WorldWideScience

Sample records for short circuit protected

  1. 30 CFR 75.518 - Electric equipment and circuits; overload and short circuit protection.

    Science.gov (United States)

    2010-07-01

    ... short circuit protection. 75.518 Section 75.518 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.518 Electric equipment and circuits; overload and short circuit protection... installed so as to protect all electric equipment and circuits against short circuit and overloads. Three...

  2. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Science.gov (United States)

    2010-07-01

    ... short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the correct type and capacity shall be installed so as to protect all electric equipment and circuits against short...

  3. 30 CFR 56.12065 - Short circuit and lightning protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit and lightning protection. 56... Electricity § 56.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...

  4. 30 CFR 57.12065 - Short circuit and lightning protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit and lightning protection. 57... MINES Electricity Surface Only § 57.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...

  5. 30 CFR 75.601-1 - Short circuit protection; ratings and settings of circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit protection; ratings and settings... Trailing Cables § 75.601-1 Short circuit protection; ratings and settings of circuit breakers. Circuit breakers providing short circuit protection for trailing cables shall be set so as not to exceed the...

  6. Improved Short-Circuit Protection for Power Cells in Series

    Science.gov (United States)

    Davies, Francis

    2008-01-01

    A scheme for protection against short circuits has been devised for series strings of lithium electrochemical cells that contain built-in short-circuit protection devices, which go into a high-resistance, current-limiting state when heated by excessive current. If cells are simply connected in a long series string to obtain a high voltage and a short circuit occurs, whichever short-circuit protection device trips first is exposed to nearly the full string voltage, which, typically, is large enough to damage the device. Depending on the specific cell design, the damage can defeat the protective function, cause a dangerous internal short circuit in the affected cell, and/or cascade to other cells. In the present scheme, reverse diodes rated at a suitably high current are connected across short series sub-strings, the lengths of which are chosen so that when a short-circuit protection device is tripped, the voltage across it does not exceed its rated voltage. This scheme preserves the resetting properties of the protective devices. It provides for bypassing of cells that fail open and limits cell reversal, though not as well as does the more-expensive scheme of connecting a diode across every cell.

  7. 30 CFR 75.601 - Short circuit protection of trailing cables.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit protection of trailing cables. 75... MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.601 Short circuit protection of trailing cables. [Statutory Provisions] Short circuit protection for trailing cables...

  8. 30 CFR 77.506-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... short circuit protection; minimum requirements. 77.506-1 Section 77.506-1 Mineral Resources MINE SAFETY...-1 Electric equipment and circuits; overload and short circuit protection; minimum requirements. Devices providing either short circuit protection or protection against overload shall conform to the...

  9. 30 CFR 77.600 - Trailing cables; short-circuit protection; disconnecting devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables; short-circuit protection... AREAS OF UNDERGROUND COAL MINES Trailing Cables § 77.600 Trailing cables; short-circuit protection; disconnecting devices. Short-circuit protection for trailing cables shall be provided by an automatic circuit...

  10. 30 CFR 75.518-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and short circuit protection; minimum requirements. 75.518-1 Section 75.518-1 Mineral Resources MINE SAFETY... short circuit protection; minimum requirements. A device to provide either short circuit protection or...

  11. Full Digital Short Circuit Protection for Advanced IGBTs

    OpenAIRE

    谷村, 拓哉; 湯浅, 一史; 大村, 一郎

    2011-01-01

    A full digital short circuit protection method for advanced IGBTs has been proposed and experimentally demonstrated for the first time. The method employs combination of digital circuit, the gate charge sense instead of the conventional sense IGBT and analog circuit configuration. Digital protection scheme has significant advantages in thevprotection speed and flexibility.

  12. Short circuit protection for a power distribution system

    Science.gov (United States)

    Owen, J. R., III

    1969-01-01

    Sensing circuit detects when the output from a matrix is present and when it should be present. The circuit provides short circuit protection for a power distribution system where the selection of the driven load is accomplished by digital logic.

  13. Experimental study on short-circuit characteristics of the new protection circuit of insulated gate bipolar transistor

    International Nuclear Information System (INIS)

    Ji, In-Hwan; Choi, Young-Hwan; Ha, Min-Woo; Han, Min-Koo; Choi, Yearn-Ik

    2006-01-01

    A new protection circuit employing the collector to emitter voltage (V CE ) sensing scheme for short-circuit withstanding capability of the insulated gate bipolar transistor (IGBT) is proposed and verified by experimental results. Because the current path between the gate and collector can be successfully eliminated in the proposed protection circuit, the power consumption can be reduced and the gate input impedance can be increased. Previous study is limited to dc characteristics. However, experimental results show that the proposed protection circuit successfully reduces the over-current of main IGBT by 80.4% under the short-circuit condition

  14. 30 CFR 75.518-2 - Incandescent lamps, overload and short circuit protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Incandescent lamps, overload and short circuit...-General § 75.518-2 Incandescent lamps, overload and short circuit protection. Incandescent lamps installed... or direct current feeder circuits, need not be provided with separate short circuit or overload...

  15. 30 CFR 75.601-2 - Short circuit protection; use of fuses; approval by the Secretary.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit protection; use of fuses... Trailing Cables § 75.601-2 Short circuit protection; use of fuses; approval by the Secretary. Fuses shall not be employed to provide short circuit protection for trailing cables unless specifically approved...

  16. 30 CFR 75.601-3 - Short circuit protection; dual element fuses; current ratings; maximum values.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit protection; dual element fuses... Trailing Cables § 75.601-3 Short circuit protection; dual element fuses; current ratings; maximum values. Dual element fuses having adequate current-interrupting capacity shall meet the requirements for short...

  17. Short-circuit protection of LLC resonant converter using voltages across resonant tank elements

    Directory of Open Access Journals (Sweden)

    Denys Igorovych Zaikin

    2015-06-01

    Full Text Available This paper describes two methods for the short-circuit protection of the LLC resonant converter. One of them uses the voltage across the capacitor and the other uses the voltage across the inductor of the resonant tank. These voltages can be processed (integrated or differentiated to recover the resonant tank current. The two circuits illustrated in the described methods make it possible to develop a robust LLC converter design and to avoid using lossy current measurement elements, such as a shunt resistor or current transformer. The methods also allow measuring resonant tank current without breaking high-current paths and connecting the measuring circuit in parallel with the inductor or capacitor of the resonant tank. Practical implementations of these indirect current measurements have been experimentally tested for the short-circuit protection of the 1600 W LLC converter.

  18. Utilisation of symmetrical components in a communication-based protection for loop MV feeders with variable short-circuit power

    DEFF Research Database (Denmark)

    Ciontea, Catalin-Iosif; Bak, Claus Leth; Blaabjerg, Frede

    2018-01-01

    -circuit power is presented. It relies on utilisation of symmetrical components of the short-circuit currents and on communication between the protection relays. The proposed method addresses the Single Phase to Ground (SPG) faults occurring in directly grounded distribution networks, with focus on closed......Variability of the available short-circuit power also implies variation of the fault level, which can potentially cause several protection problems in the electric networks. In this paper, a novel protection method that is insensitive to the fault level changes caused by variable short......-loop Medium Voltage (MV) feeders. Case studies are presented, which demonstrate that the proposed protection scheme is capable of effectively detecting the SPG faults in closed-loop feeders with variable short-circuit power....

  19. Development of internal/external short circuit protection for lithium D cells

    Science.gov (United States)

    Mcdonald, Robert C.; Bragg, Bobby J.

    1992-01-01

    A brief discussion of short circuit protection for lithium D cells is given in viewgraph format. The following topics are presented: (1) historical need; (2) program objectives; (3) composite thermal switch (CTS) development; (4) laboratory cells with CTS; and (5) the incorporation of CTS into lithium D cells.

  20. Fast-responding short circuit protection system with self-reset for use in circuit supplied by DC power

    Science.gov (United States)

    Burns, Bradley M. (Inventor); Blalock, Norman N. (Inventor)

    2011-01-01

    A short circuit protection system includes an inductor, a switch, a voltage sensing circuit, and a controller. The switch and inductor are electrically coupled to be in series with one another. A voltage sensing circuit is coupled across the switch and the inductor. A controller, coupled to the voltage sensing circuit and the switch, opens the switch when a voltage at the output terminal of the inductor transitions from above a threshold voltage to below the threshold voltage. The controller closes the switch when the voltage at the output terminal of the inductor transitions from below the threshold voltage to above the threshold voltage.

  1. The principle of elaboration of the relay protection against short circuits between the closely placed phases of high voltage electrical line

    Directory of Open Access Journals (Sweden)

    Kiorsak M.

    2015-12-01

    Full Text Available The article is devoted to the elaboration of the principle of relay protection against short circuits between the closely placed phases of higher voltage electrical line with self-compensation, based on the six phase’s symmetrical components. It is shown that the unsymmetrical short circuits between the closely placed phases are characterized by appearance of zero and tertiary sequences of symmetrical components. This fact can be used to choose them for relay protection. The electrical basic circuits and formulas for calculation of the passive parameters of zero and tertiary filters of currents (voltages are done. It is presented the structural-functional basic circuit scheme for relay protection against short circuits between the closely placed phases of higher voltage electrical line with self-compensation.

  2. Electrical short circuit and current overload tests on aircraft wiring

    Science.gov (United States)

    Cahill, Patricia

    1995-01-01

    The findings of electrical short circuit and current overload tests performed on commercial aircraft wiring are presented. A series of bench-scale tests were conducted to evaluate circuit breaker response to overcurrent and to determine if the wire showed any visible signs of thermal degradation due to overcurrent. Three types of wire used in commercial aircraft were evaluated: MIL-W-22759/34 (150 C rated), MIL-W-81381/12 (200 C rated), and BMS 1360 (260 C rated). A second series of tests evaluated circuit breaker response to short circuits and ticking faults. These tests were also meant to determine if the three test wires behaved differently under these conditions and if a short circuit or ticking fault could start a fire. It is concluded that circuit breakers provided reliable overcurrent protection. Circuit breakers may not protect wire from ticking faults but can protect wire from direct shorts. These tests indicated that the appearance of a wire subjected to a current that totally degrades the insulation looks identical to a wire subjected to a fire; however the 'fire exposed' conductor was more brittle than the conductor degraded by overcurrent. Preliminary testing indicates that direct short circuits are not likely to start a fire. Preliminary testing indicated that direct short circuits do not erode insulation and conductor to the extent that ticking faults did. Circuit breakers may not safeguard against the ignition of flammable materials by ticking faults. The flammability of materials near ticking faults is far more important than the rating of the wire insulation material.

  3. Short- circuit tests of circuit breakers

    OpenAIRE

    Chorovský, P.

    2015-01-01

    This paper deals with short-circuit tests of low voltage electrical devices. In the first part of this paper, there are described basic types of short- circuit tests and their principles. Direct and indirect (synthetic) tests with more details are described in the second part. Each test and principles are explained separately. Oscilogram is obtained from short-circuit tests of circuit breakers at laboratory. The aim of this research work is to propose a test circuit for performing indirect test.

  4. Short-circuit logic

    NARCIS (Netherlands)

    Bergstra, J.A.; Ponse, A.

    2010-01-01

    Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is only evaluated if the first argument does not suffice to determine the value of the expression. In programming, short-circuit evaluation is widely used. A short-circuit logic is a variant of

  5. [Shunt and short circuit].

    Science.gov (United States)

    Rangel-Abundis, Alberto

    2006-01-01

    Shunt and short circuit are antonyms. In French, the term shunt has been adopted to denote the alternative pathway of blood flow. However, in French, as well as in Spanish, the word short circuit (court-circuit and cortocircuito) is synonymous with shunt, giving rise to a linguistic and scientific inconsistency. Scientific because shunt and short circuit made reference to a phenomenon that occurs in the field of the physics. Because shunt and short circuit are antonyms, it is necessary to clarify that shunt is an alternative pathway of flow from a net of high resistance to a net of low resistance, maintaining the stream. Short circuit is the interruption of the flow, because a high resistance impeaches the flood. This concept is applied to electrical and cardiovascular physiology, as well as to the metabolic pathways.

  6. Short-Circuit Degradation of 10-kV 10-A SiC MOSFET

    DEFF Research Database (Denmark)

    Eni, Emanuel-Petre; Beczkowski, Szymon; Munk-Nielsen, Stig

    2017-01-01

    The short-circuit behavior of power devices is highly relevant for converter design and fault protection. In this work, the degradation during short-circuit of a 10 kV 10 A 4H-SiC MOSFET is investigated at 6 kV DC-link voltage. The study aims to present the behavior of the device during short-circuit...... transients as it sustains increasing short-circuit pulses during its life-time. As the short-circuit pulse length increases, degradation of the device can be observed in periodically performed characterizations. The initial degradation seems to be associated with the channel region, and continuous stressing...

  7. Short Circuits of a 10 MW High Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2016-01-01

    Direct drive high temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits happen...... at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator’s equivalent circuits is developed to simulate short circuit faults. Afterwards, the model is used to study the transient performance of a 10 MW HTS wind turbine generator under four different short...... that the short circuits pose great challenges to the generator, and careful consideration should be given to protect the generator. The results presented in this paper would be beneficial to the design, operation and protection of an HTS wind turbine generator....

  8. A method of increasing the sensitivity of protection from single-phase short-circuits to ground in the 6 – 10 kV network

    International Nuclear Information System (INIS)

    Manilov, A. M.; Mel’nik, D. A.

    2012-01-01

    A method of increasing the sensitivity of protection from single-phase short-circuits to ground by acting on the signal with brief dummy grounding of the neutral is described. After determining the damage, the neutral is again grounded through a high resistance and an arc-quenching reactor. An increase in the protection sensitivity is thereby obtained, the damage detection time is shortened, and the probability of the single-phase short-circuit to ground converting into double and multipoint earth faults is reduced.

  9. Short Circuits of a 10-MW High-Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2017-01-01

    Direct Drive high-temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits take...... place at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator's equivalent circuits is developed to simulate short-circuit faults. Afterward, the model is used to study the transient performance of a 10-MW HTS wind turbine generator under four...... show that the short circuits pose great challenges to the generator, and careful consideration should be given to protect the generator. The findings presented in this paper would be beneficial to the design, operation and protection of an HTS wind turbine generator....

  10. Detecting short circuits during assembly

    Science.gov (United States)

    Deboo, G. J.

    1980-01-01

    Detector circuit identifies shorts between bus bars of electronic equipment being wired. Detector sounds alarm and indicates which planes are shorted. Power and ground bus bars are scanned continuously until short circuit occurs.

  11. Short-circuit impedance measurement

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad

    2003-01-01

    Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...

  12. Three-phase short circuit calculation method based on pre-computed surface for doubly fed induction generator

    Science.gov (United States)

    Ma, J.; Liu, Q.

    2018-02-01

    This paper presents an improved short circuit calculation method, based on pre-computed surface to determine the short circuit current of a distribution system with multiple doubly fed induction generators (DFIGs). The short circuit current, injected into power grid by DFIG, is determined by low voltage ride through (LVRT) control and protection under grid fault. However, the existing methods are difficult to calculate the short circuit current of DFIG in engineering practice due to its complexity. A short circuit calculation method, based on pre-computed surface, was proposed by developing the surface of short circuit current changing with the calculating impedance and the open circuit voltage. And the short circuit currents were derived by taking into account the rotor excitation and crowbar activation time. Finally, the pre-computed surfaces of short circuit current at different time were established, and the procedure of DFIG short circuit calculation considering its LVRT was designed. The correctness of proposed method was verified by simulation.

  13. Short circuit in deep brain stimulation.

    Science.gov (United States)

    Samura, Kazuhiro; Miyagi, Yasushi; Okamoto, Tsuyoshi; Hayami, Takehito; Kishimoto, Junji; Katano, Mitsuo; Kamikaseda, Kazufumi

    2012-11-01

    The authors undertook this study to investigate the incidence, cause, and clinical influence of short circuits in patients treated with deep brain stimulation (DBS). After the incidental identification of a short circuit during routine follow-up, the authors initiated a policy at their institution of routinely evaluating both therapeutic impedance and system impendence at every outpatient DBS follow-up visit, irrespective of the presence of symptoms suggesting possible system malfunction. This study represents a report of their findings after 1 year of this policy. Implanted DBS leads exhibiting short circuits were identified in 7 patients (8.9% of the patients seen for outpatient follow-up examinations during the 12-month study period). The mean duration from DBS lead implantation to the discovery of the short circuit was 64.7 months. The symptoms revealing short circuits included the wearing off of therapeutic effect, apraxia of eyelid opening, or dysarthria in 6 patients with Parkinson disease (PD), and dystonia deterioration in 1 patient with generalized dystonia. All DBS leads with short circuits had been anchored to the cranium using titanium miniplates. Altering electrode settings resulted in clinical improvement in the 2 PD cases in which patients had specific symptoms of short circuits (2.5%) but not in the other 4 cases. The patient with dystonia underwent repositioning and replacement of a lead because the previous lead was located too anteriorly, but did not experience symptom improvement. In contrast to the sudden loss of clinical efficacy of DBS caused by an open circuit, short circuits may arise due to a gradual decrease in impedance, causing the insidious development of neurological symptoms via limited or extended potential fields as well as shortened battery longevity. The incidence of short circuits in DBS may be higher than previously thought, especially in cases in which DBS leads are anchored with miniplates. The circuit impedance of DBS

  14. In-situ short-circuit protection system and method for high-energy electrochemical cells

    Science.gov (United States)

    Gauthier, Michel; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Rouillard, Jean; Rouillard, Roger; Shiota, Toshimi; Trice, Jennifer L.

    2003-04-15

    An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

  15. In-situ short circuit protection system and method for high-energy electrochemical cells

    Science.gov (United States)

    Gauthier, Michel; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Rouillard, Jean; Rouillard, Roger; Shiota, Toshimi; Trice, Jennifer L.

    2000-01-01

    An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

  16. Cell short circuit, preshort signature

    Science.gov (United States)

    Lurie, C.

    1980-01-01

    Short-circuit events observed in ground test simulations of DSCS-3 battery in-orbit operations are analyzed. Voltage signatures appearing in the data preceding the short-circuit event are evaluated. The ground test simulation is briefly described along with performance during reconditioning discharges. Results suggest that a characteristic signature develops prior to a shorting event.

  17. Worst Asymmetrical Short-Circuit Current

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holmstrøm, O; Grastrup, L

    2010-01-01

    In a typical power plant, the production scenario and the short-circuit time were found for the worst asymmetrical short-circuit current. Then, a sensitivity analysis on the missing generator values was realized in order to minimize the uncertainty of the results. Afterward the worst asymmetrical...

  18. Tester Detects Steady-Short Or Intermittent-Open Circuits

    Science.gov (United States)

    Anderson, Bobby L.

    1990-01-01

    Momentary open circuits or steady short circuits trigger buzzer. Simple, portable, lightweight testing circuit sounds long-duration alarm when it detects steady short circuit or momentary open circuit in coaxial cable or other two-conductor transmission line. Tester sensitive to discontinuities lasting 10 microseconds or longer. Used extensively for detecting intermittent open shorts in accelerometer and extensometer cables. Also used as ordinary buzzer-type continuity checker to detect steady short or open circuits.

  19. Automatic location of short circuit faults

    Energy Technology Data Exchange (ETDEWEB)

    Lehtonen, M. [VTT Energy, Espoo (Finland); Hakola, T.; Antila, E. [ABB Power Oy, Helsinki (Finland); Seppaenen, M. [North-Carelian Power Company (Finland)

    1996-12-31

    In this presentation, the automatic location of short circuit faults on medium voltage distribution lines, based on the integration of computer systems of medium voltage distribution network automation is discussed. First the distribution data management systems and their interface with the substation telecontrol, or SCADA systems, is studied. Then the integration of substation telecontrol system and computerised relay protection is discussed. Finally, the implementation of the fault location system is presented and the practical experience with the system is discussed

  20. Automatic location of short circuit faults

    Energy Technology Data Exchange (ETDEWEB)

    Lehtonen, M [VTT Energy, Espoo (Finland); Hakola, T; Antila, E [ABB Power Oy (Finland); Seppaenen, M [North-Carelian Power Company (Finland)

    1998-08-01

    In this chapter, the automatic location of short circuit faults on medium voltage distribution lines, based on the integration of computer systems of medium voltage distribution network automation is discussed. First the distribution data management systems and their interface with the substation telecontrol, or SCADA systems, is studied. Then the integration of substation telecontrol system and computerized relay protection is discussed. Finally, the implementation of the fault location system is presented and the practical experience with the system is discussed

  1. Automatic location of short circuit faults

    Energy Technology Data Exchange (ETDEWEB)

    Lehtonen, M [VTT Energy, Espoo (Finland); Hakola, T; Antila, E [ABB Power Oy, Helsinki (Finland); Seppaenen, M [North-Carelian Power Company (Finland)

    1997-12-31

    In this presentation, the automatic location of short circuit faults on medium voltage distribution lines, based on the integration of computer systems of medium voltage distribution network automation is discussed. First the distribution data management systems and their interface with the substation telecontrol, or SCADA systems, is studied. Then the integration of substation telecontrol system and computerised relay protection is discussed. Finally, the implementation of the fault location system is presented and the practical experience with the system is discussed

  2. Short-Circuit Characterization of 10 kV 10A 4H-SiC MOSFET

    DEFF Research Database (Denmark)

    Eni, Emanuel-Petre; Beczkowski, Szymon; Munk-Nielsen, Stig

    2016-01-01

    The short-circuit capability of a power device is highly relevant for converter design and fault protection. In this paper a 10kV 10A 4H-SiC MOSFET is characterized and its short circuit withstand capability is studied and analyzed at 6 kV DC-link voltage. The test setup for this study is also...... introduced as its design, especially the inductance in the switching loop, can affect the experimental results. The study aims to present insights specific to the device which are different from that of silicon (Si) based devices. During the short-circuit operation, MOSFET saturation current, ID...

  3. Transient analysis of the output short-circuit fault of high power and high voltage DC power supply

    International Nuclear Information System (INIS)

    Yang Zhigang; Zhang Jian; Huang Yiyun; Hao Xu; Sun Haozhang; Guo Fei

    2014-01-01

    The transient conditions of output short-circuit fault of high voltage DC power supply was introduced, and the energy of power supply injecting into klystron during the protection process of three-electrode gas switch were analyzed and calculated in detail when klystron load happening electrode arc faults. The results of calculation and simulation are consistent with the results of the experiment. When the output short-circuit fault of high voltage power supply occurs, switch can be shut off in the microsecond, and the short circuit current can be controlled in 200 A. It has verified the rapidity and reliability of the three-electrode gas switch protection, and it has engineering application value. (authors)

  4. Unstable behaviour of normally-off GaN E-HEMT under short-circuit

    Science.gov (United States)

    Martínez, P. J.; Maset, E.; Sanchis-Kilders, E.; Esteve, V.; Jordán, J.; Bta Ejea, J.; Ferreres, A.

    2018-04-01

    The short-circuit capability of power switching devices plays an important role in fault detection and the protection of power circuits. In this work, an experimental study on the short-circuit (SC) capability of commercial 600 V Gallium Nitride enhancement-mode high-electron-mobility transistors (E-HEMT) is presented. A different failure mechanism has been identified for commercial p-doped GaN gate (p-GaN) HEMT and metal-insulator-semiconductor (MIS) HEMT. In addition to the well known thermal breakdown, a premature breakdown is shown on both GaN HEMTs, triggered by hot electron trapping at the surface, which demonstrates that current commercial GaN HEMTs has requirements for improving their SC ruggedness.

  5. The Short Circuit Model of Reading.

    Science.gov (United States)

    Lueers, Nancy M.

    The name "short circuit" has been given to this model because, in many ways, it adequately describes what happens bioelectrically in the brain. The "short-circuiting" factors include linguistic, sociocultural, attitudinal and motivational, neurological, perceptual, and cognitive factors. Research is reviewed on ways in which each one affects any…

  6. SITE WIDE SHORT CIRCUIT STUDY ASSESSMENT

    International Nuclear Information System (INIS)

    CARRATT, R.T.

    2004-01-01

    The Department of Energy requested that Fluor Hanford develop a plan to update the electrical distribution studies for FH managed facilities. Toward this end, an assessment of FH's nuclear facilities was performed to determine whether a current short circuit study of the facility electrical distribution system exists, and the status of such study. This report presents the methodology and results of that assessment. The assessment identified 29 relevant facilities. Of these, a short circuit study could not be identified for 15 facilities. A short circuit study was found to exist for fourteen facilities, however, of these 14, four were not released into a controlled document system, and two were not performed for the entire electrical distribution system. It is recommended that for four of the facilities no further action is required based upon the limited nature of the existing electrical system, or as in the case of PFP, the status of the existing short circuit study was determined adequate. For the majority of the facilities without a short circuit study, it is recommended that one is performed, and released into a controlled document system. Two facilities require further evaluation due to missing or conflicting documentation. For the remainder of the facilities, the recommendations are to review and revise as appropriate the existing study, and release into a controlled document system. A summation of the recommendations is presented

  7. Estimating the short-circuit impedance

    DEFF Research Database (Denmark)

    Nielsen, Arne Hejde; Pedersen, Knud Ole Helgesen; Poulsen, Niels Kjølstad

    1997-01-01

    A method for establishing a complex value of the short-circuit impedance from naturally occurring variations in voltage and current is discussed. It is the symmetrical three phase impedance at the fundamental grid frequency there is looked for. The positive sequence components in voltage...... and current are derived each period, and the short-circuit impedance is estimated from variations in these components created by load changes in the grid. Due to the noisy and dynamic grid with high harmonic distortion it is necessary to threat the calculated values statistical. This is done recursively...... through a RLS-algorithm. The algorithms have been tested and implemented on a PC at a 132 kV substation supplying a rolling mill. Knowing the short-circuit impedance gives the rolling mill an opportunity to adjust the arc furnace operation to keep flicker below a certain level. Therefore, the PC performs...

  8. Short-Circuit Current Analysis for DFIG Wind Farm Considering the Action of a Crowbar

    OpenAIRE

    Yan Hong Yuan; Feng Wu

    2018-01-01

    With the increasing capacity of wind farms integrated into the power grid, the short-circuit current analysis for wind farms becomes more and more important. Since the wind turbine is usually integrated into the power grid via power electronic devices, the “crowbar” is installed in the wind turbine to protect the power electronic devices and to improve the fault ride through capability. The impact of the crowbar has to be considered during the short-circuit current analysis for the wind farm....

  9. Synchronous Condenser Allocation for Improving System Short Circuit Ratio

    DEFF Research Database (Denmark)

    Jia, Jundi; Yang, Guangya; Nielsen, Arne Hejde

    2018-01-01

    With converter-based renewable energy sources increasingly integrated into power systems and conventional power plants gradually phased out, future power systems will experience reduced short circuit strength. The deployment of synchronous condensers can serve as a potential solution. This paper...... presents an optimal synchronous condenser allocation method for improving system short circuit ratio at converter point of common coupling using a modified short circuit analysis approach. The total cost of installing new synchronous condensers is minimized while the system short circuit ratios...

  10. Short-Circuit Current Analysis for DFIG Wind Farm Considering the Action of a Crowbar

    Directory of Open Access Journals (Sweden)

    Yan Hong Yuan

    2018-02-01

    Full Text Available With the increasing capacity of wind farms integrated into the power grid, the short-circuit current analysis for wind farms becomes more and more important. Since the wind turbine is usually integrated into the power grid via power electronic devices, the “crowbar” is installed in the wind turbine to protect the power electronic devices and to improve the fault ride through capability. The impact of the crowbar has to be considered during the short-circuit current analysis for the wind farm. In order to fully analyze the short-circuit current characteristics of a wind farm, the short-circuit currents for a doubly-fed induction generator (DFIG wind turbine under symmetrical and asymmetrical faults considering the crowbar action characteristic are derived firstly. Then the action situation of the crowbar of a DFIG wind turbine is studied and the action area curve is obtained. Taking the crowbar action, or not, as the grouping criterion, wind turbines in the wind farm are divided into two groups, and the wind farm is aggregated into two equivalent wind turbines. Using the equivalent model, the short-circuit current of a wind farm can be calculated accurately. Finally, simulations are performed in MATLAB/Simulink which is the commercial math software produced by the MathWorks company in Natick, Massachusetts, the United States to verify the proposed short-circuit current calculation method for the DFIG wind farm.

  11. Thyristor based short circuit current injection in isolated grids

    OpenAIRE

    Hoff, Bjarte; Sharma, Pawan; Østrem, Trond

    2017-01-01

    This paper proposes a thyristor based short circuit current injector for providing short circuit current in isolated and weak grids, where sufficient fault current to trigger circuit breakers may not be available. This will allow the use of conventional miniature circuit breakers, which requires high fault current for instantaneous tripping. The method has been validated through experiments.

  12. Short-circuited coil in a solenoid circuit of a pulse magnetic field

    International Nuclear Information System (INIS)

    Kivshik, A.F.; Dubrovin, V.Yu.

    1976-01-01

    A short-circuited coil at the end of a long pulse solenoid attenuates the dissipation field by 3-5 times. A plug-configuration field is set up in the middle portion of the pulse solenoid incorporating the short-circuited coils. Shunting of the coils with the induction current by resistor Rsub(shunt) provides for the adjustment of the plug ratio γ

  13. Transient Analysis of Grid-Connected Wind Turbines with DFIG After an External Short-Circuit Fault

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2004-01-01

    The fast development of wind power generation brings new requirements for wind turbine integration to the network. After the clearance of an external short-circuit fault, the grid-connected wind turbine should restore its normal operation with minimized power losses. This paper concentrates...... on transient analysis of variable speed wind turbines with doubly fed induction generator (DFIG) after an external short-circuit fault. A simulation model of a MW-level variable speed wind turbine with DFIG developed in PSCAD/EMTDC is presented, and the control and protection schemes are described in detail....... After the clearance of an external short-circuit fault the control schemes manage to restore the wind turbine?s normal operation, and their performances are demonstrated by simulation results both during the fault and after the clearance of the fault....

  14. Three-Phase Short-Circuit Current Calculation of Power Systems with High Penetration of VSC-Based Renewable Energy

    Directory of Open Access Journals (Sweden)

    Niancheng Zhou

    2018-03-01

    Full Text Available Short-circuit current level of power grid will be increased with high penetration of VSC-based renewable energy, and a strong coupling between transient fault process and control strategy will change the fault features. The full current expression of VSC-based renewable energy was obtained according to transient characteristics of short-circuit current. Furtherly, by analyzing the closed-loop transfer function model of controller and current source characteristics presented in steady state during a fault, equivalent circuits of VSC-based renewable energy of fault transient state and steady state were proposed, respectively. Then the correctness of the theory was verified by experimental tests. In addition, for power grid with VSC-based renewable energy, superposition theorem was used to calculate AC component and DC component of short-circuit current, respectively, then the peak value of short-circuit current was evaluated effectively. The calculated results could be used for grid planning and design, short-circuit current management as well as adjustment of relay protection. Based on comparing calculation and simulation results of 6-node 500 kV Huainan power grid and 35-node 220 kV Huaisu power grid, the effectiveness of the proposed method was verified.

  15. TCAD analysis of short-circuit oscillations in IGBTs

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Rahimo, Munaf

    2017-01-01

    Insulated-Gate Bipolar Transistors (IGBTs) exhibit a gate-voltage oscillation phenomenon during short-circuit, which can result in a gate-oxide breakdown. The oscillations have been investigated through device simulations and experimental investigations of a 3.3-kV IGBT. It has been found...... during short circuit....

  16. Analysis of the impact of connecting a larger number of small hydroelectric power plants to the short-circuit currents values and relay protection system of distribution network

    Directory of Open Access Journals (Sweden)

    Sučević Nikola

    2017-01-01

    Full Text Available In this paper the influence of a large number of small hydro power plants on the short-circuit currents is analysed, as well as the operation of the relay protection system within the real distribution network in Serbia. The necessary modification of the existing protection functions, as well as the implementation of the new proposed protection functions, are presented and discussed. Network modeling and analysis are performed using the program tool DIgSILENT PowerFactory.

  17. Short-circuit experiments on a high Tc-superconducting cable conductor

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Jensen, E.H.; Traholt, C.

    2002-01-01

    A high temperature superconductor (HTS) cable conductor (CC) with a critical current of 2.1 kA was tested over a range of short-circuit currents up to 20 kA. The duration of the short-circuit currents is 1 s. Between each short-circuit test the critical current of the HTS CC was measured in order...

  18. High performance protection circuit for power electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Tudoran, Cristian D., E-mail: cristian.tudoran@itim-cj.ro; Dădârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, PO 5 Box 700, 400293 Cluj-Napoca (Romania)

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  19. THE RELIABILITY OF DETERMINING THE SHORT CIRCUIT ZONE OF THE LINES OF 6–35 kV

    Directory of Open Access Journals (Sweden)

    F. А. Romaniuk

    2018-01-01

    Full Text Available A method of increasing the reliability of determining the zone of short-circuit at the current step protection of the lines of 6–35 kV with unilateral power, aimed at improvement of their technical perfection, is presented in the paper. Having taken the relative simpleness of the current protection into account the authors consider the unilateral remote method of accounting the parameters of the emergency mode and the type of fault to be the most suitable for the implementation of the algorithm of its functioning as compared with the existing methods of fault location. The major factors affecting the accuracy of determining the short circuit zone based on the remote method are noted. With the use of the method of computational experiment the influence of the load currents and contact resistances of various levels on the magnitude and character of changes of errors of determination of the calculated distance of the point of fault from the protection installation location taking into account the errors of measuring transformers. It is demonstrated that in many cases of arc short circuit in a loaded line in order to define the zone of short-circuit with fair accuracy correction of the estimated distance to the fault as calculated by the parameters of the damaged loop (loops is required. According to the results of numerical experiments corrective expressions on the basis of two relative asymmetry currents determined by the current values of the differences of the phase currents of the line for detecting a type of a short circuit have been obtained. The assessment of the efficiency of the proposed method has been performed. It is shown that the application of the proposed correction method makes it possible to increase the accuracy of fault zone detection. The dynamic properties of the proposed method applied to different modes of the line functioning have been studied. It is determined that in the worst case the definition of the fault zone for a

  20. Method of repair of short circuits for in-situ leaching

    International Nuclear Information System (INIS)

    Baughman, D.R.; Bergeson, J.R.

    1984-01-01

    In an acidic in-situ leaching system, a short circuit passage through a subterranean formation between a fracture associated with an injection well and a fracture associated with a production well can be plugged by introducing a non-acidic liquid for displacing acidic leach liquid from the short circuit passage, introducing into the injection well a basic composition including a sealing material that gels under acidic conditions, and introducing sufficient liquid into the injection well to displace at least a portion of the basic composition containing sealing material from the injection well into the short circuit passage. Liquid flow between the injection well and the production well is then discontinued for a sufficient time for residual acid in the subterranean formation surrounding the short circuit passage to contact the sealing material and cause gelation of the sealing material in the short circuit passage. The introduction of acidic leach liquid to the formation can then continue. The sealing material may be a polymer or a water soluble silicate

  1. Distance protection of multiple-circuit shared tower transmission lines with different voltages

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    combined faults, being advised to increase the resistive limit of the protection zone, if the network has lower short-circuit power. It is recommended to assure that the fault can only happen for cases where the faulted phase from the higher voltage level leads the faulted phase from the lower voltage......Multiple-circuit transmission lines combining different voltage levels in one tower present extra challenges when setting a protection philosophy, as faults between voltage levels are possible. In this study, the fault loop impedance of combined faults is compared with the fault loop impedance......-phase-to-ground faults. It is also demonstrated that the fault loop impedance of combined faults is more resistive, when compared with equivalent single-phase-to-ground faults. It is concluded that the settings used to protect a line against single-phase-to-ground faults are capable of protecting the line against...

  2. Short-Circuit Modeling of a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Gevorgian, V.

    2011-03-01

    This paper investigates the short-circuit behavior of a WPP for different types of wind turbines. The short-circuit behavior will be presented. Both the simplified models and detailed models are used in the simulations and both symmetrical faults and unsymmetrical faults are discussed.

  3. The short-circuit test results of 6.9 kV/2.3 kV 400 kVA-class YBCO model transformer

    International Nuclear Information System (INIS)

    Tomioka, A.; Otonari, T.; Ogata, T.; Iwakuma, M.; Okamoto, H.; Hayashi, H.; Iijima, Y.; Saito, T.; Gosho, Y.; Tanabe, K.; Izumi, T.; Shiohara, Y.

    2011-01-01

    The 6.9 kV/2.3 kV 400 kVA-class single-phase YBCO model transformer with the YBCO tape with copper tape was manufactured for short-circuit current test. Short-circuit test was performed and the short-circuit current of primary winding was 346 A which was about six times larger than the rated current. The I-V characteristics of the winding did not change before and after the test. The transformer withstood short-circuit current. We are planning to turn the result into a consideration of a 66 kV/6.9 kV-20 MVA-class three-phase superconducting transformer. We are developing an elemental technology for 66 kV/6.9 kV 20 MVA-class power transformer with YBCO conductors. The protection of short-circuit technology is one of the elemental technologies for HTS transformer. Since short-circuit current is much higher than critical current of YBCO tape, there is a possibility that superconducting characteristics may be damaged during short-circuit period. We made a conductor to compose the YBCO tape with copper tape. We manufactured 6.9 kV/2.3 kV 400 kVA-class YBCO model transformer using this conductor and performed short-circuit current test. The short-circuit current of primary winding was 346 A which was about six times larger than the rated current. The I-V characteristics of the winding did not change before and after the test. We may consider this conductor withstands short-circuit current.

  4. Short circuit experiment on an FCL coil wound with YBCO tape with a high-resistance stabilizing layer

    Energy Technology Data Exchange (ETDEWEB)

    Yazawa, T; Iijima, Y; Saito, T [Toshiba Corporation, Fujikura Ltd (Japan); Amemiya, N [Toshiba Corporation, Yokohama National University (Japan); Shiohara, Y [Toshiba Corporation, ISTEC SRL (Japan); Koyanagi, K; Ono, M; Urata, M, E-mail: takashi.yazawa@toshiba.co.jp

    2008-02-15

    One of the programs in the Ministry of Economy, Trade and Industry regarding R and D for developing YBCO conductors is to evaluate the suitability of the conductors in several applications. This paper focuses on one of the expected power applications, namely, a fault current limiter (FCL). YBCO tape conductors with ion beam assisted deposition (IBAD) substrates are used in this work. In order to increase the resistivity of the conductor, which is preferable for FCL applications, the thickness of a protective layer made of silver was decreased as much as possible. After obtaining the required current limiting performance in short sample experiments, a model coil was developed aiming at 6.6 kV-class FCLs. Short circuit experiments were conducted with a short-circuit generator. The coil successfully suppressed a short-circuit current of over 1.4 kA to about 500 A under an applied voltage of 3.8 kV, which is the nominal phase-to-ground voltage. The coil also suppressed a short-circuit current of 17 kA down to 700 A. The experimental results are as expected and show promise toward FCL applications.

  5. Short circuit experiment on an FCL coil wound with YBCO tape with a high-resistance stabilizing layer

    International Nuclear Information System (INIS)

    Yazawa, T; Iijima, Y; Saito, T; Amemiya, N; Shiohara, Y; Koyanagi, K; Ono, M; Urata, M

    2008-01-01

    One of the programs in the Ministry of Economy, Trade and Industry regarding R and D for developing YBCO conductors is to evaluate the suitability of the conductors in several applications. This paper focuses on one of the expected power applications, namely, a fault current limiter (FCL). YBCO tape conductors with ion beam assisted deposition (IBAD) substrates are used in this work. In order to increase the resistivity of the conductor, which is preferable for FCL applications, the thickness of a protective layer made of silver was decreased as much as possible. After obtaining the required current limiting performance in short sample experiments, a model coil was developed aiming at 6.6 kV-class FCLs. Short circuit experiments were conducted with a short-circuit generator. The coil successfully suppressed a short-circuit current of over 1.4 kA to about 500 A under an applied voltage of 3.8 kV, which is the nominal phase-to-ground voltage. The coil also suppressed a short-circuit current of 17 kA down to 700 A. The experimental results are as expected and show promise toward FCL applications

  6. Detection Method for Soft Internal Short Circuit in Lithium-Ion Battery Pack by Extracting Open Circuit Voltage of Faulted Cell

    Directory of Open Access Journals (Sweden)

    Minhwan Seo

    2018-06-01

    Full Text Available Early detection of internal short circuit which is main cause of thermal runaway in a lithium-ion battery is necessary to ensure battery safety for users. As a promising fault index, internal short circuit resistance can directly represent degree of the fault because it describes self-discharge phenomenon caused by the internal short circuit clearly. However, when voltages of individual cells in a lithium-ion battery pack are not provided, the effect of internal short circuit in the battery pack is not readily observed in whole terminal voltage of the pack, leading to difficulty in estimating accurate internal short circuit resistance. In this paper, estimating the resistance with the whole terminal voltages and the load currents of the pack, a detection method for the soft internal short circuit in the pack is proposed. Open circuit voltage of a faulted cell in the pack is extracted to reflect the self-discharge phenomenon obviously; this process yields accurate estimates of the resistance. The proposed method is verified with various soft short conditions in both simulations and experiments. The error of estimated resistance does not exceed 31.2% in the experiment, thereby enabling the battery management system to detect the internal short circuit early.

  7. Design of a High Performance Green-Mode PWM Controller IC with Smart Sensing Protection Circuits

    Directory of Open Access Journals (Sweden)

    Shen-Li Chen

    2014-08-01

    Full Text Available A design of high performance green-mode pulse-width-modulation (PWM controller IC with smart sensing protection circuits for the application of lithium-ion battery charger (1.52 V ~ 7.5 V is investigated in this paper. The protection circuits architecture of this system mainly bases on the lithium battery function and does for the system design standard of control circuit. In this work, the PWM controller will be with an automatic load sensing and judges the system operated in the operating mode or in the standby mode. Therefore, it reduces system’s power dissipation effectively and achieves the saving power target. In the same time, many protection sensing circuits such as: (1 over current protection (OCP and under current protection (UCP, (2 over voltage protection (OVP and under voltage protection (UVP, (3 loading determintion and short circuit protection (SCP, (4 over temperature protection (OTP, (5 VDD surge-spiking protection are included. Then, it has the characteristics of an effective monitoring the output loading and the harm prevention as a battery charging. Eventually, this green-mode pulse-width-modulation (PWM controller IC will be that the operation voltage is 3.3 V, the operation frequency is 0.98 MHz, and the output current range is from 454 mA to 500 mA. Meanwhile, the output convert efficiency is range from 74.8 % to 91 %, the power dissipation efficiency in green-mode is 25 %, and the operation temperature range is between -20 0C ~ 114 0C.

  8. Distance protection of multiple-circuit shared tower transmission lines with different voltages

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    Multiple-circuit transmission lines combining different voltage levels in one tower present extra challenges when setting a protection philosophy, as faults between voltage levels are possible. This study presents a detailed theoretical analysis of such combined faults, including the development...... of a formula for estimating the magnitude of the short-circuit current. It is demonstrated that if the faulted phase from the higher voltage level leads the faulted phase from the lower voltage level, a distance relay at the higher voltage level sees the fault in the forward direction, whereas a distance relay...

  9. Textbook Error: Short Circuiting on Electrochemical Cell

    Science.gov (United States)

    Bonicamp, Judith M.; Clark, Roy W.

    2007-01-01

    Short circuiting an electrochemical cell is an unreported but persistent error in the electrochemistry textbooks. It is suggested that diagrams depicting a cell delivering usable current to a load be postponed, the theory of open-circuit galvanic cells is explained, the voltages from the tables of standard reduction potentials is calculated and…

  10. High voltage short plus generation based on avalanche circuit

    International Nuclear Information System (INIS)

    Hu Yuanfeng; Yu Xiaoqi

    2006-01-01

    Simulate the avalanche circuit in series with PSPICE module, design the high voltage short plus generation circuit by avalanche transistor in series for the sweep deflection circuit of streak camera. The output voltage ranges 1.2 KV into 50 ohm load. The rise time of the circuit is less than 3 ns. (authors)

  11. On-line diagnosis of inter-turn short circuit fault for DC brushed motor.

    Science.gov (United States)

    Zhang, Jiayuan; Zhan, Wei; Ehsani, Mehrdad

    2018-06-01

    Extensive research effort has been made in fault diagnosis of motors and related components such as winding and ball bearing. In this paper, a new concept of inter-turn short circuit fault for DC brushed motors is proposed to include the short circuit ratio and short circuit resistance. A first-principle model is derived for motors with inter-turn short circuit fault. A statistical model based on Hidden Markov Model is developed for fault diagnosis purpose. This new method not only allows detection of motor winding short circuit fault, it can also provide estimation of the fault severity, as indicated by estimation of the short circuit ratio and the short circuit resistance. The estimated fault severity can be used for making appropriate decisions in response to the fault condition. The feasibility of the proposed methodology is studied for inter-turn short circuit of DC brushed motors using simulation in MATLAB/Simulink environment. In addition, it is shown that the proposed methodology is reliable with the presence of small random noise in the system parameters and measurement. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Capacitive short circuit detection in transformer core laminations

    International Nuclear Information System (INIS)

    Schulz, Carl A.; Duchesne, Stephane; Roger, Daniel; Vincent, Jean-Noel

    2008-01-01

    A capacitive measurement procedure is proposed that serves to detect burr-induced short circuits in transformer core laminations. The tests are conducted on stacks of transformer steel sheets as used for transformer core production and yield a short-circuit probability indicative of the additional eddy current losses to be expected. Applied during the assembly of transformer cores, the measurements can help to decide whether the burr treatment process is working efficiently or has to be readjusted

  13. Simulation and experimental study on lithium ion battery short circuit

    International Nuclear Information System (INIS)

    Zhao, Rui; Liu, Jie; Gu, Junjie

    2016-01-01

    Highlights: • Both external and internal short circuit tests were performed on Li-ion batteries. • An electrochemical–thermal model with an additional nail site heat source is presented. • The model can accurately simulate the temperature variations of non-venting batteries. • The model is reliable in predicting the occurrence and start time of thermal runaway. • A hydrogel cooling system proves its strength in preventing battery thermal runaway. - Abstract: Safety is the first priority in lithium ion (Li-ion) battery applications. A large portion of electrical and thermal hazards caused by Li-ion battery is associated with short circuit. In this paper, both external and internal short circuit tests are conducted. Li-ion batteries and battery packs of different capacities are used. The results indicate that external short circuit is worse for smaller size batteries due to their higher internal resistances, and this type of short can be well managed by assembling fuses. In internal short circuit tests, higher chance of failure is found on larger capacity batteries. A modified electrochemical–thermal model is proposed, which incorporates an additional heat source from nail site and proves to be successful in depicting temperature changes in batteries. Specifically, the model is able to estimate the occurrence and approximate start time of thermal runaway. Furthermore, the effectiveness of a hydrogel based thermal management system in suppressing thermal abuse and preventing thermal runaway propagation is verified through the external and internal short tests on batteries and battery packs.

  14. A Simple Short Circuit Analysis for Power Networks

    Directory of Open Access Journals (Sweden)

    Koşalay İlhan

    2016-01-01

    Full Text Available This study investigates the transient behavior of short circuits in power circuits. The circuit consists of two part; input part and load part. These two parts are connected with a circuit breaker switch. The circuit works in two modes; first mode is when the switch is open and second mode is when the switch is closed. This study analyses the circuit when the switch is closed. The analysis is done with different types of closing angle. The analysis is done by forming state equations and those equations are solved numerically by using Matlab. The analysis and conclusion is performed by observing the behaviors of the graphs.

  15. Short circuit analysis of distribution system with integration of DG

    DEFF Research Database (Denmark)

    Su, Chi; Liu, Zhou; Chen, Zhe

    2014-01-01

    and as a result bring challenges to the network protection system. This problem has been frequently discussed in the literature, but mostly considering only the balanced fault situation. This paper presents an investigation on the influence of full converter based wind turbine (WT) integration on fault currents......Integration of distributed generation (DG) such as wind turbines into distribution system is increasing all around the world, because of the flexible and environmentally friendly characteristics. However, DG integration may change the pattern of the fault currents in the distribution system...... during both balanced and unbalanced faults. Major factors such as external grid short circuit power capacity, WT integration location, connection type of WT integration transformer are taken into account. In turn, the challenges brought to the protection system in the distribution network are presented...

  16. Approximative calculation of transient short-circuit currents in power-systems

    Energy Technology Data Exchange (ETDEWEB)

    Heuck, K; Rosenberger, R; Dettmann, K D; Kegel, R

    1986-08-01

    The paper shows that it is approximatively possible to calculate the transient short-circuit currents for symmetrical and asymmetrical faults in power-systems. For that purpose a simple equivalent network is found. Its error of approximation is small. For the important maximum short-circuit current limits of error are pointed out compared to VDE 0102.

  17. Evaporating short-circuits in the ATLAS liquid argon barrel presampler 006

    CERN Document Server

    Belhorma, B; Lund-Jensen, B; Rydström, S; Yamouni, M

    2005-01-01

    A technique to eliminate or limit the implications of short-circuits in the ATLAS barrel presampler is described. A high voltage capacitor with a large capacity is charged at different high voltages and discharged through the short-circuit which allows either to disintegrate the dust being the origin of the short-circuit, or to burn away a thin etched copper strip which acts as a fuse on the corresponding presampler anode. This effect is possible even in the presence of a resistive HV cable (10 to 30 ohms) in series which dampens the pulse.

  18. Investigation on the Short Circuit Safe Operation Area of SiC MOSFET Power Modules

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Luo, Haoze; Iannuzzo, Francesco

    2016-01-01

    This paper gives a better insight of the short circuit capability of state-of-the-art SiC MOSFET power modules rated at 1.2 kV by highlighting the physical limits under different operating conditions. Two different failure mechanisms have been identified, both reducing the short-circuit capability...... of SiC power modules in respect to discrete SiC devices. Based on such failure mechanisms, two short circuit criteria (i.e., short circuit current-based criterion and gate voltage-based criterion) are proposed in order to ensure their robustness under short-circuit conditions. A Safe Operation Area (SOA...

  19. A Short-Circuit Safe Operation Area Identification Criterion for SiC MOSFET Power Modules

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Luo, Haoze

    2017-01-01

    This paper proposes a new method for the investigation of the short-circuit safe operation area (SCSOA) of state-of-the-art SiC MOSFET power modules rated at 1.2 kV based on the variations in SiC MOSFET electrical parameters (e.g., short-circuit current and gate–source voltage). According...... to the experimental results, two different failure mechanisms have been identified, both reducing the short-circuit capability of SiC power modules with respect to discrete SiC devices. Based on such failure mechanisms, two short-circuit safety criteria have been formulated: 1) the short-circuit...

  20. Built-in unit with short-circuit insulation for hermetic cable ducts

    International Nuclear Information System (INIS)

    Tschacher, B.; Gurr, W.; Kusserow, J.; Katzmarek, W.

    1984-01-01

    The invention concerns a built-in unit with short-circuit insulation for hermetic cable ducts, especially for containments of nuclear power reactors. The short-circuit insulation is achieved by an insulation plate made from radiation-resistant insulating materials of high mechanical strength

  1. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers.

    Science.gov (United States)

    Choi, Hojong; Shung, K Kirk

    2014-06-12

    The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer's sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems.The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers

  2. LS1 Report: short-circuit tests

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    As the LS1 draws to an end, teams move from installation projects to a phase of intense testing. Among these are the so-called 'short-circuit tests'. Currently under way at Point 7, these tests verify the cables, the interlocks, the energy extraction systems, the power converters that provide current to the superconducting magnets and the cooling system.   Thermal camera images taken during tests at point 4 (IP4). Before putting beam into the LHC, all of the machine's hardware components need to be put to the test. Out of these, the most complicated are the superconducting circuits, which have a myriad of different failure modes with interlock and control systems. While these will be tested at cold - during powering tests to be done in August - work can still be done beforehand. "While the circuits in the magnets themselves cannot be tested at warm, what we can do is verify the power converter and the circuits right up to the place the cables go into the magn...

  3. Tin Whisker Electrical Short Circuit Characteristics. Part 2

    Science.gov (United States)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Lawrence L.; Wright, Maria C.

    2009-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.

  4. Protection Scheme for Modular Multilevel Converters under Diode Open-Circuit Faults

    DEFF Research Database (Denmark)

    Deng, Fujin; Zhu, Rongwu; Liu, Dong

    2018-01-01

    devices. The diode open-circuit fault in the submodule (SM) is an important issue for the MMC, which would affect the performance of the MMC and disrupt the operation of the MMC. This paper analyzes the impact of diode open-circuit failures in the SMs on the performance of the MMC and proposes...... a protection scheme for the MMC under diode open-circuit faults. The proposed protection scheme not only can effectively eliminate the possible caused high voltage due to the diode open-circuit fault but also can quickly detect the faulty SMs, which effectively avoids the destruction and protects the MMC....... The proposed protection scheme is verified with a downscale MMC prototype in the laboratory. The results confirm the effectiveness of the proposed protection scheme for the MMC under diode open-circuit faults....

  5. Minimum short-circuit ratios for grid interconnection of wind farms with induction generators

    Energy Technology Data Exchange (ETDEWEB)

    Reginatto, Romeu; Rocha, Carlos [Western Parana State University (UNIOESTE), Foz do Iguacu, PR (Brazil). Center for Engineering and Exact Sciences], Emails: romeu@unioeste.br, croberto@unioeste.br

    2009-07-01

    This paper concerns the problem of determining the minimum value for the short-circuit ratio which is adequate for the interconnection of a given wind farms to a given grid point. First, a set of 3 criteria is defined in order to characterize the quality/safety of the interconnection: acceptable terminal voltage variations, a minimum active power margin, and an acceptable range for the internal voltage angle. Then, the minimum short circuit ratio requirement is determined for 6 different induction generator based wind turbines, both fixed-speed (with and without reactive power compensation) and variable-speed (with the following control policies: reactive power, power factor, and terminal voltage regulation). The minimum short-circuit ratio is determined and shown in graphical results for the 6 wind turbines considered, for X/R in the range 0-15, also analyzing the effect of more/less stringent tolerances for the interconnection criteria. It is observed that the tighter the tolerances the larger the minimum short-circuit ratio required. For the same tolerances in the interconnection criteria, a comparison of the minimum short circuit ratio required for the interconnection of both squirrel-cage and doubly-fed induction generators is presented, showing that the last requires much smaller values for the short-circuit ratio. (author)

  6. Error Mitigation for Short-Depth Quantum Circuits

    Science.gov (United States)

    Temme, Kristan; Bravyi, Sergey; Gambetta, Jay M.

    2017-11-01

    Two schemes are presented that mitigate the effect of errors and decoherence in short-depth quantum circuits. The size of the circuits for which these techniques can be applied is limited by the rate at which the errors in the computation are introduced. Near-term applications of early quantum devices, such as quantum simulations, rely on accurate estimates of expectation values to become relevant. Decoherence and gate errors lead to wrong estimates of the expectation values of observables used to evaluate the noisy circuit. The two schemes we discuss are deliberately simple and do not require additional qubit resources, so to be as practically relevant in current experiments as possible. The first method, extrapolation to the zero noise limit, subsequently cancels powers of the noise perturbations by an application of Richardson's deferred approach to the limit. The second method cancels errors by resampling randomized circuits according to a quasiprobability distribution.

  7. [Electric short-circuit incident observed with "Upsher" laryngoscopes].

    Science.gov (United States)

    Tritsch, L; Vailly, B

    2006-01-01

    We observed an electrical short-circuit between a fasten screw of the printed circuit and the handle of an Upsher universal laryngoscope (serial number UQ1). The isolating Silicone layer was broken above the screw. This isolation defect was found all over our Upsher laryngoscopes of the UQ1 series. No doubt that if accumulators were used instead of batteries, emitted heat would be in largest amount and perhaps dangerous.

  8. On Demand Internal Short Circuit Device Enables Verification of Safer, Higher Performing Battery Designs

    Energy Technology Data Exchange (ETDEWEB)

    Darcy, Eric; Keyser, Matthew

    2017-05-15

    The Internal Short Circuit (ISC) device enables critical battery safety verification. With the aluminum interstitial heat sink between the cells, normal trigger cells cannot be driven into thermal runaway without excessive temperature bias of adjacent cells. With an implantable, on-demand ISC device, thermal runaway tests show that the conductive heat sinks protected adjacent cells from propagation. High heat dissipation and structural support of Al heat sinks show high promise for safer, higher performing batteries.

  9. Improving the Short-Circuit Reliability in IGBTs

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Rahimo, Munaf

    2018-01-01

    takes place during the IGBT short-circuit, whose time-varying element is the Miller capacitance, which is involved in the amplification mechanism. This hypothesis has been validated through simulations and its mitigation is possible by increasing the electric field at the emitter of the IGBT......In this paper, the oscillation mechanism limiting the ruggedness of IGBTs is investigated through both circuit and device analysis. The work presented here is based on a time-domain approach for two different IGBT cell structures (i.e., trench-gate and planar), illustrating the 2-D effects during...

  10. A neuromorphic circuit mimicking biological short-term memory.

    Science.gov (United States)

    Barzegarjalali, Saeid; Parker, Alice C

    2016-08-01

    Research shows that the way we remember things for a few seconds is a different mechanism from the way we remember things for a longer time. Short-term memory is based on persistently firing neurons, whereas storing information for a longer time is based on strengthening the synapses or even forming new neural connections. Information about location and appearance of an object is segregated and processed by separate neurons. Furthermore neurons can continue firing using different mechanisms. Here, we have designed a biomimetic neuromorphic circuit that mimics short-term memory by firing neurons, using biological mechanisms to remember location and shape of an object. Our neuromorphic circuit has a hybrid architecture. Neurons are designed with CMOS 45nm technology and synapses are designed with carbon nanotubes (CNT).

  11. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Science.gov (United States)

    2010-07-01

    ...-Voltage Distribution § 75.802 Protection of high-voltage circuits extending underground. (a) Except as... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of high-voltage circuits extending... which shall be grounded through a suitable resistor at the source transformers, and a grounding circuit...

  12. Modeling of Short-Circuit-Related Thermal Stress in Aged IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Uhrenfeldt, Christian

    2017-01-01

    In this paper, the thermal stress on bond wires of aged IGBT modules under short-circuit conditions has been studied with respect to different solder delamination levels. To ensure repeatable test conditions, ad-hoc DBC (direct bond copper) samples with delaminated solder layers have been purposely...... in the surface temperature distribution, which confirms the hypothesis that short-circuit events produce significantly uneven stresses on bond wires....

  13. Prediction of Short-Circuit-Related Thermal Stress in Aged IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Uhrenfeldt, Christian

    2016-01-01

    In this paper, the thermal stress on bond wires of aged IGBT modules under short-circuit conditions has been studied with respect to different solder delamination levels. To ensure repeatable test conditions, ad-hoc DBC (direct bond copper) samples with delaminated solder layers have been purposely...... in the surface temperature distribution which confirms the hypothesis that short-circuit events produce significantly uneven stresses on bond wires....

  14. Allocation of synchronous condensers for restoration of system short-circuit power

    DEFF Research Database (Denmark)

    Marrazi, Emanuel; Yang, Guangya; Weinreich-Jensen, Peter

    2017-01-01

    Modern power systems, employing an increasing number of converter-based renewable energy sources (RES) and decreasing the usage of conventional power plants, are leading to lower levels of short-circuit power and rotational inertia. A solution to this is the employment of synchronous condensers...... in the grid, in order to provide sufficient short-circuit power. This results in the increase of the short-circuit ratio (SCR) at transmission system bus-bars serving as points of interconnection (POI) to renewable generation. Evaluation of the required capacity and grid-location of the synchronous condensers...... by renewable generation. Total cost of synchronous condenser installations in the system is minimized and the SCRs at the POIs of central renewable power plants are strengthened. The method has potential for application on larger grids, aiding grid-integration of RES....

  15. Modulation of short-term plasticity in the corticothalamic circuit by group III metabotropic glutamate receptors.

    Science.gov (United States)

    Kyuyoung, Christine L; Huguenard, John R

    2014-01-08

    Recurrent connections in the corticothalamic circuit underlie oscillatory behavior in this network and range from normal sleep rhythms to the abnormal spike-wave discharges seen in absence epilepsy. The propensity of thalamic neurons to fire postinhibitory rebound bursts mediated by low-threshold calcium spikes renders the circuit vulnerable to both increased excitation and increased inhibition, such as excessive excitatory cortical drive to thalamic reticular (RT) neurons or heightened inhibition of thalamocortical relay (TC) neurons by RT. In this context, a protective role may be played by group III metabotropic receptors (mGluRs), which are uniquely located in the presynaptic active zone and typically act as autoreceptors or heteroceptors to depress synaptic release. Here, we report that these receptors regulate short-term plasticity at two loci in the corticothalamic circuit in rats: glutamatergic cortical synapses onto RT neurons and GABAergic synapses onto TC neurons in somatosensory ventrobasal thalamus. The net effect of group III mGluR activation at these synapses is to suppress thalamic oscillations as assayed in vitro. These findings suggest a functional role of these receptors to modulate corticothalamic transmission and protect against prolonged activity in the network.

  16. 30 CFR 18.51 - Electrical protection of circuits and equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical protection of circuits and equipment... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.51 Electrical protection of circuits and equipment. (a) An automatic...

  17. Modelling the short-circuit current of polymer bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Geens, Wim; Martens, Tom; Poortmans, Jef; Aernouts, Tom; Manca, Jean; Lutsen, Laurence; Heremans, Paul; Borghs, Staf; Mertens, Robert; Vanderzande, Dirk

    2004-01-01

    An analytical model has been developed to estimate the short-circuit current density of conjugated polymer/fullerene bulk heterojunction solar cells. The model takes into account the solvent-dependent molecular morphology of the donor/acceptor blend, which was revealed by transmission electron microscopy. Field-effect transistors based on single and composite organic layers were fabricated to determine values for the charge carrier mobilities of such films. These values served as input parameters of the model. It is shown that the difference in short-circuit current density that was measured between toluene-cast and chlorobenzene-cast conjugated polymer/fullerene photovoltaic cells (Appl. Phys. Lett. 78 (2001) 841) could be very well simulated with the model. Moreover, the calculations illustrate how increasing the hole and electron mobilities in the photoactive blend can improve the overall short-circuit current density of the solar cell

  18. Allocation of synchronous condensers for restoration of system short-circuit power

    DEFF Research Database (Denmark)

    Marrazi, Emanuel; Yang, Guangya; Weinreich-Jensen, Peter

    2017-01-01

    Modern power systems, employing an increasing number of converter-based renewable energy sources (RES) and decreasing the usage of conventional power plants, are leading to lower levels of short-circuit power and rotational inertia. A solution to this is the employment of synchronous condensers...... in the grid, in order to provide sufficient short-circuit power. This results in the increase of the short-circuit ratio (SCR) at transmission system bus-bars serving as points of interconnection (POI) to renewable generation. Evaluation of the required capacity and grid-location of the synchronous condensers......, isinherently a mixed integer non-linear optimization problem, which could not be done on manual basis considering each type of machine and all bus-bars. This study therefore proposes a method of optimal allocation of synchronous condensers in a hypothetic future scenario of a transmission system fed...

  19. A Comprehensive Investigation on the Short Circuit Performance of MW-level IGBT Power Modules

    DEFF Research Database (Denmark)

    Wu, Rui; Reigosa, Paula Diaz; Iannuzzo, Francesco

    2015-01-01

    This paper investigates the short circuit performance of commercial 1.7 kV / 1 kA IGBT power modules by means of a 6 kA Non-Destructive-Tester. A mismatched current distribution among the parallel chips has been observed, which can reduce the short circuit capability of the IGBT power module unde...... short circuit conditions. Further Spice simulations reveal that the stray parameters inside the module play an important role in contributing to such a phenomenon....

  20. Other origins for the fluorescence modulation of single dye molecules in open-circuit and short-circuit devices.

    Science.gov (United States)

    Teguh, Jefri S; Kurniawan, Michael; Wu, Xiangyang; Sum, Tze Chien; Yeow, Edwin K L

    2013-01-07

    Fluorescence intensity modulation of single Atto647N dye molecules in a short-circuit device and a defective device, caused by damaging an open-circuit device, is due to a variation in the excitation light focus as a result of the formation of an alternating electric current.

  1. Thirteen years test experience with short-circuit withstand capability of large power transformers

    NARCIS (Netherlands)

    Smeets, R.P.P.; Paske, te L.H.; Leufkens, P.P.; Fogelberg, T.

    2009-01-01

    The ability to withstand a short circuit is recognised more and more as an essential characteristic of power transformers. IEC and IEEE Standards, as well as other national standards specify short-circuit testing and how to check the withstand capability. Unfortunately, however, there is extensive

  2. Device for testing continuity and/or short circuits in a cable

    Science.gov (United States)

    Hayhurst, Arthur R. (Inventor)

    1995-01-01

    A device for testing current paths is attachable to a conductor. The device automatically checks the current paths of the conductor for continuity of a center conductor, continuity of a shield and a short circuit between the shield and the center conductor. The device includes a pair of connectors and a circuit to provide for testing of the conductive paths of the cable. The pair of connectors electrically connects the conductive paths of a cable to be tested with the circuit paths of the circuit. The circuit paths in the circuit include indicators to simultaneously indicate the results of the testing.

  3. The Simulation Computer Based Learning (SCBL) for Short Circuit Multi Machine Power System Analysis

    Science.gov (United States)

    Rahmaniar; Putri, Maharani

    2018-03-01

    Strengthening Competitiveness of human resources become the reply of college as a conductor of high fomal education. Electrical Engineering Program UNPAB (Prodi TE UNPAB) as one of the department of electrical engineering that manages the field of electrical engineering expertise has a very important part in preparing human resources (HR), Which is required by where graduates are produced by DE UNPAB, Is expected to be able to compete globally, especially related to the implementation of Asean Economic Community (AEC) which requires the active participation of graduates with competence and quality of human resource competitiveness. Preparation of HR formation Competitive is done with the various strategies contained in the Seven (7) Higher Education Standard, one part of which is the implementation of teaching and learning process in Electrical system analysis with short circuit analysis (SCA) This course is a course The core of which is the basis for the competencies of other subjects in the advanced semester at Development of Computer Based Learning model (CBL) is done in the learning of interference analysis of multi-machine short circuit which includes: (a) Short-circuit One phase, (B) Two-phase Short Circuit Disruption, (c) Ground Short Circuit Disruption, (d) Short Circuit Disruption One Ground Floor Development of CBL learning model for Electrical System Analysis course provides space for students to be more active In learning in solving complex (complicated) problems, so it is thrilling Ilkan flexibility of student learning how to actively solve the problem of short-circuit analysis and to form the active participation of students in learning (Student Center Learning, in the course of electrical power system analysis.

  4. Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    Science.gov (United States)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.

    2010-01-01

    To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish .

  5. THE RATE OF CURRENT CHANGE DURING A SHORT CIRCUIT IN THE POWER CIRCUITS OF THE ELECTRIC ROLLING STOCK WITH REGARD TO EDDY CURRENTS

    Directory of Open Access Journals (Sweden)

    L. V. Dubinets

    2010-04-01

    Full Text Available In the article the issue of influence of vortical currents on rate of change of short circuit current is considered, a mathematical model for the calculation of short circuit currents in the traction mode in the power circuits of DC electric rolling stock is presented, and the research results are given.

  6. On-Demand Cell Internal Short Circuit Device

    Science.gov (United States)

    Darcy, Eric; Keyser, Matthew

    2014-01-01

    A device implantable in Li-ion cells that can generate a hard internal short circuit on-demand by exposing the cell to 60?C has been demonstrated to be valuable for expanding our understanding of cell responses. The device provides a negligible impact to cell performance and enables the instigation of the 4 general categories of cell internal shorts to determine relative severity and cell design susceptibility. Tests with a 18650 cell design indicates that the anode active material short to the aluminum cathode current collector tends to be more catastrophic than the 3 other types of internal shorts. Advanced safety features (such as shutdown separators) to prevent or mitigate the severity of cell internal shorts can be verified with this device. The hard short success rate achieved to date in 18650 cells is about 80%, which is sufficient for using these cells in battery assemblies for field-failure-relevant, cell-cell thermal runaway propagation verification tests

  7. Packaging Solutions for Mitigating IGBT Short-Circuit Instabilities

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    In this paper, the gate voltage oscillations occurring under short-circuit conditions in Insulated-Gate Bipolar Transistors are investigated, together with their dependency with respect to stray inductance variations. By using AnSYS Q3D Extractor, electromagnetic simulations are conducted to extr...

  8. NREL/NASA Internal Short-Circuit Instigator in Lithium Ion Cells

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Long, Dirk; Pesaran, Ahmad; Darcy, Eric; Shoesmith, Mark; McCarthy, Ben

    2015-10-11

    Lithium-ion cells provide the highest specific energy (>280 Wh/kg) and energy density (>600 Wh/L) rechargeable battery building block to date with the longest life. Electrode/electrolyte thermal instability and flammability of the electrolyte of Li-ion cells make them prone to catastrophic thermal runaway under some rare internal short circuit conditions. Despite extensive QC/QA, standardized industry safety testing, and over 18 years of manufacturing experience, major recalls have taken place and incidents still occur. Many safety incidents that take place in the field originate due to an internal short that was not detectable or predictable at the point of manufacture. The Internal Short-Circuit Instigator can be used to study types of separators, non-flammable electrolytes, electrolyte additives, fusible tabs, propagation studies, and gas generation within a cell.

  9. Clearance of short circuited ion optics electrodes by capacitive discharge. [in ion thrusters

    Science.gov (United States)

    Poeschel, R. L.

    1976-01-01

    The ion optics electrodes of low specific impulse (3000 sec) mercury electron bombardment ion thrusters are vulnerable to short circuits by virtue of their relatively small interelectrode spacing (0.5 mm). Metallic flakes from backsputtered deposits are the most probable cause of such 'shorts' and 'typical' flakes have been simulated here using refractory wire that has a representative, but controllable, cross section. Shorting wires can be removed by capacitive discharge without significant damage to the electrodes. This paper describes an evaluation of 'short' removal versus electrode damage for several combinations of capacitor voltage, stored energy, and short circuit conditions.

  10. A single lithium-ion battery protection circuit with high reliability and low power consumption

    International Nuclear Information System (INIS)

    Jiang Jinguang; Li Sen

    2014-01-01

    A single lithium-ion battery protection circuit with high reliability and low power consumption is proposed. The protection circuit has high reliability because the voltage and current of the battery are controlled in a safe range. The protection circuit can immediately activate a protective function when the voltage and current of the battery are beyond the safe range. In order to reduce the circuit's power consumption, a sleep state control circuit is developed. Additionally, the output frequency of the ring oscillation can be adjusted continuously and precisely by the charging capacitors and the constant-current source. The proposed protection circuit is fabricated in a 0.5 μm mixed-signal CMOS process. The measured reference voltage is 1.19 V, the overvoltage is 4.2 V and the undervoltage is 2.2 V. The total power is about 9 μW. (semiconductor integrated circuits)

  11. Robustness of MW-Level IGBT modules against gate oscillations under short circuit events

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Wu, Rui; Iannuzzo, Francesco

    2015-01-01

    The susceptibility of MW-level IGBT power modules to critical gate voltage oscillations during short circuit events has been evidenced experimentally. This paper proposes a sensitivity analysis method to better understand the oscillating behavior dependence on different operating conditions (i...... the oscillation phenomenon, as well as to further improve the device performance during short circuit....

  12. Protection of toroidal field coils using multiple circuits

    International Nuclear Information System (INIS)

    Thome, R.J.; Langton, W.G.; Mann, W.R.; Pillsbury, R.D.; Tarrh, J.M.

    1983-01-01

    The protection of toroidal field (TF) coils using multiple circuits is described. The discharge of a single-circuit TF system is given for purposes of definition. Two-circuit TF systems are analyzed and the results presented analytically and graphically. Induced currents, maximum discharge voltages, and discharge time constants are compared to the single-circuit system. Three-circuit TF systems are analyzed. In addition to induced currents, maximum discharge voltages, and time constants, several different discharge scenarios are included. The impacts of having discharge rates versus final maximum coil temperatures as requirements are examined. The out-of-plane forces which occur in the three-circuit system are analyzed using an approximate model. The analysis of multiplecircuit TF systems is briefly described and results for a Toroidal Fusion Core Experiment (TFCX) scale device are given based on computer analysis. The advantages and disadvantages of using multiple-circuit systems are summarized and discussed. The primary disadvantages of multiple circuits are the increased circuit complexity and potential for out-of-plane forces. These are offset by the substantial reduction in maximum discharge voltages, as well as other design options which become available when using multiple circuits

  13. Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives

    KAUST Repository

    Ko, Sangwon

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone-due to an increase in the polymer ionization potential-while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2′:5′,2′′- terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C 71-butyric acid methyl ester (PC 71BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current. © 2012 American

  14. Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives.

    Science.gov (United States)

    Ko, Sangwon; Hoke, Eric T; Pandey, Laxman; Hong, Sanghyun; Mondal, Rajib; Risko, Chad; Yi, Yuanping; Noriega, Rodrigo; McGehee, Michael D; Brédas, Jean-Luc; Salleo, Alberto; Bao, Zhenan

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2''-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.

  15. Non-Destructive Investigation on Short Circuit Capability of Wind-Turbine-Scale IGBT Power Modules

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2014-01-01

    This paper presents a comprehensive investigation on the short circuit capability of wind-turbine-scale IGBT power modules by means of a 6 kA/1.1 kV non-destructive testing system. A Field Programmable Gate Array (FPGA) supervising unit is adpoted to achieve an accurate time control for short...... circuit test, which enables to define the driving signals with an accuracy of 10 ns. Thanks to the capability and the effectiveness of the constructed setup, oscillations appearing during short circuits of the new-generation 1.7 kV/1 kA IGBT power modules have been evidenced and characterized under...

  16. Failure Analysis of Short-Circuited Lithium-Ion Battery with Nickel-Manganese-Cobalt/Graphite Electrode.

    Science.gov (United States)

    Lee, Seung-Mi; Kim, Jea-Yeon; Byeon, Jai-Won

    2018-09-01

    Accidental failures and explosions of lithium-ion batteries have been reported in recent years. To determine the root causes and mechanisms of these failures from the perspective of material degradation, failure analysis was conducted for an intentionally shorted lithium-ion battery. The battery was subjected to electrical overcharging and mechanical pressing to simulate internal short-circuiting. After in situ measurement of the temperature increase during the short-circuiting of the electrodes, the disassembled battery components (i.e., the anode, cathode, and separator) were analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Regardless of the simulated short-circuit method (mechanical or electrical), damage was observed in the shorted batteries. Numerous small cracks and chemical reaction products were observed on the electrode surface, along with pore shielding on the separator. The event of short-circuiting increased the surface temperature of the battery to approximately 90 °C, which prompted the deterioration and decomposition of the electrolyte, thus affecting the overall battery performance; this was attributed to the decomposition of the lithium salt at 60 °C. The gas generation due to the breakdown of the electrolyte causes pressure accumulation inside the cell; therefore, the electrolyte leaks.

  17. Integrated Power Flow and Short Circuit Calculation Method for Distribution Network with Inverter Based Distributed Generation

    OpenAIRE

    Yang, Shan; Tong, Xiangqian

    2016-01-01

    Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverte...

  18. Investigation on a short circuit of large-area OLED lighting panels

    International Nuclear Information System (INIS)

    Park, J W; Kim, T W; Park, J B

    2013-01-01

    A short circuit often arises from large-area organic light-emitting device (OLED) lighting panels due to particles (i.e. dust, organic or metal debris) or the spike-like surface of the indium–tin–oxide (ITO) anode. On the emergence of a short circuit, an instant current crowding occurs, thereby reducing substantially the resistance of the panels and causing a failure of a dimming control. In this paper, we investigate the effect of the surface morphology of ITO on the resistance and dimmability of the panels. We have demonstrated that the peak-to-valley roughness of ITO should be much less than 20 nm or the resistance of the panels should be much higher than 1 MΩ in order to avoid an unwanted short-circuit phenomenon and thus achieve the high-yield fabrication of OLED lighting panels. It is also addressed that much care is taken to ensure a dimming control of OLED lighting panels with a larger active area because the resistance of those panels varies depending more sensitively on the surface roughness of ITO. (paper)

  19. Fourteen years of test experience with short-circuit withstand capability of large power transformers

    NARCIS (Netherlands)

    Smeets, R.P.P.; Paske, te L.H.

    2010-01-01

    Experience is reported of short-circuit testing of large power transformers during the past 14 years by KEMA in the Netherlands. In total, 119 transformers > 25 MVA participated in the survey. KEMA shows that at initial access to standard IEC short-circuit tests, 28% failed initially in a wide range

  20. Sixteen years of test experiences with short-circuit withstand capability of large power transformers

    NARCIS (Netherlands)

    Smeets, R.P.P.; Paske, te L.H.

    2012-01-01

    Experience is reported of short-circuit testing of large power transformers during the past 16 years by KEMA in the Netherlands. In total, 174 transformers > 25 MVA participated in the survey. KEMA shows that at initial access to standard IEC short-circuit tests, 24% failed initially in a wide range

  1. Capacitive effects in IGBTs limiting their reliability under short circuit

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Rahimo, Munaf

    2017-01-01

    The short-circuit oscillation mechanism in IGBTs is investigated in this paper by the aid of semiconductor device simulation tools. A 3.3-kV IGBT cell has been used for the simulations demonstrating that a single IGBT cell is able to oscillate together with the external circuit parasitic elements....... The work presented here through both circuit and device analysis, confirms that the oscillations can be understood with focus on the device capacitive effects coming from the interaction between carrier concentration and the electric field. The paper also shows the 2-D effects during one oscillation cycle...

  2. The short-circuit concept used in field equivalence principles

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1990-01-01

    In field equivalence principles, electric and magnetic surface currents are specified and considered as impressed currents. Often the currents are placed on perfect conductors. It is shown that these currents can be treated through two approaches. The first approach is decomposition of the total...... field into partial fields caused by the individual impressed currents. When this approach is used, it is shown that, on a perfect electric (magnetic) conductor, impressed electric (magnetic) surface currents are short-circuited. The second approach is to note that, since Maxwell's equations...... and the boundary conditions are satisfied, none of the impressed currents is short-circuited and no currents are induced on the perfect conductors. Since all currents and field quantities are considered at the same time, this approach is referred to as the total-field approach. The partial-field approach leads...

  3. Forces and stresses in cryoturbogenerator rotor in presence of short circuit

    International Nuclear Information System (INIS)

    Kovarskii, M.E.; Rubinraut, A.M.; Tsyrlin, A.L.

    1981-01-01

    A method is presented for determining the electrodynamic forces, mechanical stresses, and strains in the shells of a cryogenic-turbogenerator cryostat in the presence of an abrupt short circuit. The physical pattern of occurrence of forces in a cryostat shell is considered for capacitive, inductive, and active armature-current cases. It is shown that in addition to the radial component, there is a tangential component of the electrodynamic forces, with the interaction of the two components governing the strength in the presence of short circuits. Results are reported for mechanical-strength calculations, based on the proposed method, for a 200 kw cryogenic turbogenerator

  4. Oxygenator in short-term LVAD circuit: a rescue in post-LVAD pulmonary complications.

    Science.gov (United States)

    Mohite, Prashant N; Patil, Nikhil P; Popov, Aron-Frederik; Bahrami, Toufan; Simon, Andre R

    2016-10-01

    Pulmonary complications after left ventricular assist device (LVAD) implantation, though infrequent, can be potentially catastrophic. A 62-year-old female with cardiogenic shock, supported on short-term LVAD, developed pulmonary oedema. An oxygenator was introduced into the LVAD circuit, which improved the gas exchange and, eventually, after weaning off the oxygenator, the patient received long-term LVAD. The introduction of an oxygenator into the short-term LAVD circuit is a lifesaving manoeuvre in such a situation. It offers freedom of introducing and removing the oxygenator into the LVAD circuit without opening the chest and competing for LVAD flow. © The Author(s) 2016.

  5. Fault Detection and Location of IGBT Short-Circuit Failure in Modular Multilevel Converters

    Directory of Open Access Journals (Sweden)

    Bin Jiang

    2018-06-01

    Full Text Available A single fault detection and location for Modular Multilevel Converter (MMC is of great significance, as numbers of sub-modules (SMs in MMC are connected in series. In this paper, a novel fault detection and location method is proposed for MMC in terms of the Insulated Gate Bipolar Translator (IGBT short-circuit failure in SM. The characteristics of IGBT short-circuit failures are analyzed, based on which a Differential Comparison Low-Voltage Detection Method (DCLVDM is proposed to detect the short-circuit fault. Lastly, the faulty IGBT is located based on the capacitor voltage of the faulty SM by Continuous Wavelet Transform (CWT. Simulations have been done in the simulation software PSCAD/EMTDC and the results confirm the validity and reliability of the proposed method.

  6. PSPICE simulation of bipolar pulse converter based on short-circuited coaxial transmission line

    International Nuclear Information System (INIS)

    Shi Lei; Fan Yajun

    2010-01-01

    The operating principle of the bipolar pulse converter based on short-circuited coaxial transmission line type is given. The output bipolar pulses are simulated by using PSPICE program on condition of different electric length and different impedance of the short-circuited coaxial transmission line. The bipolar pulses are generated by using unipolar pulse with pulse width of 2 ns in experiment, the experimental result fit well with the simulation result. (authors)

  7. Double-layer rotor magnetic shield performance analysis in high temperature superconducting synchronous generators under short circuit fault conditions

    Science.gov (United States)

    Hekmati, Arsalan; Aliahmadi, Mehdi

    2016-12-01

    High temperature superconducting, HTS, synchronous machines benefit from a rotor magnetic shield in order to protect superconducting coils against asynchronous magnetic fields. This magnetic shield, however, suffers from exerted Lorentz forces generated in light of induced eddy currents during transient conditions, e.g. stator windings short-circuit fault. In addition, to the exerted electromagnetic forces, eddy current losses and the associated effects on the cryogenic system are the other consequences of shielding HTS coils. This study aims at investigating the Rotor Magnetic Shield, RMS, performance in HTS synchronous generators under stator winding short-circuit fault conditions. The induced eddy currents in different circumferential positions of the rotor magnetic shield along with associated Joule heating losses would be studied using 2-D time-stepping Finite Element Analysis, FEA. The investigation of Lorentz forces exerted on the magnetic shield during transient conditions has also been performed in this paper. The obtained results show that double line-to-ground fault is of the most importance among different types of short-circuit faults. It was revealed that when it comes to the design of the rotor magnetic shields, in addition to the eddy current distribution and the associated ohmic losses, two phase-to-ground fault should be taken into account since the produced electromagnetic forces in the time of fault conditions are more severe during double line-to-ground fault.

  8. Model-based evaluation of the short-circuited tripolar cuff configuration.

    Science.gov (United States)

    Andreasen, Lotte N S; Struijk, Johannes J

    2006-05-01

    Recordings of neural information for use as feedback in functional electrical stimulation are often contaminated with interfering signals from muscles and from stimulus pulses. The cuff electrode used for the neural recording can be optimized to improve the S/I ratio. In this work, we evaluate a model of both the nerve signal and the interfering signals recorded by a cuff, and subsequently use this model to study the signal to interference ratio of different cuff designs and to evaluate a recently introduced short-circuited tripolar cuff configuration. The results of the model showed good agreement with results from measurements in rabbits and confirmed the superior performance of the short-circuited tripolar configuration as compared with the traditionally used tripolar configuration.

  9. Analysis of High Power IGBT Short Circuit Failures

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, G.

    2005-02-11

    The Next Linear Collider (NLC) accelerator proposal at SLAC requires a highly efficient and reliable, low cost, pulsed-power modulator to drive the klystrons. A solid-state induction modulator has been developed at SLAC to power the klystrons; this modulator uses commercial high voltage and high current Insulated Gate Bipolar Transistor (IGBT) modules. Testing of these IGBT modules under pulsed conditions was very successful; however, the IGBTs failed when tests were performed into a low inductance short circuit. The internal electrical connections of a commercial IGBT module have been analyzed to extract self and mutual partial inductances for the main current paths as well as for the gate structure. The IGBT module, together with the partial inductances, has been modeled using PSpice. Predictions for electrical paths that carry the highest current correlate with the sites of failed die under short circuit tests. A similar analysis has been carried out for a SLAC proposal for an IGBT module layout. This paper discusses the mathematical model of the IGBT module geometry and presents simulation results.

  10. Direct observation of short-circuit diffusion during the formation of a single cupric oxide nanowire

    International Nuclear Information System (INIS)

    Cheng, C-L; Ma, Y-R; Chou, M H; Huang, C Y; Yeh, V; Wu, S Y

    2007-01-01

    Short-circuit diffusion was observed in a single CuO nanowire synthesized using a thermal oxidation method. The confocal Raman spectra of a single CuO nanowire permit direct observation of the nature of an individual CuO nanowire. The parameter order obtained from the inverse Raman B g 2 peak linewidth results in the length dependence of the linewidth and a short-circuit diffusion length of 3.3 μm. The observed structural information is also consistent with the energy dispersive x-ray spectroscopic mapping. The results confirm that the growth of CuO nanowires occurs through the short-circuit diffusion mechanism

  11. Internal short circuit and accelerated rate calorimetry tests of lithium-ion cells: Considerations for methane-air intrinsic safety and explosion proof/flameproof protection methods.

    Science.gov (United States)

    Dubaniewicz, Thomas H; DuCarme, Joseph P

    2016-09-01

    Researchers with the National Institute for Occupational Safety and Health (NIOSH) studied the potential for lithium-ion cell thermal runaway from an internal short circuit in equipment for use in underground coal mines. In this third phase of the study, researchers compared plastic wedge crush-induced internal short circuit tests of selected lithium-ion cells within methane (CH 4 )-air mixtures with accelerated rate calorimetry tests of similar cells. Plastic wedge crush test results with metal oxide lithium-ion cells extracted from intrinsically safe evaluated equipment were mixed, with one cell model igniting the chamber atmosphere while another cell model did not. The two cells models exhibited different internal short circuit behaviors. A lithium iron phosphate (LiFePO 4 ) cell model was tolerant to crush-induced internal short circuits within CH 4 -air, tested under manufacturer recommended charging conditions. Accelerating rate calorimetry tests with similar cells within a nitrogen purged 353-mL chamber produced ignitions that exceeded explosion proof and flameproof enclosure minimum internal pressure design criteria. Ignition pressures within a 20-L chamber with 6.5% CH 4 -air were relatively low, with much larger head space volume and less adiabatic test conditions. The literature indicates that sizeable lithium thionyl chloride (LiSOCl 2 ) primary (non rechargeable) cell ignitions can be especially violent and toxic. Because ignition of an explosive atmosphere is expected within explosion proof or flameproof enclosures, there is a need to consider the potential for an internal explosive atmosphere ignition in combination with a lithium or lithium-ion battery thermal runaway process, and the resulting effects on the enclosure.

  12. Short circuit detection in the winding and operation of superconducting magnets

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1982-01-01

    Three categories of shorts will be discussed: (1) shorts to the metallic bobbin or other structural elements, (2) shorts between turns caused by instrumentation wires that are deliberately connected to a turn at the end (e.g., voltage taps) and that short out to another turn but are not completely severed in the process, and (3) short circuits between turns caused by direct contact due to insulation failure by chips of metal bridging turns and by instrumentation wires that bridge turns but are severed in the process of shorting

  13. Data on the natural ventilation performance of windcatcher with anti-short-circuit device (ASCD).

    Science.gov (United States)

    Nejat, Payam; Calautit, John Kaiser; Majid, Muhd Zaimi Abd; Hughes, Ben Richard; Jomehzadeh, Fatemeh

    2016-12-01

    This article presents the datasets which were the results of the study explained in the research paper 'Anti-short-circuit device: a new solution for short-circuiting in windcatcher and improvement of natural ventilation performance' (P. Nejat, J.K. Calautit, M.Z. Abd. Majid, B.R. Hughes, F. Jomehzadeh, 2016) [1] which introduces a new technique to reduce or prevent short-circuiting in a two-sided windcatcher and also lowers the indoor CO2 concentration and improve the ventilation distribution. Here, we provide details of the numerical modeling set-up and data collection method to facilitate reproducibility. The datasets includes indoor airflow, ventilation rates and CO2 concentration data at several points in the flow field. The CAD geometry of the windcatcher models are also included.

  14. Prevention of short circuits in solution-processed OLED devices

    NARCIS (Netherlands)

    Jolt Oostra, A.; Blom, P.W.M.; Michels, J.J.

    2014-01-01

    Pinholes in the emitting layer of an organic light emitting diode (OLED), e.g. induced by particle contamination or processing flaws, lead to direct contact between the hole-injection layer (HIL) and the cathode. The resulting short circuits give rise to catastrophic device failure. We demonstrate

  15. Addressing Circuitous Currents MVDC Power Systems Protection

    Science.gov (United States)

    2017-12-31

    Addressing Circuitous Currents MVDC Power Systems Protection 5b. GRANT NUMBER N00014-16-1-3113 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR($) Sd. PROJECT NUMBER...efficiency. A challenge with DC distribution is electrical protection . Z-source DC breakers alt! an pti n b&i g cvr.sidcrcd and this w rk ~xplores...zonal distribution, electric ship 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT u u u uu 18. NUMBER

  16. Relay Protection and Automation Systems Based on Programmable Logic Integrated Circuits

    International Nuclear Information System (INIS)

    Lashin, A. V.; Kozyrev, A. V.

    2015-01-01

    One of the most promising forms of developing the apparatus part of relay protection and automation devices is considered. The advantages of choosing programmable logic integrated circuits to obtain adaptive technological algorithms in power system protection and control systems are pointed out. The technical difficulties in the problems which today stand in the way of using relay protection and automation systems are indicated and a new technology for solving these problems is presented. Particular attention is devoted to the possibility of reconfiguring the logic of these devices, using programmable logic integrated circuits

  17. LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics.

    Directory of Open Access Journals (Sweden)

    Itai Hayut

    2011-10-01

    Full Text Available Somatostatin-expressing, low threshold-spiking (LTS cells and fast-spiking (FS cells are two common subtypes of inhibitory neocortical interneuron. Excitatory synapses from regular-spiking (RS pyramidal neurons to LTS cells strongly facilitate when activated repetitively, whereas RS-to-FS synapses depress. This suggests that LTS neurons may be especially relevant at high rate regimes and protect cortical circuits against over-excitation and seizures. However, the inhibitory synapses from LTS cells usually depress, which may reduce their effectiveness at high rates. We ask: by which mechanisms and at what firing rates do LTS neurons control the activity of cortical circuits responding to thalamic input, and how is control by LTS neurons different from that of FS neurons? We study rate models of circuits that include RS cells and LTS and FS inhibitory cells with short-term synaptic plasticity. LTS neurons shift the RS firing-rate vs. current curve to the right at high rates and reduce its slope at low rates; the LTS effect is delayed and prolonged. FS neurons always shift the curve to the right and affect RS firing transiently. In an RS-LTS-FS network, FS neurons reach a quiescent state if they receive weak input, LTS neurons are quiescent if RS neurons receive weak input, and both FS and RS populations are active if they both receive large inputs. In general, FS neurons tend to follow the spiking of RS neurons much more closely than LTS neurons. A novel type of facilitation-induced slow oscillations is observed above the LTS firing threshold with a frequency determined by the time scale of recovery from facilitation. To conclude, contrary to earlier proposals, LTS neurons affect the transient and steady state responses of cortical circuits over a range of firing rates, not only during the high rate regime; LTS neurons protect against over-activation about as well as FS neurons.

  18. Measurements of impedances for determinating the minimum short-circuit current in main systems 500 V of underground mining establishments

    Energy Technology Data Exchange (ETDEWEB)

    Rittinghaus, D

    1981-09-01

    The complex short-circuit impedances of energized low-voltage main systems were measured with a double-bridge in underground mining operation. The magnitude of the short-circuit currents depends on these impedances. Customary calculations of such currents depend on empirical approximations. To verify the accuracy of these approximations, the measured impedances of 61 nodes in three different main systems were compared with the results of the calculations. The comparison made between the short-circuit currents determined by measurable quantities and the values calculated according to VDE 0118 shows that the stipulated coefficients for calculating the minimum short-circuit currents lie very far on the safe side. An amendment for calculating the short-circuit in accordance with VDE 0118 is therefore suggested.

  19. Representative-Sandwich Model for Mechanical-Crush and Short-Circuit Simulation of Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-07-28

    Lithium-ion batteries are currently the state-of-the-art power sources for a variety of applications, from consumer electronic devices to electric-drive vehicles (EDVs). Being an energized component, failure of the battery is an essential concern, which can result in rupture, smoke, fire, or venting. The failure of Lithium-ion batteries can be due to a number of external abusive conditions (impact/crush, overcharge, thermal ramp, etc.) or internal conditions (internal short circuits, excessive heating due to resistance build-up, etc.), of which the mechanical-abuse-induced short circuit is a very practical problem. In order to better understand the behavior of Lithium-ion batteries under mechanical abuse, a coupled modeling methodology encompassing the mechanical, thermal and electrical response has been developed for predicting short circuit under external crush.

  20. An Investigation of the Electrical Short Circuit Characteristics of Tin Whiskers

    Science.gov (United States)

    Courey, Karim J.

    2008-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. Also, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross-sectioned and studied using a focused ion beam (FIB). The rare polycrystalline structure seen in the FIB cross section was confirmed using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size to determine that the tin plating on the card guides had a bright finish.

  1. Technique and Calculation Results of Currents and Voltages in the Circuits of the Measuring Element of the Protection Device of the Transmission Line Based on the Control of Transient Processes

    Science.gov (United States)

    Lachugin, V. F.; Kulikov, A. L.; Platonov, P. S.; Vucolov, V. Yu.

    2017-12-01

    The specifics of generation of the signals of current and voltage in the circuits of a directional element of wave relay protection during short circuit (SC) in overhead power transmission lines are considered. The computing method of transient processes in the protection circuits, including frequency filters, that attenuate the parameters of currents and voltages of the mode taking into account the higher harmonic components and probable deviations of the frequency of transmission line from the rated value is presented. It is revealed that it is advisable to implement the measuring circuits of the directional elements of wave relay protection with the three-section filter attenuating the frequencies from 45 to 55 Hz and the low pass filter with cutoff frequency that does not exceed 1 kHz.

  2. 30 CFR 75.814 - Electrical protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical protection. 75.814 Section 75.814... Longwalls § 75.814 Electrical protection. (a) High-voltage circuits must be protected against short circuits... with— (i) Ground-fault protection set to cause deenergization at not more than 40 percent of the...

  3. Influence of an inner short-circuit on the behaviour of the superconducting magnet

    International Nuclear Information System (INIS)

    Zizek, F.

    1984-01-01

    On exciting one of the superconducting quadrupole magnets, voltage pulses were observed on the winding outlets. Over a certain current level the pulses disappeared and a quench of the magnet was registered. A subsequent analysis proved that phenomenon was caused by short-circuiting of the turns inside one of the quadrupole coils. The voltage pulses were caused by repeated quenches of the short-circuited part of the winding. The above effect did not appear until a certain rate of rise of the current was attained

  4. Influence of an inner short-circuit on the behaviour of the superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Zizek, F. (Skoda k.p., Plzen (Czechoslovakia))

    1984-01-01

    On exciting one of the superconducting quadrupole magnets, voltage pulses were observed on the winding outlets. Over a certain current level the pulses disappeared and a quench of the magnet was registered. A subsequent analysis proved that phenomenon was caused by short-circuiting of the turns inside one of the quadrupole coils. The voltage pulses were caused by repeated quenches of the short-circuited part of the winding. The above effect did not appear until a certain rate of rise of the current was attained.

  5. Cable Hot Shorts and Circuit Analysis in Fire Risk Assessment

    International Nuclear Information System (INIS)

    LaChance, Jeffrey; Nowlen, Steven P.; Wyant, Frank

    1999-01-01

    Under existing methods of probabilistic risk assessment (PRA), the analysis of fire-induced circuit faults has typically been conducted on a simplistic basis. In particular, those hot-short methodologies that have been applied remain controversial in regards to the scope of the assessments, the underlying methods, and the assumptions employed. To address weaknesses in fire PRA methodologies, the USNRC has initiated a fire risk analysis research program that includes a task for improving the tools for performing circuit analysis. The objective of this task is to obtain a better understanding of the mechanisms linking fire-induced cable damage to potentially risk-significant failure modes of power, control, and instrumentation cables. This paper discusses the current status of the circuit analysis task

  6. Fast protection circuit for 1 MW Klystron based RF system of Low Energy High Intensity Proton Accelerator (LEHIPA)

    International Nuclear Information System (INIS)

    Shrotriya, Sandip; Shiju, A.; Patel, N.R.; Pande, Manjiri; Singh, P.

    2014-01-01

    This paper describes the details of a hardwired protection circuit designed and developed for 1 MW Klystron based Radio Frequency (RF) System. The hardwired protection circuit protects the klystron from fault conditions occurring in high power DC supplies, other bias supplies and inside the klystron itself. Fast response of the order of 1-2 microseconds is necessary in case of critical signals for the protection of such a high power system. The system needs to handle around 10 critical signals comprising of optical signals and different digital signals. In case of malfunction in the existing controller based interlock and protection system, klystron will be protected by this hardwired protection circuit. The hardwired circuit will provide redundant protection and protect the klystron from damage. This circuit and controller based protection system are operating in parallel. This paper describes details of a purely hardwired protection circuit developed for critical signals for achieving reliability and faster response time requirements of the RF system. (author)

  7. Shapeable short circuit resistant capacitor

    Science.gov (United States)

    Taylor, Ralph S.; Myers, John D.; Baney, William J.

    2015-10-06

    A ceramic short circuit resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The capacitor that exhibits a benign failure mode in which a multitude of discrete failure events result in a gradual loss of capacitance. Each event is a localized event in which localized heating causes an adjacent portion of one or both of the electrodes to vaporize, physically cleaning away electrode material from the failure site. A first metal electrode, a second metal electrode, and a ceramic dielectric layer between the electrodes are thin enough to be formed in a serpentine-arrangement with gaps between the first electrode and the second electrode that allow venting of vaporized electrode material in the event of a benign failure.

  8. Short Circuit Tests First Step of LHC Hardware Commissioning Completion

    CERN Document Server

    Barbero-Soto, E; Bordry, Frederick; Casas Lino, M P; Coelingh, G J; Cumer, G; Dahlerup-Petersen, K; Guillaume, J C; Inigo-Golfin, J; Montabonnet, V; Nisbet, D; Pojer, M; Principe, R; Rodríguez-Mateos, F; Saban, R; Schmidt, R; Thiesen, H; Vergara-Fernández, A; Zerlauth, M; Castaneda Serra, A; Romera Ramirez, I

    2008-01-01

    For the two counter rotating beams in the Large Hadron Collider (LHC) about 8000 magnets (main dipole and quadrupole magnets, corrector magnets, separation dipoles, matching section quadrupoles etc.) are powered in about 1500 superconducting electrical circuits. The magnets are powered by power converters that have been designed for the LHC with a current between 60 and 13000A. Between October 2005 and September 2007 the so-called Short Circuit Tests were carried-out in 15 underground zones where the power converters of the superconducting circuits are placed. The tests aimed to qualify the normal conducting equipments of the circuits such as power converters and normal conducting high current cables. The correct operation of interlock and energy extraction systems was validated. The infrastructure systems including AC distribution, water and air cooling and the control systems was also commissioned. In this paper the results of the two year test campaign are summarized with particular attention to problems e...

  9. Maximizing the short circuit current of organic solar cells by partial decoupling of electrical and optical properties

    Science.gov (United States)

    Qarony, Wayesh; Hossain, Mohammad I.; Jovanov, Vladislav; Knipp, Dietmar; Tsang, Yuen Hong

    2018-03-01

    The partial decoupling of electronic and optical properties of organic solar cells allows for realizing solar cells with increased short circuit current and energy conversion efficiency. The proposed device consists of an organic solar cell conformally prepared on the surface of an array of single and double textured pyramids. The device geometry allows for increasing the optical thickness of the organic solar cell, while the electrical thickness is equal to the nominal thickness of the solar cell. By increasing the optical thickness of the solar cell, the short circuit current is distinctly increased. The quantum efficiency and short circuit current are determined using finite-difference time-domain simulations of the 3D solar cell structure. The influence of different solar cell designs on the quantum efficiency and short circuit current is discussed and optimal device dimensions are proposed.

  10. Short Circuit Ratio analysis of multi-infeed HVDC system with a VSC-HVDC link

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2011-01-01

    As an important indicator of system stability, Short Circuit Ratio (SCR) is commonly used in power system analysis. For systems include HVDC link connection, the Effective SCR (ESCR) is mostly applied to indicate the strength of HVDC infeed bus. The contribution of VSC-HVDC link to multi......-infeed HVDC system stability has been analyzed a lot but the study on ESCR of this kind of system is still insufficient. This paper presents a calculation method for ESCR of the hybrid multi infeed HVDC system based on a simple two-infeed HVDC system model. The equivalent circuit of this system under short...... circuit situation is firstly obtained based on the model. Then its Thevenin equivalent circuit is derived and system ESCR can be calculated. At last, simulation study verified that the calculated ESCR value under different cases can indicate the change of system stability....

  11. Resonant magnetoelectric response of composite cantilevers: Theory of short vs. open circuit operation and layer sequence effects

    Directory of Open Access Journals (Sweden)

    Matthias C. Krantz

    2015-11-01

    Full Text Available The magnetoelectric effect in layered composite cantilevers consisting of strain coupled layers of magnetostrictive (MS, piezoelectric (PE, and substrate materials is investigated for magnetic field excitation at bending resonance. Analytic theories are derived for the transverse magnetoelectric (ME response in short and open circuit operation for three different layer sequences and results presented and discussed for the FeCoBSi-AlN-Si and the FeCoBSi-PZT-Si composite systems. Response optimized PE-MS layer thickness ratios are found to greatly change with operation mode shifting from near equal MS and PE layer thicknesses in the open circuit mode to near vanishing PE layer thicknesses in short circuit operation for all layer sequences. In addition the substrate layer thickness is found to differently affect the open and short circuit ME response producing shifts and reversal between ME response maxima depending on layer sequence. The observed rich ME response behavior for different layer thicknesses, sequences, operating modes, and PE materials can be explained by common neutral plane effects and different elastic compliance effects in short and open circuit operation.

  12. CONCEPTS OF IMPROVING CURRENT PROTECTION OF POWER-GRID LINES

    Directory of Open Access Journals (Sweden)

    F. A. Romaniuk

    2015-01-01

    Full Text Available The  6–35  kV  power-grid  current  protection  serves  to  protect  the  transmission  lines against phase-to-phase short-circuits. The major disadvantage of it lies in the relatively large time delays of the last stages especially in the main sections of the grid owing to the stepped relay characteristics as well as a large number of the steps. A full-fledged protection of the 6–35 kV lines against inter-phase short circuits can be provided by the two-stage current protection: the first stage being the current cutoff without any time delay and the second stage – the maximum current protection where the time delay is linear contingent on the distance between the protection placement and the fault-point location. The article introduces the rating formulae for the time delays of the second-stage and their exemplary graphic presentation. The authors offer a variant for solving the problem with computation of the second-stage time delays in those instances where several feeders diverge from the bus bars of the substation located in the end of the protected line.Improving current protections for the 6–35 kV transmission lines with one-end power supply against interphase short-circuits can be based on the collective application of the following principles: accounting for the type and location of the short-circuit which provides for the high-performance cutoff zone instantaneous expansion and its independence on the mode of failure and the grid operation mode. It also allows increase of the last stage sensitiveness towards asymmetrical short-circuits; detection of the short-circuit location only on the results of fault currents measurement which simplifies the protection implementation; realization of the last (second protection stage with linear-dependent time delay which ensures potentiality of its operation speed increase.

  13. Spatially resolved determination of the short-circuit current density of silicon solar cells via lock-in thermography

    International Nuclear Information System (INIS)

    Fertig, Fabian; Greulich, Johannes; Rein, Stefan

    2014-01-01

    We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplified in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  14. Load Flow and Short Circuit Analysis of the Class III Power System of HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. K.; Jung, H. S

    2005-12-15

    The planning, design, and operation of electric power system require engineering studies to assist in the evaluation of the system performance, reliability, safety and economics. The Class III power of HANARO supplies power for not only HANARO but also RIPF and IMEF. The starting current of most ac motors is five to ten times normal full load current. The loads of the Class III power are connected in consecutive orders at an interval for 10 seconds to avoid excessive voltage drop. This technical report deals with the load flow study and motor starting study for the Class III power of HANARO using ETAP(Electrical Transient Analyzer Program) to verify the capacity of the diesel generator. Short-circuit studies are done to determine the magnitude of the prospective currents flowing throughout the power system at various time intervals after a fault occurs. Short-circuit studies can be performed at the planning stage in order to help finalize the system layout, determine voltage levels, and size cables, transformers, and conductors. From this study, we verify the short circuit current capacity of air circuit breaker(ACB) and automatic transfer switch(ATS) of the Class III power.

  15. Development of the signalling circuits for reactor emergency protection systems

    International Nuclear Information System (INIS)

    Volkov, A.V.; Nikiforov, B.N.; Ogon'kov, A.I.; Sychinskij, Yu.L.

    1978-01-01

    Construction of circuits for nuclear reactor emergency protection according to the power level and rate of power rise with the use of integrated microcircuits is discussed. Circuits of relay- and transformer-based logical signaling devices are presented. It is noted that disadvantages of a transformer-based loaical sianaling device are great power consumption (about 300 mW) and slow response limited by the time constant of the output smoothing filter. Further development of circuits under consideration is associated with the employment of new optronic elements intended to replace the transformers

  16. Voltage Recovery of Grid-Connected Wind Turbines with DFIG After a Short-Circuit Fault

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2004-01-01

    The fast development of wind power generation brings new requirements for wind turbine integration to the network. After clearance of an external short-circuit fault, the voltage at the wind turbine terminal should be re-established with minimized power losses. This paper concentrates on voltage......-establish the wind turbine terminal voltage after the clearance of an external short-circuit fault, and the restore the normal operation of the variable speed wind turbine with DFIG, which has been demonstrated by simulation results....

  17. Asymmetrical short circuits in medium-voltage networks with grounded neutral through resistance

    Energy Technology Data Exchange (ETDEWEB)

    Tanasescu, M.; Maries, H.

    1981-01-01

    This article introduces the concepts of ''damage to ground'' and ''current to ground indicator'', which characterize the efficiency of the operating mode of the neutral. The values of these two indicators are assigned by directive (eletric power plan design instruction PE109/1980) and must be provided when selecting the parameters of compensating devices installed in the neutral. Possible aymmetrical short circuits in medium-voltage networks with neutral ground are examined. Formulas are derived for determining the short-circuiting currents and undamaged phase voltages in order to determine the damage to ground indicator and ground current indicator; an example of a calculation is given.

  18. Conditions of the existence of 'short circuit' effect for plasma in a conducting cylinder

    International Nuclear Information System (INIS)

    Zhilinskij, A.P.; Kuteev, B.V.

    1975-01-01

    It has been experimentally established that in a cylindrical container with conducting side and end walls, the phenomenon of short circuit (the Symon effect) is not always realized. The short circuiting of plane end and of side surfaces causes an acceleration of a plasma decay only during the initial stage in a comparatively short time. Characteristic lifetimes during the late stage remain unchanged in this case. In conditions of a stable plasma they correspond to classical values of the plasma decay constant at the ambipolar diffusion of charged particles along and across force lines of a magnetic field. A fundamental change in the nature of the diffusion and a decrease of the plasma lifetime almost by two orders are realized in an instrument in which an end conducting wall for plasma in created with a short cylinder at the end of a solenoid in a sharply nonuniform magnetic field. The data obtained testify to the fact that the short circuit effect takes place in conditions when on boundaries of plasma the possibility of simultaneous flowing of unipolar electron flows along and of ion flows across a magnetic field is assured. The results of the experiments are compared with a theory

  19. Approaching Repetitive Short Circuit Tests on MW-Scale Power Modules by means of an Automatic Testing Setup

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Wang, Huai; Iannuzzo, Francesco

    2016-01-01

    An automatic testing system to perform repetitive short-circuit tests on megawatt-scale IGBT power modules is pre-sented and described in this paper, pointing out the advantages and features of such testing approach. The developed system is based on a non-destructive short-circuit tester, which has...

  20. Increasing emitter efficiency in 3.3-kV enhanced trench IGBTs for higher short-circuit capability

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Rahimo, Munaf

    2018-01-01

    In this paper, a 3.3-kV Enhanced Trench IGBT has been designed with a high emitter efficiency, for improving its short-circuit robustness. The carrier distribution profile has been shaped in a way that it is possible to increase the electric field at the surface of the IGBT, and thereby, counteract...... the Kirk Effect onset. This design approach is beneficial for mitigating high-frequency oscillations, typically observed in IGBTs under short-circuit conditions. The effectiveness of the proposed design rule is validated by means of mixed-mode device simulations. Then, two IGBTs have been fabricated...... with different emitter efficiencies and tested under short circuit, validating that the high-frequency oscillations can be mitigated, with higher emitter efficiency IGBT designs....

  1. 30 CFR 77.802 - Protection of high-voltage circuits; neutral grounding resistors; disconnecting devices.

    Science.gov (United States)

    2010-07-01

    ... AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.802 Protection... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of high-voltage circuits; neutral... grounded through a suitable resistor at the source transformers, and a grounding circuit, originating at...

  2. An application of residual current protective device at electrical installation

    International Nuclear Information System (INIS)

    Firman Silitonga

    2008-01-01

    In an electrical installation, a protection for overload and short circuit are always to be installed. In addition to the installation, it is necessary to be installed a protection device for residual current because both the short circuit and the overload device protection will not work for the residual current. The quantity of the residual current must be defined first at any electrical installation to define an appropriate residual current protection so that not every residual current will break the circuit down. This paper will explain a method how to install a residual protection device for 3500 VA or more at TN and TT of earthing system. (author)

  3. Defects influence on short circuit current density in p-i-n silicon solar cell

    International Nuclear Information System (INIS)

    Wagah F Mohamad; Alhan M Mustafa

    2006-01-01

    The admittance analysis method has been used to calculate the collection efficiency and the short circuit current density in a-Si:H p-i-n solar cell, as a function of the thickness of i-layer. Its is evident that the results of the short circuit current can be used to determine the optimal thickness of the i-layer of a cell, and it will be more accurate in comparison with the previous studies using a constant generation rate or an empirical exponential function for the generation of charge carriers throughout the i-layer

  4. Integrated Power Flow and Short Circuit Calculation Method for Distribution Network with Inverter Based Distributed Generation

    Directory of Open Access Journals (Sweden)

    Shan Yang

    2016-01-01

    Full Text Available Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverter based distributed generation is proposed. The proposed method let the inverter based distributed generation be equivalent to Iθ bus, which makes it suitable to calculate the power flow of distribution network with a current limited inverter based distributed generation. And the low voltage ride through capability of inverter based distributed generation can be considered as well in this paper. Finally, some tests of power flow and short circuit current calculation are performed on a 33-bus distribution network. The calculated results from the proposed method in this paper are contrasted with those by the traditional method and the simulation method, whose results have verified the effectiveness of the integrated method suggested in this paper.

  5. A Computer Program for Short Circuit Analysis of Electric Power ...

    African Journals Online (AJOL)

    The Short Circuit Analysis Program (SCAP) is to be used to assess the composite effects of unbalanced and balanced faults on the overall reliability of electric power system. The program uses the symmetrical components method to compute all phase and sequence quantities for any bus or branch of a given power network ...

  6. Circuit bridging of components by smoke

    International Nuclear Information System (INIS)

    Tanaka, T.J.; Nowlen, S.P.; Anderson, D.J.

    1996-10-01

    Smoke can adversely affect digital electronics; in the short term, it can lead to circuit bridging and in the long term to corrosion of metal parts. This report is a summary of the work to date and component-level tests by Sandia National Laboratories for the Nuclear Regulatory Commission to determine the impact of smoke on digital instrumentation and control equipment. The component tests focused on short-term effects such as circuit bridging in typical components and the factors that can influence how much the smoke will affect them. These factors include the component technology and packaging, physical board protection, and environmental conditions such as the amount of smoke, temperature of burn, and humidity level. The likelihood of circuit bridging was tested by measuring leakage currents and converting those currents to resistance in ohms. Hermetically sealed ceramic packages were more resistant to smoke than plastic packages. Coating the boards with an acrylic spray provided some protection against circuit bridging. The smoke generation factors that affect the resistance the most are humidity, fuel level, and burn temperature. The use of CO 2 as a fire suppressant, the presence of galvanic metal, and the presence of PVC did not significantly affect the outcome of these results

  7. Current-zero measurements of vacuum circuit breakers interrupting short-line faults

    NARCIS (Netherlands)

    Smeets, R.P.P.; Linden, van der W.A.

    2003-01-01

    Current zero measurements are performed during short-line fault interruption tests of vacuum circuit breakers. This switching cycle is characterized by a very steep transient recovery voltage. High-resolution measurements of near current-zero arc current and voltage were carried out. Various

  8. Transient analysis of unbalanced short circuits of the ERDA-NASA 100 kW wind turbine alternator

    Science.gov (United States)

    Hwang, H. H.; Gilbert, L. J.

    1976-01-01

    Unbalanced short-circuit faults on the alternator of the ERDA-NASA Mod-O100-kW experimental wind turbine are studied. For each case, complete solutions for armature, field, and damper-circuit currents; short-circuit torque; and open-phase voltage are derived directly by a mathematical analysis. Formulated results are tabulated. For the Mod-O wind turbine alternator, numerical calculations are given, and results are presented by graphs. Comparisons for significant points among the more important cases are summarized. For these cases the transients are found to be potentially severe. The effect of the alternator neutral-to-ground impedance is evaluated.

  9. Estimation of expected short-circuit current levels in and circuit-breaker requirements for the 330 to 750 kV networks of the southern integrated power grid

    Energy Technology Data Exchange (ETDEWEB)

    Krivushkin, L.F.; Gorazeeva, T.F.

    1978-08-01

    Studies were made in order to project the operating levels in the Southern Integrated Power Grid to the year 2000. The short-circuit current levels and, the requirements which circuit breakers will have to meet are estimated. A gradual transition from 330 to 750 kV generation is foreseen, with 330 kV networks remaining only for a purely distribution service. The number of 330 kV line hookups and the number of circuit breakers at nodal points (stations and substations) will not change significantly, they will account for 40% of all circuit breakers installed in 25% of all nodal points. Short-circuit currents are expected to reach the 46 kA level in 750 kV networks and 63 kA (standing wave voltage 1.5 to 2.5 kV/microsecond) in 330 kV networks. These are the ratings of circuit breakers; of the 63 kA ones 150 will be needed by 1980--1990 and 400 by 1990--2000. It will also be eventually worthwhile to install circuit breakers with a 63 kA-750 kV rating.

  10. Short-Circuit Robustness Assessment in Power Electronic Modules for Megawatt Applications

    DEFF Research Database (Denmark)

    Iannuzzo, Francesco

    2016-01-01

    In this paper, threats and opportunities in testing of megawatt power electronic modules under short circuit are presented and discussed, together with the introduction of some basic principles of non-destructive testing, a key technique to allow post-failure analysis. The non-destructive testing...

  11. The short-circuit current of the ileum, but not the colon, is altered in the streptozotocin diabetic rat.

    Science.gov (United States)

    Forrest, Abigail; Makwana, Rajesh; Parsons, Mike

    2006-02-01

    Ion transport in control and streptozotocin-diabetic rat colon and ileum was studied using the Ussing chamber technique. No differences were observed between control and diabetic colonic mucosal short-circuit current under either basal or carbachol (100 nmol/L-1 micromol/L)-stimulated or prostaglandin E2 (100 nmol/L-1 micromol/L)-stimulated conditions. Similarly to colonic tissues, no differences in the short circuit current in either carbachol-stimulated or prostaglandin E2-stimulated tissues were observed between control and diabetic ileal mucosa. The basal diabetic ileal short circuit current (99.58 +/- 22.67 microA) was significantly greater than that of control ileal tissues (29.67 +/- 4.45 microA). This difference was abolished by the sodium-glucose-cotransporter inhibitor, phloridzin (50 micromol/L) (118.00 +/- 28.09 microA vs. 25.60 +/- 4.59 microA) and was also prevented by the replacement of glucose with mannitol in the buffer bathing the apical side of the tissue (control: 17.05 +/- 5.85 microA vs. 17.90 +/- 3.10 microA). Acetazolamide (450 micromol/L; a carbonic anhydrase inhibitor), amiloride, and bumetanide (100 micromol/L each; Na+-channel blockers), piroxicam (50 micromol/L; a COX1 cyclooxygenase inhibitor), and ouabain (1 mmol/L; a K+ transport inhibitor) had no effect on the basal short circuit current of either control or diabetic ileal tissues. This indicated that the alteration in the basal short circuit current of diabetic ileal tissues was due to a change in cellular glucose transport, whereas the evoked changes in short circuit current were unaffected by the diabetic state.

  12. Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling.

    Science.gov (United States)

    Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas

    2016-09-23

    InP nanowire arrays with axial p-i-n junctions are promising devices for next-generation photovoltaics, with a demonstrated efficiency of 13.8%. However, the short-circuit current in such arrays does not match their absorption performance. Here, through combined optical and electrical modeling, we study how the absorption of photons and separation of the resulting photogenerated electron-hole pairs define and limit the short-circuit current in the nanowires. We identify how photogenerated minority carriers in the top n segment (i.e. holes) diffuse to the ohmic top contact where they recombine without contributing to the short-circuit current. In our modeling, such contact recombination can lead to a 60% drop in the short-circuit current. To hinder such hole diffusion, we include a gradient doping profile in the n segment to create a front surface barrier. This approach leads to a modest 5% increase in the short-circuit current, limited by Auger recombination with increased doping. A more efficient approach is to switch the n segment to a material with a higher band gap, like GaP. Then, a much smaller number of holes is photogenerated in the n segment, strongly limiting the amount that can diffuse and disappear into the top contact. For a 500 nm long top segment, the GaP approach leads to a 50% higher short-circuit current than with an InP top segment. Such a long top segment could facilitate the fabrication and contacting of nanowire array solar cells. Such design schemes for managing minority carriers could open the door to higher performance in single- and multi-junction nanowire-based solar cells.

  13. An alternative explanation for the occurrence of short circuit current increases in the small intestine following challenge by bacterial enterotoxins.

    Science.gov (United States)

    Lucas, M L

    2013-10-01

    Secretory diarrhoeal disease due to enterotoxins is thought to arise from the enhancement to pathologically high rates of normally occurring chloride ion and therefore fluid secretion from enterocytes. In support of this concept, many enterotoxins increase intestinal short-circuit current, regarded now as faithfully reflecting the increased chloride ion secretion. Contradicting this assumption, STa reduces absorption but does not cause secretion in vivo although short-circuit current is increased in vitro. There is therefore a mismatch between an assumed enterocyte mediated secretory event that should but does not cause net fluid secretion and an undoubtedly increased short-circuit current. It is proposed here that short-circuit current increases are not themselves secretory events but result from interrupted fluid absorption. A noteworthy feature of compounds that inhibit the increase in short-circuit current is that the majority are vasoactive, neuroactive or both. In general, vasodilator substances increase current. An alternative hypothesis for the origin of short-circuit current increases is that these result from reflex induction of electrogenic fluid absorption. This reflex enhances a compensatory response that is also present at a cellular level. An intestinal reflex is therefore proposed by which decreases in interstitial and intravascular volume or pressure within the intestine initiate an electrogenic fluid absorption mechanism that compensates for the loss of electrically neutral fluid absorption. This hypothesis would explain the apparently complex pharmacology of short-circuit current increases since many depressor substances have receptors in common with enterocytes and enteric nerves. The proposed alternative view of the origin of short-circuit current increases assumes that these do not represent chloride secretion from the enterocytes. This view may therefore aid the successful development of anti-diarrhoeal drugs to overcome a major cause of

  14. Developing an Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    Science.gov (United States)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.

    2009-01-01

    To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.

  15. The Effect of Current-Limiting Reactors on the Tripping of Short Circuits in High-Voltage Electrical Equipment

    International Nuclear Information System (INIS)

    Volkov, M. S.; Gusev, Yu. P.; Monakov, Yu. V.; Cho, Gvan Chun

    2016-01-01

    The insertion of current-limiting reactors into electrical equipment operating at a voltage of 110 and 220 kV produces a change in the parameters of the transient recovery voltages at the contacts of the circuit breakers for disconnecting short circuits, which could be the reason for the increase in the duration of the short circuit, damage to the electrical equipment and losses in the power system. The results of mathematical modeling of the transients, caused by tripping of the short circuit in a reactive electric power transmission line are presented, and data are given on the negative effect of a current-limiting resistor on the rate of increase and peak value of the transient recovery voltages. Methods of ensuring the standard requirements imposed on the parameters of the transient recovery voltages when using current-limiting reactors in the high-voltage electrical equipment of power plants and substations are proposed and analyzed

  16. Digital algorithms to recognize shot circuits just in right time. Digitale Algorithmen zur fruehzeitigen Kurzschlusserkennung

    Energy Technology Data Exchange (ETDEWEB)

    Lindmayer, M.; Stege, M. (Technische Univ. Braunschweig (Germany, F.R.). Inst. fuer Elektrische Energieanlagen)

    1991-07-01

    Algorithms for early detection and prevention of short circuits are presented. Data on current levels and steepness in the a.c. network to be protected are evaluated by microcomputers. In particular, a simplified low-voltage grid is considered whose load circuit is formed in normal conditions by a serial R-L circuit. An optimum short-circuit detection algorithm is proposed for this network, which forecasts a current value from the current and steepness signals and compares this value with a limiting value. (orig.).

  17. Compact electro-thermal modeling of a SiC MOSFET power module under short-circuit conditions

    DEFF Research Database (Denmark)

    Ceccarelli, Lorenzo; Reigosa, Paula Diaz; Bahman, Amir Sajjad

    2017-01-01

    A novel physics-based, electro-thermal model which is capable of estimating accurately the short-circuit behavior and thermal instabilities of silicon carbide MOSFET multi-chip power modules is proposed in this paper. The model has been implemented in PSpice and describes the internal structure.......2 kV breakdown voltage and about 300 A rated current. The short-circuit behavior of the module is investigated experimentally through a non-destructive test setup and the model is validated. The estimation of overcurrent and temperature distribution among the chips can provide useful information...

  18. Modeling and Fault Diagnosis of Interturn Short Circuit for Five-Phase Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Jian-wei Yang

    2015-01-01

    Full Text Available Taking advantage of the high reliability, multiphase permanent magnet synchronous motors (PMSMs, such as five-phase PMSM and six-phase PMSM, are widely used in fault-tolerant control applications. And one of the important fault-tolerant control problems is fault diagnosis. In most existing literatures, the fault diagnosis problem focuses on the three-phase PMSM. In this paper, compared to the most existing fault diagnosis approaches, a fault diagnosis method for Interturn short circuit (ITSC fault of five-phase PMSM based on the trust region algorithm is presented. This paper has two contributions. (1 Analyzing the physical parameters of the motor, such as resistances and inductances, a novel mathematic model for ITSC fault of five-phase PMSM is established. (2 Introducing an object function related to the Interturn short circuit ratio, the fault parameters identification problem is reformulated as the extreme seeking problem. A trust region algorithm based parameter estimation method is proposed for tracking the actual Interturn short circuit ratio. The simulation and experimental results have validated the effectiveness of the proposed parameter estimation method.

  19. MINERAL PROCESSING BY SHORT CIRCUITS IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    McNally, Colin P. [Niels Bohr International Academy, Niels Bohr Institute, DK-2100 Copenhagen (Denmark); Hubbard, Alexander; Mac Low, Mordecai-Mark [Department of Astrophysics, American Museum of Natural History, New York, NY 10024-5192 (United States); Ebel, Denton S. [Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY 10024-5192 (United States); D' Alessio, Paola, E-mail: cmcnally@nbi.dk, E-mail: ahubbard@amnh.org, E-mail: mordecai@amnh.org, E-mail: debel@amnh.org, E-mail: p.dalessio@crya.unam.mx [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, 58089 Morelia, MICH (Mexico)

    2013-04-10

    Meteoritic chondrules were formed in the early solar system by brief heating of silicate dust to melting temperatures. Some highly refractory grains (Type B calcium-aluminum-rich inclusions, CAIs) also show signs of transient heating. A similar process may occur in other protoplanetary disks, as evidenced by observations of spectra characteristic of crystalline silicates. One possible environment for this process is the turbulent magnetohydrodynamic flow thought to drive accretion in these disks. Such flows generally form thin current sheets, which are sites of magnetic reconnection, and dissipate the magnetic fields amplified by a disk dynamo. We suggest that it is possible to heat precursor grains for chondrules and other high-temperature minerals in current sheets that have been concentrated by our recently described short-circuit instability. We extend our work on this process by including the effects of radiative cooling, taking into account the temperature dependence of the opacity; and by examining current sheet geometry in three-dimensional, global models of magnetorotational instability. We find that temperatures above 1600 K can be reached for favorable parameters that match the ideal global models. This mechanism could provide an efficient means of tapping the gravitational potential energy of the protoplanetary disk to heat grains strongly enough to form high-temperature minerals. The volume-filling nature of turbulent magnetic reconnection is compatible with constraints from chondrule-matrix complementarity, chondrule-chondrule complementarity, the occurrence of igneous rims, and compound chondrules. The same short-circuit mechanism may perform other high-temperature mineral processing in protoplanetary disks such as the production of crystalline silicates and CAIs.

  20. Study on Turn-to-turn Short Circuit On一line Monitoring System for Dry一type Ai r一core Reactor

    Directory of Open Access Journals (Sweden)

    GAO Zi-wei

    2017-04-01

    Full Text Available The change of current value caused by turn-to-turn short circuit of dry-type air-core reactor is so little that failure detection is difficult to be carried out. In order to solve this problem,a new on-line monitoring system based on impedance variation of turn-to-turn short circuit is proposed. The numerical method is applied to analyze the variation of equivalent resistance and equivalent reactance when dry-type air-core reactor winding short circuit happens in different places,and the monitoring method based on harmonic analysis method and quasi- synchronization sampling method is analyzed by theory. The hardware system,which takes single-chip microcomputer as the core of data processing and logic control,completes data acquisition of voltage signal and current signal of the reactor. In the respect of software design,the impedance variation will be uploaded to the PC after it has been calculated by using the above monitoring method,and then monitoring of turn-to-turn short circuit fault will be realized. Finally,the design of on-line monitoring system is studied by testing. The research result shows that,the equivalent resistance increases and the equivalent reactance decreases when turn-to-turn short circuit occurs,and the variation of equivalent resistance is more obvious than equivalent reactance. The experiment results prove that this monitoring method is true and the on-line monitoring system is feasible.

  1. Protective relay

    International Nuclear Information System (INIS)

    Lim, Mu Ji; Jung, Hae Sang

    1974-10-01

    This book is divided into two chapters, which deals with protective relay. The first chapter deals with the basic knowledge of relay on development of relay, classification of protective relay, rating of protective relay general structure of protective relay, detecting of ground protection, about point of contact, operating relay and trip relaying. The second chapter is about structure and explanation of relay on classification by structure such as motor type and moving-coil type, explanation of other relays over current relay, over voltage relay, short voltage relay, relay for power, relay for direction, test of over voltage relay, test of short voltage relay and test of directional circuit relay.

  2. Short Circuits of a 10 MW High Temperature Superconducting Wind Turbine Generator

    NARCIS (Netherlands)

    Song, X.; Polinder, H.; Liu, D.; Mijatovic, Nenad; Holbøll, Joachim; Jensen, Bogi Bech

    Direct drive high temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits happen at

  3. An Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers-Part I

    Science.gov (United States)

    Courey, Karim; Wright, Clara; Asfour, Shihab; Bayliss, Jon; Ludwig, Larry

    2008-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance, electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data, we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. In addition, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross sectioned and studied using a focused ion beam (FIB).

  4. Apparatus including a plurality of spaced transformers for locating short circuits in cables

    Science.gov (United States)

    Cason, R. L.; Mcstay, J. J. (Inventor)

    1978-01-01

    A cable fault locator is described for sensing faults such as short circuits in power cables. The apparatus includes a plurality of current transformers strategically located along a cable. Trigger circuits are connected to each of the current transformers for placing a resistor in series with a resistive element responsive to an abnormally high current flowing through that portion of the cable. By measuring the voltage drop across the resistive element, the location of the fault can be determined.

  5. Short-circuit current density imaging of crystalline silicon solar cells via lock-in thermography: Robustness and simplifications

    International Nuclear Information System (INIS)

    Fertig, Fabian; Greulich, Johannes; Rein, Stefan

    2014-01-01

    Spatially resolved determination of solar cell parameters is beneficial for loss analysis and optimization of conversion efficiency. One key parameter that has been challenging to access by an imaging technique on solar cell level is short-circuit current density. This work discusses the robustness of a recently suggested approach to determine short-circuit current density spatially resolved based on a series of lock-in thermography images and options for a simplified image acquisition procedure. For an accurate result, one or two emissivity-corrected illuminated lock-in thermography images and one dark lock-in thermography image have to be recorded. The dark lock-in thermography image can be omitted if local shunts are negligible. Furthermore, it is shown that omitting the correction of lock-in thermography images for local emissivity variations only leads to minor distortions for standard silicon solar cells. Hence, adequate acquisition of one image only is sufficient to generate a meaningful map of short-circuit current density. Beyond that, this work illustrates the underlying physics of the recently proposed method and demonstrates its robustness concerning varying excitation conditions and locally increased series resistance. Experimentally gained short-circuit current density images are validated for monochromatic illumination in comparison to the reference method of light-beam induced current

  6. Electromechanical stress in transformers caused by three-phase short-circuits; Estresse eletromecanico em transformadores causado por curtos-circuitos trifasicos

    Energy Technology Data Exchange (ETDEWEB)

    Rosentino, A.J.J. Pereira; Delaiba, A.C.; Saraiva, E.; Oliveira, J.C. de; Lynce, M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Fac. de Engenharia Eletrica], Emails: arnaldoufu@gmail.com, delaiba@ufu.br, elise.saraiva@yahoo.com.br, jcoliveira@ufu.br, lynce@ufu.br; Bronzeado, H. de S. [Companhia Hidro Eletrica do Sao Francisco (CHESF), Recife, PE (Brazil)], Emails: herivelto.bronzeado@gmail.com, hebron@chesf.gov.br

    2009-07-01

    One of the reasons for internal failures of transformers is the weakness of the isolation of its conductors/coils due to vibrations caused by electromechanics forces produced by the high short-circuit currents. In this context, this paper presents a methodology to estimate the electromechanical stress in transformers caused by three-phase short circuits. Details of the characteristics of radial and axial forces that can occur in concentric windings of transformers, focusing mainly on the axial are presented. It is presented the preliminary description of techniques for diagnosis and monitoring of transformers in the face of mechanical stress caused by short circuit. This study considers the transformers core involved.

  7. L2 Reading Ability: Further Insight into the Short-Circuit Hypothesis.

    Science.gov (United States)

    Taillefer, Gail F.

    1996-01-01

    Discusses the notion of a language proficiency threshold that short circuits the transfer of reading ability from the native language (L1) to a second language (L2). This study, in which cognitive complexity of tasks and students' L2 proficiency levels vary, focuses on university students in France reading preprofessional English texts. (39…

  8. The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes.

    Science.gov (United States)

    Villanueva-Cab, J; Anta, J A; Oskam, G

    2016-01-28

    We report on the commonly unaccounted for process of recombination under short-circuit conditions in nanostructured photoelectrodes with special attention to the charge collection efficiency. It is observed that when recombination under short circuit conditions is significant, small perturbation methods overestimate the charge-collection efficiency, which is related to the inaccurate determination of the electron diffusion coefficient and diffusion length.

  9. Investigation and Classification of Short-Circuit Failure Modes Based on Three-Dimensional Safe Operating Area for High-Power IGBT Modules

    DEFF Research Database (Denmark)

    Chen, Yuxiang; Li, Wuhua; Iannuzzo, Francesco

    2018-01-01

    is implemented to motivate advanced contributions in future dependence research of device short-circuit failure modes on temperature. Consequently, a comprehensive and thoughtful review of where the development of short-circuit failure mode research works of IGBT stands and is heading is provided....

  10. Effects of Armature Winding Segmentation with Multiple Converters on the Short Circuit Torque of 10-MW Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2017-01-01

    Superconducting synchronous generators (SCSGs) are drawing more attention in large direct-drive wind turbine applications. Despite low weight and compactness, the short circuit torque of an SCSG may be too high for wind turbine constructions due to a large magnetic air gap of an SCSG. This paper...... aims at assessing the effects of armature winding segmentation on reducing the short circuit torque of 10-MW SCSGs. A concept of armature winding segmentation with multiple power electronic converters is presented. Four SCSG designs using different topologies are examined. Results show that armature...... winding segmentation effectively reduce the short circuit torque in all the four SCSG designs when one segment is shorted at the terminal....

  11. Fault clearance in medium-voltage networks using remote-monitored short-circuit alarms; Stoerungsbeseitigung im MS-Netz mit fernueberwachten Kurzschlussmeldern

    Energy Technology Data Exchange (ETDEWEB)

    Beran, B. [Reginalzentrum Neckar-Franken der EnBW Regional AG, Oehringen (Germany). Bereich Netzfuehrung; Deiss, R. [RBS Genius GmbH, Stuttgart (Germany). Bereich Korrosionsschutz und Gaslecksuche; Stibbe, T. [Phoenix Contact GmbH und Co KG, Blomberg (Lippe) (Germany). Vertrieb Deutschland

    2006-04-15

    In March 2005, a pilot project on remote monitoring of short-circuit alarms using GSM was started. In cooperation with RBS Genius GmbH (100 percent subsidiary of EnBW Regional AG) who already use a similar technology for controlling cathodic corrosion protection systems, and the EnBW-Regionalzentrum Neckar-Franken, the functionalities were specified. After only five months of development and assembly time, the first 15 units were installed in exposed and difficult-to-access sites. All sites were located along very long power lines in which localisation of the defect would be very time-consuming. (orig.)

  12. Optimal planning of series resistor to control time constant of test circuit for high-voltage AC circuit-breakers

    OpenAIRE

    Yoon-Ho Kim; Jung-Hyeon Ryu; Jin-Hwan Kim; Kern-Joong Kim

    2016-01-01

    The equivalent test circuit that can deliver both short-circuit current and recovery voltage is used to verify the performance of high-voltage circuit breakers. Most of the parameters in this circuit can be obtained by using a simple calculation or a simulation program. The ratings of the circuit breaker include rated short-circuit breaking current, rated short-circuit making current, rated operating sequence of the circuit breaker and rated short-time current. Among these ratings, the short-...

  13. Various mechanisms and clinical phenotypes in electrical short circuits of high-voltage devices: report of four cases and review of the literature.

    Science.gov (United States)

    Tsurugi, Takuo; Matsui, Shogo; Nakajima, Hiroshi; Nishii, Nobuhiro; Honda, Toshihiro; Kaneko, Yoshiaki

    2015-06-01

    An electrical short circuit is a rare complication in a high-voltage implantable cardioverter-defibrillator (ICD). However, the inability of an ICD to deliver appropriate shock therapy can be life-threatening. During the last 2 years, four cases of serious complications related to an electrical short circuit have been reported in Japan. A spark due to an electrical short circuit resulted in the failure of an ICD shock to terminate ventricular tachycardia and total damage to the ICD generator in three of four cases. Two of the four patients died from an electrical short circuit between the right ventricle and superior vena cava (SVC) leads. The others had audible sounds from the ICD generator site and were diagnosed with a lead-to-can abrasion, which was manifested by the arc mark on the surface of the can. It is still difficult to predict the occurrence of an electrical short circuit in current ICD systems. To reduce the probability of an electrical short circuit, we suggest the following: (i) avoid lead stress at ICD implantation, (ii) select a single-coil lead instead of a dual-coil lead, or (iii) use a unique algorithm which automatically disconnect can or SVC lead from shock deliver circuit when excessive current was detected. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  14. The factors influencing nonlinear characteristics of the short-circuit current in dye-sensitized solar cells investigated by a numerical model.

    Science.gov (United States)

    Shi, Yushuai; Dong, Xiandui

    2013-06-24

    A numerical model for interpretation of the light-intensity-dependent nonlinear characteristics of the short-circuit current in dye-sensitized solar cells is suggested. The model is based on the continuity equation and includes the influences of the nongeminate recombination between electrons and electron acceptors in the electrolyte and the geminate recombination between electrons and oxidized dye molecules. The influences of the order and rate constant of the nongeminate recombination reaction, the light-absorption coefficient of the dye, the film thickness, the rate constant of geminate recombination, and the regeneration rate constant on the nonlinear characteristics of the short-circuit current are simulated and analyzed. It is proposed that superlinear and sublinear characteristics of the short-circuit current should be attributed to low electron-collection efficiency and low dye-regeneration efficiency, respectively. These results allow a deep understanding of the origin of the nonlinear characteristics of the short-circuit current in solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives

    KAUST Repository

    Ko, Sangwon; Hoke, Eric T.; Pandey, Laxman; Hong, Sanghyun; Mondal, Rajib; Risko, Chad; Yi, Yuanping; Noriega, Rodrigo; McGehee, Michael D.; Bré das, Jean-Luc; Salleo, Alberto; Bao, Zhenan

    2012-01-01

    and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone-due to an increase in the polymer ionization potential-while the short-circuit current decreased

  16. The Solenarc circuit-breaker of high performance level

    International Nuclear Information System (INIS)

    Lehmann, J.M.

    1983-01-01

    After recalling the breaking principle involved in MV circuit-breakers manufactured by Merlin Gerin, it is showed how Solenarc technique enables specific problems to be solved that are set by the equipment of Eurodif plant at Tricastin and that represent constraints similar to those encountered with protective equipment for power station auxiliaries (high rated currents, long duration overloads, very high short-circuit currents, current breaks without natural passage through zero, etc.) [fr

  17. Short-Circuit Fault Detection and Classification Using Empirical Wavelet Transform and Local Energy for Electric Transmission Line.

    Science.gov (United States)

    Huang, Nantian; Qi, Jiajin; Li, Fuqing; Yang, Dongfeng; Cai, Guowei; Huang, Guilin; Zheng, Jian; Li, Zhenxin

    2017-09-16

    In order to improve the classification accuracy of recognizing short-circuit faults in electric transmission lines, a novel detection and diagnosis method based on empirical wavelet transform (EWT) and local energy (LE) is proposed. First, EWT is used to deal with the original short-circuit fault signals from photoelectric voltage transformers, before the amplitude modulated-frequency modulated (AM-FM) mode with a compactly supported Fourier spectrum is extracted. Subsequently, the fault occurrence time is detected according to the modulus maxima of intrinsic mode function (IMF₂) from three-phase voltage signals processed by EWT. After this process, the feature vectors are constructed by calculating the LE of the fundamental frequency based on the three-phase voltage signals of one period after the fault occurred. Finally, the classifier based on support vector machine (SVM) which was constructed with the LE feature vectors is used to classify 10 types of short-circuit fault signals. Compared with complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and improved CEEMDAN methods, the new method using EWT has a better ability to present the frequency in time. The difference in the characteristics of the energy distribution in the time domain between different types of short-circuit faults can be presented by the feature vectors of LE. Together, simulation and real signals experiment demonstrate the validity and effectiveness of the new approach.

  18. Closed Form Solution of Synchronous Machine Short Circuit Transients

    Directory of Open Access Journals (Sweden)

    Gibson H.M. Sianipar

    2010-05-01

    Full Text Available This paper presents the closed form solution of the synchronous machine transients undergoing short circuit. That analytic formulation has been derived based on linearity and balanced conditions of the fault. Even though restrictive, the proposed method will serve somehow or other as a new resource for EMTP productivity. Indisputably superior, the closed-form formulation has some features inimitable by discretization such as continuity, accuracy and absolute numerical stability. Moreover, it enables us to calculate states at one specific instant independent of previous states or a snapshot, which any discretization methods cannot do.

  19. Surge Protection in Low-Voltage AC Power Circuits: An Anthology

    Science.gov (United States)

    Martzloff, F. D.

    2002-10-01

    The papers included in this part of the Anthology provide basic information on the propagation of surges in low-voltage AC power circuits. The subject was approached by a combination of experiments and theoretical considerations. One important distinction is made between voltage surges and current surges. Historically, voltage surges were the initial concern. After the introduction and widespread use of current-diverting surge-protective devices at the point-of-use, the propagation of current surges became a significant factor. The papers included in this part reflect this dual dichotomy of voltage versus current and impedance mismatch effects versus simple circuit theory.

  20. Spectral analysis to detection of short circuit fault of solar photovoltaic modules in strings

    International Nuclear Information System (INIS)

    Sevilla-Camacho, P.Y.; Robles-Ocampo, J.B.; Zuñiga-Reyes, Marco A.

    2017-01-01

    This research work presents a method to detect the number of short circuit faulted solar photovoltaic modules in strings of a photovoltaic system by taking into account speed, safety, and non-use of sensors and specialized and expensive equipment. The method consists on apply the spectral analysis and statistical techniques to the alternating current output voltage of a string and detect the number of failed modules through the changes in the amplitude of the component frequency of 12 kHz. For that, the analyzed string is disconnected of the array; and a small pulsed voltage signal of frequency of 12 kHz introduces him under dark condition and controlled temperature. Previous to the analysis, the signal is analogic filtered in order to reduce the direct current signal component. The spectral analysis technique used is the Fast Fourier Transform. The obtained experimental results were validated through simulation of the alternating current equivalent circuit of a solar cell. In all experimental and simulated test, the method allowed to identify correctly the number of photovoltaic modules with short circuit in the analyzed string. (author)

  1. Short-circuit tests of 1650 and 96 MVA transformers for 1300 MW french nuclear power plants

    International Nuclear Information System (INIS)

    Mailhot, M.

    1989-01-01

    Power evacuation and feeding of the auxiliaries directly from the 400 kV grid are sensitive points governing the security of 1300 MW PWR Nuclear Power Plants of the French Program. These two different functions are provided by two specific types of transformers. - Banks of 3 single-phase 550 MVA - 400 kV/20 kV transformers. - Three-phase 96 MVA - 400 kV / 3 x 6.8 kV transformers. These passive elements must have a never failing reliability and assure a continuous service in spite of electric, thermal and mechanical stresses that may occur during the lifetime of the power plant. Dielectric and thermal tests carried out in the manufacturers test floors insure these stresses withstand capabilities of transformers. In France, high short-circuit power for the 400 kV network added to often low impedance voltages for transformers impose on them very high stresses during short-circuits. Calculation and experimentation on scale or partial models are not sufficient to insure short-circuit currents withstand capabilities of transformers. The margin of uncertainty dependent on obligatory extrapolations for this kind of complex systems [steel, magnetic sheets, copper, oil, paper and transformerboard] can be reduced in a significant way only by real scale tests on prototypes. These tests that need both high power and voltage cannot be performed in manufacturers test floors. So, in France they are carried out at the EDF Les Renardieres Laboratory. Following paper deals with SHELL TYPE TRANSFORMERS which, particularly thanks to their interleaved rectangular windings display a great resistance to short-circuit stresses

  2. Detection of inter-turn short-circuit at start-up of induction machine based on torque analysis

    Directory of Open Access Journals (Sweden)

    Pietrowski Wojciech

    2017-12-01

    Full Text Available Recently, interest in new diagnostics methods in a field of induction machines was observed. Research presented in the paper shows the diagnostics of induction machine based on torque pulsation, under inter-turn short-circuit, during start-up of a machine. In the paper three numerical techniques were used: finite element analysis, signal analysis and artificial neural networks (ANN. The elaborated numerical model of faulty machine consists of field, circuit and motion equations. Voltage excited supply allowed to determine the torque waveform during start-up. The inter-turn short-circuit was treated as a galvanic connection between two points of the stator winding. The waveforms were calculated for different amounts of shorted-turns from 0 to 55. Due to the non-stationary waveforms a wavelet packet decomposition was used to perform an analysis of the torque. The obtained results of analysis were used as input vector for ANN. The response of the neural network was the number of shorted-turns in the stator winding. Special attention was paid to compare response of general regression neural network (GRNN and multi-layer perceptron neural network (MLP. Based on the results of the research, the efficiency of the developed algorithm can be inferred.

  3. Increased short circuit current in an azafullerene-based organic solar cell.

    Science.gov (United States)

    Cambarau, Werther; Fritze, Urs F; Viterisi, Aurélien; Palomares, Emilio; von Delius, Max

    2015-01-21

    We report the synthesis of a solution-processable, dodecyloxyphenyl-substituted azafullerene monoadduct (DPC59N) and its application as electron acceptor in bulk heterojunction organic solar cells (BHJ-OSCs). Due to its relatively strong absorption of visible light, DPC59N outperforms PC60BM in respect to short circuit current (JSC) and external quantum efficiency (EQE) in blends with donor P3HT.

  4. Consequences and mitigation of saltwater intrusion induced by short-circuiting during aquifer storage and recovery in a coastal subsurface

    Science.gov (United States)

    Gerardus Zuurbier, Koen; Stuyfzand, Pieter Jan

    2017-02-01

    Coastal aquifers and the deeper subsurface are increasingly exploited. The accompanying perforation of the subsurface for those purposes has increased the risk of short-circuiting of originally separated aquifers. This study shows how this short-circuiting negatively impacts the freshwater recovery efficiency (RE) during aquifer storage and recovery (ASR) in coastal aquifers. ASR was applied in a shallow saltwater aquifer overlying a deeper, confined saltwater aquifer, which was targeted for seasonal aquifer thermal energy storage (ATES). Although both aquifers were considered properly separated (i.e., a continuous clay layer prevented rapid groundwater flow between both aquifers), intrusion of deeper saltwater into the shallower aquifer quickly terminated the freshwater recovery. The presumable pathway was a nearby ATES borehole. This finding was supported by field measurements, hydrochemical analyses, and variable-density solute transport modeling (SEAWAT version 4; Langevin et al., 2007). The potentially rapid short-circuiting during storage and recovery can reduce the RE of ASR to null. When limited mixing with ambient groundwater is allowed, a linear RE decrease by short-circuiting with increasing distance from the ASR well within the radius of the injected ASR bubble was observed. Interception of deep short-circuiting water can mitigate the observed RE decrease, although complete compensation of the RE decrease will generally be unattainable. Brackish water upconing from the underlying aquitard towards the shallow recovery wells of the ASR system with multiple partially penetrating wells (MPPW-ASR) was observed. This leakage may lead to a lower recovery efficiency than based on current ASR performance estimations.

  5. The dependence of the short circuit current with γ-radiation in CuGaSe2

    International Nuclear Information System (INIS)

    Gasimoglu, I.; Mamedova, I.A.; Bagirov, A.G.

    2005-01-01

    Full text: The A I B III C IV semiconducting compounds are of interest for semiconducting devising. In particular the presence of the birefringence makes the compounds as a perspective materials for using in nonlinear optical transformers. Besides, the complex generation-recombination processes in these compounds are due to the local states in the band gap, which is also due to the complex chemical structure of these compounds. In this report the results of the influence of γ-radiation on the short circuit current in CuGaSe 2 are presented. The Co 6 0 with the quantum energy of 1.25 MeV was a source of radiation. The resistance was 10 2 kΩ at 300 K. The In-Ga eutectic was used as a contact. The measurements have been carried out at 77 K. The electrometer B7-30 was used for the short circuit current measurements, sensitivity of which is 10 -15 A. The intensity of γ-rays was 20 R/s, durability of radiation was 15 min. The spectrometer SPM-2 was used as a source of radiation of monoxrmator light. The spectral dependence of short circuit current of non radiated CuGaSe 2 crystal has a maximum at λ=700 nm (0.77 eV) with the half width of 0.26 eV. The maximum of short circuit current is in good agreement with the value 1.8 eV at 300 K. That is why one can assume that observed peak in J sc ∼∼f(λ) dependence with the maximum at 1.77 eV is due to electronic transitions from the valence band to conduction band. After radiation of CuGaSe 2 crystal new maximum is observed in the spectral dependence of short circuit current at λ=770 nm (1.61 eV) at 77 K. Splitting between the peaks is 0.13 eV. The appearance of the second peak maybe is due to the formation of radiation defects of acceptor type, which are located for 0.13 eV above than the top of valence band. The peak at 1.59 eV, which is due the donor-acceptor recombination, is observed in photoluminescence spectra. It is assumed that, Se vacancy forms the donor levels, Cu vacancy -acceptor levels

  6. Evidence of Gate Voltage Oscillations during Short Circuit of Commercial 1.7 kV/ 1 kA IGBT Power Modules

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Wu, Rui; Iannuzzo, Francesco

    2015-01-01

    This paper analyzes the evidence of critical gate voltage oscillations in 1.7 kV/1 kA Insulated-Gate Bipolar Transistor (IGBT) power modules under short circuit conditions. A 6 kA/1.1 kV Non-Destructive Test (NDT) set up for repeatable short circuit tests has been built with a 40 nH stray inducta...

  7. Several problems of algorithmization in integrated computation programs on third generation computers for short circuit currents in complex power networks

    Energy Technology Data Exchange (ETDEWEB)

    Krylov, V.A.; Pisarenko, V.P.

    1982-01-01

    Methods of modeling complex power networks with short circuits in the networks are described. The methods are implemented in integrated computation programs for short circuit currents and equivalents in electrical networks with a large number of branch points (up to 1000) on a computer with a limited on line memory capacity (M equals 4030 for the computer).

  8. Round busbar concept for 30 nH, 1.7 kV, 10 kA IGBT non-destructive short-circuit tester

    DEFF Research Database (Denmark)

    Smirnova, Liudmila; Pyrhönen, Juha; Iannuzzo, Francesco

    2014-01-01

    Design of a Non-Destructive Test (NDT) set-up for short-circuit tests of 1.7 kV, 1 kA IGBT modules is discussed in this paper. The test set-up allows achieving short-circuit current up to 10 kA. The important objective during the design of the test set-up is to minimize the parasitic inductance...

  9. Cage-rotor induction motor inter-turn short circuit fault detection with and without saturation effect by MEC model.

    Science.gov (United States)

    Naderi, Peyman

    2016-09-01

    The inter-turn short fault for the Cage-Rotor-Induction-Machine (CRIM) is studied in this paper and its local saturation is taken into account. However, in order to observe the exact behavior of machine, the Magnetic-Equivalent-Circuit (MEC) and nonlinear B-H curve are proposed to provide an insight into the machine model and saturation effect respectively. The electrical machines are generally operated near to their saturation zone due to some design necessities. Hence, when the machine is exposed to a fault such as short circuit or eccentricities, it is operated within its saturation zone and thus, time and space harmonics are integrated and as a result, current and torque harmonics are generated which the phenomenon cannot be explored when saturation is dismissed. Nonetheless, inter-turn short circuit may lead to local saturation and this occurrence is studied in this paper using MEC model. In order to achieve the mentioned objectives, two and also four-pole machines are modeled as two samples and the machines performances are analyzed in healthy and faulty cases with and without saturation effect. A novel strategy is proposed to precisely detect inter-turn short circuit fault according to the stator׳s lines current signatures and the accuracy of the proposed method is verified by experimental results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. The influence of gamma irradiation on short-circuit current in CuGaSe2

    International Nuclear Information System (INIS)

    Gasimoglu, I.; Mamedova, I.A.; Bagirov, A.G.

    2005-01-01

    Full text : The influence of gamma irradiation on a short-circuit current at 77 K was investigated. The appeared strip with a maximum at 1,61 ///// after irradiation in spectral dependence connected with p-type radiating defects [ru

  11. Verification of the short-circuit current making capability of high-voltage switching devices

    NARCIS (Netherlands)

    Smeets, R.P.P.; Linden, van der W.A.

    2001-01-01

    Switching-in of short-circuit current leads to pre-arcing in the switching device. Pre-arcing affects the ability of switchgear to close and latch. In three-phase systems, making is associated with transient voltage phenomena that may have a significant impact on the duration of the pre-arcing

  12. Electro-thermal modeling of high power IGBT module short-circuits with experimental validation

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2015-01-01

    A novel Insulated Gate Bipolar Transistor (IGBT) electro-thermal modeling approach involving PSpice and ANSYS/Icepak with both high accuracy and simulation speed has been presented to study short-circuit of a 1.7 kV/1 kA commercial IGBT module. The approach successfully predicts the current...

  13. EQUATIONS OF ELECTRIC MOTOR POWER SUPPLY UNIT DISSYMMETRY UNDER PHASE SHORT-CIRCUIT FAULT

    Directory of Open Access Journals (Sweden)

    V.Y. Tchaban

    2013-04-01

    Full Text Available In the paper, a formula is introduced for calculating electric motor supply unit voltage under feeding by a common transformer in the condition of a phase short-circuit in one of the motors. The formula is used in every time step of electromechanical state equations integration.

  14. Surge protective device response to steep front transient in low voltage circuit

    Energy Technology Data Exchange (ETDEWEB)

    Marcuz, J.; Binczak, S.; Bilbault, J.M. [Universite de Bourgogne, Dijon (France)], Emails: jerome.marcuz@ laposte.net, stbinc@u-bourgogne.fr, bilbault@u-bourgogne.fr; Girard, F. [ADEE Electronic, Pont de Pany (France)

    2007-07-01

    Surge propagation on cables of electrical or data lines leads to a major protection problem as the number of equipment based on solid-state circuits or microprocessors increases. Sub-microsecond components of real surge waveform has to be taken into account for a proper protection even in the case of surges caused by indirect lightning effects. The response of a model of transient voltage suppressor diode based surge protection device (SPD) to fast front transient is analytically studied, then compared to simulations, including the lines connected to the SPD and to the protected equipment. (author)

  15. A feeder protection method against the phase-phase fault using symmetrical components

    DEFF Research Database (Denmark)

    Ciontea, Catalin-Iosif; Bak, Claus Leth; Blaabjerg, Frede

    2017-01-01

    generation and relatively reduced short-circuit currents, thus resembling the electric network on a ship. The simulation results demonstrate that the proposed method of protection provides an improved performance compared to the conventional OverCurrent relays in a radial feeder with variable short......The method of symmetrical components simplifies analysis of an electric circuit during the fault and represents an important tool for the protection engineers. In this paper, the symmetrical components of the fault current are used in a new feeder protection method for the maritime applications...

  16. Design and testing of integrated circuits for reactor protection channels

    International Nuclear Information System (INIS)

    Battle, R.E.; Vandermolen, R.I.; Jagadish, U.; Swail, B.K.; Naser, J.; Rana, I.

    1995-01-01

    Custom and semicustom application-specific integrated circuit design and testing methods are investigated for use in research and commercial nuclear reactor safety systems. The Electric Power Research Institute and Oak Ridge National Laboratory are working together through a cooperative research and development agreement to apply modern technology to a nuclear reactor protection system. Purpose of this project is to demonstrate to the nuclear industry an alternative approach for new or upgrade reactor protection and safety system signal processing and voting logic. Motivation for this project stems from (1) the difficulty of proving that software-based protection systems are adequately reliable, (2) the obsolescence of the original equipment, and (3) the improved performance of digital processing

  17. Design and testing of integrated circuits for reactor protection channels

    International Nuclear Information System (INIS)

    Battle, R.E.; Vandermolen, R.I.; Jagadish, U.; Swail, B.K.; Naser, J.

    1995-01-01

    Custom and semicustom application-specific integrated circuit design and testing methods are investigated for use in research and commercial nuclear reactor safety systems. The Electric Power Research Institute and Oak Ridge National Laboratory are working together through a cooperative research and development agreement to apply modern technology to a nuclear reactor protection system. The purpose of this project is to demonstrate to the nuclear industry an alternative approach for new or upgrade reactor protection and safety system signal processing and voting logic. Motivation for this project stems from (1) the difficulty of proving that software-based protection systems are adequately reliable, (2) the obsolescence of the original equipment, and (3) the improved performance of digital processing. A demonstration model for protection system of PWR reactor has been designed and built

  18. Numerical differential protection

    CERN Document Server

    Ziegler, Gerhard

    2012-01-01

    Differential protection is a fast and selective method of protection against short-circuits. It is applied in many variants for electrical machines, trans?formers, busbars, and electric lines.Initially this book covers the theory and fundamentals of analog and numerical differential protection. Current transformers are treated in detail including transient behaviour, impact on protection performance, and practical dimensioning. An extended chapter is dedicated to signal transmission for line protection, in particular, modern digital communication and GPS timing.The emphasis is then pla

  19. Benefits of Compression Garments Worn During Handball-Specific Circuit on Short-Term Fatigue in Professional Players.

    Science.gov (United States)

    Ravier, Gilles; Bouzigon, Romain; Beliard, Samuel; Tordi, Nicolas; Grappe, Frederic

    2018-04-04

    Ravier, G, Bouzigon, R, Beliard, S, Tordi, N, and Grappe, F. Benefits of compression garments worn during handball-specific circuit on short-term fatigue in professional players. J Strength Cond Res XX(X): 000-000, 2016-The purpose of this study was to investigate the benefits of full-leg length compression garments (CGs) worn during a handball-specific circuit exercises on athletic performance and acute fatigue-induced changes in strength and muscle soreness in professional handball players. Eighteen men (mean ± SD: age 23.22 ± 4.97 years; body mass: 82.06 ± 9.69 kg; height: 184.61 ± 4.78 cm) completed 2 identical sessions either wearing regular gym short or CGs in a randomized crossover design. Exercise circuits of explosive activities included 3 periods of 12 minutes of sprints, jumps, and agility drills every 25 seconds. Before, immediately after and 24 hours postexercise, maximal voluntary knee extension (maximal voluntary contraction, MVC), rate of force development (RFD), and muscle soreness were assessed. During the handball-specific circuit sprint and jump performances were unchanged in both conditions. Immediately after performing the circuit exercises MVC, RFD, and PPT decreased significantly compared with preexercise with CGs and noncompression clothes. Decrement was similar in both conditions for RFD (effect size, ES = 0.40) and PPT for the soleus (ES = 0.86). However, wearing CGs attenuated decrement in MVC (p handball-specific circuit provides benefits on the impairment of the maximal muscle force characteristics and is likely to be worthwhile for handball players involved in activities such as tackles.

  20. Protection relay of phase-shifting device with thyristor switch for high voltage power transmission lines

    Science.gov (United States)

    Lachugin, V. F.; Panfilov, D. I.; Akhmetov, I. M.; Astashev, M. G.; Shevelev, A. V.

    2014-12-01

    Problems of functioning of differential current protection systems of phase shifting devices (PSD) with mechanically changed coefficient of transformation of shunt transformer are analyzed. Requirements for devices of protection of PSD with thyristor switch are formulated. Based on use of nonlinear models of series-wound and shunt transformers of PSD modes of operation of major protection during PSD, switching to zero load operation and to operation under load and during short circuit operation were studied for testing PSD with failures. Use of the principle of duplicating by devices of differential current protection (with realization of functions of breaking) of failures of separate pares of PSD with thyristor switch was substantiated. To ensure protection sensitivity to the shunt transformer winding short circuit, in particular, to a short circuit that is not implemented in the current differential protection for PSD with mechanical switch, the differential current protection reacting to the amount of primary ampere-turns of high-voltage and low-voltage winding of this transformer was designed. Studies have shown that the use of differential current cutoff instead of overcurrent protection for the shunt transformer wndings allows one to provide the sensitivity during thyristor failure with the formation of a short circuit. The results of simulation mode for the PSD with switch thyristor designed to be installed as switching point of Voskhod-Tatarskaya-Barabinsk 220 kV transmission line point out the efficiency of the developed solutions that ensure reliable functioning of the PSD.

  1. Push-pull converter with energy saving circuit for protecting switching transistors from peak power stress

    Science.gov (United States)

    Mclyman, W. T. (Inventor)

    1981-01-01

    In a push-pull converter, switching transistors are protected from peak power stresses by a separate snubber circuit in parallel with each comprising a capacitor and an inductor in series, and a diode in parallel with the inductor. The diode is connected to conduct current of the same polarity as the base-emitter juction of the transistor so that energy stored in the capacitor while the transistor is switched off, to protect it against peak power stress, discharges through the inductor when the transistor is turned on, and after the capacitor is discharges through the diode. To return this energy to the power supply, or to utilize this energy in some external circuit, the inductor may be replaced by a transformer having its secondary winding connected to the power supply or to the external circuit.

  2. Technical Study on Improvement of Endurance Capability of Limit Short-circuit Current of Charge Control SMART Meter

    Science.gov (United States)

    Li, W. W.; Du, Z. Z.; Yuan, R. m.; Xiong, D. Z.; Shi, E. W.; Lu, G. N.; Dai, Z. Y.; Chen, X. Q.; Jiang, Z. Y.; Lv, Y. G.

    2017-10-01

    Smart meter represents the development direction of energy-saving smart grid in the future. The load switch, one of the core parts of smart meter, should be of high reliability, safety and endurance capability of limit short-circuit current. For this reason, this paper discusses the quick simulation of relationship between attraction and counterforce of load switch without iteration, establishes dual response surface model of attraction and counterforce and optimizes the design scheme of load switch for charge control smart meter, thus increasing electromagnetic attraction and spring counterforce. In this way, this paper puts forward a method to improve the withstand capacity of limit short-circuit current.

  3. Mineral processing by short circuits in protoplanetary disks

    DEFF Research Database (Denmark)

    Mcnally, C.P.; Hubbard, A.; Mac Low, M.-M.

    2013-01-01

    Meteoritic chondrules were formed in the early solar system by brief heating of silicate dust to melting temperatures. Some highly refractory grains (Type B calcium-aluminum-rich inclusions, CAIs) also show signs of transient heating. A similar process may occur in other protoplanetary disks......, as evidenced by observations of spectra characteristic of crystalline silicates. One possible environment for this process is the turbulent magnetohydrodynamic flow thought to drive accretion in these disks. Such flows generally form thin current sheets, which are sites of magnetic reconnection, and dissipate...... the magnetic fields amplified by a disk dynamo. We suggest that it is possible to heat precursor grains for chondrules and other high-temperature minerals in current sheets that have been concentrated by our recently described short-circuit instability. We extend our work on this process by including...

  4. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Sciences Lane, Vancouver, British Columbia (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario (Canada)

    2008-02-15

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R{sub p}) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R{sub p}. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified. (author)

  5. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Science.gov (United States)

    White, B. D.; Kesler, O.

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.

  6. Detecting the single line to ground short circuit fault in the submarine’s power system using the artificial neural network

    Directory of Open Access Journals (Sweden)

    Behniafar Ali

    2013-01-01

    Full Text Available The electric marine instruments are newly inserted in the trade and industry, for which the existence of an equipped and reliable power system is necessitated. One of the features of such a power system is that it cannot have an earth system causing the protection relays not to be able to detect the single line to ground short circuit fault. While on the other hand, the occurrence of another similar fault at the same time can lead to the double line fault and thereby the tripping of relays and shortening of vital loads. This in turn endangers the personals' security and causes the loss of military plans. From the above considerations, it is inferred that detecting the single line to ground fault in the marine instruments is of a special importance. In this way, this paper intends to detect the single line to ground fault in the power systems of the marine instruments using the wavelet transform and Multi-Layer Perceptron (MLP neural network. In the numerical analysis, several different types of short circuit faults are simulated on several marine power systems and the proposed approach is applied to detect the single line to ground fault. The results are of a high quality and preciseness and perfectly demonstrate the effectiveness of the proposed approach.

  7. ISO 15693-compatible high frequency passive RFID transponder with mixed-signal ESD protection circuit

    International Nuclear Information System (INIS)

    Khaw, M.K.; Mohd-Yasin, F.; Reaz, M.B.I.

    2009-06-01

    Radio Frequency Identification (RFID) tags have long been in existence since the 1950's. But not until two decades ago have they found important usage in areas where the need for enhanced and secured data handling is highly concerned. For example, RFID tags are embedded with passports in countries like US and Malaysia since the September 11th incident. RFID tag used in smart card such as passport is constantly exposed to a lot of human touches, thus requiring a very good Electrostatic Discharge (ESD) protection. Normally the protection is done at the pad level, but the protection is usually small dimensioned to reduce input capacitance. Therefore, in advanced process with thinner gate oxide, internal protection is necessary. This work presents the design of an ISO 15693-compatible 13.56 MHz passive RFID tag with internal ESD protection. VDD-to-ground ESD clamp circuits are strategically placed in the chip architecture. Each clamp has a capability to sustain 2-KV Human Body Model (HBM) positive mode ESD voltage, to produce robust tag. The protection circuit adds 15.12nW to the total power consumption, which is very minimal. (author)

  8. Control of internal and external short circuits in lithium batteries using a composite thermal switch

    Science.gov (United States)

    Mcdonald, Robert C.; Pickett, Jerome; Goebel, Franz

    1991-01-01

    A composite material has been developed, consisting of a blend of metal and fluorocarbon particles, which behaves as an electronic conductor at room temperature and which abruptly becomes an insulator at a predetermined temperature. This switching behavior results from the difference in thermal expansion coefficients between the conductive and non-conductive portions of the composite. This material was applied as a thin film between the carbon cathode in Li/SOCl2 cells, and the metallic cathode current collector. Using test articles incorporating this feature it was shown that lithium cells externally heated or internally heated during a short circuit lost rate capability and the ability to overheat well below the melting point of lithium (180 C). Thus, during an internal or external cell short circuit, the potential for thermal runaway involving reactions of molten lithium is avoided.

  9. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration

    Science.gov (United States)

    Higashi, Shougo; Lee, Seok Woo; Lee, Jang Soo; Takechi, Kensuke; Cui, Yi

    2016-01-01

    Portable power sources and grid-scale storage both require batteries combining high energy density and low cost. Zinc metal battery systems are attractive due to the low cost of zinc and its high charge-storage capacity. However, under repeated plating and stripping, zinc metal anodes undergo a well-known problem, zinc dendrite formation, causing internal shorting. Here we show a backside-plating configuration that enables long-term cycling of zinc metal batteries without shorting. We demonstrate 800 stable cycles of nickel–zinc batteries with good power rate (20 mA cm−2, 20 C rate for our anodes). Such a backside-plating method can be applied to not only zinc metal systems but also other metal-based electrodes suffering from internal short circuits. PMID:27263471

  10. Laser induced non-monotonic degradation in short-circuit current of triple-junction solar cells

    Science.gov (United States)

    Dou, Peng-Cheng; Feng, Guo-Bin; Zhang, Jian-Min; Song, Ming-Ying; Zhang, Zhen; Li, Yun-Peng; Shi, Yu-Bin

    2018-06-01

    In order to study the continuous wave (CW) laser radiation effects and mechanism of GaInP/GaAs/Ge triple-junction solar cells (TJSCs), 1-on-1 mode irradiation experiments were carried out. It was found that the post-irradiation short circuit current (ISC) of the TJSCs initially decreased and then increased with increasing of irradiation laser power intensity. To explain this phenomenon, a theoretical model had been established and then verified by post-damage tests and equivalent circuit simulations. Conclusion was drawn that laser induced alterations in the surface reflection and shunt resistance were the main causes for the observed non-monotonic decrease in the ISC of the TJSCs.

  11. Effect of dislocations on the open-circuit voltage, short-circuit current and efficiency of heteroepitaxial indium phosphide solar cells

    Science.gov (United States)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Excellent radiation resistance of indium phosphide solar cells makes them a promising candidate for space power applications, but the present high cost of starting substrates may inhibit their large scale use. Thin film indium phosphide cells grown on Si or GaAs substrates have exhibited low efficiencies, because of the generation and propagation of large number of dislocations. Dislocation densities were calculated and its influence on the open circuit voltage, short circuit current, and efficiency of heteroepitaxial indium phosphide cells was studied using the PC-1D. Dislocations act as predominant recombination centers and are required to be controlled by proper transition layers and improved growth techniques. It is shown that heteroepitaxial grown cells could achieve efficiencies in excess of 18 percent AMO by controlling the number of dislocations. The effect of emitter thickness and surface recombination velocity on the cell performance parameters vs. dislocation density is also studied.

  12. Enhanced charging kinetics of porous electrodes: surface conduction as a short-circuit mechanism.

    Science.gov (United States)

    Mirzadeh, Mohammad; Gibou, Frederic; Squires, Todd M

    2014-08-29

    We use direct numerical simulations of the Poisson-Nernst-Planck equations to study the charging kinetics of porous electrodes and to evaluate the predictive capabilities of effective circuit models, both linear and nonlinear. The classic transmission line theory of de Levie holds for general electrode morphologies, but only at low applied potentials. Charging dynamics are slowed appreciably at high potentials, yet not as significantly as predicted by the nonlinear transmission line model of Biesheuvel and Bazant. We identify surface conduction as a mechanism which can effectively "short circuit" the high-resistance electrolyte in the bulk of the pores, thus accelerating the charging dynamics and boosting power densities. Notably, the boost in power density holds only for electrode morphologies with continuous conducting surfaces in the charging direction.

  13. Errors in short circuit measurements due to spectral mismatch between sunlight and solar simulators

    Science.gov (United States)

    Curtis, H. B.

    1976-01-01

    Errors in short circuit current measurement were calculated for a variety of spectral mismatch conditions. The differences in spectral irradiance between terrestrial sunlight and three types of solar simulator were studied, as well as the differences in spectral response between three types of reference solar cells and various test cells. The simulators considered were a short arc xenon lamp AMO sunlight simulator, an ordinary quartz halogen lamp, and an ELH-type quartz halogen lamp. Three types of solar cells studied were a silicon cell, a cadmium sulfide cell and a gallium arsenide cell.

  14. Performance of Llampuedken with short circuit and plasma loads

    International Nuclear Information System (INIS)

    Chuaqui, Hernan; Mitchell, Ian H.; Aliaga-Rossel, Raul; Favre, Mario; Wyndham, Edmund S.

    2002-01-01

    Llampuedken is a pulsed power generator designed to deliver a 1 MA, 250 ns risetime current pulse into a dense plasma load. The main novel feature of this generator is the two auxiliary transmission lines which transmit the energy not absorbed by the load, reflect it at the open end of the line and deliver it to the load when the energy from the main lines is decreasing. With the auxiliary lines an increase of 30% on the current as well as a decrease of the voltage at the load is obtained. To date Llampuedken has been operated up to the 400 kA level, into both short circuit and plasma loads. Details of actual performance of the pulse power generator are presented and compared with simulations

  15. Experimental investigation of internal short circuits in lithium-ion batteries

    Science.gov (United States)

    Poramapojana, Poowanart

    With outstanding performance of Lithium-ion batteries, they have been widely used in many applications. For hybrid electric vehicles and electric vehicles, customer concerns of battery safety have been raised as a number of car accidents were reported. To evaluate safety performance of these batteries, a nail penetration test is used to simulate and induce internal short circuits instantaneously. Efforts to explain failure mechanisms of the penetration using electrochemical-thermal coupled models have been proposed. However, there is no experimental validation because researchers lack of a diagnostic tool to acquire important cell characteristics at a shorting location, such as shorting current and temperature. In this present work, diagnostic nails have been developed to acquire nail center temperatures and shorting current flow through the nails during nail penetration tests. Two types of cylindrical wall structures are used to construct the nails: a double-layered stainless steel wall and a composite cylindrical wall. An inner hollow cylinder functions as a sensor holder where two wires and one thermocouple are installed. To study experimental reproducibility and repeatability of experimental results, two nail penetration tests are conducted using two diagnostic nails with the double-layered wall. Experimental data shows that the shorting resistance at the initial stage is a critical parameter to obtain repeatable results. The average shorting current for both tests is approximately 40 C-rate. The fluctuation of the shorting current is due to random sparks and fire caused loose contacts between the nail and the cell components. Moreover, comparative experimental results between the two wall structures reveal that the wall structure does not affect the cell characteristics and Ohmic heat generation of the nail. The wall structure effects to current measurements inside the nail. With the composite wall, the actual current redistribution into the inner wall is

  16. Influence of wavelength on transient short-circuit current in polycrystalline silicon solar cells

    International Nuclear Information System (INIS)

    Ba, B.; Kane, M.

    1993-10-01

    The influence of the wavelength of a monochromatic illumination on transient short-circuit current in an n/p polycrystalline silicon part solar cell junction is investigated. A wavelength dependence in the initial part of the current decay is observed in the case of cells with moderate grain boundary effects. This influence is attenuated in polycrystalline cells with strong grain boundary activity. (author). 10 refs, 6 figs

  17. Results of experimental research of the modes of short circuit in a traction network

    Directory of Open Access Journals (Sweden)

    P.Ye. Mykhalichenko

    2012-08-01

    Full Text Available In the article the results, namely oscillograms of the transitional feeder electric values obtained by the experimental tests of the short circuit modes in case of setting off different types of substation fast-acting switches are presented. The experiments were conducted on the operating electrified track sections of the Prydniprovs’ka Railway.

  18. Minimization of the Electromagnetic Torque Ripple Caused by the Coils Inter-Turn Short Circuit Fault in Dual-Redundancy Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Yiguang Chen

    2017-11-01

    Full Text Available With the development of electric vehicles and More-Electric/All-Electric aircraft, high reliability is required in motor servo systems. The redundancy technique is one of the most effective methods to improve the reliability of motor servo systems. In this paper, the structure of dual-redundancy permanent magnet synchronous motor (DRPMSM with weak thermal coupling and no electromagnetic coupling is analyzed and the mathematical model of this motor is established. However, there is little research on how to suppress the torque ripple caused by short-circuited coils in the DRPMSM. The main contribution of this paper is to present the advantages of DRPMSM and to find a way to suppress the torque ripple caused by the short circuit fault in DRPMSM. In order to improve operation quality and enhance the reliability of DRPMSM after a short circuit occurs, the torque ripple caused by the coils inter-turn short circuit fault in DRPMSM is analyzed in detail. Then, a control method for suppressing the electromagnetic torque ripple of a short-circuited coil is proposed for the first time by using an improved adaptive proportional resonant (PR controller and a proportional integral (PI controller in parallel. PR control is a method of controlling alternating components without steady-state error, and it can be used to suppress torque ripple. DRPMSM adopts speed and current double closed-loop control strategies. An improved adaptive PR controller and a PI controller are employed in parallel for the speed loop, while traditional PI control is adopted in current loop. From the simulation and experimental results, the torque ripple is reduced from 45.4 to 5.6% when the torque ripple suppression strategy proposed in this paper is adopted, in the case that the speed is 600 r/min. The torque ripple suppression strategy based on the PR controller can quickly and effectively suppress the torque ripple caused by the short-circuited coils, which makes the motor speed

  19. Short-circuit testing of monofilar Bi-2212 coils connected in series and in parallel

    International Nuclear Information System (INIS)

    Polasek, A; Dias, R; Serra, E T; Filho, O O; Niedu, D

    2010-01-01

    Superconducting Fault Current Limiters (SCFCL's) are one of the most promising technologies for fault current limitation. In the present work, resistive SCFCL components based on Bi-2212 monofilar coils are subjected to short-circuit testing. These SCFCL components can be easily connected in series and/or in parallel by using joints and clamps. This allows a considerable flexibility to developing larger SCFCL devices, since the configuration and size of the whole device can be easily adapted to the operational conditions. The single components presented critical current (Ic) values of 240-260 A, at 77 K. Short-circuits during 40-120 ms were applied. A single component can withstand a voltage drop of 126-252 V (0.3-0.6 V/cm). Components connected in series withstand higher voltage levels, whereas parallel connection allows higher rated currents during normal operation, but the limited current is also higher. Prospective currents as high as 10-40 kA (peak value) were limited to 3-9 kA (peak value) in the first half cycle.

  20. EQUATIONS OF ELECTRIC MOTOR POWER SUPPLY UNIT DISSYMMETRY UNDER PHASE-TO-PHASE SHORT-CIRCUIT FAULT

    Directory of Open Access Journals (Sweden)

    V.Y. Tchaban

    2013-10-01

    Full Text Available In the paper, a formula is introduced to calculate electric motor supply unit voltage under feeding by a common transformer in the condition of a phase-to-phase short-circuit. The formula is used in every time step of electromechanical state equations integration.

  1. A Nanostructured Composites Thermal Switch Controls Internal and External Short Circuit in Lithium Ion Batteries

    Science.gov (United States)

    McDonald, Robert C.; VanBlarcom, Shelly L.; Kwasnik, Katherine E.

    2013-01-01

    A document discusses a thin layer of composite material, made from nano scale particles of nickel and Teflon, placed within a battery cell as a layer within the anode and/or the cathode. There it conducts electrons at room temperature, then switches to an insulator at an elevated temperature to prevent thermal runaway caused by internal short circuits. The material layer controls excess currents from metal-to-metal or metal-to-carbon shorts that might result from cell crush or a manufacturing defect

  2. Analog Circuit Design Low Voltage Low Power; Short Range Wireless Front-Ends; Power Management and DC-DC

    CERN Document Server

    Roermund, Arthur; Baschirotto, Andrea

    2012-01-01

    The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design.  Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of Low-Voltage Low-Power Data Converters - Chaired by Prof. Anderea Baschirotto, University of Milan-Bicocca Short Range Wireless Front-Ends - Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Power management and DC-DC - Chaired by Prof. M. Steyaert, Katholieke University Leuven Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.

  3. Research Tool to Evaluate the Safety Response of Lithium Batteries to an Internal Short Circuit

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Darcy, Eric; Pesaran, Ahmad

    2016-06-19

    Li-ion cells provide the highest specific energy and energy density rechargeable battery with the longest life. Many safety incidents that take place in the field originate due to an internal short that was not detectable or predictable at the point of manufacture. NREL's internal short circuit (ISC) device is capable of simulating shorts and produces consistent and reproducible results. The cell behaves normally until the ISC device is activated wherein a latent defect (i.e., built into the cell during manufacturing) gradually moves into position to create an internal short while the battery is in use, providing relevant data to verify abuse models. The ISC device is an effective tool for studying the safety features of parts of Li-ion batteries.

  4. Network model and short circuit program for the Kennedy Space Center electric power distribution system

    Science.gov (United States)

    1976-01-01

    Assumptions made and techniques used in modeling the power network to the 480 volt level are discussed. Basic computational techniques used in the short circuit program are described along with a flow diagram of the program and operational procedures. Procedures for incorporating network changes are included in this user's manual.

  5. Methods for stable recording of short-circuit current in a Na+-transporting epithelium.

    Science.gov (United States)

    Gondzik, Veronika; Awayda, Mouhamed S

    2011-07-01

    Epithelial Na(+) transport as measured by a variety of techniques, including the short-circuit current technique, has been described to exhibit a "rundown" phenomenon. This phenomenon manifests as time-dependent decrease of current and resistance and precludes the ability to carry out prolonged experiments aimed at examining the regulation of this transport. We developed methods for prolonged stable recordings of epithelial Na(+) transport using modifications of the short-circuit current technique and commercial Ussing-type chambers. We utilize the polarized MDCK cell line expressing the epithelial Na(+) channel (ENaC) to describe these methods. Briefly, existing commercial chambers were modified to allow continuous flow of Ringer solution and precise control of such flow. Chamber manifolds and associated plumbing were modified to allow precise temperature clamp preventing temperature oscillations. Recording electrodes were modified to eliminate the use of KCl and prevent membrane depolarization from KCl leakage. Solutions utilized standard bicarbonate-based buffers, but all gasses were prehydrated to clamp buffer osmolarity. We demonstrate that these modifications result in measurements of current and resistance that are stable for at least 2 h. We further demonstrate that drifts in osmolarity similar to those obtained before prior to our modifications can lead to a decrease of current and resistance similar to those attributed to rundown.

  6. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control.

    Science.gov (United States)

    Choi, Hyekyoung; Song, Jung Hoon; Jang, Jihoon; Mai, Xuan Dung; Kim, Sungwoo; Jeong, Sohee

    2015-11-07

    We fabricated heterojunction solar cells with PbSe/PbS core shell quantum dots and studied the precisely controlled PbS shell thickness dependency in terms of optical properties, electronic structure, and solar cell performances. When the PbS shell thickness increases, the short circuit current density (JSC) increases from 6.4 to 11.8 mA cm(-2) and the fill factor (FF) enhances from 30 to 49% while the open circuit voltage (VOC) remains unchanged at 0.46 V even with the decreased effective band gap. We found that the Fermi level and the valence band maximum level remain unchanged in both the PbSe core and PbSe/PbS core/shell with a less than 1 nm thick PbS shell as probed via ultraviolet photoelectron spectroscopy (UPS). The PbS shell reduces their surface trap density as confirmed by relative quantum yield measurements. Consequently, PbS shell formation on the PbSe core mitigates the trade-off relationship between the open circuit voltage and the short circuit current density. Finally, under the optimized conditions, the PbSe core with a 0.9 nm thick shell yielded a power conversion efficiency of 6.5% under AM 1.5.

  7. Microscale failure mechanisms leading to internal short circuit in Li-ion batteries under complex loading scenarios

    NARCIS (Netherlands)

    Sahraei, E.; Bosco, E.; Dixon, B.; Lai, B.

    2016-01-01

    One of the least understood mechanisms of Li-ion batteries is the development of internal short circuits under mechanical loads. In this study, a micro mechanical model is developed and subjected to various loading scenarios to understand the sequence of failure in the multi-layer, multi-material

  8. Protecting integrated circuits from excessive charge accumulation during plasma cleaning of multichip modules

    Science.gov (United States)

    Rodenbeck, Christopher T; Girardi, Michael

    2015-04-21

    Internal nodes of a constituent integrated circuit (IC) package of a multichip module (MCM) are protected from excessive charge during plasma cleaning of the MCM. The protected nodes are coupled to an internal common node of the IC package by respectively associated discharge paths. The common node is connected to a bond pad of the IC package. During MCM assembly, and before plasma cleaning, this bond pad receives a wire bond to a ground bond pad on the MCM substrate.

  9. Diagnosis of Soft Spot Short Defects in Analog Circuits Considering the Thermal Behaviour of the Chip

    Directory of Open Access Journals (Sweden)

    Tadeusiewicz Michał

    2016-06-01

    Full Text Available The paper deals with fault diagnosis of nonlinear analogue integrated circuits. Soft spot short defects are analysed taking into account variations of the circuit parameters due to physical imperfections as well as self-heating of the chip. A method enabling to detect, locate and estimate the value of a spot defect has been developed. For this purpose an appropriate objective function was minimized using an optimization procedure based on the Fibonacci method. The proposed approach exploits DC measurements in the test phase, performed at a limited number of accessible points. For illustration three numerical examples are given.

  10. Circuit arrangement of an electronic component for the design of fail-safe protective circuits

    International Nuclear Information System (INIS)

    Centmaier, W.; Bernhard, U.; Friederich, B.; Heisecke, I.

    1974-01-01

    The critical parameters of reactors are controlled by safety circuits. These circuits are controlled designed as logic modules operating by the 'n-out-of-m' selection principle. In most cases, a combination of a '1-out-of-3' circuit with a '2-out-of-3' circuit and separate indication is sufficient for a dynamic fail-safe circuit. The basic logic elements are AND and OR gate circuits, respectively, which are triggered by pulse trains and in which the failure of a pulse train is indicated as an error at the output. The module allows the design of safety circuits offering various degrees of safety. If the indication of an error is made on the modules, faulty components can be exchanged by the maintenance crew right away. (DG) [de

  11. Wind Plant Collector System Fault Protection and Coordination

    Energy Technology Data Exchange (ETDEWEB)

    Bradt, M. [IEEE PES Wind Plant Collector System Design Working Group; Behnke, M. R. [IEEE PES Wind Plant Collector System Design Working Group; Bloethe, W.G. [IEEE PES Wind Plant Collector System Design Working Group; Brooks, C. [IEEE PES Wind Plant Collector System Design Working Group; Camm, E H [IEEE PES Wind Plant Collector System Design Working Group; Dilling, W. [IEEE PES Wind Plant Collector System Design Working Group; Goltz, B. [IEEE PES Wind Plant Collector System Design Working Group; Li, J. [IEEE PES Wind Plant Collector System Design Working Group; Niemira, J. [IEEE PES Wind Plant Collector System Design Working Group; Nuckles, K. [IEEE PES Wind Plant Collector System Design Working Group; Patino, J. [IEEE PES Wind Plant Collector System Design Working Group; Reza, M [IEEE PES Wind Plant Collector System Design Working Group; Richardson, B. [IEEE PES Wind Plant Collector System Design Working Group; Samaan, N. [IEEE PES Wind Plant Collector System Design Working Group; Schoene, Jens [IEEE PES Wind Plant Collector System Design Working Group; Smith, Travis M [ORNL; Snyder, Isabelle B [ORNL; Starke, Michael R [ORNL; Walling, R. [IEEE PES Wind Plant Collector System Design Working Group; Zahalka, G. [IEEE PES Wind Plant Collector System Design Working Group

    2010-01-01

    This paper presents a summary of the most important protection and coordination considerations for wind power plants. Short-circuit characteristics of both aggregate wind plant and individual wind turbine genera- tors, as well as general interconnection protection requirements are discussed. Many factors such as security, reliability, and safety are considered for proper conservative protection of the wind power plant and individual turbines.

  12. Reducing the Risk of Damage to Power Transformers of 110 kV and Above Accompanying Internal Short Circuits

    Energy Technology Data Exchange (ETDEWEB)

    L’vova, M. M. [JSC “R& D Center at Federal Grid Company of the Unified Power System” (Russian Federation); L’vov, S. Yu. [Presselektro LLC (Russian Federation); Komarov, V. B. [IPCE RAS (Russian Federation); Lyut’ko, E. O. [JSC “R& D Center at Federal Grid Company of the Unified Power System” (Russian Federation); Vdoviko, V. P. [EMA Ltd. (Russian Federation); Demchenko, V. V. [JSC “Boguchanskaya HPP” (Russian Federation); Belyaev, S. G. [PKF Konif Ltd. (Russian Federation); Savel’ev, V. A. [Ivanovo State Power University (Russian Federation); L’vov, M. Yu., E-mail: timashova@nte-power.ru; L’vov, Yu. N. [JSC “R& D Center at Federal Grid Company of the Unified Power System” (Russian Federation)

    2015-03-15

    Methods of increasing the operating reliability of power transformers, autotransformers and shunting reactors in order to reduce the risk of damage, which accompany internal short circuits and equipment fires and explosions, are considered.

  13. Process for protecting bonded components from plating shorts

    Science.gov (United States)

    Tarte, Lisa A.; Bonde, Wayne L.; Carey, Paul G.; Contolini, Robert J.; McCarthy, Anthony M.

    2000-01-01

    A method which protects the region between a component and the substrate onto which the components is bonded using an electrically insulating fillet of photoresist. The fillet protects the regions from subsequent plating with metal and therefore shorting the plated conductors which run down the sides of the component and onto the substrate.

  14. Circuit bridging of digital equipment caused by smoke from a cable fire

    International Nuclear Information System (INIS)

    Tanaka, T.J.; Anderson, D.J.

    1997-01-01

    Advanced reactor systems are likely to use protection systems with digital electronics that ideally should be resistant to environmental hazards, including smoke from possible cable fires. Previous smoke tests have shown that digital safety systems can fail even at relatively low levels of smoke density and that short-term failures are likely to be caused by circuit bridging. Experiments were performed to examine these failures, with a focus on component packaging and protection schemes. Circuit bridging, which causes increased leakage currents and arcs, was gauged by measuring leakage currents among the leads of component packages. The resistance among circuit leads typically varies over a wide range, depending on the nature of the circuitry between the pins, bias conditions, circuit board material, etc. Resistance between leads can be as low as 20 kΩ and still be good, depending on the component. For these tests, the authors chose a printed circuit board and components that normally have an interlead resistance above 10 12 Ω, but if the circuit is exposed to smoke, circuit bridging causes the resistance to fall below 10 3 Ω. Plated-through-hole (PTH) and surface-mounted (SMT) packages were exposed to a series of different smoke environments using a mixture of environmentally qualified cables for fuel. Conformal coatings and enclosures were tested as circuit protection methods. High fuel levels, high humidity, and high flaming burns were the conditions most likely to cause circuit bridging. The inexpensive conformal coating that was tested - an acrylic spray - reduced leakage currents, but enclosure in a chassis with a fan did not. PTH packages were more resistant to smoke-induced circuit bridging than SMT packages. Active components failed most often in tests where the leakage currents were high, but failure did not always accompany high leakage currents

  15. Development of processing procedures for advanced silicon solar cells. [antireflection coatings and short circuit currents

    Science.gov (United States)

    Scott-Monck, J. A.; Stella, P. M.; Avery, J. E.

    1975-01-01

    Ten ohm-cm silicon solar cells, 0.2 mm thick, were produced with short circuit current efficiencies up to thirteen percent and using a combination of recent technical advances. The cells were fabricated in conventional and wraparound contact configurations. Improvement in cell collection efficiency from both the short and long wavelengths region of the solar spectrum was obtained by coupling a shallow junction and an optically transparent antireflection coating with back surface field technology. Both boron diffusion and aluminum alloying techniques were evaluated for forming back surface field cells. The latter method is less complicated and is compatible with wraparound cell processing.

  16. Extra-high short-circuit current for bifacial solar cells in sunny and dark-light conditions.

    Science.gov (United States)

    Duan, Jialong; Duan, Yanyan; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei

    2017-09-05

    We present here a symmetrically structured bifacial solar cell tailored by two fluorescent photoanodes and a platinum/titanium/platinum counter electrode, yielding extra-high short-circuit current densities as high as 28.59 mA cm -2 and 119.9 μA cm -2 in simulated sunlight irradiation (100 mW cm -2 , AM1.5) and dark-light conditions, respectively.

  17. Fast and Accurate Icepak-PSpice Co-Simulation of IGBTs under Short-Circuit with an Advanced PSpice Model

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2014-01-01

    A basic problem in the IGBT short-circuit failure mechanism study is to obtain realistic temperature distribution inside the chip, which demands accurate electrical simulation to obtain power loss distribution as well as detailed IGBT geometry and material information. This paper describes an unp...

  18. Development of quench detection/protection system based on active power method for superconducting magnet by using capacitor circuit

    International Nuclear Information System (INIS)

    Nanato, N.; Otsuka, T.; Hesaka, S.; Murase, S.

    2013-01-01

    Highlights: ► The authors have presented an active power method for quench detection. ► A method for improving its characteristics using a capacitor circuit was proposed. ► Quench detection/protection test for a Bi2223 superconducting coil was carried out. ► The proposed method was more useful than the conventional one. -- Abstract: When a quench occurs in a superconducting magnet, excessive joule heating in normal region may damage the magnet. It is necessary to detect the quench as soon as possible and discharge magnetic energy stored in the magnet. The authors have presented a quench detection/protection system based on an active power method which detects the quench regardless of a self-inductive and mutual-inductive voltages and electromagnetic noise. In the conventional active power method, the inductive voltages are removed by cancel coils. In this paper, the authors propose a method to cancel an inductive voltage using a capacitor circuit. The quench detection/protection system becomes more precise and smaller than the conventional system through the capacitor circuit

  19. Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O(2).

    Science.gov (United States)

    Rutherford, A William; Osyczka, Artur; Rappaport, Fabrice

    2012-03-09

    The energy-converting redox enzymes perform productive reactions efficiently despite the involvement of high energy intermediates in their catalytic cycles. This is achieved by kinetic control: with forward reactions being faster than competing, energy-wasteful reactions. This requires appropriate cofactor spacing, driving forces and reorganizational energies. These features evolved in ancestral enzymes in a low O(2) environment. When O(2) appeared, energy-converting enzymes had to deal with its troublesome chemistry. Various protective mechanisms duly evolved that are not directly related to the enzymes' principal redox roles. These protective mechanisms involve fine-tuning of reduction potentials, switching of pathways and the use of short circuits, back-reactions and side-paths, all of which compromise efficiency. This energetic loss is worth it since it minimises damage from reactive derivatives of O(2) and thus gives the organism a better chance of survival. We examine photosynthetic reaction centres, bc(1) and b(6)f complexes from this view point. In particular, the evolution of the heterodimeric PSI from its homodimeric ancestors is explained as providing a protective back-reaction pathway. This "sacrifice-of-efficiency-for-protection" concept should be generally applicable to bioenergetic enzymes in aerobic environments. Copyright © 2012 Federation of European Biochemical Societies. All rights reserved.

  20. An iterative approach for symmetrical and asymmetrical Short-circuit calculations with converter-based connected renewable energy sources

    DEFF Research Database (Denmark)

    Göksu, Ömer; Teodorescu, Remus; Bak-Jensen, Birgitte

    2012-01-01

    As more renewable energy sources, especially more wind turbines are installed in the power system, analysis of the power system with the renewable energy sources becomes more important. Short-circuit calculation is a well known fault analysis method which is widely used for early stage analysis...

  1. Aging assessment of surge protective devices in nuclear power plants

    International Nuclear Information System (INIS)

    Davis, J.F.; Subudhi, M.; Carroll, D.P.

    1996-01-01

    An assessment was performed to determine the effects of aging on the performance and availability of surge protective devices (SPDs), used in electrical power and control systems in nuclear power plants. Although SPDs have not been classified as safety-related, they are risk-important because they can minimize the initiating event frequencies associated with loss of offsite power and reactor trips. Conversely, their failure due to age might cause some of those initiating events, e.g., through short circuit failure modes, or by allowing deterioration of the safety-related component(s) they are protecting from overvoltages, perhaps preventing a reactor trip, from an open circuit failure mode. From the data evaluated during 1980--1994, it was found that failures of surge arresters and suppressers by short circuits were neither a significant risk nor safety concern, and there were no failures of surge suppressers preventing a reactor trip. Simulations, using the ElectroMagnetic Transients Program (EMTP) were performed to determine the adequacy of high voltage surge arresters

  2. Simultaneous improvement in short circuit current, open circuit voltage, and fill factor of polymer solar cells through ternary strategy.

    Science.gov (United States)

    An, Qiaoshi; Zhang, Fujun; Li, Lingliang; Wang, Jian; Sun, Qianqian; Zhang, Jian; Tang, Weihua; Deng, Zhenbo

    2015-02-18

    We present a smart strategy to simultaneously increase the short circuit current (Jsc), the open circuit voltage (Voc), and the fill factor (FF) of polymer solar cells (PSCs). A two-dimensional conjugated small molecule photovoltaic material (SMPV1), as the second electron donor, was doped into the blend system of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C71-butyric acid methyl (PC71BM) to form ternary PSCs. The ternary PSCs with 5 wt % SMPV1 doping ratio in donors achieve 4.06% champion power conversion efficiency (PCE), corresponding to about 21.2% enhancement compared with the 3.35% PCE of P3HT:PC71BM-based PSCs. The underlying mechanism on performance improvement of ternary PSCs can be summarized as (i) harvesting more photons in the longer wavelength region to increase Jsc; (ii) obtaining the lower mixed highest occupied molecular orbital (HOMO) energy level by incorporating SMPV1 to increase Voc; (iii) forming the better charge carrier transport channels through the cascade energy level structure and optimizing phase separation of donor/acceptor materials to increase Jsc and FF.

  3. Circuit protection of ehv power systems from 150 to 765 kV

    Energy Technology Data Exchange (ETDEWEB)

    Geise, F; Jaeger, J

    1965-11-01

    Short tripping times required for all faults in ehv transmission systems are obtained by means of differential and comparative protection arrangements. It is essential that protection and communication systems be closely integrated and that special current transformers with linearized cores supply protective devices with correct measured values. By arranging filters between transformer and directional relay, it is possible to use capacitive voltage transformers for high speed protection. A description of power system with backup protection devices is presented.

  4. A fast fault protection based on direction of bus-side capacitor discharge current for a high-surety power supply

    DEFF Research Database (Denmark)

    Li, Haijin; Chen, Min; Yang, Boping

    2017-01-01

    A short-circuit fault protection strategy based on the direction of bus-side capacitor discharge current for a high-surety power supply, known as Super Uninterruptable Power Supply (Super UPS), is studied in this paper. It consists of multiple energy sources and storage components. All energy...... strategy is necessary to keep the uninterruptable power for the critical load. In this paper, the characteristics of the short-circuit fault are analyzed first. Then, a fast short-circuit fault locating and isolating strategy based on the direction of the discharge current of the busside capacitors...

  5. Correction: The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes.

    Science.gov (United States)

    Villanueva-Cab, J; Anta, J A; Oskam, G

    2016-05-28

    Correction for 'The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes' by J. Villanueva-Cab et al., Phys. Chem. Chem. Phys., 2016, 18, 2303-2308.

  6. Design And Development Of An Automatic Single Phase Protective Device Using Ssr

    Directory of Open Access Journals (Sweden)

    Michael E.

    2017-10-01

    Full Text Available Since the discovery of energy safety has been a paramount subject matter. This we can see in todays electrical systems where protective devices such as fuse and circuit breakers are used to prevent fire hazards resulting from overload overvoltage and short circuits. However with all the revolution in technology these options may be considered less smart since the fuse made with wire strands calculated for specific current capacity faults permanently when the specified current rating is exceeded. While the circuit breaker which is made up of mechanical switch fails as a result of carbon forming and the wearing away of the contacts because of arcing. As a means of improvement this paper presents the design and development of an automatic single phase protective device using solid state relay SSR. This study is to ensure automatic cut off from power supply in cases of overvoltage above 240 V AC or when overload and short circuit current above 8amps is detected without permanent damage of a fuse placed along current path. Also the design will ensure that there is an automatic close circuit whenever the trigger switch is momentary switch is closed. The system is achieved via the use of PIC micro-controller current sensor and other discrete components. The system is tested and works well inhibiting the frequent faulting of fuses. It also helps to prevent hazard as a result of overvoltage overload and short circuit and ensures a close circuit when the trigger switch is closed.

  7. An Investigation of Short Circuits in All-solution Processed and All-organic Solar Cells

    OpenAIRE

    Johansson, Jim

    2015-01-01

    Organic solar cells have shown great promise of becoming a cheaper alternative to inorganic solar cells. Additionally, they can also be made semitransparent. To avoid using expensive indium tin oxide electrodes in organic solar cells the electrodes can be made from conductive polymer, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). However, these so-called PEDOT-PEDOT solar cells are prone to short-circuiting. The work behind this thesis thus aimed to find the cause of the...

  8. Intrinsically safe electrical installations, auxiliary circuits and electric communication equipment

    Energy Technology Data Exchange (ETDEWEB)

    Herms, C D

    1981-11-19

    Technical progress has not stopped short of electrical systems in mining, so that three new chapters are new included in the VDE regulations leaflet No. 0118 on 'Installation of electrical systems in underground coal mining'. The regulations on intrinsically safe electric systems, auxiliary circuits and communication systems are briefly described, and grounds for the regulations are presented. The regulations already take account of European regulations on intrinsic safety which will soon be published in a European Regulation on Mine Explosions. In the chapters on auxiliary circuits and communication systems, protection against direct contact, fires, and explosions is discussed as well as the further goal of reliable signal transmission.

  9. Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications

    International Nuclear Information System (INIS)

    Zhuge, Jing; Huang, Ru; Wang, Yangyuan; Verhulst, Anne S; Vandenberghe, William G; Dehaene, Wim; Groeseneken, Guido

    2011-01-01

    This paper investigates the potential of tunnel field-effect transistors (TFETs), with emphasis on short-gate TFETs, by simulation for low-power digital applications having a supply voltage lower than 0.5 V. A transient study shows that the tunneling current has a negligible contribution in charging and discharging the gate capacitance of TFETs. In spite of a higher resistance region in the short-gate TFET, the gate (dis)charging speed still meets low-voltage application requirements. A circuit analysis is performed on short-gate TFETs with different materials, such as Si, Ge and heterostructures in terms of voltage overshoot, delay, static power, energy consumption and energy delay product (EDP). These results are compared to MOSFET and full-gate TFET performance. It is concluded that short-gate heterostructure TFETs (Ge–source for nTFET, In 0.6 Ga 0.4 As–source for pTFET) are promising candidates to extend the supply voltage to lower than 0.5 V because they combine the advantage of a low Miller capacitance, due to the short-gate structures, and strong drive current in TFETs, due to the narrow bandgap material in the source. At a supply voltage of 0.4 V and for an EOT and channel length of 0.6 nm and 40 nm, respectively, a three-stage inverter chain based on short-gate heterostructure TFETs saves 40% energy consumption per cycle at the same delay and shows 60%–75% improvement of EDP at the same static power, compared to its full-gate counterpart. When compared to the MOSFET, better EDP can be achieved in the heterostructure TFET especially at low static power consumption

  10. The short-circuit test results of 6.9 kV/2.3 kV 400 kVA-class YBCO model transformer with fault current limiting function

    International Nuclear Information System (INIS)

    Tomioka, A.; Bohno, T.; Kakami, S.; Isozaki, M.; Watanabe, K.; Toyama, K.; Sugiyama, S.; Konno, M.; Gosho, Y.; Okamoto, H.; Hayashi, H.; Tsutsumi, T.; Iwakuma, M.; Saito, T.; Tanabe, K.; Shiohara, Y.

    2013-01-01

    Highlights: ► We manufactured the 400 kV A-class YBCO model transformer with FCL function. ► Short-circuit test was performed by applying 6.9 kV on primary side. ► The short-circuit current was limited to 174 A for a prospective current of 559 A. ► It agreed with the design and we also confirmed the I c did not degrade. ► The results suggest the possibility to design YBCO transformers with FCL function. -- Abstract: We are developing an elemental technology for 66/6.9 kV 20 MVA-class superconducting power transformer with fault current limiting function. In order to obtain the characteristics of YBCO conductor when the AC over current supplied to the conductor, the model coils were manufactured with YBCO tapes and tested. Based on these results, we manufactured the 6.9 kV/2.3 kV 400 kVA-class YBCO model transformer with fault current limiting function and performed short-circuit test. At the 0.25 s after short-circuit, the short-circuit current of primary winding was limited to about 174 A for a prospective current of 559 A. It was consistent with the design. The I–V characteristics of the winding did not change before and after the test. We consider the model transformer to be able to withstand AC over-current with the function of current limiting. The results suggest the possibility to design YBCO superconducting transformers with fault current limiting function for practical power grid

  11. Feasibility study of superconducting power cables for DC electric railway feeding systems in view of thermal condition at short circuit accident

    Science.gov (United States)

    Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru

    2016-12-01

    A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.

  12. Computerized procedure for protection coordination in distribution primary circuits; Procedimiento computarizado para coordinacion de protecciones en circuitos primarios de distribucion

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo, Victor M; Velazquez Sanchez, Raul [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    Nowadays, the method employed to study the protection coordination are based in the hand outlining of curves time- current and in the visual comparison in log sheets. Due to the large amount of distribution circuits, the engineer makes a considerable effort to perform this type of studies, which besides are routinist and time consuming. In this article a program for the computer aided design for the protection coordination in primary distribution circuits is presented. Such a program -carried out in the Transmission and Distribution Department of the Power Systems Division of the Instituto de Investigaciones Electricas (IIE)- substitutes in an efficient manner, the manual procedures that are performed in the protection coordination studies. The coordination principles, suggested by the equipment manufacturers, were respected, trying, at the same time, to keep the procedures of the Comision Federal de Electricidad personnel (CFE) emerged from the field experience. The algorithm basically consists of an iterative process in the selection of the adjustments taking as a reference the of three-phase short- circuit and of phase to ground, values, as well as the operating times. [Espanol] Actualmente, los metodos que se emplean para estudiar la coordinacion de protecciones se basan en el trazado manual de curvas de tiempo-corriente y en la comparacion visual sobre hojas logaritmicas. Debido a la gran cantidad de circuitos de distribucion, el ingeniero hace un esfuerzo considerable para realizar este tipo de estudios, los que ademas, son rutinarios y tardados. En este articulo, se presenta un programa para el diseno asistido por computadora del proceso de coordinacion de protecciones en circuitos primarios de distribucion. Dicho programa -realizado en el Departamento de Transmision y Distribucion, de la Division de Sistemas de Potencia, del Instituto de Investigaciones Electricas (IIE)- sustituye de manera eficaz los procedimientos manuales que se efectuan en los estudios

  13. Computerized procedure for protection coordination in distribution primary circuits; Procedimiento computarizado para coordinacion de protecciones en circuitos primarios de distribucion

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo, Victor M.; Velazquez Sanchez, Raul [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    Nowadays, the method employed to study the protection coordination are based in the hand outlining of curves time- current and in the visual comparison in log sheets. Due to the large amount of distribution circuits, the engineer makes a considerable effort to perform this type of studies, which besides are routinist and time consuming. In this article a program for the computer aided design for the protection coordination in primary distribution circuits is presented. Such a program -carried out in the Transmission and Distribution Department of the Power Systems Division of the Instituto de Investigaciones Electricas (IIE)- substitutes in an efficient manner, the manual procedures that are performed in the protection coordination studies. The coordination principles, suggested by the equipment manufacturers, were respected, trying, at the same time, to keep the procedures of the Comision Federal de Electricidad personnel (CFE) emerged from the field experience. The algorithm basically consists of an iterative process in the selection of the adjustments taking as a reference the of three-phase short- circuit and of phase to ground, values, as well as the operating times. [Espanol] Actualmente, los metodos que se emplean para estudiar la coordinacion de protecciones se basan en el trazado manual de curvas de tiempo-corriente y en la comparacion visual sobre hojas logaritmicas. Debido a la gran cantidad de circuitos de distribucion, el ingeniero hace un esfuerzo considerable para realizar este tipo de estudios, los que ademas, son rutinarios y tardados. En este articulo, se presenta un programa para el diseno asistido por computadora del proceso de coordinacion de protecciones en circuitos primarios de distribucion. Dicho programa -realizado en el Departamento de Transmision y Distribucion, de la Division de Sistemas de Potencia, del Instituto de Investigaciones Electricas (IIE)- sustituye de manera eficaz los procedimientos manuales que se efectuan en los estudios

  14. Experimental Study on Short Circuit Phenomena in Air Switch of Distribution Line due to Sparkover between Different Poles on Which One Surge Arrester of the Three Ones is Omitted

    Science.gov (United States)

    Sato, Tomoyuki; Uemura, Satoshi; Asakawa, Akira; Yokoyama, Shigeru; Honda, Hideki; Horikoshi, Kazuhiro

    In this study, we experimentally examined the possibility of the internal short circuit of an air switch due to the sparkover between different poles under the condition that no surge arrester exists in neighboring poles and one of three surge arresters is omitted at the pole with an air switch. Experiments at Shiobara Testing Yard and Akagi Testing Center of CRIEPI clarified the following. Fault current may flow via the grounding point of a pole with an air switch and that of the next pole on a different phase from grounded phase of the pole with an air switch. If the low-voltage wire, overhead ground wire or communication wire forms a short circuit between them, ultimately the air switch may burn out. Moreover Fault current continues even if the length of the short-circuit between different poles is increased. Although the increase of the short-circuit length results in the increase of wire impedance, the amount of increase is still small compared with source impedance.

  15. Effects of Distributed Generation on Overcurrent Relay Coordination and an Adaptive Protection Scheme

    Science.gov (United States)

    Ilik, Semih C.; Arsoy, Aysen B.

    2017-07-01

    Integration of distributed generation (DG) such as renewable energy sources to electrical network becomes more prevalent in recent years. Grid connection of DG has effects on load flow directions, voltage profile, short circuit power and especially protection selectivity. Applying traditional overcurrent protection scheme is inconvenient when system reliability and sustainability are considered. If a fault happens in DG connected network, short circuit contribution of DG, creates additional branch element feeding the fault current; compels to consider directional overcurrent (OC) protection scheme. Protection coordination might get lost for changing working conditions when DG sources are connected. Directional overcurrent relay parameters are determined for downstream and upstream relays when different combinations of DG connected singular or plural, on radial test system. With the help of proposed flow chart, relay parameters are updated and coordination between relays kept sustained for different working conditions in DigSILENT PowerFactory program.

  16. Adrenomedullin increases the short-circuit current in the mouse seminal vesicle: actions on chloride secretion.

    Science.gov (United States)

    Liao, S B; Cheung, K H; O, W S; Tang, Fai

    2014-08-01

    Adrenomedullin (ADM) may regulate seminal vesicle fluid secretion, and this may affect sperm quality. In this study, we investigated the effect of ADM on chloride secretion in the mouse seminal vesicle. The presence of ADM in mouse seminal vesicle was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with enzyme-linked assay for ADM. The effects of ADM on chloride secretion were studied by short-circuit current technique in a whole-mount preparation of mouse seminal vesicle in an Ussing chamber. The effects of specific ADM and calcitonin gene-related peptide (CGRP) receptor antagonists were investigated. Whether the ADM effect depended on the cAMP- and/or calcium-activated chloride channel was also studied using specific chloride channel blockers. The results showed that ADM was present in seminal vesicle epithelial cells. The major molecular species was precursor in the mouse seminal vesicle. ADM increased short-circuit current through the calcium-activated chloride channel in mouse seminal vesicle, and CGRP receptor was involved. We conclude that ADM may regulate chloride and fluid secretion from the seminal vesicle, which may affect the composition of the seminal plasma bathing the sperm and, hence, fertility. © 2014 by the Society for the Study of Reproduction, Inc.

  17. Approximate entropy—a new statistic to quantify arc and welding process stability in short-circuiting gas metal arc welding

    International Nuclear Information System (INIS)

    Cao Biao; Xiang Yuanpeng; Lü Xiaoqing; Zeng Min; Huang Shisheng

    2008-01-01

    Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation has been calculated and analysed to investigate their relation with the stability of electric arc and welding process. The extensive experimental and calculated results show that the approximate entropy of welding current is significantly and positively correlated with arc and welding process stability, whereas its standard deviation is correlated with them negatively. A larger approximate entropy and a smaller standard deviation imply a more stable arc and welding process, and vice versa. As a result, the approximate entropy of welding current promises well in assessing and quantifying the stability of electric arc and welding process in short-circuiting gas metal arc welding

  18. Prospective single and multi-phase short-circuit current levels in the Dutch transmission, sub-transmission and distribution grids

    NARCIS (Netherlands)

    Janssen, A.L.J.; van Riet, M.J.M.; Smeets, R.P.P.; Kanters, J.; van den Akker, W.F.; Aanhaanen, G.L.P.

    2012-01-01

    As elsewhere in the world, also in the Netherlands utilities face an increase in the actual and future short-circuit current levels at all voltages. This development is provoked by the required increase in transmission capacity as well as the concentration of power generation capacity. Large

  19. Short-circuit ruggedness assessment of a 1.2 kV/180 A SiC MOSFET power module

    DEFF Research Database (Denmark)

    Ionita, Claudiu; Nawaz, Muhammad; Ilves, Kalle

    2017-01-01

    is typically encountered in applications for devices of these ratings. Five modules were failed in total, with a critical short-circuit energy, Ecr ranging from 7.3 J to 9.7 J. The failure mechanism is generally the thermal runaway. Prior to failure, a decrease in VGS can be observed which is an indication...

  20. Analyses of the impact of connections’ layout on the coil transient voltage at the Quench Protection Circuit intervention in JT-60SA

    International Nuclear Information System (INIS)

    Maistrello, Alberto; Gaio, Elena; Novello, Luca; Matsukawa, Makoto; Yamauchi, Kunihito

    2015-01-01

    The transient overvoltages associated to the interruption of high direct currents with high current derivative, at the base of the operation of a Quench Protection System for Superconducting Coils, have been studied, with particular reference to the JT-60SA project, which adopt edge technology solutions for current interruption: a Hybrid mechanical-static Circuit Breaker as main circuit breaker in series with a PyroBreaker as backup protection. The paper reports in particular on the analyses of the intervention of the backup circuit breaker in the final circuital conditions, considering the actual power connections that will be implemented on Site. The key elements which influence the peak value of the voltage and the relation existing among the different stray impedances of the circuit are identified, thus giving general guidelines for the design of the layout of the power connections. The specific case of JT-60SA is considered, but general criteria can be derived.

  1. A survey of SiC power MOSFETs short-circuit robustness and failure mode analysis

    DEFF Research Database (Denmark)

    Ceccarelli, L.; Reigosa, P. D.; Iannuzzo, F.

    2017-01-01

    The aim of this paper is to provide an extensive overview about the state-of-art commercially available SiC power MOSFET, focusing on their short-circuit ruggedness. A detailed literature investigation has been carried out, in order to collect and understand the latest research contribution within...... this topic and create a survey of the present scenario of SiC MOSFETs reliability evaluation and failure mode analysis, pointing out the evolution and improvements as well as the future challenges in this promising device technology....

  2. Shunt protection for superconducting Maglev magnets

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, D L [Queen' s Univ., Kingston, Ontario (Canada). Dept. of Physics

    1979-09-01

    Closely coupled, short-circuited shunt coils are proposed for quench protection of superconducting Maglev magnets which use high resistance, matrix composite conductors. It is shown that, by suitable design, the shunts can reduce induced ac losses and that the changing currents during magnet energization or vehicle lift off and landing can be tolerated.

  3. Short day photoperiod protects against acetaminophen-induced ...

    African Journals Online (AJOL)

    Prof. Ogunji

    blood was collected by cardiac puncture for the estimation of liver enzymes activities. Liver ... revealed the protective effects of short photoperiod against acetaminophen-induced hepatotoxicity and lipid .... homogenized in ice cold KCl (100mM) containing. 0.003M ... This was followed by the addition of 1.0ml water and 5.0ml ...

  4. Shunt protection for superconducting Maglev magnets

    International Nuclear Information System (INIS)

    Atherton, D.L.

    1979-01-01

    Closely coupled, short-circuited shunt coils are proposed for quench protection of superconducting Maglev magnets which use high resistance, matrix composite conductors. It is shown that, by suitable design, the shunts can reduce induced ac losses and that the changing currents during magnet energization or vehicle lift off and landing can be tolerated. (author)

  5. Protective relaying theory and applications

    CERN Document Server

    Elmore, Walter A

    2003-01-01

    Targeting the latest microprocessor technologies for more sophisticated applications in the field of power system short circuit detection, this revised and updated source imparts fundamental concepts and breakthrough science for the isolation of faulty equipment and minimization of damage in power system apparatus. The Second Edition clearly describes key procedures, devices, and elements crucial to the protection and control of power system function and stability. It includes chapters and expertise from the most knowledgeable experts in the field of protective relaying, and describes micropro

  6. Small-bandgap polymer solar cells with unprecedented short-circuit current density and high fill factor.

    Science.gov (United States)

    Choi, Hyosung; Ko, Seo-Jin; Kim, Taehyo; Morin, Pierre-Olivier; Walker, Bright; Lee, Byoung Hoon; Leclerc, Mario; Kim, Jin Young; Heeger, Alan J

    2015-06-03

    Small-bandgap polymer solar cells (PSCs) with a thick bulk heterojunction film of 340 nm exhibit high power conversion efficiencies of 9.40% resulting from high short-circuit current density (JSC ) of 20.07 mA cm(-2) and fill factor of 0.70. This remarkable efficiency is attributed to maximized light absorption by the thick active layer and minimized recombination by the optimized lateral and vertical morphology through the processing additive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Protection measures for selected ITER magnet system off-normal conditions

    International Nuclear Information System (INIS)

    Yoshida, K.; Iida, F.; Gallix, R.; Britousov, N.; Mitchell, N.; Thome, R.J.

    1998-01-01

    The International Thermonuclear Experimental Reactor (ITER) magnet systems provide the magnetic field intensity and field geometry to contain and control plasma during the various phases of pulsed operation. During these pulses, the toroidal field (TF) coils operate with a constant current. The central solenoid (CS) and poloidal field (PF) coils, on the other hand, are each independently powered. The maximum terminal voltages during plasma operation and protective discharges are 15 kV for CS and 10 kV for TF and PF. The energy stored in the 20 TF coil system is 103 GJ; in each of the other coils it is approximately 10 GJ or less. This paper describes the protection requirements and selected design concepts being considered for the large superconducting coils for the ITER. Ground faults, short circuits and helium leaks are the major serious accidents to be prevented in the coils. All coils use a solid insulation system to avoid ground faults. The electrical circuits including coil and power supply are grounded through resistors that limit current in the event of a ground fault. In the case of a short circuit within the coil winding, a large energy would be dissipated close to the small shorted volume. The impact of the short circuit can be reduced by using a potential screen. Inside the cryostat, helium leakage is most likely at the electrical insulating breaks in the cryogenic cooling lines between the coils and helium manifolds. A double containment (metallic shield and glass-epoxy) is therefore provided for the insulation breaks to allow for the detection of small leaks and to limit the spread of helium to other locations. (orig.)

  8. Detection of Internal Short Circuit in Lithium Ion Battery Using Model-Based Switching Model Method

    Directory of Open Access Journals (Sweden)

    Minhwan Seo

    2017-01-01

    Full Text Available Early detection of an internal short circuit (ISCr in a Li-ion battery can prevent it from undergoing thermal runaway, and thereby ensure battery safety. In this paper, a model-based switching model method (SMM is proposed to detect the ISCr in the Li-ion battery. The SMM updates the model of the Li-ion battery with ISCr to improve the accuracy of ISCr resistance R I S C f estimates. The open circuit voltage (OCV and the state of charge (SOC are estimated by applying the equivalent circuit model, and by using the recursive least squares algorithm and the relation between OCV and SOC. As a fault index, the R I S C f is estimated from the estimated OCVs and SOCs to detect the ISCr, and used to update the model; this process yields accurate estimates of OCV and R I S C f . Then the next R I S C f is estimated and used to update the model iteratively. Simulation data from a MATLAB/Simulink model and experimental data verify that this algorithm shows high accuracy of R I S C f estimates to detect the ISCr, thereby helping the battery management system to fulfill early detection of the ISCr.

  9. An Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    Science.gov (United States)

    Courey, Karim; Wright, Clara; Asfour, Shihab; Onar, Arzu; Bayliss, Jon; Ludwig, Larry

    2009-01-01

    In this experiment, an empirical model to quantify the probability of occurrence of an electrical short circuit from tin whiskers as a function of voltage was developed. This empirical model can be used to improve existing risk simulation models. FIB and TEM images of a tin whisker confirm the rare polycrystalline structure on one of the three whiskers studied. FIB cross-section of the card guides verified that the tin finish was bright tin.

  10. Design and flight performance evaluation of the Mariners 6, 7, and 9 short-circuit current, open-circuit voltage transducers

    Science.gov (United States)

    Patterson, R. E.

    1973-01-01

    The purpose of the short-circuit voltage transducer is to provide engineering data to aid the evaluation of array performance during flight. The design, fabrication, calibration, and in-flight performance of the transducers onboard the Mariner 6, 7 and 9 spacecrafts are described. No significant differences were observed in the in-flight electrical performance of the three transducers. The transducers did experience significant losses due to coverslides or adhesive darkening, increased surface reflection, or spectral shifts within coverslide assembly. Mariner 6, 7 and 9 transducers showed non-cell current degradations of 3-1/2%, 3%, and 4%, respectively at Mars encounter and 6%, 3%, and 4-12%, respectively at end of mission. Mariner 9 solar Array Test 2 showed 3-12% current degradation while the transducer showed 4-12% degradation.

  11. Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current

    Energy Technology Data Exchange (ETDEWEB)

    Sukrittanon, Supanee [Graduate Program of Materials Science and Engineering, University of California, San Diego, La Jolla, California 92037 (United States); Liu, Ren; Pan, Janet L. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92037 (United States); Breeden, Michael C. [Department of Nanoengineering, University of California, San Diego, La Jolla, California 92037 (United States); Jungjohann, K. L. [Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Tu, Charles W., E-mail: ctu@ece.ucsd.edu, E-mail: sdayeh@ece.ucsd.edu; Dayeh, Shadi A., E-mail: ctu@ece.ucsd.edu, E-mail: sdayeh@ece.ucsd.edu [Graduate Program of Materials Science and Engineering, University of California, San Diego, La Jolla, California 92037 (United States); Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92037 (United States)

    2016-08-07

    We report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface and in the GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. The comprehensive understanding presented in this work suggests that performance benefits of dilute nitride microwire solar cells can be achieved by further tuning of the epitaxial quality of the underlying materials.

  12. Approaching the Processes in the Generator Circuit Breaker at Disconnection through Sustainability Concepts

    Directory of Open Access Journals (Sweden)

    Carmen A. Bulucea

    2013-03-01

    Full Text Available Nowadays, the electric connection circuits of power plants (based on fossil fuels as well as renewable sources entail generator circuit-breakers (GCBs at the generator terminals, since the presence of that electric equipment offers many advantages related to the sustainability of a power plant. In an alternating current (a.c. circuit the interruption of a short circuit is performed by the circuit-breaker at the natural passing through zero of the short-circuit current. During the current interruption, an electric arc is generated between the opened contacts of the circuit-breaker. This arc must be cooled and extinguished in a controlled way. Since the synchronous generator stator can flow via highly asymmetrical short-circuit currents, the phenomena which occur in the case of short-circuit currents interruption determine the main stresses of the generator circuit-breaker; the current interruption requirements of a GCB are significantly higher than for the distribution network circuit breakers. For shedding light on the proper moment when the generator circuit-breaker must operate, using the space phasor of the short-circuit currents, the time expression to the first zero passing of the short-circuit current is determined. Here, the manner is investigated in which various factors influence the delay of the zero passing of the short-circuit current. It is shown that the delay time is influenced by the synchronous machine parameters and by the load conditions which precede the short-circuit. Numerical simulations were conducted of the asymmetrical currents in the case of the sudden three-phase short circuit at the terminals of synchronous generators. Further in this study it is emphasized that although the phenomena produced in the electric arc at the terminals of the circuit-breaker are complicated and not completely explained, the concept of exergy is useful in understanding the physical phenomena. The article points out that just after the short-circuit

  13. Transient short-circuit behaviour of distributed energy sources and their influence on protection coordination conference

    NARCIS (Netherlands)

    Geldtmeijer, D.A.M.; Provoost, F.; Myrzik, J.M.A.; Kling, W.L.

    2006-01-01

    This paper presents the results obtained by research on the influence of distributed generation (DG) on protection in the distribution network. Generation connected to the grid is subject to protection regulations. Applying the present regulations to distributed generation results in unnecessary

  14. Variations in the electrical short-circuit current decay for recombination lifetime and velocity measurements

    Science.gov (United States)

    Jung, Tae-Won; Lindholm, Fredrik A.; Neugroschel, Arnost

    1987-01-01

    An improved measurement system for electrical short-circuit current decay is presented that extends applicability of the method to silicon solar cells having an effective lifetime as low as 1 microsec. The system uses metal/oxide/semiconductor transistors as voltage-controlled switches. Advances in theory developed here increase precision and sensitivity in the determination of the minority-carrier recombination lifetime and recombination velocity. A variation of the method, which exploits measurements made on related back-surface field and back-ohmic contact devices, further improves precision and sensitivity. The improvements are illustrated by application to 15 different silicon solar cells.

  15. Effect of Short-Circuit Pathways on Water Quality in Selected Confined Aquifers (Invited)

    Science.gov (United States)

    McMahon, P. B.

    2010-12-01

    Confined aquifers in the United States generally contain fewer anthropogenic contaminants than unconfined aquifers because confined aquifers often contain water recharged prior to substantial human development and redox conditions are more reducing, which favors degradation of common contaminants like nitrate and chlorinated solvents. Groundwater in a confined part of the High Plains aquifer near York, Nebraska had an adjusted radiocarbon age of about 2,000 years, and groundwater in a confined part of the Floridan aquifer near Tampa, Florida had apparent ages greater than 60 years on the basis of tritium measurements. Yet compounds introduced more recently into the environment (anthropogenic nitrate and volatile organic compounds) were detected in selected public-supply wells completed in both aquifers. Depth-dependent measurements of flow and chemistry in the pumping supply wells, groundwater age dating, numerical modeling of groundwater flow, and other monitoring data indicated that the confined aquifers sampled by the supply wells were connected to contaminated unconfined aquifers by short-circuit pathways. In the High Plains aquifer, the primary pathways appeared to be inactive irrigation wells screened in both the unconfined and confined aquifers. In the Floridan aquifer, the primary pathways were karst sinkholes and conduits. Heavy pumping in both confined systems exacerbated the problem by reducing the potentiometric surface and increasing groundwater velocities, thus enhancing downward gradients and reducing reaction times for processes like denitrification. From a broader perspective, several confined aquifers in the U.S. have experienced large declines in their potentiometric surfaces because of groundwater pumping and this could increase the potential for contamination in those aquifers, particularly where short-circuit pathways connect them to shallower, contaminated sources of water, such as was observed in York and Tampa.

  16. Thermally-induced voltage alteration for integrated circuit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.I. Jr.

    2000-06-20

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing an integrated circuit (IC) either from a device side of the IC or through the IC substrate to locate any open-circuit or short-circuit defects therein. The TIVA apparatus uses constant-current biasing of the IC while scanning a focused laser beam over electrical conductors (i.e. a patterned metallization) in the IC to produce localized heating of the conductors. This localized heating produces a thermoelectric potential due to the Seebeck effect in any conductors with open-circuit defects and a resistance change in any conductors with short-circuit defects, both of which alter the power demand by the IC and thereby change the voltage of a source or power supply providing the constant-current biasing. By measuring the change in the supply voltage and the position of the focused and scanned laser beam over time, any open-circuit or short-circuit defects in the IC can be located and imaged. The TIVA apparatus can be formed in part from a scanning optical microscope, and has applications for qualification testing or failure analysis of ICs.

  17. Circuit motifs for contrast-adaptive differentiation in early sensory systems: the role of presynaptic inhibition and short-term plasticity.

    Science.gov (United States)

    Zhang, Danke; Wu, Si; Rasch, Malte J

    2015-01-01

    In natural signals, such as the luminance value across of a visual scene, abrupt changes in intensity value are often more relevant to an organism than intensity values at other positions and times. Thus to reduce redundancy, sensory systems are specialized to detect the times and amplitudes of informative abrupt changes in the input stream rather than coding the intensity values at all times. In theory, a system that responds transiently to fast changes is called a differentiator. In principle, several different neural circuit mechanisms exist that are capable of responding transiently to abrupt input changes. However, it is unclear which circuit would be best suited for early sensory systems, where the dynamic range of the natural input signals can be very wide. We here compare the properties of different simple neural circuit motifs for implementing signal differentiation. We found that a circuit motif based on presynaptic inhibition (PI) is unique in a sense that the vesicle resources in the presynaptic site can be stably maintained over a wide range of stimulus intensities, making PI a biophysically plausible mechanism to implement a differentiator with a very wide dynamical range. Moreover, by additionally considering short-term plasticity (STP), differentiation becomes contrast adaptive in the PI-circuit but not in other potential neural circuit motifs. Numerical simulations show that the behavior of the adaptive PI-circuit is consistent with experimental observations suggesting that adaptive presynaptic inhibition might be a good candidate neural mechanism to achieve differentiation in early sensory systems.

  18. Transient stability of DFIG wind turbines at an external short-circuit fault

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    The fast development of wind power generation brings new requirements for wind turbine integration into the network. After clearance of an external short-circuit fault, gridconnected wind turbines should restore their normal operation without power loss caused by disconnections. This article...... are described in detail. The transient process of grid-connected wind turbines with DFIGs at an external shortcircuit fault is analysed, and in critical post-fault situations a measure is proposed for the voltage recovery of DFIG wind turbines after fault clearance. Simulation results demonstrate...... that in uncritical post-fault situations the control schemes are able to restore the wind turbine's normal operation without disconnections.lt is also proved that the proposed measure is effective in re-establishing the voltage at the wind turbine terminal in critical post-fault situations....

  19. Modelling Li-ion cell thermal runaway triggered by an internal short circuit device using an efficiency factor and Arrhenius formulations

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Darcy, Eric; Veje, Christian

    2017-01-01

    This paper presents a novel model for analyzing the thermal runaway in Li-ion battery cells with an internal short circuit device implanted in the cell. The model is constructed using Arrhenius formulations for representing the self-heating chemical reactions and the State of Charge. The model...

  20. Hybrid finite difference/finite element solution method development for non-linear superconducting magnet and electrical circuit breakdown transient analysis

    International Nuclear Information System (INIS)

    Kraus, H.G.; Jones, J.L.

    1986-01-01

    The problem of non-linear superconducting magnet and electrical protection circuit system transients is formulated. To enable studying the effects of coil normalization transients, coil distortion (due to imbalanced magnetic forces), internal coil arcs and shorts, and other normal and off-normal circuit element responses, the following capabilities are included: temporal, voltage and current-dependent voltage sources, current sources, resistors, capacitors and inductors. The concept of self-mutual inductance, and the form of the associated inductance matrix, is discussed for internally shorted coils. This is a Kirchhoff's voltage loop law and Kirchhoff's current node law formulation. The non-linear integrodifferential equation set is solved via a unique hybrid finite difference/integral finite element technique. (author)

  1. Security electronics circuits manual

    CERN Document Server

    MARSTON, R M

    1998-01-01

    Security Electronics Circuits Manual is an invaluable guide for engineers and technicians in the security industry. It will also prove to be a useful guide for students and experimenters, as well as providing experienced amateurs and DIY enthusiasts with numerous ideas to protect their homes, businesses and properties.As with all Ray Marston's Circuits Manuals, the style is easy-to-read and non-mathematical, with the emphasis firmly on practical applications, circuits and design ideas. The ICs and other devices used in the practical circuits are modestly priced and readily available ty

  2. Mode of the short circuit in the direct current electric traction network with different feed charts of fyder area

    Directory of Open Access Journals (Sweden)

    P. Mihalichenko

    2012-12-01

    Full Text Available In the article the results of mathematical design of the system of electric traction of direct current are represented in the mode of short circuit and different feed charts of fyder area: two-sided; one-sided. Comparison of transitional electric sizes which characterize electromagnetic processes during these malfunctions is analysed and executed.

  3. Parameterization of a synchronous generator to represent a doubly fed induction generator with chopper protection for fault studies

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Philip C.; Rodriguez, Pedro

    2011-01-01

    knowledge of the wind turbine short circuit current contribution is needed for component sizing and protection relay settings during faults within the wind power plant collector system or in the external networks. When studying fault currents and protection settings for wind power installations...

  4. Increased short circuit current in organic photovoltaic using high-surface area electrode based on ZnO nanowires decorated with CdTe quantum dots.

    Science.gov (United States)

    Aga, R S; Gunther, D; Ueda, A; Pan, Z; Collins, W E; Mu, R; Singer, K D

    2009-11-18

    A photosensitized high-surface area transparent electrode has been employed to increase the short circuit current of a photovoltaic device with a blend of poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM) as the active layer. This is achieved by directly growing ZnO nanowires on indium tin oxide (ITO) film via a physical vapor method. The nanowire surface is then decorated with CdTe quantum dots by pulsed electron-beam deposition (PED). The nanowires alone provided a 20-fold increase in the short circuit current under visible light illumination. This was further increased by a factor of approximately 1.5 by the photosensitization effect of CdTe, which has an optical absorption of up to 820 nm.

  5. Neural circuit mechanisms of short-term memory

    Science.gov (United States)

    Goldman, Mark

    Memory over time scales of seconds to tens of seconds is thought to be maintained by neural activity that is triggered by a memorized stimulus and persists long after the stimulus is turned off. This presents a challenge to current models of memory-storing mechanisms, because the typical time scales associated with cellular and synaptic dynamics are two orders of magnitude smaller than this. While such long time scales can easily be achieved by bistable processes that toggle like a flip-flop between a baseline and elevated-activity state, many neuronal systems have been observed experimentally to be capable of maintaining a continuum of stable states. For example, in neural integrator networks involved in the accumulation of evidence for decision making and in motor control, individual neurons have been recorded whose activity reflects the mathematical integral of their inputs; in the absence of input, these neurons sustain activity at a level proportional to the running total of their inputs. This represents an analog form of memory whose dynamics can be conceptualized through an energy landscape with a continuum of lowest-energy states. Such continuous attractor landscapes are structurally non-robust, in seeming violation of the relative robustness of biological memory systems. In this talk, I will present and compare different biologically motivated circuit motifs for the accumulation and storage of signals in short-term memory. Challenges to generating robust memory maintenance will be highlighted and potential mechanisms for ameliorating the sensitivity of memory networks to perturbations will be discussed. Funding for this work was provided by NIH R01 MH065034, NSF IIS-1208218, Simons Foundation 324260, and a UC Davis Ophthalmology Research to Prevent Blindness Grant.

  6. What's new about generator circuit breakers

    International Nuclear Information System (INIS)

    Kolarik, P.L.

    1979-01-01

    The need for updating ANSI C37 Standards for AC high-voltage circuit breakers has become necessary because of the increased interest in power circuit breakers for generator application. These circuit breakers, which have continuous current ratings and rated short-circuit currents that are much higher than those presently covered by existing C37 Standards, take on added importance because they are being installed in critical AC power supplies at nuclear power stations

  7. Sub-module Short Circuit Fault Diagnosis in Modular Multilevel Converter Based on Wavelet Transform and Adaptive Neuro Fuzzy Inference System

    DEFF Research Database (Denmark)

    Liu, Hui; Loh, Poh Chiang; Blaabjerg, Frede

    2015-01-01

    for continuous operation and post-fault maintenance. In this article, a fault diagnosis technique is proposed for the short circuit fault in a modular multi-level converter sub-module using the wavelet transform and adaptive neuro fuzzy inference system. The fault features are extracted from output phase voltage...

  8. An Icepak-PSpice Co-Simulation Method to Study the Impact of Bond Wires Fatigue on the Current and Temperature Distribution of IGBT Modules under Short-Circuit

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2014-01-01

    Bond wires fatigue is one of the dominant failure mechanisms of IGBT modules. Prior-art research mainly focuses on its impact on the end-of-life failure, while its effect on the short-circuit capability of IGBT modules is still an open issue. This paper proposes a new electro-thermal simulation...... approach enabling analyze the impact of the bond wires fatigue on the current and temperature distribution on IGBT chip surface under short-circuit. It is based on an Icepack-PSpice co-simulation by taking the advantage of both a finite element thermal model and an advanced PSpice-based multi-cell IGBT...

  9. Matlab/Simulink Implementation of Wave-based Models for Microstrip Structures utilizing Short-circuited and Opened Stubs

    Directory of Open Access Journals (Sweden)

    Biljana P. Stošić

    2011-12-01

    Full Text Available This paper describes modeling and analyzing procedures for microstrip filters based on use of one-dimensional wave digital approach. Different filter structures are observed. One filter is based on quarter-wave length short-circuited stubs and connecting transmission lines. The other one is based on cross-junction opened stubs. Frequency responses are obtained by direct analysis of the block-based networks formed in Simulink toolbox of MATLAB environment. This wave-based method allows an accurate and efficient analysis of different microwave structures.

  10. Trip electrical circuit of the gyrotion

    International Nuclear Information System (INIS)

    Rossi, J.O.

    1987-09-01

    The electron cyclotron resonance heating system of INPE/LAP is shown and the trip electrical circuit of the gyrotron is described, together with its fundamental aspects. The trip electrical circuit consists basically of a series regulator circuit which regulates the output voltage level and controls the pulse width time. Besides that, a protection circuit for both tubes, regulator and gyrotron, against faults in the system. (author) [pt

  11. The effect of different solar simulators on the measurement of short-circuit current temperature coefficients

    Science.gov (United States)

    Curtis, H. B.; Hart, R. E., Jr.

    1982-01-01

    Gallium arsenide solar cells are considered for several high temperature missions in space. Both near-Sun and concentrator missions could involve cell temperatures on the order of 200 C. Performance measurements of cells at elevated temperatures are usually made using simulated sunlight and a matched reference cell. Due to the change in bandgap with increasing temperature at portions of the spectrum where considerable simulated irradiance is present, there are significant differences in measured short circuit current at elevated temperatures among different simulators. To illustrate this, both experimental and theoretical data are presented for gallium arsenide cells.

  12. Feasibility Study of the PS Injection for 2 GeV LIU Beams with an Upgraded KFA-45 Injection Kicker System Operating in Short Circuit Mode

    CERN Document Server

    Kramer, Thomas; Borburgh, Jan; Ducimetière, Laurent; Feliciano, Luis; Ferrero Colomo, Alvaro; Goddard, Brennan; Sermeus, Luc

    2016-01-01

    Under the scope of the LIU project the CERN PS Booster to PS beam transfer will be modified to match the requirements for the future 2 GeV beams. This paper describes the evaluation of the proposed upgrade of the PS injection kicker. Different schemes of an injection for LIU beams into the PS have been outlined in the past already under the aspect of individual transfer kicker rise and fall time performances. Homogeneous rise and fall time requirements in the whole PSB to PS transfer chain have been established which allowed to consider an upgrade option of the present injection kicker system operated in short circuit mode. The challenging pulse quality constraints require an improvement of the flat top and post pulse ripples. Both operation modes, terminated and short circuit mode are analysed and analogue circuit simulations for the present and upgraded system are outlined. Recent measurements on the installed kickers are presented and analysed together with the simulation data. First measurements verifying...

  13. Long-wavelength III-V/silicon photonic integrated circuits

    NARCIS (Netherlands)

    Roelkens, G.C.; Kuyken, B.; Leo, F.; Hattasan, N.; Ryckeboer, E.M.P.; Muneeb, M.; Hu, C.L.; Malik, A.; Hens, Z.; Baets, R.G.F.; Shimura, Y.; Gencarelli, F.; Vincent, B.; Loo, van de R.; Verheyen, P.A.; Lepage, G.; Campenhout, van J.; Cerutti, L.; Rodriquez, J.B.; Tournie, E.; Chen, X; Nedeljkovic, G.; Mashanovich, G.; Liu, X.; Green, W.S.

    2013-01-01

    We review our work in the field of short-wave infrared and mid-infrared photonic integrated circuits for applications in spectroscopic sensing systems. Passive silicon waveguide circuits, GeSn photodetectors, the integration of III-V and IV-VI semiconductors on these circuits, and silicon nonlinear

  14. Growth Mechanism Studies of ZnO Nanowires: Experimental Observations and Short-Circuit Diffusion Analysis.

    Science.gov (United States)

    Shih, Po-Hsun; Wu, Sheng Yun

    2017-07-21

    Plenty of studies have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since analyzing the growth mechanism along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid the appearance of catalytic contamination. Two-dimensional energy dispersive spectroscopy (EDS) mapping with a diffusion model was used to obtain the diffusion length and the activation energy ratio. The ratio value is close to 0.3, revealing that the growth of ZnO nanowires was attributed to the short-circuit diffusion.

  15. A multilayer electro-thermal model of pouch battery during normal discharge and internal short circuit process

    International Nuclear Information System (INIS)

    Chen, Mingbiao; Bai, Fanfei; Song, Wenji; Lv, Jie; Lin, Shili

    2017-01-01

    Highlights: • 2D network equivalent circuit considers the interplay of cell units. • The temperature non-uniformity Φ of multilayer model is bigger than that of lumped model. • The temperature non-uniformity is quantified and the reason of non-uniformity is analyzed. • Increasing the thermal conductivity of the separator can effectively relieve the heat spot effect of ISC. - Abstract: As the electrical and thermal characteristic will affect the batteries’ safety, performance, calendar life and capacity fading, an electro-thermal coupled model for pouch battery LiFePO_4/C is developed in normal discharge and internal short circuit process. The battery is discretized into many cell elements which are united as a 2D network equivalent circuit. The electro-thermal model is solved with finite difference method. Non-uniformity of current distribution and temperature distribution is simulated and the result is validated with experiment data at various discharge rates. Comparison of the lumped model and the multilayer structure model shows that the temperature non-uniformity Φ of multilayer model is bigger than that of lumped model and shows more precise. The temperature non-uniformity is quantified and the reason of non-uniformity is analyzed. The electro-thermal model can also be used to guide the safety design of battery. The temperature of the ISC element near tabs is the highest because the equivalent resistance of the external circuit (not including the ISC element) is the smallest when the resistance of cell units is small. It is found that increasing the thermal conductivity of integrated layer can effectively relieve the heat spot effect of ISC.

  16. Short-circuit current improvement in thin cells with a gridded back contact

    Science.gov (United States)

    Giuliano, M.; Wohlgemuth, J.

    1980-01-01

    The use of gridded back contact on thin silicon solar cells 50 micrometers was investigated. An unexpected increase in short circuit current of almost 10 percent was experienced for 2 cm x 2 cm cells. Control cells with the standard continuous contact metallization were fabricated at the same time as the gridded back cells with all processes identical up to the formation of the back contact. The gridded back contact pattern was delineated by evaporation of Ti-Pd over a photo-resist mask applied to the back of the wafer; the Ti-Pd film on the controls was applied in the standard fashion in a continuous layer over the back of the cell. The Ti-Pd contacts were similarly applied to the front of the wafer, and the grid pattern on both sides of the cell was electroplated with 8-10 micrometers of silver.

  17. On the short circuit resilience of organic solar cells: prediction and validation.

    Science.gov (United States)

    Oostra, A Jolt; Smits, Edsger C P; de Leeuw, Dago M; Blom, Paul W M; Michels, Jasper J

    2015-09-07

    The operational characteristics of organic solar cells manufactured with large area processing methods suffers from the occurrence of short-circuits due to defects in the photoactive thin film stack. In this work we study the effect of a shunt resistance on an organic solar cell and demonstrate that device performance is not affected negatively as long as the shunt resistance is higher than approximately 1000 Ohm. By studying charge transport across PSS-lithium fluoride/aluminum (LiF/Al) shunting junctions we show that this prerequisite is already met by applying a sufficiently thick (>1.5 nm) LiF layer. We demonstrate that this remarkable shunt-resilience stems from the formation of a significant charge transport barrier at the PSS-LiF/Al interface. We validate our predictions by fabricating devices with deliberately severed photoactive layers and find an excellent agreement between the calculated and experimental current-voltage characteristics.

  18. 30 CFR 75.800-1 - Circuit breakers; location.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Circuit breakers; location. 75.800-1 Section 75.800-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... § 75.800-1 Circuit breakers; location. Circuit breakers protecting high-voltage circuits entering an...

  19. Effect of external circuit on heat transfer in MHD Couette flow

    International Nuclear Information System (INIS)

    Soundalgekar, V.M.

    1982-01-01

    An exact solution of energy equation in fully-developed MHD Coutte flow has been derived. Temperature profiles are shown in open- and short-circuit cases. It has been observed that in short circuit case, temperature and Nusselt number (Nu) increase with increasing M, whereas in open-circuit case, with increasing M, the temperature decreases. Also in open-circuit case, Nu increases with increasing M when M is small, but at large values of M, Nu decreases with increasing M. (author)

  20. 30 CFR 75.900-1 - Circuit breakers; location.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Circuit breakers; location. 75.900-1 Section 75.900-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... Alternating Current Circuits § 75.900-1 Circuit breakers; location. Circuit breakers used to protect low-and...

  1. Safety and protection for large-scale superconducting magnets. FY'82 report

    International Nuclear Information System (INIS)

    Thome, R.J.; Pillsbury, R.D. Jr.; Iwasa, Y.; Mann, W.R.; Langton, W.G.

    1982-10-01

    The FY82 effort in safety and protection focused on tests and analyses in the following areas: (a) short circuit performance in the 30 T hybrid magnet, (b) arc voltage/current characteristics in simulated windings, (c) vapor-cooled lead burnout, (d) acoustic emission, and (e) joint MESA/MIT safety activity

  2. Short recovery time NMR probe

    International Nuclear Information System (INIS)

    Ramia, M.E.; Martin, C.A.; Jeandrevin, S.

    2011-01-01

    A NMR probe for low frequency and short recovery time is presented in this work. The probe contains the tuning circuit, diode expanders and quarter wavelength networks to protect the receiver from both the amplifier noise and the coil ringing following the transmitter power pulse. It also possesses a coil damper which is activated by of non active components. The probe performance shows a recovery time of about of 15μs a sensitive Q factor reduction and an increase of the signal to noise ratio of about 68% during the reception at a work frequency of 2 MHz. (author)

  3. Short-Circuit Fault Tolerant Control of a Wind Turbine Driven Induction Generator Based on Sliding Mode Observers

    Directory of Open Access Journals (Sweden)

    Takwa Sellami

    2017-10-01

    Full Text Available The installed energy production capacity of wind turbines is growing intensely on a global scale, making the reliability of wind turbine subsystems of greater significance. However, many faults like Inter-Turn Short-Circuit (ITSC may affect the turbine generator and quickly lead to a decline in supplied power quality. In this framework, this paper proposes a Sliding Mode Observer (SMO-based Fault Tolerant Control (FTC scheme for Induction Generator (IG-based variable-speed grid-connected wind turbines. First, the dynamic models of the wind turbine subsystems were developed. The control schemes were elaborated based on the Maximum Power Point Tracking (MPPT method and Indirect Rotor Flux Oriented Control (IRFOC method. The grid control was also established by regulating the active and reactive powers. The performance of the wind turbine system and the stability of injected power to the grid were hence analyzed under both healthy and faulty conditions. The robust developed SMO-based Fault Detection and Isolation (FDI scheme was proved to be fast and efficient for ITSC detection and localization.Afterwards, SMO were involved in scheming the FTC technique. Accordingly, simulation results assert the efficacy of the proposed ITSC FTC method for variable-speed wind turbines with faulty IG in protecting the subsystems from damage and ensuring continuous connection of the wind turbine to the grid during ITSC faults, hence maintaining power quality.

  4. Protective and control relays as coal-mine power-supply ACS subsystem

    Science.gov (United States)

    Kostin, V. N.; Minakova, T. E.

    2017-10-01

    The paper presents instantaneous selective short-circuit protection for the cabling of the underground part of a coal mine and central control algorithms as a Coal-Mine Power-Supply ACS Subsystem. In order to improve the reliability of electricity supply and reduce the mining equipment down-time, a dual channel relay protection and central control system is proposed as a subsystem of the coal-mine power-supply automated control system (PS ACS).

  5. analysis and implementation of reactor protection system circuits - case study Egypt's 2 nd research reactor-

    International Nuclear Information System (INIS)

    Elnokity, O.E.M.

    2006-01-01

    this work presents a way to design and implement the trip unit of a reactor protection system (RPS) using a field programmable gate arrays (FPGA). instead of the traditional embedded microprocessor based interface design method, a proposed tailor made FPGA based circuit is built to substitute the trip unit (TU), which is used in Egypt's 2 nd research reactor ETRR-2. the existing embedded system is built around the STD32 field computer bus which is used in industrial and process control applications. it is modular, rugged, reliable, and easy-to-use and is able to support a large mix of I/O cards and to easily change its configuration in the future. therefore, the same bus is still used in the proposed design. the state machine of this bus is designed based around its timing diagrams and implemented in VHDL to interface the designed TU circuit

  6. Assessment and modelling of switching technologies for application in HVDC-circuit breakers

    OpenAIRE

    Lund, Johan

    2011-01-01

    A key element for future DC-grids is a DC circuit breaker that in case of a short circuit fault reliably can turn off a short circuit current. AC circuit breakers are well known components that has been in use for a long time in AC-grids. The AC circuit breaker is designed to interrupt the current at its natural current zero crossings. In DC grids such does not exists, therefore AC breakers can not be directly applied in DC grids. Different concepts and technologies to solve this problem is a...

  7. Room Temperature Magnetic Field Measurements as a Tool to Localize Inter-turns Electrical Short Circuits in the LHC Main Dipole coils

    CERN Document Server

    Bellesia, B; Todesco, E

    2006-01-01

    In this report the method for the localization of the electric shorts circuits in the main LHC dipoles using the magnetic measurements at room temperature is presented. The steps of the method are discussed, and two cases are studied in detail. A complete statistics of the 12 cases analyzed up to now is given.

  8. Logarithmic current-measuring transistor circuits

    DEFF Research Database (Denmark)

    Højberg, Kristian Søe

    1967-01-01

    Describes two transistorized circuits for the logarithmic measurement of small currents suitable for nuclear reactor instrumentation. The logarithmic element is applied in the feedback path of an amplifier, and only one dual transistor is used as logarithmic diode and temperature compensating...... transistor. A simple one-amplifier circuit is compared with a two-amplifier system. The circuits presented have been developed in connexion with an amplifier using a dual m.o.s. transistor input stage with diode-protected gates....

  9. A COMPREHENSIVE MODEL FOR THE POWER TRANSFORMER DIGITAL DIFFERENTIAL PROTECTION FUNCTIONING RESEARCH

    Directory of Open Access Journals (Sweden)

    Yu. V. Rumiantsev

    2016-01-01

    Full Text Available This article presents a comprehensive model for the two-winding power transformer digital differential protection functioning research. Considered comprehensive model is developed in MatLab-Simulink dynamic simulation environment with the help of SimPowerSystems component library and includes the following elements: power supply, three-phase power transformer, wye-connected current transformers and two-winding power transformer digital differential protection model. Each element of the presented model is described in the degree sufficient for its implementation in the dynamic simulation environment. Particular attention is paid to the digital signal processing principles and to the ways of differential and restraining currents forming of the considered comprehensive model main element – power transformer digital differential protection. With the help of this model the power transformer digital differential protection functioning was researched during internal and external faults: internal short-circuit, external short-circuit with and without current transformers saturation on the power transformer low-voltage side. Each experiment is illustrated with differential and restraining currents waveforms of the digital differential protection under research. Particular attention was paid to the digital protection functioning analysis during power transformer abnormal modes: overexcitation and inrush current condition. Typical current waveforms during these modes were showed and their harmonic content was investigated. The causes of these modes were analyzed in details. Digital differential protection blocking algorithms based on the harmonic content were considered. Drawbacks of theses algorithms were observed and the need of their further technical improvement was marked.

  10. Effect of short circuited DC link capacitor of an AC–DC–AC inverter on the performance of induction motor

    Directory of Open Access Journals (Sweden)

    Hadeed Ahmed Sher

    2016-07-01

    Full Text Available Induction motors are widely used in industrial power plants due to their robustness, reliability and high performance under variable operating conditions in the electrical power system. Modern industrial progress is dependent on these ruggedly constructed induction motors. Almost every sophisticated process of the industry is based on induction motors. Most of these motors are controlled by means of inverters that change the line frequency. The change in parameters of inverter makes it possible to control the motor according to the design requirements. The reliability of inverter based motor control is an important issue for industrial applications and therefore, it becomes very vital for design engineers to have comprehensive analysis of the inverter fed induction machine. This paper investigates one of the faults that may occur on the DC link of an inverter fed induction motor. The effect of the capacitor short circuit is presented in this paper. It also deals with the effects of short circuited capacitor on freewheeling diode. DC link capacitors are well designed and even the probability of capacitor failure is high, it is always a rare case if they puncture, however this analysis will add to the reliability of the induction machine under variable operating condition.

  11. Achieving 12.8% Efficiency by Simultaneously Improving Open-Circuit Voltage and Short-Circuit Current Density in Tandem Organic Solar Cells.

    Science.gov (United States)

    Qin, Yunpeng; Chen, Yu; Cui, Yong; Zhang, Shaoqing; Yao, Huifeng; Huang, Jiang; Li, Wanning; Zheng, Zhong; Hou, Jianhui

    2017-06-01

    Tandem organic solar cells (TOSCs), which integrate multiple organic photovoltaic layers with complementary absorption in series, have been proved to be a strong contender in organic photovoltaic depending on their advantages in harvesting a greater part of the solar spectrum and more efficient photon utilization than traditional single-junction organic solar cells. However, simultaneously improving open circuit voltage (V oc ) and short current density (J sc ) is a still particularly tricky issue for highly efficient TOSCs. In this work, by employing the low-bandgap nonfullerene acceptor, IEICO, into the rear cell to extend absorption, and meanwhile introducing PBDD4T-2F into the front cell for improving V oc , an impressive efficiency of 12.8% has been achieved in well-designed TOSC. This result is also one of the highest efficiencies reported in state-of-the-art organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Protection of Low Voltage CIGRE distribution Network

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Bak, Claus Leth

    2013-01-01

    High quality electricity services are the prime objectives in the modern power systems around the world. One of the main players to achieve this is protection of the system which needs to be fast, reliable and cost effective. The study about the protection of the Low Voltage (LV) CIGRE distribution...... grid and networks like this has been proposed in this paper. The main objective of this paper is to develop protection against short circuit faults which might appear any-where in the network. The protection of the power networks that comprises of renewable energy generation units is complicated...... because of the bidirectional flow of the current and is a challenge for the protection engineers. The selection of the protection devices in this paper is made to protect the network against faults in grid connected and island mode of operation. Ultra-fast fuses are proposed in order to protect...

  13. 30 CFR 75.900-2 - Approved circuit schemes.

    Science.gov (United States)

    2010-07-01

    ... device installed in the main secondary circuit at the source transformer may be used to provide undervoltage protection for each circuit that receives power from that transformer. (c) One circuit breaker may... accordance with the settings listed in the tables of the National Electric Code, 1968. ...

  14. Short circuit current changes in electron irradiated GaAlAs/GaAs solar cells

    Science.gov (United States)

    Walker, G. H.; Conway, E. J.

    1978-01-01

    Heteroface p-GaAlAs/p-GaAs/n-GaAs solar cells with junction depths of 0.8, 1.5, and 4 microns were irradiated with 1 MeV electrons. The short-circuit current for the 4 micron junction depth cells is significantly reduced by the electron irradiation. Reduction of the junction depth to 1.5 microns improves the electron radiation resistance of the cells while further reduction of the junction depth to 0.8 microns improves the stability of the cells even more. Primary degradation is in the blue region of the spectrum. Considerable recovery of lost response is obtained by annealing the cells at 200 C. Computer modeling shows that the degradation is caused primarily by a reduction in the minority carrier diffusion length in the p-GaAs.

  15. PV installations, protection and the code

    Energy Technology Data Exchange (ETDEWEB)

    Silecky, L. [Mersen, Toronto, ON (Canada)

    2010-12-15

    This article discussed the need for improved standards in Ontario's solar industry to ensure safety for the systems and also safety for the workers. Photovoltaic cells used in solar arrays can now deliver between 50 vDC to 600 vDC. The workings of such a high voltage photocell must be understood in order to understand its protection needs. Since PVs are semiconductors and susceptible to damage from short circuits and overloads, a fast-acting overcurrent protective device (OCPD) should be used. Combiner boxes are also needed to provide a clean method of safely connecting all the wires that are needed in the system, including surge protection and a means of isolation between the PV array and the inverter. Section 50 of the Canadian Electrical Code outlines the requirements for solar PV systems, but it does not mention the protection of DC circuits, including DC fuse protectors which are manufactured to provide a high degree of protection for the PV array. As the photovoltaic (PV) market continues to grow in Ontario, the PV industry also has a responsibility to ensure it is in compliance with codes and standards related to photovoltaic systems. This author suggested that Article 690 of the National Electric Code (NEC) is a good document to use when determining the requirements for PV systems. 3 figs.

  16. Circuits design of action logics of the protection system of nuclear reactor IAN-R1 of Colombia

    International Nuclear Information System (INIS)

    Gonzalez M, J. L.; Rivero G, T.; Sainz M, E.

    2014-10-01

    Due to the obsolescence of the instrumentation and control system of the nuclear research reactor IAN-R1, the Institute of Geology and Mining of Colombia, IngeoMinas, launched an international convoking for renewal it which was won by the Instituto Nacional de Investigaciones Nucleares (ININ). Within systems to design, the reactor protection system is described as important for safety, because this carried out, among others two primary functions: 1) ensuring the reactor shutdown safely, and 2) controlling the interlocks to protect against operational errors if defined conditions have not been met. To fulfill these functions, the various subsystems related to the safety report the state in which they are using binary signals and are connected to the inputs of two redundant logic wiring circuits called action logics (Al) that are part of the reactor protection system. These Al also serve as logical interface to indicate at all times the status of subsystems, both the operator and other systems. In the event that any of the subsystems indicates a state of insecurity in the reactor, the Al generate signals off (or scram) of the reactor, maintaining the interlock until the operator sends a reset signal. In this paper the design, implementation, verification and testing of circuits that make up the Al 1 and 2 of IAN-R1 reactor is described, considering the fulfillment of the requirements that the different international standards imposed on this type of design. (Author)

  17. Enhancement of short-circuit current density in polymer bulk heterojunction solar cells comprising plasmonic silver nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuzhao; Lin, Xiaofeng; Ou, Jiemei; Chen, Xudong, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn [Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education of China, Sun Yat-sen University, Guangzhou 510275 (China); Qing, Jian; Zhong, Zhenfeng; Zhou, Xiang, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn; Chen, Yujie, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Hu, Chenglong [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056 (China)

    2014-03-24

    We demonstrate that the influence of plasmonic effects based on silver nanowires (Ag NWs) on the characteristics of polymer solar cells (PSCs). The solution-processed Ag NWs are situated at the interface of anode buffer layer and active layer, which could enhance the performance especially the photocurrent of PSCs by scattering, localized surface plasmon resonance, and surface plasmon polaritons. Plasmonic effects are confirmed by the enhancement of extinction spectra, external quantum efficiency, and steady state photoluminescence. Consequently, the short-circuit current density (J{sub sc}) and power conversion efficiency enhance about 24% and 18%, respectively, under AM1.5 illumination when Ag NWs plasmonic nanostructure incorporated into PSCs.

  18. CMOS analog integrated circuit design technology; CMOS anarogu IC sekkei gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, H.; Fujisawa, A. [Fuji Electric Co. Ltd., Tokyo (Japan)

    2000-08-10

    In the field of the LSI (large scale integrated circuit) in rapid progress toward high integration and advanced functions, CAD (computer-aided design) technology has become indispensable to LSI development within a short period. Fuji Electric has developed design technologies and automatic design system to develop high-quality analog ICs (integrated circuits), including power supply ICs. within a short period. This paper describes CMOS (complementary metal-oxide semiconductor) analog macro cell, circuit simulation, automatic routing, and backannotation technologies. (author)

  19. 30 CFR 75.1323 - Blasting circuits.

    Science.gov (United States)

    2010-07-01

    ...) Blasting circuits shall be protected from sources of stray electric current. (b) Detonators made by different manufacturers shall not be combined in the same blasting circuit. (c) Detonator leg wires shall be... used between the blasting cable and detonator circuitry shall— (1) Be undamaged; (2) Be well insulated...

  20. Current transformer model with hysteresis for improving the protection response in electrical transmission systems

    Science.gov (United States)

    Matussek, Robert; Dzienis, Cezary; Blumschein, Jörg; Schulte, Horst

    2014-12-01

    In this paper, a generic enhanced protection current transformer (CT) model with saturation effects and transient behavior is presented. The model is used for the purpose of analysis and design of power system protection algorithms. Three major classes of protection CT have been modeled which all take into account the nonlinear inductance with remanence effects. The transient short-circuit currents in power systems are simulated under CT saturation condition. The response of a common power system protection algorithm with respect to robustness to nominal parameter variations and sensitivity against maloperation is demonstrated by simulation studies.

  1. Current transformer model with hysteresis for improving the protection response in electrical transmission systems

    International Nuclear Information System (INIS)

    Matussek, Robert; Dzienis, Cezary; Blumschein, Jörg; Schulte, Horst

    2014-01-01

    In this paper, a generic enhanced protection current transformer (CT) model with saturation effects and transient behavior is presented. The model is used for the purpose of analysis and design of power system protection algorithms. Three major classes of protection CT have been modeled which all take into account the nonlinear inductance with remanence effects. The transient short-circuit currents in power systems are simulated under CT saturation condition. The response of a common power system protection algorithm with respect to robustness to nominal parameter variations and sensitivity against maloperation is demonstrated by simulation studies

  2. Inverted Fuel Cell: Room-Temperature Hydrogen Separation from an Exhaust Gas by Using a Commercial Short-Circuited PEM Fuel Cell without Applying any Electrical Voltage.

    Science.gov (United States)

    Friebe, Sebastian; Geppert, Benjamin; Caro, Jürgen

    2015-06-26

    A short-circuited PEM fuel cell with a Nafion membrane has been evaluated in the room-temperature separation of hydrogen from exhaust gas streams. The separated hydrogen can be recovered or consumed in an in situ olefin hydrogenation when the fuel cell is operated as catalytic membrane reactor. Without applying an outer electrical voltage, there is a continuous hydrogen flux from the higher to the lower hydrogen partial pressure side through the Nafion membrane. On the feed side of the Nafion membrane, hydrogen is catalytically split into protons and electrons by the Pt/C electrocatalyst. The protons diffuse through the Nafion membrane, the electrons follow the short-circuit between the two brass current collectors. On the cathode side, protons and electrons recombine, and hydrogen is released. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Design of protective inductors for HVDC transmission line within DC grid offshore wind farms

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2013-01-01

    in the HVDC link between the offshore station and the onshore station. The transient characteristics of the transmission system are analyzed in detail. The criteria of selecting protective inductors are proposed to effectively limit the short-circuit current and avoid the damage to the converters. A dc grid...

  4. System to detect and protect a failure during start-up of pumping-up; Yosui shidochu no jikokenshutsu hogo hoshiki

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, H. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1999-12-10

    Development was made on a method to detect and protect a failure in a power generation motor operating at a rotation speed other than the rated speed, such as in start-up of pumping-up. Such a failure may not be detected from the ordinary frequency characteristics because the failure current due to short circuit or earth failure is lower than the rated frequency. An idea was conceived to detect flow of low frequency failure current on the armature side by detecting change in the field current being a phenomenal change in the armature current. To realize the idea, the simulation circuits of the parent and child motors of the power generation motors were modeled and verified. The following results were obtained from the verification of a three-phase short circuit failure: when the field current is constant, the failure current is nearly constant regardless of the operating frequency; the failure current flows into the field circuit; because the trajectory of the low frequency overcurrent in the main circuit flowing in case of operation in a low frequency zone presents the similar trajectory to that in 60-Hz operation, the failure may be detected from variation in the field current; and the protection activity after the failure detection is to release the excitation, and attenuate the failure current. (NEDO)

  5. Electronic circuit for control rod attracting electromagnet

    International Nuclear Information System (INIS)

    Ito, Koji.

    1991-01-01

    The present invention provides a discharging circuit for control rod attracting electromagnet used for a reactor which is highly reliable and has high performance. The resistor of the circuit comprises a non-linear resistor element and a blocking rectification element connected in series. The discharging circuit can be prevented from short-circuit by selecting a resistor having a resistance value about ten times as great as the coil resistance, even in a case where the blocking rectification element and the non-linear resistor element are failed. Accordingly, reduction of attracting force and the increase of scream releasing time can be minimized. (I.S.)

  6. Crowbar protection system for 350 MHz Tetrode Amplifer

    International Nuclear Information System (INIS)

    Shrotriya, Sandip; Pande, Manjiri; Handu, V.K.

    2009-01-01

    In an RF amplifier, the conventional anode DC power supply has filter capacitors which have high stored energy. In the event of short circuit/arc fault across the RF tube, this stored energy may get dumped there by causing permanent damage. Hence, high power RF tubes need to be protected. This requires a fast processing circuitry that will sense the fault current, trigger the crowbar system and then divert this stored energy in to a crowbar resistance instead of RF tube. It should simultaneously turn off the HVDC anode supply. A spark gap based protection system has been designed, developed, integrated and tested with the RF amplifier. A wire burn test has been performed successfully to ensure that stored energy of the capacitor will discharge in the crowbar resistance rather than in the tube. This paper presents details about spark-gap based crowbar, triggering circuit description, wire burn test set up and results of wire burn test. (author)

  7. System level ESD protection

    CERN Document Server

    Vashchenko, Vladislav

    2014-01-01

    This book addresses key aspects of analog integrated circuits and systems design related to system level electrostatic discharge (ESD) protection.  It is an invaluable reference for anyone developing systems-on-chip (SoC) and systems-on-package (SoP), integrated with system-level ESD protection. The book focuses on both the design of semiconductor integrated circuit (IC) components with embedded, on-chip system level protection and IC-system co-design. The readers will be enabled to bring the system level ESD protection solutions to the level of integrated circuits, thereby reducing or completely eliminating the need for additional, discrete components on the printed circuit board (PCB) and meeting system-level ESD requirements. The authors take a systematic approach, based on IC-system ESD protection co-design. A detailed description of the available IC-level ESD testing methods is provided, together with a discussion of the correlation between IC-level and system-level ESD testing methods. The IC-level ESD...

  8. Microwave integrated circuit for Josephson voltage standards

    Science.gov (United States)

    Holdeman, L. B.; Toots, J.; Chang, C. C. (Inventor)

    1980-01-01

    A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained.

  9. Comparison of short-circuit characteristics of trench gate and planar gate U-shaped channel SOI-LIGBTs

    Science.gov (United States)

    Zhang, Long; Zhu, Jing; Sun, Weifeng; Zhao, Minna; Huang, Xuequan; Chen, Jiajun; Shi, Longxing; Chen, Jian; Ding, Desheng

    2017-09-01

    Comparison of short-circuit (SC) characteristics of 500 V rated trench gate U-shaped channel (TGU) SOI-LIGBT and planar gate U-shaped channel (PGU) SOI-LIGBT is made for the first time in this paper. The on-state carrier profile of the TGU structure is reshaped by the dual trenches (a gate trench G1 and a hole barrier trench G2), which leads to a different conduction behavior from that of the PGU structure. The TGU structure exhibits a higher latchup immunity but a severer self-heating effect. At current density (JC) 640 A/cm2. Comparison of layouts and fabrication processes are also made between the two types of devices.

  10. Silicon integrated circuits part A : supplement 2

    CERN Document Server

    Kahng, Dawon

    1981-01-01

    Applied Solid State Science, Supplement 2: Silicon Integrated Circuits, Part A focuses on MOS device physics. This book is divided into three chapters-physics of the MOS transistor; nonvolatile memories; and properties of silicon-on-sapphire substrates devices, and integrated circuits. The topics covered include the short channel effects, MOSFET structures, floating gate devices, technology for nonvolatile semiconductor memories, sapphire substrates, and SOS integrated circuits and systems. The MOS capacitor, MIOS devices, and SOS process and device technology are also deliberated. This public

  11. Reactor protection system design using application specific integrated circuits

    International Nuclear Information System (INIS)

    Battle, R.E.; Bryan, W.L.; Kisner, R.A.; Wilson, T.L. Jr.

    1992-01-01

    Implementing reactor protection systems (RPS) or other engineering safeguard systems with application specific integrated circuits (ASICs) offers significant advantages over conventional analog or software based RPSs. Conventional analog RPSs suffer from setpoints drifts and large numbers of discrete analog electronics, hardware logic, and relays which reduce reliability because of the large number of potential failures of components or interconnections. To resolve problems associated with conventional discrete RPSs and proposed software based RPS systems, a hybrid analog and digital RPS system implemented with custom ASICs is proposed. The actual design of the ASIC RPS resembles a software based RPS but the programmable software portion of each channel is implemented in a fixed digital logic design including any input variable computations. Set point drifts are zero as in proposed software systems, but the verification and validation of the computations is made easier since the computational logic an be exhaustively tested. The functionality is assured fixed because there can be no future changes to the ASIC without redesign and fabrication. Subtle error conditions caused by out of order evaluation or time dependent evaluation of system variables against protection criteria are eliminated by implementing all evaluation computations in parallel for simultaneous results. On- chip redundancy within each RPS channel and continuous self-testing of all channels provided enhanced assurance that a particular channel is available and faults are identified as soon as possible for corrective actions. The use of highly integrated ASICs to implement channel electronics rather than the use of discrete electronics greatly reduces the total number of components and interconnections in the RPS to further increase system reliability. A prototype ASIC RPS channel design and the design environment used for ASIC RPS systems design is discussed

  12. Effects of an electromagnetic shield and armature teeth on the short-circuit performance of a direct drive superconducting generator for 10 MW wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2015-01-01

    reactance. An electromagnetic (EM) shield between the rotor and the stator as well as iron or non-magnetic composite (NMC) armature teeth affects the sub-transient reactance of a superconducting machine so that they play a role in the short-circuit performance of a superconducting wind generator. This paper...

  13. MATHEMATICAL MODELING OF TRANSIENT EMERGENCY ELECTROMAGNETIC PROCESSES IN THE SYSTEM OF THE ELECTROMAGNETIC TRACTION DC. 2. SHORT CIRCUIT WITH ELECTRIC ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    P. E. Mihalichenko

    2010-04-01

    Full Text Available The article deals with the description of mathematical model of the system of traction electric power supply with load in the short circuit condition as well as the calculation results of this emergency process. The transition values as well as the character of their change, which can be used for detection of emergency processes, have been determined.

  14. Protection of electronic circuits from overvoltages

    CERN Document Server

    Standler, Ronald B

    1989-01-01

    Practical rules and strategies designed to protect electronic systems from damage by transient overvoltages include symptoms and threats, remedies, protective devices and their applications, and validation of protective measures. 1989 edition.

  15. System Theoretic Dependability Analysis of the LHC Superconducting Magnet Circuit Protection

    CERN Document Server

    AUTHOR|(CDS)2254970

    Subject of the present work is the application of the methods STPA (System Theoretic Process Analysis) and CAST (Causal Analysis based on STAMP) to analyze the protection systems of the superconducting magnet circuit of the LHC at CERN, Geneva. The named methods are derived from the at MIT developed STAMP (System Theoretic Accident Model and Processes) accident model. The CAST method was applied to the analysis of the 2008 Incident during the Hardware Commissioning. An incorrect interconnection between two magnets damaged the accelerator severely. The analysis defines the control structure of the Commissioning and investigates every subsystem and the interaction between the components. The results were social and technical requirements. Among others, it shows the necessity for safety culture at CERN and a revision of the magnet interconnection process. The present analysis found the same root causes for the incident than a task force did in 2009. Further, the CAST analysis found more, socio-technica...

  16. Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles

    International Nuclear Information System (INIS)

    Chen, Zeyu; Xiong, Rui; Tian, Jinpeng; Shang, Xiong; Lu, Jiahuan

    2016-01-01

    Highlights: • The characteristics of ESC fault of lithium-ion battery are investigated experimentally. • The proposed method to simulate the electrical behavior of ESC fault is viable. • Ten parameters in the presented fault model were optimized using a DPSO algorithm. • A two-layer model-based fault diagnosis approach for battery ESC is proposed. • The effective and robustness of the proposed algorithm has been evaluated. - Abstract: This study investigates the external short circuit (ESC) fault characteristics of lithium-ion battery experimentally. An experiment platform is established and the ESC tests are implemented on ten 18650-type lithium cells considering different state-of-charges (SOCs). Based on the experiment results, several efforts have been made. (1) The ESC process can be divided into two periods and the electrical and thermal behaviors within these two periods are analyzed. (2) A modified first-order RC model is employed to simulate the electrical behavior of the lithium cell in the ESC fault process. The model parameters are re-identified by a dynamic-neighborhood particle swarm optimization algorithm. (3) A two-layer model-based ESC fault diagnosis algorithm is proposed. The first layer conducts preliminary fault detection and the second layer gives a precise model-based diagnosis. Four new cells are short-circuited to evaluate the proposed algorithm. It shows that the ESC fault can be diagnosed within 5 s, the error between the model and measured data is less than 0.36 V. The effectiveness of the fault diagnosis algorithm is not sensitive to the precision of battery SOC. The proposed algorithm can still make the correct diagnosis even if there is 10% error in SOC estimation.

  17. New equivalent lumped electrical circuit for piezoelectric transformers.

    Science.gov (United States)

    Gonnard, Paul; Schmitt, P M; Brissaud, Michel

    2006-04-01

    A new equivalent circuit is proposed for a contour-vibration-mode piezoelectric transformer (PT). It is shown that the usual lumped equivalent circuit derived from the conventional Mason approach is not accurate. The proposed circuit, built on experimental measurements, makes an explicit difference between the elastic energies stored respectively on the primary and secondary parts. The experimental and theoretical resonance frequencies with the secondary in open or short circuit are in good agreement as well as the output "voltage-current" characteristic and the optimum efficiency working point. This circuit can be extended to various PT configurations and appears to be a useful tool for modeling electronic devices that integrate piezoelectric transformers.

  18. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia

    Science.gov (United States)

    Crabtree, Gregg W.; Gogos, Joseph A.

    2014-01-01

    Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations. PMID:25505409

  19. Fault Transient Analysis and Protection Performance Evaluation within a Large-scale PV Power Plant

    Directory of Open Access Journals (Sweden)

    Wen Jinghua

    2016-01-01

    Full Text Available In this paper, a short-circuit test within a large-scale PV power plant with a total capacity of 850MWp is discussed. The fault currents supplied by the PV generation units are presented and analysed. According to the fault behaviour, the existing protection coordination principles with the plant are considered and their performances are evaluated. Moreover, these protections are examined in simulation platform under different operating situations. A simple measure with communication system is proposed to deal with the foreseeable problem about the current protection scheme in the PV power plant.

  20. Study on Oscillations during Short Circuit of MW-Scale IGBT Power Modules by Means of a 6-kA/1.1-kV Nondestructive Testing System

    DEFF Research Database (Denmark)

    Wu, Rui; Diaz Reigosa, Paula; Iannuzzo, Francesco

    2015-01-01

    This paper uses a 6-kA/1.1-kV nondestructive testing system for the analysis of the short-circuit behavior of insulated-gate bipolar transistor (IGBT) power modules. A field-programmable gate array enables the definition of control signals to an accuracy of 10 ns. Multiple 1.7-kV/1-kA IGBT power...... modules displayed severe divergent oscillations, which were subsequently characterized. Experimental tests indicate that nonnegligible circuit stray inductance plays an important role in the divergent oscillations. In addition, the temperature dependence of the transconductance is proposed as an important...

  1. Directional Overcurrent Relays Coordination Problems in Distributed Generation Systems

    Directory of Open Access Journals (Sweden)

    Jakub Ehrenberger

    2017-09-01

    Full Text Available This paper proposes a new approach to the distributed generation system protection coordination based on directional overcurrent protections with inverse-time characteristics. The key question of protection coordination is the determination of correct values of all inverse-time characteristics coefficients. The coefficients must be correctly chosen considering the sufficiently short tripping times and the sufficiently long selectivity times. In the paper a new approach to protection coordination is designed, in which not only some, but all the required types of short-circuit contributions are taken into account. In radial systems, if the pickup currents are correctly chosen, protection coordination for maximum contributions is enough to ensure selectivity times for all the required short-circuit types. In distributed generation systems, due to different contributions flowing through the primary and selective protections, coordination for maximum contributions is not enough, but all the short-circuit types must be taken into account, and the protection coordination becomes a complex problem. A possible solution to the problem, based on an appropriately designed optimization, has been proposed in the paper. By repeating a simple optimization considering only one short-circuit type, the protection coordination considering all the required short-circuit types has been achieved. To show the importance of considering all the types of short-circuit contributions, setting optimizations with one (the highest and all the types of short-circuit contributions have been performed. Finally, selectivity time values are explored throughout the entire protected section, and both the settings are compared.

  2. Influence of Crowbar and Chopper Protection on DFIG during Low Voltage Ride Through

    Directory of Open Access Journals (Sweden)

    Rita M. Monteiro Pereira

    2018-04-01

    Full Text Available The energy sector is evolving rapidly, namely due to the increasing importance of renewable energy sources. The connection of large amounts of wind power generation poses new challenges for the dynamic voltage stability analysis of an electric power system, which has to be studied. In this paper, the traditional Doubly-Fed Induction Generator model is employed. Based on this model, a crowbar and chopper circuit is set up to protect the turbine during the short-circuit period. The EUROSTAG software package was used for the simulation studies of the system, and numerical results were obtained. Conclusions are drawn that provide a better understanding of the influence of crowbar and chopper protection on Doubly-Fed Induction Generators (DFIG, during low voltage ride through, in a system with wind power generation.

  3. 24 CFR 3280.804 - Disconnecting means and branch-circuit protective equipment.

    Science.gov (United States)

    2010-04-01

    ...-2005, National Electrical Code, concerning identification of each disconnecting means and each service... multiple receptacle shall be acceptable when connected to a 20-ampere laundry circuit. (i) When circuit... the blank space. (k) When a home is provided with installed service equipment, a single disconnecting...

  4. Solid state circuit controls direction, speed, and braking of dc motor

    Science.gov (United States)

    Hanna, M. F.

    1966-01-01

    Full-wave bridge rectifier circuit controls the direction, speed, and braking of a dc motor. Gating in the circuit of Silicon Controlled Rectifiers /SCRS/ controls output polarity and braking is provided by an SCR that is gated to short circuit the reverse voltage generated by reversal of motor rotation.

  5. Diagnosis of Short-Circuit Fault in Large-Scale Permanent-Magnet Wind Power Generator Based on CMAC

    Directory of Open Access Journals (Sweden)

    Chin-Tsung Hsieh

    2013-01-01

    Full Text Available This study proposes a method based on the cerebellar model arithmetic controller (CMAC for fault diagnosis of large-scale permanent-magnet wind power generators and compares the results with Error Back Propagation (EBP. The diagnosis is based on the short-circuit faults in permanent-magnet wind power generators, magnetic field change, and temperature change. Since CMAC is characterized by inductive ability, associative ability, quick response, and similar input signals exciting similar memories, it has an excellent effect as an intelligent fault diagnosis implement. The experimental results suggest that faults can be diagnosed effectively after only training CMAC 10 times. In comparison to training 151 times for EBP, CMAC is better than EBP in terms of training speed.

  6. High short-circuit current density CdTe solar cells using all-electrodeposited semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Echendu, O.K., E-mail: oechendu@yahoo.com; Fauzi, F.; Weerasinghe, A.R.; Dharmadasa, I.M.

    2014-04-01

    CdS/CdTe and ZnS/CdTe n–n heterojunction solar cells have been fabricated using all-electrodeposited semiconductors. The best devices show remarkable high short-circuit current densities of 38.5 mAcm{sup −2} and 47.8 mAcm{sup −2}, open-circuit voltages of 630 mV and 646 mV and conversion efficiencies of 8.0% and 12.0% respectively. The major strength of these device structures lies in the combination of n–n heterojunction with a large Schottky barrier at the n-CdTe/metal back contact which provides the required band bending for the separation of photo-generated charge carriers. This is in addition to the use of a high quality n-type CdTe absorber layer with high electron mobility. The potential barrier heights estimated for these devices from the current–voltage characteristics exceed 1.09 eV and 1.13 eV for CdS/CdTe and ZnS/CdTe cells respectively. The diode rectification factors of both devices are in excess of four orders of magnitude with reverse saturation current densities of 1.0 × 10{sup −7} Acm{sup −2} and 4.0 × 10{sup −7} Acm{sup −2} respectively. These all-electrodeposited solar cell device structures are currently being studied and developed as an alternative to the well-known p–n junction structures which utilise chemical bath-deposited CdS. The preliminary material growth, device fabrication and assessment results are presented in this paper. - Highlights: • Two-electrode deposition. • High J{sub sc} Schottky barrier solar cells. • CdCl{sub 2} + CdF{sub 2} treatment.

  7. Water quality, hydrology, and the effects of changes in phosphorus loading to Pike Lake, Washington County, Wisconsin, with special emphasis on inlet-to-outlet short-circuiting

    Science.gov (United States)

    Rose, William J.; Robertson, Dale M.; Mergener, Elizabeth A.

    2004-01-01

    Pike Lake is a 459-acre, mesotrophic to eutrophic dimictic lake in southeastern Wisconsin. Because of concern over degrading water quality in the lake associated with further development in its watershed, a study was conducted by the U.S. Geological Survey from 1998 to 2000 to describe the water quality and hydrology of the lake, quantify sources of phosphorus including the effects of short-circuiting of inflows, and determine how changes in phosphorus loading should affect the water quality of the lake. Measuring all significant water and phosphorus sources and estimating lesser sources was the method used to construct detailed water and phosphorus budgets. The Rubicon River, ungaged near-lake surface inflow, precipitation, and ground water provide 55, 20, 17, and 7 percent of the total inflow, respectively. Water leaves the lake through the Rubicon River outlet (87 percent) or by evaporation (13 percent). Total input of phosphorus to the lake was about 3,500 pounds in 1999 and 2,400 pounds in 2000. About 80 percent of the phosphorus was from the Rubicon River, about half of which came from the watershed and half from a waste-water treatment plant in Slinger, Wisconsin. Inlet-to-outlet short-circuiting of phosphorus is facilitated by a meandering segment of the Rubicon River channel through a marsh at the north end of the lake. It is estimated that 77 percent of phosphorus from the Rubicon River in monitoring year 1999 and 65 percent in monitoring year 2000 was short-circuited to the outlet without entering the main body of the lake.

  8. Multiagents-based wide area protection with best-effort adaptive strategy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yongli; Wang, Dewen [North China Electric Power University, Baoding (China); Song, Shaoqun [Fuzhou Electric Power Industry Bureau, Fujian Province (China)

    2009-02-15

    Abstract - Multi-trips of circuit breakers often occur within a short period in a severe blackout, and the tripping usually relates to relays' mal-operations. In fact, when two ore more electric primary devices are isolated by circuit breakers, the settings of most relays to protect their power system are getting infeasible and uncoordinated. Adaptive settings are needed to prevent them from wrong operation. This paper presents an adaptive protection scheme based on wide area information with best-effort protection strategy, and the outline of multiagents and WAN Based Adaptive Protection System (MAWAPS). In the scheme, the best-effort adaptive strategy is used to guarantee the adaptive settings to operate safely and effectively in most situations. The IP/SDH-based wide area network (WAN) is used to realize real-time wide area information exchange in the proposed protection scheme. Adaptive setting algorithms for the second stage zero-sequence current and phase overcurrent relays are proposed, which can provide larger line coverage than traditional relays. Moreover, multiagent techniques and IEC 61850 are employed to realize the fast communication between different agents, and MMS plays a prominent role in real-time remote communication. A simulating system has been developed according to the above ideas and approaches, and the experimental results show that the proposed adaptive protection scheme is feasible from the view of protective performance including the executing time. (author)

  9. DMILL circuits. The hardened electronics decuples its performances

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Thanks to the DMILL (mixed logic-linear hardening) technology under development at the CEA, MHS, a French company specialized in the fabrication of integrated circuits now produces hardened electronic circuits ten times more resistant to radiations than its competitors. Outside the initial market (several thousands of circuits for the LHC particle accelerator of Geneva), a broad choice of applications is opened to this technology: national defense, space, civil nuclear and medical engineering, and high temperature applications. Short paper. (J.S.)

  10. Extra high speed modified Lundell alternator parameters and open/short-circuit characteristics from global 3D-FE magnetic field solutions

    Science.gov (United States)

    Wang, R.; Demerdash, N. A.

    1992-01-01

    The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.

  11. Extra high speed modified Lundell alternator parameters and open/short-circuit characteristics from global 3D-FE magnetic field solutions

    Science.gov (United States)

    Wang, R.; Demerdash, N. A.

    1992-06-01

    The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.

  12. Substrate Effects in Wideband SiGe HBT Mixer Circuits

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2005-01-01

    are also applied to predict short distance substrate coupling effects. Simulation results using extracted equivalent circuit models and substrate coupling networks are compared with experimental results obtained on a wideband mixer circuit implemented in a 0.35 μm, 60 GHz ft SiGe HBT BiCMOS process.......In this paper, the influence from substrate effects on the performance of wideband SiGe HBT mixer circuits is investigated. Equivalent circuit models including substrate networks are extracted from on-wafer test structures and compared with electromagnetic simulations. Electromagnetic simulations...

  13. Investigation on the Short-Circuit Behavior of an Aged IGBT Module Through a 6 kA/1.1 kV Non-Destructive Testing Equipment

    DEFF Research Database (Denmark)

    Wu, Rui; Smirnova, Liudmila; Iannuzzo, Francesco

    2014-01-01

    This paper describes the design and development of a 6 kA/1.1 kV non-destructive testing system, which aims for short circuit testing of high-power IGBT modules. An ultralow stray inductance of 37 nH is achieved in the implementation of the tester. An 100 MHz FPGA supervising unit enables 10 ns...

  14. High frequency study of a short niobium/lead alloy line

    International Nuclear Information System (INIS)

    Mazuer, J.; Gilchrist, J.

    1974-01-01

    The resonant Q-factors of coaxial lines 1.42 m in length, consisting of fine niobium wires in superconducting tubes, have been studied. The lines are either open-circuited at each end or else short-circuited at each end. In either case the fundamental resonance and odd harmonics up to the ninth were observed. Various surface treatments of the wire made no appreciable difference to the Q value of the open-circuited lines. The short-circuited lines had much lower Q values due to imperfect short-circuiting contacts, and were used mainly to study the effect of a superposed direct current. This was appreciable even when the current was much smaller than the current that the wire would support without resistive transition. The additional high-frequency loss caused by the current was attributed to flux penetration. (author)

  15. A study on the short-circuit test by fault angle control and the recovery characteristics of the fault current limiter using coated conductor

    International Nuclear Information System (INIS)

    Park, D.K.; Kim, Y.J.; Ahn, M.C.; Yang, S.E.; Seok, B.-Y.; Ko, T.K.

    2007-01-01

    Superconducting fault current limiters (SFCLs) have been developed in many countries, and they are expected to be used in the recent electric power systems, because of their great efficiency for operating these power system stably. It is necessary for resistive FCLs to generate resistance immediately and to have a fast recovery characteristic after the fault clearance, because of re-closing operation. Short-circuit tests are performed to obtained current limiting operational and recovery characteristics of the FCL by a fault controller using a power switching device. The power switching device consists of anti-parallel connected thyristors. The fault occurs at the desired angle by controlling the firing angle of thyristors. Resistive SFCLs have different current limiting characteristics with respect to the fault angle in the first swing during the fault. This study deals with the short-circuit characteristic of FCL coils using two different YBCO coated conductors (CCs), 344 and 344s, by controlling the fault angle and experimental studies on the recovery characteristic by a small current flowing through the SFCL after the fault clearance. Tests are performed at various voltages applied to the SFCL in a saturated liquid nitrogen cooling system

  16. Reverse Engineering Camouflaged Sequential Integrated Circuits Without Scan Access

    OpenAIRE

    Massad, Mohamed El; Garg, Siddharth; Tripunitara, Mahesh

    2017-01-01

    Integrated circuit (IC) camouflaging is a promising technique to protect the design of a chip from reverse engineering. However, recent work has shown that even camouflaged ICs can be reverse engineered from the observed input/output behaviour of a chip using SAT solvers. However, these so-called SAT attacks have so far targeted only camouflaged combinational circuits. For camouflaged sequential circuits, the SAT attack requires that the internal state of the circuit is controllable and obser...

  17. Persistent activity in a recurrent circuit underlies courtship memory in Drosophila

    Science.gov (United States)

    Zhao, Xiaoliang; Lenek, Daniela; Dag, Ugur; Dickson, Barry J

    2018-01-01

    Recurrent connections are thought to be a common feature of the neural circuits that encode memories, but how memories are laid down in such circuits is not fully understood. Here we present evidence that courtship memory in Drosophila relies on the recurrent circuit between mushroom body gamma (MBγ), M6 output, and aSP13 dopaminergic neurons. We demonstrate persistent neuronal activity of aSP13 neurons and show that it transiently potentiates synaptic transmission from MBγ>M6 neurons. M6 neurons in turn provide input to aSP13 neurons, prolonging potentiation of MBγ>M6 synapses over time periods that match short-term memory. These data support a model in which persistent aSP13 activity within a recurrent circuit lays the foundation for a short-term memory. PMID:29322941

  18. A geometric approach for fault detection and isolation of stator short circuit failure in a single asynchronous machine

    KAUST Repository

    Khelouat, Samir

    2012-06-01

    This paper deals with the problem of detection and isolation of stator short-circuit failure in a single asynchronous machine using a geometric approach. After recalling the basis of the geometric approach for fault detection and isolation in nonlinear systems, we will study some structural properties which are fault detectability and isolation fault filter existence. We will then design filters for residual generation. We will consider two approaches: a two-filters structure and a single filter structure, both aiming at generating residuals which are sensitive to one fault and insensitive to the other faults. Some numerical tests will be presented to illustrate the efficiency of the method.

  19. Rapid battery depletion and loss of therapy due to a short circuit in bipolar DBS for essential tremor.

    Science.gov (United States)

    Allert, Niels; Barbe, Michael Thomas; Timmermann, Lars; Coenen, Volker Arnd

    2017-05-01

    Technical dysfunctions have been reported reducing efficacy of deep brain stimulation (DBS). Here, we report on an essential-tremor patient in whom a short circuit in bipolar DBS resulted not only in unilateral loss of therapy but also in high current flow and thereby rapid decline of the impulse-generator battery voltage from 2.83 V a week before the event to 2.54 V, indicating the need for an impulse-generator replacement. Immediate re-programming restored therapeutic efficacy. Moreover, the reduction in current flow allowed the battery voltage to recover without immediate surgical intervention to 2.81 V a week later.

  20. Monolitic integrated circuit for the strobed charge-to-time converter

    International Nuclear Information System (INIS)

    Bel'skij, V.I.; Bushnin, Yu.B.; Zimin, S.A.; Punzhin, Yu.N.; Sen'ko, V.A.; Soldatov, M.M.; Tokarchuk, V.P.

    1985-01-01

    The developed and comercially produced semiconducting circuit - gating charge-to-time converter KR1101PD1 is described. The considered integrated circuit is a short pulse charge-to-time converter with integration of input current. The circuit is designed for construction of time-to-pulse analog-to-digital converters utilized in multichannel detection systems when studying complex topology processes. Input resistance of the circuit is 0.1 Ω permissible input current is 50 mA, maximum measured charge is 300-1000 pC

  1. Protection from ground faults in the stator winding of generators at power plants in the Siberian networks

    International Nuclear Information System (INIS)

    Vainshtein, R. A.; Lapin, V. I.; Naumov, A. M.; Doronin, A. V.; Yudin, S. M.

    2010-01-01

    The experience of many years of experience in developing and utilization of ground fault protection in the stator winding of generators in the Siberian networks is generalized. The main method of protection is to apply a direct current or an alternating current with a frequency of 25 Hz to the primary circuits of the stator. A direct current is applied to turbo generators operating in a unit with a transformer without a resistive coupling to the external grid or to other generators. Applying a 25 Hz control current is appropriate for power generation systems with compensation of a capacitive short circuit current to ground. This method forms the basis for protection of generators operating on busbars, hydroelectric generators with a neutral grounded through an arc-suppression reactor, including in consolidated units with generators operating in parallel on a single low-voltage transformer winding.

  2. Power electronics handbook components, circuits and applications

    CERN Document Server

    Mazda, F F

    1993-01-01

    Power Electronics Handbook: Components, Circuits, and Applications is a collection of materials about power components, circuit design, and applications. Presented in a practical form, theoretical information is given as formulae. The book is divided into three parts. Part 1 deals with the usual components found in power electronics such as semiconductor devices and power semiconductor control components, their electronic compatibility, and protection. Part 2 tackles parts and principles related to circuits such as switches; link frequency chargers; converters; and AC line control, and Part 3

  3. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    Science.gov (United States)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  4. Persistent activity in a recurrent circuit underlies courtship memory in Drosophila.

    Science.gov (United States)

    Zhao, Xiaoliang; Lenek, Daniela; Dag, Ugur; Dickson, Barry J; Keleman, Krystyna

    2018-01-11

    Recurrent connections are thought to be a common feature of the neural circuits that encode memories, but how memories are laid down in such circuits is not fully understood. Here we present evidence that courtship memory in Drosophila relies on the recurrent circuit between mushroom body gamma (MBγ), M6 output, and aSP13 dopaminergic neurons. We demonstrate persistent neuronal activity of aSP13 neurons and show that it transiently potentiates synaptic transmission from MBγ>M6 neurons. M6 neurons in turn provide input to aSP13 neurons, prolonging potentiation of MB γ >M6 synapses over time periods that match short-term memory. These data support a model in which persistent aSP13 activity within a recurrent circuit lays the foundation for a short-term memory. © 2018, Zhao et al.

  5. Internal Short-Circuiting Phenomena In An Open-Cycle MHD Generator

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Y.; Ishibashi, E. [Hitachi Research Laboratory, Hitachi-shi, Ibaraki-ken (Japan); Kasahara, T.; Kazawa, Y. [Hitachi Works, Hitachi Ltd., Hitachi-shi, Ibaraki-ken (Japan)

    1968-11-15

    The influence of internal electrical leakage due to circulating currents flowing through velocity boundary layers and due to metallic elements in insulating walls (peg walls) is experimentally investigated. For this purpose a combustion-driven MHD generator is utilized. The active part of the generator test section is 60 cm in length with a constant cross-section of 3 x 12 cm{sup 2}. At typical operating conditions about 70 g/s of diesel light oil is burned with oxygen-enriched air, resulting in a thermal input of 3 MW, a fluid velocity of 500 to 700 m/s and a gas temperature of 2700 to 2900 Degree-Sign K at the channel inlet. KOH is used as the seed material. The magnetic field can be raised up to 1.95 Teslas. In the range of lower magnetic fields (B < 0.8T) it is shown that an observed open-circuit voltage agrees well with the theoretical value OBh which is defined in a one-dimensional MHD model. In other words, the circulating currents scarcely affect the open-circuit voltage. The theoretical basis for this fact is obtained by the use of a simple model. Experimental results obtained in several runs using three sets of insulating walls show that thermal boundary layers at water-cooled metals are more conductive than expected and that the open- circuit voltage decreases because of leakage currents flowing through metal pegs, when the internal resistance of the generator is relatively large. Also, it is shown that an alumina coating is effective in reducing the leakage currents. (author)

  6. Junction and circuit fabrication

    International Nuclear Information System (INIS)

    Jackel, L.D.

    1980-01-01

    Great strides have been made in Josephson junction fabrication in the four years since the first IC SQUID meeting. Advances in lithography have allowed the production of devices with planar dimensions as small as a few hundred angstroms. Improved technology has provided ultra-high sensitivity SQUIDS, high-efficiency low-noise mixers, and complex integrated circuits. This review highlights some of the new fabrication procedures. The review consists of three parts. Part 1 is a short summary of the requirements on junctions for various applications. Part 2 reviews intergrated circuit fabrication, including tunnel junction logic circuits made at IBM and Bell Labs, and microbridge radiation sources made at SUNY at Stony Brook. Part 3 describes new junction fabrication techniques, the major emphasis of this review. This part includes a discussion of small oxide-barrier tunnel junctions, semiconductor barrier junctions, and microbridge junctions. Part 3 concludes by considering very fine lithography and limitations to miniaturization. (orig.)

  7. Activation of adenosine low-affinity A3 receptors inhibits the enteric short interplexus neural circuit triggered by histamine.

    Science.gov (United States)

    Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H; Alhaj, Mazin; Cooke, Helen J; Grants, Iveta; Ren, Tianhua; Christofi, Fievos L

    2009-12-01

    We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl(-) secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (I(sc), Cl(-) secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N(3)-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC(50) for IB-MECA was 0.8 microM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex I(sc) responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that

  8. Feeding and purge systems of coolant primary circuit and coolant secondary circuit control of the I sup(123) target

    International Nuclear Information System (INIS)

    Almeida, G.L. de.

    1986-01-01

    The Radiation Protection Service of IEN (Brazilian-CNEN) detected three faults in sup(123)I target cooling system during operation process for producing sup(123)I: a) non hermetic vessel containing contaminated water from primary coolant circuit; possibility of increasing radioactivity in the vessel due to accumulation of contaminators in cooling water and; situation in region used for personnels to arrange and adjust equipments in nuclear physics area, to carried out maintenance of cyclotron and target coupling in irradiation room. The primary circuit was changed by secondary circuit for target coolant circulating through coil of tank, which receive weater from secondary circuit. This solution solved the three problems simultaneously. (M.C.K.)

  9. Circuit variability interacts with excitatory-inhibitory diversity of interneurons to regulate network encoding capacity.

    Science.gov (United States)

    Tsai, Kuo-Ting; Hu, Chin-Kun; Li, Kuan-Wei; Hwang, Wen-Liang; Chou, Ya-Hui

    2018-05-23

    Local interneurons (LNs) in the Drosophila olfactory system exhibit neuronal diversity and variability, yet it is still unknown how these features impact information encoding capacity and reliability in a complex LN network. We employed two strategies to construct a diverse excitatory-inhibitory neural network beginning with a ring network structure and then introduced distinct types of inhibitory interneurons and circuit variability to the simulated network. The continuity of activity within the node ensemble (oscillation pattern) was used as a readout to describe the temporal dynamics of network activity. We found that inhibitory interneurons enhance the encoding capacity by protecting the network from extremely short activation periods when the network wiring complexity is very high. In addition, distinct types of interneurons have differential effects on encoding capacity and reliability. Circuit variability may enhance the encoding reliability, with or without compromising encoding capacity. Therefore, we have described how circuit variability of interneurons may interact with excitatory-inhibitory diversity to enhance the encoding capacity and distinguishability of neural networks. In this work, we evaluate the effects of different types and degrees of connection diversity on a ring model, which may simulate interneuron networks in the Drosophila olfactory system or other biological systems.

  10. Measurements of the Effects of Smoke on Active Circuits

    International Nuclear Information System (INIS)

    Tanaka, T.J.

    1999-01-01

    Smoke has long been recognized as the most common source of fire damage to electrical equipment; however, most failures have been analyzed after the fire was out and the smoke vented. The effects caused while the smoke is still in the air have not been explored. Such effects have implications for new digital equipment being installed in nuclear reactors. The U.S. Nuclear Regulatory Commission is sponsoring work to determine the impact of smoke on digital instrumentation and control. As part of this program, Sandia National Laboratories has tested simple active circuits to determine how smoke affects them. These tests included the study of three possible failure modes on a functional board: (1) circuit bridging, (2) corrosion (metal loss), and (3) induction of stray capacitance. The performance of nine different circuits was measured continuously on bare and conformably coated boards during smoke exposures lasting 1 hour each and continued for 24 hours after the exposure started. The circuit that was most affected by smoke (100% change in measured values) was the one most sensitive to circuit bridging. Its high impedance (50 MOmega) was shorted during the exposure, but in some cases recovered after the smoke was vented. The other two failure modes, corrosion and induced stray capacitance, caused little change in the function of the circuits. The smoke permanently increased resistance of the circuit tested for corrosion, implying that the cent acts were corroded. However, the change was very small (< 2%). The stray-capacitance test circuit showed very little change after a smoke exposure in either the short or long term. The results of the tests suggest that conformal coatings and type of circuit are major considerations when designing digital circuitry to be used in critical control systems

  11. Measurements of the effects of smoke on active circuits

    International Nuclear Information System (INIS)

    Tanaka, T.J.

    1998-01-01

    Smoke has long been recognized as the most common source of fire damage to electrical equipment; however, most failures have been analyzed after the fire was out and the smoke vented. The effects caused while the smoke is still in the air have not been explored. Such effects have implications for new digital equipment being installed in nuclear reactors. The US Nuclear Regulatory Commission is sponsoring work to determine the impact of smoke on digital instrumentation and control. As part of this program, Sandia National Laboratories has tested simple active circuits to determine how smoke affects them. These tests included the study of three possible failure modes on a functional board: (1) circuit bridging, (2) corrosion (metal loss), and (3) induction of stray capacitance. The performance of nine different circuits was measured continuously on bare and conformally coated boards during smoke exposures lasting 1 hour each and continued for 24 hours after the exposure started. The circuit that was most affected by smoke (100% change in measured values) was the one most sensitive to circuit bridging. Its high impedance (50 Mohm) was shorted during the exposure, but in some cases recovered after the smoke was vented. The other two failure modes, corrosion and induced stray capacitance, caused little change in the function of the circuits. The smoke permanently increased resistance of the circuit tested for corrosion, implying that the contacts were corroded. However, the change was very small (< 2%). The stray capacitance test circuit showed very little change after a smoke exposure in either the short or long term. The results of the tests suggest that conformal coatings and type of circuit are major considerations when designing digital circuitry to be used in critical control systems

  12. Eco-friendly preparation of large-sized graphene via short-circuit discharge of lithium primary battery.

    Science.gov (United States)

    Kang, Shaohong; Yu, Tao; Liu, Tingting; Guan, Shiyou

    2018-02-15

    We proposed a large-sized graphene preparation method by short-circuit discharge of the lithium-graphite primary battery for the first time. LiC x is obtained through lithium ions intercalation into graphite cathode in the above primary battery. Graphene was acquired by chemical reaction between LiC x and stripper agents with dispersion under sonication conditions. The gained graphene is characterized by Raman spectrum, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Atomic force microscope (AFM) and Scanning electron microscopy (SEM). The results indicate that the as-prepared graphene has a large size and few defects, and it is monolayer or less than three layers. The quality of graphene is significant improved compared to the reported electrochemical methods. The yield of graphene can reach 8.76% when the ratio of the H 2 O and NMP is 3:7. This method provides a potential solution for the recycling of waste lithium ion batteries. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effect of kicker circuit inductance on the transmission-line discharging

    International Nuclear Information System (INIS)

    Feng Deren; Wang Xiangqi; Shang Lei; Pei Yuanji; Fan Kuanjun

    2004-01-01

    Circuit inductance exists at discharging circuit of transmission-line, it includes the inductance at the main switch of thyratron when conducts, the linking inductance between the linking cables, the matching resistance inductance and the load inductance. When a long pulse is generated by transmission-line, the circuit inductance can be omitted. However, when the pulse is short (such as shorter than 200 ns), especially when ferromagnetic core kicker acts as the load, the effect is obvious. The short pulse current is needed in order to generate long time interval synchronous radiation light pulses by using online assembly of pulse convex orbit and DC convex orbit. This paper analyses the effect and presents several experimental results. It also supposes two practical cases to decrease the rise time of the pulse

  14. Influence of Metal Transfer Stability and Shielding Gas Composition on CO and CO2 Emissions during Short-circuiting MIG/MAG Welding

    Directory of Open Access Journals (Sweden)

    Valter Alves de Meneses

    Full Text Available Abstract: Several studies have demonstrated the influence of parameters and shielding gas on metal transfer stability or on the generation of fumes in MIG/MAG welding, but little or nothing has been discussed regarding the emission of toxic and asphyxiating gases, particularly as it pertains to parameterization of the process. The purpose of this study was to analyze and evaluate the effect of manufacturing aspects of welding processes (short-circuit metal transfer stability and shielding gas composition on the gas emission levels during MIG/MAG welding (occupational health and environmental aspects. Using mixtures of Argon with CO2 and O2 and maintaining the same average current and the same weld bead volume, short-circuit welding was performed with carbon steel welding wire in open (welder’s breathing zone and confined environments. The welding voltage was adjusted to gradually vary the transfer stability. It was found that the richer the composition of the shielding gas is in CO2, the more CO and CO2 are generated by the arc. However, unlike fume emission, voltage and transfer stability had no effect on the generation of these gases. It was also found that despite the large quantity of CO and CO2 emitted by the arc, especially when using pure CO2 shielding gas, there was no high level residual concentration of CO and CO2 in or near the worker’s breathing zone, even in confined work cells.

  15. Distinctive Features of Faults for Use in Power Transformer Differential Protection

    Directory of Open Access Journals (Sweden)

    Glazyrin V.E.

    2017-04-01

    Full Text Available The aim of the work is to study the change in instantaneous values of the differential current in power transformer differential protection circuits under conditions of magnetizing inrush when the unloaded transformer is energized and under conditions of a fault within the protection zone. Saturation of measuring current transformers during the transient process leads to distortion of signals in their secondary windings, which can cause a long delay in the disconnection of the protected object and the development of an accident in the power system if traditional protective algorithms are used. Taking into account the peculiarities of the change in the instantaneous values of the differential current while developing the protection algorithm makes it possible to recognize faults with maximum speed before the moment of the first saturation of electromagnetic current transformers and thus avoid a delay in the operation of the protection. For quick and correct recognition of a fault within the protection zone authors proposed to monitor the maximum value of the derivative of the differential current and the duration of its monotonous change from the moment of the onset of the transient process. This is because the monitored parameters in the emergency and normal operation of the power transformer can vary significantly. Application of traditional protection algorithms together with proposed methods allows increasing the speed of differential protection response in different operation modes of the power system. Mathematical simulation has been used to study the magnetizing inrush and short circuits within the protection zone.

  16. Effect of notch depth of modified current collector on internal-short-circuit mitigation for lithium-ion battery

    Science.gov (United States)

    Wang, Meng; Noelle, Daniel J.; Shi, Yang; Le, Anh V.; Qiao, Yu

    2018-01-01

    Formation of internal short circuit (ISC) may result in catastrophic thermal runaway of lithium-ion battery (LIB). Among LIB cell components, direct contact between cathode and anode current collectors is most critical to the ISC behavior, yet is still relatively uninvestigated. In the current study, we analyze the effect of heterogeneity of current collector on the temperature increase of LIB cells subjected to mechanical abuse. The cathode current collector is modified by surface notches, so that it becomes effectively brittle and the ISC site can be isolated. Results from impact tests on LIB cells with modified current collectors suggest that their temperature increase can be negligible. The critical parameters include the failure strain and the failure work of modified current collector, both of which are related to the notch depth.

  17. Elements configuration of the open lead test circuit

    International Nuclear Information System (INIS)

    Fukuzaki, Yumi; Ono, Akira

    2016-01-01

    In the field of electronics, small electronic devices are widely utilized because they are easy to carry. The devices have various functions by user’s request. Therefore, the lead’s pitch or the ball’s pitch have been narrowed and high-density printed circuit board has been used in the devices. Use of the ICs which have narrow lead pitch makes normal connection difficult. When logic circuits in the devices are fabricated with the state-of-the-art technology, some faults have occurred more frequently. It can be divided into types of open faults and short faults. We have proposed a new test method using a test circuit in the past. This paper propose elements configuration of the test circuit.

  18. Elements configuration of the open lead test circuit

    Energy Technology Data Exchange (ETDEWEB)

    Fukuzaki, Yumi, E-mail: 14514@sr.kagawa-nct.ac.jp [Advanced course of Electronics, Information and Communication Engineering, National Institute of Technology, Kagawa College, 551 Koda, Mitoyo, Kagawa (Japan); Ono, Akira [Department of Communication Network Engineering, National Institute of Technology, Kagawa College, 551 Koda, Mitoyo, Kagawa (Japan)

    2016-07-06

    In the field of electronics, small electronic devices are widely utilized because they are easy to carry. The devices have various functions by user’s request. Therefore, the lead’s pitch or the ball’s pitch have been narrowed and high-density printed circuit board has been used in the devices. Use of the ICs which have narrow lead pitch makes normal connection difficult. When logic circuits in the devices are fabricated with the state-of-the-art technology, some faults have occurred more frequently. It can be divided into types of open faults and short faults. We have proposed a new test method using a test circuit in the past. This paper propose elements configuration of the test circuit.

  19. Genetic Spot Optimization for Peak Power Estimation in Large VLSI Circuits

    Directory of Open Access Journals (Sweden)

    Michael S. Hsiao

    2002-01-01

    Full Text Available Estimating peak power involves optimization of the circuit's switching function. The switching of a given gate is not only dependent on the output capacitance of the node, but also heavily dependent on the gate delays in the circuit, since multiple switching events can result from uneven circuit delay paths in the circuit. Genetic spot expansion and optimization are proposed in this paper to estimate tight peak power bounds for large sequential circuits. The optimization spot shifts and expands dynamically based on the maximum power potential (MPP of the nodes under optimization. Four genetic spot optimization heuristics are studied for sequential circuits. Experimental results showed an average of 70.7% tighter peak power bounds for large sequential benchmark circuits was achieved in short execution times.

  20. An Efficient Side-Channel Protected AES Implementation with Arbitrary Protection Order

    OpenAIRE

    Groß, Hannes; Mangard, Stefan; Korak, Thomas

    2017-01-01

    Passive physical attacks, like power analysis, pose a serious threat to the security of digital circuits. In this work, we introduce an efficient sidechannel protected Advanced Encryption Standard (AES) hardware design that is completely scalable in terms of protection order. Therefore, we revisit the private circuits scheme of Ishai et al. [13] which is known to be vulnerable to glitches. We demonstrate how to achieve resistance against multivariate higher-order attacks in the presence of gl...

  1. Application of Computer Systems of Dynamic Modeling for Evaluation of Protection Behavior of Electric Power Lines

    Directory of Open Access Journals (Sweden)

    F. A. Romaniouk

    2008-01-01

    Full Text Available The paper considers problems pertaining to mathematical modeling of a transformer substation with protected electric power lines. It is proposed to use systems of dynamic modeling for investigations applying a method of calculative experiment with the purpose to evaluate behavior of protection and automation at short circuits. The paper contains comparison of results obtained with the help of program-simulated complex on the basis of a complex mathematical model of an object and with the help of dynamic modeling system – MathLab.

  2. Overcoming Short-Circuit in Lead-Free CH3NH3SnI3 Perovskite Solar Cells via Kinetically Controlled Gas-Solid Reaction Film Fabrication Process.

    Science.gov (United States)

    Yokoyama, Takamichi; Cao, Duyen H; Stoumpos, Constantinos C; Song, Tze-Bin; Sato, Yoshiharu; Aramaki, Shinji; Kanatzidis, Mercouri G

    2016-03-03

    The development of Sn-based perovskite solar cells has been challenging because devices often show short-circuit behavior due to poor morphologies and undesired electrical properties of the thin films. A low-temperature vapor-assisted solution process (LT-VASP) has been employed as a novel kinetically controlled gas-solid reaction film fabrication method to prepare lead-free CH3NH3SnI3 thin films. We show that the solid SnI2 substrate temperature is the key parameter in achieving perovskite films with high surface coverage and excellent uniformity. The resulting high-quality CH3NH3SnI3 films allow the successful fabrication of solar cells with drastically improved reproducibility, reaching an efficiency of 1.86%. Furthermore, our Kelvin probe studies show the VASP films have a doping level lower than that of films prepared from the conventional one-step method, effectively lowering the film conductivity. Above all, with (LT)-VASP, the short-circuit behavior often obtained from the conventional one-step-fabricated Sn-based perovskite devices has been overcome. This study facilitates the path to more successful Sn-perovskite photovoltaic research.

  3. Measuring RF circuits exhibiting nonlinear responses combined with short and long term memory effects

    NARCIS (Netherlands)

    Janssen, E.J.G.; Milosevic, D.; Baltus, P.G.M.

    2010-01-01

    All RF circuits that incorporate active devices exhibit nonlinear behavior. Nonlinearities result in signal distortion, and therefore state the upper limit of the dynamic range of the circuits. A measure for linearity used quite commonly in RF is the P1dB and/or IP3 point. These quantities are

  4. Determination of short circuit stresses in an air core reactor using ...

    African Journals Online (AJOL)

    DR OKE

    developed has crossed the boundary condition limit of 70 MPa whereas the ... The method can be used to identify the inter layer forces ... Power transformer design using magnetic circuit theory and finite element analysis – A Comparison.

  5. Test and verification of a reactor protection system application-specific integrated circuit

    International Nuclear Information System (INIS)

    Battle, R.E.; Turner, G.W.; Vandermolen, R.I.; Vitalbo, C.

    1997-01-01

    Application-specific integrated circuits (ASICs) were utilized in the design of nuclear plant safety systems because they have certain advantages over software-based systems and analog-based systems. An advantage they have over software-based systems is that an ASIC design can be simple enough to not include branch statements and also can be thoroughly tested. A circuit card on which an ASIC is mounted can be configured to replace various versions of older analog equipment with fewer design types required. The approach to design and testing of ASICs for safety system applications is discussed in this paper. Included are discussions of the ASIC architecture, how it is structured to assist testing, and of the functional and enhanced circuit testing

  6. Protecting visual short-term memory during maintenance : Attentional modulation of target and distractor representations

    NARCIS (Netherlands)

    Vissers, M.E.; Gulbinaite, R.; van den Bos, T.; Slagter, H.A.

    2017-01-01

    In the presence of distraction, attentional filtering is a key predictor of efficient information storage in visual short-term memory (VSTM). Yet, the role of attention in distractor filtering, and the extent to which attentional filtering continues to protect information during post-perceptual

  7. Circuit card failures and industry mitigation strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, U. [Candu Owners Group, Toronto, Ontario (Canada)

    2012-07-01

    In recent years the nuclear industry has experienced an increase in circuit card failures due to ageing of components, inadequate Preventive Maintenance (PM), lack of effective circuit card health monitoring, etc. Circuit card failures have caused loss of critical equipment, e.g., electro hydraulic governors, Safety Systems, resulting in loss of function and in some cases loss of generation. INPO completed a root cause analysis of 40 Reactor Trips/Scrams in US reactors and has recommended several actions to mitigate Circuit Card failures. Obsolescence of discrete components has posed many challenges in conducting effective preventative maintenance on circuit cards. In many cases, repairs have resulted in installation of components that compromise performance of the circuit cards. Improper termination and worn edge connectors have caused intermittent contacts contributing to circuit card failures. Traditionally, little attention is paid to relay functions and preventative maintenance of relay. Relays contribute significantly to circuit card failures and have dominated loss of generation across the power industry. The INPO study recommended a number of actions to mitigate circuit card failures, such as; identification of critical components and single point vulnerabilities; strategic preventative maintenance; protection of circuit boards against electrostatic discharge; limiting power cycles; performing an effective burn-in prior to commissioning of the circuit cards; monitoring performance of DC power supplies; limiting cabinet temperatures; managing of component aging/degradation mechanism, etc. A subcommittee has been set up under INPO sponsorship to understand the causes of circuit card failure and to develop an effective mitigation strategy. (author)

  8. Investigation of Permanent Magnet Demagnetization in Synchronous Machines during Multiple Short-Circuit Fault Conditions

    Directory of Open Access Journals (Sweden)

    Stefan Sjökvist

    2017-10-01

    Full Text Available Faults in electrical machines can vary in severity and affect different parts of the machine. This study focuses on various kinds of short-circuits on the terminal side of a generic 20 kW surface mounted permanent magnet synchronous generator and how successive faults affect the performance of the machine. The study was conducted with the commercially available finite element method software COMSOL Multiphysics ® , and two time-dependent models for demagnetization of permanent magnets were compared, one using only internal models and the other using a proprietary external function. The study is simulation based and the two models were compared to a previously experimentally verified stationary model. Results showed that the power output decreased by more than 30% after five successive faults. In addition, the no-load voltage had become unsymmetrical, which was explained by the uneven demagnetization of the permanent magnets. The permanent magnet with the lowest reduction in average remanence was decreased by 0.8%, while the highest average reduction was 23.8% in another permanent magnet. The internal simulation model was about four times faster than the external model, but slightly overestimated the demagnetization.

  9. Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells.

    Science.gov (United States)

    Baba, Akira; Aoki, Nobutaka; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao

    2011-06-01

    In this study, we demonstrate the fabrication of grating-coupled surface plasmon resonance (SPR) enhanced organic thin-film photovoltaic cells and their improved photocurrent properties. The cell consists of a grating substrate/silver/P3HT:PCBM/PEDOT:PSS structure. Blu-ray disk recordable substrates are used as the diffraction grating substrates on which silver films are deposited by vacuum evaporation. P3HT:PCBM films are spin-coated on silver/grating substrates. Low conductivity PEDOT:PSS/PDADMAC layer-by-layer ultrathin films deposited on P3HT:PCBM films act as the hole transport layer, whereas high conductivity PEDOT:PSS films deposited by spin-coating act as the anode. SPR excitations are observed in the fabricated cells upon irradiation with white light. Up to a 2-fold increase in the short-circuit photocurrent is observed when the surface plasmon (SP) is excited on the silver gratings as compared to that without SP excitation. The finite-difference time-domain simulation indicates that the electric field in the P3HT:PCBM layer can be increased using the grating-coupled SP technique. © 2011 American Chemical Society

  10. Open- and Short-Circuit Fault Identification for a Boost dc/dc Converter in PV MPPT Systems

    Directory of Open Access Journals (Sweden)

    Diego R. Espinoza Trejo

    2018-03-01

    Full Text Available This paper proposes a fault identification system for short and open-circuit switch faults (SOCSF for a dc/dc converter acting as a Maximum Power Point Tracker (MPPT in Photovoltaic (PV systems. A closed-loop operation is assumed for the boost dc/dc converter. A linearizing control plus a Proportional-Derivative (PD controller is suggested for PV voltage regulation at the maximum power point (MPP. In this study, the SOCSF are modeled by using an additive fault representation and the fault identification (FI system is synthesized departing from a Luenberger observer. Hence, an FI signal is obtained, which is insensitive to irradiance and load current changes, but affected by the SOCSF. For FI purposes, only the sensors used in the control system are needed. Finally, an experimental evaluation is presented by using a solar array simulator dc power supply and a boost dc/dc converter of 175 W in order to validate the ideas this study exposes.

  11. Adrenomedullin increases the short-circuit current in the rat prostate: Receptors, chloride channels, the effects of cAMP and calcium ions and implications on fluid secretion.

    Science.gov (United States)

    Liao, S B; Cheung, K H; Cheung, M P L; Wong, P F; O, W S; Tang, F

    2014-05-01

    In this study, we have investigated the effects of adrenomedullin on chloride and fluid secretion in the rat prostate. The presence of adrenomedullin (ADM) in rat prostate was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with an enzyme-linked assay for ADM. The effects of ADM on fluid secretion were studied by short-circuit current technique in a whole mount preparation of the prostate in an Ussing chamber. The results indicated that the ADM level was higher in the ventral than the dorso-lateral prostate and the major molecular species was the active peptide. ADM increased the short-circuit current through both the cAMP- and calcium-activated chloride channels in the ventral lobe, but only through the calcium-activated channels in the dorso-lateral lobe. These stimulatory effects were blocked by the calcitonin gene-related peptide (CGRP) receptor antagonist, hCGRP8-37. We conclude that ADM may regulate prostatic fluid secretion through the chloride channels, which may affect the composition of the seminal plasma bathing the spermatozoa and hence fertility. © 2014 American Society of Andrology and European Academy of Andrology.

  12. 735 kV circuit breakers for ehv

    Energy Technology Data Exchange (ETDEWEB)

    1966-01-01

    French manufacturers have been studying the design of high and extra high voltage circuit breakers for several years. The two techniques they used were the low volume oil and the air pressure technique. These have permitted the development of a type gear capable of solving problems all over the world as they arose following the development of electrical energy transmission at extra high voltage as well as high short circuit power. Today, the air pressure solution is used in new constructions such as the 735 kV transmission network in Canada.

  13. The short circuit instability in protoplanetary disks

    DEFF Research Database (Denmark)

    Hubbard, A.; McNally, C.P.; Mac Low, M.M.

    2013-01-01

    We introduce a magneto-hydrodynamic instability which occurs, among other locations, in the inner, hot regions of protoplanetary disks, and which alters the way in which resistive dissipation of magnetic energy into heat proceeds. This instability can be likened to both an electrical short circui...

  14. Superconductive magnet having shim coils and quench protection circuits

    International Nuclear Information System (INIS)

    Schwall, R.E.

    1987-01-01

    A superconductive magnet is described comprising: a first persistent current loop comprising a first superconductor and a main coil connected to the first superconductor, the main coil being operative in response to superconduction therein to generate a primary magnetic field; a second persistent current loop comprising a second superconductor and a shim coil connected thereto, the shim coil being operative in response to superconduction therein to generate a corrective field for correcting aberrations in a predetermined gradient in the primary magnetic field, the shim coil having fewer turns than the main coil and being inductively coupled therewith whereby small changes in the current in the main coil cause much greater changes in the current in the shim coil. The magnet is characterized by an improvement which consists of: a first heater connected across the second persistent loop in parallel with the shim coil, the first heater being normally inoperative to carry current while the shim coil and the second superconductor are superconducting, the first heater being operative in response to current therein to heat the shim coil to a resistive state; and protective circuit means comprising a second heater connected to the main coil for carrying current from the main coil upon quenching of the main coil, the second heater being disposed in thermal contact with the second superconductor to heat the second superconductor to a resistive state in response to the current from the main coil to thereby divert current in the second persistent loop through the second heater causing it to heat the shim coil to a resistive state and resistively dissipate energy therein

  15. Internal Short Circuits in Lithium-Ion Cells for PHEVs

    Energy Technology Data Exchange (ETDEWEB)

    Sriramulu, Suresh [Tiax LLC, Lexington, MA (United States); Stringfellow, Richard [Tiax LLC, Lexington, MA (United States)

    2013-05-25

    Development of Plug-in Hybrid Electric Vehicles (PHEVs) has recently become a high national priority because of their potential to enable significantly reduced petroleum consumption by the domestic transportation sector in the relatively near term. Lithium-ion (Li-ion) batteries are a critical enabling technology for PHEVs. Among battery technologies with suitable operating characteristics for use in vehicles, Li-ion batteries offer the best combination of energy, power, life and cost. Consequently, worldwide, leading corporations and government agencies are supporting the development of Li-ion batteries for PHEVs, as well as the full spectrum of vehicular applications ranging from mild hybrid to all-electric. In this project, using a combination of well-defined experiments, custom designed cells and simulations, we have improved the understanding of the process by which a Li-ion cell that develops an internal short progresses to thermal runaway. Using a validated model for thermal runaway, we have explored the influence of environmental factors and cell design on the propensity for thermal runaway in full-sized PHEV cells. We have also gained important perspectives about internal short development and progression; specifically that initial internal shorts may be augmented by secondary shorts related to separator melting. Even though the nature of these shorts is very stochastic, we have shown the critical and insufficiently appreciated role of heat transfer in influencing whether a developing internal short results in a thermal runaway. This work should lead to enhanced perspectives on separator design, the role of active materials and especially cathode materials with respect to safety and the design of automotive cooling systems to enhance battery safety in PHEVs.

  16. Automated Testing System for a CAN Communication Circuit

    Directory of Open Access Journals (Sweden)

    PRUTIANU, F.

    2012-05-01

    Full Text Available The paper presents a method for validation/testing a control area network (CAN communication circuit used in all electronic control units (ECUs developed in automotive industry after 2000. Using a specific hardware configuration and remotely controlled by LabVIEW. The author's presents their own vision regarding operational software algorithm implementation and integration / execution of some test cases in order to validate a CAN circuit. Using this method, it is possible to validate/test CAN hardware circuits in a short time and with the possibility of saving the test results. Human operator is interfering with the system only through the graphical user interface. The error sources for this system are reduced to minimum.

  17. The short-term stress response - Mother nature's mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity.

    Science.gov (United States)

    Dhabhar, Firdaus S

    2018-03-26

    Our group has proposed that in contrast to chronic stress that can have harmful effects, the short-term (fight-or-flight) stress response (lasting for minutes to hours) is nature's fundamental survival mechanism that enhances protection and performance under conditions involving threat/challenge/opportunity. Short-term stress enhances innate/primary, adaptive/secondary, vaccine-induced, and anti-tumor immune responses, and post-surgical recovery. Mechanisms and mediators include stress hormones, dendritic cell, neutrophil, macrophage, and lymphocyte trafficking/function and local/systemic chemokine and cytokine production. Short-term stress may also enhance mental/cognitive and physical performance through effects on brain, musculo-skeletal, and cardiovascular function, reappraisal of threat/anxiety, and training-induced stress-optimization. Therefore, short-term stress psychology/physiology could be harnessed to enhance immuno-protection, as well as mental and physical performance. This review aims to provide a conceptual framework and targets for further investigation of mechanisms and conditions under which the protective/adaptive aspects of short-term stress/exercise can be optimized/harnessed, and for developing pharmacological/biobehavioral interventions to enhance health/healing, and mental/cognitive/physical performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Fuse Modeling for Reliability Study of Power Electronic Circuits

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    This paper describes a comprehensive modeling approach on reliability of fuses used in power electronic circuits. When fuses are subjected to current pulses, cyclic temperature stress is introduced to the fuse element and will wear out the component. Furthermore, the fuse may be used in a large......, and rated voltage/current are opposed to shift in time to effect early breaking during the normal operation of the circuit. Therefore, in such cases, a reliable protection required for the other circuit components will not be achieved. The thermo-mechanical models, fatigue analysis and thermo...

  19. Self-powered 'AND' logic circuit of dynamic type with positive safety and application of said 'AND' circuit

    International Nuclear Information System (INIS)

    Lefebvre, Claude; Therond, J.P.

    1974-01-01

    The present invention relates to a self-powered 'AND' logic circuit of dynamic type with positive safety, which delivers on duty operation an output signal equal to the logic product of the input logic signals. The invention relates also to the use of said 'AND' logic circuits in developing n/m logics also of dynamic types with positive safety, delivering on duty operation a zero valued signal when, at least n of the m input signals have the value zero. This type of logics can be inserted in nuclear reactor protection systems; when the value of the reactor operating physical characteristics go out of the safety margins, or true trouble affects 'AND' circuits the value of the output signal is zero, that triggers off the safety absorber drap, for instance [fr

  20. Optical effects of shadow masks on short circuit current of organic photovoltaic devices.

    Science.gov (United States)

    Lin, Chi-Feng; Lin, Bing-Hong; Liu, Shun-Wei; Hsu, Wei-Feng; Zhang, Mi; Chiu, Tien-Lung; Wei, Mau-Kuo; Lee, Jiun-Haw

    2012-03-21

    In this paper, we have employed different shadow masks attached on top of organic photovoltaic (OPV) devices to study the optical effects of the former on the short circuit current (J(SC)). To rule out possible lateral electrical conduction and simplify the optical effects inside the device, a small-molecular heterojunction OPV device with a clear donor/acceptor interface was employed with a hole extraction layer exhibiting high resistance intentionally. Careful calibration with a shadow mask was employed. By attaching two layers of opaque masks in combination with a suitable holder design to shield the light from the edges and backside, the value of J(SC) approached that of the dark current, even under 1-sun radiation. With different illumination areas, we found that the photons illuminating the non-active region of the device contributed to 40% of the J(SC) by optical effect within the width of about 1 mm around the active region. When illuminating the non-active area with 12 mm to the active area, a 5.6 times improvement in the J(SC) was observed when the incident angle was 75°. With the introduction of a microstructured film onto the OPV device and an increase in the reflection from the non-active region, a 15% enhancement of the J(SC) compared to the control device was achieved.

  1. Short-Range-Order Mineral Physical Protection On Black Carbon Stabilization

    Science.gov (United States)

    Liang, B.; Weng, Y. T.; Wang, C. C.; Song, Y. F.; Lehmann, J.; Wang, C. H.

    2015-12-01

    Soil organic matter is one of the largest reservoirs in global carbon cycle, and black carbon (BC) represents a chemical resistant component. Black C plays an important role in global climate change. Generally considered recalcitrant due to high aromaticity, the reactive surface and functional groups of BC are crucial for carbon sequestration in soils. Mineral sorption and physical protection is an important mechanism for BC long term stabilization and sequestration in environments. Previous studies on mineral protection of BC were limited to analysis techniques in two-dimensions, for example, by SEM, TEM, and NanoSIMS. Little is known about the scope of organo-mineral association, the in-situ distribution and forms of minerals, and the ultimate interplay of BC and minerals. The aim of this study is to investigate the three-dimensional interaction of organic C and minerals in submicron scale using synchrotron-based Transmission X-ray Microcopy (TXM) and Fourier-Transform Infrared Spectroscopy (FTIR). Abundant poorly-crystallined nano-minerals particles were observed. These short-range-order (SRO) minerals also aggregate into clusters and sheets, and form envelops-like structures on the surface of BC. On top of large surface contact area, the intimate interplay between BC and minerals reinforces the stability of both organic C and minerals, resulting from chemical bonding through cation bridging and ligand exchange. The mineral protection enhances BC stabilization and sequestration and lowers its bioavailability in environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding.

  2. Optimizing the switching time for 400 kV SF6 circuit breakers

    Science.gov (United States)

    Ciulica, D.

    2018-01-01

    This paper presents real-time voltage and current analysis for optimizing the wave switching point of the circuit breaker SF6. Circuit Breaker plays an important role in power systems. It provides protection for equipment in embedded stations in transport networks. SF6 Circuit Breaker is very important equipment in Power Systems, which is used for up to 400 kV due to its excellent performance. The controlled switching is used to eliminate transient modes and electrodynamic and dielectric charges in the network at manual switching of capacitor, shunt reactors and power transformers. These effects reduce the reliability and lifetime of the equipment installed on the network, or may lead to erroneous protection.

  3. Nuclear reactor safety protection device

    International Nuclear Information System (INIS)

    Okido, Fumiyasu; Noguchi, Atomi; Matsumiya, Shoichi; Furusato, Ken-ichiro; Arita, Setsuo.

    1994-01-01

    The device of the present invention extremely reduces a probability of causing unnecessary scram of a nuclear reactor. That is, four control devices receive signals from each of four sensors and output four trip signals respectively in a quardruplicated control device. Each of the trip signals and each of trip signals via a delay circuit are inputted to a logical sum element. The output of the logical sum circuit is inputted to a decision of majority circuit. The decision of majority circuit controls a scram pilot valve which conducts scram of the reactor by way of a solenoid coils. With such procedures, even if surge noises of a short pulse width are mixed to the sensor signals and short trip signals are outputted, there is no worry that the scram pilot valve is actuated. Accordingly, factors of lowering nuclear plant operation efficiency due to erroneous reactor scram can be reduced. (I.S.)

  4. Newnes short wave listening handbook

    CERN Document Server

    Pritchard, Joe

    2013-01-01

    Newnes Short Wave Listening Handbook is a guide for starting up in short wave listening (SWL). The book is comprised of 15 chapters that discuss the basics and fundamental concepts of short wave radio listening. The coverage of the text includes electrical principles; types of signals that can be heard in the radio spectrum; and using computers in SWL. The book also covers SWL equipment, such as receivers, converters, and circuits. The text will be of great use to individuals who want to get into short wave listening.

  5. Polymer solar cells with enhanced open-circuit voltage and efficiency

    Science.gov (United States)

    Chen, Hsiang-Yu; Hou, Jianhui; Zhang, Shaoqing; Liang, Yongye; Yang, Guanwen; Yang, Yang; Yu, Luping; Wu, Yue; Li, Gang

    2009-11-01

    Following the development of the bulk heterojunction structure, recent years have seen a dramatic improvement in the efficiency of polymer solar cells. Maximizing the open-circuit voltage in a low-bandgap polymer is one of the critical factors towards enabling high-efficiency solar cells. Study of the relation between open-circuit voltage and the energy levels of the donor/acceptor in bulk heterojunction polymer solar cells has stimulated interest in modifying the open-circuit voltage by tuning the energy levels of polymers. Here, we show that the open-circuit voltage of polymer solar cells constructed based on the structure of a low-bandgap polymer, PBDTTT, can be tuned, step by step, using different functional groups, to achieve values as high as 0.76 V. This increased open-circuit voltage combined with a high short-circuit current density results in a polymer solar cell with a power conversion efficiency as high as 6.77%, as certified by the National Renewable Energy Laboratory.

  6. Alterations in Strength and Maximal Oxygen Uptake Consequent to Nautilus Circuit Weight Training.

    Science.gov (United States)

    Messier, Stephen P.; Dill, Mary Elizabeth

    1985-01-01

    The study compared the effects on muscular strength and maximal oxygen uptake of a Nautilus circuit weight training program, a free weight strength training program, and a running program. Nautilus circuit weight training appears to be equally effective for a training period of short duration. (MT)

  7. Effects of smoke on functional circuits

    International Nuclear Information System (INIS)

    Tanaka, T.J.

    1997-10-01

    Nuclear power plants are converting to digital instrumentation and control systems; however, the effects of abnormal environments such as fire and smoke on such systems are not known. There are no standard tests for smoke, but previous smoke exposure tests at Sandia National Laboratories have shown that digital communications can be temporarily interrupted during a smoke exposure. Another concern is the long-term corrosion of metals exposed to the acidic gases produced by a cable fire. This report documents measurements of basic functional circuits during and up to 1 day after exposure to smoke created by burning cable insulation. Printed wiring boards were exposed to the smoke in an enclosed chamber for 1 hour. For high-resistance circuits, the smoke lowered the resistance of the surface of the board and caused the circuits to short during the exposure. These circuits recovered after the smoke was vented. For low-resistance circuits, the smoke caused their resistance to increase slightly. A polyurethane conformal coating substantially reduced the effects of smoke. A high-speed digital circuit was unaffected. A second experiment on different logic chip technologies showed that the critical shunt resistance that would cause failure was dependent on the chip technology and that the components used in the smoke exposures were some of the most smoke tolerant. The smoke densities in these tests were high enough to cause changes in high impedance (resistance) circuits during exposure, but did not affect most of the other circuits. Conformal coatings and the characteristics of chip technologies should be considered when designing circuitry for nuclear power plant safety systems, which must be highly reliable under a variety of operating and accident conditions. 10 refs., 34 figs., 18 tabs

  8. Robustness of a rhythmic circuit to short- and long-term temperature changes.

    Science.gov (United States)

    Tang, Lamont S; Taylor, Adam L; Rinberg, Anatoly; Marder, Eve

    2012-07-18

    Recent computational and experimental work has shown that similar network performance can result from variable sets of synaptic and intrinsic properties. Because temperature is a global perturbation that differentially influences every biological process within the nervous system, one might therefore expect that individual animals would respond differently to temperature. Nonetheless, the phase relationships of the pyloric rhythm of the stomatogastric ganglion (STG) of the crab, Cancer borealis, are remarkably invariant between 7 and 23°C (Tang et al., 2010). Here, we report that, when isolated STG preparations were exposed to more extreme temperature ranges, their networks became nonrhythmic, or "crashed", in a reversible fashion. Animals were acclimated for at least 3 weeks at 7, 11, or 19°C. When networks from the acclimated animals were perturbed by acute physiologically relevant temperature ramps (11-23°C), the network frequency and phase relationships were independent of the acclimation group. At high acute temperatures (>23°C), circuits from the cold-acclimated animals produced less-regular pyloric rhythms than those from warm-acclimated animals. At high acute temperatures, phase relationships between pyloric neurons were more variable from animal to animal than at moderate acute temperatures, suggesting that individual differences across animals in intrinsic circuit parameters are revealed at high temperatures. This shows that individual and variable neuronal circuits can behave similarly in normal conditions, but their behavior may diverge when confronted with extreme external perturbations.

  9. Effect of the depth base along the vertical on the electrical parameters of a vertical parallel silicon solar cell in open and short circuit

    Directory of Open Access Journals (Sweden)

    Gokhan Sahin

    2018-03-01

    Full Text Available This article presented a modeling study of effect of the depth base initiating on vertical parallel silicon solar cell’s photovoltaic conversion efficiency. After the resolution of the continuity equation of excess minority carriers, we calculated the electrical parameters such as the photocurrent density, the photovoltage, series resistance and shunt resistances, diffusion capacitance, electric power, fill factor and the photovoltaic conversion efficiency. We determined the maximum electric power, the operating point of the solar cell and photovoltaic conversion efficiency according to the depth z in the base. We showed that the photocurrent density decreases with the depth z. The photovoltage decreased when the depth base increases. Series and shunt resistances were deduced from electrical model and were influenced and the applied the depth base. The capacity decreased with the depth z of the base. We had studied the influence of the variation of the depth z on the electrical parameters in the base. Keywords: Depth base, Conversion efficiency, Electrical parameters, Open circuit, Short circuit

  10. 30 CFR 18.48 - Circuit-interrupting devices.

    Science.gov (United States)

    2010-07-01

    ... energized. (f) Belt conveyors shall be equipped with control switches to automatically stop the driving motor in the event the belt is stopped, or abnormally slowed down. Note: Short transfer-type conveyors... Design Requirements § 18.48 Circuit-interrupting devices. (a) Each machine shall be equipped with a...

  11. Testing and verification of a novel single-channel IGBT driver circuit

    OpenAIRE

    Lukić, Milan; Ninković, Predrag

    2016-01-01

    This paper presents a novel single-channel IGBT driver circuit together with a procedure for testing and verification. It is based on a specialized integrated circuit with complete range of protective functions. Experiments are performed to test and verify its behaviour. Experimental results are presented in the form of oscilloscope recordings. It is concluded that the new driver circuit is compatible with modern IGBT transistors and power converter demands and that it can be applied in new d...

  12. Small-Molecule Solar Cells with Simultaneously Enhanced Short-Circuit Current and Fill Factor to Achieve 11% Efficiency.

    Science.gov (United States)

    Nian, Li; Gao, Ke; Jiang, Yufeng; Rong, Qikun; Hu, Xiaowen; Yuan, Dong; Liu, Feng; Peng, Xiaobin; Russell, Thomas P; Zhou, Guofu

    2017-08-01

    High-efficiency small-molecule-based organic photovoltaics (SM-OPVs) using two electron donors (p-DTS(FBTTh 2 ) 2 and ZnP) with distinctively different absorption and structural features are reported. Such a combination works well and synergically improves device short-circuit current density (J sc ) to 17.99 mA cm -2 and fill factor (FF) to 77.19%, yielding a milestone efficiency of 11%. To the best of our knowledge, this is the highest power conversion efficiency reported for SM-OPVs to date and the first time to combine high J sc over 17 mA cm -2 and high FF over 77% into one SM-OPV. The strategy of using multicomponent materials, with a selecting role of balancing varied electronic and structural necessities can be an important route to further developing higher performance devices. This development is important, which broadens the dimension and versatility of existing materials without much chemistry input. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Stegmaier, M.; Ebert, J.; Pernice, W. H. P., E-mail: wolfram.pernice@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76133 Karlsruhe (Germany); Meckbach, J. M.; Ilin, K.; Siegel, M. [Institute of Micro- und Nanoelectronic Systems, Karlsruhe Institute of Technology, 76187 Karlsruhe (Germany)

    2014-03-03

    Aluminum nitride (AlN) has recently emerged as a promising material for integrated photonics due to a large bandgap and attractive optical properties. Exploiting the wideband transparency, we demonstrate waveguiding in AlN-on-Insulator circuits from near-infrared to ultraviolet wavelengths using nanophotonic components with dimensions down to 40 nm. By measuring the propagation loss over a wide spectral range, we conclude that both scattering and absorption of AlN-intrinsic defects contribute to strong attenuation at short wavelengths, thus providing guidelines for future improvements in thin-film deposition and circuit fabrication.

  14. Research of Measurement Circuits for High Voltage Current Transformer Based on Rogowski Coils

    Directory of Open Access Journals (Sweden)

    Yan Bing

    2014-02-01

    Full Text Available The electronic current transformer plays an irreplaceable position in the field of relay protection and current measurement of the power system. Rogowski coils are used as sensor parts, and in order to improve the measurement accuracy and reliability, the circuits at the high voltage system are introduced and improved in this paper, including the analog integral element, the filtering circuit and the phase shift circuit. Simulations results proved the reliability and accuracy of the improved circuits.

  15. Determination of over current protection thresholds for class D audio amplifiers

    DEFF Research Database (Denmark)

    Nyboe, Flemming; Risbo, L; Andreani, Pietro

    2005-01-01

    Monolithic class-D audio amplifiers typically feature built-in over current protection circuitry that shuts down the amplifier in case of a short circuit on the output speaker terminals. To minimize cost, the threshold at which the device shuts down must be set just above the maximum current...... that can flow in the loudspeaker during normal operation. The current required is determined by the complex loudspeaker impedance and properties of the music signals played. This work presents a statistical analysis of peak output currents when playing music on typical loudspeakers for home entertainment....

  16. Package Holds Five Monolithic Microwave Integrated Circuits

    Science.gov (United States)

    Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.

    1996-01-01

    Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.

  17. 46 CFR 169.682 - Distribution and circuit loads.

    Science.gov (United States)

    2010-10-01

    ... the rating of the overcurrent protective device, computed using the greater of— (1) The lamp sizes to be installed; or (2) 50 watts per outlet. (b) Circuits supplying electrical discharge lamps must be...

  18. Improvement of Short-Circuit Current Density in Dye-Sensitized Solar Cells Using Sputtered Nanocolumnar TiO2 Compact Layer

    Directory of Open Access Journals (Sweden)

    Lung-Chien Chen

    2010-01-01

    Full Text Available The effect of a nanocolumnar TiO2 compact layer in dye-sensitized solar cells (DSSCs was examined. Such a compact layer was sputtered on a glass substrate with an indium tin oxide (ITO film using TiO2 powder as the raw material, with a thickness of ~100 nm. The compact layer improved the short-circuit current density and the efficiency of conversion of solar energy to electricity by the DSSC by 53.37% and 59.34%, yielding values of 27.33 mA/cm2 and 9.21%, respectively. The performance was attributed to the effective electron pathways in the TiO2 compact layer, which reduced the back reaction by preventing direct contact between the redox electrolyte and the conductive substrate.

  19. Wide Bandgap Semiconductor Based Solid State Smart Circuit Protection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced solid state power component technology is necessary for future hybrid aircraft systems with increased power demands. There is a need for adequate circuit...

  20. Development of electromagnetic filtration in the feed water circuits

    International Nuclear Information System (INIS)

    Dolle, L.

    1980-01-01

    Electromagnetic filtration in the feed water circuit of the steam generators in nuclear power plants is efficient towards insoluble corrosion products. The principle of electromagnetic filtration is shortly recalled and the results of corresponding development work are summarized. The magnitude of water volumes to be treated on the two priviledged parts of the circuit are estimated. These parts are on the feed water tank level and on the blow-down of the steam generator. The practical applications are discussed [fr

  1. Metal-clad switchgear with large capacity vacuum circuit breaker in two-tier arrangement for nuclear power plants

    International Nuclear Information System (INIS)

    Yoshikawa, Isao; Watanabe, Hideo; Sugitani, Shinji

    1982-01-01

    Accompanying the increase of main machinery capacity in nuclear power stations, the short-circuit capacity for 6.9 kV in-house auxiliary machinery circuit has increased, and a 63 kA circuit breaker has become necessary. Although magnetic breakers have been used as large capacity breakers so far, vacuum breakers which are more suitable for the recent environmental conditions of power stations have become employed. Hitachi Ltd. has developed the metal-clad switchboard with vacuum breakers of 7.2 kV, 1,200 to 3,000 A, and breaking current of 63 kA in two-tier arrangement. The main features of this breaker are small size, light weight, long life, labour-saving in maintenance and inspection, simple construction, easy handling, high reliability and safety. In addition, in this paper, the construction of the breaker and switchboard, aseismic property, and test results are described. The tests include the withstand voltage test, elevated temperature test, short period current test, short-circuit test, low current breaking test, continuous on-off test, on-off surge combination test and short-circuit breaking test under the condition of vacuum failure in one phase. The aseismic property is guaranteed by analyzing the vibration characteristics and the strength using computer-aided finite element method so that the performance required is satisfied. (Wakatsuki, Y.)

  2. Study on the overcurrent character analysis and its protective system of underground LV distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Song, J.; Shi, Z.; Yang, Y.; Shi, W.; Wei, H.; Zhai, S.; Xie, H. [Taiyuan University of Technology, Taiyuan (China)

    2001-02-01

    The overcurrent fault characteristics in underground LV cable distribution networks is analysed and the fundamental principle of overcurrent protective system is described in this paper. The emphasis is paid to the determination of the characteristic curves of phase-sensitive symmetrical short-circuit protection, the design of negative-sequence current filter and the definition of the mathematical model of overload. Besides, the hardware block diagram and the software flowchart of the protective system, which is controlled by a single chip microcomputer, is also introduced in the paper. The protective system was tested before being applied to the underground LV distribution networks. The results obtained are in conformity with the design specification. It has been verified that the protective distance is extended and the protective sensitivity is improved with the protective system. The field experience has shown that the protective system is stable and reliable, and will be of great application value in the mining industry. 7 refs., 5 figs., 2 tabs.

  3. Inherent overload protection for the series resonant converter

    Science.gov (United States)

    King, R. J.; Stuart, T. A.

    1983-01-01

    The overload characteristics of the full bridge series resonant power converter are considered. This includes analyses of the two most common control methods presently in use. The first of these uses a current zero crossing detector to synchronize the control signals and is referred to as the alpha controller. The second is driven by a voltage controlled oscillator and is referred to as the gamma controller. It is shown that the gamma controller has certain reliability advantages in that it can be designed with inherent short circuit protection. Experimental results are included for an 86 kHz converter using power metal-oxide-semiconductor field-effect transistors (MOSFETs).

  4. Laser system for testing radiation imaging detector circuits

    Science.gov (United States)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  5. A Flexible Power Control Method of VSC-HVDC Link for the Enhancement of Effective Short-Circuit Ratio in a Hybrid Multi-Infeed HVDC System

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2013-01-01

    . To evaluate the contribution of the VSC-HVDC link on the voltage stability of HMIDC system, this paper proposes an effective short circuit ratio (ESCR) calculation method. Through the calculation, the voltage support capability of the VSC-HVDC link can be quantitatively represented by the ESCR. Furthermore......, based on the calculation results, a flexible power control strategy for the VSC-HVDC link is developed to provide maximum reactive power support under grid faults. The theoretical analysis of the HMIDC system is based on the Danish transmission grid, evaluated through PSCAD simulations under different...

  6. Magnetic pulse compression circuits for plasma devices

    Energy Technology Data Exchange (ETDEWEB)

    Georgescu, N; Zoita, V; Presura, R [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania)

    1997-12-31

    Two magnetic pulse compression circuits (MPCC), for two different plasma devices, are presented. The first is a 20 J/pulse, 3-stage circuit designed to trigger a low pressure discharge. The circuit has 16-18 kV working voltage, and 200 nF in each stage. The saturable inductors are realized with toroidal 25 {mu}m strip-wound cores, made of a Fe-Ni alloy, with 1.5 T saturation induction. The total magnetic volume is around 290 cm{sup 3}. By using a 25 kV/1 A thyratron as a primary switch, the time compression is from 3.5 {mu}s to 450 ns, in a short-circuit load. The second magnetic pulser is a 200 J/pulse circuit, designed to drive a high average power plasma focus soft X-ray source, for X-ray microlithography as the main application. The 3-stage pulser should supply a maximum load current of 100 kA with a rise-time of 250 - 300 ns. The maximum pulse voltage applied on the plasma discharge chamber is around 20 - 25 kV. The three saturable inductors in the circuit are made of toroidal strip-wound cores with METGLAS 2605 CO amorphous alloy as the magnetic material. The total, optimized mass of the magnetic material is 34 kg. The maximum repetition rate is limited at 100 Hz by the thyratron used in the first stage of the circuit, the driver supplying to the load about 20 kW average power. (author). 1 tab., 3 figs., 3 refs.

  7. Integral Battery Power Limiting Circuit for Intrinsically Safe Applications

    Science.gov (United States)

    Burns, Bradley M.; Blalock, Norman N.

    2010-01-01

    A circuit topology has been designed to guarantee the output of intrinsically safe power for the operation of electrical devices in a hazardous environment. This design uses a MOSFET (metal oxide semiconductor field-effect transistor) as a switch to connect and disconnect power to a load. A test current is provided through a separate path to the load for monitoring by a comparator against a preset threshold level. The circuit is configured so that the test current will detect a fault in the load and open the switch before the main current can respond. The main current passes through the switch and then an inductor. When a fault occurs in the load, the current through the inductor cannot change immediately, but the voltage drops immediately to safe levels. The comparator detects this drop and opens the switch before the current in the inductor has a chance to respond. This circuit protects both the current and voltage from exceeding safe levels. Typically, this type of protection is accomplished by a fuse or a circuit breaker, but in order for a fuse or a circuit breaker to blow or trip, the current must exceed the safe levels momentarily, which may be just enough time to ignite anything in a hazardous environment. To prevent this from happening, a fuse is typically current-limited by the addition of the resistor to keep the current within safe levels while the fuse reacts. The use of a resistor is acceptable for non-battery applications where the wasted energy and voltage drop across the resistor can be tolerated. The use of the switch and inductor minimizes the wasted energy. For example, a circuit runs from a 3.6-V battery that must be current-limited to 200 mA. If the circuit normally draws 10 mA, then an 18-ohm resistor would drop 180 mV during normal operation, while a typical switch (0.02 ohm) and inductor (0.97 ohm) would only drop 9.9 mV. From a power standpoint, the current-limiting resistor protection circuit wastes about 18 times more power than the

  8. Short-term psychosocial stress protects photoreceptors from damage via corticosterone-mediated activation of the AKT pathway.

    Science.gov (United States)

    Forkwa, Tembei K; Neumann, Inga D; Tamm, Ernst R; Ohlmann, Andreas; Reber, Stefan O

    2014-02-01

    Apoptotic death of photoreceptors in hereditary retinal degenerations can be prevented by neuroprotective molecules. Here, we report that adrenal glucocorticoids (GC) released during psychosocial stress protect photoreceptors from apoptosis after light damage. Psychosocial stress is known to be the main type of stressor humans are exposed to and was induced here in mice by 10h of chronic subordinate colony housing (CSC). Photoreceptor damage was generated by subsequent exposure to white light. Short-term psychosocial stress prior to illumination significantly reduced the number of apoptotic photoreceptors, an effect that was absent in adrenalectomized (ADX) mice. The neuroprotective effect was completely restored in ADX mice substituted with GC. Moreover, phosphorylation of retinal AKT increased following CSC or exogenous GC treatment, an effect that was again absent in ADX mice exposed to CSC. Finally, inhibition of AKT signaling with triciribine blocked the stress- and GC-mediated neuroprotective effects on photoreceptors. In summary, we provide evidence that 1) short-term psychosocial stress protects photoreceptors from light-induced damage and 2) the protective effect is most likely mediated by GC-induced activation of the AKT signaling pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Commutation circuit for an HVDC circuit breaker

    Science.gov (United States)

    Premerlani, William J.

    1981-01-01

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.

  10. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts.

    Science.gov (United States)

    Zhang, Xiaowei; Sahraei, Elham; Wang, Kai

    2016-09-01

    Separator integrity is an important factor in preventing internal short circuit in lithium-ion batteries. Local penetration tests (nail or conical punch) often produce presumably sporadic results, where in exactly similar cell and test set-ups one cell goes to thermal runaway while the other shows minimal reactions. We conducted an experimental study of the separators under mechanical loading, and discovered two distinct deformation and failure mechanisms, which could explain the difference in short circuit characteristics of otherwise similar tests. Additionally, by investigation of failure modes, we provided a hypothesis about the process of formation of local "soft short circuits" in cells with undetectable failure. Finally, we proposed a criterion for predicting onset of soft short from experimental data.

  11. Parallel basal ganglia circuits for decision making.

    Science.gov (United States)

    Hikosaka, Okihide; Ghazizadeh, Ali; Griggs, Whitney; Amita, Hidetoshi

    2018-03-01

    The basal ganglia control body movements, mainly, based on their values. Critical for this mechanism is dopamine neurons, which sends unpredicted value signals, mainly, to the striatum. This mechanism enables animals to change their behaviors flexibly, eventually choosing a valuable behavior. However, this may not be the best behavior, because the flexible choice is focused on recent, and, therefore, limited, experiences (i.e., short-term memories). Our old and recent studies suggest that the basal ganglia contain separate circuits that process value signals in a completely different manner. They are insensitive to recent changes in value, yet gradually accumulate the value of each behavior (i.e., movement or object choice). These stable circuits eventually encode values of many behaviors and then retain the value signals for a long time (i.e., long-term memories). They are innervated by a separate group of dopamine neurons that retain value signals, even when no reward is predicted. Importantly, the stable circuits can control motor behaviors (e.g., hand or eye) quickly and precisely, which allows animals to automatically acquire valuable outcomes based on historical life experiences. These behaviors would be called 'skills', which are crucial for survival. The stable circuits are localized in the posterior part of the basal ganglia, separately from the flexible circuits located in the anterior part. To summarize, the flexible and stable circuits in the basal ganglia, working together but independently, enable animals (and humans) to reach valuable goals in various contexts.

  12. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    2002-01-01

    whereas no increased survival was found upon challenge with bacterial pathogens. Within two months after vaccination, the cross-protection disappeared while the specific immunity to homologous virus remained high. The early immunity induced by the DNA vaccines thus appeared to involve short-lived non......It was recently reported that DNA vaccination of rainbow trout fingerlings against viral hemorrhagic septicaemia virus (VHSV) induced protection within 8 days after intramuscular injection of plasmid DNA. In order to analyse the specificity of this early immunity, fish were vaccinated with plasmid...... DNA encoding the VHSV or the infectious haematopoietic necrosis virus (IHNV) glycoprotein genes and later challenged with homologous or heterologous pathogens. Challenge experiments revealed that immunity established shortly after vaccination was cross-protective between the two viral pathogens...

  13. Complete Rerouting Protection

    DEFF Research Database (Denmark)

    Stidsen, Thomas K.; Kjærulff, Peter

    2005-01-01

    In this paper we present a new protection method: Complete Rerouting. This is the most capacity e cient protection method for circuit switched networks and it is, to the best of our knowledge, the first time it has been described. We implement a column generation algorithm and test the performance...

  14. Substrate optimization for integrated circuit antennas

    OpenAIRE

    Alexopoulos, N. G.; Katehi, P. B.; Rutledge, D. B.

    1982-01-01

    Imaging systems in microwaves, millimeter and submillimeter wave applications employ printed circuit antenna elements. The effect of substrate properties is analyzed in this paper by both reciprocity theorem as well as integral equation approach for infinitesimally short as well as finite length dipole and slot elements. Radiation efficiency and substrate surface wave guidance is studied for practical substrate materials as GaAs, Silicon, Quartz and Duroid.

  15. Oscillator circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing

  16. Measuring circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for measuring circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listings

  17. Testing and verification of a novel single-channel IGBT driver circuit

    Directory of Open Access Journals (Sweden)

    Lukić Milan

    2016-01-01

    Full Text Available This paper presents a novel single-channel IGBT driver circuit together with a procedure for testing and verification. It is based on a specialized integrated circuit with complete range of protective functions. Experiments are performed to test and verify its behaviour. Experimental results are presented in the form of oscilloscope recordings. It is concluded that the new driver circuit is compatible with modern IGBT transistors and power converter demands and that it can be applied in new designs. It is a part of new 20kW industrial-grade boost converter.

  18. RNA signal amplifier circuit with integrated fluorescence output.

    Science.gov (United States)

    Akter, Farhima; Yokobayashi, Yohei

    2015-05-15

    We designed an in vitro signal amplification circuit that takes a short RNA input that catalytically activates the Spinach RNA aptamer to produce a fluorescent output. The circuit consists of three RNA strands: an internally blocked Spinach aptamer, a fuel strand, and an input strand (catalyst), as well as the Spinach aptamer ligand 3,5-difluoro-4-hydroxylbenzylidene imidazolinone (DFHBI). The input strand initially displaces the internal inhibitory strand to activate the fluorescent aptamer while exposing a toehold to which the fuel strand can bind to further displace and recycle the input strand. Under a favorable condition, one input strand was able to activate up to five molecules of the internally blocked Spinach aptamer in 185 min at 30 °C. The simple RNA circuit reported here serves as a model for catalytic activation of arbitrary RNA effectors by chemical triggers.

  19. Mutual influences of rated currents, short circuit levels, fault durations and integrated protective schemes for industrial distribution MV switchgears

    Energy Technology Data Exchange (ETDEWEB)

    Gaidano, G. (FIAT Engineering, Torino, Italy); Lionetto, P.F.; Pelizza, C.; Tommazzolli, F.

    1979-01-01

    This paper deals with the problem of integrated and coordinated design of distribution systems, as regards the definition of system structure and parameters together with protection criteria and schemes. Advantages in system operation, dynamic response, heavier loads with reduced machinery rating margins and overall cost reduction, can be achieved. It must be noted that MV switchgears installed in industrial main distribution substations are the vital nodes of the distribution system. Very large amounts of power (up to 100 MW and more) are conveyed through MV busbars, coming from Utility and from in-plant generators and outgoing to subdistribution substations, to step-down transformers and to main concentrated loads (big drivers, furnaces etc.). Criteria and methods already studied and applied to public distribution are examined to assess service continuity and economics by means of the reduction of thermal stresses, minimization of disturbances and improvement of system stability. The life of network components depends on sizing, on fault energy levels and on probability of fault occurrence. Constructional measures and protection schemes, which reduce probability and duration of faults, are the most important tools to improve overall reliability. The introduction of advanced techniques, mainly based on computer application, not only allows drastic reduction of fault duration, but also permits the system to operate, under any possible contingency, in the optimal conditions, as the computer provides adaptive control. This mode of system management makes it possible to size network components with reference to the true magnitude of system quantities, avoiding expensive oversizing connected to the unflexibility of conventional protection and control schemes.

  20. submitter Quench Protection Heater Study With the 2-m Model Magnet of Beam Separation Dipole for the HL-LHC Upgrade

    CERN Document Server

    Suzuki, Kento; Higashi, Norio; Iida, Masahisa; Ikemoto, Yukiko; Kawamata, Hiroshi; Kimura, Nobuhiro; Nakamoto, Tatsushi; Ogitsu, Toru; Ohata, H; Okada, Naoki; Okada, Ryutaro; Sugano, Michinaka; Musso, Andrea; Todesco, Ezio

    2018-01-01

    The beam separation dipole magnet (D1), which is being operated in the large hadron collider (LHC), has to be replaced in accordance with upgrade to the high-luminosity LHC. The new D1 will be equipped with several circuits of heaters by which most of the stored energy is dissipated in the whole of the magnet during its quench, thereby avoiding localization of hot spots. Prior to construction of the production magnet, the 2-m mechanical short model is fabricated, and performance of this quench protection heater is evaluated through a series of the cold tests. As a result, we confirm that the maximum hot spot temperature obtained in the measurement reaches the practical limit of 300 K, and determine to design a new heater circuit. In this paper, we report the heater studies together with the prospect for future design of the quench protection heater.

  1. Tomonaga-Luttinger physics in electronic quantum circuits.

    Science.gov (United States)

    Jezouin, S; Albert, M; Parmentier, F D; Anthore, A; Gennser, U; Cavanna, A; Safi, I; Pierre, F

    2013-01-01

    In one-dimensional conductors, interactions result in correlated electronic systems. At low energy, a hallmark signature of the so-called Tomonaga-Luttinger liquids is the universal conductance curve predicted in presence of an impurity. A seemingly different topic is the quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In particular, the conductances are suppressed at low energy, a phenomenon called dynamical Coulomb blockade. Here we investigate the conductance of mesoscopic circuits constituted by a short single-channel quantum conductor in series with a resistance, and demonstrate a proposed link to Tomonaga-Luttinger physics. We reformulate and establish experimentally a recently derived phenomenological expression for the conductance using a wide range of circuits, including carbon nanotube data obtained elsewhere. By confronting both conductance data and phenomenological expression with the universal Tomonaga-Luttinger conductance curve, we demonstrate experimentally the predicted mapping between dynamical Coulomb blockade and the transport across a Tomonaga-Luttinger liquid with an impurity.

  2. Tamper-Proof Circuits : : How to Trade Leakage for Tamper-Resilience

    DEFF Research Database (Denmark)

    Faust, Sebastian; Pietrzak, Krzysztof; Venturi, Daniele

    2011-01-01

    Tampering attacks are cryptanalytic attacks on the implementation of cryptographic algorithms (e.g., smart cards), where an adversary introduces faults with the hope that the tampered device will reveal secret information. Inspired by the work of Ishai et al. [Eurocrypt’06], we propose a compiler...... complex computation to protecting simple components....... that transforms any circuit into a new circuit with the same functionality, but which is resilient against a well-defined and powerful tampering adversary. More concretely, our transformed circuits remain secure even if the adversary can adaptively tamper with every wire in the circuit as long as the tampering......-box access to the original circuit and log(q) bits of additional auxiliary information. Thus, if the implemented cryptographic scheme is secure against log(q) bits of leakage, then our implementation is tamper-proof in the above sense. Surprisingly, allowing for this small amount of information leakage...

  3. Simplifying the circuit of Josephson parametric converters

    Science.gov (United States)

    Abdo, Baleegh; Brink, Markus; Chavez-Garcia, Jose; Keefe, George

    Josephson parametric converters (JPCs) are quantum-limited three-wave mixing devices that can play various important roles in quantum information processing in the microwave domain, including amplification of quantum signals, transduction of quantum information, remote entanglement of qubits, nonreciprocal amplification, and circulation of signals. However, the input-output and biasing circuit of a state-of-the-art JPC consists of bulky components, i.e. two commercial off-chip broadband 180-degree hybrids, four phase-matched short coax cables, and one superconducting magnetic coil. Such bulky hardware significantly hinders the integration of JPCs in scalable quantum computing architectures. In my talk, I will present ideas on how to simplify the JPC circuit and show preliminary experimental results

  4. Theoretical and experimental analysis of a linear accelerator endowed with single feed coupler with movable short-circuit.

    Science.gov (United States)

    Dal Forno, Massimo; Craievich, Paolo; Penco, Giuseppe; Vescovo, Roberto

    2013-11-01

    The front-end injection systems of the FERMI@Elettra linac produce high brightness electron beams that define the performance of the Free Electron Laser. The photoinjector mainly consists of the radiofrequency (rf) gun and of two S-band rf structures which accelerate the beam. Accelerating structures endowed with a single feed coupler cause deflection and degradation of the electron beam properties, due to the asymmetry of the electromagnetic field. In this paper, a new type of single feed structure with movable short-circuit is proposed. It has the advantage of having only one waveguide input, but we propose a novel design where the dipolar component is reduced. Moreover, the racetrack geometry allows to reduce the quadrupolar component. This paper presents the microwave design and the analysis of the particle motion inside the linac. A prototype has been machined at the Elettra facility to verify the new coupler design and the rf field has been measured by adopting the bead-pull method. The results are here presented, showing good agreement with the expectations.

  5. Impact of hydroelectric installations on the morphology's short-circuited reaches of the Durance and the Verdon Rivers

    International Nuclear Information System (INIS)

    Lefort, Philippe; Chapuis, Margot

    2012-01-01

    Attenuation of flood peaks by the reservoirs of Serre Poncon and along the Verdon River, and diversions of the Durance River's flow in the industrial canal significantly modify the flow regime in the short-circuited beds. Upstream inflow of gravel materials is decreased, bed-load transport is significantly reduced, channels' mobility is atrophied, or becomes even nonexistent. The vegetation impact leads then to an obstruction of the braided channel, the rare occurrence of high flows is not able to prevent. Clearing the bed has been and stays an efficient response to the vegetation encroachment, and a necessary condition to maintain the discharge capacity during high flow, the originality and the diversity of the natural landforms. The loss of mobility is also due to bed-load transport's interruption through dams, but even more to the past gravel extractions and to weirs that sustain low flow: bed-load transport restoration through dams, sedimentary recharge of the bed with gravels coming from lateral terraces and increasing of high flows intensity will lead to a minimal required mobility. (authors)

  6. Theoretical and experimental analysis of a linear accelerator endowed with single feed coupler with movable short-circuit

    International Nuclear Information System (INIS)

    Forno, Massimo Dal; Craievich, Paolo; Penco, Giuseppe; Vescovo, Roberto

    2013-01-01

    The front-end injection systems of the FERMI@Elettra linac produce high brightness electron beams that define the performance of the Free Electron Laser. The photoinjector mainly consists of the radiofrequency (rf) gun and of two S-band rf structures which accelerate the beam. Accelerating structures endowed with a single feed coupler cause deflection and degradation of the electron beam properties, due to the asymmetry of the electromagnetic field. In this paper, a new type of single feed structure with movable short-circuit is proposed. It has the advantage of having only one waveguide input, but we propose a novel design where the dipolar component is reduced. Moreover, the racetrack geometry allows to reduce the quadrupolar component. This paper presents the microwave design and the analysis of the particle motion inside the linac. A prototype has been machined at the Elettra facility to verify the new coupler design and the rf field has been measured by adopting the bead-pull method. The results are here presented, showing good agreement with the expectations

  7. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries.

    Science.gov (United States)

    Guo, Rui; Lu, Languang; Ouyang, Minggao; Feng, Xuning

    2016-07-22

    Lithium-ion batteries connected in series are prone to be overdischarged. Overdischarge results in various side effects, such as capacity degradation and internal short circuit (ISCr). However, most of previous research on the overdischarge of a cell was terminated when the cell voltage dropped to 0 V, leaving the further impacts of overdischarge unclear. This paper investigates the entire overdischarge process of large-format lithium-ion batteries by discharging the cell to -100% state of charge (SOC). A significant voltage platform is observed at approximately -12% SOC, and ISCr is detected after the cell is overdischarged when passing the platform. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that the overdischarge-induced ISCr is caused by Cu deposition on electrodes, suggesting possible Cu collector dissolution at the voltage platform near -12% SOC. A prognostic/mechanistic model considering ISCr is used to evaluate the resistance of ISCr (RISCr), the value of which decreases sharply at the beginning of ISCr formation. Inducing the ISCr by overdischarge is effective and well controlled without any mechanical deformation or the use of a foreign substance.

  8. Vasotocin- and mesotocin-induced increases in short-circuit current across tree frog skin.

    Science.gov (United States)

    Takada, Makoto; Fujimaki-Aoba, Kayo; Hokari, Shigeru

    2011-02-01

    In adult amphibian skin, Na(+) crosses from outside to inside. This Na(+) transport can be measured as the amiloride-blockable short-circuit current (SCC) across the skin. We investigated the effects of arginine vasotocin (AVT) and mesotocin (MT), and those of antagonists of the vasopressin and oxytocin receptors, on the SCC across Hyla japonica skin. (1) Both AVT (100 pmol/L or more) and MT (1 nmol/L or more) increased the SCC. (2) The AVT- and MT-induced increases in SCC recovered with time (downregulation). (3) These AVT/MT-induced effects were blocked by application of OPC-31260 (vasopressin V(2)-receptor antagonist). (4) The OPC-31260 concentration needed to block the AVT-induced response was lower upon post-application (after application of agonist) than upon pre-application (before application of agonist), suggesting the number of receptors may have decreased after AVT application. (5) Upon repeated application of AVT (100 pmol/L), the induced SCC increase did not differ significantly between the 1st and 2nd applications. (6) The time to reach the half-maximum value of the AVT-induced or MT-induced increase in SCC was not significantly different between washout and post-application of OPC-31260, suggesting that post-application of OPC-31260 cleared AVT and MT from their receptors. The effects of AVT, MT, and their antagonists in H. japonica, which is adapted to a terrestrial habitat, are compared with our previously published data on Rana catesbeiana (=Lithobates catesbeianus), which is adapted to a semiaquatic habitat.

  9. Resonance circuits for adiabatic circuits

    Directory of Open Access Journals (Sweden)

    C. Schlachta

    2003-01-01

    Full Text Available One of the possible techniques to reduces the power consumption in digital CMOS circuits is to slow down the charge transport. This slowdown can be achieved by introducing an inductor in the charging path. Additionally, the inductor can act as an energy storage element, conserving the energy that is normally dissipated during discharging. Together with the parasitic capacitances from the circuit a LCresonant circuit is formed.

  10. Reports by the Parliamentary Office for scientific and technological assessments. Tuesday, May 24, 2011. Hearing on the protection of a reactor core and critical circuit; Comptes rendus de l' Office Parlementaire d'Evaluation des Choix Scientifiques et Technologiques. Mardi 24 mai 2011. Audition sur la protection du coeur et des circuits critiques d'un reacteur

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-05-15

    In the context created by the Fukushima accident, members of the French Parliament, representatives of the French nuclear safety authority (ASN), of the French Institute for radiation protection and nuclear safety (IRSN), and of the CEA describe and discuss the technical aspects and mechanism of defence-in-depth of nuclear reactors (i.e. the different and successive levels of protection aimed at ensuring the reactor integrity to be maintained, even in case of failure of a critical circuit). Then, they discuss advances and researches in the field of protection of reactors. Several research programs are evoked which concern different elements of a nuclear plants such as the fuel, the reactor, loss of cooling system, and so on; these programs are based either on experiments or on simulations

  11. Evolution of short circuit levels in the National Electric System, years 2007 to 2011; Evolucion de los niveles de cortocircuito del Sistema Electrico Nacional, anos 2007 al 2011

    Energy Technology Data Exchange (ETDEWEB)

    Quintana Castaneda, J; Reyes Escobedo, G [Instituto de Investigaciones Electricas (Mexico)]. E-mails: jqc@iie.org.mx; gustavo.reyes@iie.org.mx; Ibarra Romo, F.G. [Comision Federal de Electricidad (Mexico)]. E-mail: federico.ibarra@cfe.gob.mx

    2013-03-15

    The present document shows an analysis of 2011 short-circuit levels on the different nodes (substations) that integrate the National Electric System. This analysis presents the figures of short-circuit levels on past years, stating on 2007, with the purpose of detecting the variation on each one of these nodes and identify the cases that because it's high levels are considered as critical nodes of the transmission system. At the end of the analysis some recommendations to minimize the potential risks are given on those substations classified as critical nodes. [Spanish] En este documento se expone un analisis de los niveles de cortocircuito que se presentaron en el 2011 en los distintos nodos (subestaciones) que conforman la red del Sistema Electrico Nacional (SEN). Este analisis muestra las cifras de los niveles de cortocircuito que se han presentado desde el ano 2007, a fin de estudiar el comportamiento y evolucion que han tenido los nodos de la red electrica, identificando aquellos puntos que por sus altos niveles de cortocircuito se consideran como nodos criticos. En la parte final del analisis se dan algunas recomendaciones para disminuir los riesgos que se pudieran presentar en aquellas subestaciones clasificadas como nodos criticos.

  12. Utilization of symmetrical components in a communication-assisted protection scheme for radial MV feeders with variable or reduced short-circuit currents

    DEFF Research Database (Denmark)

    Ciontea, Catalin-Iosif; Bak, Claus Leth; Blaabjerg, Frede

    2017-01-01

    because the fault current is significantly lower in the islanded mode compared to the grid-connected mode and consequently a single set of settings for the OC relays is not sufficient. This paper propose a communication-assisted protection scheme that is able to operate correctly in a radial Medium...... over positive-sequence current, while the relays placed downstream the fault detect a zero magnitude for their corresponding ratios. Protection relays calculate the magnitude of the proposed ratio and then exchange the obtained value with the adjacent upstream relays using communication. Therefore......, each relay would have access to its own ratio and to the ratio provided by the adjacent relay. Finally, the relay with the highest calculated magnitude of the ratio of zero-sequence to positive-sequence current will trip, thus clearing the fault. The new protection scheme is implemented in a test...

  13. A high open-circuit voltage gallium nitride betavoltaic microbattery

    International Nuclear Information System (INIS)

    Cheng, Zaijun; Chen, Xuyuan; San, Haisheng; Feng, Zhihong; Liu, Bo

    2012-01-01

    A high open-circuit voltage betavoltaic microbattery based on a gallium nitride (GaN) p–i–n homojunction is demonstrated. As a beta-absorbing layer, the low electron concentration of the n-type GaN layer is achieved by the process of Fe compensation doping. Under the irradiation of a planar solid 63 Ni source with activity of 0.5 mCi, the open-circuit voltage of the fabricated microbattery with 2 × 2 mm 2 area reaches as much as 1.64 V, which is the record value reported for betavoltaic batteries with 63 Ni source, the short-circuit current was measured as 568 pA and the conversion effective of 0.98% was obtained. The experimental results suggest that GaN is a high-potential candidate for developing the betavoltaic microbattery. (paper)

  14. Fault Locating, Prediction and Protection (FLPPS)

    Energy Technology Data Exchange (ETDEWEB)

    Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

    2010-09-30

    One of the main objectives of this DOE-sponsored project was to reduce customer outage time. Fault location, prediction, and protection are the most important aspects of fault management for the reduction of outage time. In the past most of the research and development on power system faults in these areas has focused on transmission systems, and it is not until recently with deregulation and competition that research on power system faults has begun to focus on the unique aspects of distribution systems. This project was planned with three Phases, approximately one year per phase. The first phase of the project involved an assessment of the state-of-the-art in fault location, prediction, and detection as well as the design, lab testing, and field installation of the advanced protection system on the SCE Circuit of the Future located north of San Bernardino, CA. The new feeder automation scheme, with vacuum fault interrupters, will limit the number of customers affected by the fault. Depending on the fault location, the substation breaker might not even trip. Through the use of fast communications (fiber) the fault locations can be determined and the proper fault interrupting switches opened automatically. With knowledge of circuit loadings at the time of the fault, ties to other circuits can be closed automatically to restore all customers except the faulted section. This new automation scheme limits outage time and increases reliability for customers. The second phase of the project involved the selection, modeling, testing and installation of a fault current limiter on the Circuit of the Future. While this project did not pay for the installation and testing of the fault current limiter, it did perform the evaluation of the fault current limiter and its impacts on the protection system of the Circuit of the Future. After investigation of several fault current limiters, the Zenergy superconducting, saturable core fault current limiter was selected for

  15. Synchronization and parameter identification of one class of realistic chaotic circuit

    International Nuclear Information System (INIS)

    Chun-Ni, Wang; Jun, Ma; Run-Tong, Chu; Shi-Rong, Li

    2009-01-01

    In this paper, the synchronization and the parameter identification of the chaotic Pikovsky–Rabinovich (PR) circuits are investigated. The linear error of the second corresponding variables is used to change the driven chaotic PR circuit, and the complete synchronization of the two identical chaotic PR circuits is realized with feedback intensity k increasing to a certain threshold. The Lyapunov exponents of the chaotic PR circuits are calculated by using different feedback intensities and our results are confirmed. The case where the two chaotic PR circuits are not identical is also investigated. A general positive Lyapunov function V, which consists of all the errors of the corresponding variables and parameters and changeable gain coefficient, is constructed by using the Lyapunov stability theory to study the parameter identification and complete synchronization of two non-identical chaotic circuits. The controllers and the parameter observers could be obtained analytically only by simplifying the criterion dV/dt < 0 (differential coefficient of Lyapunov function V with respect to time is negative). It is confirmed that the two non-identical chaotic PR circuits could still reach complete synchronization and all the unknown parameters in the drive system are estimated exactly within a short transient period

  16. TAN/LOFT 13.8 KV, 2.4 KV, and 480 V relay and circuit breaker coordination study

    International Nuclear Information System (INIS)

    Burnett, J.E.

    1977-01-01

    Present overcurrent relay settings are presented and evaluated for adequacy in terms of the updated short circuit analysis. Recommendations are made for new relay and trip device settings to improve coordination. Switchgear ratings are examined against available short circuit currents, and recommendations are made where applicable. Vital MCC-A and B are examined in detail to provide maximum continuity of service for every fault contingency. A recommendation is made to improve the reliability of these buses

  17. Transition of some type of integrated circuits into latch-up mode under effect of ionizing radiation of large dose rate

    International Nuclear Information System (INIS)

    Berdichevskij, B.E.; Madzharova, T.B.

    1986-01-01

    Some types of integrated circuits (IC) are almost short-circuit, i.e. they transit to the latch-up regime under the effect of ionizing radiation pulses of large dose rate. The results of investigation into IC under their transition into the latch-up regime at supply voltage of 10 V are presented. It is shown that IC stably transit to the latch-up regime if the dinistor current becomes at least equal to the photocurrent. At bias reduction from 15 to 6 V the dose rate at which the latch-up arises grows from 2.5x10 9 to 3.5x10 9 rad (Si)/s. Burn-out of supply busbar is the usual type of IC failure at latch-up arising. Measures for IC protection from latch-up are shown. In some IC the latch-up is formed beginning from a certain critical value of dose rate, the so-called ''windows'' of latch-up

  18. Oscillation-based test in mixed-signal circuits

    CERN Document Server

    Sánchez, Gloria Huertas; Rueda, Adoración Rueda

    2007-01-01

    This book presents the development and experimental validation of the structural test strategy called Oscillation-Based Test - OBT in short. The results presented here assert, not only from a theoretical point of view, but also based on a wide experimental support, that OBT is an efficient defect-oriented test solution, complementing the existing functional test techniques for mixed-signal circuits.

  19. cAMP Stimulates Transepithelial Short-Circuit Current and Fluid Transport Across Porcine Ciliary Epithelium.

    Science.gov (United States)

    Cheng, Angela King-Wah; Civan, Mortimer M; To, Chi-Ho; Do, Chi-Wai

    2016-12-01

    To investigate the effects of cAMP on transepithelial electrical parameters and fluid transport across porcine ciliary epithelium. Transepithelial electrical parameters were determined by mounting freshly isolated porcine ciliary epithelium in a modified Ussing chamber. Similarly, fluid movement across intact ciliary body was measured with a custom-made fluid flow chamber. Addition of 1, 10, and 100 μM 8-Br-cAMP (cAMP) to the aqueous side (nonpigmented ciliary epithelium, NPE) induced a sustained increase in short-circuit current (Isc). Addition of niflumic acid (NFA) to the aqueous surface effectively blocked the cAMP-induced Isc stimulation. The administration of cAMP to the stromal side (pigmented ciliary epithelium, PE) triggered a significant stimulation of Isc only at 100 μM. No additive effect was observed with bilateral application of cAMP. Likewise, forskolin caused a significant stimulation of Isc when applied to the aqueous side. Concomitantly, cAMP and forskolin increased fluid transport across porcine ciliary epithelium, and this stimulation was effectively inhibited by aqueous NFA. Depleting Cl- in the bathing solution abolished the baseline Isc and inhibited the subsequent stimulation by cAMP. Pretreatment with protein kinase A (PKA) blockers (H89/KT5720) significantly inhibited the cAMP- and forskolin-induced Isc responses. Our results suggest that cAMP triggers a sustained stimulation of Cl- and fluid transport across porcine ciliary epithelium; Cl- channels in the NPE cells are potentially a cellular site for this PKA-sensitive cAMP-mediated response.

  20. Railway track circuit fault diagnosis using recurrent neural networks

    NARCIS (Netherlands)

    de Bruin, T.D.; Verbert, K.A.J.; Babuska, R.

    2017-01-01

    Timely detection and identification of faults in railway track circuits are crucial for the safety and availability of railway networks. In this paper, the use of the long-short-term memory (LSTM) recurrent neural network is proposed to accomplish these tasks based on the commonly available

  1. Project Circuits in a Basic Electric Circuits Course

    Science.gov (United States)

    Becker, James P.; Plumb, Carolyn; Revia, Richard A.

    2014-01-01

    The use of project circuits (a photoplethysmograph circuit and a simple audio amplifier), introduced in a sophomore-level electric circuits course utilizing active learning and inquiry-based methods, is described. The development of the project circuits was initiated to promote enhanced engagement and deeper understanding of course content among…

  2. A No-Arc DC Circuit Breaker Based on Zero-Current Interruption

    Science.gov (United States)

    Xiang, Xuewei; Chai, Jianyun; Sun, Xudong

    2017-05-01

    A dc system has no natural current zero-crossing point, so a dc arc is more difficult to extinguish than an ac arc. In order to effectively solve the problem of the dc arc, this paper proposes a dc circuit breaker (DCCB) capable of implementing a no-arc interruption. The proposed DCCB includes a main branch consisting of a mechanical switch, a diode and a current-limiting inductor, a semi-period resonance circuit consisting of a diode, an inductor and a capacitor, and a buffer branch consisting of a capacitor, a thyristor and a resistor. The mechanical switch is opened in a zero-current state, and the overvoltage caused by the counter electromotive force of the inductor does not exist. Meanwhile, the capacitor has a buffering effect on the voltage. The rising of the voltage of the mechanical switch is slower than the rising of the insulating strength of a contact gap of the mechanical switch, resulting in the contact gap not able to be broken down. Thus, the arc cannot be generated. The simulation results show that the proposed DCCB does not generate the arc in the interruption process, the rise rate of the short circuit current can be effectively limited, and the short circuit fault point can be rapidly isolated from the dc power supply.

  3. Corticostriatal circuit mechanisms of value-based action selection: Implementation of reinforcement learning algorithms and beyond.

    Science.gov (United States)

    Morita, Kenji; Jitsev, Jenia; Morrison, Abigail

    2016-09-15

    Value-based action selection has been suggested to be realized in the corticostriatal local circuits through competition among neural populations. In this article, we review theoretical and experimental studies that have constructed and verified this notion, and provide new perspectives on how the local-circuit selection mechanisms implement reinforcement learning (RL) algorithms and computations beyond them. The striatal neurons are mostly inhibitory, and lateral inhibition among them has been classically proposed to realize "Winner-Take-All (WTA)" selection of the maximum-valued action (i.e., 'max' operation). Although this view has been challenged by the revealed weakness, sparseness, and asymmetry of lateral inhibition, which suggest more complex dynamics, WTA-like competition could still occur on short time scales. Unlike the striatal circuit, the cortical circuit contains recurrent excitation, which may enable retention or temporal integration of information and probabilistic "soft-max" selection. The striatal "max" circuit and the cortical "soft-max" circuit might co-implement an RL algorithm called Q-learning; the cortical circuit might also similarly serve for other algorithms such as SARSA. In these implementations, the cortical circuit presumably sustains activity representing the executed action, which negatively impacts dopamine neurons so that they can calculate reward-prediction-error. Regarding the suggested more complex dynamics of striatal, as well as cortical, circuits on long time scales, which could be viewed as a sequence of short WTA fragments, computational roles remain open: such a sequence might represent (1) sequential state-action-state transitions, constituting replay or simulation of the internal model, (2) a single state/action by the whole trajectory, or (3) probabilistic sampling of state/action. Copyright © 2016. Published by Elsevier B.V.

  4. LHC Report: superconducting circuit powering tests

    CERN Multimedia

    Mirko Pojer

    2015-01-01

    After the long maintenance and consolidation campaign carried out during LS1, the machine is getting ready to start operation with beam at 6.5 TeV… the physics community can’t wait! Prior to this, all hardware and software systems have to be tested to assess their correct and safe operation.   Most of the cold circuits (those with high current/stored energy) possess a sophisticated magnet protection system that is crucial to detect a transition of the coil from the superconducting to the normal state (a quench) and safely extract the energy stored in the circuits (about 1 GJ per dipole circuit at nominal current). LHC operation relies on 1232 superconducting dipoles with a field of up to 8.33 T operating in superfluid helium at 1.9 K, along with more than 500 superconducting quadrupoles operating at 4.2 or 1.9 K. Besides, many other superconducting and normal resistive magnets are used to guarantee the possibility of correcting all beam parameters, for a total of mo...

  5. 30 CFR 75.800-2 - Approved circuit schemes.

    Science.gov (United States)

    2010-07-01

    ... undervoltage protection if the relay coils are designed to trip the circuit breaker when line voltage decreases to 40 percent to 60 percent of the nominal line voltage; (b) Ground trip relays on resistance... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution...

  6. Earth current monitoring circuit for inductive loads

    CERN Document Server

    Montabonnet, V; Thurel, Y; Cussac, P

    2010-01-01

    The search for higher magnetic fields in particle accelerators increasingly demands the use of superconducting magnets. This magnet technology has a large amount of magnetic energy storage during operation at relatively high currents. As such, many monitoring and protection systems are required to safely operate the magnet, including the monitoring of any leakage of current to earth in the superconducting magnet that indicates a failure of the insulation to earth. At low amplitude, the earth leakage current affects the magnetic field precision. At a higher level, the earth leakage current can additionally generate local losses which may definitively damage the magnet or its instrumentation. This paper presents an active earth fault current monitoring circuit, widely deployed in the converters for the CERN Large Hadron Collider (LHC) superconducting magnets. The circuit allows the detection of earth faults before energising the circuit as well as limiting any eventual earth fault current. The electrical stress...

  7. Interaction of ultrashort laser pulses and silicon solar cells under short circuit conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mundus, M., E-mail: markus.mundus@ise.fraunhofer.de; Giesecke, J. A.; Fischer, P.; Hohl-Ebinger, J.; Warta, W. [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstraße 2, 79110 Freiburg (Germany)

    2015-02-28

    Ultrashort pulse lasers are promising tools for numerous measurement purposes. Among other benefits their high peak powers allow for efficient generation of wavelengths in broad spectral ranges and at spectral powers that are orders of magnitude higher than in conventional light sources. Very recently this has been exploited for the establishment of sophisticated measurement facilities for electrical characterization of photovoltaic (PV) devices. As the high peak powers of ultrashort pulses promote nonlinear optical effects they might also give rise to nonlinear interactions with the devices under test that possibly manipulate the measurement outcome. In this paper, we present a comprehensive theoretical and experimental study of the nonlinearities affecting short circuit current (I{sub SC}) measurements of silicon (Si) solar cells. We derive a set of coupled differential equations describing the radiation-device interaction and discuss the nonlinearities incorporated in those. By a semi-analytical approach introducing a quasi-steady-state approximation and integrating a Green's function we solve the system of equations and obtain simulated I{sub SC} values. We validate the theoretical model by I{sub SC} ratios obtained from a double ring resonator setup capable for reproducible generation of various ultrashort pulse trains. Finally, we apply the model to conduct the most prominent comparison of I{sub SC} generated by ultrashort pulses versus continuous illumination. We conclude by the important finding that the nonlinearities induced by ultrashort pulses are negligible for the most common I{sub SC} measurements. However, we also find that more specialized measurements (e.g., of concentrating PV or Si-multijunction devices as well as highly localized electrical characterizations) will be biased by two-photon-absorption distorting the I{sub SC} measurement.

  8. Nonlinear behavior analysis of split-winding dry-type transformer using a new star model and a coupled field-circuit approach

    Directory of Open Access Journals (Sweden)

    Azizian Davood

    2016-12-01

    Full Text Available Regarding the importance of short circuit and inrush current simulations in the split-winding transformer, a novel nonlinear equivalent circuit is introduced in this paper for nonlinear simulation of this transformer. The equivalent circuit is extended using the nonlinear inductances. Employing a numerical method, leakage and magnetizing inductances in the split-winding transformer are extracted and the nonlinear model inductances are estimated using these inductances. The introduced model is validated and using this nonlinear model, inrush and short-circuit currents are calculated. It has been seen that the introduced model is valid and suitable for simulations of the split-winding transformer due to various loading conditions. Finally, the effects of nonlinearity of the model inductances are discussed in the following.

  9. Analog circuit design : low voltage low power; short range wireless front-ends; power management and DC-DC

    NARCIS (Netherlands)

    Steyaert, M.; Roermund, van A.H.M.; Baschirotto, A.

    2012-01-01

    The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design. Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art

  10. Circuit analysis and computer simulations of ZT-40M

    International Nuclear Information System (INIS)

    Melton, J.G.

    1981-01-01

    The network analysis code SCEPTRE was extensively used to predict circuit performance under both normal and fault conditions. SCEPTRE's capabilities enabled us to include realistic nonlinear models for such components as the PF iron cores, the PCB transformers, the ignition switches, and even the complicated way in which the plasma couples the two circuits. Fault conditions for which protective measures were devised include; failure to achieve gas breakdown; disruption of the plasma current; saturation of the PF iron cores; prefire of a crowbar ignitron; overvoltage due to transients on the coax cables

  11. Control technology for integrated circuit fabrication at Micro-Circuit Engineering, Incorporated, West Palm Beach, Florida

    Science.gov (United States)

    Mihlan, G. I.; Mitchell, R. I.; Smith, R. K.

    1984-07-01

    A survey to assess control technology for integrated circuit fabrication was conducted. Engineering controls included local and general exhaust ventilation, shielding, and personal protective equipment. Devices or work stations that contained toxic materials that were potentially dangerous were controlled by local exhaust ventilation. Less hazardous areas were controlled by general exhaust ventilation. Process isolation was used in the plasma etching, low pressure chemical vapor deposition, and metallization operations. Shielding was used in ion implantation units to control X-ray emissions, in contact mask alignes to limit ultraviolet (UV) emissions, and in plasma etching units to control radiofrequency and UV emissions. Most operations were automated. Use of personal protective equipment varied by job function.

  12. Growth Hormone Protects the Intestine Preserving Radiotherapy Efficacy on Tumors: A Short-Term Study.

    Directory of Open Access Journals (Sweden)

    Victor Caz

    Full Text Available The efficacy of radiotherapy on tumors is hampered by its devastating adverse effects on healthy tissue, particularly that of the gastrointestinal tract. These effects cause acute symptoms that are so disruptive to patients that they can lead to interruption of the radiotherapy program. These adverse effects could limit the intensity of radiation received by the patient, resulting in a sublethal dose to the tumor, thus increasing the risk of tumor resistance. The lack of an effective treatment to protect the bowel during radiation therapy to allow higher radiation doses that are lethal to the tumor has become a barrier to implementing effective therapy. In this study, we present a comparative analysis of both intestinal and tumor tissue in regard to the efficacy and the preventive impact of a short-term growth hormone (GH treatment in tumor-bearing rats as a protective agent during radiotherapy. Our data show that the exogenous administration of GH improved intestinal recovery after radiation treatment while preserving the therapeutic effect against the tumor. GH significantly increased proliferation in the irradiated intestine but not in the irradiated tumors, as assessed by Positron Emission Tomography and the proliferative markers Ki67, cyclin D3, and Proliferating Cell Nuclear Antigen. This proliferative effect was consistent with a significant increase in irradiated intestinal villi and crypt length. Furthermore, GH significantly decreased caspase-3 activity in the intestine, whereas GH did not produce this effect in the irradiated tumors. In conclusion, short-term GH treatment protects the bowel, inducing proliferation while reducing apoptosis in healthy intestinal tissue and preserving radiotherapy efficacy on tumors.

  13. Construction of a flash-photolysis apparatus having a short discharge time

    International Nuclear Information System (INIS)

    Devillers, C.

    1964-01-01

    Flash photolysis aims at reaching directly the primary mechanisms resulting from the action of light on an absorbent matter. This makes it necessary to produce a flash as short and as bright as possible. Our main effort was directed towards reducing the duration of the flash by decreasing the self-inductance of the discharge circuit. A description of this circuit and study of the characteristics of the apparatus are followed by a short description of the two analytical methods: flash spectrography and absorption spectrophotometry at a given wave-length. (author) [fr

  14. 14 CFR 25.1357 - Circuit protective devices.

    Science.gov (United States)

    2010-01-01

    ... system or connected equipment. (b) The protective and control devices in the generating system must be designed to de-energize and disconnect faulty power sources and power transmission equipment from their...

  15. Resonance Frequency Readout Circuit for a 900 MHz SAW Device.

    Science.gov (United States)

    Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua

    2017-09-15

    A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm². In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time.

  16. Circuits of Labour: A Labour Theory of the iPhone Era

    Directory of Open Access Journals (Sweden)

    Jack Linchuan Qiu

    2014-09-01

    Full Text Available This paper questions the binary of material and immaterial labour in the information era. Instead, we propose a “circuits of labour” model, a holistic framework that helps connect various concepts and traditions in the study of labour and ICT (information and communication technology. Inspired by du Gay et al’s “circuit of culture”, we argue conventional frameworks need to be synthesized and updated to reflect fundamental changes and persisting issues of labor in our contemporary era, of which the iPhone is emblematic. On the one hand, our model consists of formal circuits, in which hierarchical domination is imposed by capital over the body of labour. On the other hand, it consists of informal circuits where relationships are defined communally between embodied practices and social and communicative capital. The informal and formal circuits of labour are “short-circuited” by survival labour and ‘playbour’, meaning either circuit may absorb productive energy from the other. This article then uses the case of Foxconn, the world’s largest electronic manufacturer that also produces iPhones, to illustrate the usefulness of the “circuits of labour” model. We finally discuss the broader implications and questions for future research.

  17. Adaptive protection algorithm and system

    Science.gov (United States)

    Hedrick, Paul [Pittsburgh, PA; Toms, Helen L [Irwin, PA; Miller, Roger M [Mars, PA

    2009-04-28

    An adaptive protection algorithm and system for protecting electrical distribution systems traces the flow of power through a distribution system, assigns a value (or rank) to each circuit breaker in the system and then determines the appropriate trip set points based on the assigned rank.

  18. 14 CFR 29.1357 - Circuit protective devices.

    Science.gov (United States)

    2010-01-01

    ... faults or serious malfunction of the system or connected equipment. (b) The protective and control devices in the generating system must be designed to de-energize and disconnect faulty power sources and...

  19. Electric protection of the ion sources of the Ogra-4 device

    International Nuclear Information System (INIS)

    Matveev, N.V.; Obysov, V.A.

    1984-01-01

    Electric circuit of an ion source power supply comprising elements for protection from damages in case of discharges inside the source, has been described. The possibility of protection against discharge and subsequent reclosing switching of the ion source using consecutive protective key element in the circuit of power supply emission electrode, electron commutator being used as one, has been studied. Results of the use of commutators on the basis of electron-beam valves as the main commutating element are presented. Application of the circuit described permitted to achieve voltage restoration on the ion source electrodes when the valve reclosing switching time delay constituted 200 μs

  20. On-Line Detection of Coil Inter-Turn Short Circuit Faults in Dual-Redundancy Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Yiguang Chen

    2018-03-01

    Full Text Available In the aerospace and military fields, with high reliability requirements, the dual-redundancy permanent magnet synchronous motor (DRPMSM with weak thermal coupling and no electromagnetic coupling is needed. A common fault in the DRPMSM is the inter-turn short circuit fault (ISCF. However, research on how to diagnose ISCF and the set of faulty windings in the DRPMSM is lacking. In this paper, the structure of the DRPMSM is analyzed and mathematical models of the motor under normal and faulty conditions are established. Then an on-line ISCF detection scheme, which depends on the running modes of the DRPMSM and the average values for the difference of the d-axis voltages between two sets of windings in the latest 20 sampling periods, is proposed. The main contributions of this paper are to analyze the calculation for the inductance of each part of the stator windings and propose the on-line diagnosis method of the ISCF under various operating conditions. The simulation and experimental results show that the proposed method can quickly and effectively diagnose ISCF and determine the set of faulty windings of the DRPMSM.