec, Aleksandra

    2011-07-01

    In this paper, we propose an approach to the flexural stiffness or eigenvalue frequency identification of a linear structure using a non-stationary stochastic excitation process. The idea of the proposed approach lies within time domain input-output methods. The proposed method is based on transforming the dynamical problem into a static one by integrating the input and the output signals. The output signal is the structure reaction, i.e. structure displacements due to the short-time, irregular load of random type. The systems with single and multiple degrees of freedom, as well as continuous systems are considered.

  3. Automated Detection of Short Optical Transients of Astrophysical Origin in Real Time

    Directory of Open Access Journals (Sweden)

    Marcin Sokołowski

    2010-01-01

    Full Text Available The detection of short optical transients of astrophysical origin in real time is an important task for existing robotic telescopes. The faster a new optical transient is detected, the earlier follow-up observations can be started. The sooner the object is identified, the more data can be collected before the source fades away, particularly in the most interesting early period of the transient. In this the real-time pipeline designed for identification of optical flashes with the “Pi of the Sky” project will be presented in detail together with solutions used by other experiments.

  4. An X-ray CCD signal generator with true random arrival time

    International Nuclear Information System (INIS)

    Huo Jia; Xu Yuming; Chen Yong; Cui Weiwei; Li Wei; Zhang Ziliang; Han Dawei; Wang Yusan; Wang Juan

    2011-01-01

    An FPGA-based true random signal generator with adjustable amplitude and exponential distribution of time interval is presented. Since traditional true random number generators (TRNG) are resource costly and difficult to transplant, we employed a method of random number generation based on jitter and phase noise in ring oscillators formed by gates in an FPGA. In order to improve the random characteristics, a combination of two different pseudo-random processing circuits is used for post processing. The effects of the design parameters, such as sample frequency are discussed. Statistical tests indicate that the generator can well simulate the timing behavior of random signals with Poisson distribution. The X-ray CCD signal generator will be used in debugging the CCD readout system of the Low Energy X-ray Instrument onboard the Hard X-ray Modulation Telescope (HXMT). (authors)

  5. Investigation of the motion of diesel injection jets using high-speed cinematography and short time holography

    International Nuclear Information System (INIS)

    Eisfeld, F.

    1987-01-01

    The knowledge about the penetration of diesel injection jets, particularly about the flow within the short behind the nozzle, and the arising of droplets from an injection jet is very limited. Experimental investigations are required to describe the process of penetration and spreading of the jet. The research method requires high speed cinematography and short time holography. Problems in the investigation method are described

  6. Production function application attempt in electricity generation forecasting

    International Nuclear Information System (INIS)

    Kamrat, W.; Augusiak, A.

    1996-01-01

    A modified Cobb-Douglas production function is applied to evaluate level of electricity generation for medium and long term prognosis (up to 2010) in an easy and simple way. The test calculations have been done for hard coal fired power plants, based on generation data supplied in Main Statistical Office of Poland publications.The model of electricity generation is defined using data on capital of a typical productivity power plant and its employment for time series 1980-90. The test calculation results based on the parameters of Rosenbroock's optimization procedure of electricity generation model are presented. The method described is distinguished for its high accuracy as compared to classical methods despite the relatively short time series. It is suitable for studies in electricity generation policy . 1 tab

  7. Prediction of long time creep rupture properties of welded joints using the results of short duration creep crack incubation tests

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, E.

    2013-07-01

    This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the applicability of the LICON methodology for the prediction of long-time creep rupture strength of a dissimilar metal weld. The LICON methodology is an approach for predicting the lifetime of materials under creep loading conditions. It predicts long-time uniaxial creep strength using the results from several short duration creep crack incubation tests in conjunction with the outcome of a mechanical analysis on the test-piece. This study has re-examined the previous application of the LICON methodology for 9%Cr and 1CrMoV steels. It has shown that application of the original Lion method (based on reference stress solutions) for certain materials is not appropriate. This study therefore proposes a new development for the Lion approach which uses finite-element analysis to account for the generated multiaxial stress states within welded uniaxial test-pieces.

  8. Prediction of long time creep rupture properties of welded joints using the results of short duration creep crack incubation tests

    International Nuclear Information System (INIS)

    Hosseini, E.

    2013-01-01

    This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the applicability of the LICON methodology for the prediction of long-time creep rupture strength of a dissimilar metal weld. The LICON methodology is an approach for predicting the lifetime of materials under creep loading conditions. It predicts long-time uniaxial creep strength using the results from several short duration creep crack incubation tests in conjunction with the outcome of a mechanical analysis on the test-piece. This study has re-examined the previous application of the LICON methodology for 9%Cr and 1CrMoV steels. It has shown that application of the original Lion method (based on reference stress solutions) for certain materials is not appropriate. This study therefore proposes a new development for the Lion approach which uses finite-element analysis to account for the generated multiaxial stress states within welded uniaxial test-pieces

  9. Criteria for the generation of spectra consistent time histories

    International Nuclear Information System (INIS)

    Lin, C.-W.

    1977-01-01

    Several methods are available to conduct seismic analysis for nuclear power plant systems and components. Among them, the response spectrum technique has been most widely adopted for linear type of modal analysis. However, for designs which consist of structural or material nonlinearites such as frequency dependent soil properties, the existance of gaps, single tie rods, and friction between supports where the response has to be computed as a function of time, time history approach is the only viable method of analysis. Two examples of time history analysis are: 1) soil-structure interaction study and, 2) a coupled reactor coolant system and building analysis to either generate the floor response specra or compute nonlinear system time history response. The generation of a suitable time history input for the analysis has been discussed in the literature. Some general guidelines are available to insure that the time history imput will be as conservative as the design response spectra. Very little has been reported as to the effect of the dyanmic characteristics of the time history input upon the system response. In fact, the only available discussion in this respect concerns only with the statitical independent nature of the time history components. In this paper, numerical results for cases using the time history approach are presented. Criteria are also established which may be advantageously used to arrive at spectra consistent time histories which are conservative and more importantly, realistic. (Auth.)

  10. Gene-Auto: Automatic Software Code Generation for Real-Time Embedded Systems

    Science.gov (United States)

    Rugina, A.-E.; Thomas, D.; Olive, X.; Veran, G.

    2008-08-01

    This paper gives an overview of the Gene-Auto ITEA European project, which aims at building a qualified C code generator from mathematical models under Matlab-Simulink and Scilab-Scicos. The project is driven by major European industry partners, active in the real-time embedded systems domains. The Gene- Auto code generator will significantly improve the current development processes in such domains by shortening the time to market and by guaranteeing the quality of the generated code through the use of formal methods. The first version of the Gene-Auto code generator has already been released and has gone thought a validation phase on real-life case studies defined by each project partner. The validation results are taken into account in the implementation of the second version of the code generator. The partners aim at introducing the Gene-Auto results into industrial development by 2010.

  11. Optical Comb Generation for Streak Camera Calibration for Inertial Confinement Fusion Experiments

    International Nuclear Information System (INIS)

    Ronald Justin; Terence Davies; Frans Janson; Bruce Marshall; Perry Bell; Daniel Kalantar; Joseph Kimbrough; Stephen Vernon; Oliver Sweningsen

    2008-01-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is coming on-line to support physics experimentation for the U.S. Department of Energy (DOE) programs in Inertial Confinement Fusion (ICF) and Stockpile Stewardship (SS). Optical streak cameras are an integral part of the experimental diagnostics instrumentation at NIF. To accurately reduce streak camera data a highly accurate temporal calibration is required. This article describes a technique for simultaneously generating a precise +/- 2 ps optical marker pulse (fiducial reference) and trains of precisely timed, short-duration optical pulses (so-called 'comb' pulse trains) that are suitable for the timing calibrations. These optical pulse generators are used with the LLNL optical streak cameras. They are small, portable light sources that, in the comb mode, produce a series of temporally short, uniformly spaced optical pulses, using a laser diode source. Comb generators have been produced with pulse-train repetition rates up to 10 GHz at 780 nm, and somewhat lower frequencies at 664 nm. Individual pulses can be as short as 25-ps FWHM. Signal output is via a fiber-optic connector on the front panel of the generator box. The optical signal is transported from comb generator to streak camera through multi-mode, graded-index optical fiber

  12. Time-Based Loss in Visual Short-Term Memory Is from Trace Decay, Not Temporal Distinctiveness

    Science.gov (United States)

    Ricker, Timothy J.; Spiegel, Lauren R.; Cowan, Nelson

    2014-01-01

    There is no consensus as to why forgetting occurs in short-term memory tasks. In past work, we have shown that forgetting occurs with the passage of time, but there are 2 classes of theories that can explain this effect. In the present work, we investigate the reason for time-based forgetting by contrasting the predictions of temporal…

  13. Use of erroneous wolf generation time in assessments of domestic dog and human evolution

    Science.gov (United States)

    Mech, L. David; Barber-Meyer, Shannon

    2017-01-01

    Scientific interest in dog domestication and parallel evolution of dogs and humans (Wang et al. 2013) has increased recently (Freedman et al. 2014, Larson and Bradley 2014, Franz et al. 2016,), and various important conclusions have been drawn based on how long ago the calculations show dogs were domesticated from ancestral wolves (Canis lupus). Calculation of this duration is based on “the most commonly assumed mutation rate of 1 x 10-8 per generation and a 3-year gray wolf generation time . . .” (Skoglund et al. 2015:3). It is unclear on what information the assumed generation time is based, but Ersmark et al. (2016) seemed to have based their assumption on a single wolf (Mech and Seal 1987). The importance of assuring that such assumptions are valid is obvious. Recently, two independent studies employing three large data sets and three methods from two widely separated areas have found that wolf generation time is 4.2-4.7 years. The first study, based on 200 wolves in Yellowstone National Park used age-specific birth and death rates to calculate a generation time of 4.16 years (vonHoldt et al. 2008). The second, using estimated first-breeding times of 86 female wolves in northeastern Minnesota found a generation time of 4.3 years and using uterine examination of 159 female wolves from throughout Minnesota yielded a generation time of 4.7 years (Mech et al. 2016). We suggest that previous studies using a 3-year generation time recalculate their figures and adjust their conclusions based on these generation times and publish revised results.

  14. From probabilistic forecasts to statistical scenarios of short-term wind power production

    DEFF Research Database (Denmark)

    Pinson, Pierre; Papaefthymiou, George; Klockl, Bernd

    2009-01-01

    on the development of the forecast uncertainty through forecast series. However, this additional information may be paramount for a large class of time-dependent and multistage decision-making problems, e.g. optimal operation of combined wind-storage systems or multiple-market trading with different gate closures......Short-term (up to 2-3 days ahead) probabilistic forecasts of wind power provide forecast users with highly valuable information on the uncertainty of expected wind generation. Whatever the type of these probabilistic forecasts, they are produced on a per horizon basis, and hence do not inform....... This issue is addressed here by describing a method that permits the generation of statistical scenarios of short-term wind generation that accounts for both the interdependence structure of prediction errors and the predictive distributions of wind power production. The method is based on the conversion...

  15. Evaluation of skeletal muscle during exercise on short repetition time MR imaging

    International Nuclear Information System (INIS)

    Yoshioka, Hiroshi; Niitsu, Mamoru; Anno, Izumi; Takahashi, Hideyuki; Kuno, Shinya; Matsumoto, Kunihiko; Itai, Yuji

    1992-01-01

    There have been many reports on the effects of exercise on skeletal muscle signal intensities based on magnetic resonance (MR) imaging. These images were obtained using T 2 -weighted MR images. The purpose of this study was to observe muscles during exercise while shortening the repetition time (TR) on spin echo images. In addition, inactive and active muscles were differentiated in the same manner. T 2 values of the tibialis anterior m. were calculated from TR=400 ms to TR=3000 ms. These values were mostly constant and didn't depend upon TR. Increases in signal intensities of the exercise muscles could be observed on the short TR (600 ms) MR images since the changes of the signal intensities mainly depend upon T 2 values. Thus, the T 2 value is useful as a quantitative index to assess the exercise muscle even on the short TR MR images. (author)

  16. Real-time Image Generation for Compressive Light Field Displays

    International Nuclear Information System (INIS)

    Wetzstein, G; Lanman, D; Hirsch, M; Raskar, R

    2013-01-01

    With the invention of integral imaging and parallax barriers in the beginning of the 20th century, glasses-free 3D displays have become feasible. Only today—more than a century later—glasses-free 3D displays are finally emerging in the consumer market. The technologies being employed in current-generation devices, however, are fundamentally the same as what was invented 100 years ago. With rapid advances in optical fabrication, digital processing power, and computational perception, a new generation of display technology is emerging: compressive displays exploring the co-design of optical elements and computational processing while taking particular characteristics of the human visual system into account. In this paper, we discuss real-time implementation strategies for emerging compressive light field displays. We consider displays composed of multiple stacked layers of light-attenuating or polarization-rotating layers, such as LCDs. The involved image generation requires iterative tomographic image synthesis. We demonstrate that, for the case of light field display, computed tomographic light field synthesis maps well to operations included in the standard graphics pipeline, facilitating efficient GPU-based implementations with real-time framerates.

  17. Short echo time proton spectroscopy of the brain in healthy volunteers using an insert gradient head coil

    DEFF Research Database (Denmark)

    Gideon, P; Danielsen, E R; Schneider, M

    1995-01-01

    An insert gradient head coil with built-in X, Y, and Z gradients was used for localized proton spectroscopy in the brain of healthy volunteers, using short echo time stimulated echo acquisition mode (STEAM) sequences. Volume of interest size was 3.4 ml, repetition time was 6.0 s, and echo times...... were 10 and 20 ms, respectively. Good quality proton spectra with practically no eddy current artefacts were acquired allowing observation of strongly coupled compounds, and compounds with short T2 relaxation times. The gradient head coil thus permits further studies of compounds such as glutamine....../glutamate and myo-inositols. These compounds were more prominent within grey matter than within white matter. Rough estimations of metabolite concentrations using water as an internal standard were in good agreement with previous reports....

  18. An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power

    Directory of Open Access Journals (Sweden)

    Antonio Bracale

    2015-09-01

    Full Text Available Currently, among renewable distributed generation systems, wind generators are receiving a great deal of interest due to the great economic, technological, and environmental incentives they involve. However, the uncertainties due to the intermittent nature of wind energy make it difficult to operate electrical power systems optimally and make decisions that satisfy the needs of all the stakeholders of the electricity energy market. Thus, there is increasing interest determining how to forecast wind power production accurately. Most the methods that have been published in the relevant literature provided deterministic forecasts even though great interest has been focused recently on probabilistic forecast methods. In this paper, an advanced probabilistic method is proposed for short-term forecasting of wind power production. A mixture of two Weibull distributions was used as a probability function to model the uncertainties associated with wind speed. Then, a Bayesian inference approach with a particularly-effective, autoregressive, integrated, moving-average model was used to determine the parameters of the mixture Weibull distribution. Numerical applications also are presented to provide evidence of the forecasting performance of the Bayesian-based approach.

  19. Age and admission times as predictive factors for failure of admissions to discharge-stream short-stay units.

    Science.gov (United States)

    Shetty, Amith L; Shankar Raju, Savitha Banagar; Hermiz, Arsalan; Vaghasiya, Milan; Vukasovic, Matthew

    2015-02-01

    Discharge-stream emergency short-stay units (ESSU) improve ED and hospital efficiency. Age of patients and time of hospital presentations have been shown to correlate with increasing complexity of care. We aim to determine whether an age and time cut-off could be derived to subsequently improve short-stay unit success rates. We conducted a retrospective audit on 6703 (5522 inclusions) patients admitted to our discharge-stream short-stay unit. Patients were classified as appropriate or inappropriate admissions, and deemed successful if discharged out of the unit within 24 h; and failures if they needed inpatient admission into the hospital. We calculated short-stay unit length of stay for patients in each of these groups. A 15% failure rate was deemed as acceptable key performance indicator (KPI) for our unit. There were 197 out of 4621 (4.3%, 95% CI 3.7-4.9%) patients up to the age of 70 who failed admission to ESSU compared with 67 out of 901 (7.4%, 95% CI 5.9-9.3%, P 70 years of age have higher rates of failure after admission to discharge-stream ESSU. Although in appropriately selected discharge-stream patients, no age group or time-band of presentation was associated with increased failure rate beyond the stipulated KPI. © 2014 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  20. High tension generator for corona barrier discharge

    International Nuclear Information System (INIS)

    Baltag, O.; Costandache, D.; Gheorghiu, M.; Paraschivescu, A.; Popa, G.

    2001-01-01

    Different types of high-voltage generators are in use for the study of low pressure (or atmospheric) discharges. Mostly used are the Tesla coils generators or the power generators working in linear or switching regime. The Tesla coils generators have the advantage of a simple bloc diagram. In exchange, they have a number of short-comings, such as: the difficulty in modifying the frequency of the high voltage pulses, generation of a high voltage and frequency pulse train, the amplitude is not constant.This paper presents a high-voltage generator meant to be used in the study of the dielectric barrier discharges (DBD). The bloc diagram is presented. Performances obtained are as follows: - Generated frequency: 10 Hz - 100 Hz, 100 Hz - 1 KHz, 1 KHz - 10 KHz; - High voltage pulses control: a single pulse from an internal or external generator; - Synchronization with the oscilloscope, variable delay: 5 μs - 0.1 s; - Output voltage: variable both smoothly and in steps: 1 kV -15 kV; - High voltage polarity: mono and bipolar; - Output power during the continuous duty: 300 VA (maximum 600 VA for a short time); - Pulse energy: 0.23 J; - Pulse duration: 4 μs - 50 μs

  1. Freeway travel-time estimation and forecasting.

    Science.gov (United States)

    2012-09-01

    This project presents a microsimulation-based framework for generating short-term forecasts of travel time on freeway corridors. The microsimulation model that is developed (GTsim), replicates freeway capacity drop and relaxation phenomena critical f...

  2. A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator

    International Nuclear Information System (INIS)

    Almonacid, F.; Pérez-Higueras, P.J.; Fernández, Eduardo F.; Hontoria, L.

    2014-01-01

    Highlights: • The output of the majority of renewables energies depends on the variability of the weather conditions. • The short-term forecast is going to be essential for effectively integrating solar energy sources. • A new method based on artificial neural network to predict the power output of a PV generator one hour ahead is proposed. • This new method is based on dynamic artificial neural network to predict global solar irradiance and the air temperature. • The methodology developed can be used to estimate the power output of a PV generator with a satisfactory margin of error. - Abstract: One of the problems of some renewables energies is that the output of these kinds of systems is non-dispatchable depending on variability of weather conditions that cannot be predicted and controlled. From this point of view, the short-term forecast is going to be essential for effectively integrating solar energy sources, being a very useful tool for the reliability and stability of the grid ensuring that an adequate supply is present. In this paper a new methodology for forecasting the output of a PV generator one hour ahead based on dynamic artificial neural network is presented. The results of this study show that the proposed methodology could be used to forecast the power output of PV systems one hour ahead with an acceptable degree of accuracy

  3. Broadband and tunable optical parametric generator for remote detection of gas molecules in the short and mid-infrared.

    Science.gov (United States)

    Lambert-Girard, Simon; Allard, Martin; Piché, Michel; Babin, François

    2015-04-01

    The development of a novel broadband and tunable optical parametric generator (OPG) is presented. The OPG properties are studied numerically and experimentally in order to optimize the generator's use in a broadband spectroscopic LIDAR operating in the short and mid-infrared. This paper discusses trade-offs to be made on the properties of the pump, crystal, and seeding signal in order to optimize the pulse spectral density and divergence while enabling energy scaling. A seed with a large spectral bandwidth is shown to enhance the pulse-to-pulse stability and optimize the pulse spectral density. A numerical model shows excellent agreement with output power measurements; the model predicts that a pump having a large number of longitudinal modes improves conversion efficiency and pulse stability.

  4. Directional Overcurrent Relays Coordination Problems in Distributed Generation Systems

    OpenAIRE

    Jakub Ehrenberger; Jan Švec

    2017-01-01

    This paper proposes a new approach to the distributed generation system protection coordination based on directional overcurrent protections with inverse-time characteristics. The key question of protection coordination is the determination of correct values of all inverse-time characteristics coefficients. The coefficients must be correctly chosen considering the sufficiently short tripping times and the sufficiently long selectivity times. In the paper a new approach to protection coordinat...

  5. Temporal information processing in short- and long-term memory of patients with schizophrenia.

    Science.gov (United States)

    Landgraf, Steffen; Steingen, Joerg; Eppert, Yvonne; Niedermeyer, Ulrich; van der Meer, Elke; Krueger, Frank

    2011-01-01

    Cognitive deficits of patients with schizophrenia have been largely recognized as core symptoms of the disorder. One neglected factor that contributes to these deficits is the comprehension of time. In the present study, we assessed temporal information processing and manipulation from short- and long-term memory in 34 patients with chronic schizophrenia and 34 matched healthy controls. On the short-term memory temporal-order reconstruction task, an incidental or intentional learning strategy was deployed. Patients showed worse overall performance than healthy controls. The intentional learning strategy led to dissociable performance improvement in both groups. Whereas healthy controls improved on a performance measure (serial organization), patients improved on an error measure (inappropriate semantic clustering) when using the intentional instead of the incidental learning strategy. On the long-term memory script-generation task, routine and non-routine events of everyday activities (e.g., buying groceries) had to be generated in either chronological or inverted temporal order. Patients were slower than controls at generating events in the chronological routine condition only. They also committed more sequencing and boundary errors in the inverted conditions. The number of irrelevant events was higher in patients in the chronological, non-routine condition. These results suggest that patients with schizophrenia imprecisely access temporal information from short- and long-term memory. In short-term memory, processing of temporal information led to a reduction in errors rather than, as was the case in healthy controls, to an improvement in temporal-order recall. When accessing temporal information from long-term memory, patients were slower and committed more sequencing, boundary, and intrusion errors. Together, these results suggest that time information can be accessed and processed only imprecisely by patients who provide evidence for impaired time comprehension

  6. Familiarity speeds up visual short-term memory consolidation.

    Science.gov (United States)

    Xie, Weizhen; Zhang, Weiwei

    2017-06-01

    Existing long-term memory (LTM) can boost the number of retained representations over a short delay in visual short-term memory (VSTM). However, it is unclear whether and how prior LTM affects the initial process of transforming fragile sensory inputs into durable VSTM representations (i.e., VSTM consolidation). The consolidation speed hypothesis predicts faster consolidation for familiar relative to unfamiliar stimuli. Alternatively, the perceptual boost hypothesis predicts that the advantage in perceptual processing of familiar stimuli should add a constant boost for familiar stimuli during VSTM consolidation. To test these competing hypotheses, the present study examined how the large variance in participants' prior multimedia experience with Pokémon affected VSTM for Pokémon. In Experiment 1, the amount of time allowed for VSTM consolidation was manipulated by presenting consolidation masks at different intervals after the onset of to-be-remembered Pokémon characters. First-generation Pokémon characters that participants were more familiar with were consolidated faster into VSTM as compared with recent-generation Pokémon characters that participants were less familiar with. These effects were absent in participants who were unfamiliar with both generations of Pokémon. Although familiarity also increased the number of retained Pokémon characters when consolidation was uninterrupted but still incomplete due to insufficient encoding time in Experiment 1, this capacity effect was absent in Experiment 2 when consolidation was allowed to complete with sufficient encoding time. Together, these results support the consolidation speed hypothesis over the perceptual boost hypothesis and highlight the importance of assessing experimental effects on both processing and representation aspects of VSTM. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. The time of onset of abnormal calcification in spondylometaepiphyseal dysplasia, short limb-abnormal calcification type

    Energy Technology Data Exchange (ETDEWEB)

    Tueysuez, Beyhan [Istanbul University, Department of Pediatric Genetics, Cerrahpasa Medical School, Istanbul (Turkey); Gazioglu, Nurperi [Istanbul University, Department of Neurosurgery, Cerrahpasa Medical School, Istanbul (Turkey); Uenguer, Savas [Istanbul University, Department of Pediatric Radiology, Cerrahpasa Medical School, Istanbul (Turkey); Aji, Dolly Yafet [Istanbul University, Department of Pediatrics, Cerrahpasa Medical School, Istanbul (Turkey); Tuerkmen, Seval [Istanbul University, Department of Pediatric Genetics, Cerrahpasa Medical School, Istanbul (Turkey); Universitatsklinikum Berlin, Charite Virchow-Klinik, Berlin (Germany)

    2009-01-15

    A 1-month-old boy with shortness of extremities on prenatal US was referred to our department with a provisional diagnosis of achondroplasia. His height was normal but he had short extremities and platyspondyly, premature carpal epiphyses on both hands, and short tubular bones with irregular metaphyses on radiographs. Re-evaluation of the patient at the age of 1 year revealed very short height and premature calcification of the costal cartilages and epiphyses. Spondylometaepiphyseal dysplasia (SMED), short limb-abnormal calcification type was diagnosed. This condition is a very rare autosomal recessively inherited disorder, and most of the patients die in early childhood due to neurological involvement. At the age of 2 years and 5 months, a CT scan showed narrowing of the cervical spinal canal. One month later he died suddenly because of spinal cord injury. In conclusion early diagnosis is very important because the recurrence risk is high and patients may die due to early neurological complications. The time of onset of abnormal calcifications, a diagnostic finding of the disease, is at the age of around 1 year in most patients. When abnormal calcifications are not yet present, but radiological changes associated with SMED are present, this rare disease must be considered. (orig.)

  8. The time of onset of abnormal calcification in spondylometaepiphyseal dysplasia, short limb-abnormal calcification type

    International Nuclear Information System (INIS)

    Tueysuez, Beyhan; Gazioglu, Nurperi; Uenguer, Savas; Aji, Dolly Yafet; Tuerkmen, Seval

    2009-01-01

    A 1-month-old boy with shortness of extremities on prenatal US was referred to our department with a provisional diagnosis of achondroplasia. His height was normal but he had short extremities and platyspondyly, premature carpal epiphyses on both hands, and short tubular bones with irregular metaphyses on radiographs. Re-evaluation of the patient at the age of 1 year revealed very short height and premature calcification of the costal cartilages and epiphyses. Spondylometaepiphyseal dysplasia (SMED), short limb-abnormal calcification type was diagnosed. This condition is a very rare autosomal recessively inherited disorder, and most of the patients die in early childhood due to neurological involvement. At the age of 2 years and 5 months, a CT scan showed narrowing of the cervical spinal canal. One month later he died suddenly because of spinal cord injury. In conclusion early diagnosis is very important because the recurrence risk is high and patients may die due to early neurological complications. The time of onset of abnormal calcifications, a diagnostic finding of the disease, is at the age of around 1 year in most patients. When abnormal calcifications are not yet present, but radiological changes associated with SMED are present, this rare disease must be considered. (orig.)

  9. Real-Time Trajectory Generation for Autonomous Nonlinear Flight Systems

    National Research Council Canada - National Science Library

    Larsen, Michael; Beard, Randal W; McLain, Timothy W

    2006-01-01

    ... to mobile threats such as radar, jammers, and unfriendly aircraft. In Phase 1 of this STTR project, real-time path planning and trajectory generation techniques for two dimensional flight were developed and demonstrated in software simulation...

  10. New serial time codes for seismic short period and long period data acquisition systems

    International Nuclear Information System (INIS)

    Kolvankar, V.G.; Rao, D.S.

    1988-01-01

    This paper discusses a new time code for time indexing multichannel short period (1 to 25 hz) seismic event data recorded on a single track of magnetic tape in digital format and discusses its usefulness in contrast to Vela time code used in continuous analog multichannel data recording system on multitrack instrumentation tape deck. This paper also discusses another time code, used for time indexing of seismic long period (DC to 2.5 seconds) multichannel data recorded on a single track of magnetic tape in digital format. The time code decoding and display system developed to provide quick access to any desired portion of the tape in both data recording and repro duce system is also discussed. (author). 7 figs

  11. Absolute GPS Time Event Generation and Capture for Remote Locations

    Science.gov (United States)

    HIRES Collaboration

    The HiRes experiment operates fixed location and portable lasers at remote desert locations to generate calibration events. One physics goal of HiRes is to search for unusual showers. These may appear similar to upward or horizontally pointing laser tracks used for atmospheric calibration. It is therefore necessary to remove all of these calibration events from the HiRes detector data stream in a physics blind manner. A robust and convenient "tagging" method is to generate the calibration events at precisely known times. To facilitate this tagging method we have developed the GPSY (Global Positioning System YAG) module. It uses a GPS receiver, an embedded processor and additional timing logic to generate laser triggers at arbitrary programmed times and frequencies with better than 100nS accuracy. The GPSY module has two trigger outputs (one microsecond resolution) to trigger the laser flash-lamp and Q-switch and one event capture input (25nS resolution). The GPSY module can be programmed either by a front panel menu based interface or by a host computer via an RS232 serial interface. The latter also allows for computer logging of generated and captured event times. Details of the design and the implementation of these devices will be presented. 1 Motivation Air Showers represent a small fraction, much less than a percent, of the total High Resolution Fly's Eye data sample. The bulk of the sample is calibration data. Most of this calibration data is generated by two types of systems that use lasers. One type sends light directly to the detectors via optical fibers to monitor detector gains (Girard 2001). The other sends a beam of light into the sky and the scattered light that reaches the detectors is used to monitor atmospheric effects (Wiencke 1998). It is important that these calibration events be cleanly separated from the rest of the sample both to provide a complete set of monitoring information, and more

  12. Optimal filtering of dynamics in short-time features for music organization

    DEFF Research Database (Denmark)

    Arenas-García, Jerónimo; Larsen, Jan; Hansen, Lars Kai

    2006-01-01

    There is an increasing interest in customizable methods for organizing music collections. Relevant music characterization can be obtained from short-time features, but it is not obvious how to combine them to get useful information. In this work, a novel method, denoted as the Positive Constrained...... Orthonormalized Partial Least Squares (POPLS), is proposed. Working on the periodograms of MFCCs time series, this supervised method finds optimal filters which pick up the most discriminative temporal information for any music organization task. Two examples are presented in the paper, the first being a simple...... proof-of-concept, where an altosax with and without vibrato is modelled. A more complex \\$11\\$ music genre classification setup is also investigated to illustrate the robustness and validity of the proposed method on larger datasets. Both experiments showed the good properties of our method, as well...

  13. Fast neutron activation analysis using short-lived radionuclides

    International Nuclear Information System (INIS)

    Salma, I.; Zemplen-Papp, E.

    1993-01-01

    Fast neutron activation analysis experiments were performed to investigate the analytical possibilities and prospective utilization of short-lived activation products. A rapid pneumatic transfer system for use with neutron generators has been installed and applied for detecting radionuclides with a half-life from ∼300 ms to 20 s. The transport time for samples of total mass of 1-4 g is between 130 and 160 ms for pressurized air of 0.1-0.4 MPa. The reproducibility of transport times is less than 2%. The employed method of correcting time-dependent counting losses is based on the virtual pulse generator principle. The measuring equipment consists of CAMAC modules and a special gating circuit. Typical time distributions of counting losses are presented. The same 14 elements were studied by the conventional activation method (single irradiation and single counting) by both a typical pneumatic transport system (run time 3 s) and the fast pneumatic transport facility. Furthermore, the influence of the cyclic activation technique on the elemental sensitivities was investigated. (author) 15 refs.; 5 figs.; 3 tabs

  14. Non-linear dynamical classification of short time series of the rössler system in high noise regimes.

    Science.gov (United States)

    Lainscsek, Claudia; Weyhenmeyer, Jonathan; Hernandez, Manuel E; Poizner, Howard; Sejnowski, Terrence J

    2013-01-01

    Time series analysis with delay differential equations (DDEs) reveals non-linear properties of the underlying dynamical system and can serve as a non-linear time-domain classification tool. Here global DDE models were used to analyze short segments of simulated time series from a known dynamical system, the Rössler system, in high noise regimes. In a companion paper, we apply the DDE model developed here to classify short segments of encephalographic (EEG) data recorded from patients with Parkinson's disease and healthy subjects. Nine simulated subjects in each of two distinct classes were generated by varying the bifurcation parameter b and keeping the other two parameters (a and c) of the Rössler system fixed. All choices of b were in the chaotic parameter range. We diluted the simulated data using white noise ranging from 10 to -30 dB signal-to-noise ratios (SNR). Structure selection was supervised by selecting the number of terms, delays, and order of non-linearity of the model DDE model that best linearly separated the two classes of data. The distances d from the linear dividing hyperplane was then used to assess the classification performance by computing the area A' under the ROC curve. The selected model was tested on untrained data using repeated random sub-sampling validation. DDEs were able to accurately distinguish the two dynamical conditions, and moreover, to quantify the changes in the dynamics. There was a significant correlation between the dynamical bifurcation parameter b of the simulated data and the classification parameter d from our analysis. This correlation still held for new simulated subjects with new dynamical parameters selected from each of the two dynamical regimes. Furthermore, the correlation was robust to added noise, being significant even when the noise was greater than the signal. We conclude that DDE models may be used as a generalizable and reliable classification tool for even small segments of noisy data.

  15. Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning

    International Nuclear Information System (INIS)

    Tonn, B.; Hwang, Ho-Ling; Elliot, S.; Peretz, J.; Bohm, R.; Hendrucko, B.

    1994-04-01

    This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also

  16. Nonequilibrium Physics at Short Time Scales: Formation of Correlations

    International Nuclear Information System (INIS)

    Peliti, L

    2005-01-01

    It is a happy situation when similar concepts and theoretical techniques can be applied to widely different physical systems because of a deep similarity in the situations being studied. The book illustrates this well; it focuses on the description of correlations in quantum systems out of equilibrium at very short time scales, prompted by experiments with short laser pulses in semiconductors, and in complex reactions in heavy nuclei. In both cases the experiments are characterized by nonlinear dynamics and by strong correlations out of equilibrium. In some systems there are also important finite-size effects. The book comprises several independent contributions of moderate length, and I sometimes felt that a more intensive effort in cross-coordination of the different contributions could have been of help. It is divided almost equally between theory and experiment. In the theoretical part, there is a thorough discussion both of the kinematic aspects (description of correlations) and the dynamical ones (evaluation of correlations). The experimental part is naturally divided according to the nature of the system: the interaction of pulsed lasers with matter on the one hand, and the correlations in finite-size systems (nanoparticles and nuclei) on the other. There is also a discussion on the dynamics of superconductors, a subject currently of great interest. Although an effort has been made to keep each contribution self-contained, I must admit that reading level is uneven. However, there are a number of thorough and stimulating contributions that make this book a useful introduction to the topic at the level of graduate students or researchers acquainted with quantum statistical mechanics. (book review)

  17. High-energy, short-pulse, carbon-dioxide lasers

    International Nuclear Information System (INIS)

    Fenstermacher, C.A.

    1979-01-01

    Lasers for fusion application represent a special class of short-pulse generators; not only must they generate extremely short temporal pulses of high quality, but they must do this at ultra-high powers and satisfy other stringent requirements by this application. This paper presents the status of the research and development of carbon-dioxide laser systems at the Los Alamos Scientific Laboratory, vis-a-vis the fusion requirements

  18. Short-term hydro generation scheduling of Three Gorges–Gezhouba cascaded hydropower plants using hybrid MACS-ADE approach

    International Nuclear Information System (INIS)

    Mo, Li; Lu, Peng; Wang, Chao; Zhou, Jianzhong

    2013-01-01

    Highlights: • MACS and ADE algorithms are hybridized as MACS-ADE method for solving STHGS problem. • An adaptive mutation is integrated into the proposed algorithm to avoid premature convergence. • MACS and ADE are run in parallel in search of better solution. • Several effective heuristic strategies are designed for dealing with various constraints of STHGS problem. - Abstract: Short-term hydro generation scheduling (STHGS) aims at determining optimal hydro generation scheduling to obtain minimum water consumption for one day or week while meeting various system constraints. In this paper, the STHGS problem is decomposed into two sub-problems: (i) unit commitment (UC) sub-problem; (ii) economic load dispatch (ELD) sub-problem. Then, we present a hybrid algorithm based on multi ant colony system (MACS) and differential evolution (DE) for solving the STHGS problem. First, MACS is used for dealing with UC sub-problem. A set of cooperating ant colonies cooperate to choose the unit state over the scheduled time horizon. Then, the adaptive differential evolution (ADE) is used to solve ELD sub-problem. MACS and ADE are run in parallel with adjusting their solutions in search of a better solution. Meanwhile, local and global pheromone updating rules in MACS and adaptive dynamic parameter adjusting strategy in DE are applied for enhancing the search ability of MACS-ADE. Finally, the proposed method is implemented to solve STHGS problem of Three Gorges–Gezhouba cascaded hydropower plants to verify the feasibility and effectiveness. Compared with other established methods, the simulation results reveal that the proposed MACS-ADE approach has the best convergence property, computational efficiency with less water consumption

  19. Real Time Face Quality Assessment for Face Log Generation

    DEFF Research Database (Denmark)

    Kamal, Nasrollahi; Moeslund, Thomas B.

    2009-01-01

    Summarizing a long surveillance video to just a few best quality face images of each subject, a face-log, is of great importance in surveillance systems. Face quality assessment is the back-bone for face log generation and improving the quality assessment makes the face logs more reliable....... Developing a real time face quality assessment system using the most important facial features and employing it for face logs generation are the concerns of this paper. Extensive tests using four databases are carried out to validate the usability of the system....

  20. Short wavelength FELS

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs

  1. Short wavelength FELS

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  2. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    Directory of Open Access Journals (Sweden)

    A. G. Khachatryan

    2004-12-01

    Full Text Available Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [JETP Lett. 74, 371 (2001JTPLA20021-364010.1134/1.1427124; Phys. Rev. E 65, 046504 (2002PLEEE81063-651X10.1103/PhysRevE.65.046504]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser wakefield, considerably compressed and accelerated to an ultrarelativistic energy. In this paper we show the possibility of the generation of an extremely short (on the order of 1   μm long or a few femtoseconds in duration relativistic-electron-bunch by this mechanism. The initial electron bunch, which can be generated, for example, by a laser-driven photocathode rf gun, should have an energy of a few hundred keVs to a few MeVs, a duration in the picosecond range or less and a relatively low concentration. The trapping conditions and parameters of an accelerated bunch are investigated. The laser pulse dynamics as well as a possible experimental setup for the demonstration of the injection scheme are also considered.

  3. Sistem kontrol inventori pemasokan barang Secara Real Time Menggunakan Vendor-Managed Inventory (VMI dan Short Message Service (SMS

    Directory of Open Access Journals (Sweden)

    Rinaldo Turang

    2016-01-01

    Full Text Available This research underlines the urgency of real-time stock replenishment control system for distributors using vendor-managed inventory. It is valuable in improving corporate performance in lowering inventory cost as well as making better customer service due to the cut made in ordering cycle. The system produces real-time information on stock available at the retailing stores. Stock replenishment can then be done by the distributor at the right time. Using Short Message Service (SMS as a one-way information channel from retailers to their distributor, the data of every transaction of the supervised item are processed by a rule-based forward-chaining inference system to determine the item’s availability in stores. Folowing steps in Rapid Application Development (RAD, the construction of this system takes place through business modeling, data modeling, process modeling of VMI system, then the application is generated and tested as a prototype. The results are: the stock replenishment control system are able to make transactional data at the stores transparent to the distributor, facilitating the continuation in stock delivery. System architecture reduces the time needed to access information about sales on supervised item by using SMS shortcut. This control system developed in stores can be operationally independent from the retailing systems. Rule-based forward-chaining inference technique processes facts on stock variations, resulting in stock replenishment notification such as normal, reserve, and depleted warning. Keywords: VMI, inventory; Stock replenishment; Rule-based reasoning; Forward-chaining system, RAD

  4. Enhancement and stabilization of plasma using collinear long-short double-pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Cui, Minchao; Deguchi, Yoshihiro; Wang, Zhenzhen; Fujita, Yuki; Liu, Renwei; Shiou, Fang-Jung; Zhao, Shengdun

    2018-04-01

    A collinear long-short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) method was employed to enhance and stabilize the laser-induced plasma from steel sample. The long-pulse-width laser beam with the pulse width of 60 μs was generated by a Nd: YAG laser which was operated at FR (free running) mode. The comparative experiments were carried out between single pulse LIBS (SP-LIBS) and long-short DP-LIBS. The recorded results showed that the emission intensities and the temperature of plasma were enhanced by long-short DP-LIBS. The plasma images showed that the plasma was bigger and had a longer lifetime in long-short DP-LIBS situation. Through the calculation of time-resolved plasma temperature and intensity ratio, it can be concluded that the plasma was stabilized by the long-pulse-width laser beam. The long-short DP-LIBS method also generated the stable plasma condition from the samples with different initial temperatures, which overcame the difficulties of LIBS in the online measurement for steel production line.

  5. Procedural Content Generation for Real-Time Strategy Games

    Directory of Open Access Journals (Sweden)

    Raúl Lara-Cabrera

    2015-03-01

    Full Text Available Videogames are one of the most important and profitable sectors in the industry of entertainment. Nowadays, the creation of a videogame is often a large-scale endeavor and bears many similarities with, e.g., movie production. On the central tasks in the development of a videogame is content generation, namely the definition of maps, terrains, non-player characters (NPCs and other graphical, musical and AI-related components of the game. Such generation is costly due to its complexity, the great amount of work required and the need of specialized manpower. Hence the relevance of optimizing the process and alleviating costs. In this sense, procedural content generation (PCG comes in handy as a means of reducing costs by using algorithmic techniques to automatically generate some game contents. PCG also provides advantages in terms of player experience since the contents generated are typically not fixed but can vary in different playing sessions, and can even adapt to the player herself. For this purpose, the underlying algorithmic technique used for PCG must be also flexible and adaptable. This is the case of computational intelligence in general and evolutionary algorithms in particular. In this work we shall provide an overview of the use of evolutionary intelligence for PCG, with special emphasis on its use within the context of real-time strategy games. We shall show how these techniques can address both playability and aesthetics, as well as improving the game AI.

  6. Space-time trajectories of wind power generation: Parameterized precision matrices under a Gaussian copula approach

    DEFF Research Database (Denmark)

    Tastu, Julija; Pinson, Pierre; Madsen, Henrik

    2015-01-01

    -correlations. Estimation is performed in a maximum likelihood framework. Based on a test case application in Denmark, with spatial dependencies over 15 areas and temporal ones for 43 hourly lead times (hence, for a dimension of n = 645), it is shown that accounting for space-time effects is crucial for generating skilful......Emphasis is placed on generating space-time trajectories of wind power generation, consisting of paths sampled from high-dimensional joint predictive densities, describing wind power generation at a number of contiguous locations and successive lead times. A modelling approach taking advantage...

  7. Variable slip wind generator modeling for real-time simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, R.; Brochu, J.; Turmel, G. [Hydro-Quebec, Varennes, PQ (Canada). IREQ

    2006-07-01

    A model of a wind turbine using a variable slip wound-rotor induction machine was presented. The model was created as part of a library of generic wind generator models intended for wind integration studies. The stator winding of the wind generator was connected directly to the grid and the rotor was driven by the turbine through a drive train. The variable resistors was synthesized by an external resistor in parallel with a diode rectifier. A forced-commutated power electronic device (IGBT) was connected to the wound rotor by slip rings and brushes. Simulations were conducted in a Matlab/Simulink environment using SimPowerSystems blocks to model power systems elements and Simulink blocks to model the turbine, control system and drive train. Detailed descriptions of the turbine, the drive train and the control system were provided. The model's implementation in the simulator was also described. A case study demonstrating the real-time simulation of a wind generator connected at the distribution level of a power system was presented. Results of the case study were then compared with results obtained from the SimPowerSystems off-line simulation. Results showed good agreement between the waveforms, demonstrating the conformity of the real-time and the off-line simulations. The capability of Hypersim for real-time simulation of wind turbines with power electronic converters in a distribution network was demonstrated. It was concluded that hardware-in-the-loop (HIL) simulation of wind turbine controllers for wind integration studies in power systems is now feasible. 5 refs., 1 tab., 6 figs.

  8. Wave Generation Theory

    DEFF Research Database (Denmark)

    Frigaard, Peter; Høgedal, Michael; Christensen, Morten

    The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.......The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....

  9. Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application.

    Science.gov (United States)

    Wang, Xu; Wada, Naoya

    2007-06-11

    We propose a novel reconfigurable time domain spectral phase encoding (SPE) scheme for coherent optical code-division-multiple-access application. In the proposed scheme, the ultra-short optical pulse is stretched by dispersive device and the SPE is done in time domain using high speed phase modulator. The time domain SPE scheme is robust to wavelength drift of the light source and is very flexible and compatible with the fiber optical system. Proof-of-principle experiments of encoding with 16-chip, 20 GHz/chip binary-phase-shift-keying codes and 1.25 Gbps data transmission have been successfully demonstrated together with an arrayed-wave-guide decoder.

  10. Short-time home coming project in evacuation zone

    International Nuclear Information System (INIS)

    Tatsuzaki, Hideo

    2011-01-01

    Accident at Fukushima Daiichi Nuclear Power Plants (NPPs) forced neighboring residents to evacuate, and evacuation zone (20 km radius from NPPs) was defined as highly contaminated and designated as no-entry zones. Residents had been obliged to live a refugee life for a longer period than expected. Short-time home coming project was initiated according to their requests. They came to the meeting place called transfer place (20 - 30 km radius from NPPs), wore protective clothing and personal dosimeter with having drinking water and came home in evacuation zone with staffs by bus. Their healthcare management professionals were fully prepared for emergency. After collecting necessary articles at home within two hours, they returned to the meeting place by bus for screening and dressing, and went back to refuge house. If screening data were greater than 13 kcpm using GM counters, partial body decontamination had been conducted by wiping and if greater than 100 kcpm, whole body decontamination was requested but not conducted. Dose rate of residents and staffs was controlled less than 1 mSv, which was alarm level of personal dosimeter. Stable iodine was prepared but actually not used. (T. Tanaka)

  11. Non-Destructive Investigation on Short Circuit Capability of Wind-Turbine-Scale IGBT Power Modules

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2014-01-01

    This paper presents a comprehensive investigation on the short circuit capability of wind-turbine-scale IGBT power modules by means of a 6 kA/1.1 kV non-destructive testing system. A Field Programmable Gate Array (FPGA) supervising unit is adpoted to achieve an accurate time control for short...... circuit test, which enables to define the driving signals with an accuracy of 10 ns. Thanks to the capability and the effectiveness of the constructed setup, oscillations appearing during short circuits of the new-generation 1.7 kV/1 kA IGBT power modules have been evidenced and characterized under...

  12. Stochastic short-term maintenance scheduling of GENCOs in an oligopolistic electricity market

    International Nuclear Information System (INIS)

    Fotouhi Ghazvini, Mohammad Ali; Canizes, Bruno; Vale, Zita; Morais, Hugo

    2013-01-01

    Highlights: ► Decision making under uncertainty. ► Stochastic Mixed Integer Quadratic Programming applied to short-term maintenance scheduling. ► Outage scheduling in Oligopolistic electricity markets. ► Generation companies maintenance scheduling. -- Abstract: In the proposed model, the independent system operator (ISO) provides the opportunity for maintenance outage rescheduling of generating units before each short-term (ST) time interval. Long-term (LT) scheduling for 1 or 2 years in advance is essential for the ISO and the generation companies (GENCOs) to decide their LT strategies; however, it is not possible to be exactly followed and requires slight adjustments. The Cournot-Nash equilibrium is used to characterize the decision-making procedure of an individual GENCO for ST intervals considering the effective coordination with LT plans. Random inputs, such as parameters of the demand function of loads, hourly demand during the following ST time interval and the expected generation pattern of the rivals, are included as scenarios in the stochastic mixed integer program defined to model the payoff-maximizing objective of a GENCO. Scenario reduction algorithms are used to deal with the computational burden. Two reliability test systems were chosen to illustrate the effectiveness of the proposed model for the ST decision-making process for future planned outages from the point of view of a GENCO.

  13. Local short-duration precipitation extremes in Sweden: observations, forecasts and projections

    Science.gov (United States)

    Olsson, Jonas; Berg, Peter; Simonsson, Lennart

    2015-04-01

    Local short-duration precipitation extremes (LSPEs) are a key driver of hydrological hazards, notably in steep catchments with thin soils and in urban environments. The triggered floodings, landslides, etc., have large consequences for society in terms of both economy and health. Accurate estimations of LSPEs on both climatological time-scales (past, present, future) and in real-time is thus of great importance for improved hydrological predictions as well as design of constructions and infrastructure affected by hydrological fluxes. Analysis of LSPEs is, however, associated with various limitations and uncertainties. These are to a large degree associated with the small-scale nature of the meteorological processes behind LSPEs and the associated requirements on observation sensors as well as model descriptions. Some examples of causes for the limitations involved are given in the following. - Observations: High-resolution data sets available for LSPE analyses are often limited to either relatively long series from one or a few stations or relatively short series from larger station networks. Radar data have excellent resolutions in both time and space but the estimated local precipitation intensity is still highly uncertain. New and promising techniques (e.g. microwave links) are still in their infancy. - Weather forecasts (short-range): Although forecasts with the required spatial resolution for potential generation of LSPEs (around 2-4 km) are becoming operationally available, the actual forecast precision of LSPEs is largely unknown. Forecasted LSPEs may be displaced in time or, more critically, in space which strongly affects the possibility to assess hydrological risk. - Climate projections: The spatial resolution of the current RCM generation (around 25 km) is not sufficient for proper description of LSPEs. Statistical post-processing (i.e. downscaling) is required which adds substantial uncertainty to the final result. Ensemble generation of sufficiently

  14. Performance evaluation of the short-time objective intelligibility measure with different band importance functions

    DEFF Research Database (Denmark)

    Heidemann Andersen, Asger; de Haan, Jan Mark; Tan, Zheng-Hua

    performance measures: root-mean-squared-error, Pearson correlation, and Kendall rank correlation. The results show substantially improved performance when fitting and evaluating on the same dataset. However, this advantage does not necessarily subsist when fitting and evaluating on different datasets. When...... with a filter bank, 2) envelopes are extracted from each band, 3) the temporal correlation between clean and degraded envelopes is computed in short time segments, and 4) the correlation is averaged across time and frequency bands to obtain the final output. An unusual choice in the design of the STOI measure...

  15. Time-resolved x-ray spectra from laser-generated high-density plasmas

    Science.gov (United States)

    Andiel, U.; Eidmann, Klaus; Witte, Klaus-Juergen

    2001-04-01

    We focused frequency doubled ultra short laser pulses on solid C, F, Na and Al targets, K-shell emission was systematically investigated by time resolved spectroscopy using a sub-ps streak camera. A large number of laser shots can be accumulated when triggering the camera with an Auston switch system at very high temporal precision. The system provides an outstanding time resolution of 1.7ps accumulating thousands of laser shots. The time duration of the He-(alpha) K-shell resonance lines was observed in the range of (2-4)ps and shows a decrease with the atomic number. The experimental results are well reproduced by hydro code simulations post processed with an atomic kinetics code.

  16. Generating Dynamic Persistence in the Time Domain

    Science.gov (United States)

    Guerrero, A.; Smith, L. A.; Smith, L. A.; Kaplan, D. T.

    2001-12-01

    Many dynamical systems present long-range correlations. Physically, these systems vary from biological to economical, including geological or urban systems. Important geophysical candidates for this type of behaviour include weather (or climate) and earthquake sequences. Persistence is characterised by slowly decaying correlation function; that, in theory, never dies out. The Persistence exponent reflects the degree of memory in the system and much effort has been expended creating and analysing methods that successfully estimate this parameter and model data that exhibits persistence. The most widely used methods for generating long correlated time series are not dynamical systems in the time domain, but instead are derived from a given spectral density. Little attention has been drawn to modelling persistence in the time domain. The time domain approach has the advantage that an observation at certain time can be calculated using previous observations which is particularly suitable when investigating the predictability of a long memory process. We will describe two of these methods in the time domain. One is a traditional approach using fractional ARIMA (autoregressive and moving average) models; the second uses a novel approach to extending a given series using random Fourier basis functions. The statistical quality of the two methods is compared, and they are contrasted with weather data which shows, reportedly, persistence. The suitability of this approach both for estimating predictability and for making predictions is discussed.

  17. Next Generation CANDU: Conceptual Design for a Short Construction Schedule

    International Nuclear Information System (INIS)

    Hopwood, Jerry M.; Love, Ian J.W.; Elgohary, Medhat; Fairclough, Neville

    2002-01-01

    Atomic Energy of Canada Ltd. (AECL) has very successful experience in implementing new construction methods at the Qinshan (Phase III) twin unit CANDU 6 plant in China. This paper examines the construction method that must be implemented during the conceptual design phase of a project if short construction schedules are to be met. A project schedule of 48 months has been developed for the nth unit of NG (Next Generation) CANDU with a 42 month construction period from 1. Concrete to In-Service. An overall construction strategy has been developed involving paralleling project activities that are normally conducted in series. Many parts of the plant will be fabricated as modules and be installed using heavy lift cranes. The Reactor Building (RB), being on the critical path, has been the focus of considerable assessment, looking at alternative ways of applying the construction strategy to this building. A construction method has been chosen which will result in excess of 80% of internal work being completed as modules or as very streamlined traditional construction. This method is being further evaluated as the detailed layout proceeds. Other areas of the plant have been integrated into the schedule and new construction methods are being applied to these so that further modularization and even greater paralleling of activities will be achieved. It is concluded that the optimized construction method is a requirement, which must be implemented through all phases of design to make a 42 month construction schedule a reality. If the construction methods are appropriately chosen, the schedule reductions achieved will make nuclear more competitive. (authors)

  18. Clonal differences in generation times of GPK epithelial cells in monolayer culture.

    Science.gov (United States)

    Riley, P A; Hola, M

    1980-01-01

    Pedigrees of cells in eight clones of guinea pig keratocyte (GPK) cells in monolayer culture were analyzed from a time-lapse film. The generation times and the position in the field of observation were recorded up to the sixth generation when the cultures were still subconfluent. Statistical analysis of the results indicates that the position in the culture has less significance than the clonal origin of the cell in determining the interval between successive mitoses.

  19. Characterization of a high repetition-rate laser-driven short-pulsed neutron source

    Science.gov (United States)

    Hah, J.; Nees, J. A.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.

    2018-05-01

    We demonstrate a repetitive, high flux, short-pulsed laser-driven neutron source using a heavy-water jet target. We measure neutron generation at 1/2 kHz repetition rate using several-mJ pulse energies, yielding a time-averaged neutron flux of 2 × 105 neutrons s‑1 (into 4π steradians). Deuteron spectra are also measured in order to understand source characteristics. Analyses of time-of-flight neutron spectra indicate that two separate populations of neutrons, ‘prompt’ and ‘delayed’, are generated at different locations. Gamma-ray emission from neutron capture 1H(n,γ) is also measured to confirm the neutron flux.

  20. Generative Moire Structures

    Directory of Open Access Journals (Sweden)

    Adrian – Mihail Marian

    2006-01-01

    Full Text Available “GRAPHIC ON COMPUTER” – the work of the Czech Petar Milojevic, published in Titus Mocanu’s book “THE MODERN ART’S MORPHOLOGY”, in 1973, had great influence on me. I tried to discover the algorithm that generated this work. It was not so difficult to do and in a short time I was able to draw 12 such structures. In time, with interruptions, I have returned to this kind of works. In my personal exhibition “CYBERNETIC DESIGN” that took place at “M4-1-13-etopa” gallery of Pitesti, in March 1981, I have presented 8 such structures. To my joy, they had an impact on art lovers.

  1. Critical dynamics of the Potts model: short-time Monte Carlo simulations

    International Nuclear Information System (INIS)

    Silva, Roberto da; Drugowich de Felicio, J.R.

    2004-01-01

    We calculate the new dynamic exponent θ of the 4-state Potts model, using short-time simulations. Our estimates θ1=-0.0471(33) and θ2=-0.0429(11) obtained by following the behavior of the magnetization or measuring the evolution of the time correlation function of the magnetization corroborate the conjecture by Okano et al. [Nucl. Phys. B 485 (1997) 727]. In addition, these values agree with previous estimate of the same dynamic exponent for the two-dimensional Ising model with three-spin interactions in one direction, that is known to belong to the same universality class as the 4-state Potts model. The anomalous dimension of initial magnetization x0=zθ+β/ν is calculated by an alternative way that mixes two different initial conditions. We have also estimated the values of the static exponents β and ν. They are in complete agreement with the pertinent results of the literature

  2. Time-resolved plasma spectroscopy of thin foils heated by a relativistic-intensity short-pulse laser

    International Nuclear Information System (INIS)

    Audebert, P.; Gauthier, J.-C.; Shepherd, R.; Fournier, K.B.; Price, D.; Lee, R.W.; Springer, P.; Peyrusse, O.; Klein, L.

    2002-01-01

    Time-resolved K-shell x-ray spectra are recorded from sub-100 nm aluminum foils irradiated by 150-fs laser pulses at relativistic intensities of Iλ 2 =2x10 18 W μm 2 /cm 2 . The thermal penetration depth is greater than the foil thickness in these targets so that uniform heating takes place at constant density before hydrodynamic motion occurs. The high-contrast, high-intensity laser pulse, broad spectral band, and short time resolution utilized in this experiment permit a simplified interpretation of the dynamical evolution of the radiating matter. The observed spectrum displays two distinct phases. At early time, ≤500 fs after detecting target emission, a broad quasicontinuous spectral feature with strong satellite emission from multiply excited levels is seen. At a later time, the He-like resonance line emission is dominant. The time-integrated data is in accord with previous studies with time resolution greater than 1 ps. The early time satellite emission is shown to be a signature of an initial large area, high density, low-temperature plasma created in the foil by fast electrons accelerated by the intense radiation field in the laser spot. We conclude that, because of this early time phenomenon and contrary to previous predictions, a short, high-intensity laser pulse incident on a thin foil does not create a uniform hot and dense plasma. The heating mechanism has been studied as a function of foil thickness, laser pulse length, and intensity. In addition, the spectra are found to be in broad agreement with a hydrodynamic expansion code postprocessed by a collisional-radiative model based on superconfiguration average rates and on the unresolved transition array formalism

  3. Short- and long-run time-of-use price elasticities in Swiss residential electricity demand

    International Nuclear Information System (INIS)

    Filippini, Massimo

    2011-01-01

    This paper presents an empirical analysis on the residential demand for electricity by time-of-day. This analysis has been performed using aggregate data at the city level for 22 Swiss cities for the period 2000-2006. For this purpose, we estimated two log-log demand equations for peak and off-peak electricity consumption using static and dynamic partial adjustment approaches. These demand functions were estimated using several econometric approaches for panel data, for example LSDV and RE for static models, and LSDV and corrected LSDV estimators for dynamic models. The attempt of this empirical analysis has been to highlight some of the characteristics of the Swiss residential electricity demand. The estimated short-run own price elasticities are lower than 1, whereas in the long-run these values are higher than 1. The estimated short-run and long-run cross-price elasticities are positive. This result shows that peak and off-peak electricity are substitutes. In this context, time differentiated prices should provide an economic incentive to customers so that they can modify consumption patterns by reducing peak demand and shifting electricity consumption from peak to off-peak periods. - Highlights: → Empirical analysis on the residential demand for electricity by time-of-day. → Estimators for dynamic panel data. → Peak and off-peak residential electricity are substitutes.

  4. Spectrogram analysis of selected tremor signals using short-time Fourier transform and continuous wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Bartosch, T. [Erlanger-Nuernberg Univ., Erlanger (Germany). Lehrstul fuer Nachrichtentechnik I; Seidl, D. [Seismologisches Zentralobservatorium Graefenberg, Erlanegen (Greece). Bundesanstalt fuer Geiwissenschaften und Rohstoffe

    1999-06-01

    Among a variety of spectrogram methods short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were selected to analyse transients in non-stationary signals. Depending on the properties of the tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli (Italy).

  5. Time-Frequency Analysis of Signals Generated by Rotating Machines

    Directory of Open Access Journals (Sweden)

    R. Zetik

    1999-06-01

    Full Text Available This contribution is devoted to the higher order time-frequency analyses of signals. Firstly, time-frequency representations of higher order (TFRHO are defined. Then L-Wigner distribution (LWD is given as a special case of TFRHO. Basic properties of LWD are illustrated based on the analysis of mono-component and multi-component synthetic signals and acoustical signals generated by rotating machine. The obtained results confirm usefulness of LWD application for the purpose of rotating machine condition monitoring.

  6. Measurement of radon-222 concentration in environment sampled within short time using charcoal detector

    International Nuclear Information System (INIS)

    Yamasaki, Tadashi; Sekiyama, Shigenobu; Tokin, Mina; Nakayasu, Yumiko; Watanabe, Tamaki.

    1994-01-01

    The concentration of 222 Rn in air sampled within a very short period of time was measured using activated charcoal as the adsorber. The detector is the plastic canister containing mixture of the activated charcoal and the silica gel. The radon gas was adsorbed in the charcoal in the radon chamber at the temperature of 25degC. A little amount of liquid scintillation cocktail was added into the vial of liquid scintillation counter with the canister. The radon in the charcoal was extracted in the liquid scintillation cocktail. Alpha particles emitted from radon and its daughter nuclei in the cocktail were detected using the liquid scintillation counter. Present method has advantages of not only short sampling time of air but also adsorption of radon in charcoal under a constant temperature. The concentration of radon in air down to 2 Bq/m 3 could be detected. A kinetic model for adsorption of radon in the charcoal is also presented. The ratio of radon concentration in the charcoal to that in air under the equilibrium state of adsorption was estimated to be from 6.1 to 6.8 m 3 /kg at the temperature of 25degC. (author)

  7. Local inertial oscillations in the surface ocean generated by time-varying winds

    Science.gov (United States)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  8. RT-Syn: A real-time software system generator

    Science.gov (United States)

    Setliff, Dorothy E.

    1992-01-01

    This paper presents research into providing highly reusable and maintainable components by using automatic software synthesis techniques. This proposal uses domain knowledge combined with automatic software synthesis techniques to engineer large-scale mission-critical real-time software. The hypothesis centers on a software synthesis architecture that specifically incorporates application-specific (in this case real-time) knowledge. This architecture synthesizes complex system software to meet a behavioral specification and external interaction design constraints. Some examples of these external constraints are communication protocols, precisions, timing, and space limitations. The incorporation of application-specific knowledge facilitates the generation of mathematical software metrics which are used to narrow the design space, thereby making software synthesis tractable. Success has the potential to dramatically reduce mission-critical system life-cycle costs not only by reducing development time, but more importantly facilitating maintenance, modifications, and extensions of complex mission-critical software systems, which are currently dominating life cycle costs.

  9. Verification of short lead time forecast models: applied to Kp and Dst forecasting

    Science.gov (United States)

    Wintoft, Peter; Wik, Magnus

    2016-04-01

    In the ongoing EU/H2020 project PROGRESS models that predicts Kp, Dst, and AE from L1 solar wind data will be used as inputs to radiation belt models. The possible lead times from L1 measurements are shorter (10s of minutes to hours) than the typical duration of the physical phenomena that should be forecast. Under these circumstances several metrics fail to single out trivial cases, such as persistence. In this work we explore metrics and approaches for short lead time forecasts. We apply these to current Kp and Dst forecast models. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637302.

  10. A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times

    Science.gov (United States)

    Edmund, Jens M.; Kjer, Hans M.; Van Leemput, Koen; Hansen, Rasmus H.; Andersen, Jon AL; Andreasen, Daniel

    2014-12-01

    Radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, so-called MRI-only RT, would remove the systematic registration error between MR and computed tomography (CT), and provide co-registered MRI for assessment of treatment response and adaptive RT. Electron densities, however, need to be assigned to the MRI images for dose calculation and patient setup based on digitally reconstructed radiographs (DRRs). Here, we investigate the geometric and dosimetric performance for a number of popular voxel-based methods to generate a so-called pseudo CT (pCT). Five patients receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation and (3) statistical regression. Each approach contained two methods. Approach 1 used bulk density assignment of MRI voxels into air, soft tissue and bone based on logical masks and the transverse relaxation time T2 of the bone. Approach 2 used similar bulk density assignments with Bayesian statistics including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT agreement with the pCT of each method was quantified and compared with the other methods geometrically and dosimetrically using both a number of reported metrics and introducing some novel metrics. The best geometrical agreement with CT was obtained with the statistical regression methods which performed significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI

  11. The spatial distribution and time evolution of impact-generated magnetic fields

    Science.gov (United States)

    Crawford, D. A.; Schultz, P. H.

    1991-01-01

    The production of magnetic fields was revealed by laboratory hypervelocity impacts in easily vaporized targets. As quantified by pressure measurements, high frame-rate photography, and electrostatic probes, these impacts tend to produce large quantities of slightly ionized vapor, which is referred to as impact-generated plasma. Nonaligned electron density and temperature gradients within this plasma may lead to production of the observed magnetic fields. Past experiments were limited to measuring a single component of the impact-generated magnetic fields at only a few locations about the developing impact crater and consequently gave little information about the field production mechanism. To understand this mechanism, the techniques were extended to map the three components of the magnetic field both in space and time. By conducting many otherwise identical experiments with arrayed magnetic detectors, a preliminary 3-D picture was produced of impact-generated magnetic fields as they develop through time.

  12. Design spectra development considering short time histories

    International Nuclear Information System (INIS)

    Weiner, E.O.

    1983-01-01

    The need for generation of seismic acceleration histories to prescribed response spectra arises several ways in structural dynamics. For example, one way of obtaining floor spectra is to generate a history from a foundation spectra and then solve for the floor motion from which a floor spectrum can be obtained. Two separate programs, MODQKE and MDOF, were written to provide a capability of obtaining equipment spectra from design spectra. MODQKE generates or modifies acceleration histories to conform with design spectra pertaining to, say, a foundation. MDOF is a simple linear modal superposition program that solves for equipment support histories using the design spectra conforming histories as input. Equipment spectra, then, are obtained from the support histories using MODQKE

  13. Nanosecond Level UTC Timing Generation and Stamping in CERN's LHC

    CERN Document Server

    Alvarez, P; Lewis, J; Serrano, J

    2003-01-01

    The General Machine Timing (GMT) at CERN uses an RS-485 multi-drop network through which messages are broadcast by a Central Timing Generator (CTG) module at a rate of 500 kb/s and decoded by many receiver modules in different form factors. For long distance transmission, optical fibers are used. As a result of cabling and capacitive loading of the receivers' inputs, the timing message signal presents an average jitter of 14 ns at any receiver input. For the LHC era, the 500 kb/s rate will be maintained to ensure compatibility with old receivers. However, a special kind of Phase Locked Loop (PLL), involving digital control in a Field Programmable Gate Array (FPGA) and a DAC to control a Voltage Controlled Crystal Oscillator (VCXO), has been developed to generate a 40 MHz square wave at the receiving side which is locked on average to the timing message signal but presents a jitter of less than 1 ns. This 40 MHz signal is locked to UTC because the encoder in the CTG card uses a 40 MHz clock coming from a GPS r...

  14. Short circuit signatures from different wind turbine generator types

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Philip C.; Rodriguez, Pedro

    2011-01-01

    Modern wind power plants are required and designed to ride through faults in the network, subjected to the fault clearance and following grid code demands. Beside voltage support during faults, the wind turbine fault current contribution is important to establish the correct settings for the relay...... of the protections. The following wind turbine generator during faults have been studied: (i) induction generator, (ii) induction generator with variable rotor resistance (iii) converter-fed rotor (often referred to as DFIG) and (iv) full scale converter. To make a clear comparison and performance analysis during...... faults, and the consequent effects on substation protections, the aforementioned configurations have been simulated using PSCAD/EMTDC, with the same power plant configuration, electrical grid and generator data. Additionally, a comparison of these wind turbine technologies with a conventional power plant...

  15. High-voltage pulse generator for electron gun power supply

    International Nuclear Information System (INIS)

    Korenev, S.A.; Enchevich, I.B.; Mikhov, M.K.

    1987-01-01

    High-voltage pulse generator with combined capacitive and inductive energy storages for electron gun power supply is described. Hydrogen thyratron set in a short magnetic lense is a current breaker. Times of current interruption in thyratrons are in the range from 100 to 300 ns. With 1 kV charging voltage of capacitive energy storage 25 kV voltage pulse is obtained in the load. The given high-voltage pulse generator was used for supply of an electron gun generating 10-30 keV low-energy electron beam

  16. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    International Nuclear Information System (INIS)

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-01-01

    Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to

  17. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lilai, E-mail: llxu@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Gao, Peiqing, E-mail: peiqing15@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China); Cui, Shenghui, E-mail: shcui@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Liu, Chun, E-mail: xmhwlc@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China)

    2013-06-15

    Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to

  18. PC graphics generation and management tool for real-time applications

    Science.gov (United States)

    Truong, Long V.

    1992-01-01

    A graphics tool was designed and developed for easy generation and management of personal computer graphics. It also provides methods and 'run-time' software for many common artificial intelligence (AI) or expert system (ES) applications.

  19. Telomerase and Tel1p Preferentially Associate with Short Telomeres in S. cerevisiae

    Science.gov (United States)

    Sabourin, Michelle; Tuzon, Creighton T.; Zakian, Virginia A.

    2009-01-01

    SUMMARY In diverse organisms, telomerase preferentially elongates short telomeres. We generated a single short telomere in otherwise wild-type (WT) S. cerevisiae cells. The binding of the positive regulators Ku and Cdc13p was similar at short and WT-length telomeres. The negative regulators Rif1p and Rif2p were present at the short telomere, although Rif2p levels were reduced. Two telomerase holoenzyme components, Est1p and Est2p, were preferentially enriched at short telomeres in late S/G2 phase, the time of telomerase action. Tel1p, the yeast ATM-like checkpoint kinase, was highly enriched at short telomeres from early S through G2 phase and even into the next cell cycle. Nonetheless, induction of a single short telomere did not elicit a cell-cycle arrest. Tel1p binding was dependent on Xrs2p and required for preferential binding of telomerase to short telomeres. These data suggest that Tel1p targets telomerase to the DNA ends most in need of extension. PMID:17656141

  20. High-order harmonic generation with short-pulse lasers

    International Nuclear Information System (INIS)

    Schafer, K.J.; Krause, J.L.; Kulander, K.C.

    1992-12-01

    Recent progress in the understanding of high-order harmonic conversion from atoms and ions exposed to high-intensity, short-pulse optical lasers is reviewed. We find that ions can produce harmonics comparable in strength to those obtained from neutral atoms, and that the emission extends to much higher order. Simple scaling laws for the strength of the harmonic emission and the maximium observable harmonic are suggested. These results imply that the photoemission observed in recent experiments in helium and neon contains contributions from ions as well as neutrals

  1. Short Pulse Laser Applications Design

    International Nuclear Information System (INIS)

    Town, R.J.; Clark, D.S.; Kemp, A.J.; Lasinski, B.F.; Tabak, M.

    2008-01-01

    We are applying our recently developed, LDRD-funded computational simulation tool to optimize and develop applications of Fast Ignition (FI) for stockpile stewardship. This report summarizes the work performed during a one-year exploratory research LDRD to develop FI point designs for the National Ignition Facility (NIF). These results were sufficiently encouraging to propose successfully a strategic initiative LDRD to design and perform the definitive FI experiment on the NIF. Ignition experiments on the National Ignition Facility (NIF) will begin in 2010 using the central hot spot (CHS) approach, which relies on the simultaneous compression and ignition of a spherical fuel capsule. Unlike this approach, the fast ignition (FI) method separates fuel compression from the ignition phase. In the compression phase, a laser such as NIF is used to implode a shell either directly, or by x rays generated from the hohlraum wall, to form a compact dense (∼300 g/cm 3 ) fuel mass with an areal density of ∼3.0 g/cm 2 . To ignite such a fuel assembly requires depositing ∼20kJ into a ∼35 (micro)m spot delivered in a short time compared to the fuel disassembly time (∼20ps). This energy is delivered during the ignition phase by relativistic electrons generated by the interaction of an ultra-short high-intensity laser. The main advantages of FI over the CHS approach are higher gain, a lower ignition threshold, and a relaxation of the stringent symmetry requirements required by the CHS approach. There is worldwide interest in FI and its associated science. Major experimental facilities are being constructed which will enable 'proof of principle' tests of FI in integrated subignition experiments, most notably the OMEGA-EP facility at the University of Rochester's Laboratory of Laser Energetics and the FIREX facility at Osaka University in Japan. Also, scientists in the European Union have recently proposed the construction of a new FI facility, called HiPER, designed to

  2. Influence of the pressure holding time on strain generation in fuel injection lines

    International Nuclear Information System (INIS)

    Basara, Adis; Alt, Nicolas; Schluecker, Eberhard

    2011-01-01

    An influence of the pressure holding time on residual strain generation during the autofrettage process was studied experimentally for the first time in the present work. It is the state of the art that fuel injection lines are held at the autofrettage pressure for only a few seconds in an industrial production. In doing so, it is assumed that a desirable residual stress-strain pattern is generated. However, the results of the experimental investigations outlined in this work indicated that completion of the plastic deformation caused by the autofrettage process and generation of the desirable stress-strain pattern require a much longer period. As shown, a third-order polynomial equation best described the interdependence between the time required for the completion of the process, the corresponding autofrettage pressure and the generated strain state. The method presented can be used as a tool for the determination of the optimal autofrettage process parameters in industrial production of fuel injection lines.

  3. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    Science.gov (United States)

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  4. Increasing Short-Stay Unplanned Hospital Admissions among Children in England; Time Trends Analysis ’97–‘06

    Science.gov (United States)

    Saxena, Sonia; Bottle, Alex; Gilbert, Ruth; Sharland, Mike

    2009-01-01

    Background Timely care by general practitioners in the community keeps children out of hospital and provides better continuity of care. Yet in the UK, access to primary care has diminished since 2004 when changes in general practitioners' contracts enabled them to ‘opt out’ of providing out-of-hours care and since then unplanned pediatric hospital admission rates have escalated, particularly through emergency departments. We hypothesised that any increase in isolated short stay admissions for childhood illness might reflect failure to manage these cases in the community over a 10 year period spanning these changes. Methods and Findings We conducted a population based time trends study of major causes of hospital admission in children 2 days. By 2006, 67.3% of all unplanned admissions were isolated short stays <2 days. The increases in admission rates were greater for common non-infectious than infectious causes of admissions. Conclusions Short stay unplanned hospital admission rates in young children in England have increased substantially in recent years and are not accounted for by reductions in length of in-hospital stay. The majority are isolated short stay admissions for minor illness episodes that could be better managed by primary care in the community and may be evidence of a failure of primary care services. PMID:19829695

  5. The "Next Generation Science Standards" and the Life Sciences

    Science.gov (United States)

    Bybee, Rodger W.

    2013-01-01

    Publication of the "Next Generation Science Standards" will be just short of two decades since publication of the "National Science Education Standards" (NRC 1996). In that time, biology and science education communities have advanced, and the new standards will reflect that progress (NRC 1999, 2007, 2009; Kress and Barrett…

  6. Calculation model for 16N transit time in the secondary side of steam generators

    International Nuclear Information System (INIS)

    Liu Songyu; Xu Jijun; Xu Ming

    1998-01-01

    The 16 N transit time is essential to determine the leak-rate of steam generator tubes leaks with 16 N monitoring system, which is a new technique. A model was developed for calculation 16 N transit time in the secondary side of steam generators. According to the flow characters of secondary side fluid, the transit times divide into four sectors from tube sheet to the sensor on steam line. The model assumes that 16 N is moving as vapor phase in the secondary-side. So the model for vapor velocity distribution in tube bundle is presented in detail. The 16 N transit time calculation results of this model compare with these of EDF on steam generator of Qinshan NPP

  7. Use of a Principal Components Analysis for the Generation of Daily Time Series.

    Science.gov (United States)

    Dreveton, Christine; Guillou, Yann

    2004-07-01

    A new approach for generating daily time series is considered in response to the weather-derivatives market. This approach consists of performing a principal components analysis to create independent variables, the values of which are then generated separately with a random process. Weather derivatives are financial or insurance products that give companies the opportunity to cover themselves against adverse climate conditions. The aim of a generator is to provide a wider range of feasible situations to be used in an assessment of risk. Generation of a temperature time series is required by insurers or bankers for pricing weather options. The provision of conditional probabilities and a good representation of the interannual variance are the main challenges of a generator when used for weather derivatives. The generator was developed according to this new approach using a principal components analysis and was applied to the daily average temperature time series of the Paris-Montsouris station in France. The observed dataset was homogenized and the trend was removed to represent correctly the present climate. The results obtained with the generator show that it represents correctly the interannual variance of the observed climate; this is the main result of the work, because one of the main discrepancies of other generators is their inability to represent accurately the observed interannual climate variance—this discrepancy is not acceptable for an application to weather derivatives. The generator was also tested to calculate conditional probabilities: for example, the knowledge of the aggregated value of heating degree-days in the middle of the heating season allows one to estimate the probability if reaching a threshold at the end of the heating season. This represents the main application of a climate generator for use with weather derivatives.

  8. Short-time scale coupling between thermohaline and meteorological forcing in the Ría de Pontevedra

    Directory of Open Access Journals (Sweden)

    Paula C. Pardo

    2001-07-01

    Full Text Available Two cruises were performed in May-June and October-November 1997 in the Ría de Pontevedra under strong downwelling conditions. Temperature and salinity data were recorded in short sampling periods to describe the changes in thermohaline property distribution in a short time scale. In order to obtain the residual fluxes in the Ría, a bi-dimensional non-stationary salt and thermal-energy weight averaged box-model was applied. Outputs from this kinematic model were compared with Upwelling Index, river flow and density gradient, resulting in a good multiple correlation, which proves the strong coupling between thermohaline properties and meteorological variability. Ekman forcing affects the whole area but mainly controls the dynamics of outer zones. The intensity of its effect on the circulation pattern within the Ría depends on the grade of stratification of the water bodies. River flow is more relevant in inner parts. According to estimated spatially averaged velocities, water residence time is lower than two weeks in outer parts of the Ría, and decreases toward the inner zones.

  9. Time perspective in hereditary cancer: psychometric properties of a short form of the Zimbardo Time Perspective Inventory in a community and clinical sample.

    Science.gov (United States)

    Wakefield, Claire E; Homewood, Judi; Taylor, Alan; Mahmut, Mehmet; Meiser, Bettina

    2010-10-01

    We aimed to assess the psychometric properties of a 25-item short form of the Zimbardo Time Perspective Inventory in a community sample (N = 276) and in individuals with a strong family history of cancer, considering genetic testing for cancer risk (N = 338). In the community sample, individuals with high past-negative or present-fatalistic scores had higher levels of distress, as measured by depression, anxiety, and aggression. Similarly, in the patient sample, past-negative time perspective was positively correlated with distress, uncertainty, and postdecision regret when making a decision about genetic testing. Past-negative-oriented individuals were also more likely to be undecided about, or against, genetic testing. Hedonism was associated with being less likely to read the educational materials they received at their clinic, and fatalism was associated with having lower knowledge levels about genetic testing. The assessment of time perspective in individuals at increased risk of cancer can provide valuable clinical insights. However, further investigation of the psychometric properties of the short form of this scale is warranted, as it did not meet the currently accepted criteria for psychometric validation studies.

  10. Short pulse generation from a passively mode-locked fiber optical parametric oscillator with optical time-stretch.

    Science.gov (United States)

    Qiu, Yi; Wei, Xiaoming; Du, Shuxin; Wong, Kenneth K Y; Tsia, Kevin K; Xu, Yiqing

    2018-04-16

    We propose a passively mode-locked fiber optical parametric oscillator assisted with optical time-stretch. Thanks to the lately developed optical time-stretch technique, the onset oscillating spectral components can be temporally dispersed across the pump envelope and further compete for the parametric gain with the other parts of onset oscillating sidebands within the pump envelope. By matching the amount of dispersion in optical time-stretch with the pulse width of the quasi-CW pump and oscillating one of the parametric sidebands inside the fiber cavity, we numerically show that the fiber parametric oscillator can be operated in a single pulse regime. By varying the amount of the intracavity dispersion, we further verify that the origin of this single pulse mode-locking regime is due to the optical pulse stretching and compression.

  11. A space-time rainfall generator for highly convective Mediterranean rainstorms

    Directory of Open Access Journals (Sweden)

    S. Salsón

    2003-01-01

    Full Text Available Distributed hydrological models require fine resolution rainfall inputs, enhancing the practical interest of space-time rainfall models, capable of generating through numerical simulation realistic space-time rainfall intensity fields. Among different mathematical approaches, those based on point processes and built upon a convenient analytical description of the raincell as the fundamental unit, have shown to be particularly suitable and well adapted when extreme rainfall events of convective nature are considered. Starting from previous formulations, some analytical refinements have been considered, allowing practical generation of space-time rainfall intensity fields for that type of rainstorm events. Special attention is placed on the analytical description of the spatial and temporal evolution of the rainfall intensities produced by the raincells. After deriving the necessary analytical results, the seven parameters of the model have been estimated by the method of moments, for each of the 30 selected rainfall events in the Jucar River Basin (ValenciaSpain – period 1991 to 2000, using 5-min aggregated rainfall data series from an automatic raingauge network.

  12. Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory

    Directory of Open Access Journals (Sweden)

    Haimin Yang

    2017-01-01

    Full Text Available Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this paper, we propose a robust and adaptive online gradient learning method, RoAdam (Robust Adam, for long short-term memory (LSTM to predict time series with outliers. This method tunes the learning rate of the stochastic gradient algorithm adaptively in the process of prediction, which reduces the adverse effect of outliers. It tracks the relative prediction error of the loss function with a weighted average through modifying Adam, a popular stochastic gradient method algorithm for training deep neural networks. In our algorithm, the large value of the relative prediction error corresponds to a small learning rate, and vice versa. The experiments on both synthetic data and real time series show that our method achieves better performance compared to the existing methods based on LSTM.

  13. Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory.

    Science.gov (United States)

    Yang, Haimin; Pan, Zhisong; Tao, Qing

    2017-01-01

    Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this paper, we propose a robust and adaptive online gradient learning method, RoAdam (Robust Adam), for long short-term memory (LSTM) to predict time series with outliers. This method tunes the learning rate of the stochastic gradient algorithm adaptively in the process of prediction, which reduces the adverse effect of outliers. It tracks the relative prediction error of the loss function with a weighted average through modifying Adam, a popular stochastic gradient method algorithm for training deep neural networks. In our algorithm, the large value of the relative prediction error corresponds to a small learning rate, and vice versa. The experiments on both synthetic data and real time series show that our method achieves better performance compared to the existing methods based on LSTM.

  14. Generation of synthetic time histories compatible with multiple-damping design response spectra

    International Nuclear Information System (INIS)

    Lilhanand, K.; Tseng, W.S.

    1987-01-01

    Seismic design of nuclear power plants as currently practiced requires time history analyses be performed to generate floor response spectra for seismic qualification of piping, equipment, and components. Since design response spectra are normally prescribed in the form of smooth spectra, the generation of synthetic time histories whose response spectra closely match the ''target'' design spectra of multiple damping values, is often required for the seismic time history analysis purpose. Various methods of generation of synthetic time histories compatible with target response spectra have been proposed in the literature. Since the mathematical problem of determining a time history from a given set of response spectral values is not unique, an exact solution is not possible, and all the proposed methods resort to some forms of approximate solutions. In this paper, a new iteration scheme, is described which effectively removes the difficulties encountered by the existing methods. This new iteration scheme can not only improve the accuracy of spectrum matching for a single-damping target spectrum, but also automate the spectrum matching for multiple-damping target spectra. The applicability and limitations as well as the method adopted to improve the numerical stability of this new iteration scheme are presented. The effectiveness of this new iteration scheme is illustrated by two example applications

  15. automatic generation of root locus plots for linear time invariant

    African Journals Online (AJOL)

    user

    peak time, its real power is its ability to solve problems with higher order systems. ... implementation of a computer program for the automatic generation of root loci using .... the concepts of complex variables, the angle condition can be ...

  16. A Unified Framework for Estimating Minimum Detectable Effects for Comparative Short Interrupted Time Series Designs

    Science.gov (United States)

    Price, Cristofer; Unlu, Fatih

    2014-01-01

    The Comparative Short Interrupted Time Series (C-SITS) design is a frequently employed quasi-experimental method, in which the pre- and post-intervention changes observed in the outcome levels of a treatment group is compared with those of a comparison group where the difference between the former and the latter is attributed to the treatment. The…

  17. Optical soliton communication using ultra-short pulses

    CERN Document Server

    Sadegh Amiri, Iraj

    2015-01-01

    This brief analyzes the characteristics of a microring resonator (MRR) to perform communication using ultra-short soliton pulses. The raising of nonlinear refractive indices, coupling coefficients and radius of the single microring resonator leads to decrease in input power and round trips wherein the bifurcation occurs. As a result, bifurcation or chaos behaviors are seen at lower input power of 44 W, where the nonlinear refractive index is n2=3.2×10−20 m2/W. Using a decimal convertor system, these ultra-short signals can be converted into quantum information. Results show that multi solitons with FWHM and FSR of 10 pm and 600 pm can be generated respectively. The multi optical soliton with FWHM and FSR of 325 pm and 880 nm can be incorporated with a time division multiple access (TDMA) system wherein the transportation of quantum information is performed.

  18. Timing reference generators and chopper controllers for neutron sources

    International Nuclear Information System (INIS)

    Nelson, R.; Merl, R.; Rose, C.

    2001-01-01

    Due to AC-power-grid frequency fluctuations, the designers for accelerator-based spallation-neutron facilities have worked to optimize the competing and contrasting demands of accelerator and neutron chopper performance. Powerful new simulation techniques have enabled the modeling of the timing systems that integrate chopper controllers and chopper hardware. For the first time, we are able to quantitatively access the tradeoffs between these two constraints and design or upgrade a facility to optimize total system performance. Thus, at LANSCE, we now operate multiple chopper systems and the accelerator as simple slaves to a single master-timing-reference generator. For the SNS we recommend a similar system that is somewhat less tightly coupled to the power grid. (author)

  19. Effects of elevated CO[sub 2] on time of flowering in four short-day and four long-day species

    Energy Technology Data Exchange (ETDEWEB)

    Reekie, J.Y.C.; Hicklenton, P.R. (Agriculture Canada Research Station, Kentiville, NS (Canada)); Reekie, E.G. (Acadia Univ., Wolfville, NS (Canada))

    1994-01-01

    A study was undertaken to determine if the effect of elevated CO[sub 2] on flowering phenology is a function of the photoperiodic response of the species involved. Four long-day plants, Achillea millefolium, Callistephus chinensis, Campanula isophylla, and Trachelium caeruleum, and four short-day plants, Dendranthema grandiflora, Kalanchoe blossfeldiana, Pharbitis nil, and Xanthium pensylvanicum, were grown under inductive photoperiods (9 h for short day and 17 h for long day) at either 350 or 1000 [mu]l/l CO[sub 2]. Time of visible flower bud formation, flower opening, and final plant biomass were assessed. Elevated CO[sub 2] advanced flower opening in all four long-day species and delayed flowering in all four short-day species. In the long-day species, the effect of CO[sub 2] was primarily on bud initiation; all four species formed buds earlier at high CO[sub 2]. Bud development, the difference in time between flower opening and bud initiation, was advanced in only one long-day species, Callistephus chinensis. Mixed results were obtained for the short-day species. Elevated CO[sub 2] exerted no effects on bud initiation but delayed bud development in Dendranthema and Kalanchoe. In Xanthium, bud initiation rather than bud development was delayed. Data on bud initiation and development were not obtained for Pharbitis. The negative effect of CO[sub 2] upon phenology in the short-day species was not associated with negative effects on growth. Elevated CO[sub 2] increased plant size in both long-day and short-day species. 26 refs., 4 tabs.

  20. Effect of parameter calculation in direct estimation of the Lyapunov exponent in short time series

    Directory of Open Access Journals (Sweden)

    A. M. López Jiménez

    2002-01-01

    Full Text Available The literature about non-linear dynamics offers a few recommendations, which sometimes are divergent, about the criteria to be used in order to select the optimal calculus parameters in the estimation of Lyapunov exponents by direct methods. These few recommendations are circumscribed to the analysis of chaotic systems. We have found no recommendation for the estimation of λ starting from the time series of classic systems. The reason for this is the interest in distinguishing variability due to a chaotic behavior of determinist dynamic systems of variability caused by white noise or linear stochastic processes, and less in the identification of non-linear terms from the analysis of time series. In this study we have centered in the dependence of the Lyapunov exponent, obtained by means of direct estimation, of the initial distance and the time evolution. We have used generated series of chaotic systems and generated series of classic systems with varying complexity. To generate the series we have used the logistic map.

  1. Strong normalization by type-directed partial evaluation and run-time code generation

    DEFF Research Database (Denmark)

    Balat, Vincent; Danvy, Olivier

    1998-01-01

    We investigate the synergy between type-directed partial evaluation and run-time code generation for the Caml dialect of ML. Type-directed partial evaluation maps simply typed, closed Caml values to a representation of their long βη-normal form. Caml uses a virtual machine and has the capability...... to load byte code at run time. Representing the long βη-normal forms as byte code gives us the ability to strongly normalize higher-order values (i.e., weak head normal forms in ML), to compile the resulting strong normal forms into byte code, and to load this byte code all in one go, at run time. We...... conclude this note with a preview of our current work on scaling up strong normalization by run-time code generation to the Caml module language....

  2. Strong Normalization by Type-Directed Partial Evaluation and Run-Time Code Generation

    DEFF Research Database (Denmark)

    Balat, Vincent; Danvy, Olivier

    1997-01-01

    We investigate the synergy between type-directed partial evaluation and run-time code generation for the Caml dialect of ML. Type-directed partial evaluation maps simply typed, closed Caml values to a representation of their long βη-normal form. Caml uses a virtual machine and has the capability...... to load byte code at run time. Representing the long βη-normal forms as byte code gives us the ability to strongly normalize higher-order values (i.e., weak head normal forms in ML), to compile the resulting strong normal forms into byte code, and to load this byte code all in one go, at run time. We...... conclude this note with a preview of our current work on scaling up strong normalization by run-time code generation to the Caml module language....

  3. Short-range correlations in an extended time-dependent mean-field theory

    International Nuclear Information System (INIS)

    Madler, P.

    1982-01-01

    A generalization is performed of the time-dependent mean-field theory by an explicit inclusion of strong short-range correlations on a level of microscopic reversibility relating them to realistic nucleon-nucleon forces. Invoking a least action principle for correlated trial wave functions, equations of motion for the correlation functions and the single-particle model wave function are derived in lowest order of the FAHT cluster expansion. Higher order effects as well as long-range correlations are consider only to the extent to which they contribute to the mean field via a readjusted phenomenological effective two-body interaction. The corresponding correlated stationary problem is investigated and appropriate initial conditions to describe a heavy ion reaction are proposed. The singleparticle density matrix is evaluated

  4. Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration.

    Science.gov (United States)

    Sato, Hirochika; Kakue, Takashi; Ichihashi, Yasuyuki; Endo, Yutaka; Wakunami, Koki; Oi, Ryutaro; Yamamoto, Kenji; Nakayama, Hirotaka; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2018-01-24

    Although electro-holography can reconstruct three-dimensional (3D) motion pictures, its computational cost is too heavy to allow for real-time reconstruction of 3D motion pictures. This study explores accelerating colour hologram generation using light-ray information on a ray-sampling (RS) plane with a graphics processing unit (GPU) to realise a real-time holographic display system. We refer to an image corresponding to light-ray information as an RS image. Colour holograms were generated from three RS images with resolutions of 2,048 × 2,048; 3,072 × 3,072 and 4,096 × 4,096 pixels. The computational results indicate that the generation of the colour holograms using multiple GPUs (NVIDIA Geforce GTX 1080) was approximately 300-500 times faster than those generated using a central processing unit. In addition, the results demonstrate that 3D motion pictures were successfully reconstructed from RS images of 3,072 × 3,072 pixels at approximately 15 frames per second using an electro-holographic reconstruction system in which colour holograms were generated from RS images in real time.

  5. Polynomial Phase Estimation Based on Adaptive Short-Time Fourier Transform.

    Science.gov (United States)

    Jing, Fulong; Zhang, Chunjie; Si, Weijian; Wang, Yu; Jiao, Shuhong

    2018-02-13

    Polynomial phase signals (PPSs) have numerous applications in many fields including radar, sonar, geophysics, and radio communication systems. Therefore, estimation of PPS coefficients is very important. In this paper, a novel approach for PPS parameters estimation based on adaptive short-time Fourier transform (ASTFT), called the PPS-ASTFT estimator, is proposed. Using the PPS-ASTFT estimator, both one-dimensional and multi-dimensional searches and error propagation problems, which widely exist in PPSs field, are avoided. In the proposed algorithm, the instantaneous frequency (IF) is estimated by S-transform (ST), which can preserve information on signal phase and provide a variable resolution similar to the wavelet transform (WT). The width of the ASTFT analysis window is equal to the local stationary length, which is measured by the instantaneous frequency gradient (IFG). The IFG is calculated by the principal component analysis (PCA), which is robust to the noise. Moreover, to improve estimation accuracy, a refinement strategy is presented to estimate signal parameters. Since the PPS-ASTFT avoids parameter search, the proposed algorithm can be computed in a reasonable amount of time. The estimation performance, computational cost, and implementation of the PPS-ASTFT are also analyzed. The conducted numerical simulations support our theoretical results and demonstrate an excellent statistical performance of the proposed algorithm.

  6. Gamma spectrometric characterization of short cooling time nuclear spent fuels using hemispheric CdZnTe detectors

    CERN Document Server

    Lebrun, A; Szabó, J L; Arenas-Carrasco, J; Arlt, R; Dubreuil, A; Esmailpur-Kazerouni, K

    2000-01-01

    After years of cooling, nuclear spent fuel gamma emissions are mainly due to caesium isotopes which are emitters at 605, 662 and 796-801 keV. Extensive work has been done on such fuels using various CdTe or CdZnTe probes. When fuels have to be measured after short cooling time (during NPP outage) the spectrum is much more complex due to the important contributions of niobium and zirconium in the 700 keV range. For the first time in a nuclear power plant, four spent fuels of the Kozloduy VVER reactor no 4 were measured during outage, 37 days after shutdown of the reactor. In such conditions, good resolution is of particular interest, so a 20 mm sup 3 hemispheric crystal was used with a resolution better than 7 keV at 662 keV. This paper presents the experimental device and analyzes the results which show that CdZnTe commercially available detectors enabled us to perform a semi-quantitative determination of the burn-up after a short cooling time. In addition, it is discussed how a burn-up evolution code (CESAR)...

  7. Effects of an electromagnetic shield and armature teeth on the short-circuit performance of a direct drive superconducting generator for 10 MW wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2015-01-01

    reactance. An electromagnetic (EM) shield between the rotor and the stator as well as iron or non-magnetic composite (NMC) armature teeth affects the sub-transient reactance of a superconducting machine so that they play a role in the short-circuit performance of a superconducting wind generator. This paper...

  8. Thin film beam splitter multiple short pulse generation for enhanced Ni-like Ag x-ray laser emission.

    Science.gov (United States)

    Cojocaru, Gabriel V; Ungureanu, Razvan G; Banici, Romeo A; Ursescu, Daniel; Delmas, Olivier; Pittman, Moana; Guilbaud, Olivier; Kazamias, Sophie; Cassou, Kevin; Demailly, Julien; Neveu, Olivier; Baynard, Elsa; Ros, David

    2014-04-15

    An alternative, novel multiple pulse generation scheme was implemented directly after the optical compressor output of an x-ray pump laser. The new method uses a polarization sensitive thin film beam splitter and a half-wavelength wave plate for tuning the energy ratio in the multiple short pulses. Based on this method, an extensive study was made of the running parameters for a grazing incidence pumped silver x-ray laser (XRL) pumped with a long pulse of 145 mJ in 6 ns at 532 nm and up to 1.45 J in few picoseconds at 810 nm. Fivefold enhancement in the emission of the silver XRL was demonstrated using the new pump method.

  9. Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction

    International Nuclear Information System (INIS)

    Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao; Zhang, Jun; Pan, Jian-Wei; Zhou, Hongyi; Ma, Xiongfeng

    2016-01-01

    We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilized interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.

  10. Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao; Zhang, Jun, E-mail: zhangjun@ustc.edu.cn; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhou, Hongyi; Ma, Xiongfeng [Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084 (China)

    2016-07-15

    We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilized interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.

  11. Reliability of the emergency diesel generator

    Energy Technology Data Exchange (ETDEWEB)

    Verstegen, C.; Kotthoff, K. [Gesellschaft fuer Reaktorsicherheit - GRS mbH, Schwertnergasse 1, D-5000 Koeln 1, Cologne (Germany)

    1986-02-15

    The paper deals with a statistical investigation on the availability of diesel generators, which has been performed recently The investigation is based on the operating experiences of a total of 40-diesel generators in 10 German NPP's. Both unavailability of the diesel generators due to failures and due to maintenance and repair have been considered.The probability of diesel failure during start and short-time operation amounts?o about 8 x 10{sup -3}/demand. The probability of common mode failures is approximately one order of magnitude smaller. The influence of various parameters on the failure probability has been discussed. A statistically significant dependence could not be identified In addition the investigation shows that the unavailability of the diesel generators due to maintenance and repair is about of the same order magnitude as the probability of diesel failures. (authors)

  12. Short-pulse optical parametric chirped-pulse amplification for the generation of high-power few-cycle pulses

    International Nuclear Information System (INIS)

    Major, Zs.; Osterhoff, J.; Hoerlein, R.; Karsch, S.; Fuoloep, J.A.; Krausz, F.; Ludwig-Maximilians Universitaet, Muenchen

    2006-01-01

    Complete test of publication follows. In the quest for a way to generate ultrashort, high-power, few-cycle laser pulses the discovery of optical parametric amplification (OPA) has opened up to the path towards a completely new regime, well beyond that of conventional laser amplification technology. The main advantage of this parametric amplification process is that it allows for an extremely broad amplification bandwidth compared to any known laser amplifier medium. When combined with the chirped-pulse amplification (CPA) principle (i.e. OPCPA), on one hand pulses of just 10 fs duration and 8 mJ pulse energy have been demonstrated. On the other hand, pulse energies of up to 30 J were also achieved on a different OPCPA system; the pulse duration in this case, however, was 100 fs. In order to combine ultrashort pulse durations (i.e. pulses in the few-cycle regime) with high pulse energies (i.e. in the Joule range) we propose tu pump on OPCPA chain with TW-scale short pulses (100 fs - 1 ps instead of > 100 ps of previous OPCPA systems) delivered by a conventional CPA system. This approach inherently improves the conditions for generating high-power ultrashort pulses using OPCPA in the following ways. Firstly, the short pump pulse duration reduces the necessary stretching factor for the seed pulse, thereby increasing stretching and compression fidelity. Secondly, also due to the shortened pump pulse duration, a much higher contrast is achieved. Finally, the significantly increased pump power makes the use of thinner OPCPA crystals possible, which implies an even broader amplification bandwidth, thereby allowing for even shorter pulses. We carried out theoretical investigations to show the feasibility of such a set-up. Alongside these studies we will also present preliminary experimental results of an OPCPA system pumped by the output of our Ti:Sapphire ATLAS laser, currently delivering 350 mJ in 43 fs. An insight into the planned scaling of this technique to petawatt

  13. FDX: a fast discharge homopolar generator

    International Nuclear Information System (INIS)

    Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1977-01-01

    A study was undertaken to determine the fundamental limitations to the discharge times of homopolar generators. As a result of the study, a Fast Discharge Experiment (FDX) was proposed. FDX is a small (365 kJ), counterrotating disk type homopolar generator designed to explore the limits to homopolar generator discharge times. The FDX rotors are forged aluminum alloy with flame sprayed copper slip rings. Solid copper graphite brushes are used with a 95% packing factor on the slip rings. The high magnetic field required for fast discharge (3.6 T average) is provided by discharging the CEM 5.0 MJ homopolar generator into a four-turn, graphite-reinforced, room temperature copper coil. Since the field is pulsed and FDX rotors cannot be self motored, they are brought up to speed with two 37 kW air turbines. The two aluminum rotors are 30 cm in diameter and of a rimmed, modified constant stress configuration. They are designed for a maximum operating speed of 28,000 r/min at which point they each store 182.5 kJ and develop 104 V. The aluminum discharge coax is approximately 38 cm in diameter and is designed to carry the 1.88 MA anticipated from a half speed (14,000 r/min) short circuit discharge which would stop the rotors in 1.0 ms. It is predicted that the machine will ring on its own internal impedance for approximately five cycles in this mode. The discharge coax is shorted by four very fast making switches. Additional impedance can be introduced into the discharge circuit by extending the switch coaxes to allow full speed 1.4 MA discharges in approximately 3.5 ms

  14. Space-time scenarios of wind power generation produced using a Gaussian copula with parametrized precision matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tastu, J.; Pinson, P.; Madsen, Henrik

    2013-09-01

    The emphasis in this work is placed on generating space-time trajectories (also referred to as scenarios) of wind power generation. This calls for prediction of multivariate densities describing wind power generation at a number of distributed locations and for a number of successive lead times. A modelling approach taking advantage of sparsity of precision matrices is introduced for the description of the underlying space-time dependence structure. The proposed parametrization of the dependence structure accounts for such important process characteristics as non-constant conditional precisions and direction-dependent cross-correlations. Accounting for the space-time effects is shown to be crucial for generating high quality scenarios. (Author)

  15. The Shorts of Bury St Edmunds: medicine, Catholicism and politics in the 17th century.

    Science.gov (United States)

    Young, Francis

    2008-11-01

    The Short family of Bury St Edmunds produced at least eight doctors between the first half of the 17th century and the first half of the 18th. Some of these practised locally and others went on to achieve fame in London or abroad. They included Richard Short (d. 1668), a medical polemicist, and Thomas Short (1635-85) who treated Charles II in his last illness and became the subject of poetry and other literature. The Shorts generated controversy through their adherence to the Roman Catholic faith at a time of persecution and suspicion. Richard Short used medical polemic as a vehicle for advancing his religious views, and his son and nephew became involved in James II's political programme to introduce religious toleration in 1688. After the Revolution the Shorts withdrew from political life but continued in their medical practice and their recusancy. This paper is the first to unravel the family relationships of the Shorts, which previously have eluded most historians.

  16. A method of short range system analysis for nuclear utilities

    International Nuclear Information System (INIS)

    Eng, R.; Mason, E.A.; Benedict, M.

    1976-01-01

    An optimization procedure has been formulated and tested that is capable of solving for the optimal generation schedule of several nuclear power reactors in an electric power utility system, under short-range, resource-limited, conditions. The optimization procedure utilizes a new concept called the Opportunity Cost of Nuclear Power (OCNP) to optimally assign the resource-limited nuclear energy to the different weeks and hours in the short-range planning horizon. OCNP is defined as the cost of displaced energy when optimally distributed nuclear energy is marginally increased. Under resource-limited conditions, the short-range 'value' of nuclear power to a utility system is not its actual generation cost, but the cost of the next best alternative supply of energy, the OCNP. OCNP is a function of a week's system reserve capacity, the system's economic loading order, the customer demand function, and the nature of the available utility system generating units. The optimized OCNP value of the short-range planning period represents the utility's short-range energy replacement cost incurred when selling nuclear energy to a neighbouring utility. (author)

  17. Vision-based online vibration estimation of the in-vessel inspection flexible robot with short-time Fourier transformation

    International Nuclear Information System (INIS)

    Wang, Hesheng; Chen, Weidong; Xu, Lifei; He, Tao

    2015-01-01

    Highlights: • Vision-based online vibration estimation method for a flexible arm is proposed. • The vibration signal is obtained by image processing in unknown environments. • Vibration parameters are estimated by short-time Fourier transformation. - Abstract: The vibration should be suppressed if it happens during the motion of a flexible robot or under the influence of external disturbance caused by its structural features and material properties, because the vibration may affect the positioning accuracy and image quality. In Tokamak environment, we need to get the real-time vibration information on vibration suppression of robotic arm, however, some sensors are not allowed in the extreme Tokamak environment. This paper proposed a vision-based method for online vibration estimation of a flexible manipulator, which is achieved by utilizing the environment image information from the end-effector camera to estimate its vibration. Short-time Fourier Transformation with adaptive window length method is used to estimate vibration parameters of non-stationary vibration signals. Experiments with one-link flexible manipulator equipped with camera are carried out to validate the feasibility of this method in this paper.

  18. Vision-based online vibration estimation of the in-vessel inspection flexible robot with short-time Fourier transformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Xu, Lifei; He, Tao [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-10-15

    Highlights: • Vision-based online vibration estimation method for a flexible arm is proposed. • The vibration signal is obtained by image processing in unknown environments. • Vibration parameters are estimated by short-time Fourier transformation. - Abstract: The vibration should be suppressed if it happens during the motion of a flexible robot or under the influence of external disturbance caused by its structural features and material properties, because the vibration may affect the positioning accuracy and image quality. In Tokamak environment, we need to get the real-time vibration information on vibration suppression of robotic arm, however, some sensors are not allowed in the extreme Tokamak environment. This paper proposed a vision-based method for online vibration estimation of a flexible manipulator, which is achieved by utilizing the environment image information from the end-effector camera to estimate its vibration. Short-time Fourier Transformation with adaptive window length method is used to estimate vibration parameters of non-stationary vibration signals. Experiments with one-link flexible manipulator equipped with camera are carried out to validate the feasibility of this method in this paper.

  19. Three-factor models versus time series models: quantifying time-dependencies of interactions between stimuli in cell biology and psychobiology for short longitudinal data.

    Science.gov (United States)

    Frank, Till D; Kiyatkin, Anatoly; Cheong, Alex; Kholodenko, Boris N

    2017-06-01

    Signal integration determines cell fate on the cellular level, affects cognitive processes and affective responses on the behavioural level, and is likely to be involved in psychoneurobiological processes underlying mood disorders. Interactions between stimuli may subjected to time effects. Time-dependencies of interactions between stimuli typically lead to complex cell responses and complex responses on the behavioural level. We show that both three-factor models and time series models can be used to uncover such time-dependencies. However, we argue that for short longitudinal data the three factor modelling approach is more suitable. In order to illustrate both approaches, we re-analysed previously published short longitudinal data sets. We found that in human embryonic kidney 293 cells cells the interaction effect in the regulation of extracellular signal-regulated kinase (ERK) 1 signalling activation by insulin and epidermal growth factor is subjected to a time effect and dramatically decays at peak values of ERK activation. In contrast, we found that the interaction effect induced by hypoxia and tumour necrosis factor-alpha for the transcriptional activity of the human cyclo-oxygenase-2 promoter in HEK293 cells is time invariant at least in the first 12-h time window after stimulation. Furthermore, we applied the three-factor model to previously reported animal studies. In these studies, memory storage was found to be subjected to an interaction effect of the beta-adrenoceptor agonist clenbuterol and certain antagonists acting on the alpha-1-adrenoceptor / glucocorticoid-receptor system. Our model-based analysis suggests that only if the antagonist drug is administer in a critical time window, then the interaction effect is relevant. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  20. Power in the loop real time simulation platform for renewable energy generation

    Science.gov (United States)

    Li, Yang; Shi, Wenhui; Zhang, Xing; He, Guoqing

    2018-02-01

    Nowadays, a large scale of renewable energy sources has been connecting to power system and the real time simulation platform is widely used to carry out research on integration control algorithm, power system stability etc. Compared to traditional pure digital simulation and hardware in the loop simulation, power in the loop simulation has higher accuracy and degree of reliability. In this paper, a power in the loop analog digital hybrid simulation platform has been built and it can be used not only for the single generation unit connecting to grid, but also for multiple new energy generation units connecting to grid. A wind generator inertia control experiment was carried out on the platform. The structure of the inertia control platform was researched and the results verify that the platform is up to need for renewable power in the loop real time simulation.

  1. Mining biological information from 3D short time-series gene expression data: the OPTricluster algorithm.

    Science.gov (United States)

    Tchagang, Alain B; Phan, Sieu; Famili, Fazel; Shearer, Heather; Fobert, Pierre; Huang, Yi; Zou, Jitao; Huang, Daiqing; Cutler, Adrian; Liu, Ziying; Pan, Youlian

    2012-04-04

    Nowadays, it is possible to collect expression levels of a set of genes from a set of biological samples during a series of time points. Such data have three dimensions: gene-sample-time (GST). Thus they are called 3D microarray gene expression data. To take advantage of the 3D data collected, and to fully understand the biological knowledge hidden in the GST data, novel subspace clustering algorithms have to be developed to effectively address the biological problem in the corresponding space. We developed a subspace clustering algorithm called Order Preserving Triclustering (OPTricluster), for 3D short time-series data mining. OPTricluster is able to identify 3D clusters with coherent evolution from a given 3D dataset using a combinatorial approach on the sample dimension, and the order preserving (OP) concept on the time dimension. The fusion of the two methodologies allows one to study similarities and differences between samples in terms of their temporal expression profile. OPTricluster has been successfully applied to four case studies: immune response in mice infected by malaria (Plasmodium chabaudi), systemic acquired resistance in Arabidopsis thaliana, similarities and differences between inner and outer cotyledon in Brassica napus during seed development, and to Brassica napus whole seed development. These studies showed that OPTricluster is robust to noise and is able to detect the similarities and differences between biological samples. Our analysis showed that OPTricluster generally outperforms other well known clustering algorithms such as the TRICLUSTER, gTRICLUSTER and K-means; it is robust to noise and can effectively mine the biological knowledge hidden in the 3D short time-series gene expression data.

  2. 7th conference on ultra-wideband, short-pulse electromagnetics

    CERN Document Server

    Schenk, Uwe; Nitsch, Daniel; Sabath, Frank; Ultra-Wideband, Short-Pulse Electromagnetics 7; UWBSP7

    2007-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-Wideband Short-Pulse Electromagnetics 7 presents selected papers of deep technical content and high scientific quality from the UWB-SP7 Conference, including wide-ranging contributions on electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-res...

  3. Space-time scenarios of wind power generation produced using a Gaussian copula with parametrized precision matrix

    DEFF Research Database (Denmark)

    Tastu, Julija; Pinson, Pierre; Madsen, Henrik

    The emphasis in this work is placed on generating space-time trajectories (also referred to as scenarios) of wind power generation. This calls for prediction of multivariate densities describing wind power generation at a number of distributed locations and for a number of successive lead times. ...

  4. The short-term effects of air pollutants on respiratory disease mortality in Wuhan, China: comparison of time-series and case-crossover analyses

    OpenAIRE

    Meng Ren; Na Li; Zhan Wang; Yisi Liu; Xi Chen; Yuanyuan Chu; Xiangyu Li; Zhongmin Zhu; Liqiao Tian; Hao Xiang

    2017-01-01

    Few studies have compared different methods when exploring the short-term effects of air pollutants on respiratory disease mortality in Wuhan, China. This study assesses the association between air pollutants and respiratory disease mortality with both time-series and time-stratified?case-crossover designs. The generalized additive model (GAM) and the conditional logistic regression model were used to assess the short-term effects of air pollutants on respiratory disease mortality. Stratified...

  5. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China.

    Science.gov (United States)

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-06-01

    Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 - 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 - 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to develop integrated policies and measures for waste management over the long term. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Generation of floor spectra compatible time histories for equipment seismic qualification in nuclear power plants

    International Nuclear Information System (INIS)

    Shyu, Y.-S.; Luh, Gary G.; Blum, Arie

    2004-01-01

    This paper proposes a procedure for generating floor response spectra compatible time histories used for equipment seismic qualification in nuclear power plants. From the 84th percentile power spectrum density function of an earthquake ensemble of four randomly generated time history motions, a statistically equivalent time history can be obtained by converting the power spectrum density function from the frequency domain into the time domain. With minor modification, if needed, the converted time history will satisfy both the spectral and the power spectrum density enveloping criteria, as required by the USNRC per Revision 2 of the Standard Review Plan, Section 3.7.1. Step-by-step generating procedures and two numerical examples are presented to illustrate the applications of the methodology. (author)

  7. An approach for generating synthetic fine temporal resolution solar radiation time series from hourly gridded datasets

    Directory of Open Access Journals (Sweden)

    Matthew Perry

    2017-06-01

    Full Text Available A tool has been developed to statistically increase the temporal resolution of solar irradiance time series. Fine temporal resolution time series are an important input into the planning process for solar power plants, and lead to increased understanding of the likely short-term variability of solar energy. The approach makes use of the spatial variability of hourly gridded datasets around a location of interest to make inferences about the temporal variability within the hour. The unique characteristics of solar irradiance data are modelled by classifying each hour into a typical weather situation. Low variability situations are modelled using an autoregressive process which is applied to ramps of clear-sky index. High variability situations are modelled as a transition between states of clear sky conditions and different levels of cloud opacity. The methods have been calibrated to Australian conditions using 1 min data from four ground stations for a 10 year period. These stations, together with an independent dataset, have also been used to verify the quality of the results using a number of relevant metrics. The results show that the method generates realistic fine resolution synthetic time series. The synthetic time series correlate well with observed data on monthly and annual timescales as they are constrained to the nearest grid-point value on each hour. The probability distributions of the synthetic and observed global irradiance data are similar, with Kolmogorov-Smirnov test statistic less than 0.04 at each station. The tool could be useful for the estimation of solar power output for integration studies.

  8. Investigation of short and long term trends in chemical composition of Eastern Mediterranean aerosols

    International Nuclear Information System (INIS)

    2011-01-01

    A collaborative study was started with the Middle East Technical University, Environmental Engineering Department in 2004 in order to determine the transport of air pollutants and their deposition rates to Eastern Mediterranean with the ultimate aim of filling the gaps in knowledge on the current status of Eastern Mediterranean air quality profile. Collection sufficient amount of representative samples, analyzes of the collected samples with high accuracy and precision and interpretation of generated data are crucial efforts. To attain this goal, EDXRF spectrometer, which is a rapid, reliable and sensitive analytical instrument, located at our center was employed in analysis of the collected samples after calibration with 'NIST 2783 Air Particles on Filter'. The effectiveness of the control strategies taken on the emissions was discussed by investigating the short and long term variations in the chemical composition of samples collected between 1993 and 2001 at Antalya station. In this context, generated data set was studied for short (daily) term, seasonal and long term variations. It has been found that short term variations in the concentrations of pollutants in short time scale are highly episodic. The concentration of measured pollutants was changed 10-20 folds in the subsequent two days. The most important factors affecting the chemical composition of pollutants in short time interval are meteorological factors such as precipitation and variations observed at the emission strength of pollutants. The declined in Pb concentrations at the Antalya station was attributed to observed decrease in Pb emissions in Europe after the introduction of leaded gasoline. Highest summer averages were reported for anthropogenic pollutants in summer months. Aegean Sea (Izmir-Aliaga) studies of the project will be completed this year

  9. Short-time dynamics of random-bond Potts ferromagnet with continuous self-dual quenched disorders

    OpenAIRE

    Pan, Z. Q.; Ying, H. P.; Gu, D. W.

    2001-01-01

    We present Monte Carlo simulation results of random-bond Potts ferromagnet with the Olson-Young self-dual distribution of quenched disorders in two-dimensions. By exploring the short-time scaling dynamics, we find universal power-law critical behavior of the magnetization and Binder cumulant at the critical point, and thus obtain estimates of the dynamic exponent $z$ and magnetic exponent $\\eta$, as well as the exponent $\\theta$. Our special attention is paid to the dynamic process for the $q...

  10. New-generation curing units and short irradiation time: the degree of conversion of microhybrid composite resin.

    Science.gov (United States)

    Scotti, Nicolla; Venturello, Alberto; Migliaretti, Giuseppe; Pera, Francesco; Pasqualini, Damiano; Geobaldo, Francesco; Berutti, Elio

    2011-09-01

    This in vitro study investigated the depth of cure of a microhybrid composite resin when cured with reduced times of exposure to three commercially available curing lights. Different sample thicknesses (1, 2, and 3 mm) were light cured in high intensity polymerization mode (2,400 mW/cm² for 5, 10, 15, and 20 seconds; 1,100 mW/cm² for 10, 20, 30, and 40 seconds; and 1,100 mW/cm² for 10, 20, 30, and 40 seconds, respectively). The degree of conversion (%) at the bottom of each sample was measured by Attenuated Total Reflection Fourier Transform Infrared (ATR F-TIR) analysis after each polymerization step. Data were analyzed by ANOVA for repeated measures, showing the degree of conversion was not influenced by the curing light employed (P = .622) but was significantly influenced by the thickness of composite resin (P conversion vs the shorter irradiation time permitted (T1) were not significant among different lamps but were significant among different thicknesses. The depth of cure of microhybrid composite resin appears not to be influenced by the curing light employed. Increased irradiation time significantly increases the degree of conversion. Thickness strongly influences depth of cure.

  11. Short-lived radiopharmaceutical development at E.R. Squibb and Sons, Inc

    International Nuclear Information System (INIS)

    Loberg, M.D.

    1985-01-01

    This paper describes the present status and future plans of E.R. Squibb and Sons, Inc. as they relate to the development of short-lived radiopharmaceuticals. The advantages of short-lived radiopharmaceuticals are summarized as are the problems inherent in their manufacture, quality control, and distribution. The nuclear generator is advocated as the best means of distributing short-lived radiopharmaceuticals. The E.R. Squibb and Sons work with the 82 Sr → 82 Rb generator is summarized

  12. Ancestral diet leads to dynamic transgenerational plasticity for five generations in Drosophila melanogaster

    OpenAIRE

    Mikheyev, Alexander; Emborski, Carmen

    2018-01-01

    Ancestral exposures can influence phenotypic expression in subsequent generations, which influence diverse biological processes ranging from phenotypic plasticity to obesity. Currently, most transgenerational studies work under the assumption of transgenerational response stability and reproducibility through time and across exposure differences, relying on short-term (i.e. 2-3 generations) single-exposure experiments. Yet, little evidence exists in the literature to validate this assumption,...

  13. Real Time Engineering Analysis Based on a Generative Component Implementation

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Klitgaard, Jens

    2007-01-01

    The present paper outlines the idea of a conceptual design tool with real time engineering analysis which can be used in the early conceptual design phase. The tool is based on a parametric approach using Generative Components with embedded structural analysis. Each of these components uses the g...

  14. Short- and long-term effects of real-time medication monitoring with short message service (SMS) reminders for missed doses on the refill adherence of people with Type 2 diabetes: evidence from a randomised controlled trial.

    NARCIS (Netherlands)

    Vervloet, M.; Dijk, L. van; Bakker, D.H. de; Souverein, P.C.; Santen-Reestman, J.; Vlijmen, B. van; Aarle, M.C.W. van; Hoek, L.S. van der; Bouvy, M.L.

    2014-01-01

    Aims: To investigate short- and long-term effects of real-time monitoring medication use combined with short message service (SMS) reminders for missed doses on refill adherence to oral anti-diabetic medication. Methods: A randomized controlled trial with two intervention groups and one control

  15. Spectrogram analysis of selected tremor signals using short-time Fourier transform and continuous wavelet transform

    Directory of Open Access Journals (Sweden)

    D. Seidl

    1999-06-01

    Full Text Available Among a variety of spectrogram methods Short-Time Fourier Transform (STFT and Continuous Wavelet Transform (CWT were selected to analyse transients in non-stationary tremor signals. Depending on the properties of the tremor signal a more suitable representation of the signal is gained by CWT. Three selected broadband tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli.

  16. Short-range order in ab initio computer generated amorphous and liquid Cu–Zr alloys: A new approach

    International Nuclear Information System (INIS)

    Galván-Colín, Jonathan; Valladares, Ariel A.; Valladares, Renela M.; Valladares, Alexander

    2015-01-01

    Using ab initio molecular dynamics and a new approach based on the undermelt-quench method we generated amorphous and liquid samples of Cu x Zr 100−x (x=64, 50, 36) alloys. We characterized the topology of our resulting structures by means of the pair distribution function and the bond-angle distribution; a coordination number distribution was also calculated. Our results for both amorphous and liquids agree well with experiment. Dependence of short-range order with the concentration is reported. We found that icosahedron-like geometry plays a major role whenever the alloys are Cu-rich or Zr-rich disregarding if the samples are amorphous or liquid. The validation of these results, in turn would let us calculate other properties so far disregarded in the literature

  17. Application of Hilbert-Huang Transform in Generating Spectrum-Compatible Earthquake Time Histories

    OpenAIRE

    Ni, Shun-Hao; Xie, Wei-Chau; Pandey, Mahesh

    2011-01-01

    Spectrum-compatible earthquake time histories have been widely used for seismic analysis and design. In this paper, a data processing method, Hilbert-Huang transform, is applied to generate earthquake time histories compatible with the target seismic design spectra based on multiple actual earthquake records. Each actual earthquake record is decomposed into several components of time-dependent amplitude and frequency by Hilbert-Huang transform. The spectrum-compatible earthquake time history ...

  18. Wiggler magnetic field assisted third harmonic generation in expanding clusters

    Science.gov (United States)

    Vij, Shivani

    2018-04-01

    A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.

  19. Improved Multiscale Entropy Technique with Nearest-Neighbor Moving-Average Kernel for Nonlinear and Nonstationary Short-Time Biomedical Signal Analysis

    Directory of Open Access Journals (Sweden)

    S. P. Arunachalam

    2018-01-01

    Full Text Available Analysis of biomedical signals can yield invaluable information for prognosis, diagnosis, therapy evaluation, risk assessment, and disease prevention which is often recorded as short time series data that challenges existing complexity classification algorithms such as Shannon entropy (SE and other techniques. The purpose of this study was to improve previously developed multiscale entropy (MSE technique by incorporating nearest-neighbor moving-average kernel, which can be used for analysis of nonlinear and non-stationary short time series physiological data. The approach was tested for robustness with respect to noise analysis using simulated sinusoidal and ECG waveforms. Feasibility of MSE to discriminate between normal sinus rhythm (NSR and atrial fibrillation (AF was tested on a single-lead ECG. In addition, the MSE algorithm was applied to identify pivot points of rotors that were induced in ex vivo isolated rabbit hearts. The improved MSE technique robustly estimated the complexity of the signal compared to that of SE with various noises, discriminated NSR and AF on single-lead ECG, and precisely identified the pivot points of ex vivo rotors by providing better contrast between the rotor core and the peripheral region. The improved MSE technique can provide efficient complexity analysis of variety of nonlinear and nonstationary short-time biomedical signals.

  20. Geometric patterns of time-delay plots from different cardiac rhythms and arrhythmias using short-term EKG signals.

    Science.gov (United States)

    Borracci, Raúl A; Montoya Pulvet, José D; Ingino, Carlos A; Fitz Maurice, Mario; Hirschon Prado, Alfredo; Dominé, Enrique

    2017-12-27

    To date, no systematic work has been intended to describe spatio-temporal patterns of cardiac rhythms using only short series of RR intervals, to facilitate visual or computerized-aided identification of EKG motifs for use in clinical practice. The aim of this study was to detect and classify eye-catching geometric patterns of Poincaré time-delay plots from different types of cardiac rhythms and arrhythmias using short-term EKG signals. Approximately 150-300 representative, consecutive beats were retrieved from 24-h Holter registers of 100 patients with different heart rhythms. Two-dimensional Poincaré charts were created, and the resulting geometric patterns were transformed into representative familiar eye-catching drawings to interpret different arrhythmias. Poincaré plot representation of RR interval data revealed a wide variety of visual patterns: (i) comet-shaped for sinus rhythm; (ii) torpedo-shaped for sinus bradycardia; (iii) cigarette-shaped for sinus tachycardia; (iv) butterfly-shaped for sinus tachycardia and isolated atrial premature complexes; (v) arrow-shaped for isolated premature complexes and inappropriate sinus tachycardia; (vi) inverted fan-shaped for sinus rhythm with frequent atrial premature complexes; (vii) tornado-shaped for atrial flutter and atrial tachycardia; and (viii) fan-shaped for atrial fibrillation. Modified Poincaré plots with smoothed lines connecting successive points could accurately classify different types of arrhythmias based on short RR interval sequence variability. Characteristic emergent patterns can be visually identified and eventually could be distinguished by an automatic classification system able to discern between arrhythmias. This work provides an alternative method to interpret time-delay plots obtained from short-term EKG signal recordings. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  1. Optimization of irradiation decay and counting times in nuclear activation analysis using short-lived nuclides

    International Nuclear Information System (INIS)

    Bjoernstad, T.

    This work describes a method and outlines a procedure for optim- ization of an activation analysis with respect to the experimental times, irradiation time, t(subi), decay time and counting time. The method is based on the 'minimum relative standard deviation criterion', and specially designed for the use on short-lived nuclides. A computer program, COMB1, is written in the BASIC language in order to make the calculations easier and faster. It is intended to be understandable, and easily applicable on a computer of modest size. Time and cost are important factors, especially for routine analysis on a service basis. In such cases one can often allow a controlled reduction in the analysis quality (through a higher relative standard deviation). The procedure outlined can therefore help find acceptable conditions by calculation of the 'best practical' (or reasonable) experimental time values, and the minimum number of accumulation cycles necessary to fulfil the requirements given. (Auth.)

  2. Real time testing of intelligent relays for synchronous distributed generation islanding detection

    Science.gov (United States)

    Zhuang, Davy

    As electric power systems continue to grow to meet ever-increasing energy demand, their security, reliability, and sustainability requirements also become more stringent. The deployment of distributed energy resources (DER), including generation and storage, in conventional passive distribution feeders, gives rise to integration problems involving protection and unintentional islanding. Distributed generators need to be islanded for safety reasons when disconnected or isolated from the main feeder as distributed generator islanding may create hazards to utility and third-party personnel, and possibly damage the distribution system infrastructure, including the distributed generators. This thesis compares several key performance indicators of a newly developed intelligent islanding detection relay, against islanding detection devices currently used by the industry. The intelligent relay employs multivariable analysis and data mining methods to arrive at decision trees that contain both the protection handles and the settings. A test methodology is developed to assess the performance of these intelligent relays on a real time simulation environment using a generic model based on a real-life distribution feeder. The methodology demonstrates the applicability and potential advantages of the intelligent relay, by running a large number of tests, reflecting a multitude of system operating conditions. The testing indicates that the intelligent relay often outperforms frequency, voltage and rate of change of frequency relays currently used for islanding detection, while respecting the islanding detection time constraints imposed by standing distributed generator interconnection guidelines.

  3. Timing matters: The processing of pitch relations

    Directory of Open Access Journals (Sweden)

    Annekathrin eWeise

    2014-06-01

    Full Text Available The human central auditory system can automatically extract abstract regularities from a variant auditory input. To this end, temporarily separated events need to be related. This study tested whether the timing between events, falling either within or outside the temporal window of integration (~350 ms, impacts the extraction of abstract feature relations. We utilized tone pairs for which tones within but not across pairs revealed a constant pitch relation (e.g. pitch of 2nd tone of a pair higher than pitch of 1st tone, while absolute pitch values varied across pairs. We measured the Mismatch Negativity (MMN; the brain’s error signal to auditory regularity violations to 2nd tones that rarely violated the pitch relation (e.g. pitch of 2nd tone lower. A Short condition in which tone duration (90 ms and stimulus onset asynchrony between the tones of a pair were short (110 ms was compared to two conditions, where this onset asynchrony was long (510 ms. In the Long Gap condition the tone durations were identical to Short (90 ms, but the silent interval was prolonged by 400 ms. In Long Tone the duration of the first tone was prolonged by 400 ms, while the silent interval was comparable to Short (20 ms. Results show a frontocentral MMN of comparable amplitude in all conditions. Thus, abstract pitch relations can be extracted even when the within-pair timing exceeds the integration period. Source analyses indicate MMN generators in the supratemporal cortex. Interestingly, they were located more anterior in Long Gap than in Short and Long Tone. Moreover, frontal generator activity was found for Long Gap and Long Tone. Thus, the way in which the system automatically registers irregular abstract pitch relations depends on the timing of the events to be linked. Pending that the current MMN data mirror established abstract rule representations coding the regular pitch relation, neural processes building these templates vary with timing.

  4. Timing matters: the processing of pitch relations

    Science.gov (United States)

    Weise, Annekathrin; Grimm, Sabine; Trujillo-Barreto, Nelson J.; Schröger, Erich

    2014-01-01

    The human central auditory system can automatically extract abstract regularities from a variant auditory input. To this end, temporarily separated events need to be related. This study tested whether the timing between events, falling either within or outside the temporal window of integration (~350 ms), impacts the extraction of abstract feature relations. We utilized tone pairs for which tones within but not across pairs revealed a constant pitch relation (e.g., pitch of second tone of a pair higher than pitch of first tone, while absolute pitch values varied across pairs). We measured the mismatch negativity (MMN; the brain’s error signal to auditory regularity violations) to second tones that rarely violated the pitch relation (e.g., pitch of second tone lower). A Short condition in which tone duration (90 ms) and stimulus onset asynchrony between the tones of a pair were short (110 ms) was compared to two conditions, where this onset asynchrony was long (510 ms). In the Long Gap condition, the tone durations were identical to Short (90 ms), but the silent interval was prolonged by 400 ms. In Long Tone, the duration of the first tone was prolonged by 400 ms, while the silent interval was comparable to Short (20 ms). Results show a frontocentral MMN of comparable amplitude in all conditions. Thus, abstract pitch relations can be extracted even when the within-pair timing exceeds the integration period. Source analyses indicate MMN generators in the supratemporal cortex. Interestingly, they were located more anterior in Long Gap than in Short and Long Tone. Moreover, frontal generator activity was found for Long Gap and Long Tone. Thus, the way in which the system automatically registers irregular abstract pitch relations depends on the timing of the events to be linked. Pending that the current MMN data mirror established abstract rule representations coding the regular pitch relation, neural processes building these templates vary with timing. PMID:24966823

  5. Defect production in simulated cascades: Cascade quenching and short-term annealing

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1983-01-01

    Defect production in displacement cascades in copper has been modeled using the MARLOWE code to generate cascades and the stochastic annealing code ALSOME to simulate cascade quenching and short-term annealing of isolated cascades. Quenching is accomplished by using exaggerated values for defect mobilities and for critical reaction distances in ALSOME for a very short time. The quenched cascades are then short-term annealed with normal parameter values. The quenching parameter values were empirically determined by comparison with results of resistivity measurements. Throughout the collisional, quenching and short-term annealing phases of cascade development, the high energy cascades continue to behave as a collection of independent lower energy lobes. For recoils above about 30 keV the total number of defects and the numbers of free defects scale with the damage energy. As the energy decreases from 30 keV, defect production varies with the changing nature of the cascade configuration, resulting in more defects per unit damage energy. The simulated annealing of a low fluence of interacting cascades revealed an interstitial shielding effect on depleted zones during Stage I recovery. (orig.)

  6. Implementation Of L-System In Procedural City Generation Using Java

    Directory of Open Access Journals (Sweden)

    Surya Sujarwo

    2010-12-01

    Full Text Available Article discusses about the design and implementation of procedural content generation using java, especially the generation of virtual city. It is applied by using L-System to generate the elements of the city and also using some images as the base models. This method is proven to be more effective because it can produce almost unlimited variations of city in short amount of time without any needs to modify the application. The result of this application is a road map which can be used in many areas such as virtual reality, games, or other related purposes.

  7. Generation of a microelectron beam by an intense short pulse laser in the TEM(1, 0) + TEM(0, 1) mode in vacuum

    International Nuclear Information System (INIS)

    Miyazaki, Shuji; Kawata, Shigeo; Kong, Qing; Miyauchi, Koichi; Sakai, Kei; Hasumi, Shotaro; Sonobe, Ryo; Kikuchi, Takashi

    2005-01-01

    The generation of a high energy microelectron bunch in vacuum by an intense short pulse laser in the TEM(1, 0) + TEM(0, 1) mode is investigated in this paper numerically and analytically. A focused short pulse laser in the TEM(1, 0) + TEM(0, 1) mode has a confinement effect on electrons in the transverse direction due to the transverse ponderomotive force, and at the same time the electrons are accelerated and compressed longitudinally by a longitudinal electric field. In our three-dimensional particle simulations, the maximum kinetic energy of electrons reaches 455 MeV, the maximum density is 3.87 x 10 10 cm -3 , and the normalized transverse and longitudinal rms emittances of accelerated electrons are of the order of 10 -6 m rad at the following parameter values: a 0 = eE 0 /(m e ω c) = 10 (where a 0 is the dimensionless parameter of the laser amplitude, e and m e are the electron charge and rest mass, respectively, E 0 is the laser amplitude, ω the angular frequency of the laser and c the speed of light in vacuum), a laser wavelength λ = 0.8 μm, laser spot size 20λ, laser pulse length 5λ and initial electron velocity 0.99c. Moreover, the transverse and longitudinal sizes of the compressed electron bunch are about 600λ and 10λ, respectively. In this paper, we also present a scaling law of the maximum electron energy. The estimated results of the maximum electron energy coincide well with the simulation results

  8. Effect of low-temperature long-time and high-temperature short-time blanching and frying treatments on the French fry quality of six Irish potato cultivars

    OpenAIRE

    Ngobese, Nomali Ziphorah; Workneh, Tilahun Seyoum; Siwela, Muthulisi

    2017-01-01

    Processing conditions are an important determinant of French fry quality. However, the effect of low-temperature long-time (LTLT) and high-temperature short-time (HTST) blanching and frying treatments has not been investigated in many cultivars. The current study investigates the effect of the sequential application of these treatments on French fries processed from six Irish potato cultivars (Fianna, Innovator, Mondial, Navigator, Panamera and Savanna). Blanching was effected at 75 °C for 10...

  9. Mobile Charge Generation Dynamics in P3HT:PCBM Observed by Time-Resolved Terahertz Spectroscopy

    DEFF Research Database (Denmark)

    Cooke, D. G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2012-01-01

    Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale.......Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale....

  10. Mobile charge generation dynamics in P3HT: PCBM observed by time-resolved terahertz spectroscopy

    DEFF Research Database (Denmark)

    Cooke, D. G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2012-01-01

    Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale.......Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale....

  11. Mechanism for the generation of 109 G magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target

    International Nuclear Information System (INIS)

    Sudan, R.N.

    1993-01-01

    The physical mechanism for the generation of very high ''dc'' magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target originates in the spatial gradients and nonstationary character of the ponderomotive force. A set of model equations to determine the evolution of the ''dc'' fields is derived and it is shown that the ''dc'' magnetic field is of the same order of magnitude as the high frequency laser magnetic field

  12. Large short-baseline νμ disappearance

    International Nuclear Information System (INIS)

    Giunti, Carlo; Laveder, Marco

    2011-01-01

    We analyze the LSND, KARMEN, and MiniBooNE data on short-baseline ν μ →ν e oscillations and the data on short-baseline ν e disappearance obtained in the Bugey-3 and CHOOZ reactor experiments in the framework of 3+1 antineutrino mixing, taking into account the MINOS observation of long-baseline ν μ disappearance and the KamLAND observation of very-long-baseline ν e disappearance. We show that the fit of the data implies that the short-baseline disappearance of ν μ is relatively large. We obtain a prediction of an effective amplitude sin 2 2θ μμ > or approx. 0.1 for short-baseline ν μ disappearance generated by 0.2 2 2 , which could be measured in future experiments.

  13. First Isochronous Time-of-Flight Mass Measurements of Short-Lived Projectile Fragments in the ESR

    International Nuclear Information System (INIS)

    Stadlmann, J.; Geissel, H.; Hausmann, M.; Nolden, F.; Radon, T.; Schatz, H.; Scheidenberger, C.; Attallah, F.; Beckert, K.; Bosch, F.; Falch, M.; Franczak, B.; Franzke, B.; Kerscher, Th.; Klepper, O.; Kluge, H.J.; Kozhuharov, C.; Loebner, K.E.G.; Muenzenberg, G.; Novikov, Yu.N.; Steck, M.; Sun, Z.; Suemmerer, K.; Weick, H.; Wollnik, H.

    2000-01-01

    A new method for precise mass measurements of short-lived hot nuclei is presented. These nuclei were produced via projectile fragmentation, separated with the FRS and injected into the storage ring ESR being operated in the isochronous mode. The revolution time of the ions is measured with a time-of-flight detector sensitive to single particles. This new method allows access to exotic nuclei with half-lives in the microsecond region. First results from this novel method obtained with measurements on neutron-deficient fragments of a chromium primary beam with half-lives down to 50 ms are reported. A precision of deltam/m ≤ 5 · 10 -6 has been achieved

  14. Metabolic changes in the normal ageing brain: Consistent findings from short and long echo time proton spectroscopy

    International Nuclear Information System (INIS)

    Gruber, S.; Pinker, K.; Riederer, F.; Chmelik, M.; Stadlbauer, A.; Bittsansky, M.; Mlynarik, V.; Frey, R.; Serles, W.; Bodamer, O.; Moser, E.

    2008-01-01

    Objectives: Sixty three healthy subjects were measured to assess dependence of brain metabolites on age using short- and long echo time spectroscopy in different brain regions. Material and methods: Younger and elderly humans were measured with long echo time (TE = 135 ms) 3D-MR-spectroscopic imaging (MRSI) (10 subjects) and with ultra-short echo (TE = 11 ms) time 2D-MRSI (7 subjects). In addition, results from single voxel 1 H-spectroscopy (TE = 20 ms) of two cohorts of 46 healthy subjects were retrospectively correlated with age. Results: 3D-MR SI revealed reduced NAA/Cr in the older group in the frontal lobe (-22%; p < 0.01), parietal lobe (-28%; p < 0.01) and semiovale (-9%; p < 0.01) compared to the younger group. Cho/Cr was elevated in the semiovale (+35%; p < 0.01) and in the n. lentiformis (+42%; p < 0.01) in the older group. NAA/Cho was reduced in all regions measured, except the thalamus, in the older group compared to the younger group (from -21 to -49%; p < 0.01). 2D-MRSI revealed decreased total NAA (-3.1% per decade; p < 0.01) and NAA/Cr (-3.8% per decade; p < 0.01), increased total Cho (+3.6% per decade; p < 0.01) and Cho/Cr (+4.6% per decade; p < 0.01) and increased total myo-Inositol (mI, +4.7% per decade; p < 0.01) and mI/Cr (+5.4% per decade; p < 0.01) and decreased NAA/Cho (-8% per decade; p < 0.01) in semiovale WM. Results from single voxel spectroscopy revealed a significantly negative correlation of NAA/Cho in frontal (-13% per decade; p < 0.01) and in temporal lobe (-7.4% per decade; p < 0.01) as well as increased total Cr (10% per decade; p < 0.01) in frontal lobe. Other results from single voxel measurements were not significant, but trends were comparable to that from multivoxel spectroscopy. Conclusion: Age-related changes measured with long echo time and short echo time 1H-MRS were comparable and cannot, therefore, be caused by different T2 relaxation times in young and old subjects, as suggested previously

  15. Probabilistic eruption forecasting at short and long time scales

    Science.gov (United States)

    Marzocchi, Warner; Bebbington, Mark S.

    2012-10-01

    Any effective volcanic risk mitigation strategy requires a scientific assessment of the future evolution of a volcanic system and its eruptive behavior. Some consider the onus should be on volcanologists to provide simple but emphatic deterministic forecasts. This traditional way of thinking, however, does not deal with the implications of inherent uncertainties, both aleatoric and epistemic, that are inevitably present in observations, monitoring data, and interpretation of any natural system. In contrast to deterministic predictions, probabilistic eruption forecasting attempts to quantify these inherent uncertainties utilizing all available information to the extent that it can be relied upon and is informative. As with many other natural hazards, probabilistic eruption forecasting is becoming established as the primary scientific basis for planning rational risk mitigation actions: at short-term (hours to weeks or months), it allows decision-makers to prioritize actions in a crisis; and at long-term (years to decades), it is the basic component for land use and emergency planning. Probabilistic eruption forecasting consists of estimating the probability of an eruption event and where it sits in a complex multidimensional time-space-magnitude framework. In this review, we discuss the key developments and features of models that have been used to address the problem.

  16. Time stamp generation with inverse FIR filters for Positron Emission Tomography

    International Nuclear Information System (INIS)

    Namias, Mauro

    2009-01-01

    Photon coincidence detection is the process by which Positron Emission Tomography (PET) works. This requires the determination of the time of impact of each coincident photon at the detector system, also known as time stamp. In this work, the timestamp was generated by means of digital time-domain deconvolution with FIR filters for a INa(Tl) based system. The detector deadtime was reduced from 350 ns to 175 ns while preserving the system's energy resolution and a direct relation between the amount of light collected and the temporal resolution was found.(author)

  17. Short Term Prediction of PM10 Concentrations Using Seasonal Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Hamid Hazrul Abdul

    2016-01-01

    Full Text Available Air pollution modelling is one of an important tool that usually used to make short term and long term prediction. Since air pollution gives a big impact especially to human health, prediction of air pollutants concentration is needed to help the local authorities to give an early warning to people who are in risk of acute and chronic health effects from air pollution. Finding the best time series model would allow prediction to be made accurately. This research was carried out to find the best time series model to predict the PM10 concentrations in Nilai, Negeri Sembilan, Malaysia. By considering two seasons which is wet season (north east monsoon and dry season (south west monsoon, seasonal autoregressive integrated moving average model were used to find the most suitable model to predict the PM10 concentrations in Nilai, Negeri Sembilan by using three error measures. Based on AIC statistics, results show that ARIMA (1, 1, 1 × (1, 0, 012 is the most suitable model to predict PM10 concentrations in Nilai, Negeri Sembilan.

  18. Short-range order in ab initio computer generated amorphous and liquid Cu–Zr alloys: A new approach

    Energy Technology Data Exchange (ETDEWEB)

    Galván-Colín, Jonathan, E-mail: jgcolin@ciencias.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México, D.F. 04510, México (Mexico); Valladares, Ariel A., E-mail: valladar@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México, D.F. 04510, México (Mexico); Valladares, Renela M.; Valladares, Alexander [Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, México, D.F. 04510, México (Mexico)

    2015-10-15

    Using ab initio molecular dynamics and a new approach based on the undermelt-quench method we generated amorphous and liquid samples of Cu{sub x}Zr{sub 100−x} (x=64, 50, 36) alloys. We characterized the topology of our resulting structures by means of the pair distribution function and the bond-angle distribution; a coordination number distribution was also calculated. Our results for both amorphous and liquids agree well with experiment. Dependence of short-range order with the concentration is reported. We found that icosahedron-like geometry plays a major role whenever the alloys are Cu-rich or Zr-rich disregarding if the samples are amorphous or liquid. The validation of these results, in turn would let us calculate other properties so far disregarded in the literature.

  19. Real-time integration of optimal generation scheduling with MPC for the energy management of a renewable hydrogen-based microgrid

    International Nuclear Information System (INIS)

    Petrollese, Mario; Valverde, Luis; Cocco, Daniele; Cau, Giorgio; Guerra, José

    2016-01-01

    Highlights: • Energy management strategy for a renewable hydrogen-based microgrid. • Integration of optimal generation scheduling with a model predictive control. • Experimental tests are carried out simulating typical summer and winter days. • Effective improvement in performance and reduction in microgrid operating cost are achieved. - Abstract: This paper presents a novel control strategy for the optimal management of microgrids with high penetration of renewable energy sources and different energy storage systems. The control strategy is based on the integration of optimal generation scheduling with a model predictive control in order to achieve both long and short-term optimal planning. In particular, long-term optimization of the various microgrid components is obtained by the adoption of an optimal generation scheduling, in which a statistical approach is used to take into account weather and load forecasting uncertainties. The real-time management of the microgrid is instead entrusted to a model predictive controller, which has the important feature of using the results obtained by the optimal generation scheduling. The proposed control strategy was tested in a laboratory-scale microgrid present at the University of Seville, which is composed of an electronic power source that emulates a photovoltaic system, a battery bank and a hydrogen production and storage system. Two different experimental tests that simulate a summer and a winter day were carried out over a 24-h period to verify the reliability and performance enhancement of the control system. Results show an effective improvement in performance in terms of reduction of the microgrid operating cost and greater involvement of the hydrogen storage system for the maintenance of a spinning reserve in batteries.

  20. Transient behavior of high-interaction MHD generator following external loading faults

    International Nuclear Information System (INIS)

    Ishikawa, Motoo

    1983-01-01

    Transient behavior consequent to external loading faults is studied numerically on four configurations of high-interaction MHD generators-subsonic Faraday, supersonic Faraday, subsonic diagonal and supersonic diagonal, to provide a variable data base to serve in selecting the type of large-scale MHD generator. Time-dependent one-dimensional Navier-Stokes equations are solved with the 1969 MacCormack method, in combination with the Maxwell equations and the generalized Ohm's law. An artificial viscosity term is added to the Navier-Stokes equations to maintain numerical stability. It is shown that, with both supersonic and subsonic flows, the Faraday generator is liable to sustain more harmful effect from short than from open faults of the external loading circuit. For large-scale diagonal types, on the other hand, open faults are more dangerous. With subsonic flow, a shock wave propagating upstream is induced by short fault in the Faraday, and by open fault in the diagonal-type generator. In the case of supersonic flow, propagation upstream of the disturbance is completely obstructed. Larger electrical stress is foreseen for Faraday than for diagonal configuration. (author)

  1. Voltage-pulse generator for electron gun

    International Nuclear Information System (INIS)

    Korenev, S.A.; Enchevich, I.B.; Mikhov, M.K.

    1987-01-01

    A voltage-pulse generator with combined capacitive and inductive storage devices of an electron gun is described. The current interrupter is a hydrogen thyratron (TGI1-100/8, TGI1-500/16, or TGI1-1000/25) installed in a short magnetic lens. The current interruption time of the thyratrons is 100-300 nsec. When the capacitive storage device is charged to 1 kV, a voltage pulse with an amplitude of 25 kV is obtained at the load

  2. Next-Generation Library Catalogs and the Problem of Slow Response Time

    Directory of Open Access Journals (Sweden)

    Margaret Brown-Sica

    2010-12-01

    Full Text Available Response time as defined for this study is the time that it takes for all files that constitute a single webpage to travel across the Internet from a Web server to the end user’s browser. In this study, the authors tested response times on queries for identical items in five different library catalogs, one of them a next-generation (NextGen catalog. The authors also discuss acceptable response time and how it may affect the discovery process. They suggest that librarians and vendors should develop standards for acceptable response time and use it in the product selection and development processes.

  3. Wavelength dependence of momentum-space images of low-energy electrons generated by short intense laser pulses at high intensities

    International Nuclear Information System (INIS)

    Maharjan, C M; Alnaser, A S; Litvinyuk, I; Ranitovic, P; Cocke, C L

    2006-01-01

    We have measured momentum-space images of low-energy electrons generated by the interaction of short intense laser pulses with argon atoms at high intensities. We have done this over a wavelength range from 400 to 800 nm. The spectra show considerable structure in both the energy and angular distributions of the electrons. Some, but not all, energy features can be identified as multi-photon resonances. The angular structure shows a regularity which transcends the resonant structure and may be due instead to diffraction. The complexity of the results defies easy model-dependent interpretations and invites full solutions to Schroedinger's equation for these systems

  4. Radiotracer Generators for Industrial Applications

    International Nuclear Information System (INIS)

    2013-01-01

    Radiotracers have been widely used throughout industry to optimize processes, solve problems, improve product quality, save energy and reduce pollution. Their technical, economic and environmental benefits have been recognized by both the industrial and the environmental sectors. The most important radiotracer techniques have been transferred to many developing Member States through IAEA Technical Cooperation projects. However, in spite of their manifest benefits, radiotracer techniques continue to be underutilized, not only by developing countries but also by more industrialized nations. There are a number of factors that restrict the usage of the radioisotope techniques, but chief among them is the timely availability of suitable radiotracers. Ensuring timely availability of suitable radionuclides is a main hurdle to the use of radiotracer techniques in industry. For developing countries that do not possess radioisotope production facilities, the long time required for import of radionuclides not only completely rules out the use of short half-life nuclides, but also makes it impossible for the radioisotope applications teams to respond to problems of an urgent nature. Many possible radiotracer investigations are not being carried out in developing countries because of this problem. Even in industrialized countries, radionuclide supply is often a problem, as many of the former suppliers of industrial radionuclides have switched their production facilities to serve the more lucrative radiopharmaceuticals market. Obtaining continuity of supply of radionuclides with which to carry out extended studies in difficult-to-access locations, such as offshore oil platforms, is also a significant challenge. Making use of tracers from radionuclide generators can alleviate the difficulties associated with radioisotope supply. Two commercially available medical radionuclide generators, 99 Mo/ 99 mTc and 113 Sn/ 113 mIn, have been used for this purpose, but their use has been

  5. A Preliminary Examination of the Second Generation CMORPH Real-time Production

    Science.gov (United States)

    Joyce, R.; Xie, P.; Wu, S.

    2017-12-01

    The second generation CMORPH (CMORPH2) has started test real-time production of 30-minute precipitation estimates on a 0.05olat/lon grid over the entire globe, from pole-to-pole. The CMORPH2 is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) and LEO platforms, and precipitation simulations from the NCEP operational global forecast system (GFS). Inputs from the various sources are first inter-calibrated to ensure quantitative consistencies in representing precipitation events of different intensities through PDF calibration against a common reference standard. The inter-calibrated PMW retrievals and IR-based precipitation estimates are then propagated from their respective observation times to the target analysis time along the motion vectors of the precipitating clouds. Motion vectors are first derived separately from the satellite IR based precipitation estimates and the GFS precipitation fields. These individually derived motion vectors are then combined through a 2D-VAR technique to form an analyzed field of cloud motion vectors over the entire globe. The propagated PMW and IR based precipitation estimates are finally integrated into a single field of global precipitation through the Kalman Filter framework. A set of procedures have been established to examine the performance of the CMORPH2 real-time production. CMORPH2 satellite precipitation estimates are compared against the CPC daily gauge analysis, Stage IV radar precipitation over the CONUS, and numerical model forecasts to discover potential shortcomings and quantify improvements against the first generation CMORPH. Special attention has been focused on the CMORPH behavior over high-latitude areas beyond the coverage of the first

  6. Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory

    Science.gov (United States)

    Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas

    2018-02-01

    Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi

  7. Rotor-System Log-Decrement Identification Using Short-Time Fourier-Transform Filter

    Directory of Open Access Journals (Sweden)

    Qihang Li

    2015-01-01

    Full Text Available With the increase of the centrifugal compressor capability, such as large scale LNG and CO2 reinjection, the stability margin evaluation is crucial to assure the compressor work in the designed operating conditions in field. Improving the precision of parameter identification of stability is essential and necessary as well. Based on the time-varying characteristics of response vibration during the sine-swept process, a short-time Fourier transform (STFT filter was introduced to increase the signal-noise ratio and improve the accuracy of the estimated stability parameters. A finite element model was established to simulate the sine-swept process, and the simulated vibration signals were used to study the filtering effect and demonstrate the feasibility to identify the stability parameters by using Multiple-Input and Multiple-Output system identification method that combines the prediction error method and instrumental variable method. Simulation results show that the identification method with STFT filter improves the estimated accuracy much well and makes the curves of frequency response function clearer. Experiment was carried out on a test rig as well, which indicates the identification method is feasible in stability identification, and the results of experiment indicate that STFT filter works very well.

  8. A high impedance mega-ampere generator for fiber z-pinch experiments

    International Nuclear Information System (INIS)

    Mitchell, I.H.; Bayley, J.M.; Chittenden, J.P.; Worley, J.F.; Dangor, A.E.; Haines, M.G.; Choi, P.

    1996-01-01

    At Imperial College a mega-ampere generator for plasma implosion experiments has been designed, built, and commissioned. With a final line impedance of 1.25 Ω this terawatt class generator has been designed primarily to drive a maximum current of 1.8 MA with a rise time of 150 ns into high inductance z-pinch loads of interest to radiative collapse studies. This article describes the design and tests of the generator which has a novel configuration of lines and a new design of a magnetically insulated transmission line (MITL). In summary, the generator consists of four Marx generators each of the Hermes III type (2.4 MV, 84 kJ), each connected to 5 Ω pulse forming lines and trigatron gas switches. The power is fed into the matched 1.25 Ω vertical transfer line which feeds a diode stack and a short conical MITL in vacuum which concentrates the power into the z-pinch load. At 80% charge a current rising to 1.4 MA in 150 ns has been measured in a 15 nH inductive short. Similar results are obtained when using a plasma load. copyright 1996 American Institute of Physics

  9. Chemical luminescence measurement of singlet oxygen generated by photodynamic therapy in solutions in real time

    Science.gov (United States)

    Luo, Shiming; Xing, Da; Zhou, Jing; Qin, Yanfang; Chen, Qun

    2005-04-01

    Photodynamic therapy (PDT) is a cancer therapy that utilizes optical energy to activate a photosensitizer drug in a target tissue. Reactive oxygen species (ROS), such as 1O2 and superoxide, are believed to be the major cytotoxic agents involved in PDT. Although current PDT dosimetry mostly involves measurements of light and photosensitizer doses delivered to a patient, the quantification of ROS production during a treatment would be the ultimate dosimetry of PDT. Technically, it is very difficult and expensive to directly measure the fluorescence from 1O2, due to its extreme short lifetime and weak signal strength. In this paper, Photofrin(R) and 635nm laser were used to generate 1O2 and superoxide in a PDT in solution. Compound 3,7- dihydro-6-{4-[2-(N"-(5-fluoresceinyl) thioureido) ethoxy] phenyl}-2- methylimidazo{1,2-a} pyrazin-3-one sodium salt,an Cyp- ridina luciferin analog commonly referred as FCLA, was used as a chemical reporter of ROS. The 532nm chemiluminescence (CL) from the reaction of the FCLA and ROS was detected with a photon multiplier tube (PMT) system operating at single photon counting mode. With the setup, we have made detections of ROS generated by PDT in real time. By varying the amount of conventional PDT dosage (photosensitizer concentration, light irradiation fluence and its delivery rate) and the amount of FCLA, the intensity of CL and its consumption rate were investigated. The results show that the intensity and temporal profile of CL are highly related to the PDT treatment parameters. This suggests that FCLA CL may provide a highly potential alternative for ROS detection during PDT.

  10. On the Option Effects of Short-Time Work Arrangements

    NARCIS (Netherlands)

    Huisman, Kuno; Thijssen, J.J.J.

    2018-01-01

    We analyse the short term work (STW) regulations that several OECD countries introduced after the 2007 financial crisis. We view these measures as a collection of real options and study the dynamic effect of STW on the endogenous liquidation decision of the firm. While STW delays a firm’s

  11. 25 CFR 26.30 - Does the Job Training Program provide part-time training or short-term training?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Does the Job Training Program provide part-time training or short-term training? 26.30 Section 26.30 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES JOB PLACEMENT AND TRAINING PROGRAM Training Services § 26.30 Does the Job Training...

  12. Laser-induced generation of pure tensile stresses

    International Nuclear Information System (INIS)

    Niemz, M.H.; Lin, C.P.; Pitsillides, C.; Cui, J.; Doukas, A.G.; Deutsch, T.F.

    1997-01-01

    While short compressive stresses can readily be produced by laser ablation, the generation of pure tensile stresses is more difficult. We demonstrate that a 90 degree prism made of polyethylene can serve to produce short and pure tensile stresses. A compressive wave is generated by ablating a thin layer of strongly absorbing ink on one surface of the prism with a Q-switched frequency-doubled Nd:YAG laser. The compressive wave driven into the prism is reflected as a tensile wave by the polyethylene-air interface at its long surface. The low acoustic impedance of polyethylene makes it ideal for coupling tensile stresses into liquids. In water, tensile stresses up to -200bars with a rise time of the order of 20 ns and a duration of 100 ns are achieved. The tensile strength of water is determined for pure tensile stresses lasting for 100 ns only. The technique has potential application in studying the initiation of cavitation in liquids and in comparing the effect of compressive and tensile stress transients on biological media. copyright 1997 American Institute of Physics

  13. High-Temperature Short-Time Pasteurization System for Donor Milk in a Human Milk Bank Setting

    OpenAIRE

    Diana Escuder-Vieco; Irene Espinosa-Martos; Juan M. Rodríguez; Nieves Corzo; Antonia Montilla; Pablo Siegfried; Carmen R. Pallás-Alonso; Carmen R. Pallás-Alonso; Leónides Fernández

    2018-01-01

    Donor milk is the best alternative for the feeding of preterm newborns when mother's own milk is unavailable. For safety reasons, it is usually pasteurized by the Holder method (62.5°C for 30 min). Holder pasteurization results in a microbiological safe product but impairs the activity of many biologically active compounds such as immunoglobulins, enzymes, cytokines, growth factors, hormones or oxidative stress markers. High-temperature short-time (HTST) pasteurization has been proposed as an...

  14. Nature versus nurture? Consequences of short captivity in early stages.

    Science.gov (United States)

    Horreo, Jose L; Valiente, America G; Ardura, Alba; Blanco, Aida; Garcia-Gonzalez, Claudia; Garcia-Vazquez, Eva

    2018-01-01

    Biological changes occurring as a consequence of domestication and/or captivity are not still deeply known. In Atlantic salmon (S almo salar ), endangered (Southern Europe) populations are enhanced by supportive breeding, which involves only 6 months of captive rearing following artificial spawning of wild-collected adults. In this work, we assess whether several fitness-correlated life-history traits (migratory behavior, straying rate, age at maturity, and growth) are affected by early exposure to the captive environment within a generation, before reproduction thus before genetic selection. Results showed significant differences in growth and migratory behavior (including straying), associated with this very short period of captivity in natural fish populations, changing even genetic variability (decreased in hatchery-reared adults) and the native population structure within and between rivers of the species. These changes appeared within a single generation, suggesting very short time of captivity is enough for initiating changes normally attributed to domestication. These results may have potential implications for the long-term population stability/viability of species subjected to restoration and enhancement processes and could be also considered for the management of zoo populations.

  15. Effects of generation time on spray aerosol transport and deposition in models of the mouth-throat geometry.

    Science.gov (United States)

    Worth Longest, P; Hindle, Michael; Das Choudhuri, Suparna

    2009-06-01

    For most newly developed spray aerosol inhalers, the generation time is a potentially important variable that can be fully controlled. The objective of this study was to determine the effects of spray aerosol generation time on transport and deposition in a standard induction port (IP) and more realistic mouth-throat (MT) geometry. Capillary aerosol generation (CAG) was selected as a representative system in which spray momentum was expected to significantly impact deposition. Sectional and total depositions in the IP and MT geometries were assessed at a constant CAG flow rate of 25 mg/sec for aerosol generation times of 1, 2, and 4 sec using both in vitro experiments and a previously developed computational fluid dynamics (CFD) model. Both the in vitro and numerical results indicated that extending the generation time of the spray aerosol, delivered at a constant mass flow rate, significantly reduced deposition in the IP and more realistic MT geometry. Specifically, increasing the generation time of the CAG system from 1 to 4 sec reduced the deposition fraction in the IP and MT geometries by approximately 60 and 33%, respectively. Furthermore, the CFD predictions of deposition fraction were found to be in good agreement with the in vitro results for all times considered in both the IP and MT geometries. The numerical results indicated that the reduction in deposition fraction over time was associated with temporal dissipation of what was termed the spray aerosol "burst effect." Based on these results, increasing the spray aerosol generation time, at a constant mass flow rate, may be an effective strategy for reducing deposition in the standard IP and in more realistic MT geometries.

  16. [Possibilities in the differential diagnosis of brain neoplasms using the long and short time sequences of proton magnetic resonance spectroscopy

    NARCIS (Netherlands)

    Gajewicz, W.; Goraj, B.M.

    2004-01-01

    Currently to perform proton magnetic resonance spectroscopy (1H MRS) with single voxel spectroscopy (SVS) technique long and/or short echo time sequences are used in order to provide complementary information. PURPOSE: The aim of the study was to compare the usefulness of STEAM (time echo, TE, 20

  17. Criteria for the generation of spectra consistent time histories

    International Nuclear Information System (INIS)

    Lin, C.-W.

    1977-01-01

    There are several approaches currently being used by the nuclear industry to generate design time history input. None of these produce unique results. That is, given a design response spectrum, nearly unlimited number of synthesized time history motions can be constructed. The effects of these time history motions on the system response vary and they have not been properly evaluated. For instance, some time histories may have high frequency content, higher than indicated by the real earthquake records. This may have adverse influence on the system response with high frequency impact or predominate high frequency modes. Other time histories may have unnecessarily long duration which makes a large and detailed analytical model uneconomical. The influence of the time history duration is primarily on the number of peak response stress cycles computed which can be either extrapolated from limited duration input or determined using other means. Rarely is the case that duration has to be kept long enough for the structure response to reach its peak. Consequently, input duration should be kept no longer than necessary to produce peak response to allow the use of more sophisticated model which enables the problem to be studied thoroughly. There are also time histories which have satisfied the generally accepted definition of statistical independent requirements, but possess statistical characteristics unlike those of the real earthquakes. Finally, some time histories may require smaller integration time steps than ordinarily used to insure that certain systems will have converge and stable solutions

  18. Pricing decision model for new and remanufactured short-life cycle products with time-dependent demand

    Directory of Open Access Journals (Sweden)

    Shu San Gan

    2015-12-01

    Full Text Available In this study we develop a model that optimizes the price for new and remanufactured short life-cycle products where demands are time-dependent and price sensitive. While there has been very few published works that attempt to model remanufacturing decisions for products with short life cycle, we believe that there are many situations where remanufacturing short life cycle products is rewarding economically as well as environmentally. The system that we model consists of a retailer, a manufacturer, and a collector of used product from the end customers. Two different scenarios are evaluated for the system. The first is the independent situation where each party attempts to maximize his/her own total profit and the second is the joint profit model where we optimize the combined total profit for all three members of the supply chain. Manufacturer acts as the Stackelberg leader in the independently optimized scenario, while in the other the intermediate prices are determined by coordinated pricing policy. The results suggest that (i reducing the price of new products during the decline phase does not give better profit for the whole system, (ii the total profit obtained from optimizing each player is lower than the total profit of the integrated model, and (iii speed of change in demand influences the robustness of the prices as well as the total profit gained.

  19. Timing Variations in Two Balkan Percussion Performances

    Directory of Open Access Journals (Sweden)

    Daniel Goldberg

    2016-01-01

    Full Text Available Many songs and dance pieces from the Balkan Peninsula employ aksak meter, in which two categorically different durations, long and short, coexist in the sequence of beats that performers emphasize and listeners move to. This paper analyzes the durations of aksak beats and measures in two recorded percussion performances that use a particular aksak beat sequence, long-short-short. The results suggest that the timing of beats varies in conjunction with factors including melodic grouping and interaction among members of a performing ensemble and audience. Timing variation linked to melodic groups occurs on a solo recording of a Macedonian Romani folk song. The performer, Muzafer Bizlim, taps an ostinato while singing, and the timing of his taps seems to mark some local and large-scale group boundaries. Melodic organization also seems relevant to the timing of beats and measures on a recording of Bulgarian percussionist Mitko Popov playing the tŭpan, a double-headed bass drum, in a small folk music ensemble. In Popov’s performance, however, timing differences might be related to characteristics of the ensemble dynamic, such as the coordination of multiple musical participants. These interpretations generate possibilities for future study of timing variations in relation to rhythm and meter.

  20. Timing the Generation of Distinct Retinal Cells by Homeobox Proteins

    Science.gov (United States)

    Decembrini, Sarah; Andreazzoli, Massimiliano; Vignali, Robert; Barsacchi, Giuseppina; Cremisi, Federico

    2006-01-01

    The reason why different types of vertebrate nerve cells are generated in a particular sequence is still poorly understood. In the vertebrate retina, homeobox genes play a crucial role in establishing different cell identities. Here we provide evidence of a cellular clock that sequentially activates distinct homeobox genes in embryonic retinal cells, linking the identity of a retinal cell to its time of generation. By in situ expression analysis, we found that the three Xenopus homeobox genes Xotx5b, Xvsx1, and Xotx2 are initially transcribed but not translated in early retinal progenitors. Their translation requires cell cycle progression and is sequentially activated in photoreceptors (Xotx5b) and bipolar cells (Xvsx1 and Xotx2). Furthermore, by in vivo lipofection of “sensors” in which green fluorescent protein translation is under control of the 3′ untranslated region (UTR), we found that the 3′ UTRs of Xotx5b, Xvsx1, and Xotx2 are sufficient to drive a spatiotemporal pattern of translation matching that of the corresponding proteins and consistent with the time of generation of photoreceptors (Xotx5b) and bipolar cells (Xvsx1 and Xotx2). The block of cell cycle progression of single early retinal progenitors impairs their differentiation as photoreceptors and bipolar cells, but is rescued by the lipofection of Xotx5b and Xvsx1 coding sequences, respectively. This is the first evidence to our knowledge that vertebrate homeobox proteins can work as effectors of a cellular clock to establish distinct cell identities. PMID:16903786

  1. Timing the generation of distinct retinal cells by homeobox proteins.

    Directory of Open Access Journals (Sweden)

    Sarah Decembrini

    2006-09-01

    Full Text Available The reason why different types of vertebrate nerve cells are generated in a particular sequence is still poorly understood. In the vertebrate retina, homeobox genes play a crucial role in establishing different cell identities. Here we provide evidence of a cellular clock that sequentially activates distinct homeobox genes in embryonic retinal cells, linking the identity of a retinal cell to its time of generation. By in situ expression analysis, we found that the three Xenopus homeobox genes Xotx5b, Xvsx1, and Xotx2 are initially transcribed but not translated in early retinal progenitors. Their translation requires cell cycle progression and is sequentially activated in photoreceptors (Xotx5b and bipolar cells (Xvsx1 and Xotx2. Furthermore, by in vivo lipofection of "sensors" in which green fluorescent protein translation is under control of the 3' untranslated region (UTR, we found that the 3' UTRs of Xotx5b, Xvsx1, and Xotx2 are sufficient to drive a spatiotemporal pattern of translation matching that of the corresponding proteins and consistent with the time of generation of photoreceptors (Xotx5b and bipolar cells (Xvsx1 and Xotx2. The block of cell cycle progression of single early retinal progenitors impairs their differentiation as photoreceptors and bipolar cells, but is rescued by the lipofection of Xotx5b and Xvsx1 coding sequences, respectively. This is the first evidence to our knowledge that vertebrate homeobox proteins can work as effectors of a cellular clock to establish distinct cell identities.

  2. Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time.

    Science.gov (United States)

    Lv, Jinze; Zhu, Lizhong

    2013-01-01

    A short residence time is a key design parameter for the removal of organic pollutants in catalyst-based indoor air purification systems. In this study, we synthesized a series of TiO2 with different micropore volumes and studied their removal efficiency of indoor carbonyl pollutants at a short residence time. Our results indicated that the superior adsorption capability of TiO2 with micropores improved its performance in the photocatalytic degradation of cyclohexanone, while the photocatalytic removal of the pollutant successfully kept porous TiO2 from becoming saturated. When treated with 1 mg m(-3) cyclohexanone at a relatively humidity of 18%, the adsorption amount on microporous TiO2 was 5.4-7.9 times higher than that on P25. Removal efficiency via photocatalysis followed'the same order as the adsorption amount: TiO2-5 > TiO2-20 > TiO2-60 > TiO2-180 > P25. The advantage of microporous TiO2 over P25 became more pronounced when the residence time declined from 0.072 to 0.036 s. Moreover, as the concentration of cyclohexanone deceased from 1000 ppb to 500 ppb, removal efficiency by microporous TiO2 increased more rapidly than P25.

  3. Radiation-hygienic assessment of sup(99m)Tc generators

    International Nuclear Information System (INIS)

    Panfilova, N.P.; Kochetova, G.P.; Zol'nikova, N.I.; Trunov, B.V.

    1985-01-01

    Radiation-hygienic evaluation of labour conditions and degree of medical personnel irradiation during operation of short-lived radionuclide generators (of the activity 12950MBq, 18500 MBq) in radionuclide diagnosis has been made. For the purpose the exposure dose rate in working places from sup(99m)Tc generator was determined. Simultaneously, operation by operation timing at all the sta.oes of technological process is carried out. Measurements are realized at four levels (head, breast, pelvis, hands). It is shown, that total personnel dose at the first day of operation with generator constitutes 8.64 mR to hands, 1.12 mR to head, 2.333 mR to breast, 1.309 mR to pelvis

  4. First and second order Markov chain models for synthetic generation of wind speed time series

    International Nuclear Information System (INIS)

    Shamshad, A.; Bawadi, M.A.; Wan Hussin, W.M.A.; Majid, T.A.; Sanusi, S.A.M.

    2005-01-01

    Hourly wind speed time series data of two meteorological stations in Malaysia have been used for stochastic generation of wind speed data using the transition matrix approach of the Markov chain process. The transition probability matrices have been formed using two different approaches: the first approach involves the use of the first order transition probability matrix of a Markov chain, and the second involves the use of a second order transition probability matrix that uses the current and preceding values to describe the next wind speed value. The algorithm to generate the wind speed time series from the transition probability matrices is described. Uniform random number generators have been used for transition between successive time states and within state wind speed values. The ability of each approach to retain the statistical properties of the generated speed is compared with the observed ones. The main statistical properties used for this purpose are mean, standard deviation, median, percentiles, Weibull distribution parameters, autocorrelations and spectral density of wind speed values. The comparison of the observed wind speed and the synthetically generated ones shows that the statistical characteristics are satisfactorily preserved

  5. Double peak-induced distance error in short-time-Fourier-transform-Brillouin optical time domain reflectometers event detection and the recovery method.

    Science.gov (United States)

    Yu, Yifei; Luo, Linqing; Li, Bo; Guo, Linfeng; Yan, Jize; Soga, Kenichi

    2015-10-01

    The measured distance error caused by double peaks in the BOTDRs (Brillouin optical time domain reflectometers) system is a kind of Brillouin scattering spectrum (BSS) deformation, discussed and simulated for the first time in the paper, to the best of the authors' knowledge. Double peak, as a kind of Brillouin spectrum deformation, is important in the enhancement of spatial resolution, measurement accuracy, and crack detection. Due to the variances of the peak powers of the BSS along the fiber, the measured starting point of a step-shape frequency transition region is shifted and results in distance errors. Zero-padded short-time-Fourier-transform (STFT) can restore the transition-induced double peaks in the asymmetric and deformed BSS, thus offering more accurate and quicker measurements than the conventional Lorentz-fitting method. The recovering method based on the double-peak detection and corresponding BSS deformation can be applied to calculate the real starting point, which can improve the distance accuracy of the STFT-based BOTDR system.

  6. Major faults and troubleshooting for the power generator of Qinshan III

    International Nuclear Information System (INIS)

    Liu Guangming; Lu Yongfang; Wang Jun

    2010-01-01

    Generator faults can be sorted into 20 categories, mainly including water leakage, oil leakage, high temperature and short circuit, etc. The paper comprises two sections, the first section emphasizes on typical fault troubleshooting for power generator cooling water leakage, temperature rise and short circuit of Qinshan III, and the second section is conclusion. By expounding the troubleshooting for power generator cooling pipe leakage, -iron-core high temperature and rotor layer short circuit, the repair process and experience in the troubleshooting of typical fault including water leakage, temperature rise and short circuit are described in detail, so as to obtain the overall performance and parameters of the power generator, and provide useful means and plan for future troubleshooting. The paper can make reference to future troubleshooting for power generators. (authors)

  7. Short communication. A spontaneous mutant of L-202 rice

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Yzaguire, A.; Padrones, T.

    2009-07-01

    A new spontaneous phenotype of the rice cultivar L-202 was found. Mendelian analysis indicates that it is a monogenic, recessive mutant. Its distinguishing features are: dark blue-green colour, short and narrow leaves, high tillering and relatively short height. The objectives of this study were: to characterize it, to determine if it is heritable and if so, its genetic basis. Its distinguishing features are: dark blue-green colour, short and narrow leaves, high tillering and relatively short height. Selfing the new phenotype resulted in a uniform progeny, with the traits of the parent plant (wild type). Crossing the new phenotype with the normal L-202 cultivar resulted in a uniform F1 hybrid generation, with the wild type. The F2 generation showed a mendelian segregation which did not depart significantly from three normal plants : one new phenotype. It is concluded that it is a monogenic, recessive mutant. (Author) 3 refs.

  8. Real-Time, Single-Shot Temporal Measurements of Short Electron Bunches, Terahertz CSR and FEL Radiation

    CERN Document Server

    Berden, G; Van der Meer, A F G

    2005-01-01

    Electro-optic detection of the Coulomb field of electron bunches is a promising technique for single-shot measurements of the bunch length and shape in the sub-picosecond time domain. This technique has been applied to the measurement of 50 MeV electron bunches in the FELIX free electron laser, showing the longitudinal profile of single bunches of around 650 fs FWHM [Phys. Rev. Lett. 93, 114802 (2004)]. The method is non-destructive and real-time, and therefore ideal for online monitoring of the longitudinal shape of single electron bunches. At FELIX we have used it for real-time optimization of sub-picosecond electron bunches. Electro-optic detection has also been used to measure the electric field profiles of far-infrared (or terahertz) optical pulses generated by the relativistic electrons. We have characterised the far-infrared output of the free electron laser, and more recently, we have measured the temporal profile of terahertz optical pulses generated at one of the bending magnets.

  9. Advances in high-order harmonic generation sources for time-resolved investigations

    Energy Technology Data Exchange (ETDEWEB)

    Reduzzi, Maurizio [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Carpeggiani, Paolo [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Kühn, Sergei [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Calegari, Francesca [Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Nisoli, Mauro; Stagira, Salvatore [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Vozzi, Caterina [Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Dombi, Peter [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, 1121 Budapest (Hungary); Kahaly, Subhendu [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Tzallas, Paris; Charalambidis, Dimitris [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Foundation for Research and Technology – Hellas, Institute of Electronic Structure and Lasers, P.O. Box 1527, GR-711 10 Heraklion, Crete (Greece); Varju, Katalin [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720 Szeged (Hungary); Osvay, Karoly [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); and others

    2015-10-15

    We review the main research directions ongoing in the development of extreme ultraviolet sources based on high-harmonic generation for the synthesization and application of trains and isolated attosecond pulses to time-resolved spectroscopy. A few experimental and theoretical works will be discussed in connection to well-established attosecond techniques. In this context, we present the unique possibilities offered for time-resolved investigations on the attosecond timescale by the new Extreme Light Infrastructure Attosecond Light Pulse Source, which is currently under construction.

  10. Advances in high-order harmonic generation sources for time-resolved investigations

    International Nuclear Information System (INIS)

    Reduzzi, Maurizio; Carpeggiani, Paolo; Kühn, Sergei; Calegari, Francesca; Nisoli, Mauro; Stagira, Salvatore; Vozzi, Caterina; Dombi, Peter; Kahaly, Subhendu; Tzallas, Paris; Charalambidis, Dimitris; Varju, Katalin; Osvay, Karoly

    2015-01-01

    We review the main research directions ongoing in the development of extreme ultraviolet sources based on high-harmonic generation for the synthesization and application of trains and isolated attosecond pulses to time-resolved spectroscopy. A few experimental and theoretical works will be discussed in connection to well-established attosecond techniques. In this context, we present the unique possibilities offered for time-resolved investigations on the attosecond timescale by the new Extreme Light Infrastructure Attosecond Light Pulse Source, which is currently under construction.

  11. Road Short-Term Travel Time Prediction Method Based on Flow Spatial Distribution and the Relations

    Directory of Open Access Journals (Sweden)

    Mingjun Deng

    2016-01-01

    Full Text Available There are many short-term road travel time forecasting studies based on time series, but indeed, road travel time not only relies on the historical travel time series, but also depends on the road and its adjacent sections history flow. However, few studies have considered that. This paper is based on the correlation of flow spatial distribution and the road travel time series, applying nearest neighbor and nonparametric regression method to build a forecasting model. In aspect of spatial nearest neighbor search, three different space distances are defined. In addition, two forecasting functions are introduced: one combines the forecasting value by mean weight and the other uses the reciprocal of nearest neighbors distance as combined weight. Three different distances are applied in nearest neighbor search, which apply to the two forecasting functions. For travel time series, the nearest neighbor and nonparametric regression are applied too. Then minimizing forecast error variance is utilized as an objective to establish the combination model. The empirical results show that the combination model can improve the forecast performance obviously. Besides, the experimental results of the evaluation for the computational complexity show that the proposed method can satisfy the real-time requirement.

  12. Equation for disentangling time-ordered exponentials with arbitrary quadratic generators

    International Nuclear Information System (INIS)

    Budanov, V.G.

    1987-01-01

    In many quantum-mechanical constructions, it is necessary to disentangle an operator-valued time-ordered exponential with time-dependent generators quadratic in the creation and annihilation operators. By disentangling, one understands the finding of the matrix elements of the time-ordered exponential or, in a more general formulation. The solution of the problem can also be reduced to calculation of a matrix time-ordered exponential that solves the corresponding classical problem. However, in either case the evolution equations in their usual form do not enable one to take into account explicitly the symmetry of the system. In this paper the methods of Weyl analysis are used to find an ordinary differential equation on a matrix Lie algebra that is invariant with respect to the adjoint action of the dynamical symmetry group of a quadratic Hamiltonian and replaces the operator evolution equation for the Green's function

  13. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  14. SHORT DISSIPATION TIMES OF PROTO-PLANETARY DISKS: AN ARTIFACT OF SELECTION EFFECTS?

    International Nuclear Information System (INIS)

    Pfalzner, Susanne; Steinhausen, Manuel; Menten, Karl

    2014-01-01

    The frequency of disks around young stars, a key parameter for understanding planet formation, is most readily determined in young stellar clusters where many relatively coeval stars are located in close proximity. Observational studies seem to show that the disk frequency decreases rapidly with cluster age with <10% of cluster stars retaining their disks for longer than 2-6 Myr. Given that at least half of all stars in the field seem to harbor one or more planets, this would imply extremely fast disk dispersal and rapid planet growth. Here we question the validity of this constraint by demonstrating that the short disk dissipation times inferred to date might have been heavily underestimated by selection effects. Critically, for ages >3 Myr only stars that originally populated the densest areas of very populous clusters, which are prone to disk erosion, are actually considered. This tiny sample may not be representative of the majority of stars. In fact, the higher disk fractions in co-moving groups indicate that it is likely that over 30% of all field stars retain their disks well beyond 10 Myr, leaving ample time for planet growth. Equally, our solar system, with a likely formation time >10 Myr, need no longer be an exception but in fact typical of planetary systems

  15. Construction of a flash-photolysis apparatus having a short discharge time

    International Nuclear Information System (INIS)

    Devillers, C.

    1964-01-01

    Flash photolysis aims at reaching directly the primary mechanisms resulting from the action of light on an absorbent matter. This makes it necessary to produce a flash as short and as bright as possible. Our main effort was directed towards reducing the duration of the flash by decreasing the self-inductance of the discharge circuit. A description of this circuit and study of the characteristics of the apparatus are followed by a short description of the two analytical methods: flash spectrography and absorption spectrophotometry at a given wave-length. (author) [fr

  16. Cassini Tour Atlas Automated Generation

    Science.gov (United States)

    Grazier, Kevin R.; Roumeliotis, Chris; Lange, Robert D.

    2011-01-01

    During the Cassini spacecraft s cruise phase and nominal mission, the Cassini Science Planning Team developed and maintained an online database of geometric and timing information called the Cassini Tour Atlas. The Tour Atlas consisted of several hundreds of megabytes of EVENTS mission planning software outputs, tables, plots, and images used by mission scientists for observation planning. Each time the nominal mission trajectory was altered or tweaked, a new Tour Atlas had to be regenerated manually. In the early phases of Cassini s Equinox Mission planning, an a priori estimate suggested that mission tour designers would develop approximately 30 candidate tours within a short period of time. So that Cassini scientists could properly analyze the science opportunities in each candidate tour quickly and thoroughly so that the optimal series of orbits for science return could be selected, a separate Tour Atlas was required for each trajectory. The task of manually generating the number of trajectory analyses in the allotted time would have been impossible, so the entire task was automated using code written in five different programming languages. This software automates the generation of the Cassini Tour Atlas database. It performs with one UNIX command what previously took a day or two of human labor.

  17. Nanosecond bipolar pulse generators for bioelectrics.

    Science.gov (United States)

    Xiao, Shu; Zhou, Chunrong; Yang, Enbo; Rajulapati, Sambasiva R

    2018-04-26

    Biological effects caused by a nanosecond pulse, such as cell membrane permeabilization, peripheral nerve excitation and cell blebbing, can be reduced or cancelled by applying another pulse of reversed polarity. Depending on the degree of cancellation, the pulse interval of these two pulses can be as long as dozens of microseconds. The cancellation effect diminishes as the pulse duration increases. To study the cancellation effect and potentially utilize it in electrotherapy, nanosecond bipolar pulse generators must be made available. An overview of the generators is given in this paper. A pulse forming line (PFL) that is matched at one end and shorted at the other end allows a bipolar pulse to be produced, but no delay can be inserted between the phases. Another generator employs a combination of a resistor, an inductor and a capacitor to form an RLC resonant circuit so that a bipolar pulse with a decaying magnitude can be generated. A third generator is a converter, which converts an existing unipolar pulse to a bipolar pulse. This is done by inserting an inductor in a transmission line. The first phase of the bipolar pulse is provided by the unipolar pulse's rising phase. The second phase is formed during the fall time of the unipolar pulse, when the inductor, which was previously charged during the flat part of the unipolar pulse, discharges its current to the load. The fourth type of generator uses multiple MOSFET switches stacked to turn on a pre-charged, bipolar RC network. This approach is the most flexible in that it can generate multiphasic pulses that have different amplitudes, delays, and durations. However, it may not be suitable for producing short nanosecond pulses (<100 ns), whereas the PFL approach and the RLC approach with gas switches are used for this range. Thus, each generator has its own advantages and applicable range. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Generation of artificial time-histories, rich in all frequencies, from given response spectra

    International Nuclear Information System (INIS)

    Levy, S.; Wilkinson, J.P.D.

    1975-01-01

    In order to apply the time-history method of seismic analysis, it is often desirable to generate a suitable artificial time-history from a given response spectrum. The method described allows the generation of such a time-history that is also rich in all frequencies in the spectrum. This richness is achieved by choosing a large number of closely-spaced frequency points such that the adjacent frequencies have their half-power points overlap. The adjacent frequencies satisfy the condition that the frequency interval Δf near a given frequency f is such that (Δf)/f<2c/csub(c) where c is the damping of the system and csub(c) is the critical damping. In developing an artificial time-history, it is desirable to specify the envelope and duration of the record, very often in such a manner as to reproduce the envelope property of a specific earthquake record, and such an option is available in the method described. Examples are given of the development of typical artificial time-histories from earthquake design response spectra and from floor response spectra

  19. Short communication

    African Journals Online (AJOL)

    abp

    2017-09-04

    Sep 4, 2017 ... Face-to-face interviews were conducted using a standardized ... Short communication. Open Access ... clinic during the time of the study and were invited to participate in the study. .... consume them. This is another ...

  20. Interactions of Grazing History, Cattle Removal and Time since Rain Drive Divergent Short-Term Responses by Desert Biota

    Science.gov (United States)

    Frank, Anke S. K.; Dickman, Chris R.; Wardle, Glenda M.; Greenville, Aaron C.

    2013-01-01

    Arid grasslands are used worldwide for grazing by domestic livestock, generating debate about how this pastoral enterprise may influence native desert biota. One approach to resolving this question is to experimentally reduce livestock numbers and measure the effects. However, a key challenge in doing this is that historical grazing impacts are likely to be cumulative and may therefore confound comparisons of the short-term responses of desert biota to changes in stocking levels. Arid areas are also subject to infrequent flooding rainfalls that drive productivity and dramatically alter abundances of flora and fauna. We took advantage of an opportunity to study the recent effects of a property-scale cattle removal on two properties with similarly varied grazing histories in central Australia. Following the removal of cattle in 2006 and before and after a significant rainfall event at the beginning of 2007, we sampled vegetation and small vertebrates on eight occasions until October 2008. Our results revealed significant interactions of time of survey with both grazing history and grazing removal for vascular plants, small mammals and reptiles. The mammals exhibited a three-way interaction of time, grazing history and grazing removal, thus highlighting the importance of careful sampling designs and timing for future monitoring. The strongest response to the cessation of grazing after two years was depressed reproductive output of plants in areas where cattle continued to graze. Our results confirm that neither vegetation nor small vertebrates necessarily respond immediately to the removal of livestock, but that rainfall events and cumulative grazing history are key determinants of floral and faunal performance in grassland landscapes with low and variable rainfall. We suggest that improved assessments could be made of the health of arid grazing environments if long-term monitoring were implemented to track the complex interactions that influence how native biota

  1. Digital Generation of Noise-Signals with Arbitrary Constant or Time-Varying Spectra (A noise generation software package and its application)

    CERN Document Server

    Tückmantel, Joachim

    2008-01-01

    Artificial creation of arbitrary noise signals is used in accelerator physics to reproduce a measured perturbation spectrum for simulations but also to generate real-time shaped noise spectra for controlled emittance blow-up giving tailored properties to the final bunch shape. It is demonstrated here how one can produce numerically what is, for all practical purposes, an unlimited quantity of non-periodic noise data having any predefined spectral density. This spectral density may be constant or varying with time. The noise output never repeats and has excellent statistical properties, important for very long-term applications. It is difficult to obtain such flexibility and spectral cleanliness using analogue techniques. This algorithm was applied both in computer simulations of bunch behaviour in the presence of RF noise in the PS, SPS and LHC and also to generate real-time noise, tracking the synchrotron frequency change during the energy ramp of the SPS and producing controlled longitudinal emittance blow-...

  2. An accident diagnosis algorithm using long short-term memory

    Directory of Open Access Journals (Sweden)

    Jaemin Yang

    2018-05-01

    Full Text Available Accident diagnosis is one of the complex tasks for nuclear power plant (NPP operators. In abnormal or emergency situations, the diagnostic activity of the NPP states is burdensome though necessary. Numerous computer-based methods and operator support systems have been suggested to address this problem. Among them, the recurrent neural network (RNN has performed well at analyzing time series data. This study proposes an algorithm for accident diagnosis using long short-term memory (LSTM, which is a kind of RNN, which improves the limitation for time reflection. The algorithm consists of preprocessing, the LSTM network, and postprocessing. In the LSTM-based algorithm, preprocessed input variables are calculated to output the accident diagnosis results. The outputs are also postprocessed using softmax to determine the ranking of accident diagnosis results with probabilities. This algorithm was trained using a compact nuclear simulator for several accidents: a loss of coolant accident, a steam generator tube rupture, and a main steam line break. The trained algorithm was also tested to demonstrate the feasibility of diagnosing NPP accidents. Keywords: Accident Diagnosis, Long Short-term Memory, Recurrent Neural Network, Softmax

  3. EXPLORING THE POTENTIAL OF SHORT-TIME FOURIER TRANSFORMS FOR ANALYZING SKIN CONDUCTANCE AND PUPILLOMETRY IN REAL-TIME APPLICATIONS

    International Nuclear Information System (INIS)

    Roger Lew; Brian P. Dyre; Steffen Werner; Jeffrey C. Joe; Brian Wotring; Tuan Tran

    2008-01-01

    The development of real-time predictors of mental workload is critical for the practical application of augmented cognition to human-machine systems. This paper explores a novel method based on a short-time Fourier transform (STFT) for analyzing galvanic skin conductance (SC) and pupillometry time-series data to extract estimates of mental workload with temporal bandwidth high-enough to be useful for augmented cognition applications. We tested the method in the context of a process control task based on the DURESS simulation developed by Vincente and Pawlak (1994; ported to Java by Cosentino, and Ross, 1999). SC, pupil dilation, blink rate, and visual scanning patterns were measured for four participants actively engaged in controlling the simulation. Fault events were introduced that required participants to diagnose errors and make control adjustments to keep the simulator operating within a target range. We were interested in whether the STFT of these measures would produce visible effects of the increase in mental workload and stress associated with these events. Graphical exploratory data analysis of the STFT showed visible increases in the power spectrum across a range of frequencies directly following fault events. We believe this approach shows potential as a relatively unobtrusive, low-cost, high bandwidth measure of mental workload that could be particularly useful for the application of augmented cognition to human-machine systems

  4. EXPLORING THE POTENTIAL OF SHORT-TIME FOURIER TRANSFORMS FOR ANALYZING SKIN CONDUCTANCE AND PUPILLOMETRY IN REAL-TIME APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Roger Lew; Brian P. Dyre; Steffen Werner; Jeffrey C. Joe; Brian Wotring; Tuan Tran

    2008-09-01

    The development of real-time predictors of mental workload is critical for the practical application of augmented cognition to human-machine systems. This paper explores a novel method based on a short-time Fourier transform (STFT) for analyzing galvanic skin conductance (SC) and pupillometry time-series data to extract estimates of mental workload with temporal bandwidth high-enough to be useful for augmented cognition applications. We tested the method in the context of a process control task based on the DURESS simulation developed by Vincente and Pawlak (1994; ported to Java by Cosentino,& Ross, 1999). SC, pupil dilation, blink rate, and visual scanning patterns were measured for four participants actively engaged in controlling the simulation. Fault events were introduced that required participants to diagnose errors and make control adjustments to keep the simulator operating within a target range. We were interested in whether the STFT of these measures would produce visible effects of the increase in mental workload and stress associated with these events. Graphical exploratory data analysis of the STFT showed visible increases in the power spectrum across a range of frequencies directly following fault events. We believe this approach shows potential as a relatively unobtrusive, low-cost, high bandwidth measure of mental workload that could be particularly useful for the application of augmented cognition to human-machine systems.

  5. Long vs. short-term energy storage:sensitivity analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Inc., Menlo Park, CA); Hassenzahl, William V. (,Advanced Energy Analysis, Piedmont, CA)

    2007-07-01

    This report extends earlier work to characterize long-duration and short-duration energy storage technologies, primarily on the basis of life-cycle cost, and to investigate sensitivities to various input assumptions. Another technology--asymmetric lead-carbon capacitors--has also been added. Energy storage technologies are examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. Sensitivity analyses include cost of electricity and natural gas, and system life, which impacts replacement costs and capital carrying charges. Results are presented in terms of annual cost, $/kW-yr. A major variable affecting system cost is hours of storage available for discharge.

  6. Economic incentives of short out-of-reactor time for fast breeder reactor fuel

    International Nuclear Information System (INIS)

    Bentley, B.W.; Haffner, D.R.

    1975-01-01

    Economic benefits (primarily reduced uranium ore and enrichment expenditures) can be realized by reducing the LMFBR out-of-reactor fuel cycle time only if process cost penalties and R and D costs can be minimized. The results of the evaluation presented show the potential gross benefits of reducing the out-of-reactor time and the effects of various associated cost penalties on these benefits. The gross benefit results estimate the potential savings in electrical power generation in the next 50 years using constant 1975 dollars and discounting the costs at 7 1 / 2 percent per year

  7. On-Demand Cell Internal Short Circuit Device

    Science.gov (United States)

    Darcy, Eric; Keyser, Matthew

    2014-01-01

    A device implantable in Li-ion cells that can generate a hard internal short circuit on-demand by exposing the cell to 60?C has been demonstrated to be valuable for expanding our understanding of cell responses. The device provides a negligible impact to cell performance and enables the instigation of the 4 general categories of cell internal shorts to determine relative severity and cell design susceptibility. Tests with a 18650 cell design indicates that the anode active material short to the aluminum cathode current collector tends to be more catastrophic than the 3 other types of internal shorts. Advanced safety features (such as shutdown separators) to prevent or mitigate the severity of cell internal shorts can be verified with this device. The hard short success rate achieved to date in 18650 cells is about 80%, which is sufficient for using these cells in battery assemblies for field-failure-relevant, cell-cell thermal runaway propagation verification tests

  8. Interaction between MHD generator and DC-AC power conversion system

    International Nuclear Information System (INIS)

    Tanaka, D.

    1982-01-01

    Transient characteristics of an MHD power generating system including a DC-AC inverter are analyzed using a time-dependent quasi-one-dimensional approximation. The generator model considered is Faraday type of U-25 class with heavy-oil and air combustion gas. It is found that a short-circuited fault of the invertor may become more serious than an open-circuited fault, resulting in significant gas velocity reduction. An open-circuited fault, if retained for more than 5-8 ms, can substantially increase the gas velocity at the upstream end of the fault region. A protection system composed of a fast-acting DC circuit-breaker and an emergency load resistance is proposed. The switching speed of the DC breaker must be about 500 microsec to stop a pressure increase, resulting, for example, from the short-circuiting of 20 electrode pairs, before it reaches 120% of the initial level

  9. Radiopharmaceuticals and other compounds labelled with short-lived radionuclides

    CERN Document Server

    Welch, Michael J

    2013-01-01

    Radiopharmaceuticals and Other Compounds Labelled with Short-Lived Radionuclides covers through both review and contributed articles the potential applications and developments in labeling with short-lived radionuclides whose use is restricted to institutions with accelerators. The book discusses the current and potential use of generator-produced radionuclides as well as other short-lived radionuclides, and the problems of quality control of such labeled compounds. The book is useful to nuclear medicine physicians.

  10. Probabilistic analysis of degradation incubation time of steam generator tubing materials

    International Nuclear Information System (INIS)

    Pandey, M.D.; Jyrkama, M.I.; Lu, Y.; Chi, L.

    2012-01-01

    The prediction of degradation free lifetime of steam generator (SG) tubing material is an important step in the life cycle management and decision for replacement of steam generators during the refurbishment of a nuclear station. Therefore, an extensive experimental research program has been undertaken by the Canadian Nuclear Industry to investigate the degradation of widely-used SG tubing alloys, namely, Alloy 600 TT, Alloy 690 TT, and Alloy 800. The corrosion related degradations of passive metals, such as pitting, crevice corrosion and stress corrosion cracking (SCC) etc. are assumed to start with the break down of the passive film at the tube-environment interface, which is characterized by the incubation time for passivity breakdown and then the degradation growth rate, and both are influenced by the chemical environment and coolant temperature. Since the incubation time and growth rate exhibit significant variability in the laboratory tests used to simulate these degradation processes, the use of probabilistic modeling is warranted. A pit is initiated with the breakdown of the passive film on the SG tubing surface. Upon exposure to aggressive environments, pitting corrosion may not initiate immediately, or may initiate and then re-passivate. The time required to initiate pitting corrosion is called the pitting incubation time, and that can be used to characterize the corrosion resistance of a material under specific test conditions. Pitting may be the precursor to other corrosion degradation mechanisms, such as environmentally-assisted cracking. This paper will provide an overview of the results of the first stage of experimental program in which samples of Alloy 600 TT, Alloy 690 TT, and Alloy 800 were tested under various temperatures and potentials and simulated crevice environments. The testing environment was chosen to represent layup, startup, and full operating conditions of the steam generators. Degradation incubation times for over 80 samples were

  11. Simulation of an HTS Synchronous Superconducting Generator

    DEFF Research Database (Denmark)

    In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, etc. Unlike...... of heating losses a cumbersome task. Furthermore, the high aspect ratio of the superconducting materials involved adds a penalty in the time required to perform simulations. The chosen strategy for simulation is as follows: A mechanical torque signal together with an electric load is used to drive the finite...... element model of a synchronous generator where the current distribution in the rotor windings is assumed uniform. Then, a second finite element model for the superconducting material is linked to calculate the actual current distribution in the windings of the rotor. Finally, heating losses are computed...

  12. The study of the possibility to use CAMEX chips in collider experiments with short bunch crossing time

    International Nuclear Information System (INIS)

    Aulchenko, V.M.; Chilingarov, A.G.; Serbo, V.V.; Titov, V.M.

    1993-01-01

    The study of the possibility to use CAMEX chips in several systems of the detector KEDR at the e + e - collider VEPP-4M was performed. The relatively short bunch crossing time at VEPP-4M 60 ns leads to some problems with the use of CAMEX in the standard mode. The different ways to overcome these difficulties are investigated and compared. (orig.)

  13. Femtosecond response time measurements of a Cs2Te photocathode

    Science.gov (United States)

    Aryshev, A.; Shevelev, M.; Honda, Y.; Terunuma, N.; Urakawa, J.

    2017-07-01

    Success in design and construction of a compact, high-brightness accelerator system is strongly related to the production of ultra-short electron beams. Recently, the approach to generate short electron bunches or pre-bunched beams in RF guns directly illuminating a high quantum efficiency semiconductor photocathode with femtosecond laser pulses has become attractive. The measurements of the photocathode response time in this case are essential. With an approach of the interferometer-type pulse splitter deep integration into a commercial Ti:Sa laser system used for RF guns, it has become possible to generate pre-bunched electron beams and obtain continuously variable electron bunch separation. In combination with a well-known zero-phasing technique, it allows us to estimate the response time of the most commonly used Cs2Te photocathode. It was demonstrated that the peak-to-peak rms time response of Cs2Te is of the order of 370 fs, and thereby, it is possible to generate and control a THz sequence of relativistic electron bunches by a conventional S-band RF gun. This result can also be applied for investigation of other cathode materials and electron beam temporal shaping and further opens a possibility to construct wide-range tunable, table-top THz free electron laser.

  14. Maternal short stature does not predict their children's fatness indicators in a nutritional dual-burden sample of urban Mexican Maya.

    OpenAIRE

    Wilson, HJ; Dickinson, F; Griffiths, PL; Bogin, B; Hobbs, M; Varela-Silva, MI

    2014-01-01

    The co-existence of very short stature due to poor chronic environment in early life and obesity is becoming a public health concern in rapidly transitioning populations with high levels of poverty. Individuals who have very short stature seem to be at an increased risk of obesity in times of relative caloric abundance. Increasing evidence shows that an individual is influenced by exposures in previous generations. This study assesses whether maternal poor early life environment predicts her ...

  15. Prompt-period measurement of the Annular Core Research Reactor prompt neutron generation time

    International Nuclear Information System (INIS)

    Coats, R.L.; Talley, D.G.; Trowbridge, F.R.

    1994-07-01

    The prompt neutron generation time for the Annular Core Research Reactor was experimentally determined using a prompt-period technique. The resultant value of 25.5 μs agreed well with the analytically determined value of 24 μs. The three different methods of reactivity insertion determination yielded ±5% agreement in the experimental values of the prompt neutron generation time. Discrepancies observed in reactivity insertion values determined by the three methods used (transient rod position, relative delayed critical control rod positions, and relative transient rod and control rod positions) were investigated to a limited extent. Rod-shadowing and low power fuel/coolant heat-up were addressed as possible causes of the discrepancies

  16. Short-Term Forecasting of Electric Energy Generation for a Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Dinh V.T.

    2018-01-01

    Full Text Available This article presents a short-term forecast of electric energy output of a photovoltaic (PV system towards Tomsk city, Russia climate variations (module temperature and solar irradiance. The system is located at Institute of Non-destructive Testing, Tomsk Polytechnic University. The obtained results show good agreement between actual data and prediction values.

  17. Short-Circuit Fault Tolerant Control of a Wind Turbine Driven Induction Generator Based on Sliding Mode Observers

    Directory of Open Access Journals (Sweden)

    Takwa Sellami

    2017-10-01

    Full Text Available The installed energy production capacity of wind turbines is growing intensely on a global scale, making the reliability of wind turbine subsystems of greater significance. However, many faults like Inter-Turn Short-Circuit (ITSC may affect the turbine generator and quickly lead to a decline in supplied power quality. In this framework, this paper proposes a Sliding Mode Observer (SMO-based Fault Tolerant Control (FTC scheme for Induction Generator (IG-based variable-speed grid-connected wind turbines. First, the dynamic models of the wind turbine subsystems were developed. The control schemes were elaborated based on the Maximum Power Point Tracking (MPPT method and Indirect Rotor Flux Oriented Control (IRFOC method. The grid control was also established by regulating the active and reactive powers. The performance of the wind turbine system and the stability of injected power to the grid were hence analyzed under both healthy and faulty conditions. The robust developed SMO-based Fault Detection and Isolation (FDI scheme was proved to be fast and efficient for ITSC detection and localization.Afterwards, SMO were involved in scheming the FTC technique. Accordingly, simulation results assert the efficacy of the proposed ITSC FTC method for variable-speed wind turbines with faulty IG in protecting the subsystems from damage and ensuring continuous connection of the wind turbine to the grid during ITSC faults, hence maintaining power quality.

  18. V-Man Generation for 3-D Real Time Animation. Chapter 5

    Science.gov (United States)

    Nebel, Jean-Christophe; Sibiryakov, Alexander; Ju, Xiangyang

    2007-01-01

    The V-Man project has developed an intuitive authoring and intelligent system to create, animate, control and interact in real-time with a new generation of 3D virtual characters: The V-Men. It combines several innovative algorithms coming from Virtual Reality, Physical Simulation, Computer Vision, Robotics and Artificial Intelligence. Given a high-level task like "walk to that spot" or "get that object", a V-Man generates the complete animation required to accomplish the task. V-Men synthesise motion at runtime according to their environment, their task and their physical parameters, drawing upon its unique set of skills manufactured during the character creation. The key to the system is the automated creation of realistic V-Men, not requiring the expertise of an animator. It is based on real human data captured by 3D static and dynamic body scanners, which is then processed to generate firstly animatable body meshes, secondly 3D garments and finally skinned body meshes.

  19. Microbial inactivation of paprika by a high-temperature short-X time treatment. Influence on color properties.

    Science.gov (United States)

    Almela, Luis; Nieto-Sandoval, José M; Fernández López, José A

    2002-03-13

    High-temperature short-time (HTST) treatments have been used to destroy the bioburden of paprika. With this in mind, we have designed a device to treat samples of paprika with a gas whose temperature, pressure, and composition can be selected. Temperatures and treatment times ranged from 130 to 170 degrees C and 4 to 6 s, respectively. The survival of the most commonly found microorganisms in paprika and any alteration in extractable and superficial color were examined. Data showed that the optimum HTST conditions were 145 degrees C, 1.5 kg/cm2 of overpressure, 6 s operation time, and a thermal fluid of saturated steam. No microbial growth was detected during storage after thermal treatment. To minimize the color losses, treated (HTST) paprika samples should be kept under refrigeration.

  20. Technical Note: Deep learning based MRAC using rapid ultra-short echo time imaging.

    Science.gov (United States)

    Jang, Hyungseok; Liu, Fang; Zhao, Gengyan; Bradshaw, Tyler; McMillan, Alan B

    2018-05-15

    In this study, we explore the feasibility of a novel framework for MR-based attenuation correction for PET/MR imaging based on deep learning via convolutional neural networks, which enables fully automated and robust estimation of a pseudo CT image based on ultrashort echo time (UTE), fat, and water images obtained by a rapid MR acquisition. MR images for MRAC are acquired using dual echo ramped hybrid encoding (dRHE), where both UTE and out-of-phase echo images are obtained within a short single acquisition (35 sec). Tissue labeling of air, soft tissue, and bone in the UTE image is accomplished via a deep learning network that was pre-trained with T1-weighted MR images. UTE images are used as input to the network, which was trained using labels derived from co-registered CT images. The tissue labels estimated by deep learning are refined by a conditional random field based correction. The soft tissue labels are further separated into fat and water components using the two-point Dixon method. The estimated bone, air, fat, and water images are then assigned appropriate Hounsfield units, resulting in a pseudo CT image for PET attenuation correction. To evaluate the proposed MRAC method, PET/MR imaging of the head was performed on 8 human subjects, where Dice similarity coefficients of the estimated tissue labels and relative PET errors were evaluated through comparison to a registered CT image. Dice coefficients for air (within the head), soft tissue, and bone labels were 0.76±0.03, 0.96±0.006, and 0.88±0.01. In PET quantification, the proposed MRAC method produced relative PET errors less than 1% within most brain regions. The proposed MRAC method utilizing deep learning with transfer learning and an efficient dRHE acquisition enables reliable PET quantification with accurate and rapid pseudo CT generation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.