WorldWideScience

Sample records for short circuit currents

  1. Worst Asymmetrical Short-Circuit Current

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holmstrøm, O; Grastrup, L

    2010-01-01

    In a typical power plant, the production scenario and the short-circuit time were found for the worst asymmetrical short-circuit current. Then, a sensitivity analysis on the missing generator values was realized in order to minimize the uncertainty of the results. Afterward the worst asymmetrical...

  2. Thyristor based short circuit current injection in isolated grids

    OpenAIRE

    Hoff, Bjarte; Sharma, Pawan; Østrem, Trond

    2017-01-01

    This paper proposes a thyristor based short circuit current injector for providing short circuit current in isolated and weak grids, where sufficient fault current to trigger circuit breakers may not be available. This will allow the use of conventional miniature circuit breakers, which requires high fault current for instantaneous tripping. The method has been validated through experiments.

  3. Electrical short circuit and current overload tests on aircraft wiring

    Science.gov (United States)

    Cahill, Patricia

    1995-01-01

    The findings of electrical short circuit and current overload tests performed on commercial aircraft wiring are presented. A series of bench-scale tests were conducted to evaluate circuit breaker response to overcurrent and to determine if the wire showed any visible signs of thermal degradation due to overcurrent. Three types of wire used in commercial aircraft were evaluated: MIL-W-22759/34 (150 C rated), MIL-W-81381/12 (200 C rated), and BMS 1360 (260 C rated). A second series of tests evaluated circuit breaker response to short circuits and ticking faults. These tests were also meant to determine if the three test wires behaved differently under these conditions and if a short circuit or ticking fault could start a fire. It is concluded that circuit breakers provided reliable overcurrent protection. Circuit breakers may not protect wire from ticking faults but can protect wire from direct shorts. These tests indicated that the appearance of a wire subjected to a current that totally degrades the insulation looks identical to a wire subjected to a fire; however the 'fire exposed' conductor was more brittle than the conductor degraded by overcurrent. Preliminary testing indicates that direct short circuits are not likely to start a fire. Preliminary testing indicated that direct short circuits do not erode insulation and conductor to the extent that ticking faults did. Circuit breakers may not safeguard against the ignition of flammable materials by ticking faults. The flammability of materials near ticking faults is far more important than the rating of the wire insulation material.

  4. 30 CFR 75.601-3 - Short circuit protection; dual element fuses; current ratings; maximum values.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit protection; dual element fuses... Trailing Cables § 75.601-3 Short circuit protection; dual element fuses; current ratings; maximum values. Dual element fuses having adequate current-interrupting capacity shall meet the requirements for short...

  5. THE RATE OF CURRENT CHANGE DURING A SHORT CIRCUIT IN THE POWER CIRCUITS OF THE ELECTRIC ROLLING STOCK WITH REGARD TO EDDY CURRENTS

    Directory of Open Access Journals (Sweden)

    L. V. Dubinets

    2010-04-01

    Full Text Available In the article the issue of influence of vortical currents on rate of change of short circuit current is considered, a mathematical model for the calculation of short circuit currents in the traction mode in the power circuits of DC electric rolling stock is presented, and the research results are given.

  6. Approximative calculation of transient short-circuit currents in power-systems

    Energy Technology Data Exchange (ETDEWEB)

    Heuck, K; Rosenberger, R; Dettmann, K D; Kegel, R

    1986-08-01

    The paper shows that it is approximatively possible to calculate the transient short-circuit currents for symmetrical and asymmetrical faults in power-systems. For that purpose a simple equivalent network is found. Its error of approximation is small. For the important maximum short-circuit current limits of error are pointed out compared to VDE 0102.

  7. Short-Circuit Current Analysis for DFIG Wind Farm Considering the Action of a Crowbar

    Directory of Open Access Journals (Sweden)

    Yan Hong Yuan

    2018-02-01

    Full Text Available With the increasing capacity of wind farms integrated into the power grid, the short-circuit current analysis for wind farms becomes more and more important. Since the wind turbine is usually integrated into the power grid via power electronic devices, the “crowbar” is installed in the wind turbine to protect the power electronic devices and to improve the fault ride through capability. The impact of the crowbar has to be considered during the short-circuit current analysis for the wind farm. In order to fully analyze the short-circuit current characteristics of a wind farm, the short-circuit currents for a doubly-fed induction generator (DFIG wind turbine under symmetrical and asymmetrical faults considering the crowbar action characteristic are derived firstly. Then the action situation of the crowbar of a DFIG wind turbine is studied and the action area curve is obtained. Taking the crowbar action, or not, as the grouping criterion, wind turbines in the wind farm are divided into two groups, and the wind farm is aggregated into two equivalent wind turbines. Using the equivalent model, the short-circuit current of a wind farm can be calculated accurately. Finally, simulations are performed in MATLAB/Simulink which is the commercial math software produced by the MathWorks company in Natick, Massachusetts, the United States to verify the proposed short-circuit current calculation method for the DFIG wind farm.

  8. Current-zero measurements of vacuum circuit breakers interrupting short-line faults

    NARCIS (Netherlands)

    Smeets, R.P.P.; Linden, van der W.A.

    2003-01-01

    Current zero measurements are performed during short-line fault interruption tests of vacuum circuit breakers. This switching cycle is characterized by a very steep transient recovery voltage. High-resolution measurements of near current-zero arc current and voltage were carried out. Various

  9. Modelling the short-circuit current of polymer bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Geens, Wim; Martens, Tom; Poortmans, Jef; Aernouts, Tom; Manca, Jean; Lutsen, Laurence; Heremans, Paul; Borghs, Staf; Mertens, Robert; Vanderzande, Dirk

    2004-01-01

    An analytical model has been developed to estimate the short-circuit current density of conjugated polymer/fullerene bulk heterojunction solar cells. The model takes into account the solvent-dependent molecular morphology of the donor/acceptor blend, which was revealed by transmission electron microscopy. Field-effect transistors based on single and composite organic layers were fabricated to determine values for the charge carrier mobilities of such films. These values served as input parameters of the model. It is shown that the difference in short-circuit current density that was measured between toluene-cast and chlorobenzene-cast conjugated polymer/fullerene photovoltaic cells (Appl. Phys. Lett. 78 (2001) 841) could be very well simulated with the model. Moreover, the calculations illustrate how increasing the hole and electron mobilities in the photoactive blend can improve the overall short-circuit current density of the solar cell

  10. Short-Circuit Current Analysis for DFIG Wind Farm Considering the Action of a Crowbar

    OpenAIRE

    Yan Hong Yuan; Feng Wu

    2018-01-01

    With the increasing capacity of wind farms integrated into the power grid, the short-circuit current analysis for wind farms becomes more and more important. Since the wind turbine is usually integrated into the power grid via power electronic devices, the “crowbar” is installed in the wind turbine to protect the power electronic devices and to improve the fault ride through capability. The impact of the crowbar has to be considered during the short-circuit current analysis for the wind farm....

  11. Defects influence on short circuit current density in p-i-n silicon solar cell

    International Nuclear Information System (INIS)

    Wagah F Mohamad; Alhan M Mustafa

    2006-01-01

    The admittance analysis method has been used to calculate the collection efficiency and the short circuit current density in a-Si:H p-i-n solar cell, as a function of the thickness of i-layer. Its is evident that the results of the short circuit current can be used to determine the optimal thickness of the i-layer of a cell, and it will be more accurate in comparison with the previous studies using a constant generation rate or an empirical exponential function for the generation of charge carriers throughout the i-layer

  12. Verification of the short-circuit current making capability of high-voltage switching devices

    NARCIS (Netherlands)

    Smeets, R.P.P.; Linden, van der W.A.

    2001-01-01

    Switching-in of short-circuit current leads to pre-arcing in the switching device. Pre-arcing affects the ability of switchgear to close and latch. In three-phase systems, making is associated with transient voltage phenomena that may have a significant impact on the duration of the pre-arcing

  13. The influence of gamma irradiation on short-circuit current in CuGaSe2

    International Nuclear Information System (INIS)

    Gasimoglu, I.; Mamedova, I.A.; Bagirov, A.G.

    2005-01-01

    Full text : The influence of gamma irradiation on a short-circuit current at 77 K was investigated. The appeared strip with a maximum at 1,61 ///// after irradiation in spectral dependence connected with p-type radiating defects [ru

  14. Influence of wavelength on transient short-circuit current in polycrystalline silicon solar cells

    International Nuclear Information System (INIS)

    Ba, B.; Kane, M.

    1993-10-01

    The influence of the wavelength of a monochromatic illumination on transient short-circuit current in an n/p polycrystalline silicon part solar cell junction is investigated. A wavelength dependence in the initial part of the current decay is observed in the case of cells with moderate grain boundary effects. This influence is attenuated in polycrystalline cells with strong grain boundary activity. (author). 10 refs, 6 figs

  15. Increased short circuit current in an azafullerene-based organic solar cell.

    Science.gov (United States)

    Cambarau, Werther; Fritze, Urs F; Viterisi, Aurélien; Palomares, Emilio; von Delius, Max

    2015-01-21

    We report the synthesis of a solution-processable, dodecyloxyphenyl-substituted azafullerene monoadduct (DPC59N) and its application as electron acceptor in bulk heterojunction organic solar cells (BHJ-OSCs). Due to its relatively strong absorption of visible light, DPC59N outperforms PC60BM in respect to short circuit current (JSC) and external quantum efficiency (EQE) in blends with donor P3HT.

  16. Measurements of impedances for determinating the minimum short-circuit current in main systems 500 V of underground mining establishments

    Energy Technology Data Exchange (ETDEWEB)

    Rittinghaus, D

    1981-09-01

    The complex short-circuit impedances of energized low-voltage main systems were measured with a double-bridge in underground mining operation. The magnitude of the short-circuit currents depends on these impedances. Customary calculations of such currents depend on empirical approximations. To verify the accuracy of these approximations, the measured impedances of 61 nodes in three different main systems were compared with the results of the calculations. The comparison made between the short-circuit currents determined by measurable quantities and the values calculated according to VDE 0118 shows that the stipulated coefficients for calculating the minimum short-circuit currents lie very far on the safe side. An amendment for calculating the short-circuit in accordance with VDE 0118 is therefore suggested.

  17. Development of processing procedures for advanced silicon solar cells. [antireflection coatings and short circuit currents

    Science.gov (United States)

    Scott-Monck, J. A.; Stella, P. M.; Avery, J. E.

    1975-01-01

    Ten ohm-cm silicon solar cells, 0.2 mm thick, were produced with short circuit current efficiencies up to thirteen percent and using a combination of recent technical advances. The cells were fabricated in conventional and wraparound contact configurations. Improvement in cell collection efficiency from both the short and long wavelengths region of the solar spectrum was obtained by coupling a shallow junction and an optically transparent antireflection coating with back surface field technology. Both boron diffusion and aluminum alloying techniques were evaluated for forming back surface field cells. The latter method is less complicated and is compatible with wraparound cell processing.

  18. Short-circuit logic

    NARCIS (Netherlands)

    Bergstra, J.A.; Ponse, A.

    2010-01-01

    Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is only evaluated if the first argument does not suffice to determine the value of the expression. In programming, short-circuit evaluation is widely used. A short-circuit logic is a variant of

  19. Several problems of algorithmization in integrated computation programs on third generation computers for short circuit currents in complex power networks

    Energy Technology Data Exchange (ETDEWEB)

    Krylov, V.A.; Pisarenko, V.P.

    1982-01-01

    Methods of modeling complex power networks with short circuits in the networks are described. The methods are implemented in integrated computation programs for short circuit currents and equivalents in electrical networks with a large number of branch points (up to 1000) on a computer with a limited on line memory capacity (M equals 4030 for the computer).

  20. Methods for stable recording of short-circuit current in a Na+-transporting epithelium.

    Science.gov (United States)

    Gondzik, Veronika; Awayda, Mouhamed S

    2011-07-01

    Epithelial Na(+) transport as measured by a variety of techniques, including the short-circuit current technique, has been described to exhibit a "rundown" phenomenon. This phenomenon manifests as time-dependent decrease of current and resistance and precludes the ability to carry out prolonged experiments aimed at examining the regulation of this transport. We developed methods for prolonged stable recordings of epithelial Na(+) transport using modifications of the short-circuit current technique and commercial Ussing-type chambers. We utilize the polarized MDCK cell line expressing the epithelial Na(+) channel (ENaC) to describe these methods. Briefly, existing commercial chambers were modified to allow continuous flow of Ringer solution and precise control of such flow. Chamber manifolds and associated plumbing were modified to allow precise temperature clamp preventing temperature oscillations. Recording electrodes were modified to eliminate the use of KCl and prevent membrane depolarization from KCl leakage. Solutions utilized standard bicarbonate-based buffers, but all gasses were prehydrated to clamp buffer osmolarity. We demonstrate that these modifications result in measurements of current and resistance that are stable for at least 2 h. We further demonstrate that drifts in osmolarity similar to those obtained before prior to our modifications can lead to a decrease of current and resistance similar to those attributed to rundown.

  1. Spatially resolved determination of the short-circuit current density of silicon solar cells via lock-in thermography

    International Nuclear Information System (INIS)

    Fertig, Fabian; Greulich, Johannes; Rein, Stefan

    2014-01-01

    We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplified in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  2. The effect of different solar simulators on the measurement of short-circuit current temperature coefficients

    Science.gov (United States)

    Curtis, H. B.; Hart, R. E., Jr.

    1982-01-01

    Gallium arsenide solar cells are considered for several high temperature missions in space. Both near-Sun and concentrator missions could involve cell temperatures on the order of 200 C. Performance measurements of cells at elevated temperatures are usually made using simulated sunlight and a matched reference cell. Due to the change in bandgap with increasing temperature at portions of the spectrum where considerable simulated irradiance is present, there are significant differences in measured short circuit current at elevated temperatures among different simulators. To illustrate this, both experimental and theoretical data are presented for gallium arsenide cells.

  3. Variations in the electrical short-circuit current decay for recombination lifetime and velocity measurements

    Science.gov (United States)

    Jung, Tae-Won; Lindholm, Fredrik A.; Neugroschel, Arnost

    1987-01-01

    An improved measurement system for electrical short-circuit current decay is presented that extends applicability of the method to silicon solar cells having an effective lifetime as low as 1 microsec. The system uses metal/oxide/semiconductor transistors as voltage-controlled switches. Advances in theory developed here increase precision and sensitivity in the determination of the minority-carrier recombination lifetime and recombination velocity. A variation of the method, which exploits measurements made on related back-surface field and back-ohmic contact devices, further improves precision and sensitivity. The improvements are illustrated by application to 15 different silicon solar cells.

  4. Maximizing the short circuit current of organic solar cells by partial decoupling of electrical and optical properties

    Science.gov (United States)

    Qarony, Wayesh; Hossain, Mohammad I.; Jovanov, Vladislav; Knipp, Dietmar; Tsang, Yuen Hong

    2018-03-01

    The partial decoupling of electronic and optical properties of organic solar cells allows for realizing solar cells with increased short circuit current and energy conversion efficiency. The proposed device consists of an organic solar cell conformally prepared on the surface of an array of single and double textured pyramids. The device geometry allows for increasing the optical thickness of the organic solar cell, while the electrical thickness is equal to the nominal thickness of the solar cell. By increasing the optical thickness of the solar cell, the short circuit current is distinctly increased. The quantum efficiency and short circuit current are determined using finite-difference time-domain simulations of the 3D solar cell structure. The influence of different solar cell designs on the quantum efficiency and short circuit current is discussed and optimal device dimensions are proposed.

  5. Simultaneous improvement in short circuit current, open circuit voltage, and fill factor of polymer solar cells through ternary strategy.

    Science.gov (United States)

    An, Qiaoshi; Zhang, Fujun; Li, Lingliang; Wang, Jian; Sun, Qianqian; Zhang, Jian; Tang, Weihua; Deng, Zhenbo

    2015-02-18

    We present a smart strategy to simultaneously increase the short circuit current (Jsc), the open circuit voltage (Voc), and the fill factor (FF) of polymer solar cells (PSCs). A two-dimensional conjugated small molecule photovoltaic material (SMPV1), as the second electron donor, was doped into the blend system of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C71-butyric acid methyl (PC71BM) to form ternary PSCs. The ternary PSCs with 5 wt % SMPV1 doping ratio in donors achieve 4.06% champion power conversion efficiency (PCE), corresponding to about 21.2% enhancement compared with the 3.35% PCE of P3HT:PC71BM-based PSCs. The underlying mechanism on performance improvement of ternary PSCs can be summarized as (i) harvesting more photons in the longer wavelength region to increase Jsc; (ii) obtaining the lower mixed highest occupied molecular orbital (HOMO) energy level by incorporating SMPV1 to increase Voc; (iii) forming the better charge carrier transport channels through the cascade energy level structure and optimizing phase separation of donor/acceptor materials to increase Jsc and FF.

  6. Adrenomedullin increases the short-circuit current in the mouse seminal vesicle: actions on chloride secretion.

    Science.gov (United States)

    Liao, S B; Cheung, K H; O, W S; Tang, Fai

    2014-08-01

    Adrenomedullin (ADM) may regulate seminal vesicle fluid secretion, and this may affect sperm quality. In this study, we investigated the effect of ADM on chloride secretion in the mouse seminal vesicle. The presence of ADM in mouse seminal vesicle was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with enzyme-linked assay for ADM. The effects of ADM on chloride secretion were studied by short-circuit current technique in a whole-mount preparation of mouse seminal vesicle in an Ussing chamber. The effects of specific ADM and calcitonin gene-related peptide (CGRP) receptor antagonists were investigated. Whether the ADM effect depended on the cAMP- and/or calcium-activated chloride channel was also studied using specific chloride channel blockers. The results showed that ADM was present in seminal vesicle epithelial cells. The major molecular species was precursor in the mouse seminal vesicle. ADM increased short-circuit current through the calcium-activated chloride channel in mouse seminal vesicle, and CGRP receptor was involved. We conclude that ADM may regulate chloride and fluid secretion from the seminal vesicle, which may affect the composition of the seminal plasma bathing the sperm and, hence, fertility. © 2014 by the Society for the Study of Reproduction, Inc.

  7. [Shunt and short circuit].

    Science.gov (United States)

    Rangel-Abundis, Alberto

    2006-01-01

    Shunt and short circuit are antonyms. In French, the term shunt has been adopted to denote the alternative pathway of blood flow. However, in French, as well as in Spanish, the word short circuit (court-circuit and cortocircuito) is synonymous with shunt, giving rise to a linguistic and scientific inconsistency. Scientific because shunt and short circuit made reference to a phenomenon that occurs in the field of the physics. Because shunt and short circuit are antonyms, it is necessary to clarify that shunt is an alternative pathway of flow from a net of high resistance to a net of low resistance, maintaining the stream. Short circuit is the interruption of the flow, because a high resistance impeaches the flood. This concept is applied to electrical and cardiovascular physiology, as well as to the metabolic pathways.

  8. Three-Phase Short-Circuit Current Calculation of Power Systems with High Penetration of VSC-Based Renewable Energy

    Directory of Open Access Journals (Sweden)

    Niancheng Zhou

    2018-03-01

    Full Text Available Short-circuit current level of power grid will be increased with high penetration of VSC-based renewable energy, and a strong coupling between transient fault process and control strategy will change the fault features. The full current expression of VSC-based renewable energy was obtained according to transient characteristics of short-circuit current. Furtherly, by analyzing the closed-loop transfer function model of controller and current source characteristics presented in steady state during a fault, equivalent circuits of VSC-based renewable energy of fault transient state and steady state were proposed, respectively. Then the correctness of the theory was verified by experimental tests. In addition, for power grid with VSC-based renewable energy, superposition theorem was used to calculate AC component and DC component of short-circuit current, respectively, then the peak value of short-circuit current was evaluated effectively. The calculated results could be used for grid planning and design, short-circuit current management as well as adjustment of relay protection. Based on comparing calculation and simulation results of 6-node 500 kV Huainan power grid and 35-node 220 kV Huaisu power grid, the effectiveness of the proposed method was verified.

  9. The Effect of Current-Limiting Reactors on the Tripping of Short Circuits in High-Voltage Electrical Equipment

    International Nuclear Information System (INIS)

    Volkov, M. S.; Gusev, Yu. P.; Monakov, Yu. V.; Cho, Gvan Chun

    2016-01-01

    The insertion of current-limiting reactors into electrical equipment operating at a voltage of 110 and 220 kV produces a change in the parameters of the transient recovery voltages at the contacts of the circuit breakers for disconnecting short circuits, which could be the reason for the increase in the duration of the short circuit, damage to the electrical equipment and losses in the power system. The results of mathematical modeling of the transients, caused by tripping of the short circuit in a reactive electric power transmission line are presented, and data are given on the negative effect of a current-limiting resistor on the rate of increase and peak value of the transient recovery voltages. Methods of ensuring the standard requirements imposed on the parameters of the transient recovery voltages when using current-limiting reactors in the high-voltage electrical equipment of power plants and substations are proposed and analyzed

  10. Short-circuit current improvement in thin cells with a gridded back contact

    Science.gov (United States)

    Giuliano, M.; Wohlgemuth, J.

    1980-01-01

    The use of gridded back contact on thin silicon solar cells 50 micrometers was investigated. An unexpected increase in short circuit current of almost 10 percent was experienced for 2 cm x 2 cm cells. Control cells with the standard continuous contact metallization were fabricated at the same time as the gridded back cells with all processes identical up to the formation of the back contact. The gridded back contact pattern was delineated by evaporation of Ti-Pd over a photo-resist mask applied to the back of the wafer; the Ti-Pd film on the controls was applied in the standard fashion in a continuous layer over the back of the cell. The Ti-Pd contacts were similarly applied to the front of the wafer, and the grid pattern on both sides of the cell was electroplated with 8-10 micrometers of silver.

  11. Short circuit current changes in electron irradiated GaAlAs/GaAs solar cells

    Science.gov (United States)

    Walker, G. H.; Conway, E. J.

    1978-01-01

    Heteroface p-GaAlAs/p-GaAs/n-GaAs solar cells with junction depths of 0.8, 1.5, and 4 microns were irradiated with 1 MeV electrons. The short-circuit current for the 4 micron junction depth cells is significantly reduced by the electron irradiation. Reduction of the junction depth to 1.5 microns improves the electron radiation resistance of the cells while further reduction of the junction depth to 0.8 microns improves the stability of the cells even more. Primary degradation is in the blue region of the spectrum. Considerable recovery of lost response is obtained by annealing the cells at 200 C. Computer modeling shows that the degradation is caused primarily by a reduction in the minority carrier diffusion length in the p-GaAs.

  12. An alternative explanation for the occurrence of short circuit current increases in the small intestine following challenge by bacterial enterotoxins.

    Science.gov (United States)

    Lucas, M L

    2013-10-01

    Secretory diarrhoeal disease due to enterotoxins is thought to arise from the enhancement to pathologically high rates of normally occurring chloride ion and therefore fluid secretion from enterocytes. In support of this concept, many enterotoxins increase intestinal short-circuit current, regarded now as faithfully reflecting the increased chloride ion secretion. Contradicting this assumption, STa reduces absorption but does not cause secretion in vivo although short-circuit current is increased in vitro. There is therefore a mismatch between an assumed enterocyte mediated secretory event that should but does not cause net fluid secretion and an undoubtedly increased short-circuit current. It is proposed here that short-circuit current increases are not themselves secretory events but result from interrupted fluid absorption. A noteworthy feature of compounds that inhibit the increase in short-circuit current is that the majority are vasoactive, neuroactive or both. In general, vasodilator substances increase current. An alternative hypothesis for the origin of short-circuit current increases is that these result from reflex induction of electrogenic fluid absorption. This reflex enhances a compensatory response that is also present at a cellular level. An intestinal reflex is therefore proposed by which decreases in interstitial and intravascular volume or pressure within the intestine initiate an electrogenic fluid absorption mechanism that compensates for the loss of electrically neutral fluid absorption. This hypothesis would explain the apparently complex pharmacology of short-circuit current increases since many depressor substances have receptors in common with enterocytes and enteric nerves. The proposed alternative view of the origin of short-circuit current increases assumes that these do not represent chloride secretion from the enterocytes. This view may therefore aid the successful development of anti-diarrhoeal drugs to overcome a major cause of

  13. High short-circuit current density CdTe solar cells using all-electrodeposited semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Echendu, O.K., E-mail: oechendu@yahoo.com; Fauzi, F.; Weerasinghe, A.R.; Dharmadasa, I.M.

    2014-04-01

    CdS/CdTe and ZnS/CdTe n–n heterojunction solar cells have been fabricated using all-electrodeposited semiconductors. The best devices show remarkable high short-circuit current densities of 38.5 mAcm{sup −2} and 47.8 mAcm{sup −2}, open-circuit voltages of 630 mV and 646 mV and conversion efficiencies of 8.0% and 12.0% respectively. The major strength of these device structures lies in the combination of n–n heterojunction with a large Schottky barrier at the n-CdTe/metal back contact which provides the required band bending for the separation of photo-generated charge carriers. This is in addition to the use of a high quality n-type CdTe absorber layer with high electron mobility. The potential barrier heights estimated for these devices from the current–voltage characteristics exceed 1.09 eV and 1.13 eV for CdS/CdTe and ZnS/CdTe cells respectively. The diode rectification factors of both devices are in excess of four orders of magnitude with reverse saturation current densities of 1.0 × 10{sup −7} Acm{sup −2} and 4.0 × 10{sup −7} Acm{sup −2} respectively. These all-electrodeposited solar cell device structures are currently being studied and developed as an alternative to the well-known p–n junction structures which utilise chemical bath-deposited CdS. The preliminary material growth, device fabrication and assessment results are presented in this paper. - Highlights: • Two-electrode deposition. • High J{sub sc} Schottky barrier solar cells. • CdCl{sub 2} + CdF{sub 2} treatment.

  14. Short- circuit tests of circuit breakers

    OpenAIRE

    Chorovský, P.

    2015-01-01

    This paper deals with short-circuit tests of low voltage electrical devices. In the first part of this paper, there are described basic types of short- circuit tests and their principles. Direct and indirect (synthetic) tests with more details are described in the second part. Each test and principles are explained separately. Oscilogram is obtained from short-circuit tests of circuit breakers at laboratory. The aim of this research work is to propose a test circuit for performing indirect test.

  15. Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives

    KAUST Repository

    Ko, Sangwon

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone-due to an increase in the polymer ionization potential-while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2′:5′,2′′- terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C 71-butyric acid methyl ester (PC 71BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current. © 2012 American

  16. Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives.

    Science.gov (United States)

    Ko, Sangwon; Hoke, Eric T; Pandey, Laxman; Hong, Sanghyun; Mondal, Rajib; Risko, Chad; Yi, Yuanping; Noriega, Rodrigo; McGehee, Michael D; Brédas, Jean-Luc; Salleo, Alberto; Bao, Zhenan

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2''-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.

  17. The short-circuit current of the ileum, but not the colon, is altered in the streptozotocin diabetic rat.

    Science.gov (United States)

    Forrest, Abigail; Makwana, Rajesh; Parsons, Mike

    2006-02-01

    Ion transport in control and streptozotocin-diabetic rat colon and ileum was studied using the Ussing chamber technique. No differences were observed between control and diabetic colonic mucosal short-circuit current under either basal or carbachol (100 nmol/L-1 micromol/L)-stimulated or prostaglandin E2 (100 nmol/L-1 micromol/L)-stimulated conditions. Similarly to colonic tissues, no differences in the short circuit current in either carbachol-stimulated or prostaglandin E2-stimulated tissues were observed between control and diabetic ileal mucosa. The basal diabetic ileal short circuit current (99.58 +/- 22.67 microA) was significantly greater than that of control ileal tissues (29.67 +/- 4.45 microA). This difference was abolished by the sodium-glucose-cotransporter inhibitor, phloridzin (50 micromol/L) (118.00 +/- 28.09 microA vs. 25.60 +/- 4.59 microA) and was also prevented by the replacement of glucose with mannitol in the buffer bathing the apical side of the tissue (control: 17.05 +/- 5.85 microA vs. 17.90 +/- 3.10 microA). Acetazolamide (450 micromol/L; a carbonic anhydrase inhibitor), amiloride, and bumetanide (100 micromol/L each; Na+-channel blockers), piroxicam (50 micromol/L; a COX1 cyclooxygenase inhibitor), and ouabain (1 mmol/L; a K+ transport inhibitor) had no effect on the basal short circuit current of either control or diabetic ileal tissues. This indicated that the alteration in the basal short circuit current of diabetic ileal tissues was due to a change in cellular glucose transport, whereas the evoked changes in short circuit current were unaffected by the diabetic state.

  18. Optical effects of shadow masks on short circuit current of organic photovoltaic devices.

    Science.gov (United States)

    Lin, Chi-Feng; Lin, Bing-Hong; Liu, Shun-Wei; Hsu, Wei-Feng; Zhang, Mi; Chiu, Tien-Lung; Wei, Mau-Kuo; Lee, Jiun-Haw

    2012-03-21

    In this paper, we have employed different shadow masks attached on top of organic photovoltaic (OPV) devices to study the optical effects of the former on the short circuit current (J(SC)). To rule out possible lateral electrical conduction and simplify the optical effects inside the device, a small-molecular heterojunction OPV device with a clear donor/acceptor interface was employed with a hole extraction layer exhibiting high resistance intentionally. Careful calibration with a shadow mask was employed. By attaching two layers of opaque masks in combination with a suitable holder design to shield the light from the edges and backside, the value of J(SC) approached that of the dark current, even under 1-sun radiation. With different illumination areas, we found that the photons illuminating the non-active region of the device contributed to 40% of the J(SC) by optical effect within the width of about 1 mm around the active region. When illuminating the non-active area with 12 mm to the active area, a 5.6 times improvement in the J(SC) was observed when the incident angle was 75°. With the introduction of a microstructured film onto the OPV device and an increase in the reflection from the non-active region, a 15% enhancement of the J(SC) compared to the control device was achieved.

  19. Technical Study on Improvement of Endurance Capability of Limit Short-circuit Current of Charge Control SMART Meter

    Science.gov (United States)

    Li, W. W.; Du, Z. Z.; Yuan, R. m.; Xiong, D. Z.; Shi, E. W.; Lu, G. N.; Dai, Z. Y.; Chen, X. Q.; Jiang, Z. Y.; Lv, Y. G.

    2017-10-01

    Smart meter represents the development direction of energy-saving smart grid in the future. The load switch, one of the core parts of smart meter, should be of high reliability, safety and endurance capability of limit short-circuit current. For this reason, this paper discusses the quick simulation of relationship between attraction and counterforce of load switch without iteration, establishes dual response surface model of attraction and counterforce and optimizes the design scheme of load switch for charge control smart meter, thus increasing electromagnetic attraction and spring counterforce. In this way, this paper puts forward a method to improve the withstand capacity of limit short-circuit current.

  20. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    Science.gov (United States)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  1. Short-circuit current density imaging of crystalline silicon solar cells via lock-in thermography: Robustness and simplifications

    International Nuclear Information System (INIS)

    Fertig, Fabian; Greulich, Johannes; Rein, Stefan

    2014-01-01

    Spatially resolved determination of solar cell parameters is beneficial for loss analysis and optimization of conversion efficiency. One key parameter that has been challenging to access by an imaging technique on solar cell level is short-circuit current density. This work discusses the robustness of a recently suggested approach to determine short-circuit current density spatially resolved based on a series of lock-in thermography images and options for a simplified image acquisition procedure. For an accurate result, one or two emissivity-corrected illuminated lock-in thermography images and one dark lock-in thermography image have to be recorded. The dark lock-in thermography image can be omitted if local shunts are negligible. Furthermore, it is shown that omitting the correction of lock-in thermography images for local emissivity variations only leads to minor distortions for standard silicon solar cells. Hence, adequate acquisition of one image only is sufficient to generate a meaningful map of short-circuit current density. Beyond that, this work illustrates the underlying physics of the recently proposed method and demonstrates its robustness concerning varying excitation conditions and locally increased series resistance. Experimentally gained short-circuit current density images are validated for monochromatic illumination in comparison to the reference method of light-beam induced current

  2. Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives

    KAUST Repository

    Ko, Sangwon; Hoke, Eric T.; Pandey, Laxman; Hong, Sanghyun; Mondal, Rajib; Risko, Chad; Yi, Yuanping; Noriega, Rodrigo; McGehee, Michael D.; Bré das, Jean-Luc; Salleo, Alberto; Bao, Zhenan

    2012-01-01

    and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone-due to an increase in the polymer ionization potential-while the short-circuit current decreased

  3. Current limiter circuit system

    Science.gov (United States)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  4. Mode of the short circuit in the direct current electric traction network with different feed charts of fyder area

    Directory of Open Access Journals (Sweden)

    P. Mihalichenko

    2012-12-01

    Full Text Available In the article the results of mathematical design of the system of electric traction of direct current are represented in the mode of short circuit and different feed charts of fyder area: two-sided; one-sided. Comparison of transitional electric sizes which characterize electromagnetic processes during these malfunctions is analysed and executed.

  5. Vasotocin- and mesotocin-induced increases in short-circuit current across tree frog skin.

    Science.gov (United States)

    Takada, Makoto; Fujimaki-Aoba, Kayo; Hokari, Shigeru

    2011-02-01

    In adult amphibian skin, Na(+) crosses from outside to inside. This Na(+) transport can be measured as the amiloride-blockable short-circuit current (SCC) across the skin. We investigated the effects of arginine vasotocin (AVT) and mesotocin (MT), and those of antagonists of the vasopressin and oxytocin receptors, on the SCC across Hyla japonica skin. (1) Both AVT (100 pmol/L or more) and MT (1 nmol/L or more) increased the SCC. (2) The AVT- and MT-induced increases in SCC recovered with time (downregulation). (3) These AVT/MT-induced effects were blocked by application of OPC-31260 (vasopressin V(2)-receptor antagonist). (4) The OPC-31260 concentration needed to block the AVT-induced response was lower upon post-application (after application of agonist) than upon pre-application (before application of agonist), suggesting the number of receptors may have decreased after AVT application. (5) Upon repeated application of AVT (100 pmol/L), the induced SCC increase did not differ significantly between the 1st and 2nd applications. (6) The time to reach the half-maximum value of the AVT-induced or MT-induced increase in SCC was not significantly different between washout and post-application of OPC-31260, suggesting that post-application of OPC-31260 cleared AVT and MT from their receptors. The effects of AVT, MT, and their antagonists in H. japonica, which is adapted to a terrestrial habitat, are compared with our previously published data on Rana catesbeiana (=Lithobates catesbeianus), which is adapted to a semiaquatic habitat.

  6. cAMP Stimulates Transepithelial Short-Circuit Current and Fluid Transport Across Porcine Ciliary Epithelium.

    Science.gov (United States)

    Cheng, Angela King-Wah; Civan, Mortimer M; To, Chi-Ho; Do, Chi-Wai

    2016-12-01

    To investigate the effects of cAMP on transepithelial electrical parameters and fluid transport across porcine ciliary epithelium. Transepithelial electrical parameters were determined by mounting freshly isolated porcine ciliary epithelium in a modified Ussing chamber. Similarly, fluid movement across intact ciliary body was measured with a custom-made fluid flow chamber. Addition of 1, 10, and 100 μM 8-Br-cAMP (cAMP) to the aqueous side (nonpigmented ciliary epithelium, NPE) induced a sustained increase in short-circuit current (Isc). Addition of niflumic acid (NFA) to the aqueous surface effectively blocked the cAMP-induced Isc stimulation. The administration of cAMP to the stromal side (pigmented ciliary epithelium, PE) triggered a significant stimulation of Isc only at 100 μM. No additive effect was observed with bilateral application of cAMP. Likewise, forskolin caused a significant stimulation of Isc when applied to the aqueous side. Concomitantly, cAMP and forskolin increased fluid transport across porcine ciliary epithelium, and this stimulation was effectively inhibited by aqueous NFA. Depleting Cl- in the bathing solution abolished the baseline Isc and inhibited the subsequent stimulation by cAMP. Pretreatment with protein kinase A (PKA) blockers (H89/KT5720) significantly inhibited the cAMP- and forskolin-induced Isc responses. Our results suggest that cAMP triggers a sustained stimulation of Cl- and fluid transport across porcine ciliary epithelium; Cl- channels in the NPE cells are potentially a cellular site for this PKA-sensitive cAMP-mediated response.

  7. Detecting short circuits during assembly

    Science.gov (United States)

    Deboo, G. J.

    1980-01-01

    Detector circuit identifies shorts between bus bars of electronic equipment being wired. Detector sounds alarm and indicates which planes are shorted. Power and ground bus bars are scanned continuously until short circuit occurs.

  8. Effect of cAMP on short-circuit current in isolated human ciliary body.

    Science.gov (United States)

    Wu, Ren-yi; Ma, Ning; Hu, Qian-qian

    2013-07-01

    Cyclic adenosine monophosphate (cAMP) could activate chloride channels in bovine ciliary body and trigger an increase in the ionic current (short-circuit current, Isc) across the ciliary processes in pigs. The purpose of this study was to investigate how cAMP modulates Isc in isolated human ciliary processes and the possible involvement of chloride transport across the tissue in cAMP-induced Isc change. In an Ussing-type chamber system, the Isc changes induced by the cAMP analogue 8-bromo-cAMP and an adenylyl cyclase activator forskolin in isolated human ciliary processes were assessed. The involvement of Cl(-) component in the bath solution was investigated. The effect of Cl(-) channel (10 µmol/L niflumic acid and 1 mmol/L 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)), K(+) channel (10 mmol/L tetraethylammonium chloride (TEA)), or Na(+) channel blockers (1 mmol/L amiloride) on 8-bromo-cAMP-induced Isc change was also studied. Dose-dependently, 8-bromo-cAMP (10 nmol/L-30 µmol/L) or forskolin (10 nmol/L-3 µmol/L) increased Isc across the ciliary processes with an increase in negative potential difference on the non-pigmented epithelium (NPE) side of the tissue. Isc increase induced by 8-bromo-cAMP was more pronounced when the drug was applied on the NPE side than on the pigmented epithelium side. When the tissue was bathed in low Cl(-) solutions, the Isc increase was significantly inhibited. Finally, niflumic acid and DIDS, but not TEA or amiloride, significantly prevented the Isc increase induced by 8-bromo-cAMP. cAMP stimulates stroma-to-aqueous anionic transport in isolated human ciliary processes. Chloride is likely to be among the ions, the transportation of which across the tissue is triggered by cAMP, suggesting the potential role of cAMP in the process of aqueous humor formation in human eyes.

  9. Extra-high short-circuit current for bifacial solar cells in sunny and dark-light conditions.

    Science.gov (United States)

    Duan, Jialong; Duan, Yanyan; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei

    2017-09-05

    We present here a symmetrically structured bifacial solar cell tailored by two fluorescent photoanodes and a platinum/titanium/platinum counter electrode, yielding extra-high short-circuit current densities as high as 28.59 mA cm -2 and 119.9 μA cm -2 in simulated sunlight irradiation (100 mW cm -2 , AM1.5) and dark-light conditions, respectively.

  10. The dependence of the short circuit current with γ-radiation in CuGaSe2

    International Nuclear Information System (INIS)

    Gasimoglu, I.; Mamedova, I.A.; Bagirov, A.G.

    2005-01-01

    Full text: The A I B III C IV semiconducting compounds are of interest for semiconducting devising. In particular the presence of the birefringence makes the compounds as a perspective materials for using in nonlinear optical transformers. Besides, the complex generation-recombination processes in these compounds are due to the local states in the band gap, which is also due to the complex chemical structure of these compounds. In this report the results of the influence of γ-radiation on the short circuit current in CuGaSe 2 are presented. The Co 6 0 with the quantum energy of 1.25 MeV was a source of radiation. The resistance was 10 2 kΩ at 300 K. The In-Ga eutectic was used as a contact. The measurements have been carried out at 77 K. The electrometer B7-30 was used for the short circuit current measurements, sensitivity of which is 10 -15 A. The intensity of γ-rays was 20 R/s, durability of radiation was 15 min. The spectrometer SPM-2 was used as a source of radiation of monoxrmator light. The spectral dependence of short circuit current of non radiated CuGaSe 2 crystal has a maximum at λ=700 nm (0.77 eV) with the half width of 0.26 eV. The maximum of short circuit current is in good agreement with the value 1.8 eV at 300 K. That is why one can assume that observed peak in J sc ∼∼f(λ) dependence with the maximum at 1.77 eV is due to electronic transitions from the valence band to conduction band. After radiation of CuGaSe 2 crystal new maximum is observed in the spectral dependence of short circuit current at λ=770 nm (1.61 eV) at 77 K. Splitting between the peaks is 0.13 eV. The appearance of the second peak maybe is due to the formation of radiation defects of acceptor type, which are located for 0.13 eV above than the top of valence band. The peak at 1.59 eV, which is due the donor-acceptor recombination, is observed in photoluminescence spectra. It is assumed that, Se vacancy forms the donor levels, Cu vacancy -acceptor levels

  11. Effect of notch depth of modified current collector on internal-short-circuit mitigation for lithium-ion battery

    Science.gov (United States)

    Wang, Meng; Noelle, Daniel J.; Shi, Yang; Le, Anh V.; Qiao, Yu

    2018-01-01

    Formation of internal short circuit (ISC) may result in catastrophic thermal runaway of lithium-ion battery (LIB). Among LIB cell components, direct contact between cathode and anode current collectors is most critical to the ISC behavior, yet is still relatively uninvestigated. In the current study, we analyze the effect of heterogeneity of current collector on the temperature increase of LIB cells subjected to mechanical abuse. The cathode current collector is modified by surface notches, so that it becomes effectively brittle and the ISC site can be isolated. Results from impact tests on LIB cells with modified current collectors suggest that their temperature increase can be negligible. The critical parameters include the failure strain and the failure work of modified current collector, both of which are related to the notch depth.

  12. Effect of dislocations on the open-circuit voltage, short-circuit current and efficiency of heteroepitaxial indium phosphide solar cells

    Science.gov (United States)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Excellent radiation resistance of indium phosphide solar cells makes them a promising candidate for space power applications, but the present high cost of starting substrates may inhibit their large scale use. Thin film indium phosphide cells grown on Si or GaAs substrates have exhibited low efficiencies, because of the generation and propagation of large number of dislocations. Dislocation densities were calculated and its influence on the open circuit voltage, short circuit current, and efficiency of heteroepitaxial indium phosphide cells was studied using the PC-1D. Dislocations act as predominant recombination centers and are required to be controlled by proper transition layers and improved growth techniques. It is shown that heteroepitaxial grown cells could achieve efficiencies in excess of 18 percent AMO by controlling the number of dislocations. The effect of emitter thickness and surface recombination velocity on the cell performance parameters vs. dislocation density is also studied.

  13. Laser induced non-monotonic degradation in short-circuit current of triple-junction solar cells

    Science.gov (United States)

    Dou, Peng-Cheng; Feng, Guo-Bin; Zhang, Jian-Min; Song, Ming-Ying; Zhang, Zhen; Li, Yun-Peng; Shi, Yu-Bin

    2018-06-01

    In order to study the continuous wave (CW) laser radiation effects and mechanism of GaInP/GaAs/Ge triple-junction solar cells (TJSCs), 1-on-1 mode irradiation experiments were carried out. It was found that the post-irradiation short circuit current (ISC) of the TJSCs initially decreased and then increased with increasing of irradiation laser power intensity. To explain this phenomenon, a theoretical model had been established and then verified by post-damage tests and equivalent circuit simulations. Conclusion was drawn that laser induced alterations in the surface reflection and shunt resistance were the main causes for the observed non-monotonic decrease in the ISC of the TJSCs.

  14. Enhancement of short-circuit current density in polymer bulk heterojunction solar cells comprising plasmonic silver nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuzhao; Lin, Xiaofeng; Ou, Jiemei; Chen, Xudong, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn [Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education of China, Sun Yat-sen University, Guangzhou 510275 (China); Qing, Jian; Zhong, Zhenfeng; Zhou, Xiang, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn; Chen, Yujie, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Hu, Chenglong [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056 (China)

    2014-03-24

    We demonstrate that the influence of plasmonic effects based on silver nanowires (Ag NWs) on the characteristics of polymer solar cells (PSCs). The solution-processed Ag NWs are situated at the interface of anode buffer layer and active layer, which could enhance the performance especially the photocurrent of PSCs by scattering, localized surface plasmon resonance, and surface plasmon polaritons. Plasmonic effects are confirmed by the enhancement of extinction spectra, external quantum efficiency, and steady state photoluminescence. Consequently, the short-circuit current density (J{sub sc}) and power conversion efficiency enhance about 24% and 18%, respectively, under AM1.5 illumination when Ag NWs plasmonic nanostructure incorporated into PSCs.

  15. Small-bandgap polymer solar cells with unprecedented short-circuit current density and high fill factor.

    Science.gov (United States)

    Choi, Hyosung; Ko, Seo-Jin; Kim, Taehyo; Morin, Pierre-Olivier; Walker, Bright; Lee, Byoung Hoon; Leclerc, Mario; Kim, Jin Young; Heeger, Alan J

    2015-06-03

    Small-bandgap polymer solar cells (PSCs) with a thick bulk heterojunction film of 340 nm exhibit high power conversion efficiencies of 9.40% resulting from high short-circuit current density (JSC ) of 20.07 mA cm(-2) and fill factor of 0.70. This remarkable efficiency is attributed to maximized light absorption by the thick active layer and minimized recombination by the optimized lateral and vertical morphology through the processing additive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cell short circuit, preshort signature

    Science.gov (United States)

    Lurie, C.

    1980-01-01

    Short-circuit events observed in ground test simulations of DSCS-3 battery in-orbit operations are analyzed. Voltage signatures appearing in the data preceding the short-circuit event are evaluated. The ground test simulation is briefly described along with performance during reconditioning discharges. Results suggest that a characteristic signature develops prior to a shorting event.

  17. Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current

    Energy Technology Data Exchange (ETDEWEB)

    Sukrittanon, Supanee [Graduate Program of Materials Science and Engineering, University of California, San Diego, La Jolla, California 92037 (United States); Liu, Ren; Pan, Janet L. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92037 (United States); Breeden, Michael C. [Department of Nanoengineering, University of California, San Diego, La Jolla, California 92037 (United States); Jungjohann, K. L. [Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Tu, Charles W., E-mail: ctu@ece.ucsd.edu, E-mail: sdayeh@ece.ucsd.edu; Dayeh, Shadi A., E-mail: ctu@ece.ucsd.edu, E-mail: sdayeh@ece.ucsd.edu [Graduate Program of Materials Science and Engineering, University of California, San Diego, La Jolla, California 92037 (United States); Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92037 (United States)

    2016-08-07

    We report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface and in the GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. The comprehensive understanding presented in this work suggests that performance benefits of dilute nitride microwire solar cells can be achieved by further tuning of the epitaxial quality of the underlying materials.

  18. Design and flight performance evaluation of the Mariners 6, 7, and 9 short-circuit current, open-circuit voltage transducers

    Science.gov (United States)

    Patterson, R. E.

    1973-01-01

    The purpose of the short-circuit voltage transducer is to provide engineering data to aid the evaluation of array performance during flight. The design, fabrication, calibration, and in-flight performance of the transducers onboard the Mariner 6, 7 and 9 spacecrafts are described. No significant differences were observed in the in-flight electrical performance of the three transducers. The transducers did experience significant losses due to coverslides or adhesive darkening, increased surface reflection, or spectral shifts within coverslide assembly. Mariner 6, 7 and 9 transducers showed non-cell current degradations of 3-1/2%, 3%, and 4%, respectively at Mars encounter and 6%, 3%, and 4-12%, respectively at end of mission. Mariner 9 solar Array Test 2 showed 3-12% current degradation while the transducer showed 4-12% degradation.

  19. Short-circuit impedance measurement

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad

    2003-01-01

    Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...

  20. Achieving 12.8% Efficiency by Simultaneously Improving Open-Circuit Voltage and Short-Circuit Current Density in Tandem Organic Solar Cells.

    Science.gov (United States)

    Qin, Yunpeng; Chen, Yu; Cui, Yong; Zhang, Shaoqing; Yao, Huifeng; Huang, Jiang; Li, Wanning; Zheng, Zhong; Hou, Jianhui

    2017-06-01

    Tandem organic solar cells (TOSCs), which integrate multiple organic photovoltaic layers with complementary absorption in series, have been proved to be a strong contender in organic photovoltaic depending on their advantages in harvesting a greater part of the solar spectrum and more efficient photon utilization than traditional single-junction organic solar cells. However, simultaneously improving open circuit voltage (V oc ) and short current density (J sc ) is a still particularly tricky issue for highly efficient TOSCs. In this work, by employing the low-bandgap nonfullerene acceptor, IEICO, into the rear cell to extend absorption, and meanwhile introducing PBDD4T-2F into the front cell for improving V oc , an impressive efficiency of 12.8% has been achieved in well-designed TOSC. This result is also one of the highest efficiencies reported in state-of-the-art organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Textbook Error: Short Circuiting on Electrochemical Cell

    Science.gov (United States)

    Bonicamp, Judith M.; Clark, Roy W.

    2007-01-01

    Short circuiting an electrochemical cell is an unreported but persistent error in the electrochemistry textbooks. It is suggested that diagrams depicting a cell delivering usable current to a load be postponed, the theory of open-circuit galvanic cells is explained, the voltages from the tables of standard reduction potentials is calculated and…

  2. Current distribution in LV networks during 1-phase MV short-circuit

    NARCIS (Netherlands)

    Waes, van J.B.M.; Provoost, F.; Merwe, van der J.; Cobben, J.F.G.; Deursen, van A.P.J.; van Riet, M.J.M.; Laan, van der P.C.T.

    2000-01-01

    This paper describes the consequences of a fault in a medium voltage network on the grounding systems at the LV-side. To study the current distribution and to verify the models, we deliberately introduced one phase to ground faults in the 10 kV floating MV network. The selected site was the end of a

  3. Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling.

    Science.gov (United States)

    Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas

    2016-09-23

    InP nanowire arrays with axial p-i-n junctions are promising devices for next-generation photovoltaics, with a demonstrated efficiency of 13.8%. However, the short-circuit current in such arrays does not match their absorption performance. Here, through combined optical and electrical modeling, we study how the absorption of photons and separation of the resulting photogenerated electron-hole pairs define and limit the short-circuit current in the nanowires. We identify how photogenerated minority carriers in the top n segment (i.e. holes) diffuse to the ohmic top contact where they recombine without contributing to the short-circuit current. In our modeling, such contact recombination can lead to a 60% drop in the short-circuit current. To hinder such hole diffusion, we include a gradient doping profile in the n segment to create a front surface barrier. This approach leads to a modest 5% increase in the short-circuit current, limited by Auger recombination with increased doping. A more efficient approach is to switch the n segment to a material with a higher band gap, like GaP. Then, a much smaller number of holes is photogenerated in the n segment, strongly limiting the amount that can diffuse and disappear into the top contact. For a 500 nm long top segment, the GaP approach leads to a 50% higher short-circuit current than with an InP top segment. Such a long top segment could facilitate the fabrication and contacting of nanowire array solar cells. Such design schemes for managing minority carriers could open the door to higher performance in single- and multi-junction nanowire-based solar cells.

  4. Small-Molecule Solar Cells with Simultaneously Enhanced Short-Circuit Current and Fill Factor to Achieve 11% Efficiency.

    Science.gov (United States)

    Nian, Li; Gao, Ke; Jiang, Yufeng; Rong, Qikun; Hu, Xiaowen; Yuan, Dong; Liu, Feng; Peng, Xiaobin; Russell, Thomas P; Zhou, Guofu

    2017-08-01

    High-efficiency small-molecule-based organic photovoltaics (SM-OPVs) using two electron donors (p-DTS(FBTTh 2 ) 2 and ZnP) with distinctively different absorption and structural features are reported. Such a combination works well and synergically improves device short-circuit current density (J sc ) to 17.99 mA cm -2 and fill factor (FF) to 77.19%, yielding a milestone efficiency of 11%. To the best of our knowledge, this is the highest power conversion efficiency reported for SM-OPVs to date and the first time to combine high J sc over 17 mA cm -2 and high FF over 77% into one SM-OPV. The strategy of using multicomponent materials, with a selecting role of balancing varied electronic and structural necessities can be an important route to further developing higher performance devices. This development is important, which broadens the dimension and versatility of existing materials without much chemistry input. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Prospective single and multi-phase short-circuit current levels in the Dutch transmission, sub-transmission and distribution grids

    NARCIS (Netherlands)

    Janssen, A.L.J.; van Riet, M.J.M.; Smeets, R.P.P.; Kanters, J.; van den Akker, W.F.; Aanhaanen, G.L.P.

    2012-01-01

    As elsewhere in the world, also in the Netherlands utilities face an increase in the actual and future short-circuit current levels at all voltages. This development is provoked by the required increase in transmission capacity as well as the concentration of power generation capacity. Large

  6. The factors influencing nonlinear characteristics of the short-circuit current in dye-sensitized solar cells investigated by a numerical model.

    Science.gov (United States)

    Shi, Yushuai; Dong, Xiandui

    2013-06-24

    A numerical model for interpretation of the light-intensity-dependent nonlinear characteristics of the short-circuit current in dye-sensitized solar cells is suggested. The model is based on the continuity equation and includes the influences of the nongeminate recombination between electrons and electron acceptors in the electrolyte and the geminate recombination between electrons and oxidized dye molecules. The influences of the order and rate constant of the nongeminate recombination reaction, the light-absorption coefficient of the dye, the film thickness, the rate constant of geminate recombination, and the regeneration rate constant on the nonlinear characteristics of the short-circuit current are simulated and analyzed. It is proposed that superlinear and sublinear characteristics of the short-circuit current should be attributed to low electron-collection efficiency and low dye-regeneration efficiency, respectively. These results allow a deep understanding of the origin of the nonlinear characteristics of the short-circuit current in solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Estimating the short-circuit impedance

    DEFF Research Database (Denmark)

    Nielsen, Arne Hejde; Pedersen, Knud Ole Helgesen; Poulsen, Niels Kjølstad

    1997-01-01

    A method for establishing a complex value of the short-circuit impedance from naturally occurring variations in voltage and current is discussed. It is the symmetrical three phase impedance at the fundamental grid frequency there is looked for. The positive sequence components in voltage...... and current are derived each period, and the short-circuit impedance is estimated from variations in these components created by load changes in the grid. Due to the noisy and dynamic grid with high harmonic distortion it is necessary to threat the calculated values statistical. This is done recursively...... through a RLS-algorithm. The algorithms have been tested and implemented on a PC at a 132 kV substation supplying a rolling mill. Knowing the short-circuit impedance gives the rolling mill an opportunity to adjust the arc furnace operation to keep flicker below a certain level. Therefore, the PC performs...

  8. The effect of acute hypoxia on short-circuit current and epithelial resistivity in biopsies from human colon.

    Science.gov (United States)

    Carra, Graciela E; Ibáñez, Jorge E; Saraví, Fernando D

    2013-09-01

    In isolated colonic mucosa, decreases in short-circuit current (ISC) and transepithelial resistivity (RTE) occur when hypoxia is either induced at both sides or only at the serosal side of the epithelium. We assessed in human colon biopsies the sensitivity to serosal-only hypoxia and mucosal-only hypoxia and whether Na, K-ATPase blockade with ouabain interacts with hypoxia. Biopsy material from patients undergoing colonoscopy was mounted in an Ussing chamber for small samples (1-mm2 window). In a series of experiments we assessed viability and the electrical response to the mucolytic, dithiothreitol (1 mmol/l). In a second series, we explored the effect of hypoxia without and with ouabain. In a third series, we evaluated the response to a cycle of hypoxia and reoxygenation induced at the serosal or mucosal side while keeping the oxygenation of the opposite side. 1st series: Dithiothreitol significantly decreased the unstirred layer and ISC but increased RTE. 2nd series: Both hypoxia and ouabain decreased ISC, but ouabain increased RTE and this effect on RTE prevailed even during hypoxia. 3rd series: Mucosal hypoxia caused lesser decreases of ISC and RTE than serosal hypoxia; in the former, but not in the latter, recovery was complete upon reoxygenation. In mucolytic concentration, dithiothreitol modifies ISC and RTE. Oxygen supply from the serosal side is more important to sustain ISC and RTE in biopsy samples. The different effect of hypoxia and Na, K-ATPase blockade on RTE suggests that their depressing effect on ISC involves different mechanisms.

  9. Estimation of expected short-circuit current levels in and circuit-breaker requirements for the 330 to 750 kV networks of the southern integrated power grid

    Energy Technology Data Exchange (ETDEWEB)

    Krivushkin, L.F.; Gorazeeva, T.F.

    1978-08-01

    Studies were made in order to project the operating levels in the Southern Integrated Power Grid to the year 2000. The short-circuit current levels and, the requirements which circuit breakers will have to meet are estimated. A gradual transition from 330 to 750 kV generation is foreseen, with 330 kV networks remaining only for a purely distribution service. The number of 330 kV line hookups and the number of circuit breakers at nodal points (stations and substations) will not change significantly, they will account for 40% of all circuit breakers installed in 25% of all nodal points. Short-circuit currents are expected to reach the 46 kA level in 750 kV networks and 63 kA (standing wave voltage 1.5 to 2.5 kV/microsecond) in 330 kV networks. These are the ratings of circuit breakers; of the 63 kA ones 150 will be needed by 1980--1990 and 400 by 1990--2000. It will also be eventually worthwhile to install circuit breakers with a 63 kA-750 kV rating.

  10. SITE WIDE SHORT CIRCUIT STUDY ASSESSMENT

    International Nuclear Information System (INIS)

    CARRATT, R.T.

    2004-01-01

    The Department of Energy requested that Fluor Hanford develop a plan to update the electrical distribution studies for FH managed facilities. Toward this end, an assessment of FH's nuclear facilities was performed to determine whether a current short circuit study of the facility electrical distribution system exists, and the status of such study. This report presents the methodology and results of that assessment. The assessment identified 29 relevant facilities. Of these, a short circuit study could not be identified for 15 facilities. A short circuit study was found to exist for fourteen facilities, however, of these 14, four were not released into a controlled document system, and two were not performed for the entire electrical distribution system. It is recommended that for four of the facilities no further action is required based upon the limited nature of the existing electrical system, or as in the case of PFP, the status of the existing short circuit study was determined adequate. For the majority of the facilities without a short circuit study, it is recommended that one is performed, and released into a controlled document system. Two facilities require further evaluation due to missing or conflicting documentation. For the remainder of the facilities, the recommendations are to review and revise as appropriate the existing study, and release into a controlled document system. A summation of the recommendations is presented

  11. Increased short circuit current in organic photovoltaic using high-surface area electrode based on ZnO nanowires decorated with CdTe quantum dots.

    Science.gov (United States)

    Aga, R S; Gunther, D; Ueda, A; Pan, Z; Collins, W E; Mu, R; Singer, K D

    2009-11-18

    A photosensitized high-surface area transparent electrode has been employed to increase the short circuit current of a photovoltaic device with a blend of poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM) as the active layer. This is achieved by directly growing ZnO nanowires on indium tin oxide (ITO) film via a physical vapor method. The nanowire surface is then decorated with CdTe quantum dots by pulsed electron-beam deposition (PED). The nanowires alone provided a 20-fold increase in the short circuit current under visible light illumination. This was further increased by a factor of approximately 1.5 by the photosensitization effect of CdTe, which has an optical absorption of up to 820 nm.

  12. Analysis of the impact of connecting a larger number of small hydroelectric power plants to the short-circuit currents values and relay protection system of distribution network

    Directory of Open Access Journals (Sweden)

    Sučević Nikola

    2017-01-01

    Full Text Available In this paper the influence of a large number of small hydro power plants on the short-circuit currents is analysed, as well as the operation of the relay protection system within the real distribution network in Serbia. The necessary modification of the existing protection functions, as well as the implementation of the new proposed protection functions, are presented and discussed. Network modeling and analysis are performed using the program tool DIgSILENT PowerFactory.

  13. Current-mode minimax circuit

    NARCIS (Netherlands)

    Wassenaar, R.F.

    1992-01-01

    The minimum-maximum (minimax) circuit selects the minimum and maximum of two input currents. Four transistors in matched pairs are operated in the saturation region. Because the behavior of the circuit is based on matched devices and is independent of the relationship between the drain current and

  14. Hybrid solar cells with outstanding short-circuit currents based on a room temperature soft-chemical strategy: the case of P3HT:Ag2S.

    Science.gov (United States)

    Lei, Yan; Jia, Huimin; He, Weiwei; Zhang, Yange; Mi, Liwei; Hou, Hongwei; Zhu, Guangshan; Zheng, Zhi

    2012-10-24

    P3HT:Ag(2)S hybrid solar cells with broad absorption from the UV to NIR band were directly fabricated on ITO glass by using a room temperature, low energy consumption, and low-cost soft-chemical strategy. The resulting Ag(2)S nanosheet arrays facilitate the construction of a perfect percolation structure with organic P3HT to form ordered bulk heterojunctions (BHJ); without interface modification, the assembled P3HT:Ag(2)S device exhibits outstanding short-circuit current densities (J(sc)) around 20 mA cm(-2). At the current stage, the optimized device exhibited a power conversion efficiency of 2.04%.

  15. Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells.

    Science.gov (United States)

    Baba, Akira; Aoki, Nobutaka; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao

    2011-06-01

    In this study, we demonstrate the fabrication of grating-coupled surface plasmon resonance (SPR) enhanced organic thin-film photovoltaic cells and their improved photocurrent properties. The cell consists of a grating substrate/silver/P3HT:PCBM/PEDOT:PSS structure. Blu-ray disk recordable substrates are used as the diffraction grating substrates on which silver films are deposited by vacuum evaporation. P3HT:PCBM films are spin-coated on silver/grating substrates. Low conductivity PEDOT:PSS/PDADMAC layer-by-layer ultrathin films deposited on P3HT:PCBM films act as the hole transport layer, whereas high conductivity PEDOT:PSS films deposited by spin-coating act as the anode. SPR excitations are observed in the fabricated cells upon irradiation with white light. Up to a 2-fold increase in the short-circuit photocurrent is observed when the surface plasmon (SP) is excited on the silver gratings as compared to that without SP excitation. The finite-difference time-domain simulation indicates that the electric field in the P3HT:PCBM layer can be increased using the grating-coupled SP technique. © 2011 American Chemical Society

  16. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control.

    Science.gov (United States)

    Choi, Hyekyoung; Song, Jung Hoon; Jang, Jihoon; Mai, Xuan Dung; Kim, Sungwoo; Jeong, Sohee

    2015-11-07

    We fabricated heterojunction solar cells with PbSe/PbS core shell quantum dots and studied the precisely controlled PbS shell thickness dependency in terms of optical properties, electronic structure, and solar cell performances. When the PbS shell thickness increases, the short circuit current density (JSC) increases from 6.4 to 11.8 mA cm(-2) and the fill factor (FF) enhances from 30 to 49% while the open circuit voltage (VOC) remains unchanged at 0.46 V even with the decreased effective band gap. We found that the Fermi level and the valence band maximum level remain unchanged in both the PbSe core and PbSe/PbS core/shell with a less than 1 nm thick PbS shell as probed via ultraviolet photoelectron spectroscopy (UPS). The PbS shell reduces their surface trap density as confirmed by relative quantum yield measurements. Consequently, PbS shell formation on the PbSe core mitigates the trade-off relationship between the open circuit voltage and the short circuit current density. Finally, under the optimized conditions, the PbSe core with a 0.9 nm thick shell yielded a power conversion efficiency of 6.5% under AM 1.5.

  17. Shapeable short circuit resistant capacitor

    Science.gov (United States)

    Taylor, Ralph S.; Myers, John D.; Baney, William J.

    2015-10-06

    A ceramic short circuit resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The capacitor that exhibits a benign failure mode in which a multitude of discrete failure events result in a gradual loss of capacitance. Each event is a localized event in which localized heating causes an adjacent portion of one or both of the electrodes to vaporize, physically cleaning away electrode material from the failure site. A first metal electrode, a second metal electrode, and a ceramic dielectric layer between the electrodes are thin enough to be formed in a serpentine-arrangement with gaps between the first electrode and the second electrode that allow venting of vaporized electrode material in the event of a benign failure.

  18. A study on the short-circuit test by fault angle control and the recovery characteristics of the fault current limiter using coated conductor

    International Nuclear Information System (INIS)

    Park, D.K.; Kim, Y.J.; Ahn, M.C.; Yang, S.E.; Seok, B.-Y.; Ko, T.K.

    2007-01-01

    Superconducting fault current limiters (SFCLs) have been developed in many countries, and they are expected to be used in the recent electric power systems, because of their great efficiency for operating these power system stably. It is necessary for resistive FCLs to generate resistance immediately and to have a fast recovery characteristic after the fault clearance, because of re-closing operation. Short-circuit tests are performed to obtained current limiting operational and recovery characteristics of the FCL by a fault controller using a power switching device. The power switching device consists of anti-parallel connected thyristors. The fault occurs at the desired angle by controlling the firing angle of thyristors. Resistive SFCLs have different current limiting characteristics with respect to the fault angle in the first swing during the fault. This study deals with the short-circuit characteristic of FCL coils using two different YBCO coated conductors (CCs), 344 and 344s, by controlling the fault angle and experimental studies on the recovery characteristic by a small current flowing through the SFCL after the fault clearance. Tests are performed at various voltages applied to the SFCL in a saturated liquid nitrogen cooling system

  19. LS1 Report: short-circuit tests

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    As the LS1 draws to an end, teams move from installation projects to a phase of intense testing. Among these are the so-called 'short-circuit tests'. Currently under way at Point 7, these tests verify the cables, the interlocks, the energy extraction systems, the power converters that provide current to the superconducting magnets and the cooling system.   Thermal camera images taken during tests at point 4 (IP4). Before putting beam into the LHC, all of the machine's hardware components need to be put to the test. Out of these, the most complicated are the superconducting circuits, which have a myriad of different failure modes with interlock and control systems. While these will be tested at cold - during powering tests to be done in August - work can still be done beforehand. "While the circuits in the magnets themselves cannot be tested at warm, what we can do is verify the power converter and the circuits right up to the place the cables go into the magn...

  20. Adrenomedullin increases the short-circuit current in the rat prostate: Receptors, chloride channels, the effects of cAMP and calcium ions and implications on fluid secretion.

    Science.gov (United States)

    Liao, S B; Cheung, K H; Cheung, M P L; Wong, P F; O, W S; Tang, F

    2014-05-01

    In this study, we have investigated the effects of adrenomedullin on chloride and fluid secretion in the rat prostate. The presence of adrenomedullin (ADM) in rat prostate was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with an enzyme-linked assay for ADM. The effects of ADM on fluid secretion were studied by short-circuit current technique in a whole mount preparation of the prostate in an Ussing chamber. The results indicated that the ADM level was higher in the ventral than the dorso-lateral prostate and the major molecular species was the active peptide. ADM increased the short-circuit current through both the cAMP- and calcium-activated chloride channels in the ventral lobe, but only through the calcium-activated channels in the dorso-lateral lobe. These stimulatory effects were blocked by the calcitonin gene-related peptide (CGRP) receptor antagonist, hCGRP8-37. We conclude that ADM may regulate prostatic fluid secretion through the chloride channels, which may affect the composition of the seminal plasma bathing the spermatozoa and hence fertility. © 2014 American Society of Andrology and European Academy of Andrology.

  1. The Short Circuit Model of Reading.

    Science.gov (United States)

    Lueers, Nancy M.

    The name "short circuit" has been given to this model because, in many ways, it adequately describes what happens bioelectrically in the brain. The "short-circuiting" factors include linguistic, sociocultural, attitudinal and motivational, neurological, perceptual, and cognitive factors. Research is reviewed on ways in which each one affects any…

  2. Short circuit in deep brain stimulation.

    Science.gov (United States)

    Samura, Kazuhiro; Miyagi, Yasushi; Okamoto, Tsuyoshi; Hayami, Takehito; Kishimoto, Junji; Katano, Mitsuo; Kamikaseda, Kazufumi

    2012-11-01

    The authors undertook this study to investigate the incidence, cause, and clinical influence of short circuits in patients treated with deep brain stimulation (DBS). After the incidental identification of a short circuit during routine follow-up, the authors initiated a policy at their institution of routinely evaluating both therapeutic impedance and system impendence at every outpatient DBS follow-up visit, irrespective of the presence of symptoms suggesting possible system malfunction. This study represents a report of their findings after 1 year of this policy. Implanted DBS leads exhibiting short circuits were identified in 7 patients (8.9% of the patients seen for outpatient follow-up examinations during the 12-month study period). The mean duration from DBS lead implantation to the discovery of the short circuit was 64.7 months. The symptoms revealing short circuits included the wearing off of therapeutic effect, apraxia of eyelid opening, or dysarthria in 6 patients with Parkinson disease (PD), and dystonia deterioration in 1 patient with generalized dystonia. All DBS leads with short circuits had been anchored to the cranium using titanium miniplates. Altering electrode settings resulted in clinical improvement in the 2 PD cases in which patients had specific symptoms of short circuits (2.5%) but not in the other 4 cases. The patient with dystonia underwent repositioning and replacement of a lead because the previous lead was located too anteriorly, but did not experience symptom improvement. In contrast to the sudden loss of clinical efficacy of DBS caused by an open circuit, short circuits may arise due to a gradual decrease in impedance, causing the insidious development of neurological symptoms via limited or extended potential fields as well as shortened battery longevity. The incidence of short circuits in DBS may be higher than previously thought, especially in cases in which DBS leads are anchored with miniplates. The circuit impedance of DBS

  3. Short-circuit experiments on a high Tc-superconducting cable conductor

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Jensen, E.H.; Traholt, C.

    2002-01-01

    A high temperature superconductor (HTS) cable conductor (CC) with a critical current of 2.1 kA was tested over a range of short-circuit currents up to 20 kA. The duration of the short-circuit currents is 1 s. Between each short-circuit test the critical current of the HTS CC was measured in order...

  4. 30 CFR 75.518-2 - Incandescent lamps, overload and short circuit protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Incandescent lamps, overload and short circuit...-General § 75.518-2 Incandescent lamps, overload and short circuit protection. Incandescent lamps installed... or direct current feeder circuits, need not be provided with separate short circuit or overload...

  5. Improvement of Short-Circuit Current Density in Dye-Sensitized Solar Cells Using Sputtered Nanocolumnar TiO2 Compact Layer

    Directory of Open Access Journals (Sweden)

    Lung-Chien Chen

    2010-01-01

    Full Text Available The effect of a nanocolumnar TiO2 compact layer in dye-sensitized solar cells (DSSCs was examined. Such a compact layer was sputtered on a glass substrate with an indium tin oxide (ITO film using TiO2 powder as the raw material, with a thickness of ~100 nm. The compact layer improved the short-circuit current density and the efficiency of conversion of solar energy to electricity by the DSSC by 53.37% and 59.34%, yielding values of 27.33 mA/cm2 and 9.21%, respectively. The performance was attributed to the effective electron pathways in the TiO2 compact layer, which reduced the back reaction by preventing direct contact between the redox electrolyte and the conductive substrate.

  6. Adjustable direct current and pulsed circuit fault current limiter

    Science.gov (United States)

    Boenig, Heinrich J.; Schillig, Josef B.

    2003-09-23

    A fault current limiting system for direct current circuits and for pulsed power circuit. In the circuits, a current source biases a diode that is in series with the circuits' transmission line. If fault current in a circuit exceeds current from the current source biasing the diode open, the diode will cease conducting and route the fault current through the current source and an inductor. This limits the rate of rise and the peak value of the fault current.

  7. Improved Short-Circuit Protection for Power Cells in Series

    Science.gov (United States)

    Davies, Francis

    2008-01-01

    A scheme for protection against short circuits has been devised for series strings of lithium electrochemical cells that contain built-in short-circuit protection devices, which go into a high-resistance, current-limiting state when heated by excessive current. If cells are simply connected in a long series string to obtain a high voltage and a short circuit occurs, whichever short-circuit protection device trips first is exposed to nearly the full string voltage, which, typically, is large enough to damage the device. Depending on the specific cell design, the damage can defeat the protective function, cause a dangerous internal short circuit in the affected cell, and/or cascade to other cells. In the present scheme, reverse diodes rated at a suitably high current are connected across short series sub-strings, the lengths of which are chosen so that when a short-circuit protection device is tripped, the voltage across it does not exceed its rated voltage. This scheme preserves the resetting properties of the protective devices. It provides for bypassing of cells that fail open and limits cell reversal, though not as well as does the more-expensive scheme of connecting a diode across every cell.

  8. Capacitive short circuit detection in transformer core laminations

    International Nuclear Information System (INIS)

    Schulz, Carl A.; Duchesne, Stephane; Roger, Daniel; Vincent, Jean-Noel

    2008-01-01

    A capacitive measurement procedure is proposed that serves to detect burr-induced short circuits in transformer core laminations. The tests are conducted on stacks of transformer steel sheets as used for transformer core production and yield a short-circuit probability indicative of the additional eddy current losses to be expected. Applied during the assembly of transformer cores, the measurements can help to decide whether the burr treatment process is working efficiently or has to be readjusted

  9. Effects of arginine vasotocin and mesotocin on the activation and development of amiloride-blockable short-circuit current across larval, adult, and cultured larval bullfrog skins.

    Science.gov (United States)

    Takada, Makoto; Fujimaki-Aoba, Kayo; Hokari, Shigeru

    2010-03-01

    Amphibian skin has osmoregulatory functions, with Na(+) crossing from outside to inside. Na(+) transport can be measured as the short-circuit current (SCC). We investigated the short-term and long-term effects of arginine vasotocin (AVT) and mesotocin (MT) (which modulate Na(+) transport) on the activation and development of an amiloride-blockable SCC (adult-type feature) in larval, adult, and corticoid-cultured larval bullfrog skins. We found: (1) AVT-receptor (AVT-R) and MT-receptor (MT-R) mRNAs could be detected in both larval and adult skins, (2) in the short term (within 60 min), the larval SCC (amiloride-stimulated SCC) was increased by AVT, forskolin, and MT, suggesting that AVT and MT did not activate the inactive ENaC (epithelial sodium channel) protein thought to be expressed in larval skin, (3) in the short term (within 90 min), AVT, forskolin, and MT stimulated the adult SCC (amiloride-blockable SCC), (4) AVT and MT increased both the larval and adult SCC via receptors insensitive to OPC-21268 (an antagonist of the V(1)-type receptor), OPC-31260 (an antagonist of the V(2)-type receptor), and ([d(CH(2))(5),Tyr(Me)(2),Thr(4),Orn(8),des-Gly-NH (2) (9) ]VT) (an antagonist of the oxytocin receptor), (5) culturing EDTA-treated larval skin with corticoids supplemented with AVT (1 microM) or MT (1 microM) for 2 weeks (long-term effects of AVT and MT) did not alter the corticoid-induced development of an amiloride-blockable SCC (adult-type feature). AVT and MT thus have the potential to stimulate SCC though channels that are already expressed, but they may not influence the development of the amiloride-blockable SCC (an adult-type feature) in larval skin.

  10. Short-circuited coil in a solenoid circuit of a pulse magnetic field

    International Nuclear Information System (INIS)

    Kivshik, A.F.; Dubrovin, V.Yu.

    1976-01-01

    A short-circuited coil at the end of a long pulse solenoid attenuates the dissipation field by 3-5 times. A plug-configuration field is set up in the middle portion of the pulse solenoid incorporating the short-circuited coils. Shunting of the coils with the induction current by resistor Rsub(shunt) provides for the adjustment of the plug ratio γ

  11. The short-circuit test results of 6.9 kV/2.3 kV 400 kVA-class YBCO model transformer with fault current limiting function

    International Nuclear Information System (INIS)

    Tomioka, A.; Bohno, T.; Kakami, S.; Isozaki, M.; Watanabe, K.; Toyama, K.; Sugiyama, S.; Konno, M.; Gosho, Y.; Okamoto, H.; Hayashi, H.; Tsutsumi, T.; Iwakuma, M.; Saito, T.; Tanabe, K.; Shiohara, Y.

    2013-01-01

    Highlights: ► We manufactured the 400 kV A-class YBCO model transformer with FCL function. ► Short-circuit test was performed by applying 6.9 kV on primary side. ► The short-circuit current was limited to 174 A for a prospective current of 559 A. ► It agreed with the design and we also confirmed the I c did not degrade. ► The results suggest the possibility to design YBCO transformers with FCL function. -- Abstract: We are developing an elemental technology for 66/6.9 kV 20 MVA-class superconducting power transformer with fault current limiting function. In order to obtain the characteristics of YBCO conductor when the AC over current supplied to the conductor, the model coils were manufactured with YBCO tapes and tested. Based on these results, we manufactured the 6.9 kV/2.3 kV 400 kVA-class YBCO model transformer with fault current limiting function and performed short-circuit test. At the 0.25 s after short-circuit, the short-circuit current of primary winding was limited to about 174 A for a prospective current of 559 A. It was consistent with the design. The I–V characteristics of the winding did not change before and after the test. We consider the model transformer to be able to withstand AC over-current with the function of current limiting. The results suggest the possibility to design YBCO superconducting transformers with fault current limiting function for practical power grid

  12. Three-phase short circuit calculation method based on pre-computed surface for doubly fed induction generator

    Science.gov (United States)

    Ma, J.; Liu, Q.

    2018-02-01

    This paper presents an improved short circuit calculation method, based on pre-computed surface to determine the short circuit current of a distribution system with multiple doubly fed induction generators (DFIGs). The short circuit current, injected into power grid by DFIG, is determined by low voltage ride through (LVRT) control and protection under grid fault. However, the existing methods are difficult to calculate the short circuit current of DFIG in engineering practice due to its complexity. A short circuit calculation method, based on pre-computed surface, was proposed by developing the surface of short circuit current changing with the calculating impedance and the open circuit voltage. And the short circuit currents were derived by taking into account the rotor excitation and crowbar activation time. Finally, the pre-computed surfaces of short circuit current at different time were established, and the procedure of DFIG short circuit calculation considering its LVRT was designed. The correctness of proposed method was verified by simulation.

  13. Tester Detects Steady-Short Or Intermittent-Open Circuits

    Science.gov (United States)

    Anderson, Bobby L.

    1990-01-01

    Momentary open circuits or steady short circuits trigger buzzer. Simple, portable, lightweight testing circuit sounds long-duration alarm when it detects steady short circuit or momentary open circuit in coaxial cable or other two-conductor transmission line. Tester sensitive to discontinuities lasting 10 microseconds or longer. Used extensively for detecting intermittent open shorts in accelerometer and extensometer cables. Also used as ordinary buzzer-type continuity checker to detect steady short or open circuits.

  14. Effects of tetrodotoxin and ion replacements on the short-circuit current induced by Escherichiacoli heat stable enterotoxin across small intestine of the gerbil (Gerbillus cheesmani

    Directory of Open Access Journals (Sweden)

    Fawzia Yaqoub Al-Balool

    2004-03-01

    Full Text Available The effects of mucosally added Escherichia coli heat stable enterotoxin (STa 30 ng ml-1 on the basal short-circuit current (Isc in µA cm-2 across stripped and unstripped sheets of jejuna and ilea taken from fed, starved (4 days, water ad lib and undernourished (50% control food intake for 21 days gerbil (Gerbillus cheesmani were investigated. The effect of neurotoxin tetrodotoxin (TTX 10 µM and the effects of replacing chloride by gluconate or the effects of removing bicarbonate from bathing buffers on the maximum increase in Isc induced by STa were also investigated. The maximum increase in Isc which resulted from the addition of STa were significantly higher in jejuna and ilea taken from starved and undernourished gerbils when compared with the fed control both using stripped and unstripped sheets. In the two regions of the small intestine taken from fed and starved animals TTX reduced the maximum increase in Isc induced by STa across unstripped sheets only. Moreover in jejuna and ilea taken from undernourished gerbils TTX reduced significantly the maximum increase in Isc induced by STa across stripped and unstripped sheets. Replacing chloride by gluconate decreased the maximum increase in Isc induced by STa across jejuna and ilea taken from undernourished gerbils only. Removing bicarbonates from bathing buffer decreased the maximum increase in Isc across the jejuna and ilea taken from starved and undernourished gerbils.

  15. Calculations of the displacement damage and short-circuit current degradation in proton irradiated (AlGa)As-GaAs solar cells

    Science.gov (United States)

    Yeh, C. S.; Li, S. S.; Loo, R. Y.

    1987-01-01

    A theoretical model for computing the displacement damage defect density and the short-circuit current (I sub sc) degradation in proton-irradiated (AlGa)As-GaAs p-n junction solar cells is presented. Assumptions were made with justification that the radiation induced displacement defects form an effective recombination center which controls the electron and hole lifetimes in the junction space charge region and in the n-GaAs active layer of the irradiated GaAs p-n junction cells. The degradation of I sub sc in the (AlGa)As layer was found to be negligible compared to the total degradation. In order to determine the I sub sc degradation, the displacement defect density, path length, range, reduced energy after penetrating a distance x, and the average number of displacements formed by one proton scattering event were first calculated. The I sub sc degradation was calculated by using the electron capture cross section in the p-diffused layer and the hole capture cross section in the n-base layer as well as the wavelength dependent absorption coefficients. Excellent agreement was found between the researchers calculated values and the measured I sub sc in the proton irradiated GaAs solar cells for proton energies of 100 KeV to 10 MeV and fluences from 10 to the 10th power p/square cm to 10 to the 12th power p/square cm.

  16. The short circuit current improvement in P3HT:PCBM based polymer solar cell by introducing PSBTBT as additional electron donor.

    Science.gov (United States)

    Sun, Lu; Shen, Liang; Mengd, Fanxu; Xu, Peng; Guo, Wenbin; Ruan, Shengping

    2014-05-01

    Here we demonstrate the influence of electron-donating polymer addition on the performance of poly(3-hexylthiophene) (P3HT):1 -(3-methoxycarbonyl)-propyl-1-phenyl-(6,6) C61 (PCBM) solar cells. Poly[(4,42-bis(2-ethylhexyl) dithieno [3,2-b:22,32-d] silole)-2,6-diylalt-(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT) was chosen as the electron-donating polymer to improve the short circuit current (J(sc)) due to its distinct absorption in the near-IR range and similar HOMO level with that of P3HT. In the study, we found that J(sc) was improved for ternary blend (P3HT:PSBTBT:PCBM) solar cells. The dependence of device performance was investigated. J(sc) got decreased with increasing the ratio of PSBTBT. Result showed that J(sc) of ternary blend solar cells was improved greatly after thermal annealing at 150 degrees C, close to that of the binary blend (PSBTBT:PCBM) solar cells.

  17. 30 CFR 75.601-1 - Short circuit protection; ratings and settings of circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit protection; ratings and settings... Trailing Cables § 75.601-1 Short circuit protection; ratings and settings of circuit breakers. Circuit breakers providing short circuit protection for trailing cables shall be set so as not to exceed the...

  18. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Science.gov (United States)

    2010-07-01

    ... short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the correct type and capacity shall be installed so as to protect all electric equipment and circuits against short...

  19. 30 CFR 75.518 - Electric equipment and circuits; overload and short circuit protection.

    Science.gov (United States)

    2010-07-01

    ... short circuit protection. 75.518 Section 75.518 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.518 Electric equipment and circuits; overload and short circuit protection... installed so as to protect all electric equipment and circuits against short circuit and overloads. Three...

  20. Bumetanide increases Cl--dependent short-circuit current in late distal colon: Evidence for the presence of active electrogenic Cl- absorption.

    Science.gov (United States)

    Tang, Lieqi; Fang, Xiefan; Winesett, Steven P; Cheng, Catherine Y; Binder, Henry J; Rivkees, Scott A; Cheng, Sam X

    2017-01-01

    Mammalian colonic epithelia consist of cells that are capable of both absorbing and secreting Cl-. The present studies employing Ussing chamber technique identified two opposing short-circuit current (Isc) responses to basolateral bumetanide in rat distal colon. Apart from the transepithelial Cl--secretory Isc in early distal colon that was inhibited by bumetanide, bumetanide also stimulated Isc in late distal colon that had not previously been identified. Since bumetanide inhibits basolateral Na+-K+-2Cl- cotransporter (NKCC) in crypt cells and basolateral K+-Cl- cotransporter (KCC) in surface epithelium, we proposed this stimulatory Isc could represent a KCC-mediated Cl- absorptive current. In support of this hypothesis, ion substitution experiments established Cl- dependency of this absorptive Isc and transport inhibitor studies demonstrated the involvement of an apical Cl- conductance. Current distribution and RNA sequencing analyses revealed that this Cl- absorptive Isc is closely associated with epithelial Na+ channel (ENaC) but is not dependent on ENaC activity. Thus, inhibition of ENaC by 10 μM amiloride or benzamil neither altered the direction nor its activity. Physiological studies suggested that this Cl- absorptive Isc senses dietary Cl- content; thus when dietary Cl- was low, Cl- absorptive Isc was up-regulated. In contrast, when dietary Cl- was increased, Cl- absorptive Isc was down-regulated. We conclude that an active Cl- extrusion mechanism exists in ENaC-expressing late distal colon and likely operates in parallel with ENaC to facilitate NaCl absorption.

  1. An Icepak-PSpice Co-Simulation Method to Study the Impact of Bond Wires Fatigue on the Current and Temperature Distribution of IGBT Modules under Short-Circuit

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2014-01-01

    Bond wires fatigue is one of the dominant failure mechanisms of IGBT modules. Prior-art research mainly focuses on its impact on the end-of-life failure, while its effect on the short-circuit capability of IGBT modules is still an open issue. This paper proposes a new electro-thermal simulation...... approach enabling analyze the impact of the bond wires fatigue on the current and temperature distribution on IGBT chip surface under short-circuit. It is based on an Icepack-PSpice co-simulation by taking the advantage of both a finite element thermal model and an advanced PSpice-based multi-cell IGBT...

  2. The short-circuit concept used in field equivalence principles

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1990-01-01

    In field equivalence principles, electric and magnetic surface currents are specified and considered as impressed currents. Often the currents are placed on perfect conductors. It is shown that these currents can be treated through two approaches. The first approach is decomposition of the total...... field into partial fields caused by the individual impressed currents. When this approach is used, it is shown that, on a perfect electric (magnetic) conductor, impressed electric (magnetic) surface currents are short-circuited. The second approach is to note that, since Maxwell's equations...... and the boundary conditions are satisfied, none of the impressed currents is short-circuited and no currents are induced on the perfect conductors. Since all currents and field quantities are considered at the same time, this approach is referred to as the total-field approach. The partial-field approach leads...

  3. 30 CFR 56.12065 - Short circuit and lightning protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit and lightning protection. 56... Electricity § 56.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...

  4. 30 CFR 57.12065 - Short circuit and lightning protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit and lightning protection. 57... MINES Electricity Surface Only § 57.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...

  5. Experimental study on short-circuit characteristics of the new protection circuit of insulated gate bipolar transistor

    International Nuclear Information System (INIS)

    Ji, In-Hwan; Choi, Young-Hwan; Ha, Min-Woo; Han, Min-Koo; Choi, Yearn-Ik

    2006-01-01

    A new protection circuit employing the collector to emitter voltage (V CE ) sensing scheme for short-circuit withstanding capability of the insulated gate bipolar transistor (IGBT) is proposed and verified by experimental results. Because the current path between the gate and collector can be successfully eliminated in the proposed protection circuit, the power consumption can be reduced and the gate input impedance can be increased. Previous study is limited to dc characteristics. However, experimental results show that the proposed protection circuit successfully reduces the over-current of main IGBT by 80.4% under the short-circuit condition

  6. Short circuit protection for a power distribution system

    Science.gov (United States)

    Owen, J. R., III

    1969-01-01

    Sensing circuit detects when the output from a matrix is present and when it should be present. The circuit provides short circuit protection for a power distribution system where the selection of the driven load is accomplished by digital logic.

  7. Investigation on the Short Circuit Safe Operation Area of SiC MOSFET Power Modules

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Luo, Haoze; Iannuzzo, Francesco

    2016-01-01

    This paper gives a better insight of the short circuit capability of state-of-the-art SiC MOSFET power modules rated at 1.2 kV by highlighting the physical limits under different operating conditions. Two different failure mechanisms have been identified, both reducing the short-circuit capability...... of SiC power modules in respect to discrete SiC devices. Based on such failure mechanisms, two short circuit criteria (i.e., short circuit current-based criterion and gate voltage-based criterion) are proposed in order to ensure their robustness under short-circuit conditions. A Safe Operation Area (SOA...

  8. A Short-Circuit Safe Operation Area Identification Criterion for SiC MOSFET Power Modules

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Luo, Haoze

    2017-01-01

    This paper proposes a new method for the investigation of the short-circuit safe operation area (SCSOA) of state-of-the-art SiC MOSFET power modules rated at 1.2 kV based on the variations in SiC MOSFET electrical parameters (e.g., short-circuit current and gate–source voltage). According...... to the experimental results, two different failure mechanisms have been identified, both reducing the short-circuit capability of SiC power modules with respect to discrete SiC devices. Based on such failure mechanisms, two short-circuit safety criteria have been formulated: 1) the short-circuit...

  9. Short Circuit Tests First Step of LHC Hardware Commissioning Completion

    CERN Document Server

    Barbero-Soto, E; Bordry, Frederick; Casas Lino, M P; Coelingh, G J; Cumer, G; Dahlerup-Petersen, K; Guillaume, J C; Inigo-Golfin, J; Montabonnet, V; Nisbet, D; Pojer, M; Principe, R; Rodríguez-Mateos, F; Saban, R; Schmidt, R; Thiesen, H; Vergara-Fernández, A; Zerlauth, M; Castaneda Serra, A; Romera Ramirez, I

    2008-01-01

    For the two counter rotating beams in the Large Hadron Collider (LHC) about 8000 magnets (main dipole and quadrupole magnets, corrector magnets, separation dipoles, matching section quadrupoles etc.) are powered in about 1500 superconducting electrical circuits. The magnets are powered by power converters that have been designed for the LHC with a current between 60 and 13000A. Between October 2005 and September 2007 the so-called Short Circuit Tests were carried-out in 15 underground zones where the power converters of the superconducting circuits are placed. The tests aimed to qualify the normal conducting equipments of the circuits such as power converters and normal conducting high current cables. The correct operation of interlock and energy extraction systems was validated. The infrastructure systems including AC distribution, water and air cooling and the control systems was also commissioned. In this paper the results of the two year test campaign are summarized with particular attention to problems e...

  10. Automatic location of short circuit faults

    Energy Technology Data Exchange (ETDEWEB)

    Lehtonen, M. [VTT Energy, Espoo (Finland); Hakola, T.; Antila, E. [ABB Power Oy, Helsinki (Finland); Seppaenen, M. [North-Carelian Power Company (Finland)

    1996-12-31

    In this presentation, the automatic location of short circuit faults on medium voltage distribution lines, based on the integration of computer systems of medium voltage distribution network automation is discussed. First the distribution data management systems and their interface with the substation telecontrol, or SCADA systems, is studied. Then the integration of substation telecontrol system and computerised relay protection is discussed. Finally, the implementation of the fault location system is presented and the practical experience with the system is discussed

  11. Automatic location of short circuit faults

    Energy Technology Data Exchange (ETDEWEB)

    Lehtonen, M [VTT Energy, Espoo (Finland); Hakola, T; Antila, E [ABB Power Oy (Finland); Seppaenen, M [North-Carelian Power Company (Finland)

    1998-08-01

    In this chapter, the automatic location of short circuit faults on medium voltage distribution lines, based on the integration of computer systems of medium voltage distribution network automation is discussed. First the distribution data management systems and their interface with the substation telecontrol, or SCADA systems, is studied. Then the integration of substation telecontrol system and computerized relay protection is discussed. Finally, the implementation of the fault location system is presented and the practical experience with the system is discussed

  12. Automatic location of short circuit faults

    Energy Technology Data Exchange (ETDEWEB)

    Lehtonen, M [VTT Energy, Espoo (Finland); Hakola, T; Antila, E [ABB Power Oy, Helsinki (Finland); Seppaenen, M [North-Carelian Power Company (Finland)

    1997-12-31

    In this presentation, the automatic location of short circuit faults on medium voltage distribution lines, based on the integration of computer systems of medium voltage distribution network automation is discussed. First the distribution data management systems and their interface with the substation telecontrol, or SCADA systems, is studied. Then the integration of substation telecontrol system and computerised relay protection is discussed. Finally, the implementation of the fault location system is presented and the practical experience with the system is discussed

  13. Development of a safety case for the use of current limiting devices to manage short circuit currents on electrical distribution networks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The original objective of this study was to review the safety issues associated with the use of current limiting devices and to write a risk assessment in accordance with good practice. But, when legislative procedures became apparent, the scope was changed to include involvement with the HSE, the DTI and Ofgem. It turned out that it would have been very difficult to write a safety case that would satisfy all of the agencies, or a risk assessment that would cover all applications. The scope of the study was therefore changed to focus on how the existing barriers should be tackled and the implications of the existing legislation. The approach to the study is described; it included reviews of background information and literature, questionnaires to manufacturers, a review of the reliability and hazards of the devices, and a review of UK safety legislation. The Final Report describes all this and includes discussion on the consequences of failure of fault current limiting devices, control measures which could be used to minimise risk, and recommendations for a way forward.

  14. Synchronous Condenser Allocation for Improving System Short Circuit Ratio

    DEFF Research Database (Denmark)

    Jia, Jundi; Yang, Guangya; Nielsen, Arne Hejde

    2018-01-01

    With converter-based renewable energy sources increasingly integrated into power systems and conventional power plants gradually phased out, future power systems will experience reduced short circuit strength. The deployment of synchronous condensers can serve as a potential solution. This paper...... presents an optimal synchronous condenser allocation method for improving system short circuit ratio at converter point of common coupling using a modified short circuit analysis approach. The total cost of installing new synchronous condensers is minimized while the system short circuit ratios...

  15. Error Mitigation for Short-Depth Quantum Circuits

    Science.gov (United States)

    Temme, Kristan; Bravyi, Sergey; Gambetta, Jay M.

    2017-11-01

    Two schemes are presented that mitigate the effect of errors and decoherence in short-depth quantum circuits. The size of the circuits for which these techniques can be applied is limited by the rate at which the errors in the computation are introduced. Near-term applications of early quantum devices, such as quantum simulations, rely on accurate estimates of expectation values to become relevant. Decoherence and gate errors lead to wrong estimates of the expectation values of observables used to evaluate the noisy circuit. The two schemes we discuss are deliberately simple and do not require additional qubit resources, so to be as practically relevant in current experiments as possible. The first method, extrapolation to the zero noise limit, subsequently cancels powers of the noise perturbations by an application of Richardson's deferred approach to the limit. The second method cancels errors by resampling randomized circuits according to a quasiprobability distribution.

  16. Logarithmic current-measuring transistor circuits

    DEFF Research Database (Denmark)

    Højberg, Kristian Søe

    1967-01-01

    Describes two transistorized circuits for the logarithmic measurement of small currents suitable for nuclear reactor instrumentation. The logarithmic element is applied in the feedback path of an amplifier, and only one dual transistor is used as logarithmic diode and temperature compensating...... transistor. A simple one-amplifier circuit is compared with a two-amplifier system. The circuits presented have been developed in connexion with an amplifier using a dual m.o.s. transistor input stage with diode-protected gates....

  17. On-Demand Cell Internal Short Circuit Device

    Science.gov (United States)

    Darcy, Eric; Keyser, Matthew

    2014-01-01

    A device implantable in Li-ion cells that can generate a hard internal short circuit on-demand by exposing the cell to 60?C has been demonstrated to be valuable for expanding our understanding of cell responses. The device provides a negligible impact to cell performance and enables the instigation of the 4 general categories of cell internal shorts to determine relative severity and cell design susceptibility. Tests with a 18650 cell design indicates that the anode active material short to the aluminum cathode current collector tends to be more catastrophic than the 3 other types of internal shorts. Advanced safety features (such as shutdown separators) to prevent or mitigate the severity of cell internal shorts can be verified with this device. The hard short success rate achieved to date in 18650 cells is about 80%, which is sufficient for using these cells in battery assemblies for field-failure-relevant, cell-cell thermal runaway propagation verification tests

  18. High voltage short plus generation based on avalanche circuit

    International Nuclear Information System (INIS)

    Hu Yuanfeng; Yu Xiaoqi

    2006-01-01

    Simulate the avalanche circuit in series with PSPICE module, design the high voltage short plus generation circuit by avalanche transistor in series for the sweep deflection circuit of streak camera. The output voltage ranges 1.2 KV into 50 ohm load. The rise time of the circuit is less than 3 ns. (authors)

  19. A Comprehensive Investigation on the Short Circuit Performance of MW-level IGBT Power Modules

    DEFF Research Database (Denmark)

    Wu, Rui; Reigosa, Paula Diaz; Iannuzzo, Francesco

    2015-01-01

    This paper investigates the short circuit performance of commercial 1.7 kV / 1 kA IGBT power modules by means of a 6 kA Non-Destructive-Tester. A mismatched current distribution among the parallel chips has been observed, which can reduce the short circuit capability of the IGBT power module unde...... short circuit conditions. Further Spice simulations reveal that the stray parameters inside the module play an important role in contributing to such a phenomenon....

  20. Other origins for the fluorescence modulation of single dye molecules in open-circuit and short-circuit devices.

    Science.gov (United States)

    Teguh, Jefri S; Kurniawan, Michael; Wu, Xiangyang; Sum, Tze Chien; Yeow, Edwin K L

    2013-01-07

    Fluorescence intensity modulation of single Atto647N dye molecules in a short-circuit device and a defective device, caused by damaging an open-circuit device, is due to a variation in the excitation light focus as a result of the formation of an alternating electric current.

  1. Earth current monitoring circuit for inductive loads

    CERN Document Server

    Montabonnet, V; Thurel, Y; Cussac, P

    2010-01-01

    The search for higher magnetic fields in particle accelerators increasingly demands the use of superconducting magnets. This magnet technology has a large amount of magnetic energy storage during operation at relatively high currents. As such, many monitoring and protection systems are required to safely operate the magnet, including the monitoring of any leakage of current to earth in the superconducting magnet that indicates a failure of the insulation to earth. At low amplitude, the earth leakage current affects the magnetic field precision. At a higher level, the earth leakage current can additionally generate local losses which may definitively damage the magnet or its instrumentation. This paper presents an active earth fault current monitoring circuit, widely deployed in the converters for the CERN Large Hadron Collider (LHC) superconducting magnets. The circuit allows the detection of earth faults before energising the circuit as well as limiting any eventual earth fault current. The electrical stress...

  2. Cable Hot Shorts and Circuit Analysis in Fire Risk Assessment

    International Nuclear Information System (INIS)

    LaChance, Jeffrey; Nowlen, Steven P.; Wyant, Frank

    1999-01-01

    Under existing methods of probabilistic risk assessment (PRA), the analysis of fire-induced circuit faults has typically been conducted on a simplistic basis. In particular, those hot-short methodologies that have been applied remain controversial in regards to the scope of the assessments, the underlying methods, and the assumptions employed. To address weaknesses in fire PRA methodologies, the USNRC has initiated a fire risk analysis research program that includes a task for improving the tools for performing circuit analysis. The objective of this task is to obtain a better understanding of the mechanisms linking fire-induced cable damage to potentially risk-significant failure modes of power, control, and instrumentation cables. This paper discusses the current status of the circuit analysis task

  3. Device for testing continuity and/or short circuits in a cable

    Science.gov (United States)

    Hayhurst, Arthur R. (Inventor)

    1995-01-01

    A device for testing current paths is attachable to a conductor. The device automatically checks the current paths of the conductor for continuity of a center conductor, continuity of a shield and a short circuit between the shield and the center conductor. The device includes a pair of connectors and a circuit to provide for testing of the conductive paths of the cable. The pair of connectors electrically connects the conductive paths of a cable to be tested with the circuit paths of the circuit. The circuit paths in the circuit include indicators to simultaneously indicate the results of the testing.

  4. Wireless system for location of permanent faults by short circuit current monitoring in electric power distribution network; Sistema wireless para localizacao de faltas permanentes atraves da monitoracao da corrente de curto-circuito em redes de distribuicao de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Machado, A.G.; Correa, A.C.; Machado, R.N. das M.; Ferreira, A.M.D.; Pinto, J.A.C. [Instituto Federal de Educacao, Ciencia e Tecnologia do Para (IFPA), Belem, PA (Brazil)], E-mail: alcidesmachado000@yahoo.com.br; Barra Junior, W. [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Inst. de Tecnologia. Faculdade de Engenharia Eletrica], E-mail: walbarra@ufpa.br

    2009-07-01

    This paper presents the development of an automatic system for permanent short-circuits location in medium voltage (13.8 kV) electric power system distribution feeders, by indirect monitoring of the line current. When a permanent failure occurs, the developed system uses mobile telephony (GSM) text messages (SMS) to inform the power company operation center where the failure most likely took place. With this information in real time, the power company operation center may provide the network restoration in a faster and efficient way. (author)

  5. Relationships between body mass index and short-circuit current in human duodenal and colonic mucosal biopsies. Osbak PS, Bindslev N, Hansen MB. Acta Physiol (Oxf). 2011 Jan;201(1):47-53

    DEFF Research Database (Denmark)

    Osbak, Philip Samuel; Bindslev, Niels; Berner-Hansen, Mark

    2011-01-01

    Aim: Retrospectively, to investigate the relationship between body mass index (BMI) and basal electrogenic transport as measured by short-circuit current (SCC) in human duodenal and colonic mucosal biopsies. Methods: The study included biopsies from mucosa of normal appearance in the sigmoid colon...... and >25 kg m)2). Statistical significance was assessed by the unpaired t-test or Wilcoxon rank-sum test. Correlation coefficients were calculated by Pearson product moment correlation. Results: In colonic biopsies, basal SCC (mean standard deviation) was significantly higher in 59 biopsies from 30...

  6. Full Digital Short Circuit Protection for Advanced IGBTs

    OpenAIRE

    谷村, 拓哉; 湯浅, 一史; 大村, 一郎

    2011-01-01

    A full digital short circuit protection method for advanced IGBTs has been proposed and experimentally demonstrated for the first time. The method employs combination of digital circuit, the gate charge sense instead of the conventional sense IGBT and analog circuit configuration. Digital protection scheme has significant advantages in thevprotection speed and flexibility.

  7. A Simple Short Circuit Analysis for Power Networks

    Directory of Open Access Journals (Sweden)

    Koşalay İlhan

    2016-01-01

    Full Text Available This study investigates the transient behavior of short circuits in power circuits. The circuit consists of two part; input part and load part. These two parts are connected with a circuit breaker switch. The circuit works in two modes; first mode is when the switch is open and second mode is when the switch is closed. This study analyses the circuit when the switch is closed. The analysis is done with different types of closing angle. The analysis is done by forming state equations and those equations are solved numerically by using Matlab. The analysis and conclusion is performed by observing the behaviors of the graphs.

  8. Hybrid Direct-Current Circuit Breaker

    Science.gov (United States)

    Wang, Ruxi (Inventor); Premerlani, William James (Inventor); Caiafa, Antonio (Inventor); Pan, Yan (Inventor)

    2017-01-01

    A circuit breaking system includes a first branch including at least one solid-state snubber; a second branch coupled in parallel to the first branch and including a superconductor and a cryogenic contactor coupled in series; and a controller operatively coupled to the at least one solid-state snubber and the cryogenic contactor and programmed to, when a fault occurs in the load circuit, activate the at least one solid-state snubber for migrating flow of the electrical current from the second branch to the first branch, and, when the fault is cleared in the load circuit, activate the cryogenic contactor for migrating the flow of the electrical current from the first branch to the second branch.

  9. Short-Circuit Modeling of a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Gevorgian, V.

    2011-03-01

    This paper investigates the short-circuit behavior of a WPP for different types of wind turbines. The short-circuit behavior will be presented. Both the simplified models and detailed models are used in the simulations and both symmetrical faults and unsymmetrical faults are discussed.

  10. TCAD analysis of short-circuit oscillations in IGBTs

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Rahimo, Munaf

    2017-01-01

    Insulated-Gate Bipolar Transistors (IGBTs) exhibit a gate-voltage oscillation phenomenon during short-circuit, which can result in a gate-oxide breakdown. The oscillations have been investigated through device simulations and experimental investigations of a 3.3-kV IGBT. It has been found...... during short circuit....

  11. Analysis of High Power IGBT Short Circuit Failures

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, G.

    2005-02-11

    The Next Linear Collider (NLC) accelerator proposal at SLAC requires a highly efficient and reliable, low cost, pulsed-power modulator to drive the klystrons. A solid-state induction modulator has been developed at SLAC to power the klystrons; this modulator uses commercial high voltage and high current Insulated Gate Bipolar Transistor (IGBT) modules. Testing of these IGBT modules under pulsed conditions was very successful; however, the IGBTs failed when tests were performed into a low inductance short circuit. The internal electrical connections of a commercial IGBT module have been analyzed to extract self and mutual partial inductances for the main current paths as well as for the gate structure. The IGBT module, together with the partial inductances, has been modeled using PSpice. Predictions for electrical paths that carry the highest current correlate with the sites of failed die under short circuit tests. A similar analysis has been carried out for a SLAC proposal for an IGBT module layout. This paper discusses the mathematical model of the IGBT module geometry and presents simulation results.

  12. Current distribution characteristics of superconducting parallel circuits

    International Nuclear Information System (INIS)

    Mori, K.; Suzuki, Y.; Hara, N.; Kitamura, M.; Tominaka, T.

    1994-01-01

    In order to increase the current carrying capacity of the current path of the superconducting magnet system, the portion of parallel circuits such as insulated multi-strand cables or parallel persistent current switches (PCS) are made. In superconducting parallel circuits of an insulated multi-strand cable or a parallel persistent current switch (PCS), the current distribution during the current sweep, the persistent mode, and the quench process were investigated. In order to measure the current distribution, two methods were used. (1) Each strand was surrounded with a pure iron core with the air gap. In the air gap, a Hall probe was located. The accuracy of this method was deteriorated by the magnetic hysteresis of iron. (2) The Rogowski coil without iron was used for the current measurement of each path in a 4-parallel PCS. As a result, it was shown that the current distribution characteristics of a parallel PCS is very similar to that of an insulated multi-strand cable for the quench process

  13. 30 CFR 77.506-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... short circuit protection; minimum requirements. 77.506-1 Section 77.506-1 Mineral Resources MINE SAFETY...-1 Electric equipment and circuits; overload and short circuit protection; minimum requirements. Devices providing either short circuit protection or protection against overload shall conform to the...

  14. 30 CFR 75.518-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and short circuit protection; minimum requirements. 75.518-1 Section 75.518-1 Mineral Resources MINE SAFETY... short circuit protection; minimum requirements. A device to provide either short circuit protection or...

  15. Short-circuit protection of LLC resonant converter using voltages across resonant tank elements

    Directory of Open Access Journals (Sweden)

    Denys Igorovych Zaikin

    2015-06-01

    Full Text Available This paper describes two methods for the short-circuit protection of the LLC resonant converter. One of them uses the voltage across the capacitor and the other uses the voltage across the inductor of the resonant tank. These voltages can be processed (integrated or differentiated to recover the resonant tank current. The two circuits illustrated in the described methods make it possible to develop a robust LLC converter design and to avoid using lossy current measurement elements, such as a shunt resistor or current transformer. The methods also allow measuring resonant tank current without breaking high-current paths and connecting the measuring circuit in parallel with the inductor or capacitor of the resonant tank. Practical implementations of these indirect current measurements have been experimentally tested for the short-circuit protection of the 1600 W LLC converter.

  16. Mineral processing by short circuits in protoplanetary disks

    DEFF Research Database (Denmark)

    Mcnally, C.P.; Hubbard, A.; Mac Low, M.-M.

    2013-01-01

    Meteoritic chondrules were formed in the early solar system by brief heating of silicate dust to melting temperatures. Some highly refractory grains (Type B calcium-aluminum-rich inclusions, CAIs) also show signs of transient heating. A similar process may occur in other protoplanetary disks......, as evidenced by observations of spectra characteristic of crystalline silicates. One possible environment for this process is the turbulent magnetohydrodynamic flow thought to drive accretion in these disks. Such flows generally form thin current sheets, which are sites of magnetic reconnection, and dissipate...... the magnetic fields amplified by a disk dynamo. We suggest that it is possible to heat precursor grains for chondrules and other high-temperature minerals in current sheets that have been concentrated by our recently described short-circuit instability. We extend our work on this process by including...

  17. Performance of Llampuedken with short circuit and plasma loads

    International Nuclear Information System (INIS)

    Chuaqui, Hernan; Mitchell, Ian H.; Aliaga-Rossel, Raul; Favre, Mario; Wyndham, Edmund S.

    2002-01-01

    Llampuedken is a pulsed power generator designed to deliver a 1 MA, 250 ns risetime current pulse into a dense plasma load. The main novel feature of this generator is the two auxiliary transmission lines which transmit the energy not absorbed by the load, reflect it at the open end of the line and deliver it to the load when the energy from the main lines is decreasing. With the auxiliary lines an increase of 30% on the current as well as a decrease of the voltage at the load is obtained. To date Llampuedken has been operated up to the 400 kA level, into both short circuit and plasma loads. Details of actual performance of the pulse power generator are presented and compared with simulations

  18. Short circuit analysis of distribution system with integration of DG

    DEFF Research Database (Denmark)

    Su, Chi; Liu, Zhou; Chen, Zhe

    2014-01-01

    and as a result bring challenges to the network protection system. This problem has been frequently discussed in the literature, but mostly considering only the balanced fault situation. This paper presents an investigation on the influence of full converter based wind turbine (WT) integration on fault currents......Integration of distributed generation (DG) such as wind turbines into distribution system is increasing all around the world, because of the flexible and environmentally friendly characteristics. However, DG integration may change the pattern of the fault currents in the distribution system...... during both balanced and unbalanced faults. Major factors such as external grid short circuit power capacity, WT integration location, connection type of WT integration transformer are taken into account. In turn, the challenges brought to the protection system in the distribution network are presented...

  19. Discrimination Between Inrush and Short Circuit Currents in Differential Protection of Power Transformer Based on Correlation Method Using the Wavelet Transform

    OpenAIRE

    M. Rasoulpoor; M. Banejad; A. Ahmadyfard

    2011-01-01

    This paper presents a novel technique for transformer differential protection to prevent incorrect operation due to inrush current. The proposed method in this paper is based on time-frequency transform known as the Wavelet transform. The discrete Wavelet transform is used for analysis the differential current signals in time and frequency domains. The investigation on the energy distribution of the signal on the discrete Wavelet transform components shows the difference distribution between ...

  20. Apparatus including a plurality of spaced transformers for locating short circuits in cables

    Science.gov (United States)

    Cason, R. L.; Mcstay, J. J. (Inventor)

    1978-01-01

    A cable fault locator is described for sensing faults such as short circuits in power cables. The apparatus includes a plurality of current transformers strategically located along a cable. Trigger circuits are connected to each of the current transformers for placing a resistor in series with a resistive element responsive to an abnormally high current flowing through that portion of the cable. By measuring the voltage drop across the resistive element, the location of the fault can be determined.

  1. Utilization of symmetrical components in a communication-assisted protection scheme for radial MV feeders with variable or reduced short-circuit currents

    DEFF Research Database (Denmark)

    Ciontea, Catalin-Iosif; Bak, Claus Leth; Blaabjerg, Frede

    2017-01-01

    because the fault current is significantly lower in the islanded mode compared to the grid-connected mode and consequently a single set of settings for the OC relays is not sufficient. This paper propose a communication-assisted protection scheme that is able to operate correctly in a radial Medium...... over positive-sequence current, while the relays placed downstream the fault detect a zero magnitude for their corresponding ratios. Protection relays calculate the magnitude of the proposed ratio and then exchange the obtained value with the adjacent upstream relays using communication. Therefore......, each relay would have access to its own ratio and to the ratio provided by the adjacent relay. Finally, the relay with the highest calculated magnitude of the ratio of zero-sequence to positive-sequence current will trip, thus clearing the fault. The new protection scheme is implemented in a test...

  2. Addressing Circuitous Currents MVDC Power Systems Protection

    Science.gov (United States)

    2017-12-31

    Addressing Circuitous Currents MVDC Power Systems Protection 5b. GRANT NUMBER N00014-16-1-3113 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR($) Sd. PROJECT NUMBER...efficiency. A challenge with DC distribution is electrical protection . Z-source DC breakers alt! an pti n b&i g cvr.sidcrcd and this w rk ~xplores...zonal distribution, electric ship 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT u u u uu 18. NUMBER

  3. Simulation and experimental study on lithium ion battery short circuit

    International Nuclear Information System (INIS)

    Zhao, Rui; Liu, Jie; Gu, Junjie

    2016-01-01

    Highlights: • Both external and internal short circuit tests were performed on Li-ion batteries. • An electrochemical–thermal model with an additional nail site heat source is presented. • The model can accurately simulate the temperature variations of non-venting batteries. • The model is reliable in predicting the occurrence and start time of thermal runaway. • A hydrogel cooling system proves its strength in preventing battery thermal runaway. - Abstract: Safety is the first priority in lithium ion (Li-ion) battery applications. A large portion of electrical and thermal hazards caused by Li-ion battery is associated with short circuit. In this paper, both external and internal short circuit tests are conducted. Li-ion batteries and battery packs of different capacities are used. The results indicate that external short circuit is worse for smaller size batteries due to their higher internal resistances, and this type of short can be well managed by assembling fuses. In internal short circuit tests, higher chance of failure is found on larger capacity batteries. A modified electrochemical–thermal model is proposed, which incorporates an additional heat source from nail site and proves to be successful in depicting temperature changes in batteries. Specifically, the model is able to estimate the occurrence and approximate start time of thermal runaway. Furthermore, the effectiveness of a hydrogel based thermal management system in suppressing thermal abuse and preventing thermal runaway propagation is verified through the external and internal short tests on batteries and battery packs.

  4. MINERAL PROCESSING BY SHORT CIRCUITS IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    McNally, Colin P. [Niels Bohr International Academy, Niels Bohr Institute, DK-2100 Copenhagen (Denmark); Hubbard, Alexander; Mac Low, Mordecai-Mark [Department of Astrophysics, American Museum of Natural History, New York, NY 10024-5192 (United States); Ebel, Denton S. [Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY 10024-5192 (United States); D' Alessio, Paola, E-mail: cmcnally@nbi.dk, E-mail: ahubbard@amnh.org, E-mail: mordecai@amnh.org, E-mail: debel@amnh.org, E-mail: p.dalessio@crya.unam.mx [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, 58089 Morelia, MICH (Mexico)

    2013-04-10

    Meteoritic chondrules were formed in the early solar system by brief heating of silicate dust to melting temperatures. Some highly refractory grains (Type B calcium-aluminum-rich inclusions, CAIs) also show signs of transient heating. A similar process may occur in other protoplanetary disks, as evidenced by observations of spectra characteristic of crystalline silicates. One possible environment for this process is the turbulent magnetohydrodynamic flow thought to drive accretion in these disks. Such flows generally form thin current sheets, which are sites of magnetic reconnection, and dissipate the magnetic fields amplified by a disk dynamo. We suggest that it is possible to heat precursor grains for chondrules and other high-temperature minerals in current sheets that have been concentrated by our recently described short-circuit instability. We extend our work on this process by including the effects of radiative cooling, taking into account the temperature dependence of the opacity; and by examining current sheet geometry in three-dimensional, global models of magnetorotational instability. We find that temperatures above 1600 K can be reached for favorable parameters that match the ideal global models. This mechanism could provide an efficient means of tapping the gravitational potential energy of the protoplanetary disk to heat grains strongly enough to form high-temperature minerals. The volume-filling nature of turbulent magnetic reconnection is compatible with constraints from chondrule-matrix complementarity, chondrule-chondrule complementarity, the occurrence of igneous rims, and compound chondrules. The same short-circuit mechanism may perform other high-temperature mineral processing in protoplanetary disks such as the production of crystalline silicates and CAIs.

  5. Short Circuits of a 10 MW High Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2016-01-01

    Direct drive high temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits happen...... at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator’s equivalent circuits is developed to simulate short circuit faults. Afterwards, the model is used to study the transient performance of a 10 MW HTS wind turbine generator under four different short...... that the short circuits pose great challenges to the generator, and careful consideration should be given to protect the generator. The results presented in this paper would be beneficial to the design, operation and protection of an HTS wind turbine generator....

  6. The voltage—current relationship and equivalent circuit implementation of parallel flux-controlled memristive circuits

    International Nuclear Information System (INIS)

    Bao Bo-Cheng; Feng Fei; Dong Wei; Pan Sai-Hu

    2013-01-01

    A flux-controlled memristor characterized by smooth cubic nonlinearity is taken as an example, upon which the voltage—current relationships (VCRs) between two parallel memristive circuits — a parallel memristor and capacitor circuit (the parallel MC circuit), and a parallel memristor and inductor circuit (the parallel ML circuit) — are investigated. The results indicate that the VCR between these two parallel memristive circuits is closely related to the circuit parameters, and the frequency and amplitude of the sinusoidal voltage stimulus. An equivalent circuit model of the memristor is built, upon which the circuit simulations and experimental measurements of both the parallel MC circuit and the parallel ML circuit are performed, and the results verify the theoretical analysis results

  7. The short circuit instability in protoplanetary disks

    DEFF Research Database (Denmark)

    Hubbard, A.; McNally, C.P.; Mac Low, M.M.

    2013-01-01

    We introduce a magneto-hydrodynamic instability which occurs, among other locations, in the inner, hot regions of protoplanetary disks, and which alters the way in which resistive dissipation of magnetic energy into heat proceeds. This instability can be likened to both an electrical short circui...

  8. MOS Current Mode Logic Near Threshold Circuits

    Directory of Open Access Journals (Sweden)

    Alexander Shapiro

    2014-06-01

    Full Text Available Near threshold circuits (NTC are an attractive and promising technology that provides significant power savings with some delay penalty. The combination of NTC technology with MOS current mode logic (MCML is examined in this work. By combining MCML with NTC, the constant power consumption of MCML is reduced to leakage power levels that can be tolerated in certain modern applications. Additionally, the speed of NTC is improved due to the high speed nature of MCML technology. A 14 nm Fin field effect transistor (FinFET technology is used to evaluate these combined circuit techniques. A 32-bit Kogge Stone adder is chosen as a demonstration vehicle for feasibility analysis. MCML with NTC is shown to yield enhanced power efficiency when operated above 1 GHz with a 100% activity factor as compared to standard CMOS. MCML with NTC is more power efficient than standard CMOS beyond 9 GHz over a wide range of activity factors. MCML with NTC also exhibits significantly lower noise levels as compared to standard CMOS. The results of the analysis demonstrate that pairing NTC and MCML is efficient when operating at high frequencies and activity factors.

  9. [Electric short-circuit incident observed with "Upsher" laryngoscopes].

    Science.gov (United States)

    Tritsch, L; Vailly, B

    2006-01-01

    We observed an electrical short-circuit between a fasten screw of the printed circuit and the handle of an Upsher universal laryngoscope (serial number UQ1). The isolating Silicone layer was broken above the screw. This isolation defect was found all over our Upsher laryngoscopes of the UQ1 series. No doubt that if accumulators were used instead of batteries, emitted heat would be in largest amount and perhaps dangerous.

  10. Capacitive effects in IGBTs limiting their reliability under short circuit

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Rahimo, Munaf

    2017-01-01

    The short-circuit oscillation mechanism in IGBTs is investigated in this paper by the aid of semiconductor device simulation tools. A 3.3-kV IGBT cell has been used for the simulations demonstrating that a single IGBT cell is able to oscillate together with the external circuit parasitic elements....... The work presented here through both circuit and device analysis, confirms that the oscillations can be understood with focus on the device capacitive effects coming from the interaction between carrier concentration and the electric field. The paper also shows the 2-D effects during one oscillation cycle...

  11. Detection Method for Soft Internal Short Circuit in Lithium-Ion Battery Pack by Extracting Open Circuit Voltage of Faulted Cell

    Directory of Open Access Journals (Sweden)

    Minhwan Seo

    2018-06-01

    Full Text Available Early detection of internal short circuit which is main cause of thermal runaway in a lithium-ion battery is necessary to ensure battery safety for users. As a promising fault index, internal short circuit resistance can directly represent degree of the fault because it describes self-discharge phenomenon caused by the internal short circuit clearly. However, when voltages of individual cells in a lithium-ion battery pack are not provided, the effect of internal short circuit in the battery pack is not readily observed in whole terminal voltage of the pack, leading to difficulty in estimating accurate internal short circuit resistance. In this paper, estimating the resistance with the whole terminal voltages and the load currents of the pack, a detection method for the soft internal short circuit in the pack is proposed. Open circuit voltage of a faulted cell in the pack is extracted to reflect the self-discharge phenomenon obviously; this process yields accurate estimates of the resistance. The proposed method is verified with various soft short conditions in both simulations and experiments. The error of estimated resistance does not exceed 31.2% in the experiment, thereby enabling the battery management system to detect the internal short circuit early.

  12. Short Circuits of a 10-MW High-Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2017-01-01

    Direct Drive high-temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits take...... place at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator's equivalent circuits is developed to simulate short-circuit faults. Afterward, the model is used to study the transient performance of a 10-MW HTS wind turbine generator under four...... show that the short circuits pose great challenges to the generator, and careful consideration should be given to protect the generator. The findings presented in this paper would be beneficial to the design, operation and protection of an HTS wind turbine generator....

  13. A Short-Circuit Method for Networks.

    Science.gov (United States)

    Ong, P. P.

    1983-01-01

    Describes a method of network analysis that allows avoidance of Kirchoff's Laws (providing the network is symmetrical) by reduction to simple series/parallel resistances. The method can be extended to symmetrical alternating current, capacitance or inductance if corresponding theorems are used. Symmetric cubic network serves as an example. (JM)

  14. Adrenomedullin increased the short-circuit current in the pig oviduct through chloride channels via the CGRP receptor: mediation by cAMP and calcium ions but not by nitric oxide.

    Science.gov (United States)

    Liao, S B; Cheung, K H; Cheung, M P L; To, Y T; O, W S; Tang, F

    2013-10-01

    The oviduct serves as a site for the fertilization of the ovum and the transport of the conceptus down to the uterus for implantation. In this study, we investigated the presence of adrenomedullin (ADM) and its receptor component proteins in the pig oviduct. The effect of ADM on oviductal secretion, the specific receptor, and the mechanisms involved were also investigated. The presence of ADM and its receptor component proteins in the pig oviduct were confirmed using immunostaining. Short-circuit current (I(sc)) technique was employed to study chloride ion secretion in the oviductal epithelium. ADM increased I(sc) through cAMP- and calcium-activated chloride channels, and this effect could be inhibited by the CGRP receptor antagonist, hCGRP8-37. In contrast, the nitric oxide synthase inhibitor, L-NG-nitroarginine methyl ester (L-NAME), could not block the effect of ADM on I(sc). In summary, ADM may increase oviductal fluid secretion via chloride secretion independent of the nitric oxide pathway for the transport of sperm and the conceptus.

  15. Prevention of short circuits in solution-processed OLED devices

    NARCIS (Netherlands)

    Jolt Oostra, A.; Blom, P.W.M.; Michels, J.J.

    2014-01-01

    Pinholes in the emitting layer of an organic light emitting diode (OLED), e.g. induced by particle contamination or processing flaws, lead to direct contact between the hole-injection layer (HIL) and the cathode. The resulting short circuits give rise to catastrophic device failure. We demonstrate

  16. Packaging Solutions for Mitigating IGBT Short-Circuit Instabilities

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    In this paper, the gate voltage oscillations occurring under short-circuit conditions in Insulated-Gate Bipolar Transistors are investigated, together with their dependency with respect to stray inductance variations. By using AnSYS Q3D Extractor, electromagnetic simulations are conducted to extr...

  17. A Computer Program for Short Circuit Analysis of Electric Power ...

    African Journals Online (AJOL)

    The Short Circuit Analysis Program (SCAP) is to be used to assess the composite effects of unbalanced and balanced faults on the overall reliability of electric power system. The program uses the symmetrical components method to compute all phase and sequence quantities for any bus or branch of a given power network ...

  18. Influence of an inner short-circuit on the behaviour of the superconducting magnet

    International Nuclear Information System (INIS)

    Zizek, F.

    1984-01-01

    On exciting one of the superconducting quadrupole magnets, voltage pulses were observed on the winding outlets. Over a certain current level the pulses disappeared and a quench of the magnet was registered. A subsequent analysis proved that phenomenon was caused by short-circuiting of the turns inside one of the quadrupole coils. The voltage pulses were caused by repeated quenches of the short-circuited part of the winding. The above effect did not appear until a certain rate of rise of the current was attained

  19. Influence of an inner short-circuit on the behaviour of the superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Zizek, F. (Skoda k.p., Plzen (Czechoslovakia))

    1984-01-01

    On exciting one of the superconducting quadrupole magnets, voltage pulses were observed on the winding outlets. Over a certain current level the pulses disappeared and a quench of the magnet was registered. A subsequent analysis proved that phenomenon was caused by short-circuiting of the turns inside one of the quadrupole coils. The voltage pulses were caused by repeated quenches of the short-circuited part of the winding. The above effect did not appear until a certain rate of rise of the current was attained.

  20. 30 CFR 77.600 - Trailing cables; short-circuit protection; disconnecting devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables; short-circuit protection... AREAS OF UNDERGROUND COAL MINES Trailing Cables § 77.600 Trailing cables; short-circuit protection; disconnecting devices. Short-circuit protection for trailing cables shall be provided by an automatic circuit...

  1. Improving the Short-Circuit Reliability in IGBTs

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Rahimo, Munaf

    2018-01-01

    takes place during the IGBT short-circuit, whose time-varying element is the Miller capacitance, which is involved in the amplification mechanism. This hypothesis has been validated through simulations and its mitigation is possible by increasing the electric field at the emitter of the IGBT......In this paper, the oscillation mechanism limiting the ruggedness of IGBTs is investigated through both circuit and device analysis. The work presented here is based on a time-domain approach for two different IGBT cell structures (i.e., trench-gate and planar), illustrating the 2-D effects during...

  2. Forces and stresses in cryoturbogenerator rotor in presence of short circuit

    International Nuclear Information System (INIS)

    Kovarskii, M.E.; Rubinraut, A.M.; Tsyrlin, A.L.

    1981-01-01

    A method is presented for determining the electrodynamic forces, mechanical stresses, and strains in the shells of a cryogenic-turbogenerator cryostat in the presence of an abrupt short circuit. The physical pattern of occurrence of forces in a cryostat shell is considered for capacitive, inductive, and active armature-current cases. It is shown that in addition to the radial component, there is a tangential component of the electrodynamic forces, with the interaction of the two components governing the strength in the presence of short circuits. Results are reported for mechanical-strength calculations, based on the proposed method, for a 200 kw cryogenic turbogenerator

  3. Tin Whisker Electrical Short Circuit Characteristics. Part 2

    Science.gov (United States)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Lawrence L.; Wright, Maria C.

    2009-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.

  4. In-situ short-circuit protection system and method for high-energy electrochemical cells

    Science.gov (United States)

    Gauthier, Michel; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Rouillard, Jean; Rouillard, Roger; Shiota, Toshimi; Trice, Jennifer L.

    2003-04-15

    An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

  5. In-situ short circuit protection system and method for high-energy electrochemical cells

    Science.gov (United States)

    Gauthier, Michel; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Rouillard, Jean; Rouillard, Roger; Shiota, Toshimi; Trice, Jennifer L.

    2000-01-01

    An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

  6. Short Circuits of a 10 MW High Temperature Superconducting Wind Turbine Generator

    NARCIS (Netherlands)

    Song, X.; Polinder, H.; Liu, D.; Mijatovic, Nenad; Holbøll, Joachim; Jensen, Bogi Bech

    Direct drive high temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits happen at

  7. Electro-thermal modeling of high power IGBT module short-circuits with experimental validation

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2015-01-01

    A novel Insulated Gate Bipolar Transistor (IGBT) electro-thermal modeling approach involving PSpice and ANSYS/Icepak with both high accuracy and simulation speed has been presented to study short-circuit of a 1.7 kV/1 kA commercial IGBT module. The approach successfully predicts the current...

  8. A neuromorphic circuit mimicking biological short-term memory.

    Science.gov (United States)

    Barzegarjalali, Saeid; Parker, Alice C

    2016-08-01

    Research shows that the way we remember things for a few seconds is a different mechanism from the way we remember things for a longer time. Short-term memory is based on persistently firing neurons, whereas storing information for a longer time is based on strengthening the synapses or even forming new neural connections. Information about location and appearance of an object is segregated and processed by separate neurons. Furthermore neurons can continue firing using different mechanisms. Here, we have designed a biomimetic neuromorphic circuit that mimics short-term memory by firing neurons, using biological mechanisms to remember location and shape of an object. Our neuromorphic circuit has a hybrid architecture. Neurons are designed with CMOS 45nm technology and synapses are designed with carbon nanotubes (CNT).

  9. Load Flow and Short Circuit Analysis of the Class III Power System of HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. K.; Jung, H. S

    2005-12-15

    The planning, design, and operation of electric power system require engineering studies to assist in the evaluation of the system performance, reliability, safety and economics. The Class III power of HANARO supplies power for not only HANARO but also RIPF and IMEF. The starting current of most ac motors is five to ten times normal full load current. The loads of the Class III power are connected in consecutive orders at an interval for 10 seconds to avoid excessive voltage drop. This technical report deals with the load flow study and motor starting study for the Class III power of HANARO using ETAP(Electrical Transient Analyzer Program) to verify the capacity of the diesel generator. Short-circuit studies are done to determine the magnitude of the prospective currents flowing throughout the power system at various time intervals after a fault occurs. Short-circuit studies can be performed at the planning stage in order to help finalize the system layout, determine voltage levels, and size cables, transformers, and conductors. From this study, we verify the short circuit current capacity of air circuit breaker(ACB) and automatic transfer switch(ATS) of the Class III power.

  10. 30 CFR 75.601 - Short circuit protection of trailing cables.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit protection of trailing cables. 75... MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.601 Short circuit protection of trailing cables. [Statutory Provisions] Short circuit protection for trailing cables...

  11. 30 CFR 75.601-2 - Short circuit protection; use of fuses; approval by the Secretary.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit protection; use of fuses... Trailing Cables § 75.601-2 Short circuit protection; use of fuses; approval by the Secretary. Fuses shall not be employed to provide short circuit protection for trailing cables unless specifically approved...

  12. Neural circuit mechanisms of short-term memory

    Science.gov (United States)

    Goldman, Mark

    Memory over time scales of seconds to tens of seconds is thought to be maintained by neural activity that is triggered by a memorized stimulus and persists long after the stimulus is turned off. This presents a challenge to current models of memory-storing mechanisms, because the typical time scales associated with cellular and synaptic dynamics are two orders of magnitude smaller than this. While such long time scales can easily be achieved by bistable processes that toggle like a flip-flop between a baseline and elevated-activity state, many neuronal systems have been observed experimentally to be capable of maintaining a continuum of stable states. For example, in neural integrator networks involved in the accumulation of evidence for decision making and in motor control, individual neurons have been recorded whose activity reflects the mathematical integral of their inputs; in the absence of input, these neurons sustain activity at a level proportional to the running total of their inputs. This represents an analog form of memory whose dynamics can be conceptualized through an energy landscape with a continuum of lowest-energy states. Such continuous attractor landscapes are structurally non-robust, in seeming violation of the relative robustness of biological memory systems. In this talk, I will present and compare different biologically motivated circuit motifs for the accumulation and storage of signals in short-term memory. Challenges to generating robust memory maintenance will be highlighted and potential mechanisms for ameliorating the sensitivity of memory networks to perturbations will be discussed. Funding for this work was provided by NIH R01 MH065034, NSF IIS-1208218, Simons Foundation 324260, and a UC Davis Ophthalmology Research to Prevent Blindness Grant.

  13. Integrated Power Flow and Short Circuit Calculation Method for Distribution Network with Inverter Based Distributed Generation

    Directory of Open Access Journals (Sweden)

    Shan Yang

    2016-01-01

    Full Text Available Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverter based distributed generation is proposed. The proposed method let the inverter based distributed generation be equivalent to Iθ bus, which makes it suitable to calculate the power flow of distribution network with a current limited inverter based distributed generation. And the low voltage ride through capability of inverter based distributed generation can be considered as well in this paper. Finally, some tests of power flow and short circuit current calculation are performed on a 33-bus distribution network. The calculated results from the proposed method in this paper are contrasted with those by the traditional method and the simulation method, whose results have verified the effectiveness of the integrated method suggested in this paper.

  14. Short-Circuit Characterization of 10 kV 10A 4H-SiC MOSFET

    DEFF Research Database (Denmark)

    Eni, Emanuel-Petre; Beczkowski, Szymon; Munk-Nielsen, Stig

    2016-01-01

    The short-circuit capability of a power device is highly relevant for converter design and fault protection. In this paper a 10kV 10A 4H-SiC MOSFET is characterized and its short circuit withstand capability is studied and analyzed at 6 kV DC-link voltage. The test setup for this study is also...... introduced as its design, especially the inductance in the switching loop, can affect the experimental results. The study aims to present insights specific to the device which are different from that of silicon (Si) based devices. During the short-circuit operation, MOSFET saturation current, ID...

  15. Unstable behaviour of normally-off GaN E-HEMT under short-circuit

    Science.gov (United States)

    Martínez, P. J.; Maset, E.; Sanchis-Kilders, E.; Esteve, V.; Jordán, J.; Bta Ejea, J.; Ferreres, A.

    2018-04-01

    The short-circuit capability of power switching devices plays an important role in fault detection and the protection of power circuits. In this work, an experimental study on the short-circuit (SC) capability of commercial 600 V Gallium Nitride enhancement-mode high-electron-mobility transistors (E-HEMT) is presented. A different failure mechanism has been identified for commercial p-doped GaN gate (p-GaN) HEMT and metal-insulator-semiconductor (MIS) HEMT. In addition to the well known thermal breakdown, a premature breakdown is shown on both GaN HEMTs, triggered by hot electron trapping at the surface, which demonstrates that current commercial GaN HEMTs has requirements for improving their SC ruggedness.

  16. Closed Form Solution of Synchronous Machine Short Circuit Transients

    Directory of Open Access Journals (Sweden)

    Gibson H.M. Sianipar

    2010-05-01

    Full Text Available This paper presents the closed form solution of the synchronous machine transients undergoing short circuit. That analytic formulation has been derived based on linearity and balanced conditions of the fault. Even though restrictive, the proposed method will serve somehow or other as a new resource for EMTP productivity. Indisputably superior, the closed-form formulation has some features inimitable by discretization such as continuity, accuracy and absolute numerical stability. Moreover, it enables us to calculate states at one specific instant independent of previous states or a snapshot, which any discretization methods cannot do.

  17. Short-Circuit Degradation of 10-kV 10-A SiC MOSFET

    DEFF Research Database (Denmark)

    Eni, Emanuel-Petre; Beczkowski, Szymon; Munk-Nielsen, Stig

    2017-01-01

    The short-circuit behavior of power devices is highly relevant for converter design and fault protection. In this work, the degradation during short-circuit of a 10 kV 10 A 4H-SiC MOSFET is investigated at 6 kV DC-link voltage. The study aims to present the behavior of the device during short-circuit...... transients as it sustains increasing short-circuit pulses during its life-time. As the short-circuit pulse length increases, degradation of the device can be observed in periodically performed characterizations. The initial degradation seems to be associated with the channel region, and continuous stressing...

  18. Asymmetrical short circuits in medium-voltage networks with grounded neutral through resistance

    Energy Technology Data Exchange (ETDEWEB)

    Tanasescu, M.; Maries, H.

    1981-01-01

    This article introduces the concepts of ''damage to ground'' and ''current to ground indicator'', which characterize the efficiency of the operating mode of the neutral. The values of these two indicators are assigned by directive (eletric power plan design instruction PE109/1980) and must be provided when selecting the parameters of compensating devices installed in the neutral. Possible aymmetrical short circuits in medium-voltage networks with neutral ground are examined. Formulas are derived for determining the short-circuiting currents and undamaged phase voltages in order to determine the damage to ground indicator and ground current indicator; an example of a calculation is given.

  19. Measuring ac losses in superconducting cables using a resonant circuit:Resonant current experiment (RESCUE)

    DEFF Research Database (Denmark)

    Däumling, Manfred; Olsen, Søren Krüger; Rasmussen, Carsten

    1998-01-01

    be recorded using, for example, a digital oscilloscope. The amplitude decay of the periodic voltage or current accurately reflects the power loss in the system. It consists of two components-an ohmic purely exponential one (from leads, contacts, etc.), and a nonexponential component originating from......A simple way to obtain true ac losses with a resonant circuit containing a superconductor, using the decay of the circuit current, is described. For the measurement a capacitor is short circuited with a superconducting cable. Energy in the circuit is provided by either charging up the capacitors...... with a certain voltage, or letting a de flow in the superconductor. When the oscillations are started-either by opening a switch in case a de is flowing or by closing a switch to connect the charged capacitors with the superconductor-the current (via a Rogowski coil) or the voltage on the capacitor can...

  20. Utilisation of symmetrical components in a communication-based protection for loop MV feeders with variable short-circuit power

    DEFF Research Database (Denmark)

    Ciontea, Catalin-Iosif; Bak, Claus Leth; Blaabjerg, Frede

    2018-01-01

    -circuit power is presented. It relies on utilisation of symmetrical components of the short-circuit currents and on communication between the protection relays. The proposed method addresses the Single Phase to Ground (SPG) faults occurring in directly grounded distribution networks, with focus on closed......Variability of the available short-circuit power also implies variation of the fault level, which can potentially cause several protection problems in the electric networks. In this paper, a novel protection method that is insensitive to the fault level changes caused by variable short......-loop Medium Voltage (MV) feeders. Case studies are presented, which demonstrate that the proposed protection scheme is capable of effectively detecting the SPG faults in closed-loop feeders with variable short-circuit power....

  1. A multiwire ionization chamber readout circuit using current mirrors

    International Nuclear Information System (INIS)

    Rawnsley, W.R.; Smith, D.; Moskven, T.

    1997-01-01

    A circuit which utilizes current mirrors has been used to apply high voltage bias to the wires of a multiwire ionization chamber (MWIC) profile monitor while still allowing measurement of the beam-induced ion-electron currents collected on the wires. Bias voltages of up to 250 V have been used while wire currents over a range of 0.5 nA to 50 nA have been measured. The circuit is unipolar but can be designed for positive or negative bias. The mirrors also provide a current gain of 10, reducing the effects of transistor leakage and extending the useful range of the circuit to lower signal levels. A module containing 32 Wilson current mirrors has been constructed and is used with a MWIC monitor in TRIUMF close-quote s Parity experiment beamline. copyright 1997 American Institute of Physics

  2. Circuit for current measures from ionization chambers

    International Nuclear Information System (INIS)

    Mello, F.L.V. de; Oliveira, A.H. de; Rezende, R.S.

    1992-01-01

    The design and the specifications of an ammeters of low cost for small current, IOE-14 Ampere, from ionization chambers or others transducers used in nuclear instrumentation are described. Special attention is given to the integrated electronic components, available in the brazilian market. (C.G.C.)

  3. Transient analysis of unbalanced short circuits of the ERDA-NASA 100 kW wind turbine alternator

    Science.gov (United States)

    Hwang, H. H.; Gilbert, L. J.

    1976-01-01

    Unbalanced short-circuit faults on the alternator of the ERDA-NASA Mod-O100-kW experimental wind turbine are studied. For each case, complete solutions for armature, field, and damper-circuit currents; short-circuit torque; and open-phase voltage are derived directly by a mathematical analysis. Formulated results are tabulated. For the Mod-O wind turbine alternator, numerical calculations are given, and results are presented by graphs. Comparisons for significant points among the more important cases are summarized. For these cases the transients are found to be potentially severe. The effect of the alternator neutral-to-ground impedance is evaluated.

  4. The short-circuit test results of 6.9 kV/2.3 kV 400 kVA-class YBCO model transformer

    International Nuclear Information System (INIS)

    Tomioka, A.; Otonari, T.; Ogata, T.; Iwakuma, M.; Okamoto, H.; Hayashi, H.; Iijima, Y.; Saito, T.; Gosho, Y.; Tanabe, K.; Izumi, T.; Shiohara, Y.

    2011-01-01

    The 6.9 kV/2.3 kV 400 kVA-class single-phase YBCO model transformer with the YBCO tape with copper tape was manufactured for short-circuit current test. Short-circuit test was performed and the short-circuit current of primary winding was 346 A which was about six times larger than the rated current. The I-V characteristics of the winding did not change before and after the test. The transformer withstood short-circuit current. We are planning to turn the result into a consideration of a 66 kV/6.9 kV-20 MVA-class three-phase superconducting transformer. We are developing an elemental technology for 66 kV/6.9 kV 20 MVA-class power transformer with YBCO conductors. The protection of short-circuit technology is one of the elemental technologies for HTS transformer. Since short-circuit current is much higher than critical current of YBCO tape, there is a possibility that superconducting characteristics may be damaged during short-circuit period. We made a conductor to compose the YBCO tape with copper tape. We manufactured 6.9 kV/2.3 kV 400 kVA-class YBCO model transformer using this conductor and performed short-circuit current test. The short-circuit current of primary winding was 346 A which was about six times larger than the rated current. The I-V characteristics of the winding did not change before and after the test. We may consider this conductor withstands short-circuit current.

  5. Optimal planning of series resistor to control time constant of test circuit for high-voltage AC circuit-breakers

    OpenAIRE

    Yoon-Ho Kim; Jung-Hyeon Ryu; Jin-Hwan Kim; Kern-Joong Kim

    2016-01-01

    The equivalent test circuit that can deliver both short-circuit current and recovery voltage is used to verify the performance of high-voltage circuit breakers. Most of the parameters in this circuit can be obtained by using a simple calculation or a simulation program. The ratings of the circuit breaker include rated short-circuit breaking current, rated short-circuit making current, rated operating sequence of the circuit breaker and rated short-time current. Among these ratings, the short-...

  6. A Nanostructured Composites Thermal Switch Controls Internal and External Short Circuit in Lithium Ion Batteries

    Science.gov (United States)

    McDonald, Robert C.; VanBlarcom, Shelly L.; Kwasnik, Katherine E.

    2013-01-01

    A document discusses a thin layer of composite material, made from nano scale particles of nickel and Teflon, placed within a battery cell as a layer within the anode and/or the cathode. There it conducts electrons at room temperature, then switches to an insulator at an elevated temperature to prevent thermal runaway caused by internal short circuits. The material layer controls excess currents from metal-to-metal or metal-to-carbon shorts that might result from cell crush or a manufacturing defect

  7. Errors in short circuit measurements due to spectral mismatch between sunlight and solar simulators

    Science.gov (United States)

    Curtis, H. B.

    1976-01-01

    Errors in short circuit current measurement were calculated for a variety of spectral mismatch conditions. The differences in spectral irradiance between terrestrial sunlight and three types of solar simulator were studied, as well as the differences in spectral response between three types of reference solar cells and various test cells. The simulators considered were a short arc xenon lamp AMO sunlight simulator, an ordinary quartz halogen lamp, and an ELH-type quartz halogen lamp. Three types of solar cells studied were a silicon cell, a cadmium sulfide cell and a gallium arsenide cell.

  8. Control of internal and external short circuits in lithium batteries using a composite thermal switch

    Science.gov (United States)

    Mcdonald, Robert C.; Pickett, Jerome; Goebel, Franz

    1991-01-01

    A composite material has been developed, consisting of a blend of metal and fluorocarbon particles, which behaves as an electronic conductor at room temperature and which abruptly becomes an insulator at a predetermined temperature. This switching behavior results from the difference in thermal expansion coefficients between the conductive and non-conductive portions of the composite. This material was applied as a thin film between the carbon cathode in Li/SOCl2 cells, and the metallic cathode current collector. Using test articles incorporating this feature it was shown that lithium cells externally heated or internally heated during a short circuit lost rate capability and the ability to overheat well below the melting point of lithium (180 C). Thus, during an internal or external cell short circuit, the potential for thermal runaway involving reactions of molten lithium is avoided.

  9. Fast-responding short circuit protection system with self-reset for use in circuit supplied by DC power

    Science.gov (United States)

    Burns, Bradley M. (Inventor); Blalock, Norman N. (Inventor)

    2011-01-01

    A short circuit protection system includes an inductor, a switch, a voltage sensing circuit, and a controller. The switch and inductor are electrically coupled to be in series with one another. A voltage sensing circuit is coupled across the switch and the inductor. A controller, coupled to the voltage sensing circuit and the switch, opens the switch when a voltage at the output terminal of the inductor transitions from above a threshold voltage to below the threshold voltage. The controller closes the switch when the voltage at the output terminal of the inductor transitions from below the threshold voltage to above the threshold voltage.

  10. Integrated Power Flow and Short Circuit Calculation Method for Distribution Network with Inverter Based Distributed Generation

    OpenAIRE

    Yang, Shan; Tong, Xiangqian

    2016-01-01

    Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverte...

  11. A Hybrid, Current-Source/Voltage-Source Power Inverter Circuit

    DEFF Research Database (Denmark)

    Trzynadlowski, Andrzej M.; Patriciu, Niculina; Blaabjerg, Frede

    2001-01-01

    A combination of a large current-source inverter and a small voltage-source inverter circuits is analyzed. The resultant hybrid inverter inherits certain operating advantages from both the constituent converters. In comparison with the popular voltage-source inverter, these advantages include...... reduced switching losses, improved quality of output current waveforms, and faster dynamic response to current control commands. Description of operating principles and characteristics of the hybrid inverter is illustrated with results of experimental investigation of a laboratory model....

  12. Spectral analysis to detection of short circuit fault of solar photovoltaic modules in strings

    International Nuclear Information System (INIS)

    Sevilla-Camacho, P.Y.; Robles-Ocampo, J.B.; Zuñiga-Reyes, Marco A.

    2017-01-01

    This research work presents a method to detect the number of short circuit faulted solar photovoltaic modules in strings of a photovoltaic system by taking into account speed, safety, and non-use of sensors and specialized and expensive equipment. The method consists on apply the spectral analysis and statistical techniques to the alternating current output voltage of a string and detect the number of failed modules through the changes in the amplitude of the component frequency of 12 kHz. For that, the analyzed string is disconnected of the array; and a small pulsed voltage signal of frequency of 12 kHz introduces him under dark condition and controlled temperature. Previous to the analysis, the signal is analogic filtered in order to reduce the direct current signal component. The spectral analysis technique used is the Fast Fourier Transform. The obtained experimental results were validated through simulation of the alternating current equivalent circuit of a solar cell. In all experimental and simulated test, the method allowed to identify correctly the number of photovoltaic modules with short circuit in the analyzed string. (author)

  13. Electrostatic Discharge Current Linear Approach and Circuit Design Method

    Directory of Open Access Journals (Sweden)

    Pavlos K. Katsivelis

    2010-11-01

    Full Text Available The Electrostatic Discharge phenomenon is a great threat to all electronic devices and ICs. An electric charge passing rapidly from a charged body to another can seriously harm the last one. However, there is a lack in a linear mathematical approach which will make it possible to design a circuit capable of producing such a sophisticated current waveform. The commonly accepted Electrostatic Discharge current waveform is the one set by the IEC 61000-4-2. However, the over-simplified circuit included in the same standard is incapable of producing such a waveform. Treating the Electrostatic Discharge current waveform of the IEC 61000-4-2 as reference, an approximation method, based on Prony’s method, is developed and applied in order to obtain a linear system’s response. Considering a known input, a method to design a circuit, able to generate this ESD current waveform in presented. The circuit synthesis assumes ideal active elements. A simulation is carried out using the PSpice software.

  14. Investigation on a short circuit of large-area OLED lighting panels

    International Nuclear Information System (INIS)

    Park, J W; Kim, T W; Park, J B

    2013-01-01

    A short circuit often arises from large-area organic light-emitting device (OLED) lighting panels due to particles (i.e. dust, organic or metal debris) or the spike-like surface of the indium–tin–oxide (ITO) anode. On the emergence of a short circuit, an instant current crowding occurs, thereby reducing substantially the resistance of the panels and causing a failure of a dimming control. In this paper, we investigate the effect of the surface morphology of ITO on the resistance and dimmability of the panels. We have demonstrated that the peak-to-valley roughness of ITO should be much less than 20 nm or the resistance of the panels should be much higher than 1 MΩ in order to avoid an unwanted short-circuit phenomenon and thus achieve the high-yield fabrication of OLED lighting panels. It is also addressed that much care is taken to ensure a dimming control of OLED lighting panels with a larger active area because the resistance of those panels varies depending more sensitively on the surface roughness of ITO. (paper)

  15. Short-circuit testing of monofilar Bi-2212 coils connected in series and in parallel

    International Nuclear Information System (INIS)

    Polasek, A; Dias, R; Serra, E T; Filho, O O; Niedu, D

    2010-01-01

    Superconducting Fault Current Limiters (SCFCL's) are one of the most promising technologies for fault current limitation. In the present work, resistive SCFCL components based on Bi-2212 monofilar coils are subjected to short-circuit testing. These SCFCL components can be easily connected in series and/or in parallel by using joints and clamps. This allows a considerable flexibility to developing larger SCFCL devices, since the configuration and size of the whole device can be easily adapted to the operational conditions. The single components presented critical current (Ic) values of 240-260 A, at 77 K. Short-circuits during 40-120 ms were applied. A single component can withstand a voltage drop of 126-252 V (0.3-0.6 V/cm). Components connected in series withstand higher voltage levels, whereas parallel connection allows higher rated currents during normal operation, but the limited current is also higher. Prospective currents as high as 10-40 kA (peak value) were limited to 3-9 kA (peak value) in the first half cycle.

  16. Current Trends in High-Level Synthesis of Asynchronous Circuits

    DEFF Research Database (Denmark)

    Sparsø, Jens

    2009-01-01

    This paper is a survey paper presenting what the author sees as two major and promising trends in the current research in CAD-tools and design-methods for asynchronous circuits. One branch of research builds on top of existing asynchronous CAD-tools that perform syntax directed translation, e...... a conventional synchronous circuit as the starting point, and then adds some form of handshake-based flow-control. One approach keeps the global clock and implements discrete-time asynchronous operation. Another approach substitutes the clocked registers by asynchronous handshake-registers, thus creating truly...

  17. An Investigation of the Electrical Short Circuit Characteristics of Tin Whiskers

    Science.gov (United States)

    Courey, Karim J.

    2008-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. Also, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross-sectioned and studied using a focused ion beam (FIB). The rare polycrystalline structure seen in the FIB cross section was confirmed using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size to determine that the tin plating on the card guides had a bright finish.

  18. A Short-Current Control Method for Constant Frequency Current-Fed Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Yanling Li

    2017-04-01

    Full Text Available Frequency drift is a serious problem in Current-Fed Wireless Power Transfer (WPT systems. When the operating frequency is drifting from the inherent Zero Voltage Switching (ZVS frequency of resonant network, large short currents will appear and damage the switches. In this paper, an inductance-dampening method is proposed to inhibit short currents and achieve constant-frequency operation. By adding a small auxiliary series inductance in the primary resonant network, short currents are greatly attenuated to a safe level. The operation principle and steady-state analysis of the system are provided. An overlapping time self-regulating circuit is designed to guarantee ZVS running. The range of auxiliary inductances is discussed and its critical value is calculated exactly. The design methodology is described and a design example is presented. Finally, a prototype is built and the experimental results verify the proposed method.

  19. Short circuit experiment on an FCL coil wound with YBCO tape with a high-resistance stabilizing layer

    Energy Technology Data Exchange (ETDEWEB)

    Yazawa, T; Iijima, Y; Saito, T [Toshiba Corporation, Fujikura Ltd (Japan); Amemiya, N [Toshiba Corporation, Yokohama National University (Japan); Shiohara, Y [Toshiba Corporation, ISTEC SRL (Japan); Koyanagi, K; Ono, M; Urata, M, E-mail: takashi.yazawa@toshiba.co.jp

    2008-02-15

    One of the programs in the Ministry of Economy, Trade and Industry regarding R and D for developing YBCO conductors is to evaluate the suitability of the conductors in several applications. This paper focuses on one of the expected power applications, namely, a fault current limiter (FCL). YBCO tape conductors with ion beam assisted deposition (IBAD) substrates are used in this work. In order to increase the resistivity of the conductor, which is preferable for FCL applications, the thickness of a protective layer made of silver was decreased as much as possible. After obtaining the required current limiting performance in short sample experiments, a model coil was developed aiming at 6.6 kV-class FCLs. Short circuit experiments were conducted with a short-circuit generator. The coil successfully suppressed a short-circuit current of over 1.4 kA to about 500 A under an applied voltage of 3.8 kV, which is the nominal phase-to-ground voltage. The coil also suppressed a short-circuit current of 17 kA down to 700 A. The experimental results are as expected and show promise toward FCL applications.

  20. Short circuit experiment on an FCL coil wound with YBCO tape with a high-resistance stabilizing layer

    International Nuclear Information System (INIS)

    Yazawa, T; Iijima, Y; Saito, T; Amemiya, N; Shiohara, Y; Koyanagi, K; Ono, M; Urata, M

    2008-01-01

    One of the programs in the Ministry of Economy, Trade and Industry regarding R and D for developing YBCO conductors is to evaluate the suitability of the conductors in several applications. This paper focuses on one of the expected power applications, namely, a fault current limiter (FCL). YBCO tape conductors with ion beam assisted deposition (IBAD) substrates are used in this work. In order to increase the resistivity of the conductor, which is preferable for FCL applications, the thickness of a protective layer made of silver was decreased as much as possible. After obtaining the required current limiting performance in short sample experiments, a model coil was developed aiming at 6.6 kV-class FCLs. Short circuit experiments were conducted with a short-circuit generator. The coil successfully suppressed a short-circuit current of over 1.4 kA to about 500 A under an applied voltage of 3.8 kV, which is the nominal phase-to-ground voltage. The coil also suppressed a short-circuit current of 17 kA down to 700 A. The experimental results are as expected and show promise toward FCL applications

  1. Thirteen years test experience with short-circuit withstand capability of large power transformers

    NARCIS (Netherlands)

    Smeets, R.P.P.; Paske, te L.H.; Leufkens, P.P.; Fogelberg, T.

    2009-01-01

    The ability to withstand a short circuit is recognised more and more as an essential characteristic of power transformers. IEC and IEEE Standards, as well as other national standards specify short-circuit testing and how to check the withstand capability. Unfortunately, however, there is extensive

  2. Built-in unit with short-circuit insulation for hermetic cable ducts

    International Nuclear Information System (INIS)

    Tschacher, B.; Gurr, W.; Kusserow, J.; Katzmarek, W.

    1984-01-01

    The invention concerns a built-in unit with short-circuit insulation for hermetic cable ducts, especially for containments of nuclear power reactors. The short-circuit insulation is achieved by an insulation plate made from radiation-resistant insulating materials of high mechanical strength

  3. Fourteen years of test experience with short-circuit withstand capability of large power transformers

    NARCIS (Netherlands)

    Smeets, R.P.P.; Paske, te L.H.

    2010-01-01

    Experience is reported of short-circuit testing of large power transformers during the past 14 years by KEMA in the Netherlands. In total, 119 transformers > 25 MVA participated in the survey. KEMA shows that at initial access to standard IEC short-circuit tests, 28% failed initially in a wide range

  4. Robustness of MW-Level IGBT modules against gate oscillations under short circuit events

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Wu, Rui; Iannuzzo, Francesco

    2015-01-01

    The susceptibility of MW-level IGBT power modules to critical gate voltage oscillations during short circuit events has been evidenced experimentally. This paper proposes a sensitivity analysis method to better understand the oscillating behavior dependence on different operating conditions (i...... the oscillation phenomenon, as well as to further improve the device performance during short circuit....

  5. On-line diagnosis of inter-turn short circuit fault for DC brushed motor.

    Science.gov (United States)

    Zhang, Jiayuan; Zhan, Wei; Ehsani, Mehrdad

    2018-06-01

    Extensive research effort has been made in fault diagnosis of motors and related components such as winding and ball bearing. In this paper, a new concept of inter-turn short circuit fault for DC brushed motors is proposed to include the short circuit ratio and short circuit resistance. A first-principle model is derived for motors with inter-turn short circuit fault. A statistical model based on Hidden Markov Model is developed for fault diagnosis purpose. This new method not only allows detection of motor winding short circuit fault, it can also provide estimation of the fault severity, as indicated by estimation of the short circuit ratio and the short circuit resistance. The estimated fault severity can be used for making appropriate decisions in response to the fault condition. The feasibility of the proposed methodology is studied for inter-turn short circuit of DC brushed motors using simulation in MATLAB/Simulink environment. In addition, it is shown that the proposed methodology is reliable with the presence of small random noise in the system parameters and measurement. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Sixteen years of test experiences with short-circuit withstand capability of large power transformers

    NARCIS (Netherlands)

    Smeets, R.P.P.; Paske, te L.H.

    2012-01-01

    Experience is reported of short-circuit testing of large power transformers during the past 16 years by KEMA in the Netherlands. In total, 174 transformers > 25 MVA participated in the survey. KEMA shows that at initial access to standard IEC short-circuit tests, 24% failed initially in a wide range

  7. A No-Arc DC Circuit Breaker Based on Zero-Current Interruption

    Science.gov (United States)

    Xiang, Xuewei; Chai, Jianyun; Sun, Xudong

    2017-05-01

    A dc system has no natural current zero-crossing point, so a dc arc is more difficult to extinguish than an ac arc. In order to effectively solve the problem of the dc arc, this paper proposes a dc circuit breaker (DCCB) capable of implementing a no-arc interruption. The proposed DCCB includes a main branch consisting of a mechanical switch, a diode and a current-limiting inductor, a semi-period resonance circuit consisting of a diode, an inductor and a capacitor, and a buffer branch consisting of a capacitor, a thyristor and a resistor. The mechanical switch is opened in a zero-current state, and the overvoltage caused by the counter electromotive force of the inductor does not exist. Meanwhile, the capacitor has a buffering effect on the voltage. The rising of the voltage of the mechanical switch is slower than the rising of the insulating strength of a contact gap of the mechanical switch, resulting in the contact gap not able to be broken down. Thus, the arc cannot be generated. The simulation results show that the proposed DCCB does not generate the arc in the interruption process, the rise rate of the short circuit current can be effectively limited, and the short circuit fault point can be rapidly isolated from the dc power supply.

  8. Experimental investigation of internal short circuits in lithium-ion batteries

    Science.gov (United States)

    Poramapojana, Poowanart

    With outstanding performance of Lithium-ion batteries, they have been widely used in many applications. For hybrid electric vehicles and electric vehicles, customer concerns of battery safety have been raised as a number of car accidents were reported. To evaluate safety performance of these batteries, a nail penetration test is used to simulate and induce internal short circuits instantaneously. Efforts to explain failure mechanisms of the penetration using electrochemical-thermal coupled models have been proposed. However, there is no experimental validation because researchers lack of a diagnostic tool to acquire important cell characteristics at a shorting location, such as shorting current and temperature. In this present work, diagnostic nails have been developed to acquire nail center temperatures and shorting current flow through the nails during nail penetration tests. Two types of cylindrical wall structures are used to construct the nails: a double-layered stainless steel wall and a composite cylindrical wall. An inner hollow cylinder functions as a sensor holder where two wires and one thermocouple are installed. To study experimental reproducibility and repeatability of experimental results, two nail penetration tests are conducted using two diagnostic nails with the double-layered wall. Experimental data shows that the shorting resistance at the initial stage is a critical parameter to obtain repeatable results. The average shorting current for both tests is approximately 40 C-rate. The fluctuation of the shorting current is due to random sparks and fire caused loose contacts between the nail and the cell components. Moreover, comparative experimental results between the two wall structures reveal that the wall structure does not affect the cell characteristics and Ohmic heat generation of the nail. The wall structure effects to current measurements inside the nail. With the composite wall, the actual current redistribution into the inner wall is

  9. Eddy current analysis by the finite element circuit method

    International Nuclear Information System (INIS)

    Kameari, A.; Suzuki, Y.

    1977-01-01

    The analysis of the transient eddy current in the conductors by ''Finite Element Circuit Method'' is developed. This method can be easily applied to various geometrical shapes of thin conductors. The eddy currents on the vacuum vessel and the upper and lower support plates of JT-60 machine (which is now being constructed by Japan Atomic Energy Research Institute) are calculated by this method. The magnetic field induced by the eddy current is estimated in the domain occupied by the plasma. And the force exerted to the vacuum vessel is also estimated

  10. Compact electro-thermal modeling of a SiC MOSFET power module under short-circuit conditions

    DEFF Research Database (Denmark)

    Ceccarelli, Lorenzo; Reigosa, Paula Diaz; Bahman, Amir Sajjad

    2017-01-01

    A novel physics-based, electro-thermal model which is capable of estimating accurately the short-circuit behavior and thermal instabilities of silicon carbide MOSFET multi-chip power modules is proposed in this paper. The model has been implemented in PSpice and describes the internal structure.......2 kV breakdown voltage and about 300 A rated current. The short-circuit behavior of the module is investigated experimentally through a non-destructive test setup and the model is validated. The estimation of overcurrent and temperature distribution among the chips can provide useful information...

  11. Representative-Sandwich Model for Mechanical-Crush and Short-Circuit Simulation of Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-07-28

    Lithium-ion batteries are currently the state-of-the-art power sources for a variety of applications, from consumer electronic devices to electric-drive vehicles (EDVs). Being an energized component, failure of the battery is an essential concern, which can result in rupture, smoke, fire, or venting. The failure of Lithium-ion batteries can be due to a number of external abusive conditions (impact/crush, overcharge, thermal ramp, etc.) or internal conditions (internal short circuits, excessive heating due to resistance build-up, etc.), of which the mechanical-abuse-induced short circuit is a very practical problem. In order to better understand the behavior of Lithium-ion batteries under mechanical abuse, a coupled modeling methodology encompassing the mechanical, thermal and electrical response has been developed for predicting short circuit under external crush.

  12. Transient analysis of the output short-circuit fault of high power and high voltage DC power supply

    International Nuclear Information System (INIS)

    Yang Zhigang; Zhang Jian; Huang Yiyun; Hao Xu; Sun Haozhang; Guo Fei

    2014-01-01

    The transient conditions of output short-circuit fault of high voltage DC power supply was introduced, and the energy of power supply injecting into klystron during the protection process of three-electrode gas switch were analyzed and calculated in detail when klystron load happening electrode arc faults. The results of calculation and simulation are consistent with the results of the experiment. When the output short-circuit fault of high voltage power supply occurs, switch can be shut off in the microsecond, and the short circuit current can be controlled in 200 A. It has verified the rapidity and reliability of the three-electrode gas switch protection, and it has engineering application value. (authors)

  13. Global Current Circuit Structure in a Resistive Pulsar Magnetosphere Model

    Science.gov (United States)

    Kato, Yugo. E.

    2017-12-01

    Pulsar magnetospheres have strong magnetic fields and large amounts of plasma. The structures of these magnetospheres are studied using force-free electrodynamics. To understand pulsar magnetospheres, discussions must include their outer region. However, force-free electrodynamics is limited in it does not handle dissipation. Therefore, a resistive pulsar magnetic field model is needed. To break the ideal magnetohydrodynamic (MHD) condition E\\cdot B=0, Ohm’s law is used. This work introduces resistivity depending upon the distance from the star and obtain a self-consistent steady state by time integration. Poloidal current circuits form in the magnetosphere while the toroidal magnetic field region expands beyond the light cylinder and the Poynting flux radiation appears. High electric resistivity causes a large space scale poloidal current circuit and the magnetosphere radiates a larger Poynting flux than the linear increase outside of the light cylinder radius. The formed poloidal-current circuit has width, which grows with the electric conductivity. This result contributes to a more concrete dissipative pulsar magnetosphere model.

  14. An Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers-Part I

    Science.gov (United States)

    Courey, Karim; Wright, Clara; Asfour, Shihab; Bayliss, Jon; Ludwig, Larry

    2008-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance, electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data, we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. In addition, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross sectioned and studied using a focused ion beam (FIB).

  15. High-voltage direct-current circuit breakers

    International Nuclear Information System (INIS)

    Yoshioka, Y.; Hirasawa, K.

    1991-01-01

    This paper reports that in 1954 the first high-voltage direct-current (HVDC) transmission system was put into operation between Gotland and the mainland of Sweden. Its system voltage and capacity were 100 kV and 20 MW, respectively. Since then many HVDC transmission systems have been planned, constructed, or commissioned in more than 30 places worldwide, and their total capacity is close to 40 GW. Most systems commissioned to date are two-terminal schemes, and HVDC breakers are not yet used in the high-potential main circuit of those systems, because the system is expected to perform well using only converter/inverter control even at a fault stage of the transmission line. However, even in a two-terminal scheme there are not a few merits in using an HVDC breaker when the system has two parallel transmission lines, that is, when it is a double-circuit system

  16. Evaporating short-circuits in the ATLAS liquid argon barrel presampler 006

    CERN Document Server

    Belhorma, B; Lund-Jensen, B; Rydström, S; Yamouni, M

    2005-01-01

    A technique to eliminate or limit the implications of short-circuits in the ATLAS barrel presampler is described. A high voltage capacitor with a large capacity is charged at different high voltages and discharged through the short-circuit which allows either to disintegrate the dust being the origin of the short-circuit, or to burn away a thin etched copper strip which acts as a fuse on the corresponding presampler anode. This effect is possible even in the presence of a resistive HV cable (10 to 30 ohms) in series which dampens the pulse.

  17. Direct observation of short-circuit diffusion during the formation of a single cupric oxide nanowire

    International Nuclear Information System (INIS)

    Cheng, C-L; Ma, Y-R; Chou, M H; Huang, C Y; Yeh, V; Wu, S Y

    2007-01-01

    Short-circuit diffusion was observed in a single CuO nanowire synthesized using a thermal oxidation method. The confocal Raman spectra of a single CuO nanowire permit direct observation of the nature of an individual CuO nanowire. The parameter order obtained from the inverse Raman B g 2 peak linewidth results in the length dependence of the linewidth and a short-circuit diffusion length of 3.3 μm. The observed structural information is also consistent with the energy dispersive x-ray spectroscopic mapping. The results confirm that the growth of CuO nanowires occurs through the short-circuit diffusion mechanism

  18. Non-Destructive Investigation on Short Circuit Capability of Wind-Turbine-Scale IGBT Power Modules

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2014-01-01

    This paper presents a comprehensive investigation on the short circuit capability of wind-turbine-scale IGBT power modules by means of a 6 kA/1.1 kV non-destructive testing system. A Field Programmable Gate Array (FPGA) supervising unit is adpoted to achieve an accurate time control for short...... circuit test, which enables to define the driving signals with an accuracy of 10 ns. Thanks to the capability and the effectiveness of the constructed setup, oscillations appearing during short circuits of the new-generation 1.7 kV/1 kA IGBT power modules have been evidenced and characterized under...

  19. Clearance of short circuited ion optics electrodes by capacitive discharge. [in ion thrusters

    Science.gov (United States)

    Poeschel, R. L.

    1976-01-01

    The ion optics electrodes of low specific impulse (3000 sec) mercury electron bombardment ion thrusters are vulnerable to short circuits by virtue of their relatively small interelectrode spacing (0.5 mm). Metallic flakes from backsputtered deposits are the most probable cause of such 'shorts' and 'typical' flakes have been simulated here using refractory wire that has a representative, but controllable, cross section. Shorting wires can be removed by capacitive discharge without significant damage to the electrodes. This paper describes an evaluation of 'short' removal versus electrode damage for several combinations of capacitor voltage, stored energy, and short circuit conditions.

  20. Elucidating the interplay between dark current coupling and open circuit voltage in organic photovoltaics

    KAUST Repository

    Erwin, Patrick

    2011-01-01

    A short series of alkyl substituted perylenediimides (PDIs) with varying steric bulk are used to demonstrate the relationship between molecular structure, materials properties, and performance characteristics in organic photovoltaics. Devices were made with the structure indium tin oxide/copper phthalocyanine (200 Å)/PDI (200 Å)/bathocuproine (100 Å)/aluminum (1000 Å). We found that PDIs with larger substituents produced higher open circuit voltages (VOC\\'s) despite the donor acceptor interface gap (Δ EDA) remaining unchanged. Additionally, series resistance was increased simultaneously with VOC the effect of reducing short circuit current, making the addition of steric bulk a tradeoff that needs to be balanced to optimize power conversion efficiency. © 2011 American Institute of Physics.

  1. Cage-rotor induction motor inter-turn short circuit fault detection with and without saturation effect by MEC model.

    Science.gov (United States)

    Naderi, Peyman

    2016-09-01

    The inter-turn short fault for the Cage-Rotor-Induction-Machine (CRIM) is studied in this paper and its local saturation is taken into account. However, in order to observe the exact behavior of machine, the Magnetic-Equivalent-Circuit (MEC) and nonlinear B-H curve are proposed to provide an insight into the machine model and saturation effect respectively. The electrical machines are generally operated near to their saturation zone due to some design necessities. Hence, when the machine is exposed to a fault such as short circuit or eccentricities, it is operated within its saturation zone and thus, time and space harmonics are integrated and as a result, current and torque harmonics are generated which the phenomenon cannot be explored when saturation is dismissed. Nonetheless, inter-turn short circuit may lead to local saturation and this occurrence is studied in this paper using MEC model. In order to achieve the mentioned objectives, two and also four-pole machines are modeled as two samples and the machines performances are analyzed in healthy and faulty cases with and without saturation effect. A novel strategy is proposed to precisely detect inter-turn short circuit fault according to the stator׳s lines current signatures and the accuracy of the proposed method is verified by experimental results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Electromechanical stress in transformers caused by three-phase short-circuits; Estresse eletromecanico em transformadores causado por curtos-circuitos trifasicos

    Energy Technology Data Exchange (ETDEWEB)

    Rosentino, A.J.J. Pereira; Delaiba, A.C.; Saraiva, E.; Oliveira, J.C. de; Lynce, M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Fac. de Engenharia Eletrica], Emails: arnaldoufu@gmail.com, delaiba@ufu.br, elise.saraiva@yahoo.com.br, jcoliveira@ufu.br, lynce@ufu.br; Bronzeado, H. de S. [Companhia Hidro Eletrica do Sao Francisco (CHESF), Recife, PE (Brazil)], Emails: herivelto.bronzeado@gmail.com, hebron@chesf.gov.br

    2009-07-01

    One of the reasons for internal failures of transformers is the weakness of the isolation of its conductors/coils due to vibrations caused by electromechanics forces produced by the high short-circuit currents. In this context, this paper presents a methodology to estimate the electromechanical stress in transformers caused by three-phase short circuits. Details of the characteristics of radial and axial forces that can occur in concentric windings of transformers, focusing mainly on the axial are presented. It is presented the preliminary description of techniques for diagnosis and monitoring of transformers in the face of mechanical stress caused by short circuit. This study considers the transformers core involved.

  3. PSPICE simulation of bipolar pulse converter based on short-circuited coaxial transmission line

    International Nuclear Information System (INIS)

    Shi Lei; Fan Yajun

    2010-01-01

    The operating principle of the bipolar pulse converter based on short-circuited coaxial transmission line type is given. The output bipolar pulses are simulated by using PSPICE program on condition of different electric length and different impedance of the short-circuited coaxial transmission line. The bipolar pulses are generated by using unipolar pulse with pulse width of 2 ns in experiment, the experimental result fit well with the simulation result. (authors)

  4. Modeling of Short-Circuit-Related Thermal Stress in Aged IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Uhrenfeldt, Christian

    2017-01-01

    In this paper, the thermal stress on bond wires of aged IGBT modules under short-circuit conditions has been studied with respect to different solder delamination levels. To ensure repeatable test conditions, ad-hoc DBC (direct bond copper) samples with delaminated solder layers have been purposely...... in the surface temperature distribution, which confirms the hypothesis that short-circuit events produce significantly uneven stresses on bond wires....

  5. Prediction of Short-Circuit-Related Thermal Stress in Aged IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Uhrenfeldt, Christian

    2016-01-01

    In this paper, the thermal stress on bond wires of aged IGBT modules under short-circuit conditions has been studied with respect to different solder delamination levels. To ensure repeatable test conditions, ad-hoc DBC (direct bond copper) samples with delaminated solder layers have been purposely...... in the surface temperature distribution which confirms the hypothesis that short-circuit events produce significantly uneven stresses on bond wires....

  6. Minimum short-circuit ratios for grid interconnection of wind farms with induction generators

    Energy Technology Data Exchange (ETDEWEB)

    Reginatto, Romeu; Rocha, Carlos [Western Parana State University (UNIOESTE), Foz do Iguacu, PR (Brazil). Center for Engineering and Exact Sciences], Emails: romeu@unioeste.br, croberto@unioeste.br

    2009-07-01

    This paper concerns the problem of determining the minimum value for the short-circuit ratio which is adequate for the interconnection of a given wind farms to a given grid point. First, a set of 3 criteria is defined in order to characterize the quality/safety of the interconnection: acceptable terminal voltage variations, a minimum active power margin, and an acceptable range for the internal voltage angle. Then, the minimum short circuit ratio requirement is determined for 6 different induction generator based wind turbines, both fixed-speed (with and without reactive power compensation) and variable-speed (with the following control policies: reactive power, power factor, and terminal voltage regulation). The minimum short-circuit ratio is determined and shown in graphical results for the 6 wind turbines considered, for X/R in the range 0-15, also analyzing the effect of more/less stringent tolerances for the interconnection criteria. It is observed that the tighter the tolerances the larger the minimum short-circuit ratio required. For the same tolerances in the interconnection criteria, a comparison of the minimum short circuit ratio required for the interconnection of both squirrel-cage and doubly-fed induction generators is presented, showing that the last requires much smaller values for the short-circuit ratio. (author)

  7. Various mechanisms and clinical phenotypes in electrical short circuits of high-voltage devices: report of four cases and review of the literature.

    Science.gov (United States)

    Tsurugi, Takuo; Matsui, Shogo; Nakajima, Hiroshi; Nishii, Nobuhiro; Honda, Toshihiro; Kaneko, Yoshiaki

    2015-06-01

    An electrical short circuit is a rare complication in a high-voltage implantable cardioverter-defibrillator (ICD). However, the inability of an ICD to deliver appropriate shock therapy can be life-threatening. During the last 2 years, four cases of serious complications related to an electrical short circuit have been reported in Japan. A spark due to an electrical short circuit resulted in the failure of an ICD shock to terminate ventricular tachycardia and total damage to the ICD generator in three of four cases. Two of the four patients died from an electrical short circuit between the right ventricle and superior vena cava (SVC) leads. The others had audible sounds from the ICD generator site and were diagnosed with a lead-to-can abrasion, which was manifested by the arc mark on the surface of the can. It is still difficult to predict the occurrence of an electrical short circuit in current ICD systems. To reduce the probability of an electrical short circuit, we suggest the following: (i) avoid lead stress at ICD implantation, (ii) select a single-coil lead instead of a dual-coil lead, or (iii) use a unique algorithm which automatically disconnect can or SVC lead from shock deliver circuit when excessive current was detected. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  8. Comment on 'Current Budget of the Atmospheric Electric Global Circuit'

    Science.gov (United States)

    Driscoll, Kevin T.; Blakeslee, Richard J.

    1996-01-01

    In this paper, three major issues relevant to Kasemir's new model will be addressed. The first concerns Kasemir's assertion that there are significant differences between the potentials associated with the new model and the conventional model. A recalculation of these potentials reveals that both models provide equivalent results for the potential difference between the Earth and ionosphere. The second issue to be addressed is Kasemir's assertion that discrepancies in the electric potentials associated with both models can be attributed to modeling the Earth as a sphere, instead of as a planar surface. A simple analytical comparison will demonstrate that differences in the equations for the potentials of the atmosphere derived with a spherical and a planar Earth are negligible for applications to global current flow. Finally, the third issue to be discussed is Kasemir's claim that numerous aspects of the conventional model are incorrect, including the role of the ionosphere in global current flow as well as the significance of cloud-to-ground lightning in supplying charge to the global circuit. In order to refute these misconceptions, it will be shown that these aspects related to the flow of charge in the atmosphere are accurately described by the conventional model of the global circuit.

  9. Oxygenator in short-term LVAD circuit: a rescue in post-LVAD pulmonary complications.

    Science.gov (United States)

    Mohite, Prashant N; Patil, Nikhil P; Popov, Aron-Frederik; Bahrami, Toufan; Simon, Andre R

    2016-10-01

    Pulmonary complications after left ventricular assist device (LVAD) implantation, though infrequent, can be potentially catastrophic. A 62-year-old female with cardiogenic shock, supported on short-term LVAD, developed pulmonary oedema. An oxygenator was introduced into the LVAD circuit, which improved the gas exchange and, eventually, after weaning off the oxygenator, the patient received long-term LVAD. The introduction of an oxygenator into the short-term LAVD circuit is a lifesaving manoeuvre in such a situation. It offers freedom of introducing and removing the oxygenator into the LVAD circuit without opening the chest and competing for LVAD flow. © The Author(s) 2016.

  10. LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics.

    Directory of Open Access Journals (Sweden)

    Itai Hayut

    2011-10-01

    Full Text Available Somatostatin-expressing, low threshold-spiking (LTS cells and fast-spiking (FS cells are two common subtypes of inhibitory neocortical interneuron. Excitatory synapses from regular-spiking (RS pyramidal neurons to LTS cells strongly facilitate when activated repetitively, whereas RS-to-FS synapses depress. This suggests that LTS neurons may be especially relevant at high rate regimes and protect cortical circuits against over-excitation and seizures. However, the inhibitory synapses from LTS cells usually depress, which may reduce their effectiveness at high rates. We ask: by which mechanisms and at what firing rates do LTS neurons control the activity of cortical circuits responding to thalamic input, and how is control by LTS neurons different from that of FS neurons? We study rate models of circuits that include RS cells and LTS and FS inhibitory cells with short-term synaptic plasticity. LTS neurons shift the RS firing-rate vs. current curve to the right at high rates and reduce its slope at low rates; the LTS effect is delayed and prolonged. FS neurons always shift the curve to the right and affect RS firing transiently. In an RS-LTS-FS network, FS neurons reach a quiescent state if they receive weak input, LTS neurons are quiescent if RS neurons receive weak input, and both FS and RS populations are active if they both receive large inputs. In general, FS neurons tend to follow the spiking of RS neurons much more closely than LTS neurons. A novel type of facilitation-induced slow oscillations is observed above the LTS firing threshold with a frequency determined by the time scale of recovery from facilitation. To conclude, contrary to earlier proposals, LTS neurons affect the transient and steady state responses of cortical circuits over a range of firing rates, not only during the high rate regime; LTS neurons protect against over-activation about as well as FS neurons.

  11. Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications

    International Nuclear Information System (INIS)

    Zhuge, Jing; Huang, Ru; Wang, Yangyuan; Verhulst, Anne S; Vandenberghe, William G; Dehaene, Wim; Groeseneken, Guido

    2011-01-01

    This paper investigates the potential of tunnel field-effect transistors (TFETs), with emphasis on short-gate TFETs, by simulation for low-power digital applications having a supply voltage lower than 0.5 V. A transient study shows that the tunneling current has a negligible contribution in charging and discharging the gate capacitance of TFETs. In spite of a higher resistance region in the short-gate TFET, the gate (dis)charging speed still meets low-voltage application requirements. A circuit analysis is performed on short-gate TFETs with different materials, such as Si, Ge and heterostructures in terms of voltage overshoot, delay, static power, energy consumption and energy delay product (EDP). These results are compared to MOSFET and full-gate TFET performance. It is concluded that short-gate heterostructure TFETs (Ge–source for nTFET, In 0.6 Ga 0.4 As–source for pTFET) are promising candidates to extend the supply voltage to lower than 0.5 V because they combine the advantage of a low Miller capacitance, due to the short-gate structures, and strong drive current in TFETs, due to the narrow bandgap material in the source. At a supply voltage of 0.4 V and for an EOT and channel length of 0.6 nm and 40 nm, respectively, a three-stage inverter chain based on short-gate heterostructure TFETs saves 40% energy consumption per cycle at the same delay and shows 60%–75% improvement of EDP at the same static power, compared to its full-gate counterpart. When compared to the MOSFET, better EDP can be achieved in the heterostructure TFET especially at low static power consumption

  12. Round busbar concept for 30 nH, 1.7 kV, 10 kA IGBT non-destructive short-circuit tester

    DEFF Research Database (Denmark)

    Smirnova, Liudmila; Pyrhönen, Juha; Iannuzzo, Francesco

    2014-01-01

    Design of a Non-Destructive Test (NDT) set-up for short-circuit tests of 1.7 kV, 1 kA IGBT modules is discussed in this paper. The test set-up allows achieving short-circuit current up to 10 kA. The important objective during the design of the test set-up is to minimize the parasitic inductance...

  13. The principle of elaboration of the relay protection against short circuits between the closely placed phases of high voltage electrical line

    Directory of Open Access Journals (Sweden)

    Kiorsak M.

    2015-12-01

    Full Text Available The article is devoted to the elaboration of the principle of relay protection against short circuits between the closely placed phases of higher voltage electrical line with self-compensation, based on the six phase’s symmetrical components. It is shown that the unsymmetrical short circuits between the closely placed phases are characterized by appearance of zero and tertiary sequences of symmetrical components. This fact can be used to choose them for relay protection. The electrical basic circuits and formulas for calculation of the passive parameters of zero and tertiary filters of currents (voltages are done. It is presented the structural-functional basic circuit scheme for relay protection against short circuits between the closely placed phases of higher voltage electrical line with self-compensation.

  14. The Simulation Computer Based Learning (SCBL) for Short Circuit Multi Machine Power System Analysis

    Science.gov (United States)

    Rahmaniar; Putri, Maharani

    2018-03-01

    Strengthening Competitiveness of human resources become the reply of college as a conductor of high fomal education. Electrical Engineering Program UNPAB (Prodi TE UNPAB) as one of the department of electrical engineering that manages the field of electrical engineering expertise has a very important part in preparing human resources (HR), Which is required by where graduates are produced by DE UNPAB, Is expected to be able to compete globally, especially related to the implementation of Asean Economic Community (AEC) which requires the active participation of graduates with competence and quality of human resource competitiveness. Preparation of HR formation Competitive is done with the various strategies contained in the Seven (7) Higher Education Standard, one part of which is the implementation of teaching and learning process in Electrical system analysis with short circuit analysis (SCA) This course is a course The core of which is the basis for the competencies of other subjects in the advanced semester at Development of Computer Based Learning model (CBL) is done in the learning of interference analysis of multi-machine short circuit which includes: (a) Short-circuit One phase, (B) Two-phase Short Circuit Disruption, (c) Ground Short Circuit Disruption, (d) Short Circuit Disruption One Ground Floor Development of CBL learning model for Electrical System Analysis course provides space for students to be more active In learning in solving complex (complicated) problems, so it is thrilling Ilkan flexibility of student learning how to actively solve the problem of short-circuit analysis and to form the active participation of students in learning (Student Center Learning, in the course of electrical power system analysis.

  15. Double-layer rotor magnetic shield performance analysis in high temperature superconducting synchronous generators under short circuit fault conditions

    Science.gov (United States)

    Hekmati, Arsalan; Aliahmadi, Mehdi

    2016-12-01

    High temperature superconducting, HTS, synchronous machines benefit from a rotor magnetic shield in order to protect superconducting coils against asynchronous magnetic fields. This magnetic shield, however, suffers from exerted Lorentz forces generated in light of induced eddy currents during transient conditions, e.g. stator windings short-circuit fault. In addition, to the exerted electromagnetic forces, eddy current losses and the associated effects on the cryogenic system are the other consequences of shielding HTS coils. This study aims at investigating the Rotor Magnetic Shield, RMS, performance in HTS synchronous generators under stator winding short-circuit fault conditions. The induced eddy currents in different circumferential positions of the rotor magnetic shield along with associated Joule heating losses would be studied using 2-D time-stepping Finite Element Analysis, FEA. The investigation of Lorentz forces exerted on the magnetic shield during transient conditions has also been performed in this paper. The obtained results show that double line-to-ground fault is of the most importance among different types of short-circuit faults. It was revealed that when it comes to the design of the rotor magnetic shields, in addition to the eddy current distribution and the associated ohmic losses, two phase-to-ground fault should be taken into account since the produced electromagnetic forces in the time of fault conditions are more severe during double line-to-ground fault.

  16. Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    Science.gov (United States)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.

    2010-01-01

    To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish .

  17. Short circuit detection in the winding and operation of superconducting magnets

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1982-01-01

    Three categories of shorts will be discussed: (1) shorts to the metallic bobbin or other structural elements, (2) shorts between turns caused by instrumentation wires that are deliberately connected to a turn at the end (e.g., voltage taps) and that short out to another turn but are not completely severed in the process, and (3) short circuits between turns caused by direct contact due to insulation failure by chips of metal bridging turns and by instrumentation wires that bridge turns but are severed in the process of shorting

  18. Consequences and mitigation of saltwater intrusion induced by short-circuiting during aquifer storage and recovery in a coastal subsurface

    Science.gov (United States)

    Gerardus Zuurbier, Koen; Stuyfzand, Pieter Jan

    2017-02-01

    Coastal aquifers and the deeper subsurface are increasingly exploited. The accompanying perforation of the subsurface for those purposes has increased the risk of short-circuiting of originally separated aquifers. This study shows how this short-circuiting negatively impacts the freshwater recovery efficiency (RE) during aquifer storage and recovery (ASR) in coastal aquifers. ASR was applied in a shallow saltwater aquifer overlying a deeper, confined saltwater aquifer, which was targeted for seasonal aquifer thermal energy storage (ATES). Although both aquifers were considered properly separated (i.e., a continuous clay layer prevented rapid groundwater flow between both aquifers), intrusion of deeper saltwater into the shallower aquifer quickly terminated the freshwater recovery. The presumable pathway was a nearby ATES borehole. This finding was supported by field measurements, hydrochemical analyses, and variable-density solute transport modeling (SEAWAT version 4; Langevin et al., 2007). The potentially rapid short-circuiting during storage and recovery can reduce the RE of ASR to null. When limited mixing with ambient groundwater is allowed, a linear RE decrease by short-circuiting with increasing distance from the ASR well within the radius of the injected ASR bubble was observed. Interception of deep short-circuiting water can mitigate the observed RE decrease, although complete compensation of the RE decrease will generally be unattainable. Brackish water upconing from the underlying aquitard towards the shallow recovery wells of the ASR system with multiple partially penetrating wells (MPPW-ASR) was observed. This leakage may lead to a lower recovery efficiency than based on current ASR performance estimations.

  19. On the short circuit resilience of organic solar cells: prediction and validation.

    Science.gov (United States)

    Oostra, A Jolt; Smits, Edsger C P; de Leeuw, Dago M; Blom, Paul W M; Michels, Jasper J

    2015-09-07

    The operational characteristics of organic solar cells manufactured with large area processing methods suffers from the occurrence of short-circuits due to defects in the photoactive thin film stack. In this work we study the effect of a shunt resistance on an organic solar cell and demonstrate that device performance is not affected negatively as long as the shunt resistance is higher than approximately 1000 Ohm. By studying charge transport across PSS-lithium fluoride/aluminum (LiF/Al) shunting junctions we show that this prerequisite is already met by applying a sufficiently thick (>1.5 nm) LiF layer. We demonstrate that this remarkable shunt-resilience stems from the formation of a significant charge transport barrier at the PSS-LiF/Al interface. We validate our predictions by fabricating devices with deliberately severed photoactive layers and find an excellent agreement between the calculated and experimental current-voltage characteristics.

  20. An accurate low current measurement circuit for heavy iron beam current monitor

    International Nuclear Information System (INIS)

    Zhou Chaoyang; Su Hong; Mao Ruishi; Dong Chengfu; Qian Yi; Kong Jie

    2012-01-01

    Heavy-ion beams at 10 6 particles per second have been applied to the treatment of deep-seated inoperable tumors in the therapy terminal of the Heavy Ion Research Facility in Lanzhou (HIRFL) which is located at the Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS). An accurate low current measurement circuit following a Faraday cup was developed to monitor the beam current at pA range. The circuit consisted of a picoammeter with a bandwidth of 1 kHz and a gated integrator (GI). A low input bias current precision amplifier and new guarding and shielding techniques were used in the picoammeter circuit which allowed as to measure current less than 1 pA with a current gain of 0.22 V/pA and noise less than 10 fA. This paper will also describe a novel compensation approach which reduced the charge injection from switches in the GI to 10 −18 C, and a T-switch configuration which was used to eliminate leakage current in the reset switch.

  1. Internal Short Circuits in Lithium-Ion Cells for PHEVs

    Energy Technology Data Exchange (ETDEWEB)

    Sriramulu, Suresh [Tiax LLC, Lexington, MA (United States); Stringfellow, Richard [Tiax LLC, Lexington, MA (United States)

    2013-05-25

    Development of Plug-in Hybrid Electric Vehicles (PHEVs) has recently become a high national priority because of their potential to enable significantly reduced petroleum consumption by the domestic transportation sector in the relatively near term. Lithium-ion (Li-ion) batteries are a critical enabling technology for PHEVs. Among battery technologies with suitable operating characteristics for use in vehicles, Li-ion batteries offer the best combination of energy, power, life and cost. Consequently, worldwide, leading corporations and government agencies are supporting the development of Li-ion batteries for PHEVs, as well as the full spectrum of vehicular applications ranging from mild hybrid to all-electric. In this project, using a combination of well-defined experiments, custom designed cells and simulations, we have improved the understanding of the process by which a Li-ion cell that develops an internal short progresses to thermal runaway. Using a validated model for thermal runaway, we have explored the influence of environmental factors and cell design on the propensity for thermal runaway in full-sized PHEV cells. We have also gained important perspectives about internal short development and progression; specifically that initial internal shorts may be augmented by secondary shorts related to separator melting. Even though the nature of these shorts is very stochastic, we have shown the critical and insufficiently appreciated role of heat transfer in influencing whether a developing internal short results in a thermal runaway. This work should lead to enhanced perspectives on separator design, the role of active materials and especially cathode materials with respect to safety and the design of automotive cooling systems to enhance battery safety in PHEVs.

  2. Canonical cortical circuits: current evidence and theoretical implications

    Directory of Open Access Journals (Sweden)

    Capone F

    2016-04-01

    Full Text Available Fioravante Capone,1,2 Matteo Paolucci,1,2 Federica Assenza,1,2 Nicoletta Brunelli,1,2 Lorenzo Ricci,1,2 Lucia Florio,1,2 Vincenzo Di Lazzaro1,2 1Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; 2Fondazione Alberto Sordi – Research Institute for Aging, Rome, ItalyAbstract: Neurophysiological and neuroanatomical studies have found that the same basic structural and functional organization of neuronal circuits exists throughout the cortex. This kind of cortical organization, termed canonical circuit, has been functionally demonstrated primarily by studies involving visual striate cortex, and then, the concept has been extended to different cortical areas. In brief, the canonical circuit is composed of superficial pyramidal neurons of layers II/III receiving different inputs and deep pyramidal neurons of layer V that are responsible for cortex output. Superficial and deep pyramidal neurons are reciprocally connected, and inhibitory interneurons participate in modulating the activity of the circuit. The main intuition of this model is that the entire cortical network could be modeled as the repetition of relatively simple modules composed of relatively few types of excitatory and inhibitory, highly interconnected neurons. We will review the origin and the application of the canonical cortical circuit model in the six sections of this paper. The first section (The origins of the concept of canonical circuit: the cat visual cortex reviews the experiments performed in the cat visual cortex, from the origin of the concept of canonical circuit to the most recent developments in the modelization of cortex. The second (The canonical circuit in neocortex and third (Toward a canonical circuit in agranular cortex sections try to extend the concept of canonical circuit to other cortical areas, providing some significant examples of circuit functioning in different cytoarchitectonic

  3. Research of Measurement Circuits for High Voltage Current Transformer Based on Rogowski Coils

    Directory of Open Access Journals (Sweden)

    Yan Bing

    2014-02-01

    Full Text Available The electronic current transformer plays an irreplaceable position in the field of relay protection and current measurement of the power system. Rogowski coils are used as sensor parts, and in order to improve the measurement accuracy and reliability, the circuits at the high voltage system are introduced and improved in this paper, including the analog integral element, the filtering circuit and the phase shift circuit. Simulations results proved the reliability and accuracy of the improved circuits.

  4. Method of repair of short circuits for in-situ leaching

    International Nuclear Information System (INIS)

    Baughman, D.R.; Bergeson, J.R.

    1984-01-01

    In an acidic in-situ leaching system, a short circuit passage through a subterranean formation between a fracture associated with an injection well and a fracture associated with a production well can be plugged by introducing a non-acidic liquid for displacing acidic leach liquid from the short circuit passage, introducing into the injection well a basic composition including a sealing material that gels under acidic conditions, and introducing sufficient liquid into the injection well to displace at least a portion of the basic composition containing sealing material from the injection well into the short circuit passage. Liquid flow between the injection well and the production well is then discontinued for a sufficient time for residual acid in the subterranean formation surrounding the short circuit passage to contact the sealing material and cause gelation of the sealing material in the short circuit passage. The introduction of acidic leach liquid to the formation can then continue. The sealing material may be a polymer or a water soluble silicate

  5. Short Circuit Ratio analysis of multi-infeed HVDC system with a VSC-HVDC link

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2011-01-01

    As an important indicator of system stability, Short Circuit Ratio (SCR) is commonly used in power system analysis. For systems include HVDC link connection, the Effective SCR (ESCR) is mostly applied to indicate the strength of HVDC infeed bus. The contribution of VSC-HVDC link to multi......-infeed HVDC system stability has been analyzed a lot but the study on ESCR of this kind of system is still insufficient. This paper presents a calculation method for ESCR of the hybrid multi infeed HVDC system based on a simple two-infeed HVDC system model. The equivalent circuit of this system under short...... circuit situation is firstly obtained based on the model. Then its Thevenin equivalent circuit is derived and system ESCR can be calculated. At last, simulation study verified that the calculated ESCR value under different cases can indicate the change of system stability....

  6. Fine-Tuning the Energy Levels of a Nonfullerene Small-Molecule Acceptor to Achieve a High Short-Circuit Current and a Power Conversion Efficiency over 12% in Organic Solar Cells.

    Science.gov (United States)

    Kan, Bin; Zhang, Jiangbin; Liu, Feng; Wan, Xiangjian; Li, Chenxi; Ke, Xin; Wang, Yunchuang; Feng, Huanran; Zhang, Yamin; Long, Guankui; Friend, Richard H; Bakulin, Artem A; Chen, Yongsheng

    2018-01-01

    Organic solar cell optimization requires careful balancing of current-voltage output of the materials system. Here, such optimization using ultrafast spectroscopy as a tool to optimize the material bandgap without altering ultrafast photophysics is reported. A new acceptor-donor-acceptor (A-D-A)-type small-molecule acceptor NCBDT is designed by modification of the D and A units of NFBDT. Compared to NFBDT, NCBDT exhibits upshifted highest occupied molecular orbital (HOMO) energy level mainly due to the additional octyl on the D unit and downshifted lowest unoccupied molecular orbital (LUMO) energy level due to the fluorination of A units. NCBDT has a low optical bandgap of 1.45 eV which extends the absorption range toward near-IR region, down to ≈860 nm. However, the 60 meV lowered LUMO level of NCBDT hardly changes the V oc level, and the elevation of the NCBDT HOMO does not have a substantial influence on the photophysics of the materials. Thus, for both NCBDT- and NFBDT-based systems, an unusually slow (≈400 ps) but ultimately efficient charge generation mediated by interfacial charge-pair states is observed, followed by effective charge extraction. As a result, the PBDB-T:NCBDT devices demonstrate an impressive power conversion efficiency over 12%-among the best for solution-processed organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Quantifying short-lived events in multistate ionic current measurements.

    Science.gov (United States)

    Balijepalli, Arvind; Ettedgui, Jessica; Cornio, Andrew T; Robertson, Joseph W F; Cheung, Kin P; Kasianowicz, John J; Vaz, Canute

    2014-02-25

    We developed a generalized technique to characterize polymer-nanopore interactions via single channel ionic current measurements. Physical interactions between analytes, such as DNA, proteins, or synthetic polymers, and a nanopore cause multiple discrete states in the current. We modeled the transitions of the current to individual states with an equivalent electrical circuit, which allowed us to describe the system response. This enabled the estimation of short-lived states that are presently not characterized by existing analysis techniques. Our approach considerably improves the range and resolution of single-molecule characterization with nanopores. For example, we characterized the residence times of synthetic polymers that are three times shorter than those estimated with existing algorithms. Because the molecule's residence time follows an exponential distribution, we recover nearly 20-fold more events per unit time that can be used for analysis. Furthermore, the measurement range was extended from 11 monomers to as few as 8. Finally, we applied this technique to recover a known sequence of single-stranded DNA from previously published ion channel recordings, identifying discrete current states with subpicoampere resolution.

  8. Advances in Current Rating Techniques for Flexible Printed Circuits

    Science.gov (United States)

    Hayes, Ron

    2014-01-01

    Twist Capsule Assemblies are power transfer devices commonly used in spacecraft mechanisms that require electrical signals to be passed across a rotating interface. Flexible printed circuits (flex tapes, see Figure 2) are used to carry the electrical signals in these devices. Determining the current rating for a given trace (conductor) size can be challenging. Because of the thermal conditions present in this environment the most appropriate approach is to assume that the only means by which heat is removed from the trace is thru the conductor itself, so that when the flex tape is long the temperature rise in the trace can be extreme. While this technique represents a worst-case thermal situation that yields conservative current ratings, this conservatism may lead to overly cautious designs when not all traces are used at their full rated capacity. A better understanding of how individual traces behave when they are not all in use is the goal of this research. In the testing done in support of this paper, a representative flex tape used for a flight Solar Array Drive Assembly (SADA) application was tested by energizing individual traces (conductors in the tape) in a vacuum chamber and the temperatures of the tape measured using both fine-gauge thermocouples and infrared thermographic imaging. We find that traditional derating schemes used for bundles of wires do not apply for the configuration tested. We also determine that single active traces located in the center of a flex tape operate at lower temperatures than those on the outside edges.

  9. THE RELIABILITY OF DETERMINING THE SHORT CIRCUIT ZONE OF THE LINES OF 6–35 kV

    Directory of Open Access Journals (Sweden)

    F. А. Romaniuk

    2018-01-01

    Full Text Available A method of increasing the reliability of determining the zone of short-circuit at the current step protection of the lines of 6–35 kV with unilateral power, aimed at improvement of their technical perfection, is presented in the paper. Having taken the relative simpleness of the current protection into account the authors consider the unilateral remote method of accounting the parameters of the emergency mode and the type of fault to be the most suitable for the implementation of the algorithm of its functioning as compared with the existing methods of fault location. The major factors affecting the accuracy of determining the short circuit zone based on the remote method are noted. With the use of the method of computational experiment the influence of the load currents and contact resistances of various levels on the magnitude and character of changes of errors of determination of the calculated distance of the point of fault from the protection installation location taking into account the errors of measuring transformers. It is demonstrated that in many cases of arc short circuit in a loaded line in order to define the zone of short-circuit with fair accuracy correction of the estimated distance to the fault as calculated by the parameters of the damaged loop (loops is required. According to the results of numerical experiments corrective expressions on the basis of two relative asymmetry currents determined by the current values of the differences of the phase currents of the line for detecting a type of a short circuit have been obtained. The assessment of the efficiency of the proposed method has been performed. It is shown that the application of the proposed correction method makes it possible to increase the accuracy of fault zone detection. The dynamic properties of the proposed method applied to different modes of the line functioning have been studied. It is determined that in the worst case the definition of the fault zone for a

  10. Limitation of short-circuit power due to distributed generation

    NARCIS (Netherlands)

    Morren, J.; Reckers, T.J.M.; Berende, M.J.C.; Slootweg, J.G.

    2012-01-01

    Introduction of DG units in the network will result in increasing fault current levels. In this contribution several solutions are described to limit the fault currents in the network, in order to avoid overloading and destruction of components in the networks. The main focus of the paper is on the

  11. Realization of Electronically Controllable Current-mode Square-rooting Circuit Based on MO-CFTA

    OpenAIRE

    P. Silapan; C. Chanapromma; T. Worachak

    2011-01-01

    This article proposes a current-mode square-rooting circuit using current follower transconductance amplifier (CTFA). The amplitude of the output current can be electronically controlled via input bias current with wide input dynamic range. The proposed circuit consists of only single CFTA. Without any matching conditions and external passive elements, the circuit is then appropriate for an IC architecture. The magnitude of the output signal is temperature-insensitive. Th...

  12. Fault Detection and Location of IGBT Short-Circuit Failure in Modular Multilevel Converters

    Directory of Open Access Journals (Sweden)

    Bin Jiang

    2018-06-01

    Full Text Available A single fault detection and location for Modular Multilevel Converter (MMC is of great significance, as numbers of sub-modules (SMs in MMC are connected in series. In this paper, a novel fault detection and location method is proposed for MMC in terms of the Insulated Gate Bipolar Translator (IGBT short-circuit failure in SM. The characteristics of IGBT short-circuit failures are analyzed, based on which a Differential Comparison Low-Voltage Detection Method (DCLVDM is proposed to detect the short-circuit fault. Lastly, the faulty IGBT is located based on the capacitor voltage of the faulty SM by Continuous Wavelet Transform (CWT. Simulations have been done in the simulation software PSCAD/EMTDC and the results confirm the validity and reliability of the proposed method.

  13. Data on the natural ventilation performance of windcatcher with anti-short-circuit device (ASCD).

    Science.gov (United States)

    Nejat, Payam; Calautit, John Kaiser; Majid, Muhd Zaimi Abd; Hughes, Ben Richard; Jomehzadeh, Fatemeh

    2016-12-01

    This article presents the datasets which were the results of the study explained in the research paper 'Anti-short-circuit device: a new solution for short-circuiting in windcatcher and improvement of natural ventilation performance' (P. Nejat, J.K. Calautit, M.Z. Abd. Majid, B.R. Hughes, F. Jomehzadeh, 2016) [1] which introduces a new technique to reduce or prevent short-circuiting in a two-sided windcatcher and also lowers the indoor CO2 concentration and improve the ventilation distribution. Here, we provide details of the numerical modeling set-up and data collection method to facilitate reproducibility. The datasets includes indoor airflow, ventilation rates and CO2 concentration data at several points in the flow field. The CAD geometry of the windcatcher models are also included.

  14. Allocation of synchronous condensers for restoration of system short-circuit power

    DEFF Research Database (Denmark)

    Marrazi, Emanuel; Yang, Guangya; Weinreich-Jensen, Peter

    2017-01-01

    Modern power systems, employing an increasing number of converter-based renewable energy sources (RES) and decreasing the usage of conventional power plants, are leading to lower levels of short-circuit power and rotational inertia. A solution to this is the employment of synchronous condensers...... in the grid, in order to provide sufficient short-circuit power. This results in the increase of the short-circuit ratio (SCR) at transmission system bus-bars serving as points of interconnection (POI) to renewable generation. Evaluation of the required capacity and grid-location of the synchronous condensers......, isinherently a mixed integer non-linear optimization problem, which could not be done on manual basis considering each type of machine and all bus-bars. This study therefore proposes a method of optimal allocation of synchronous condensers in a hypothetic future scenario of a transmission system fed...

  15. Allocation of synchronous condensers for restoration of system short-circuit power

    DEFF Research Database (Denmark)

    Marrazi, Emanuel; Yang, Guangya; Weinreich-Jensen, Peter

    2017-01-01

    Modern power systems, employing an increasing number of converter-based renewable energy sources (RES) and decreasing the usage of conventional power plants, are leading to lower levels of short-circuit power and rotational inertia. A solution to this is the employment of synchronous condensers...... in the grid, in order to provide sufficient short-circuit power. This results in the increase of the short-circuit ratio (SCR) at transmission system bus-bars serving as points of interconnection (POI) to renewable generation. Evaluation of the required capacity and grid-location of the synchronous condensers...... by renewable generation. Total cost of synchronous condenser installations in the system is minimized and the SCRs at the POIs of central renewable power plants are strengthened. The method has potential for application on larger grids, aiding grid-integration of RES....

  16. Voltage Recovery of Grid-Connected Wind Turbines with DFIG After a Short-Circuit Fault

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2004-01-01

    The fast development of wind power generation brings new requirements for wind turbine integration to the network. After clearance of an external short-circuit fault, the voltage at the wind turbine terminal should be re-established with minimized power losses. This paper concentrates on voltage......-establish the wind turbine terminal voltage after the clearance of an external short-circuit fault, and the restore the normal operation of the variable speed wind turbine with DFIG, which has been demonstrated by simulation results....

  17. Analysis and design of a charge pump circuit for high output current applications

    NARCIS (Netherlands)

    van Steenwijk, Gijs; van Steenwijk, Gijs; Hoen, Klaas; Hoen, Klaas; Wallinga, Hans

    1993-01-01

    A charge pump circuit has been developed that can deliver high currents even for a system supply voltage of 3 V. The circuit consists of capacitances, connected by MOS switches. The influence of the on-resistance of the switches on the circuit's output resistance has been analysed. The switches are

  18. Vacuum circuit breaker postarc current modelling based on the theory of Langmuir probes

    NARCIS (Netherlands)

    Lanen, van E.P.A.; Smeets, R.; Popov, M.; Sluis, van der L.

    2007-01-01

    High-resolution measurements on the postarc current in vacuum circuit breakers (VCBs) reveal a period, immediately following current-zero, in which the voltage remains practically zero. The most widely used model for simulating the interaction between the postarc current with the electrical circuit

  19. On Using Current Steering Logic in Mixed Analogue-digital Circuits

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    The authors investigate power supply noise in mixed analogue-digital circuits, arising from communication between the analogue and digital parts of the circuit. Current steering techniques and proper buffering are used to show which noise currents can be reduced and which cannot. In addition......, a high-swing current steering buffer for driving analogue switches or external digital signals is proposed....

  20. Short circuit signatures from different wind turbine generator types

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Philip C.; Rodriguez, Pedro

    2011-01-01

    Modern wind power plants are required and designed to ride through faults in the network, subjected to the fault clearance and following grid code demands. Beside voltage support during faults, the wind turbine fault current contribution is important to establish the correct settings for the relay...... of the protections. The following wind turbine generator during faults have been studied: (i) induction generator, (ii) induction generator with variable rotor resistance (iii) converter-fed rotor (often referred to as DFIG) and (iv) full scale converter. To make a clear comparison and performance analysis during...... faults, and the consequent effects on substation protections, the aforementioned configurations have been simulated using PSCAD/EMTDC, with the same power plant configuration, electrical grid and generator data. Additionally, a comparison of these wind turbine technologies with a conventional power plant...

  1. Development of internal/external short circuit protection for lithium D cells

    Science.gov (United States)

    Mcdonald, Robert C.; Bragg, Bobby J.

    1992-01-01

    A brief discussion of short circuit protection for lithium D cells is given in viewgraph format. The following topics are presented: (1) historical need; (2) program objectives; (3) composite thermal switch (CTS) development; (4) laboratory cells with CTS; and (5) the incorporation of CTS into lithium D cells.

  2. Network model and short circuit program for the Kennedy Space Center electric power distribution system

    Science.gov (United States)

    1976-01-01

    Assumptions made and techniques used in modeling the power network to the 480 volt level are discussed. Basic computational techniques used in the short circuit program are described along with a flow diagram of the program and operational procedures. Procedures for incorporating network changes are included in this user's manual.

  3. Short-Circuit Robustness Assessment in Power Electronic Modules for Megawatt Applications

    DEFF Research Database (Denmark)

    Iannuzzo, Francesco

    2016-01-01

    In this paper, threats and opportunities in testing of megawatt power electronic modules under short circuit are presented and discussed, together with the introduction of some basic principles of non-destructive testing, a key technique to allow post-failure analysis. The non-destructive testing...

  4. L2 Reading Ability: Further Insight into the Short-Circuit Hypothesis.

    Science.gov (United States)

    Taillefer, Gail F.

    1996-01-01

    Discusses the notion of a language proficiency threshold that short circuits the transfer of reading ability from the native language (L1) to a second language (L2). This study, in which cognitive complexity of tasks and students' L2 proficiency levels vary, focuses on university students in France reading preprofessional English texts. (39…

  5. Results of experimental research of the modes of short circuit in a traction network

    Directory of Open Access Journals (Sweden)

    P.Ye. Mykhalichenko

    2012-08-01

    Full Text Available In the article the results, namely oscillograms of the transitional feeder electric values obtained by the experimental tests of the short circuit modes in case of setting off different types of substation fast-acting switches are presented. The experiments were conducted on the operating electrified track sections of the Prydniprovs’ka Railway.

  6. EQUATIONS OF ELECTRIC MOTOR POWER SUPPLY UNIT DISSYMMETRY UNDER PHASE SHORT-CIRCUIT FAULT

    Directory of Open Access Journals (Sweden)

    V.Y. Tchaban

    2013-04-01

    Full Text Available In the paper, a formula is introduced for calculating electric motor supply unit voltage under feeding by a common transformer in the condition of a phase short-circuit in one of the motors. The formula is used in every time step of electromechanical state equations integration.

  7. Short-circuit tests of 1650 and 96 MVA transformers for 1300 MW french nuclear power plants

    International Nuclear Information System (INIS)

    Mailhot, M.

    1989-01-01

    Power evacuation and feeding of the auxiliaries directly from the 400 kV grid are sensitive points governing the security of 1300 MW PWR Nuclear Power Plants of the French Program. These two different functions are provided by two specific types of transformers. - Banks of 3 single-phase 550 MVA - 400 kV/20 kV transformers. - Three-phase 96 MVA - 400 kV / 3 x 6.8 kV transformers. These passive elements must have a never failing reliability and assure a continuous service in spite of electric, thermal and mechanical stresses that may occur during the lifetime of the power plant. Dielectric and thermal tests carried out in the manufacturers test floors insure these stresses withstand capabilities of transformers. In France, high short-circuit power for the 400 kV network added to often low impedance voltages for transformers impose on them very high stresses during short-circuits. Calculation and experimentation on scale or partial models are not sufficient to insure short-circuit currents withstand capabilities of transformers. The margin of uncertainty dependent on obligatory extrapolations for this kind of complex systems [steel, magnetic sheets, copper, oil, paper and transformerboard] can be reduced in a significant way only by real scale tests on prototypes. These tests that need both high power and voltage cannot be performed in manufacturers test floors. So, in France they are carried out at the EDF Les Renardieres Laboratory. Following paper deals with SHELL TYPE TRANSFORMERS which, particularly thanks to their interleaved rectangular windings display a great resistance to short-circuit stresses

  8. Study on Turn-to-turn Short Circuit On一line Monitoring System for Dry一type Ai r一core Reactor

    Directory of Open Access Journals (Sweden)

    GAO Zi-wei

    2017-04-01

    Full Text Available The change of current value caused by turn-to-turn short circuit of dry-type air-core reactor is so little that failure detection is difficult to be carried out. In order to solve this problem,a new on-line monitoring system based on impedance variation of turn-to-turn short circuit is proposed. The numerical method is applied to analyze the variation of equivalent resistance and equivalent reactance when dry-type air-core reactor winding short circuit happens in different places,and the monitoring method based on harmonic analysis method and quasi- synchronization sampling method is analyzed by theory. The hardware system,which takes single-chip microcomputer as the core of data processing and logic control,completes data acquisition of voltage signal and current signal of the reactor. In the respect of software design,the impedance variation will be uploaded to the PC after it has been calculated by using the above monitoring method,and then monitoring of turn-to-turn short circuit fault will be realized. Finally,the design of on-line monitoring system is studied by testing. The research result shows that,the equivalent resistance increases and the equivalent reactance decreases when turn-to-turn short circuit occurs,and the variation of equivalent resistance is more obvious than equivalent reactance. The experiment results prove that this monitoring method is true and the on-line monitoring system is feasible.

  9. Conditions of the existence of 'short circuit' effect for plasma in a conducting cylinder

    International Nuclear Information System (INIS)

    Zhilinskij, A.P.; Kuteev, B.V.

    1975-01-01

    It has been experimentally established that in a cylindrical container with conducting side and end walls, the phenomenon of short circuit (the Symon effect) is not always realized. The short circuiting of plane end and of side surfaces causes an acceleration of a plasma decay only during the initial stage in a comparatively short time. Characteristic lifetimes during the late stage remain unchanged in this case. In conditions of a stable plasma they correspond to classical values of the plasma decay constant at the ambipolar diffusion of charged particles along and across force lines of a magnetic field. A fundamental change in the nature of the diffusion and a decrease of the plasma lifetime almost by two orders are realized in an instrument in which an end conducting wall for plasma in created with a short cylinder at the end of a solenoid in a sharply nonuniform magnetic field. The data obtained testify to the fact that the short circuit effect takes place in conditions when on boundaries of plasma the possibility of simultaneous flowing of unipolar electron flows along and of ion flows across a magnetic field is assured. The results of the experiments are compared with a theory

  10. NREL/NASA Internal Short-Circuit Instigator in Lithium Ion Cells

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Long, Dirk; Pesaran, Ahmad; Darcy, Eric; Shoesmith, Mark; McCarthy, Ben

    2015-10-11

    Lithium-ion cells provide the highest specific energy (>280 Wh/kg) and energy density (>600 Wh/L) rechargeable battery building block to date with the longest life. Electrode/electrolyte thermal instability and flammability of the electrolyte of Li-ion cells make them prone to catastrophic thermal runaway under some rare internal short circuit conditions. Despite extensive QC/QA, standardized industry safety testing, and over 18 years of manufacturing experience, major recalls have taken place and incidents still occur. Many safety incidents that take place in the field originate due to an internal short that was not detectable or predictable at the point of manufacture. The Internal Short-Circuit Instigator can be used to study types of separators, non-flammable electrolytes, electrolyte additives, fusible tabs, propagation studies, and gas generation within a cell.

  11. A current-mode multi-valued adder circuit for multi-operand addition

    Science.gov (United States)

    Cini, Ugur; Morgül, Avni

    2011-06-01

    Static CMOS logic circuits have a robust working performance. However, they generate excessive noise when the switching activity is high. Source-coupled logic (SCL) circuits can be an alternative for analogue-friendly design where constant current is driven from the power supply, independent of the switching activity of the circuit. In this work, a compact current-mode multi-operand adder cell, similar to SCL circuits, is designed. The circuit adds up seven input operands using a technique similar to the (7, 3) counter circuit, but with less active elements when compared to a conventional binary (7, 3) counter. The design has comparable power and delay characteristics compared to conventional SCL implementation. The proposed circuit requires only 69 transistors, where 96 transistors are required for the equivalent SCL implementation. Hence the circuit saves on both transistor count and interconnections. The design is optimised for low power operation of high performance arithmetic circuits. The proposed multi-operand adder circuit is designed in UMC 0.18 µm technology. As an example of application, an 8 × 8 bit multiplier circuit is designed and simulated using HSPICE.

  12. The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes.

    Science.gov (United States)

    Villanueva-Cab, J; Anta, J A; Oskam, G

    2016-01-28

    We report on the commonly unaccounted for process of recombination under short-circuit conditions in nanostructured photoelectrodes with special attention to the charge collection efficiency. It is observed that when recombination under short circuit conditions is significant, small perturbation methods overestimate the charge-collection efficiency, which is related to the inaccurate determination of the electron diffusion coefficient and diffusion length.

  13. Approaching Repetitive Short Circuit Tests on MW-Scale Power Modules by means of an Automatic Testing Setup

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Wang, Huai; Iannuzzo, Francesco

    2016-01-01

    An automatic testing system to perform repetitive short-circuit tests on megawatt-scale IGBT power modules is pre-sented and described in this paper, pointing out the advantages and features of such testing approach. The developed system is based on a non-destructive short-circuit tester, which has...

  14. Diagnosis of Soft Spot Short Defects in Analog Circuits Considering the Thermal Behaviour of the Chip

    Directory of Open Access Journals (Sweden)

    Tadeusiewicz Michał

    2016-06-01

    Full Text Available The paper deals with fault diagnosis of nonlinear analogue integrated circuits. Soft spot short defects are analysed taking into account variations of the circuit parameters due to physical imperfections as well as self-heating of the chip. A method enabling to detect, locate and estimate the value of a spot defect has been developed. For this purpose an appropriate objective function was minimized using an optimization procedure based on the Fibonacci method. The proposed approach exploits DC measurements in the test phase, performed at a limited number of accessible points. For illustration three numerical examples are given.

  15. Research on current sharing of paralleled IGBTs in different DC breaker circuit topologies

    Directory of Open Access Journals (Sweden)

    Chen Ying

    2016-01-01

    Full Text Available IGBT modules used in series and parallel to satisfy the requirement in high-power DC circuit breakers are often prone to large-current destruction due to current unbalance between paralleled IGBTs. It is of great importance to identify the current unbalance causes and to find a method optimizing the current sharing of paralleled IGBTs. In this paper the current-sharing influencing factors are discussed and verified by simulation. Two possible circuit topologies used in DC circuit breakers are proposed and simulated to see their performance in current sharing. The results show that one of them can provide us with a simple and effective method to achieve good current balancing in the DC circuit breaker application.

  16. Model-based evaluation of the short-circuited tripolar cuff configuration.

    Science.gov (United States)

    Andreasen, Lotte N S; Struijk, Johannes J

    2006-05-01

    Recordings of neural information for use as feedback in functional electrical stimulation are often contaminated with interfering signals from muscles and from stimulus pulses. The cuff electrode used for the neural recording can be optimized to improve the S/I ratio. In this work, we evaluate a model of both the nerve signal and the interfering signals recorded by a cuff, and subsequently use this model to study the signal to interference ratio of different cuff designs and to evaluate a recently introduced short-circuited tripolar cuff configuration. The results of the model showed good agreement with results from measurements in rabbits and confirmed the superior performance of the short-circuited tripolar configuration as compared with the traditionally used tripolar configuration.

  17. On Demand Internal Short Circuit Device Enables Verification of Safer, Higher Performing Battery Designs

    Energy Technology Data Exchange (ETDEWEB)

    Darcy, Eric; Keyser, Matthew

    2017-05-15

    The Internal Short Circuit (ISC) device enables critical battery safety verification. With the aluminum interstitial heat sink between the cells, normal trigger cells cannot be driven into thermal runaway without excessive temperature bias of adjacent cells. With an implantable, on-demand ISC device, thermal runaway tests show that the conductive heat sinks protected adjacent cells from propagation. High heat dissipation and structural support of Al heat sinks show high promise for safer, higher performing batteries.

  18. An Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    Science.gov (United States)

    Courey, Karim; Wright, Clara; Asfour, Shihab; Onar, Arzu; Bayliss, Jon; Ludwig, Larry

    2009-01-01

    In this experiment, an empirical model to quantify the probability of occurrence of an electrical short circuit from tin whiskers as a function of voltage was developed. This empirical model can be used to improve existing risk simulation models. FIB and TEM images of a tin whisker confirm the rare polycrystalline structure on one of the three whiskers studied. FIB cross-section of the card guides verified that the tin finish was bright tin.

  19. An Investigation of Short Circuits in All-solution Processed and All-organic Solar Cells

    OpenAIRE

    Johansson, Jim

    2015-01-01

    Organic solar cells have shown great promise of becoming a cheaper alternative to inorganic solar cells. Additionally, they can also be made semitransparent. To avoid using expensive indium tin oxide electrodes in organic solar cells the electrodes can be made from conductive polymer, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). However, these so-called PEDOT-PEDOT solar cells are prone to short-circuiting. The work behind this thesis thus aimed to find the cause of the...

  20. A Current-Mode Common-Mode Feedback Circuit (CMFB) with Rail-to-Rail Operation

    Science.gov (United States)

    Suadet, Apirak; Kasemsuwan, Varakorn

    2011-03-01

    This paper presents a current-mode common-mode feedback (CMFB) circuit with rail-to-rail operation. The CMFB is a stand-alone circuit, which can be connected to any low voltage transconductor without changing or upsetting the existing circuit. The proposed CMFB employs current mirrors, operating as common-mode detector and current amplifier to enhance the loop gain of the CMFB. The circuit employs positive feedback to enhance the output impedance and gain. The circuit has been designed using a 0.18 μm CMOS technology under 1V supply and analyzed using HSPICE with BSIM3V3 device models. A pseudo-differential amplifier using two common sources and the proposed CMFB shows rail to rail output swing (± 0.7 V) with low common-mode gain (-36 dB) and power dissipation of 390 μW.

  1. Modeling and Fault Diagnosis of Interturn Short Circuit for Five-Phase Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Jian-wei Yang

    2015-01-01

    Full Text Available Taking advantage of the high reliability, multiphase permanent magnet synchronous motors (PMSMs, such as five-phase PMSM and six-phase PMSM, are widely used in fault-tolerant control applications. And one of the important fault-tolerant control problems is fault diagnosis. In most existing literatures, the fault diagnosis problem focuses on the three-phase PMSM. In this paper, compared to the most existing fault diagnosis approaches, a fault diagnosis method for Interturn short circuit (ITSC fault of five-phase PMSM based on the trust region algorithm is presented. This paper has two contributions. (1 Analyzing the physical parameters of the motor, such as resistances and inductances, a novel mathematic model for ITSC fault of five-phase PMSM is established. (2 Introducing an object function related to the Interturn short circuit ratio, the fault parameters identification problem is reformulated as the extreme seeking problem. A trust region algorithm based parameter estimation method is proposed for tracking the actual Interturn short circuit ratio. The simulation and experimental results have validated the effectiveness of the proposed parameter estimation method.

  2. Grand Research Plan for Neural Circuits of Emotion and Memory--current status of neural circuit studies in China.

    Science.gov (United States)

    Zhu, Yuan-Gui; Cao, He-Qi; Dong, Er-Dan

    2013-02-01

    During recent years, major advances have been made in neuroscience, i.e., asynchronous release, three-dimensional structural data sets, saliency maps, magnesium in brain research, and new functional roles of long non-coding RNAs. Especially, the development of optogenetic technology provides access to important information about relevant neural circuits by allowing the activation of specific neurons in awake mammals and directly observing the resulting behavior. The Grand Research Plan for Neural Circuits of Emotion and Memory was launched by the National Natural Science Foundation of China. It takes emotion and memory as its main objects, making the best use of cutting-edge technologies from medical science, life science and information science. In this paper, we outline the current status of neural circuit studies in China and the technologies and methodologies being applied, as well as studies related to the impairments of emotion and memory. In this phase, we are making efforts to repair the current deficiencies by making adjustments, mainly involving four aspects of core scientific issues to investigate these circuits at multiple levels. Five research directions have been taken to solve important scientific problems while the Grand Research Plan is implemented. Future research into this area will be multimodal, incorporating a range of methods and sciences into each project. Addressing these issues will ensure a bright future, major discoveries, and a higher level of treatment for all affected by debilitating brain illnesses.

  3. Research Tool to Evaluate the Safety Response of Lithium Batteries to an Internal Short Circuit

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Darcy, Eric; Pesaran, Ahmad

    2016-06-19

    Li-ion cells provide the highest specific energy and energy density rechargeable battery with the longest life. Many safety incidents that take place in the field originate due to an internal short that was not detectable or predictable at the point of manufacture. NREL's internal short circuit (ISC) device is capable of simulating shorts and produces consistent and reproducible results. The cell behaves normally until the ISC device is activated wherein a latent defect (i.e., built into the cell during manufacturing) gradually moves into position to create an internal short while the battery is in use, providing relevant data to verify abuse models. The ISC device is an effective tool for studying the safety features of parts of Li-ion batteries.

  4. Research on resistance characteristics of YBCO tape under short-time DC large current impact

    Science.gov (United States)

    Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen

    2017-06-01

    Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.

  5. A circuit scheme to control current surge for RFID-NVM pumps

    International Nuclear Information System (INIS)

    Li Ming; Kang Jinfeng; Wang Yangyuan; Yang Liwu

    2010-01-01

    This paper presents a new circuit scheme to control the current surge in the boosting phase of an radio frequency idenfication-nonvolative memory pump. By introducing a circuit block consisting of a current reference and a current mirror, the new circuit scheme can keep the period-average current of the pump constantly below the desired level, for example, 2.5 μA. Therefore, it can prevent the rectified supply of the RFID tag IC from collapsing in the boosting phase of the pump. The presented scheme could effectively reduce the voltage drop on the rectified supply from more than 50% to even zero, but could cost less area. Moreover, an analytical expression to calculate the boosting time of a pump in the new scheme is developed. (semiconductor integrated circuits)

  6. A circuit scheme to control current surge for RFID-NVM pumps

    Energy Technology Data Exchange (ETDEWEB)

    Li Ming; Kang Jinfeng; Wang Yangyuan [Institute of Microelectronics, Peking University, Beijing 100871 (China); Yang Liwu, E-mail: prettynecess@163.co [Semiconductor Manufacturing International Corporation, Shanghai 201203 (China)

    2010-02-15

    This paper presents a new circuit scheme to control the current surge in the boosting phase of an radio frequency idenfication-nonvolative memory pump. By introducing a circuit block consisting of a current reference and a current mirror, the new circuit scheme can keep the period-average current of the pump constantly below the desired level, for example, 2.5 {mu}A. Therefore, it can prevent the rectified supply of the RFID tag IC from collapsing in the boosting phase of the pump. The presented scheme could effectively reduce the voltage drop on the rectified supply from more than 50% to even zero, but could cost less area. Moreover, an analytical expression to calculate the boosting time of a pump in the new scheme is developed. (semiconductor integrated circuits)

  7. A weak current amplifier and output circuit used in nuclear weighing scales

    International Nuclear Information System (INIS)

    Sun Jinhua; Zheng Mingquan; Wang Mingqian; Jia Changchun; Jin Hanjuan; Shi Qicun; Tang Ke

    1998-01-01

    A weak current amplifier and output circuit with a maximum nonlinear error of +-0.06% has been developed. Experiments show that it can work stably and therefore be used in nuclear industrial instruments

  8. The persistent current and energy spectrum on a driven mesoscopic LC-circuit with Josephson junction

    Science.gov (United States)

    Pahlavanias, Hassan

    2018-03-01

    The quantum theory for a mesoscopic electric circuit including a Josephson junction with charge discreteness is studied. By considering coupling energy of the mesoscopic capacitor in Josephson junction device, a Hamiltonian describing the dynamics of a quantum mesoscopic electric LC-circuit with charge discreteness is introduced. We first calculate the persistent current on a quantum driven ring including Josephson junction. Then we obtain the persistent current and energy spectrum of a quantum mesoscopic electrical circuit which includes capacitor, inductor, time-dependent external source and Josephson junction.

  9. Interaction of ultrashort laser pulses and silicon solar cells under short circuit conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mundus, M., E-mail: markus.mundus@ise.fraunhofer.de; Giesecke, J. A.; Fischer, P.; Hohl-Ebinger, J.; Warta, W. [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstraße 2, 79110 Freiburg (Germany)

    2015-02-28

    Ultrashort pulse lasers are promising tools for numerous measurement purposes. Among other benefits their high peak powers allow for efficient generation of wavelengths in broad spectral ranges and at spectral powers that are orders of magnitude higher than in conventional light sources. Very recently this has been exploited for the establishment of sophisticated measurement facilities for electrical characterization of photovoltaic (PV) devices. As the high peak powers of ultrashort pulses promote nonlinear optical effects they might also give rise to nonlinear interactions with the devices under test that possibly manipulate the measurement outcome. In this paper, we present a comprehensive theoretical and experimental study of the nonlinearities affecting short circuit current (I{sub SC}) measurements of silicon (Si) solar cells. We derive a set of coupled differential equations describing the radiation-device interaction and discuss the nonlinearities incorporated in those. By a semi-analytical approach introducing a quasi-steady-state approximation and integrating a Green's function we solve the system of equations and obtain simulated I{sub SC} values. We validate the theoretical model by I{sub SC} ratios obtained from a double ring resonator setup capable for reproducible generation of various ultrashort pulse trains. Finally, we apply the model to conduct the most prominent comparison of I{sub SC} generated by ultrashort pulses versus continuous illumination. We conclude by the important finding that the nonlinearities induced by ultrashort pulses are negligible for the most common I{sub SC} measurements. However, we also find that more specialized measurements (e.g., of concentrating PV or Si-multijunction devices as well as highly localized electrical characterizations) will be biased by two-photon-absorption distorting the I{sub SC} measurement.

  10. Approximate entropy—a new statistic to quantify arc and welding process stability in short-circuiting gas metal arc welding

    International Nuclear Information System (INIS)

    Cao Biao; Xiang Yuanpeng; Lü Xiaoqing; Zeng Min; Huang Shisheng

    2008-01-01

    Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation has been calculated and analysed to investigate their relation with the stability of electric arc and welding process. The extensive experimental and calculated results show that the approximate entropy of welding current is significantly and positively correlated with arc and welding process stability, whereas its standard deviation is correlated with them negatively. A larger approximate entropy and a smaller standard deviation imply a more stable arc and welding process, and vice versa. As a result, the approximate entropy of welding current promises well in assessing and quantifying the stability of electric arc and welding process in short-circuiting gas metal arc welding

  11. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration

    Science.gov (United States)

    Higashi, Shougo; Lee, Seok Woo; Lee, Jang Soo; Takechi, Kensuke; Cui, Yi

    2016-01-01

    Portable power sources and grid-scale storage both require batteries combining high energy density and low cost. Zinc metal battery systems are attractive due to the low cost of zinc and its high charge-storage capacity. However, under repeated plating and stripping, zinc metal anodes undergo a well-known problem, zinc dendrite formation, causing internal shorting. Here we show a backside-plating configuration that enables long-term cycling of zinc metal batteries without shorting. We demonstrate 800 stable cycles of nickel–zinc batteries with good power rate (20 mA cm−2, 20 C rate for our anodes). Such a backside-plating method can be applied to not only zinc metal systems but also other metal-based electrodes suffering from internal short circuits. PMID:27263471

  12. Enhanced charging kinetics of porous electrodes: surface conduction as a short-circuit mechanism.

    Science.gov (United States)

    Mirzadeh, Mohammad; Gibou, Frederic; Squires, Todd M

    2014-08-29

    We use direct numerical simulations of the Poisson-Nernst-Planck equations to study the charging kinetics of porous electrodes and to evaluate the predictive capabilities of effective circuit models, both linear and nonlinear. The classic transmission line theory of de Levie holds for general electrode morphologies, but only at low applied potentials. Charging dynamics are slowed appreciably at high potentials, yet not as significantly as predicted by the nonlinear transmission line model of Biesheuvel and Bazant. We identify surface conduction as a mechanism which can effectively "short circuit" the high-resistance electrolyte in the bulk of the pores, thus accelerating the charging dynamics and boosting power densities. Notably, the boost in power density holds only for electrode morphologies with continuous conducting surfaces in the charging direction.

  13. Correction: The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes.

    Science.gov (United States)

    Villanueva-Cab, J; Anta, J A; Oskam, G

    2016-05-28

    Correction for 'The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes' by J. Villanueva-Cab et al., Phys. Chem. Chem. Phys., 2016, 18, 2303-2308.

  14. Reducing the Risk of Damage to Power Transformers of 110 kV and Above Accompanying Internal Short Circuits

    Energy Technology Data Exchange (ETDEWEB)

    L’vova, M. M. [JSC “R& D Center at Federal Grid Company of the Unified Power System” (Russian Federation); L’vov, S. Yu. [Presselektro LLC (Russian Federation); Komarov, V. B. [IPCE RAS (Russian Federation); Lyut’ko, E. O. [JSC “R& D Center at Federal Grid Company of the Unified Power System” (Russian Federation); Vdoviko, V. P. [EMA Ltd. (Russian Federation); Demchenko, V. V. [JSC “Boguchanskaya HPP” (Russian Federation); Belyaev, S. G. [PKF Konif Ltd. (Russian Federation); Savel’ev, V. A. [Ivanovo State Power University (Russian Federation); L’vov, M. Yu., E-mail: timashova@nte-power.ru; L’vov, Yu. N. [JSC “R& D Center at Federal Grid Company of the Unified Power System” (Russian Federation)

    2015-03-15

    Methods of increasing the operating reliability of power transformers, autotransformers and shunting reactors in order to reduce the risk of damage, which accompany internal short circuits and equipment fires and explosions, are considered.

  15. A fast novel soft-start circuit for peak current-mode DC—DC buck converters

    International Nuclear Information System (INIS)

    Li Jie; Yang Miao; Sun Weifeng; Lu Xiaoxia; Xu Shen; Lu Shengli

    2013-01-01

    A fully integrated soft-start circuit for DC—DC buck converters is presented. The proposed high speed soft-start circuit is made of two sections: an overshoot suppression circuit and an inrush current suppression circuit. The overshoot suppression circuit is presented to control the input of the error amplifier to make output voltage limit increase in steps without using an external capacitor. A variable clock signal is adopted in the inrush current suppression circuit to increase the duty cycle of the system and suppress the inrush current. The DC—DC converter with the proposed soft-start circuit has been fabricated with a standard 0.13 μm CMOS process. Experimental results show that the proposed high speed soft-start circuit has achieved less than 50 μs start-up time. The inductor current and the output voltage increase smoothly over the whole load range. (semiconductor integrated circuits)

  16. Rapid battery depletion and loss of therapy due to a short circuit in bipolar DBS for essential tremor.

    Science.gov (United States)

    Allert, Niels; Barbe, Michael Thomas; Timmermann, Lars; Coenen, Volker Arnd

    2017-05-01

    Technical dysfunctions have been reported reducing efficacy of deep brain stimulation (DBS). Here, we report on an essential-tremor patient in whom a short circuit in bipolar DBS resulted not only in unilateral loss of therapy but also in high current flow and thereby rapid decline of the impulse-generator battery voltage from 2.83 V a week before the event to 2.54 V, indicating the need for an impulse-generator replacement. Immediate re-programming restored therapeutic efficacy. Moreover, the reduction in current flow allowed the battery voltage to recover without immediate surgical intervention to 2.81 V a week later.

  17. A survey of SiC power MOSFETs short-circuit robustness and failure mode analysis

    DEFF Research Database (Denmark)

    Ceccarelli, L.; Reigosa, P. D.; Iannuzzo, F.

    2017-01-01

    The aim of this paper is to provide an extensive overview about the state-of-art commercially available SiC power MOSFET, focusing on their short-circuit ruggedness. A detailed literature investigation has been carried out, in order to collect and understand the latest research contribution within...... this topic and create a survey of the present scenario of SiC MOSFETs reliability evaluation and failure mode analysis, pointing out the evolution and improvements as well as the future challenges in this promising device technology....

  18. A multilayer electro-thermal model of pouch battery during normal discharge and internal short circuit process

    International Nuclear Information System (INIS)

    Chen, Mingbiao; Bai, Fanfei; Song, Wenji; Lv, Jie; Lin, Shili

    2017-01-01

    Highlights: • 2D network equivalent circuit considers the interplay of cell units. • The temperature non-uniformity Φ of multilayer model is bigger than that of lumped model. • The temperature non-uniformity is quantified and the reason of non-uniformity is analyzed. • Increasing the thermal conductivity of the separator can effectively relieve the heat spot effect of ISC. - Abstract: As the electrical and thermal characteristic will affect the batteries’ safety, performance, calendar life and capacity fading, an electro-thermal coupled model for pouch battery LiFePO_4/C is developed in normal discharge and internal short circuit process. The battery is discretized into many cell elements which are united as a 2D network equivalent circuit. The electro-thermal model is solved with finite difference method. Non-uniformity of current distribution and temperature distribution is simulated and the result is validated with experiment data at various discharge rates. Comparison of the lumped model and the multilayer structure model shows that the temperature non-uniformity Φ of multilayer model is bigger than that of lumped model and shows more precise. The temperature non-uniformity is quantified and the reason of non-uniformity is analyzed. The electro-thermal model can also be used to guide the safety design of battery. The temperature of the ISC element near tabs is the highest because the equivalent resistance of the external circuit (not including the ISC element) is the smallest when the resistance of cell units is small. It is found that increasing the thermal conductivity of integrated layer can effectively relieve the heat spot effect of ISC.

  19. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    Science.gov (United States)

    Campbell, Ann. N.; Anderson, Richard E.; Cole, Jr., Edward I.

    1995-01-01

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

  20. Interface tuning of current-induced cooling in molecular circuits

    Czech Academy of Sciences Publication Activity Database

    Foti, Giuseppe; Vázquez, Héctor

    2017-01-01

    Roč. 121, č. 2 (2017), s. 1082-1088 ISSN 1932-7447 R&D Projects: GA ČR GA15-19672S Institutional support: RVO:68378271 Keywords : current-induced heating and cooling * molecular junction * Carbene Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.536, year: 2016

  1. Detection of Internal Short Circuit in Lithium Ion Battery Using Model-Based Switching Model Method

    Directory of Open Access Journals (Sweden)

    Minhwan Seo

    2017-01-01

    Full Text Available Early detection of an internal short circuit (ISCr in a Li-ion battery can prevent it from undergoing thermal runaway, and thereby ensure battery safety. In this paper, a model-based switching model method (SMM is proposed to detect the ISCr in the Li-ion battery. The SMM updates the model of the Li-ion battery with ISCr to improve the accuracy of ISCr resistance R I S C f estimates. The open circuit voltage (OCV and the state of charge (SOC are estimated by applying the equivalent circuit model, and by using the recursive least squares algorithm and the relation between OCV and SOC. As a fault index, the R I S C f is estimated from the estimated OCVs and SOCs to detect the ISCr, and used to update the model; this process yields accurate estimates of OCV and R I S C f . Then the next R I S C f is estimated and used to update the model iteratively. Simulation data from a MATLAB/Simulink model and experimental data verify that this algorithm shows high accuracy of R I S C f estimates to detect the ISCr, thereby helping the battery management system to fulfill early detection of the ISCr.

  2. Modulation of short-term plasticity in the corticothalamic circuit by group III metabotropic glutamate receptors.

    Science.gov (United States)

    Kyuyoung, Christine L; Huguenard, John R

    2014-01-08

    Recurrent connections in the corticothalamic circuit underlie oscillatory behavior in this network and range from normal sleep rhythms to the abnormal spike-wave discharges seen in absence epilepsy. The propensity of thalamic neurons to fire postinhibitory rebound bursts mediated by low-threshold calcium spikes renders the circuit vulnerable to both increased excitation and increased inhibition, such as excessive excitatory cortical drive to thalamic reticular (RT) neurons or heightened inhibition of thalamocortical relay (TC) neurons by RT. In this context, a protective role may be played by group III metabotropic receptors (mGluRs), which are uniquely located in the presynaptic active zone and typically act as autoreceptors or heteroceptors to depress synaptic release. Here, we report that these receptors regulate short-term plasticity at two loci in the corticothalamic circuit in rats: glutamatergic cortical synapses onto RT neurons and GABAergic synapses onto TC neurons in somatosensory ventrobasal thalamus. The net effect of group III mGluR activation at these synapses is to suppress thalamic oscillations as assayed in vitro. These findings suggest a functional role of these receptors to modulate corticothalamic transmission and protect against prolonged activity in the network.

  3. Superconducting high current magnetic Circuit: Design and Parameter Estimation of a Simulation Model

    CERN Document Server

    Kiefer, Alexander; Reich, Werner Dr

    The Large Hadron Collider (LHC) utilizes superconducting main dipole magnets that bend the trajectory of the particle beams. In order to adjust the not completely homogeneous magnetic feld of the main dipole magnets, amongst others, sextupole correctcorrector magnets are used. In one of the 16 corrector magnet circuits placed in the LHC, 154 of these sextupole corrector magnets (MCS) are connected in series. This circuit extends on a 3.35 km tunnel section of the LHC. In 2015, at one of the 16 circuits a fault was detected. The simulation of this circuit is helpful for fnding the fault by applying alternating current at different frequencies. Within this Thesis a PSpice model for the simulation of the superconducting corrector magnet circuit was designed. The physical properties of the circuit and its elements were analyzed and implemented. For the magnets and bus-bars, sub-circuits were created which reflect the parasitic effects of electrodynamics and electrostats. The inductance values and capacitance valu...

  4. Developing an Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    Science.gov (United States)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.

    2009-01-01

    To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.

  5. Effects of Armature Winding Segmentation with Multiple Converters on the Short Circuit Torque of 10-MW Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2017-01-01

    Superconducting synchronous generators (SCSGs) are drawing more attention in large direct-drive wind turbine applications. Despite low weight and compactness, the short circuit torque of an SCSG may be too high for wind turbine constructions due to a large magnetic air gap of an SCSG. This paper...... aims at assessing the effects of armature winding segmentation on reducing the short circuit torque of 10-MW SCSGs. A concept of armature winding segmentation with multiple power electronic converters is presented. Four SCSG designs using different topologies are examined. Results show that armature...... winding segmentation effectively reduce the short circuit torque in all the four SCSG designs when one segment is shorted at the terminal....

  6. Comparison of short-circuit characteristics of trench gate and planar gate U-shaped channel SOI-LIGBTs

    Science.gov (United States)

    Zhang, Long; Zhu, Jing; Sun, Weifeng; Zhao, Minna; Huang, Xuequan; Chen, Jiajun; Shi, Longxing; Chen, Jian; Ding, Desheng

    2017-09-01

    Comparison of short-circuit (SC) characteristics of 500 V rated trench gate U-shaped channel (TGU) SOI-LIGBT and planar gate U-shaped channel (PGU) SOI-LIGBT is made for the first time in this paper. The on-state carrier profile of the TGU structure is reshaped by the dual trenches (a gate trench G1 and a hole barrier trench G2), which leads to a different conduction behavior from that of the PGU structure. The TGU structure exhibits a higher latchup immunity but a severer self-heating effect. At current density (JC) 640 A/cm2. Comparison of layouts and fabrication processes are also made between the two types of devices.

  7. A Novel Programmable CMOS Fuzzifiers Using Voltage-to-Current Converter Circuit

    Directory of Open Access Journals (Sweden)

    K. P. Abdulla

    2012-01-01

    Full Text Available This paper presents a new voltage-input, current-output programmable membership function generator circuit (MFC using CMOS technology. It employs a voltage-to-current converter to provide the required current bias for the membership function circuit. The proposed MFC has several advantageous features. This MFC can be reconfigured to perform triangular, trapezoidal, S-shape, Z-Shape, and Gaussian membership forms. This membership function can be programmed in terms of its width, slope, and its center locations in its universe of discourses. The easily adjustable characteristics of the proposed circuit and its accuracy make it suitable for embedded system and industrial control applications. The proposed MFC is designed using the spice software, and simulation results are obtained.

  8. Internal Short-Circuiting Phenomena In An Open-Cycle MHD Generator

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Y.; Ishibashi, E. [Hitachi Research Laboratory, Hitachi-shi, Ibaraki-ken (Japan); Kasahara, T.; Kazawa, Y. [Hitachi Works, Hitachi Ltd., Hitachi-shi, Ibaraki-ken (Japan)

    1968-11-15

    The influence of internal electrical leakage due to circulating currents flowing through velocity boundary layers and due to metallic elements in insulating walls (peg walls) is experimentally investigated. For this purpose a combustion-driven MHD generator is utilized. The active part of the generator test section is 60 cm in length with a constant cross-section of 3 x 12 cm{sup 2}. At typical operating conditions about 70 g/s of diesel light oil is burned with oxygen-enriched air, resulting in a thermal input of 3 MW, a fluid velocity of 500 to 700 m/s and a gas temperature of 2700 to 2900 Degree-Sign K at the channel inlet. KOH is used as the seed material. The magnetic field can be raised up to 1.95 Teslas. In the range of lower magnetic fields (B < 0.8T) it is shown that an observed open-circuit voltage agrees well with the theoretical value OBh which is defined in a one-dimensional MHD model. In other words, the circulating currents scarcely affect the open-circuit voltage. The theoretical basis for this fact is obtained by the use of a simple model. Experimental results obtained in several runs using three sets of insulating walls show that thermal boundary layers at water-cooled metals are more conductive than expected and that the open- circuit voltage decreases because of leakage currents flowing through metal pegs, when the internal resistance of the generator is relatively large. Also, it is shown that an alumina coating is effective in reducing the leakage currents. (author)

  9. Damping Resonant Current in a Spark-Gap Trigger Circuit to Reduce Noise

    Science.gov (United States)

    2009-06-01

    DAMPING RESONANT CURRENT IN A SPARK- GAP TRIGGER CIRCUIT TO REDUCE NOISE E. L. Ruden Air Force Research Laboratory, Directed Energy Directorate, AFRL...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Damping Resonant Current In A Spark- Gap Trigger Circuit To Reduce Noise 5a...thereby triggering 2 after delay 0, is 1. Each of the two rail- gaps (represented by 2) is trig- gered to close after the spark- gap (1) in the

  10. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia

    Science.gov (United States)

    Crabtree, Gregg W.; Gogos, Joseph A.

    2014-01-01

    Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations. PMID:25505409

  11. Characteristic Of Induction Magnetic Field On The Laboratory Scale Superconducting Fault Current Limiter Circuit

    International Nuclear Information System (INIS)

    Adi, Wisnu Ari; Sukirman, E.; Didin, S.W.; Yustinus, P.M.; Siregar, Riswal H.

    2004-01-01

    Model construction of the laboratory scale superconducting fault current limiter circuit (SFCL) has been performed. The SFCL is fault current limiter and used as electric network security. It mainly consists of a copper coil, a superconducting ring and an iron core that are concentrically arranged. The SFCL circuit is essentially a transformer where the secondary windings are being replaced by the ring of YBa 2 Cu 3 O 7-x superconductor (HTS). The ring has critical transition temperature Tc = 92 K and critical current Ic = 3.61 A. Characterization of the SFCL circuit is simulated by ANSYS version 5.4 software. The SFCL circuit consists of load and transformer impedances. The results show that the inductions of magnet field flux in the iron core of primer windings and ring disappear to one other before fault state. It means that impedance of the transformer is zero. After the condition a superconductivity behavior of the ring is disappear so that the impedance of the transformer becomes very high. From this experiment, we concluded that the SFCL circuit could work normally if the resultant of induction magnetic in the iron core (transformer) is zero

  12. Transient stability of DFIG wind turbines at an external short-circuit fault

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    The fast development of wind power generation brings new requirements for wind turbine integration into the network. After clearance of an external short-circuit fault, gridconnected wind turbines should restore their normal operation without power loss caused by disconnections. This article...... are described in detail. The transient process of grid-connected wind turbines with DFIGs at an external shortcircuit fault is analysed, and in critical post-fault situations a measure is proposed for the voltage recovery of DFIG wind turbines after fault clearance. Simulation results demonstrate...... that in uncritical post-fault situations the control schemes are able to restore the wind turbine's normal operation without disconnections.lt is also proved that the proposed measure is effective in re-establishing the voltage at the wind turbine terminal in critical post-fault situations....

  13. Growth Mechanism Studies of ZnO Nanowires: Experimental Observations and Short-Circuit Diffusion Analysis.

    Science.gov (United States)

    Shih, Po-Hsun; Wu, Sheng Yun

    2017-07-21

    Plenty of studies have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since analyzing the growth mechanism along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid the appearance of catalytic contamination. Two-dimensional energy dispersive spectroscopy (EDS) mapping with a diffusion model was used to obtain the diffusion length and the activation energy ratio. The ratio value is close to 0.3, revealing that the growth of ZnO nanowires was attributed to the short-circuit diffusion.

  14. Effect of Short-Circuit Pathways on Water Quality in Selected Confined Aquifers (Invited)

    Science.gov (United States)

    McMahon, P. B.

    2010-12-01

    Confined aquifers in the United States generally contain fewer anthropogenic contaminants than unconfined aquifers because confined aquifers often contain water recharged prior to substantial human development and redox conditions are more reducing, which favors degradation of common contaminants like nitrate and chlorinated solvents. Groundwater in a confined part of the High Plains aquifer near York, Nebraska had an adjusted radiocarbon age of about 2,000 years, and groundwater in a confined part of the Floridan aquifer near Tampa, Florida had apparent ages greater than 60 years on the basis of tritium measurements. Yet compounds introduced more recently into the environment (anthropogenic nitrate and volatile organic compounds) were detected in selected public-supply wells completed in both aquifers. Depth-dependent measurements of flow and chemistry in the pumping supply wells, groundwater age dating, numerical modeling of groundwater flow, and other monitoring data indicated that the confined aquifers sampled by the supply wells were connected to contaminated unconfined aquifers by short-circuit pathways. In the High Plains aquifer, the primary pathways appeared to be inactive irrigation wells screened in both the unconfined and confined aquifers. In the Floridan aquifer, the primary pathways were karst sinkholes and conduits. Heavy pumping in both confined systems exacerbated the problem by reducing the potentiometric surface and increasing groundwater velocities, thus enhancing downward gradients and reducing reaction times for processes like denitrification. From a broader perspective, several confined aquifers in the U.S. have experienced large declines in their potentiometric surfaces because of groundwater pumping and this could increase the potential for contamination in those aquifers, particularly where short-circuit pathways connect them to shallower, contaminated sources of water, such as was observed in York and Tampa.

  15. Failure Analysis of Short-Circuited Lithium-Ion Battery with Nickel-Manganese-Cobalt/Graphite Electrode.

    Science.gov (United States)

    Lee, Seung-Mi; Kim, Jea-Yeon; Byeon, Jai-Won

    2018-09-01

    Accidental failures and explosions of lithium-ion batteries have been reported in recent years. To determine the root causes and mechanisms of these failures from the perspective of material degradation, failure analysis was conducted for an intentionally shorted lithium-ion battery. The battery was subjected to electrical overcharging and mechanical pressing to simulate internal short-circuiting. After in situ measurement of the temperature increase during the short-circuiting of the electrodes, the disassembled battery components (i.e., the anode, cathode, and separator) were analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Regardless of the simulated short-circuit method (mechanical or electrical), damage was observed in the shorted batteries. Numerous small cracks and chemical reaction products were observed on the electrode surface, along with pore shielding on the separator. The event of short-circuiting increased the surface temperature of the battery to approximately 90 °C, which prompted the deterioration and decomposition of the electrolyte, thus affecting the overall battery performance; this was attributed to the decomposition of the lithium salt at 60 °C. The gas generation due to the breakdown of the electrolyte causes pressure accumulation inside the cell; therefore, the electrolyte leaks.

  16. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Sciences Lane, Vancouver, British Columbia (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario (Canada)

    2008-02-15

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R{sub p}) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R{sub p}. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified. (author)

  17. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Science.gov (United States)

    White, B. D.; Kesler, O.

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.

  18. Increasing emitter efficiency in 3.3-kV enhanced trench IGBTs for higher short-circuit capability

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Rahimo, Munaf

    2018-01-01

    In this paper, a 3.3-kV Enhanced Trench IGBT has been designed with a high emitter efficiency, for improving its short-circuit robustness. The carrier distribution profile has been shaped in a way that it is possible to increase the electric field at the surface of the IGBT, and thereby, counteract...... the Kirk Effect onset. This design approach is beneficial for mitigating high-frequency oscillations, typically observed in IGBTs under short-circuit conditions. The effectiveness of the proposed design rule is validated by means of mixed-mode device simulations. Then, two IGBTs have been fabricated...... with different emitter efficiencies and tested under short circuit, validating that the high-frequency oscillations can be mitigated, with higher emitter efficiency IGBT designs....

  19. Transient Analysis of Grid-Connected Wind Turbines with DFIG After an External Short-Circuit Fault

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2004-01-01

    The fast development of wind power generation brings new requirements for wind turbine integration to the network. After the clearance of an external short-circuit fault, the grid-connected wind turbine should restore its normal operation with minimized power losses. This paper concentrates...... on transient analysis of variable speed wind turbines with doubly fed induction generator (DFIG) after an external short-circuit fault. A simulation model of a MW-level variable speed wind turbine with DFIG developed in PSCAD/EMTDC is presented, and the control and protection schemes are described in detail....... After the clearance of an external short-circuit fault the control schemes manage to restore the wind turbine?s normal operation, and their performances are demonstrated by simulation results both during the fault and after the clearance of the fault....

  20. Minimization of the Electromagnetic Torque Ripple Caused by the Coils Inter-Turn Short Circuit Fault in Dual-Redundancy Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Yiguang Chen

    2017-11-01

    Full Text Available With the development of electric vehicles and More-Electric/All-Electric aircraft, high reliability is required in motor servo systems. The redundancy technique is one of the most effective methods to improve the reliability of motor servo systems. In this paper, the structure of dual-redundancy permanent magnet synchronous motor (DRPMSM with weak thermal coupling and no electromagnetic coupling is analyzed and the mathematical model of this motor is established. However, there is little research on how to suppress the torque ripple caused by short-circuited coils in the DRPMSM. The main contribution of this paper is to present the advantages of DRPMSM and to find a way to suppress the torque ripple caused by the short circuit fault in DRPMSM. In order to improve operation quality and enhance the reliability of DRPMSM after a short circuit occurs, the torque ripple caused by the coils inter-turn short circuit fault in DRPMSM is analyzed in detail. Then, a control method for suppressing the electromagnetic torque ripple of a short-circuited coil is proposed for the first time by using an improved adaptive proportional resonant (PR controller and a proportional integral (PI controller in parallel. PR control is a method of controlling alternating components without steady-state error, and it can be used to suppress torque ripple. DRPMSM adopts speed and current double closed-loop control strategies. An improved adaptive PR controller and a PI controller are employed in parallel for the speed loop, while traditional PI control is adopted in current loop. From the simulation and experimental results, the torque ripple is reduced from 45.4 to 5.6% when the torque ripple suppression strategy proposed in this paper is adopted, in the case that the speed is 600 r/min. The torque ripple suppression strategy based on the PR controller can quickly and effectively suppress the torque ripple caused by the short-circuited coils, which makes the motor speed

  1. Resonant magnetoelectric response of composite cantilevers: Theory of short vs. open circuit operation and layer sequence effects

    Directory of Open Access Journals (Sweden)

    Matthias C. Krantz

    2015-11-01

    Full Text Available The magnetoelectric effect in layered composite cantilevers consisting of strain coupled layers of magnetostrictive (MS, piezoelectric (PE, and substrate materials is investigated for magnetic field excitation at bending resonance. Analytic theories are derived for the transverse magnetoelectric (ME response in short and open circuit operation for three different layer sequences and results presented and discussed for the FeCoBSi-AlN-Si and the FeCoBSi-PZT-Si composite systems. Response optimized PE-MS layer thickness ratios are found to greatly change with operation mode shifting from near equal MS and PE layer thicknesses in the open circuit mode to near vanishing PE layer thicknesses in short circuit operation for all layer sequences. In addition the substrate layer thickness is found to differently affect the open and short circuit ME response producing shifts and reversal between ME response maxima depending on layer sequence. The observed rich ME response behavior for different layer thicknesses, sequences, operating modes, and PE materials can be explained by common neutral plane effects and different elastic compliance effects in short and open circuit operation.

  2. Inverted Fuel Cell: Room-Temperature Hydrogen Separation from an Exhaust Gas by Using a Commercial Short-Circuited PEM Fuel Cell without Applying any Electrical Voltage.

    Science.gov (United States)

    Friebe, Sebastian; Geppert, Benjamin; Caro, Jürgen

    2015-06-26

    A short-circuited PEM fuel cell with a Nafion membrane has been evaluated in the room-temperature separation of hydrogen from exhaust gas streams. The separated hydrogen can be recovered or consumed in an in situ olefin hydrogenation when the fuel cell is operated as catalytic membrane reactor. Without applying an outer electrical voltage, there is a continuous hydrogen flux from the higher to the lower hydrogen partial pressure side through the Nafion membrane. On the feed side of the Nafion membrane, hydrogen is catalytically split into protons and electrons by the Pt/C electrocatalyst. The protons diffuse through the Nafion membrane, the electrons follow the short-circuit between the two brass current collectors. On the cathode side, protons and electrons recombine, and hydrogen is released. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Self-amplified CMOS image sensor using a current-mode readout circuit

    Science.gov (United States)

    Santos, Patrick M.; de Lima Monteiro, Davies W.; Pittet, Patrick

    2014-05-01

    The feature size of the CMOS processes decreased during the past few years and problems such as reduced dynamic range have become more significant in voltage-mode pixels, even though the integration of more functionality inside the pixel has become easier. This work makes a contribution on both sides: the possibility of a high signal excursion range using current-mode circuits together with functionality addition by making signal amplification inside the pixel. The classic 3T pixel architecture was rebuild with small modifications to integrate a transconductance amplifier providing a current as an output. The matrix with these new pixels will operate as a whole large transistor outsourcing an amplified current that will be used for signal processing. This current is controlled by the intensity of the light received by the matrix, modulated pixel by pixel. The output current can be controlled by the biasing circuits to achieve a very large range of output signal levels. It can also be controlled with the matrix size and this permits a very high degree of freedom on the signal level, observing the current densities inside the integrated circuit. In addition, the matrix can operate at very small integration times. Its applications would be those in which fast imaging processing, high signal amplification are required and low resolution is not a major problem, such as UV image sensors. Simulation results will be presented to support: operation, control, design, signal excursion levels and linearity for a matrix of pixels that was conceived using this new concept of sensor.

  4. Short-Circuit Fault Detection and Classification Using Empirical Wavelet Transform and Local Energy for Electric Transmission Line.

    Science.gov (United States)

    Huang, Nantian; Qi, Jiajin; Li, Fuqing; Yang, Dongfeng; Cai, Guowei; Huang, Guilin; Zheng, Jian; Li, Zhenxin

    2017-09-16

    In order to improve the classification accuracy of recognizing short-circuit faults in electric transmission lines, a novel detection and diagnosis method based on empirical wavelet transform (EWT) and local energy (LE) is proposed. First, EWT is used to deal with the original short-circuit fault signals from photoelectric voltage transformers, before the amplitude modulated-frequency modulated (AM-FM) mode with a compactly supported Fourier spectrum is extracted. Subsequently, the fault occurrence time is detected according to the modulus maxima of intrinsic mode function (IMF₂) from three-phase voltage signals processed by EWT. After this process, the feature vectors are constructed by calculating the LE of the fundamental frequency based on the three-phase voltage signals of one period after the fault occurred. Finally, the classifier based on support vector machine (SVM) which was constructed with the LE feature vectors is used to classify 10 types of short-circuit fault signals. Compared with complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and improved CEEMDAN methods, the new method using EWT has a better ability to present the frequency in time. The difference in the characteristics of the energy distribution in the time domain between different types of short-circuit faults can be presented by the feature vectors of LE. Together, simulation and real signals experiment demonstrate the validity and effectiveness of the new approach.

  5. Microscale failure mechanisms leading to internal short circuit in Li-ion batteries under complex loading scenarios

    NARCIS (Netherlands)

    Sahraei, E.; Bosco, E.; Dixon, B.; Lai, B.

    2016-01-01

    One of the least understood mechanisms of Li-ion batteries is the development of internal short circuits under mechanical loads. In this study, a micro mechanical model is developed and subjected to various loading scenarios to understand the sequence of failure in the multi-layer, multi-material

  6. Fast and Accurate Icepak-PSpice Co-Simulation of IGBTs under Short-Circuit with an Advanced PSpice Model

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2014-01-01

    A basic problem in the IGBT short-circuit failure mechanism study is to obtain realistic temperature distribution inside the chip, which demands accurate electrical simulation to obtain power loss distribution as well as detailed IGBT geometry and material information. This paper describes an unp...

  7. EQUATIONS OF ELECTRIC MOTOR POWER SUPPLY UNIT DISSYMMETRY UNDER PHASE-TO-PHASE SHORT-CIRCUIT FAULT

    Directory of Open Access Journals (Sweden)

    V.Y. Tchaban

    2013-10-01

    Full Text Available In the paper, a formula is introduced to calculate electric motor supply unit voltage under feeding by a common transformer in the condition of a phase-to-phase short-circuit. The formula is used in every time step of electromechanical state equations integration.

  8. An iterative approach for symmetrical and asymmetrical Short-circuit calculations with converter-based connected renewable energy sources

    DEFF Research Database (Denmark)

    Göksu, Ömer; Teodorescu, Remus; Bak-Jensen, Birgitte

    2012-01-01

    As more renewable energy sources, especially more wind turbines are installed in the power system, analysis of the power system with the renewable energy sources becomes more important. Short-circuit calculation is a well known fault analysis method which is widely used for early stage analysis...

  9. Activation of adenosine low-affinity A3 receptors inhibits the enteric short interplexus neural circuit triggered by histamine.

    Science.gov (United States)

    Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H; Alhaj, Mazin; Cooke, Helen J; Grants, Iveta; Ren, Tianhua; Christofi, Fievos L

    2009-12-01

    We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl(-) secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (I(sc), Cl(-) secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N(3)-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC(50) for IB-MECA was 0.8 microM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex I(sc) responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that

  10. Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2011-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land

  11. Investigation of Permanent Magnet Demagnetization in Synchronous Machines during Multiple Short-Circuit Fault Conditions

    Directory of Open Access Journals (Sweden)

    Stefan Sjökvist

    2017-10-01

    Full Text Available Faults in electrical machines can vary in severity and affect different parts of the machine. This study focuses on various kinds of short-circuits on the terminal side of a generic 20 kW surface mounted permanent magnet synchronous generator and how successive faults affect the performance of the machine. The study was conducted with the commercially available finite element method software COMSOL Multiphysics ® , and two time-dependent models for demagnetization of permanent magnets were compared, one using only internal models and the other using a proprietary external function. The study is simulation based and the two models were compared to a previously experimentally verified stationary model. Results showed that the power output decreased by more than 30% after five successive faults. In addition, the no-load voltage had become unsymmetrical, which was explained by the uneven demagnetization of the permanent magnets. The permanent magnet with the lowest reduction in average remanence was decreased by 0.8%, while the highest average reduction was 23.8% in another permanent magnet. The internal simulation model was about four times faster than the external model, but slightly overestimated the demagnetization.

  12. Estimation of Operating Condition of Appliances Using Circuit Current Data on Electric Distribution Boards

    Science.gov (United States)

    Iwafune, Yumiko; Ogimoto, Kazuhiko; Yagita, Yoshie

    The Energy management systems (EMS) on demand sides are expected as a method to enhance the capability of supply and demand balancing of a power system under the anticipated penetration of renewable energy generation such as Photovoltaics (PV). Elucidation of energy consumption structure in a building is one of important elements for realization of EMS and contributes to the extraction of potential energy saving. In this paper, we propose the estimation method of operating condition of household appliances using circuit current data on an electric distribution board. Circuit current data are broken down by their shape using a self-organization map method and aggregated by appliance based on customers' information of appliance possessed. Proposed method is verified using residential energy consumption measurement survey data.

  13. Energy-minimum sub-threshold self-timed circuits using current-sensing completion detection

    DEFF Research Database (Denmark)

    Akgun, O. C.; Rodrigues, J. N.; Sparsø, Jens

    2011-01-01

    This study addresses the design of self-timed energy-minimum circuits, operating in the sub-VT domain and a generic implementation template using bundled-data circuitry and current sensing completion detection (CSCD). Furthermore, a fully decoupled latch controller was developed, which integrates......V. Spice simulations indicate a gain of 52.58% in throughput because of asynchronous operation. By trading the throughput improvement, energy dissipation is reduced by 16.8% at the energy-minimum supply voltage....

  14. A SHORT-TERM CIRCUIT RESISTANCE PROGRAMME REDUCED EPICARDIAL FAT IN OBESE AGED WOMEN.

    Science.gov (United States)

    Rosety, Miguel Angel; Pery, Maria Teresa; Rodriguez-Pareja, Maria Antonia; Diaz, Antonio; Rosety, Jesus; Garcia, Natalia; Brenes-Martin, Francisco; Rosety-Rodríguez, Manuel; Toro, Rocío; Ordoñez, Francisco Javier; Rosety, Ignacio

    2015-11-01

    this study was conducted to ascertain the effects of resistance circuit training on epicardial adipose tissue (EAT) in obese aged women. A secondary objective was to assess muscle damage induced by supervised resistance training to confirm the intervention program was effective and safe. in the present interventional study, a total of 48 obese aged women were recruited from the community. Twenty-four of them were randomly assigned to perform a 12-week resistance circuit training programme, 3-days per week. This training was circularly performed in 6 stations: arm curl, leg extension, seated row, leg curl, triceps extension and leg press. The Jamar handgrip electronic dynamometer was used to assess maximal handgrip strength of the dominant hand. Two experienced observers assessed EAT by transthoracic two-dimensional echocardiography. Lastly, serum samples were analysed using one-step sandwich assays for creatine kinase activity (CK) and myoglobin (MB) concentration. as was hypothesized, resistance training significantly reduced EAT thickness (8.4 ± 1.0 vs. 7.3 ± 1.3 mm; p = 0.014; d = 0.76) in the experimental group. Resistance training induced no significant changes in markers of muscle damage such as CK (181.6 ± 36.9 vs. 194.2 ± 37.8 U/l; p = 0.31) and MB (62.4 ± 7.1 vs. 67.3 ± 7.7 ng/ml; p = 0.26). No significant changes in any of the tested outcomes were found in the control group. resistance training reduced EAT in aged obese women. A secondary finding was that the training program was effective and safe. While current results are promising, future studies are still required to consolidate this approach in clinical application. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  15. Analysis of each branch current of serial solar cells by using an equivalent circuit model

    International Nuclear Information System (INIS)

    Yi Shi-Guang; Zhang Wan-Hui; Ai Bin; Song Jing-Wei; Shen Hui

    2014-01-01

    In this paper, based on the equivalent single diode circuit model of the solar cell, an equivalent circuit diagram for two serial solar cells is drawn. Its equations of current and voltage are derived from Kirchhoff's current and voltage law. First, parameters are obtained from the I—V (current—voltage) curves for typical monocrystalline silicon solar cells (125 mm × 125 mm). Then, by regarding photo-generated current, shunt resistance, serial resistance of the first solar cell, and resistance load as the variables. The properties of shunt currents (I sh1 and I sh2 ), diode currents (I D1 and I D2 ), and load current (I L ) for the whole two serial solar cells are numerically analyzed in these four cases for the first time, and the corresponding physical explanations are made. We find that these parameters have different influences on the internal currents of solar cells. Our results will provide a reference for developing higher efficiency solar cell module and contribute to the better understanding of the reason of efficiency loss of solar cell module. (interdisciplinary physics and related areas of science and technology)

  16. Investigation and Classification of Short-Circuit Failure Modes Based on Three-Dimensional Safe Operating Area for High-Power IGBT Modules

    DEFF Research Database (Denmark)

    Chen, Yuxiang; Li, Wuhua; Iannuzzo, Francesco

    2018-01-01

    is implemented to motivate advanced contributions in future dependence research of device short-circuit failure modes on temperature. Consequently, a comprehensive and thoughtful review of where the development of short-circuit failure mode research works of IGBT stands and is heading is provided....

  17. Application of drive circuit based on L298N in direct current motor speed control system

    Science.gov (United States)

    Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao

    2016-10-01

    In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.

  18. Development of alternating current circuit simulation as essential learning support for senior high school student

    Directory of Open Access Journals (Sweden)

    Mayang Dwinta Trisniarti

    2017-02-01

    Full Text Available In this study an interactive simulation of Alternating Current circuit was developed by using Articulate Storyline 2 and Adobe Flash CS 6 programs. The aim of this study was providing a computer interactive simulation as essential learning support for Senior High School student. One of the most important features of AC circuit simulation is the easily and continuous material to attain learning objectivity and interest toward students. This AC circuit simulation is built to create real-time sine wave graphs so that student could compare the result if the variable were changed gradually. The validation is held through several experts and reviewers due to get obtained through questionnaires. The results of this research could be concluded that AC circuit simulation for Senior High School Physics have good criteria based on user interface, i.e. 50% of respondents rated enough, 16.67% of respondents rated good, and 33.33% of respondents rated very good. Based on maintenance, i.e. 50% of respondents rated enough, 20% of respondents rated good, and 30% of respondents rated very good. Then based on usability, i.e. 6.67% of respondents rated good and 93.33% rated very good. Furthermore, based on understanding, i.e. 6.67% of respondents rated enough, 30% of respondents rated good, and 73.33% of respondents rated very good. The use of AC circuit simulation could improve the senior high school students’ cognitive ability on the Physics’s course, i.e. with the average score increased from 68.67 to 80.5 based on 30 students.

  19. Global Electric Circuit Implications of Total Current Measurements over Electrified Clouds

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2009-01-01

    We determined total conduction (Wilson) currents and flash rates for 850 overflights of electrified clouds spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative Wilson currents. We combined these individual storm overflight statistics with global diurnal lightning variation data from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to estimate the thunderstorm and electrified shower cloud contributions to the diurnal variation in the global electric circuit. The contributions to the global electric circuit from lightning producing clouds are estimated by taking the mean current per flash derived from the overflight data for land and ocean overflights and combining it with the global lightning rates (for land and ocean) and their diurnal variation derived from the LIS/OTD data. We estimate the contribution of non-lightning producing electrified clouds by assuming several different diurnal variations and total non-electrified storm counts to produce estimates of the total storm currents (lightning and non-lightning producing storms). The storm counts and diurnal variations are constrained so that the resultant total current diurnal variation equals the diurnal variation in the fair weather electric field (+/-15%). These assumptions, combined with the airborne and satellite data, suggest that the total mean current in the global electric circuit ranges from 2.0 to 2.7 kA, which is greater than estimates made by others using other methods.

  20. Detection of inter-turn short-circuit at start-up of induction machine based on torque analysis

    Directory of Open Access Journals (Sweden)

    Pietrowski Wojciech

    2017-12-01

    Full Text Available Recently, interest in new diagnostics methods in a field of induction machines was observed. Research presented in the paper shows the diagnostics of induction machine based on torque pulsation, under inter-turn short-circuit, during start-up of a machine. In the paper three numerical techniques were used: finite element analysis, signal analysis and artificial neural networks (ANN. The elaborated numerical model of faulty machine consists of field, circuit and motion equations. Voltage excited supply allowed to determine the torque waveform during start-up. The inter-turn short-circuit was treated as a galvanic connection between two points of the stator winding. The waveforms were calculated for different amounts of shorted-turns from 0 to 55. Due to the non-stationary waveforms a wavelet packet decomposition was used to perform an analysis of the torque. The obtained results of analysis were used as input vector for ANN. The response of the neural network was the number of shorted-turns in the stator winding. Special attention was paid to compare response of general regression neural network (GRNN and multi-layer perceptron neural network (MLP. Based on the results of the research, the efficiency of the developed algorithm can be inferred.

  1. Measuring RF circuits exhibiting nonlinear responses combined with short and long term memory effects

    NARCIS (Netherlands)

    Janssen, E.J.G.; Milosevic, D.; Baltus, P.G.M.

    2010-01-01

    All RF circuits that incorporate active devices exhibit nonlinear behavior. Nonlinearities result in signal distortion, and therefore state the upper limit of the dynamic range of the circuits. A measure for linearity used quite commonly in RF is the P1dB and/or IP3 point. These quantities are

  2. Open- and Short-Circuit Fault Identification for a Boost dc/dc Converter in PV MPPT Systems

    Directory of Open Access Journals (Sweden)

    Diego R. Espinoza Trejo

    2018-03-01

    Full Text Available This paper proposes a fault identification system for short and open-circuit switch faults (SOCSF for a dc/dc converter acting as a Maximum Power Point Tracker (MPPT in Photovoltaic (PV systems. A closed-loop operation is assumed for the boost dc/dc converter. A linearizing control plus a Proportional-Derivative (PD controller is suggested for PV voltage regulation at the maximum power point (MPP. In this study, the SOCSF are modeled by using an additive fault representation and the fault identification (FI system is synthesized departing from a Luenberger observer. Hence, an FI signal is obtained, which is insensitive to irradiance and load current changes, but affected by the SOCSF. For FI purposes, only the sensors used in the control system are needed. Finally, an experimental evaluation is presented by using a solar array simulator dc power supply and a boost dc/dc converter of 175 W in order to validate the ideas this study exposes.

  3. Continuum Modeling of Inductor Hysteresis and Eddy Current Loss Effects in Resonant Circuits

    Energy Technology Data Exchange (ETDEWEB)

    Pries, Jason L. [ORNL; Tang, Lixin [ORNL; Burress, Timothy A. [ORNL

    2017-10-01

    This paper presents experimental validation of a high-fidelity toroid inductor modeling technique. The aim of this research is to accurately model the instantaneous magnetization state and core losses in ferromagnetic materials. Quasi–static hysteresis effects are captured using a Preisach model. Eddy currents are included by coupling the associated quasi-static Everett function to a simple finite element model representing the inductor cross sectional area. The modeling technique is validated against the nonlinear frequency response from two different series RLC resonant circuits using inductors made of electrical steel and soft ferrite. The method is shown to accurately model shifts in resonant frequency and quality factor. The technique also successfully predicts a discontinuity in the frequency response of the ferrite inductor resonant circuit.

  4. Short wavelength limits of current shot noise suppression

    International Nuclear Information System (INIS)

    Nause, Ariel; Dyunin, Egor; Gover, Avraham

    2014-01-01

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect

  5. Short wavelength limits of current shot noise suppression

    Energy Technology Data Exchange (ETDEWEB)

    Nause, Ariel, E-mail: arielnau@post.tau.ac.il [Faculty of Exact Sciences, Department of Physics, Tel Aviv University, Tel Aviv (Israel); Dyunin, Egor; Gover, Avraham [Faculty of Engineering, Department of Physical Electronics, Tel Aviv University, Tel Aviv (Israel)

    2014-08-15

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect.

  6. Coupled circuit numerical analysis of eddy currents in an open MRI system

    Science.gov (United States)

    Akram, Md. Shahadat Hossain; Terada, Yasuhiko; Keiichiro, Ishi; Kose, Katsumi

    2014-08-01

    We performed a new coupled circuit numerical simulation of eddy currents in an open compact magnetic resonance imaging (MRI) system. Following the coupled circuit approach, the conducting structures were divided into subdomains along the length (or width) and the thickness, and by implementing coupled circuit concepts we have simulated transient responses of eddy currents for subdomains in different locations. We implemented the Eigen matrix technique to solve the network of coupled differential equations to speed up our simulation program. On the other hand, to compute the coupling relations between the biplanar gradient coil and any other conducting structure, we implemented the solid angle form of Ampere’s law. We have also calculated the solid angle for three dimensions to compute inductive couplings in any subdomain of the conducting structures. Details of the temporal and spatial distribution of the eddy currents were then implemented in the secondary magnetic field calculation by the Biot-Savart law. In a desktop computer (Programming platform: Wolfram Mathematica 8.0®, Processor: Intel(R) Core(TM)2 Duo E7500 @ 2.93 GHz; OS: Windows 7 Professional; Memory (RAM): 4.00 GB), it took less than 3 min to simulate the entire calculation of eddy currents and fields, and approximately 6 min for X-gradient coil. The results are given in the time-space domain for both the direct and the cross-terms of the eddy current magnetic fields generated by the Z-gradient coil. We have also conducted free induction decay (FID) experiments of eddy fields using a nuclear magnetic resonance (NMR) probe to verify our simulation results. The simulation results were found to be in good agreement with the experimental results. In this study we have also conducted simulations for transient and spatial responses of secondary magnetic field induced by X-gradient coil. Our approach is fast and has much less computational complexity than the conventional electromagnetic numerical

  7. A new method for electric impedance imaging using an eddy current with a tetrapolar circuit.

    Science.gov (United States)

    Ahsan-Ul-Ambia; Toda, Shogo; Takemae, Tadashi; Kosugi, Yukio; Hongo, Minoru

    2009-02-01

    A new contactless technique for electrical impedance imaging, using an eddy current managed along with the tetrapolar circuit method, is proposed. The eddy current produced by a magnetic field is superimposed on a constant current that is normally used in the tetrapolar circuit method, and thus is used to control the current distribution in the body. By changing the current distribution, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in the image reconstruction of the resistivity distribution. The least square error minimization method is used in the reconstruction algorithm. The principle of this method is explained theoretically. A backprojection algorithm was used to get 2-D images. Based on this principle, a measurement system was developed and model experiments were conducted with a saline-filled phantom. The estimated shape of each model in the reconstructed image was similar to that of the corresponding model. From the results of these experiments, it is confirmed that the proposed method is applicable to the realization of electrical conductivity imaging.

  8. Short-run and Current Analysis Model in Statistics

    Directory of Open Access Journals (Sweden)

    Constantin Anghelache

    2006-01-01

    Full Text Available Using the short-run statistic indicators is a compulsory requirement implied in the current analysis. Therefore, there is a system of EUROSTAT indicators on short run which has been set up in this respect, being recommended for utilization by the member-countries. On the basis of these indicators, there are regular, usually monthly, analysis being achieved in respect of: the production dynamic determination; the evaluation of the short-run investment volume; the development of the turnover; the wage evolution: the employment; the price indexes and the consumer price index (inflation; the volume of exports and imports and the extent to which the imports are covered by the exports and the sold of trade balance. The EUROSTAT system of indicators of conjuncture is conceived as an open system, so that it can be, at any moment extended or restricted, allowing indicators to be amended or even removed, depending on the domestic users requirements as well as on the specific requirements of the harmonization and integration. For the short-run analysis, there is also the World Bank system of indicators of conjuncture, which is utilized, relying on the data sources offered by the World Bank, The World Institute for Resources or other international organizations statistics. The system comprises indicators of the social and economic development and focuses on the indicators for the following three fields: human resources, environment and economic performances. At the end of the paper, there is a case study on the situation of Romania, for which we used all these indicators.

  9. Short-run and Current Analysis Model in Statistics

    Directory of Open Access Journals (Sweden)

    Constantin Mitrut

    2006-03-01

    Full Text Available Using the short-run statistic indicators is a compulsory requirement implied in the current analysis. Therefore, there is a system of EUROSTAT indicators on short run which has been set up in this respect, being recommended for utilization by the member-countries. On the basis of these indicators, there are regular, usually monthly, analysis being achieved in respect of: the production dynamic determination; the evaluation of the short-run investment volume; the development of the turnover; the wage evolution: the employment; the price indexes and the consumer price index (inflation; the volume of exports and imports and the extent to which the imports are covered by the exports and the sold of trade balance. The EUROSTAT system of indicators of conjuncture is conceived as an open system, so that it can be, at any moment extended or restricted, allowing indicators to be amended or even removed, depending on the domestic users requirements as well as on the specific requirements of the harmonization and integration. For the short-run analysis, there is also the World Bank system of indicators of conjuncture, which is utilized, relying on the data sources offered by the World Bank, The World Institute for Resources or other international organizations statistics. The system comprises indicators of the social and economic development and focuses on the indicators for the following three fields: human resources, environment and economic performances. At the end of the paper, there is a case study on the situation of Romania, for which we used all these indicators.

  10. Benefits of Compression Garments Worn During Handball-Specific Circuit on Short-Term Fatigue in Professional Players.

    Science.gov (United States)

    Ravier, Gilles; Bouzigon, Romain; Beliard, Samuel; Tordi, Nicolas; Grappe, Frederic

    2018-04-04

    Ravier, G, Bouzigon, R, Beliard, S, Tordi, N, and Grappe, F. Benefits of compression garments worn during handball-specific circuit on short-term fatigue in professional players. J Strength Cond Res XX(X): 000-000, 2016-The purpose of this study was to investigate the benefits of full-leg length compression garments (CGs) worn during a handball-specific circuit exercises on athletic performance and acute fatigue-induced changes in strength and muscle soreness in professional handball players. Eighteen men (mean ± SD: age 23.22 ± 4.97 years; body mass: 82.06 ± 9.69 kg; height: 184.61 ± 4.78 cm) completed 2 identical sessions either wearing regular gym short or CGs in a randomized crossover design. Exercise circuits of explosive activities included 3 periods of 12 minutes of sprints, jumps, and agility drills every 25 seconds. Before, immediately after and 24 hours postexercise, maximal voluntary knee extension (maximal voluntary contraction, MVC), rate of force development (RFD), and muscle soreness were assessed. During the handball-specific circuit sprint and jump performances were unchanged in both conditions. Immediately after performing the circuit exercises MVC, RFD, and PPT decreased significantly compared with preexercise with CGs and noncompression clothes. Decrement was similar in both conditions for RFD (effect size, ES = 0.40) and PPT for the soleus (ES = 0.86). However, wearing CGs attenuated decrement in MVC (p handball-specific circuit provides benefits on the impairment of the maximal muscle force characteristics and is likely to be worthwhile for handball players involved in activities such as tackles.

  11. The importance of band tail recombination on current collection and open-circuit voltage in CZTSSe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Moore, James E. [Naval Research Laboratory, Washington, DC 20375 (United States); Purdue University, West Lafayette, Indiana 47907 (United States); Hages, Charles J. [Purdue University, West Lafayette, Indiana 47907 (United States); Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Agrawal, Rakesh; Lundstrom, Mark S.; Gray, Jeffery L. [Purdue University, West Lafayette, Indiana 47907 (United States)

    2016-07-11

    Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) solar cells typically exhibit high short-circuit current density (J{sub sc}), but have reduced cell efficiencies relative to other thin film technologies due to a deficit in the open-circuit voltage (V{sub oc}), which prevent these devices from becoming commercially competitive. Recent research has attributed the low V{sub oc} in CZTSSe devices to small scale disorder that creates band tail states within the absorber band gap, but the physical processes responsible for this V{sub oc} reduction have not been elucidated. In this paper, we show that carrier recombination through non-mobile band tail states has a strong voltage dependence and is a significant performance-limiting factor, and including these effects in simulation allows us to simultaneously explain the V{sub oc} deficit, reduced fill factor, and voltage-dependent quantum efficiency with a self-consistent set of material parameters. Comparisons of numerical simulations to measured data show that reasonable values for the band tail parameters (characteristic energy, capture rate) can account for the observed low V{sub oc}, high J{sub sc}, and voltage dependent collection efficiency. These results provide additional evidence that the presence of band tail states accounts for the low efficiencies of CZTSSe solar cells and further demonstrates that recombination through non-mobile band tail states is the dominant efficiency limiting mechanism.

  12. Analog Circuit Design Low Voltage Low Power; Short Range Wireless Front-Ends; Power Management and DC-DC

    CERN Document Server

    Roermund, Arthur; Baschirotto, Andrea

    2012-01-01

    The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design.  Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of Low-Voltage Low-Power Data Converters - Chaired by Prof. Anderea Baschirotto, University of Milan-Bicocca Short Range Wireless Front-Ends - Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Power management and DC-DC - Chaired by Prof. M. Steyaert, Katholieke University Leuven Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.

  13. Application of Copper Cladding Aluminum Composites in UHV Portable Earthing and Short-circuiting Wires

    Directory of Open Access Journals (Sweden)

    Zhu Jianjun

    2018-01-01

    Full Text Available Aiming at the heavy weight and inconvenience when carrying and installing copper earthing wires on the UHV transmission lines, in this paper, we present the use of copper clad aluminum(CCA composite materials as a lightweight method for UHV earthing wire conductor. Theoretical calculations and tests of the fusing current in a short time for copper and CCA material are conducted. The results show that the theoretical value of the earthing wire conductor's fusing current corresponds with the test value on condition of the conductor cross section greater than 4mm2 as well as fusing time less than 1.5s. The CCA-10 earthing wires get 36.2% weight reduction compared with copper wires.

  14. Determination of short circuit stresses in an air core reactor using ...

    African Journals Online (AJOL)

    DR OKE

    developed has crossed the boundary condition limit of 70 MPa whereas the ... The method can be used to identify the inter layer forces ... Power transformer design using magnetic circuit theory and finite element analysis – A Comparison.

  15. What's new about generator circuit breakers

    International Nuclear Information System (INIS)

    Kolarik, P.L.

    1979-01-01

    The need for updating ANSI C37 Standards for AC high-voltage circuit breakers has become necessary because of the increased interest in power circuit breakers for generator application. These circuit breakers, which have continuous current ratings and rated short-circuit currents that are much higher than those presently covered by existing C37 Standards, take on added importance because they are being installed in critical AC power supplies at nuclear power stations

  16. A novel CMOS charge-pump circuit with current mode control 110 mA at 2.7 V for telecommunication systems

    Energy Technology Data Exchange (ETDEWEB)

    Krit, Salahddine; Qjidaa, Hassan; Affar, Imad El; Khadija, Yafrah; Messghati, Ziani; El-Ghzizal, Yassir, E-mail: krit_salah@yahoo.f, E-mail: qjidah@yahoo.f [Faculty of Sciences Dhar El Mehraz, Laboratory of Electronic, Signal-Systymes and Informatic (LESSI) Fes (Morocco)

    2010-04-15

    This paper presents a novel organization of switch capacitor charge pump circuits based on voltage doubler structures. Each voltage doubler takes a DC input and outputs a doubled DC voltage. By cascading voltage doublers the output voltage increases up to 2 times. A two-phase voltage doubler and a multiphase voltage doubler structures are discussed and design considerations are presented. A simulator working in the Q-V realm was used for simplified circuit level simulation. In order to evaluate the power delivered by a charge pump, a resistive load is attached to the output of the charge pump and an equivalent capacitance is evaluated. To avoid the short circuit during switching, a clock pair generator is used to achieve multi-phase non-overlapping clock pairs. This paper also identifies optimum loading conditions for different configurations of the charge pumps. The proposed charge-pump circuit is designed and simulated by SPICE with TSMC 0.35-{mu}m CMOS technology and operates with a 2.7 to 3.6 V supply voltage. It has an area of 0.4 mm{sup 2}; it was designed with a frequency regulation of 1 MHz and internal current mode to reduce power consumption. (semiconductor integrated circuits)

  17. A TRMM/GPM retrieval of the total mean generator current for the global electric circuit

    Science.gov (United States)

    Peterson, Michael; Deierling, Wiebke; Liu, Chuntao; Mach, Douglas; Kalb, Christina

    2017-09-01

    A specialized satellite version of the passive microwave electric field retrieval algorithm (Peterson et al., 2015) is applied to observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) satellites to estimate the generator current for the Global Electric Circuit (GEC) and compute its temporal variability. By integrating retrieved Wilson currents from electrified clouds across the globe, we estimate a total mean current of between 1.4 kA (assuming the 7% fraction of electrified clouds producing downward currents measured by the ER-2 is representative) to 1.6 kA (assuming all electrified clouds contribute to the GEC). These current estimates come from all types of convective weather without preference, including Electrified Shower Clouds (ESCs). The diurnal distribution of the retrieved generator current is in excellent agreement with the Carnegie curve (RMS difference: 1.7%). The temporal variability of the total mean generator current ranges from 110% on semi-annual timescales (29% on an annual timescale) to 7.5% on decadal timescales with notable responses to the Madden-Julian Oscillation and El Nino Southern Oscillation. The geographical distribution of current includes significant contributions from oceanic regions in addition to the land-based tropical chimneys. The relative importance of the Americas and Asia chimneys compared to Africa is consistent with the best modern ground-based observations and further highlights the importance of ESCs for the GEC.

  18. The free recovery of a short duration, high current discharge

    International Nuclear Information System (INIS)

    Piejak, R.

    1984-01-01

    The hold-off voltage between stainless steel electrodes has been measured as a function of time after an initial discharge. The hold-off voltage is the highest voltage that the gap will withstand without appreciable current flow. A high current (600-1200 amp), short duration (170 nsec) discharge was initiated between Rogowski profile electrodes. After a pre-determined time delay, a second pulse was applied to the discharge gap. The hold-off voltage as a function to time was determined up to the Paschen breakdown voltage. Background gas pressure between 30 and 100 torr and electrode separation of 2mm and 4mm were employed. UV preionization was introduced in some tests to create various discharge modes (glow/arc). The findings indicate significantly higher recovery rates in air than in N 2 , presumably due to attachment processes. In addition, the presence of pre-breakdown UV was found to influence the discharge mode, thus affecting the recovery rate of the gap. Hold-off voltage curves for the previously mentioned gases, background pressures and electrode spacing will be presented along with open shutter photographs of the various discharge modes

  19. Grand Research Plan for Neural Circuits of Emotion and Memory — Current status of neural circuit studies in China

    OpenAIRE

    Zhu, Yuan-Gui; Cao, He-Qi; Dong, Er-Dan

    2013-01-01

    During recent years, major advances have been made in neuroscience, i.e., asynchronous release, three-dimensional structural data sets, saliency maps, magnesium in brain research, and new functional roles of long non-coding RNAs. Especially, the development of optogenetic technology provides access to important information about relevant neural circuits by allowing the activation of specific neurons in awake mammals and directly observing the resulting behavior. The Grand Research Plan for Ne...

  20. Current status of brachytherapy in cancer treatment – short overview

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2017-12-01

    Full Text Available Cancer incidence and mortality depend on a number of factors, including age, socio-economic status and geographical location, and its prevalence is growing around the world. Most of cancer treatments include external beam radiotherapy or brachytherapy. Brachytherapy, a type of radiotherapy with energy from radionuclides inserted directly into the tumor, is increasingly used in cancer treatment. For cervical and skin cancers, it has become a standard therapy for more than 100 years as well as an important part of the treatment guidelines for other malignancies, including head and neck, skin, breast, and prostate cancers. Compared to external beam radiotherapy, brachytherapy has the potential to deliver an ablative radiation dose over a short period of time directly to the altered tissue area with the advantage of a rapid fall-off in dose, and consequently, sparing of adjacent organs. As a result, the patient is able to complete the treatment earlier, and the risks of occurrence of another cancer are lower than in conventional radiotherapy treatment. Brachytherapy has increased its use as a radical or palliative treatment, and become more advanced with the spread of pulsed-dose-rate and high-dose-rate afterloading machines; the use of new 3D/4D planning systems has additionally improved the quality of the treatment. The aim of the present study was to present short summaries of current studies on brachytherapy for the most frequently diagnosed tumors. Data presented in this manuscript should help especially young physicians or physicists to explore and introduce brachytherapy in cancer treatments.

  1. A Readout Integrated Circuit (ROIC) employing self-adaptive background current compensation technique for Infrared Focal Plane Array (IRFPA)

    Science.gov (United States)

    Zhou, Tong; Zhao, Jian; He, Yong; Jiang, Bo; Su, Yan

    2018-05-01

    A novel self-adaptive background current compensation circuit applied to infrared focal plane array is proposed in this paper, which can compensate the background current generated in different conditions. Designed double-threshold detection strategy is to estimate and eliminate the background currents, which could significantly reduce the hardware overhead and improve the uniformity among different pixels. In addition, the circuit is well compatible to various categories of infrared thermo-sensitive materials. The testing results of a 4 × 4 experimental chip showed that the proposed circuit achieves high precision, wide application and high intelligence. Tape-out of the 320 × 240 readout circuit, as well as the bonding, encapsulation and imaging verification of uncooled infrared focal plane array, have also been completed.

  2. Experimental Study on Short Circuit Phenomena in Air Switch of Distribution Line due to Sparkover between Different Poles on Which One Surge Arrester of the Three Ones is Omitted

    Science.gov (United States)

    Sato, Tomoyuki; Uemura, Satoshi; Asakawa, Akira; Yokoyama, Shigeru; Honda, Hideki; Horikoshi, Kazuhiro

    In this study, we experimentally examined the possibility of the internal short circuit of an air switch due to the sparkover between different poles under the condition that no surge arrester exists in neighboring poles and one of three surge arresters is omitted at the pole with an air switch. Experiments at Shiobara Testing Yard and Akagi Testing Center of CRIEPI clarified the following. Fault current may flow via the grounding point of a pole with an air switch and that of the next pole on a different phase from grounded phase of the pole with an air switch. If the low-voltage wire, overhead ground wire or communication wire forms a short circuit between them, ultimately the air switch may burn out. Moreover Fault current continues even if the length of the short-circuit between different poles is increased. Although the increase of the short-circuit length results in the increase of wire impedance, the amount of increase is still small compared with source impedance.

  3. Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2010-01-01

    curve) to within 4% for all but two short periods of time. This excellent agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 0.7 kA (ocean) and 1.1 kA (land) from lightning-producing storms, and 0.22 kA (ocean) and 0.04 (land) from electrified shower clouds, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Breaking the results down into mean storm counts reveals 1100 for land storms with lightning, 530 for ocean storms without lightning, 390 for ocean storms with lightning, and 330 for land storms without lightning.

  4. Short Review: Mitigation of Current Environmental Concerns from Methanol Synthesis

    Directory of Open Access Journals (Sweden)

    Andrew Young

    2013-06-01

    Full Text Available Methanol has become a widely used and globally distributed product. Methanol is very important due to the current depletion of fossil fuels. Industrially, methanol produced from the catalytic reaction of synthetic gas composed of hydrogen, carbon monoxide, and carbon dioxide. Methanol production has brought great attention due to carbon dioxide as the main source of greenhouse gas emissions. Combined of reducing CO2 emissions and supplying an alternative fuel source has created the idea of a carbon neutral cycle called “the methanol economy”. The best catalyst for the methanol economy would show a high CO2 conversion and high selectivity for methanol production. This paper investigates research focused on catalyst development for efficient methanol synthesis from hydrogenation of carbon dioxide through added various supports and additives such as silica, zirconium, and palladium. Catalysts that displayed the highest activity included a zirconia and silicon-titanium oxide promoted Cu/Zn/Al2O3 catalyst. Alternative method of catalyst preparation, include the oxalate-gel, solid-state reaction, co-precipitation and combustion method also investigated.  © 2013 BCREC UNDIP. All rights reservedReceived: 10th October 2012; Revised: 7th February 2012; Accepted: 10th February 2013[How to Cite: Young, A., Lesmana, D., Dai, D.J., Wu, H.S. (2013. Short Review: Mitigation of Current En-vironmental Concerns from Methanol Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 1-13. (doi:10.9767/bcrec.8.1.4055.1-13][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4055.1-13] | View in  |

  5. A high current, short pulse electron source for wakefield accelerators

    International Nuclear Information System (INIS)

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed

  6. Transcranial Direct Current Stimulation (tDCS) Enhances the Excitability of Trigemino-Facial Reflex Circuits.

    Science.gov (United States)

    Cabib, Christopher; Cipullo, Federica; Morales, Merche; Valls-Solé, Josep

    2016-01-01

    Transcranial direct current stimulation (tDCS) causes a tiny burning sensation through activation of local cutaneous trigeminal afferents. Trigeminal sensory inputs from tDCS may generate excitability changes in the trigemino-facial reflex circuits. Sixteen healthy volunteers were submitted to 20 minutes tDCS sessions with two types of electrode-montage conditions: 1. Real vs Sham 'bi-hemispheric' tDCS (cathode/anode: C4/C3), for blinded assessment of effects, and 2. 'uni-hemispheric' tDCS (cathode/anode: Fp3/C3), for assessment of laterality of the effects. Supraorbital nerve stimuli were used to obtain blink reflexes before, during (10 minutes from onset) and after (30 minutes from onset) the tDCS session. Outcome measures were R2 habituation (R2H) to repeated stimuli, the blink reflex excitability recovery (BRER) to paired stimuli and the blink reflex inhibition by a prepulse (BRIP). Real but not sham bi-hemispheric tDCS caused a significant decrease of R2H and leftward shift of BRER curve (p tDCS on BRER and BRIP were larger on ipsilateral than on contralateral blink reflexes (p tDCS enhances the excitability of trigemino-facial reflex circuits. The finding of larger ipsilateral than contralateral effects suggests that sensitization through cutaneous trigeminal afferents adds on other possible mechanisms such as activation of cortico-nuclear or cortico-reticular connections. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Evidence of Gate Voltage Oscillations during Short Circuit of Commercial 1.7 kV/ 1 kA IGBT Power Modules

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Wu, Rui; Iannuzzo, Francesco

    2015-01-01

    This paper analyzes the evidence of critical gate voltage oscillations in 1.7 kV/1 kA Insulated-Gate Bipolar Transistor (IGBT) power modules under short circuit conditions. A 6 kA/1.1 kV Non-Destructive Test (NDT) set up for repeatable short circuit tests has been built with a 40 nH stray inducta...

  8. Current, voltage and temperature distribution modeling of light-emitting diodes based on electrical and thermal circuit analysis

    International Nuclear Information System (INIS)

    Yun, J; Shim, J-I; Shin, D-S

    2013-01-01

    We demonstrate a modeling method based on the three-dimensional electrical and thermal circuit analysis to extract current, voltage and temperature distributions of light-emitting diodes (LEDs). In our model, the electrical circuit analysis is performed first to extract the current and voltage distributions in the LED. Utilizing the result obtained from the electrical circuit analysis as distributed heat sources, the thermal circuit is set up by using the duality between Fourier's law and Ohm's law. From the analysis of the thermal circuit, the temperature distribution at each epitaxial film is successfully obtained. Comparisons of experimental and simulation results are made by employing an InGaN/GaN multiple-quantum-well blue LED. Validity of the electrical circuit analysis is confirmed by comparing the light distribution at the surface. Since the temperature distribution at each epitaxial film cannot be obtained experimentally, the apparent temperature distribution is compared at the surface of the LED chip. Also, experimentally obtained average junction temperature is compared with the value calculated from the modeling, yielding a very good agreement. The analysis method based on the circuit modeling has an advantage of taking distributed heat sources as inputs, which is essential for high-power devices with significant self-heating. (paper)

  9. New Circuits or Short Circuits?

    Science.gov (United States)

    McLaughlin, Frank

    1967-01-01

    Schools must refuse to contribute to this age of "information overload" and, through an interdisciplinary approach, assist students to become receptive to humane feelings and to understand the complexities of a culture. To these ends, educators must "re-program" the entire educational system by relinquishing their attachment to their own…

  10. Current-Mode CCII+ Based Oscillator Circuits using a Conventional and a Modified Wien-Bridge with All Capacitors Grounded

    Directory of Open Access Journals (Sweden)

    J. Bajer

    2011-04-01

    Full Text Available The paper deals with a pair of current-mode sine-wave oscillator circuits. Both these circuits are implemented using positive second-generation current conveyors (CCII+. The principle of the first oscillator is based on a conventional Wien-bridge network. However, this implementation suffers from the use of a floating capacitor, which can be unacceptable in the case of on-chip integration. This drawback is solved in the second variant via a slight modification of the Wien-bridge network, which then allows the use of all capacitors grounded. The modified circuit version was manufactured by means of the socalled diamond transistors, which play the role of CCII+ active building blocks. The circuit behavior was analyzed theoretically, with particular emphasis on the identification of real effects and their elimination, and subsequently verified experimentally. The experimental results are included in the paper.

  11. Influence of Metal Transfer Stability and Shielding Gas Composition on CO and CO2 Emissions during Short-circuiting MIG/MAG Welding

    Directory of Open Access Journals (Sweden)

    Valter Alves de Meneses

    Full Text Available Abstract: Several studies have demonstrated the influence of parameters and shielding gas on metal transfer stability or on the generation of fumes in MIG/MAG welding, but little or nothing has been discussed regarding the emission of toxic and asphyxiating gases, particularly as it pertains to parameterization of the process. The purpose of this study was to analyze and evaluate the effect of manufacturing aspects of welding processes (short-circuit metal transfer stability and shielding gas composition on the gas emission levels during MIG/MAG welding (occupational health and environmental aspects. Using mixtures of Argon with CO2 and O2 and maintaining the same average current and the same weld bead volume, short-circuit welding was performed with carbon steel welding wire in open (welder’s breathing zone and confined environments. The welding voltage was adjusted to gradually vary the transfer stability. It was found that the richer the composition of the shielding gas is in CO2, the more CO and CO2 are generated by the arc. However, unlike fume emission, voltage and transfer stability had no effect on the generation of these gases. It was also found that despite the large quantity of CO and CO2 emitted by the arc, especially when using pure CO2 shielding gas, there was no high level residual concentration of CO and CO2 in or near the worker’s breathing zone, even in confined work cells.

  12. A geometric approach for fault detection and isolation of stator short circuit failure in a single asynchronous machine

    KAUST Repository

    Khelouat, Samir

    2012-06-01

    This paper deals with the problem of detection and isolation of stator short-circuit failure in a single asynchronous machine using a geometric approach. After recalling the basis of the geometric approach for fault detection and isolation in nonlinear systems, we will study some structural properties which are fault detectability and isolation fault filter existence. We will then design filters for residual generation. We will consider two approaches: a two-filters structure and a single filter structure, both aiming at generating residuals which are sensitive to one fault and insensitive to the other faults. Some numerical tests will be presented to illustrate the efficiency of the method.

  13. Matlab/Simulink Implementation of Wave-based Models for Microstrip Structures utilizing Short-circuited and Opened Stubs

    Directory of Open Access Journals (Sweden)

    Biljana P. Stošić

    2011-12-01

    Full Text Available This paper describes modeling and analyzing procedures for microstrip filters based on use of one-dimensional wave digital approach. Different filter structures are observed. One filter is based on quarter-wave length short-circuited stubs and connecting transmission lines. The other one is based on cross-junction opened stubs. Frequency responses are obtained by direct analysis of the block-based networks formed in Simulink toolbox of MATLAB environment. This wave-based method allows an accurate and efficient analysis of different microwave structures.

  14. A new circuit technique for reduced leakage current in Deep Submicron CMOS technologies

    Directory of Open Access Journals (Sweden)

    A. Schmitz

    2005-01-01

    Full Text Available Modern CMOS processes in the Deep Submicron regime are restricted to supply voltages below 2 volts and further to account for the transistors' field strength limitations and to reduce the power per logic gate. To maintain the high switching performance, the threshold voltage must be scaled according with the supply voltage. However, this leads to an increased subthreshold current of the transistors in standby mode (VGS=0. Another source of leakage is gate current, which becomes significant for gate oxides of 3nm and below. We propose a Self-Biasing Virtual Rails (SBVR - CMOS technique which acts like an adaptive local supply voltage in case of standby mode. Most important sources of leakage currents are reduced by this technique. Moreover, SBVR-CMOS is capable of conserving stored information in sleep mode, which is vital for memory circuits. Memories are exposed to radiation causing soft errors. This well-known problem becomes even worse in standby mode of typical SRAMs, that have low driving performance to withstand alpha particle hits. In this paper, a 16-transistor SRAM cell is proposed, which combines the advantage of extremely low leakage currents with a very high soft error stability.

  15. Robustness of a rhythmic circuit to short- and long-term temperature changes.

    Science.gov (United States)

    Tang, Lamont S; Taylor, Adam L; Rinberg, Anatoly; Marder, Eve

    2012-07-18

    Recent computational and experimental work has shown that similar network performance can result from variable sets of synaptic and intrinsic properties. Because temperature is a global perturbation that differentially influences every biological process within the nervous system, one might therefore expect that individual animals would respond differently to temperature. Nonetheless, the phase relationships of the pyloric rhythm of the stomatogastric ganglion (STG) of the crab, Cancer borealis, are remarkably invariant between 7 and 23°C (Tang et al., 2010). Here, we report that, when isolated STG preparations were exposed to more extreme temperature ranges, their networks became nonrhythmic, or "crashed", in a reversible fashion. Animals were acclimated for at least 3 weeks at 7, 11, or 19°C. When networks from the acclimated animals were perturbed by acute physiologically relevant temperature ramps (11-23°C), the network frequency and phase relationships were independent of the acclimation group. At high acute temperatures (>23°C), circuits from the cold-acclimated animals produced less-regular pyloric rhythms than those from warm-acclimated animals. At high acute temperatures, phase relationships between pyloric neurons were more variable from animal to animal than at moderate acute temperatures, suggesting that individual differences across animals in intrinsic circuit parameters are revealed at high temperatures. This shows that individual and variable neuronal circuits can behave similarly in normal conditions, but their behavior may diverge when confronted with extreme external perturbations.

  16. Technique and Calculation Results of Currents and Voltages in the Circuits of the Measuring Element of the Protection Device of the Transmission Line Based on the Control of Transient Processes

    Science.gov (United States)

    Lachugin, V. F.; Kulikov, A. L.; Platonov, P. S.; Vucolov, V. Yu.

    2017-12-01

    The specifics of generation of the signals of current and voltage in the circuits of a directional element of wave relay protection during short circuit (SC) in overhead power transmission lines are considered. The computing method of transient processes in the protection circuits, including frequency filters, that attenuate the parameters of currents and voltages of the mode taking into account the higher harmonic components and probable deviations of the frequency of transmission line from the rated value is presented. It is revealed that it is advisable to implement the measuring circuits of the directional elements of wave relay protection with the three-section filter attenuating the frequencies from 45 to 55 Hz and the low pass filter with cutoff frequency that does not exceed 1 kHz.

  17. Current regulators for I/SUP 2/L circuits to be operated from low-voltage power supplies

    DEFF Research Database (Denmark)

    Bruun, Erik; Hansen, Ole

    1980-01-01

    A new bandgap current reference is described which can be used to control the injector current of I/SUP 2/L circuits for supply voltages down to about 1 V. For small currents the total injector current is obtained as a mirror of the reference current. For large injector currents the current control......, but well controlled temperature coefficient is desired. It is shown how a temperature stable ring oscillator with I/SUP 2/L gates can be constructed by tailoring the temperature dependence of the supply current appropriately....

  18. Effect of short circuited DC link capacitor of an AC–DC–AC inverter on the performance of induction motor

    Directory of Open Access Journals (Sweden)

    Hadeed Ahmed Sher

    2016-07-01

    Full Text Available Induction motors are widely used in industrial power plants due to their robustness, reliability and high performance under variable operating conditions in the electrical power system. Modern industrial progress is dependent on these ruggedly constructed induction motors. Almost every sophisticated process of the industry is based on induction motors. Most of these motors are controlled by means of inverters that change the line frequency. The change in parameters of inverter makes it possible to control the motor according to the design requirements. The reliability of inverter based motor control is an important issue for industrial applications and therefore, it becomes very vital for design engineers to have comprehensive analysis of the inverter fed induction machine. This paper investigates one of the faults that may occur on the DC link of an inverter fed induction motor. The effect of the capacitor short circuit is presented in this paper. It also deals with the effects of short circuited capacitor on freewheeling diode. DC link capacitors are well designed and even the probability of capacitor failure is high, it is always a rare case if they puncture, however this analysis will add to the reliability of the induction machine under variable operating condition.

  19. Lithium-Ion Battery Safety Study Using Multi-Physics Internal Short-Circuit Model (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G-.H.; Smith, K.; Pesaran, A.

    2009-06-01

    This presentation outlines NREL's multi-physics simulation study to characterize an internal short by linking and integrating electrochemical cell, electro-thermal, and abuse reaction kinetics models.

  20. Current identification in vacuum circuit breakers as a least squares problem*

    Directory of Open Access Journals (Sweden)

    Ghezzi Luca

    2013-01-01

    Full Text Available In this work, a magnetostatic inverse problem is solved, in order to reconstruct the electric current distribution inside high voltage, vacuum circuit breakers from measurements of the outside magnetic field. The (rectangular final algebraic linear system is solved in the least square sense, by involving a regularized singular value decomposition of the system matrix. An approximated distribution of the electric current is thus returned, without the theoretical problem which is encountered with optical methods of matching light to temperature and finally to current density. The feasibility is justified from the computational point of view as the (industrial goal is to evaluate whether, or to what extent in terms of accuracy, a given experimental set-up (number and noise level of sensors is adequate to work as a “magnetic camera” for a given circuit breaker. Dans cet article, on résout un problème inverse magnétostatique pour déterminer la distribution du courant électrique dans le vide d’un disjoncteur à haute tension à partir des mesures du champ magnétique extérieur. Le système algébrique (rectangulaire final est résolu au sens des moindres carrés en faisant appel à une décomposition en valeurs singulières regularisée de la matrice du système. On obtient ainsi une approximation de la distribution du courant électrique sans le problème théorique propre des méthodes optiques qui est celui de relier la lumière à la température et donc à la densité du courant. La faisabilité est justifiée d’un point de vue numérique car le but (industriel est d’évaluer si, ou à quelle précision, un dispositif expérimental donné (nombre et seuil limite de bruit des senseurs peut travailler comme une “caméra magnétique” pour un certain disjoncteur.

  1. Analytical Analysis and Case Study of Transient Behavior of Inrush Current in Power Transformer for Designing of Efficient Circuit Breakers

    Science.gov (United States)

    Harmanpreet, Singh, Sukhwinder; Kumar, Ashok; Kaur, Parneet

    2010-11-01

    Stability & security are main aspects in electrical power systems. Transformer protection is major issue of concern to system operation. There are many mall-trip cases of transformer protection are caused by inrush current problems. The phenomenon of transformer inrush current has been discussed in many papers since 1958. In this paper analytical analysis of inrush current in a transformer switched on dc and ac supply has been done. This analysis will help in design aspects of circuit breakers for better performance.

  2. Extra high speed modified Lundell alternator parameters and open/short-circuit characteristics from global 3D-FE magnetic field solutions

    Science.gov (United States)

    Wang, R.; Demerdash, N. A.

    1992-06-01

    The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.

  3. Extra high speed modified Lundell alternator parameters and open/short-circuit characteristics from global 3D-FE magnetic field solutions

    Science.gov (United States)

    Wang, R.; Demerdash, N. A.

    1992-01-01

    The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.

  4. Circuit mismatch and current coupling effect influence on paralleling SiC MOSFETs in multichip power modules

    DEFF Research Database (Denmark)

    Li, Helong; Beczkowski, Szymon; Munk-Nielsen, Stig

    2015-01-01

    This paper reveals that there are circuit mismatches and a current coupling effect in the direct bonded copper (DBC) layout of a silicon carbide (SiC) MOSFET multichip power module. According to the modelling and the mathematic analysis of the DBC layout, the mismatch of the common source stray i...

  5. Short-term Synaptic Depression in the Feedforward Inhibitory Circuit in the Dorsal Lateral Geniculate Nucleus.

    Science.gov (United States)

    Augustinaite, Sigita; Heggelund, Paul

    2018-05-24

    Synaptic short-term plasticity (STP) regulates synaptic transmission in an activity-dependent manner and thereby has important roles in the signal processing in the brain. In some synapses, a presynaptic train of action potentials elicits post-synaptic potentials that gradually increase during the train (facilitation), but in other synapses, these potentials gradually decrease (depression). We studied STP in neurons in the visual thalamic relay, the dorsal lateral geniculate nucleus (dLGN). The dLGN contains two types of neurons: excitatory thalamocortical (TC) neurons, which transfer signals from retinal afferents to visual cortex, and local inhibitory interneurons, which form an inhibitory feedforward loop that regulates the thalamocortical signal transmission. The overall STP in the retino-thalamic relay is short-term depression, but the distinct kind and characteristics of the plasticity at the different types of synapses are unknown. We studied STP in the excitatory responses of interneurons to stimulation of retinal afferents, in the inhibitory responses of TC neurons to stimulation of afferents from interneurons, and in the disynaptic inhibitory responses of TC neurons to stimulation of retinal afferents. Moreover, we studied STP at the direct excitatory input to TC neurons from retinal afferents. The STP at all types of the synapses showed short-term depression. This depression can accentuate rapid changes in the stream of signals and thereby promote detectability of significant features in the sensory input. In vision, detection of edges and contours is essential for object perception, and the synaptic short-term depression in the early visual pathway provides important contributions to this detection process. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Diagnosis of Short-Circuit Fault in Large-Scale Permanent-Magnet Wind Power Generator Based on CMAC

    Directory of Open Access Journals (Sweden)

    Chin-Tsung Hsieh

    2013-01-01

    Full Text Available This study proposes a method based on the cerebellar model arithmetic controller (CMAC for fault diagnosis of large-scale permanent-magnet wind power generators and compares the results with Error Back Propagation (EBP. The diagnosis is based on the short-circuit faults in permanent-magnet wind power generators, magnetic field change, and temperature change. Since CMAC is characterized by inductive ability, associative ability, quick response, and similar input signals exciting similar memories, it has an excellent effect as an intelligent fault diagnosis implement. The experimental results suggest that faults can be diagnosed effectively after only training CMAC 10 times. In comparison to training 151 times for EBP, CMAC is better than EBP in terms of training speed.

  7. Short Report: New use of current technology to measure rectal ...

    African Journals Online (AJOL)

    South African Journal of Sports Medicine. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 17, No 1 (2005) >. Log in or Register to get access to full text downloads.

  8. Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles

    International Nuclear Information System (INIS)

    Chen, Zeyu; Xiong, Rui; Tian, Jinpeng; Shang, Xiong; Lu, Jiahuan

    2016-01-01

    Highlights: • The characteristics of ESC fault of lithium-ion battery are investigated experimentally. • The proposed method to simulate the electrical behavior of ESC fault is viable. • Ten parameters in the presented fault model were optimized using a DPSO algorithm. • A two-layer model-based fault diagnosis approach for battery ESC is proposed. • The effective and robustness of the proposed algorithm has been evaluated. - Abstract: This study investigates the external short circuit (ESC) fault characteristics of lithium-ion battery experimentally. An experiment platform is established and the ESC tests are implemented on ten 18650-type lithium cells considering different state-of-charges (SOCs). Based on the experiment results, several efforts have been made. (1) The ESC process can be divided into two periods and the electrical and thermal behaviors within these two periods are analyzed. (2) A modified first-order RC model is employed to simulate the electrical behavior of the lithium cell in the ESC fault process. The model parameters are re-identified by a dynamic-neighborhood particle swarm optimization algorithm. (3) A two-layer model-based ESC fault diagnosis algorithm is proposed. The first layer conducts preliminary fault detection and the second layer gives a precise model-based diagnosis. Four new cells are short-circuited to evaluate the proposed algorithm. It shows that the ESC fault can be diagnosed within 5 s, the error between the model and measured data is less than 0.36 V. The effectiveness of the fault diagnosis algorithm is not sensitive to the precision of battery SOC. The proposed algorithm can still make the correct diagnosis even if there is 10% error in SOC estimation.

  9. A method of increasing the sensitivity of protection from single-phase short-circuits to ground in the 6 – 10 kV network

    International Nuclear Information System (INIS)

    Manilov, A. M.; Mel’nik, D. A.

    2012-01-01

    A method of increasing the sensitivity of protection from single-phase short-circuits to ground by acting on the signal with brief dummy grounding of the neutral is described. After determining the damage, the neutral is again grounded through a high resistance and an arc-quenching reactor. An increase in the protection sensitivity is thereby obtained, the damage detection time is shortened, and the probability of the single-phase short-circuit to ground converting into double and multipoint earth faults is reduced.

  10. On the short-circuit and avalanche ruggedness reliability assessment of SiC MOSFET modules

    DEFF Research Database (Denmark)

    Ionita, Claudiu; Nawaz, Muhammad; Ilves, Kalle

    2017-01-01

    to failure, a gate-source voltage drop has been recorded, which is associated with a high G-S leakage current. The main failure mechanism, however, is the thermal runaway which leads the devices into avalanche breakdown mode. During the UIS tests, multiple samples from the three vendors of the power modules...

  11. The Short Circuit Hypothesis of ESL Reading--Or when Language Competence Interferes with Reading Performance.

    Science.gov (United States)

    Clarke, Mark A.

    1980-01-01

    Examines a sampling of current ESL reading instruction practices, addressing the concern that the lack of a generally accepted theory of L2 reading constitutes a major obstacle to teaching and testing ESL reading skills. Summarizes the results of two studies and discusses their implications for ESL teachers. (MES)

  12. Pseudo-differential CMOS analog front-end circuit for wide-bandwidth optical probe current sensor

    Science.gov (United States)

    Uekura, Takaharu; Oyanagi, Kousuke; Sonehara, Makoto; Sato, Toshiro; Miyaji, Kousuke

    2018-04-01

    In this paper, we present a pseudo-differential analog front-end (AFE) circuit for a novel optical probe current sensor (OPCS) aimed for high-frequency power electronics. It employs a regulated cascode transimpedance amplifier (RGC-TIA) to achieve a high gain and a large bandwidth without using an extremely high performance operational amplifier. The AFE circuit is designed in a 0.18 µm standard CMOS technology achieving a high transimpedance gain of 120 dB Ω and high cut off frequency of 16 MHz. The measured slew rate is 70 V/µs and the input referred current noise is 1.02 pA/\\sqrt{\\text{Hz}} . The magnetic resolution and bandwidth of OPCS are estimated to be 1.29 mTrms and 16 MHz, respectively; the bandwidth is higher than that of the reported Hall effect current sensor.

  13. Low noise signal-to-noise ratio enhancing readout circuit for current-mediated active pixel sensors

    International Nuclear Information System (INIS)

    Ottaviani, Tony; Karim, Karim S.; Nathan, Arokia; Rowlands, John A.

    2006-01-01

    Diagnostic digital fluoroscopic applications continuously expose patients to low doses of x-ray radiation, posing a challenge to both the digital imaging pixel and readout electronics when amplifying small signal x-ray inputs. Traditional switch-based amorphous silicon imaging solutions, for instance, have produced poor signal-to-noise ratios (SNRs) at low exposure levels owing to noise sources from the pixel readout circuitry. Current-mediated amorphous silicon pixels are an improvement over conventional pixel amplifiers with an enhanced SNR across the same low-exposure range, but whose output also becomes nonlinear with increasing dosage. A low-noise SNR enhancing readout circuit has been developed that enhances the charge gain of the current-mediated active pixel sensor (C-APS). The solution takes advantage of the current-mediated approach, primarily integrating the signal input at the desired frequency necessary for large-area imaging, while adding minimal noise to the signal readout. Experimental data indicates that the readout circuit can detect pixel outputs over a large bandwidth suitable for real-time digital diagnostic x-ray fluoroscopy. Results from hardware testing indicate that the minimum achievable C-APS output current that can be discerned at the digital fluoroscopic output from the enhanced SNR readout circuit is 0.341 nA. The results serve to highlight the applicability of amorphous silicon current-mediated pixel amplifiers for large-area flat panel x-ray imagers

  14. Circuit motifs for contrast-adaptive differentiation in early sensory systems: the role of presynaptic inhibition and short-term plasticity.

    Science.gov (United States)

    Zhang, Danke; Wu, Si; Rasch, Malte J

    2015-01-01

    In natural signals, such as the luminance value across of a visual scene, abrupt changes in intensity value are often more relevant to an organism than intensity values at other positions and times. Thus to reduce redundancy, sensory systems are specialized to detect the times and amplitudes of informative abrupt changes in the input stream rather than coding the intensity values at all times. In theory, a system that responds transiently to fast changes is called a differentiator. In principle, several different neural circuit mechanisms exist that are capable of responding transiently to abrupt input changes. However, it is unclear which circuit would be best suited for early sensory systems, where the dynamic range of the natural input signals can be very wide. We here compare the properties of different simple neural circuit motifs for implementing signal differentiation. We found that a circuit motif based on presynaptic inhibition (PI) is unique in a sense that the vesicle resources in the presynaptic site can be stably maintained over a wide range of stimulus intensities, making PI a biophysically plausible mechanism to implement a differentiator with a very wide dynamical range. Moreover, by additionally considering short-term plasticity (STP), differentiation becomes contrast adaptive in the PI-circuit but not in other potential neural circuit motifs. Numerical simulations show that the behavior of the adaptive PI-circuit is consistent with experimental observations suggesting that adaptive presynaptic inhibition might be a good candidate neural mechanism to achieve differentiation in early sensory systems.

  15. Dendrite short-circuit and fuse effect on Li/polymer/Li cells

    International Nuclear Information System (INIS)

    Rosso, Michel; Brissot, Claire; Teyssot, Anna; Dolle, Mickael; Sannier, Lucas; Tarascon, Jean-Marie; Bouchet, Renaud; Lascaud, Stephane

    2006-01-01

    We report on experimental and theoretical studies of dendritic growth in Li/polymer/Li symmetric cells. Potential evolution with time, impedance and in situ microscopy experiments enable to characterise the onset and evolution of dendrites. In particular we observe that dendrites may burn when a high enough current goes through them, a thermo-fusible effect predicted in a previous paper and confirmed by SEM experiments. We present a calculation that gives a quantitative description of this effect: our results enable to understand a series of experimental data published in the literature concerning impedance variations observed while cycling lithium-polymer cells

  16. Feasibility study of superconducting power cables for DC electric railway feeding systems in view of thermal condition at short circuit accident

    Science.gov (United States)

    Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru

    2016-12-01

    A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.

  17. Elucidating the interplay between dark current coupling and open circuit voltage in organic photovoltaics

    KAUST Repository

    Erwin, Patrick; Thompson, Mark E.

    2011-01-01

    made with the structure indium tin oxide/copper phthalocyanine (200 Å)/PDI (200 Å)/bathocuproine (100 Å)/aluminum (1000 Å). We found that PDIs with larger substituents produced higher open circuit voltages (VOC's) despite the donor acceptor interface

  18. Modelling Li-ion cell thermal runaway triggered by an internal short circuit device using an efficiency factor and Arrhenius formulations

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Darcy, Eric; Veje, Christian

    2017-01-01

    This paper presents a novel model for analyzing the thermal runaway in Li-ion battery cells with an internal short circuit device implanted in the cell. The model is constructed using Arrhenius formulations for representing the self-heating chemical reactions and the State of Charge. The model...

  19. Short-circuit ruggedness assessment of a 1.2 kV/180 A SiC MOSFET power module

    DEFF Research Database (Denmark)

    Ionita, Claudiu; Nawaz, Muhammad; Ilves, Kalle

    2017-01-01

    is typically encountered in applications for devices of these ratings. Five modules were failed in total, with a critical short-circuit energy, Ecr ranging from 7.3 J to 9.7 J. The failure mechanism is generally the thermal runaway. Prior to failure, a decrease in VGS can be observed which is an indication...

  20. Sub-module Short Circuit Fault Diagnosis in Modular Multilevel Converter Based on Wavelet Transform and Adaptive Neuro Fuzzy Inference System

    DEFF Research Database (Denmark)

    Liu, Hui; Loh, Poh Chiang; Blaabjerg, Frede

    2015-01-01

    for continuous operation and post-fault maintenance. In this article, a fault diagnosis technique is proposed for the short circuit fault in a modular multi-level converter sub-module using the wavelet transform and adaptive neuro fuzzy inference system. The fault features are extracted from output phase voltage...

  1. Effects of an electromagnetic shield and armature teeth on the short-circuit performance of a direct drive superconducting generator for 10 MW wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2015-01-01

    reactance. An electromagnetic (EM) shield between the rotor and the stator as well as iron or non-magnetic composite (NMC) armature teeth affects the sub-transient reactance of a superconducting machine so that they play a role in the short-circuit performance of a superconducting wind generator. This paper...

  2. MATHEMATICAL MODELING OF TRANSIENT EMERGENCY ELECTROMAGNETIC PROCESSES IN THE SYSTEM OF THE ELECTROMAGNETIC TRACTION DC. 2. SHORT CIRCUIT WITH ELECTRIC ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    P. E. Mihalichenko

    2010-04-01

    Full Text Available The article deals with the description of mathematical model of the system of traction electric power supply with load in the short circuit condition as well as the calculation results of this emergency process. The transition values as well as the character of their change, which can be used for detection of emergency processes, have been determined.

  3. Room Temperature Magnetic Field Measurements as a Tool to Localize Inter-turns Electrical Short Circuits in the LHC Main Dipole coils

    CERN Document Server

    Bellesia, B; Todesco, E

    2006-01-01

    In this report the method for the localization of the electric shorts circuits in the main LHC dipoles using the magnetic measurements at room temperature is presented. The steps of the method are discussed, and two cases are studied in detail. A complete statistics of the 12 cases analyzed up to now is given.

  4. Robust Diagnosis Method Based on Parameter Estimation for an Interturn Short-Circuit Fault in Multipole PMSM under High-Speed Operation.

    Science.gov (United States)

    Lee, Jewon; Moon, Seokbae; Jeong, Hyeyun; Kim, Sang Woo

    2015-11-20

    This paper proposes a diagnosis method for a multipole permanent magnet synchronous motor (PMSM) under an interturn short circuit fault. Previous works in this area have suffered from the uncertainties of the PMSM parameters, which can lead to misdiagnosis. The proposed method estimates the q-axis inductance (Lq) of the faulty PMSM to solve this problem. The proposed method also estimates the faulty phase and the value of G, which serves as an index of the severity of the fault. The q-axis current is used to estimate the faulty phase, the values of G and Lq. For this reason, two open-loop observers and an optimization method based on a particle-swarm are implemented. The q-axis current of a healthy PMSM is estimated by the open-loop observer with the parameters of a healthy PMSM. The Lq estimation significantly compensates for the estimation errors in high-speed operation. The experimental results demonstrate that the proposed method can estimate the faulty phase, G, and Lq besides exhibiting robustness against parameter uncertainties.

  5. Current collapse modeling in AlGaN/GaN HEMT using small signal equivalent circuit for high power application

    Science.gov (United States)

    Nirmal, D.; Arivazhagan, L.; Fletcher, A. S. Augustine; Ajayan, J.; Prajoon, P.

    2018-01-01

    In this paper, the drain current collapse in AlGaN/GaN High Electron Mobility Transistor (HEMT) with field plate engineering is investigated. A small signal equivalent circuit of AlGaN/GaN HEMT is developed and a new drain current model is derived. This model is useful to correlate the impact of intrinsic capacitance and conductance on drain current collapse. The proposed device suppressed the current collapse phenomena by 10% compared with the conventional AlGaN/GaN HEMT. Moreover, the DC characteristics of the simulated device shows a drain current of 900 mA/mm, breakdown voltage of 291 V and transconductance of 175 mS/mm. Besides, the intrinsic capacitance and conductance parameters are extracted and its impact on drain current is analysed. Finally, the simulation results obtained were in compliance with the derived mathematical model of AlGaN/GaN HEMT.

  6. On-Line Detection of Coil Inter-Turn Short Circuit Faults in Dual-Redundancy Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Yiguang Chen

    2018-03-01

    Full Text Available In the aerospace and military fields, with high reliability requirements, the dual-redundancy permanent magnet synchronous motor (DRPMSM with weak thermal coupling and no electromagnetic coupling is needed. A common fault in the DRPMSM is the inter-turn short circuit fault (ISCF. However, research on how to diagnose ISCF and the set of faulty windings in the DRPMSM is lacking. In this paper, the structure of the DRPMSM is analyzed and mathematical models of the motor under normal and faulty conditions are established. Then an on-line ISCF detection scheme, which depends on the running modes of the DRPMSM and the average values for the difference of the d-axis voltages between two sets of windings in the latest 20 sampling periods, is proposed. The main contributions of this paper are to analyze the calculation for the inductance of each part of the stator windings and propose the on-line diagnosis method of the ISCF under various operating conditions. The simulation and experimental results show that the proposed method can quickly and effectively diagnose ISCF and determine the set of faulty windings of the DRPMSM.

  7. KNOWLEDGE TRANSFER AND LEARNING: PROBLEMS OF KNOWLEDGE TRANSFER ASSOCIATED WITH TRYING TO SHORT-CIRCUIT THE LEARNING CYCLE

    Directory of Open Access Journals (Sweden)

    Sue Newell

    2006-11-01

    Full Text Available Knowledge is considered to be a key organizational resource in the 21st century and the knowledge management ‘movement’ has alerted organizations to the fact that they should more strategically exploit their knowledge assets. Companies are thus lured by the suggestion that they can gain competitive advantage by the more astute management of their knowledge base and in particular, by the transfer of knowledge across individuals, groups and organizational units, using IT to accomplish this. In this paper, we reflect on this common view of knowledge transfer. More specifically, we question an implication of this view - essentially the possibility of short-circuiting the learning cycle, so that individuals do not have to rely on their personal or shared experiences to identify better practices, but can learn from the codified lessons of others in IT systems. More importantly, we consider the characteristics of knowledge – that knowledge is distributed, ambiguous and disruptive – that makes its transfer highly problematic. Drawing on case research, we relate this to the learning cycle (Kolb 1984 and thereby identify barriers to knowledge transfer. We conclude by considering ways of overcoming these barriers by emphasizing the importance of social systems alongside technical systems.

  8. Theoretical and experimental analysis of a linear accelerator endowed with single feed coupler with movable short-circuit

    International Nuclear Information System (INIS)

    Forno, Massimo Dal; Craievich, Paolo; Penco, Giuseppe; Vescovo, Roberto

    2013-01-01

    The front-end injection systems of the FERMI@Elettra linac produce high brightness electron beams that define the performance of the Free Electron Laser. The photoinjector mainly consists of the radiofrequency (rf) gun and of two S-band rf structures which accelerate the beam. Accelerating structures endowed with a single feed coupler cause deflection and degradation of the electron beam properties, due to the asymmetry of the electromagnetic field. In this paper, a new type of single feed structure with movable short-circuit is proposed. It has the advantage of having only one waveguide input, but we propose a novel design where the dipolar component is reduced. Moreover, the racetrack geometry allows to reduce the quadrupolar component. This paper presents the microwave design and the analysis of the particle motion inside the linac. A prototype has been machined at the Elettra facility to verify the new coupler design and the rf field has been measured by adopting the bead-pull method. The results are here presented, showing good agreement with the expectations

  9. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries.

    Science.gov (United States)

    Guo, Rui; Lu, Languang; Ouyang, Minggao; Feng, Xuning

    2016-07-22

    Lithium-ion batteries connected in series are prone to be overdischarged. Overdischarge results in various side effects, such as capacity degradation and internal short circuit (ISCr). However, most of previous research on the overdischarge of a cell was terminated when the cell voltage dropped to 0 V, leaving the further impacts of overdischarge unclear. This paper investigates the entire overdischarge process of large-format lithium-ion batteries by discharging the cell to -100% state of charge (SOC). A significant voltage platform is observed at approximately -12% SOC, and ISCr is detected after the cell is overdischarged when passing the platform. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that the overdischarge-induced ISCr is caused by Cu deposition on electrodes, suggesting possible Cu collector dissolution at the voltage platform near -12% SOC. A prognostic/mechanistic model considering ISCr is used to evaluate the resistance of ISCr (RISCr), the value of which decreases sharply at the beginning of ISCr formation. Inducing the ISCr by overdischarge is effective and well controlled without any mechanical deformation or the use of a foreign substance.

  10. Eco-friendly preparation of large-sized graphene via short-circuit discharge of lithium primary battery.

    Science.gov (United States)

    Kang, Shaohong; Yu, Tao; Liu, Tingting; Guan, Shiyou

    2018-02-15

    We proposed a large-sized graphene preparation method by short-circuit discharge of the lithium-graphite primary battery for the first time. LiC x is obtained through lithium ions intercalation into graphite cathode in the above primary battery. Graphene was acquired by chemical reaction between LiC x and stripper agents with dispersion under sonication conditions. The gained graphene is characterized by Raman spectrum, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Atomic force microscope (AFM) and Scanning electron microscopy (SEM). The results indicate that the as-prepared graphene has a large size and few defects, and it is monolayer or less than three layers. The quality of graphene is significant improved compared to the reported electrochemical methods. The yield of graphene can reach 8.76% when the ratio of the H 2 O and NMP is 3:7. This method provides a potential solution for the recycling of waste lithium ion batteries. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Theoretical and experimental analysis of a linear accelerator endowed with single feed coupler with movable short-circuit.

    Science.gov (United States)

    Dal Forno, Massimo; Craievich, Paolo; Penco, Giuseppe; Vescovo, Roberto

    2013-11-01

    The front-end injection systems of the FERMI@Elettra linac produce high brightness electron beams that define the performance of the Free Electron Laser. The photoinjector mainly consists of the radiofrequency (rf) gun and of two S-band rf structures which accelerate the beam. Accelerating structures endowed with a single feed coupler cause deflection and degradation of the electron beam properties, due to the asymmetry of the electromagnetic field. In this paper, a new type of single feed structure with movable short-circuit is proposed. It has the advantage of having only one waveguide input, but we propose a novel design where the dipolar component is reduced. Moreover, the racetrack geometry allows to reduce the quadrupolar component. This paper presents the microwave design and the analysis of the particle motion inside the linac. A prototype has been machined at the Elettra facility to verify the new coupler design and the rf field has been measured by adopting the bead-pull method. The results are here presented, showing good agreement with the expectations.

  12. Impact of hydroelectric installations on the morphology's short-circuited reaches of the Durance and the Verdon Rivers

    International Nuclear Information System (INIS)

    Lefort, Philippe; Chapuis, Margot

    2012-01-01

    Attenuation of flood peaks by the reservoirs of Serre Poncon and along the Verdon River, and diversions of the Durance River's flow in the industrial canal significantly modify the flow regime in the short-circuited beds. Upstream inflow of gravel materials is decreased, bed-load transport is significantly reduced, channels' mobility is atrophied, or becomes even nonexistent. The vegetation impact leads then to an obstruction of the braided channel, the rare occurrence of high flows is not able to prevent. Clearing the bed has been and stays an efficient response to the vegetation encroachment, and a necessary condition to maintain the discharge capacity during high flow, the originality and the diversity of the natural landforms. The loss of mobility is also due to bed-load transport's interruption through dams, but even more to the past gravel extractions and to weirs that sustain low flow: bed-load transport restoration through dams, sedimentary recharge of the bed with gravels coming from lateral terraces and increasing of high flows intensity will lead to a minimal required mobility. (authors)

  13. Short-Circuit Fault Tolerant Control of a Wind Turbine Driven Induction Generator Based on Sliding Mode Observers

    Directory of Open Access Journals (Sweden)

    Takwa Sellami

    2017-10-01

    Full Text Available The installed energy production capacity of wind turbines is growing intensely on a global scale, making the reliability of wind turbine subsystems of greater significance. However, many faults like Inter-Turn Short-Circuit (ITSC may affect the turbine generator and quickly lead to a decline in supplied power quality. In this framework, this paper proposes a Sliding Mode Observer (SMO-based Fault Tolerant Control (FTC scheme for Induction Generator (IG-based variable-speed grid-connected wind turbines. First, the dynamic models of the wind turbine subsystems were developed. The control schemes were elaborated based on the Maximum Power Point Tracking (MPPT method and Indirect Rotor Flux Oriented Control (IRFOC method. The grid control was also established by regulating the active and reactive powers. The performance of the wind turbine system and the stability of injected power to the grid were hence analyzed under both healthy and faulty conditions. The robust developed SMO-based Fault Detection and Isolation (FDI scheme was proved to be fast and efficient for ITSC detection and localization.Afterwards, SMO were involved in scheming the FTC technique. Accordingly, simulation results assert the efficacy of the proposed ITSC FTC method for variable-speed wind turbines with faulty IG in protecting the subsystems from damage and ensuring continuous connection of the wind turbine to the grid during ITSC faults, hence maintaining power quality.

  14. Fast Calculation Model and Theoretical Analysis of Rotor Unbalanced Magnetic Pull for Inter-Turn Short Circuit of Field Windings of Non-Salient Pole Generators

    Directory of Open Access Journals (Sweden)

    Guangtao Zhang

    2017-05-01

    Full Text Available Inter-turn short circuit of field windings (ISCFW may cause the field current of a generator to increase, output reactive power to decrease, and unit vibration to intensify, seriously affecting its safe and stable operation. Full integration of mechanical and electrical characteristics can improve the sensitivity of online monitoring, and detect the early embryonic period fault of small turns. This paper studies the calculations and variations of unbalanced magnetic pull (UMP, of which the excitation source of rotor vibration is the basis and key to online fault monitoring. In grid load operation, ISCFW are first calculated with the multi-loop method, so as to obtain the numerical solutions of the stator and the rotor currents during the fault. Next, the air-gap magnetic field of the ISCFW is analyzed according to the actual composition modes of the motor loops in the fault, so as to obtain the analytic expressions of the air-gap magnetic motive force (MMF and magnetic density. The UMP of the rotor is obtained by solving the integral of the Maxwell stress. The correctness of the electric quantity calculation is verified by the ISCFW experiment, conducted in a one pair-pole non-salient pole model machine. On this basis, comparing the simulation analysis with the calculation results of the model in this paper not only verifies the accuracy of the electromagnetic force calculation, but also proves that the latter has the advantages of a short time consumption and high efficiency. Finally, the influencing factors and variation law of UMP are analyzed by means of an analytic model. This develops a base for the online monitoring of ISCFW with the integration of mechanical and electrical information.

  15. Finite element circuit theory of the numerical code EDDYMULT for solving eddy current problems in a multi-torus system

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Ozeki, Takahisa

    1986-07-01

    The finite element circuit theory is extended to the general eddy current problem in a multi-torus system, which consists of various torus conductors and axisymmetric coil systems. The numerical procedures are devised to avoid practical restrictions of computer storage and computing time, that is, the reduction technique of eddy current eigen modes to save storage and the introduction of shape function into the double area integral of mode coupling to save time. The numerical code EDDYMULT based on the theory is developed to use in designing tokamak device from the viewpoints of the evaluation of electromagnetic loading on the device components and the control analysis of tokamak equilibrium. (author)

  16. Electromagnetic Flow Meter Having a Driver Circuit Including a Current Transducer

    Science.gov (United States)

    Karon, David M. (Inventor); Cushing, Vincent (Inventor); Patel, Sandeep K. (Inventor)

    2014-01-01

    An electromagnetic flow meter (EMFM) accurately measures both the complete flow rate and the dynamically fluctuating flow rate of a fluid by applying a unipolar DC voltage to excitation coils for a predetermined period of time, measuring the electric potential at a pair of electrodes, determining a complete flow rate and independently measuring the dynamic flow rate during the "on" cycle of the DC excitation, and correcting the measurements for errors resulting from galvanic drift and other effects on the electric potential. The EMFM can also correct for effects from the excitation circuit induced during operation of the EMFM.

  17. Analog circuit design : low voltage low power; short range wireless front-ends; power management and DC-DC

    NARCIS (Netherlands)

    Steyaert, M.; Roermund, van A.H.M.; Baschirotto, A.

    2012-01-01

    The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design. Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art

  18. Study of radiation-induced leakage current between adjacent devices in a CMOS integrated circuit

    Institute of Scientific and Technical Information of China (English)

    Ding Lili; Guo Hongxia; Chen Wei; Fan Ruyu

    2012-01-01

    Radiation-induced inter-device leakage is studied using an analytical model and TCAD simulation.There were some different opinions in understanding the process of defect build-up in trench oxide and parasitic leakage path turning on from earlier studies.To reanalyze this problem and make it beyond argument,every possible variable is considered using theoretical analysis,not just the change of electric field or oxide thickness independently.Among all possible inter-device leakage paths,parasitic structures with N-well as both drain and source are comparatively more sensitive to the total dose effect when a voltage discrepancy exists between the drain and source region.Since N-well regions are commonly connected to the same power supply,these kinds of structures will not be a problem in a real CMOS integrated circuit.Generally speaking,conduction paths of inter-device leakage existing in a real integrated circuit and under real electrical circumstances are not very sensitive to the total ionizing dose effect.

  19. Fault Modeling and Testing for Analog Circuits in Complex Space Based on Supply Current and Output Voltage

    Directory of Open Access Journals (Sweden)

    Hongzhi Hu

    2015-01-01

    Full Text Available This paper deals with the modeling of fault for analog circuits. A two-dimensional (2D fault model is first proposed based on collaborative analysis of supply current and output voltage. This model is a family of circle loci on the complex plane, and it simplifies greatly the algorithms for test point selection and potential fault simulations, which are primary difficulties in fault diagnosis of analog circuits. Furthermore, in order to reduce the difficulty of fault location, an improved fault model in three-dimensional (3D complex space is proposed, which achieves a far better fault detection ratio (FDR against measurement error and parametric tolerance. To address the problem of fault masking in both 2D and 3D fault models, this paper proposes an effective design for testability (DFT method. By adding redundant bypassing-components in the circuit under test (CUT, this method achieves excellent fault isolation ratio (FIR in ambiguity group isolation. The efficacy of the proposed model and testing method is validated through experimental results provided in this paper.

  20. Evaluation of Ferrite Chip Beads as Surge Current Limiters in Circuits with Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2014-01-01

    Limiting resistors are currently required to be connected in series with tantalum capacitors to reduce the risk of surge current failures. However, application of limiting resistors decreases substantially the efficiency of the power supply systems. An ideal surge current limiting device should have a negligible resistance for DC currents and high resistance at frequencies corresponding to transients in tantalum capacitors. This work evaluates the possibility of using chip ferrite beads (FB) as such devices. Twelve types of small size FBs from three manufacturers were used to evaluate their robustness under soldering stresses and at high surge current spikes associated with transients in tantalum capacitors. Results show that FBs are capable to withstand current pulses that are substantially greater than the specified current limits. However, due to a sharp decrease of impedance with current, FBs do not reduce surge currents to the required level that can be achieved with regular resistors.

  1. Experimental investigation of localized stress-induced leakage current distribution in gate dielectrics using array test circuit

    Science.gov (United States)

    Park, Hyeonwoo; Teramoto, Akinobu; Kuroda, Rihito; Suwa, Tomoyuki; Sugawa, Shigetoshi

    2018-04-01

    Localized stress-induced leakage current (SILC) has become a major problem in the reliability of flash memories. To reduce it, clarifying the SILC mechanism is important, and statistical measurement and analysis have to be carried out. In this study, we applied an array test circuit that can measure the SILC distribution of more than 80,000 nMOSFETs with various gate areas at a high speed (within 80 s) and a high accuracy (on the 10-17 A current order). The results clarified that the distributions of localized SILC in different gate areas follow a universal distribution assuming the same SILC defect density distribution per unit area, and the current of localized SILC defects does not scale down with the gate area. Moreover, the distribution of SILC defect density and its dependence on the oxide field for measurement (E OX-Measure) were experimentally determined for fabricated devices.

  2. Internal short circuit and accelerated rate calorimetry tests of lithium-ion cells: Considerations for methane-air intrinsic safety and explosion proof/flameproof protection methods.

    Science.gov (United States)

    Dubaniewicz, Thomas H; DuCarme, Joseph P

    2016-09-01

    Researchers with the National Institute for Occupational Safety and Health (NIOSH) studied the potential for lithium-ion cell thermal runaway from an internal short circuit in equipment for use in underground coal mines. In this third phase of the study, researchers compared plastic wedge crush-induced internal short circuit tests of selected lithium-ion cells within methane (CH 4 )-air mixtures with accelerated rate calorimetry tests of similar cells. Plastic wedge crush test results with metal oxide lithium-ion cells extracted from intrinsically safe evaluated equipment were mixed, with one cell model igniting the chamber atmosphere while another cell model did not. The two cells models exhibited different internal short circuit behaviors. A lithium iron phosphate (LiFePO 4 ) cell model was tolerant to crush-induced internal short circuits within CH 4 -air, tested under manufacturer recommended charging conditions. Accelerating rate calorimetry tests with similar cells within a nitrogen purged 353-mL chamber produced ignitions that exceeded explosion proof and flameproof enclosure minimum internal pressure design criteria. Ignition pressures within a 20-L chamber with 6.5% CH 4 -air were relatively low, with much larger head space volume and less adiabatic test conditions. The literature indicates that sizeable lithium thionyl chloride (LiSOCl 2 ) primary (non rechargeable) cell ignitions can be especially violent and toxic. Because ignition of an explosive atmosphere is expected within explosion proof or flameproof enclosures, there is a need to consider the potential for an internal explosive atmosphere ignition in combination with a lithium or lithium-ion battery thermal runaway process, and the resulting effects on the enclosure.

  3. Assessment and modelling of switching technologies for application in HVDC-circuit breakers

    OpenAIRE

    Lund, Johan

    2011-01-01

    A key element for future DC-grids is a DC circuit breaker that in case of a short circuit fault reliably can turn off a short circuit current. AC circuit breakers are well known components that has been in use for a long time in AC-grids. The AC circuit breaker is designed to interrupt the current at its natural current zero crossings. In DC grids such does not exists, therefore AC breakers can not be directly applied in DC grids. Different concepts and technologies to solve this problem is a...

  4. Single cell wound generates electric current circuit and cell membrane potential variations that requires calcium influx.

    Science.gov (United States)

    Luxardi, Guillaume; Reid, Brian; Maillard, Pauline; Zhao, Min

    2014-07-24

    Breaching of the cell membrane is one of the earliest and most common causes of cell injury, tissue damage, and disease. If the compromise in cell membrane is not repaired quickly, irreversible cell damage, cell death and defective organ functions will result. It is therefore fundamentally important to efficiently repair damage to the cell membrane. While the molecular aspects of single cell wound healing are starting to be deciphered, its bio-physical counterpart has been poorly investigated. Using Xenopus laevis oocytes as a model for single cell wound healing, we describe the temporal and spatial dynamics of the wound electric current circuitry and the temporal dynamics of cell membrane potential variation. In addition, we show the role of calcium influx in controlling electric current circuitry and cell membrane potential variations. (i) Upon wounding a single cell: an inward electric current appears at the wound center while an outward electric current is observed at its sides, illustrating the wound electric current circuitry; the cell membrane is depolarized; calcium flows into the cell. (ii) During cell membrane re-sealing: the wound center current density is maintained for a few minutes before decreasing; the cell membrane gradually re-polarizes; calcium flow into the cell drops. (iii) In conclusion, calcium influx is required for the formation and maintenance of the wound electric current circuitry, for cell membrane re-polarization and for wound healing.

  5. The importance of an external circuit in a particle-in-cell/Monte Carlo collisions model for a direct current planar magnetron

    International Nuclear Information System (INIS)

    Bultinck, E.; Kolev, I.; Bogaerts, A.; Depla, D.

    2008-01-01

    In modeling direct current (dc) discharges, such as dc magnetrons, a current-limiting device is often neglected. In this study, it is shown that an external circuit consisting of a voltage source and a resistor is inevitable in calculating the correct cathode current. Avoiding the external circuit can cause the current to converge (if at all) to a wrong volt-ampere regime. The importance of this external circuit is studied by comparing the results with those of a model without current-limiting device. For this purpose, a 2d3v particle-in-cell/Monte Carlo collisions model was applied to calculate discharge characteristics, such as cathode potential and current, particle fluxes and densities, and potential distribution in the plasma. It is shown that the calculated cathode current is several orders of magnitude lower when an external circuit is omitted, leading to lower charged particle fluxes and densities, and a wider plasma sheath. Also, it was shown, that only simulations with external circuit can bring the cathode current into a certain plasma regime, which has its own typical properties. In this work, the normal and abnormal regimes were studied

  6. Commutation circuit for an HVDC circuit breaker

    Science.gov (United States)

    Premerlani, William J.

    1981-01-01

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.

  7. Computer circuit analysis of induced currents in the MFTF-B magnet system

    International Nuclear Information System (INIS)

    Magnuson, G.D.; Woods, E.L.

    1981-01-01

    An analysis was made of the induced current behavior of the MFTF-B magnet system. Although the magnet system consists of 22 coils, because of its symmetry we considered only 11 coils in the analysis. Various combinations of the coils were dumped either singly or in groups, with the current behavior in all magnets calculated as a function of time after initiation of the dump

  8. Feasibility Study of the PS Injection for 2 GeV LIU Beams with an Upgraded KFA-45 Injection Kicker System Operating in Short Circuit Mode

    CERN Document Server

    Kramer, Thomas; Borburgh, Jan; Ducimetière, Laurent; Feliciano, Luis; Ferrero Colomo, Alvaro; Goddard, Brennan; Sermeus, Luc

    2016-01-01

    Under the scope of the LIU project the CERN PS Booster to PS beam transfer will be modified to match the requirements for the future 2 GeV beams. This paper describes the evaluation of the proposed upgrade of the PS injection kicker. Different schemes of an injection for LIU beams into the PS have been outlined in the past already under the aspect of individual transfer kicker rise and fall time performances. Homogeneous rise and fall time requirements in the whole PSB to PS transfer chain have been established which allowed to consider an upgrade option of the present injection kicker system operated in short circuit mode. The challenging pulse quality constraints require an improvement of the flat top and post pulse ripples. Both operation modes, terminated and short circuit mode are analysed and analogue circuit simulations for the present and upgraded system are outlined. Recent measurements on the installed kickers are presented and analysed together with the simulation data. First measurements verifying...

  9. Enhancing LVRT of DFIG by Using a Superconducting Current Limiter on Rotor Circuit

    Directory of Open Access Journals (Sweden)

    Flávio Oliveira

    2015-12-01

    Full Text Available This paper have studied the dynamic of a 2.0 MW Doubly Fed Induction Generator (DFIG during a severe voltage sag. Using the dynamic model of a DFIG, it was possible to determine the current, Electromagnetic Force and flux behavior during three-phase symmetrical voltage dip. Among the technologies of wind turbines the DFIG is widely employed; however, this machine is extremely susceptible to disturbances from the grid. In order to improve DFIG Low Voltage Ride-Through (LVRT, it is proposed a novel solution, using Superconducting Current Limiter (SCL in two arrangements: one, the SCL is placed between the machine rotor and the rotor side converter (RSC, and another placed in the RSC DC-link. The proposal is validated through simulation using PSCAD™/EMTDC™ and according to requirements of specific regulations. The analysis ensure that both SCL arrangements behave likewise, and are effective in decrement the rotor currents during the disturbance.

  10. Bi-directional high-side current sense circuit for switch mode power supplies

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Bruun, Erik; Andersen, Michael A. E.

    2014-01-01

    In order to control a power supply using piezoelectric transformer, AC current in the transformer ne eds to be measured. Due to the control strategy it is necessary to measure amplitude, phase angle and zero crossing of this c urrent. In some applications there is common ground between pri mary...

  11. Water chemistry of secondary circuit and SG currently status NPP 'Kozloduy' 3

    Energy Technology Data Exchange (ETDEWEB)

    Minkova, K. [Kozloduy NPP (Bulgaria)

    2002-07-01

    The author gives a historical review of the secondary water chemistry regimes of NPP Kozloduy Unit 3. Results of eddy current inspection on the steam generator of Unit 5 and quantity of the deposits on the surfaces of steam generator during 1989-2001 inspections are given. (uke)

  12. Universal "Imaginary Closed Circuit Method" and Formula for Determination of Direction of Induced EMF/Current

    Science.gov (United States)

    Atram, Dattatraya Balaram

    2011-01-01

    Fleming's right-hand rule and the right-flat-hand rule are generally applied for determining the direction of flow of induced emf/current in straight conductors. The right-hand-fingers rule is applied for coils only. The right-hand-thumb rule can be applied for either straight conductors or coils. Different rules have to be applied for different…

  13. Short-channel drain current model for asymmetric heavily/lightly ...

    Indian Academy of Sciences (India)

    The paper presents a drain current model for double gate metal oxide semiconductor field effect transistors (DG MOSFETs) based on a new velocity saturation model that accounts for short-channel velocity saturation effect independently in the front and the back gate controlled channels under asymmetric front and back ...

  14. Dynamic behavior of HTSC opening switch models controlled by short over-critical current pulses

    International Nuclear Information System (INIS)

    Agafonov, A.V.; Krastelev, E.G.; Voronin, V.S.

    1999-01-01

    We present results of experimental research of dynamical properties of thin films of YBa 2 Cu 3 O 7 HTSC-switch models under action of short overcritical current pulses to test this method of control of fast high-power opening switches for accelerator applications

  15. Short-rotation coppicing in France. Current state of research and prospects for future development

    Energy Technology Data Exchange (ETDEWEB)

    Bonduelle, P. (Association Foret Cellulose, Trelaze (France)); Bouvarel, L. (Institut National de la Recherche Agronomique, Olivet (France). Unite Experimentale Biomasse, Forestiere et Foret Paysanne); Petit, H. (Association pour la Rationalisation et la Mecanisation de l' Exploitation Forestiere, Fontainebleau (France)); Pierson, J. (Cellulose des Ardennes, Montemedy (France)); Savanne, D. (Agence de l' Environnement et de la Maitrise de l' Energie, 75 - Paris (France)); Sourie, J.C. (Institut National de la Recherche Agronomique, Grignon (France). Station d' Economie et de Sociologie Rurales)

    1992-01-01

    This article analyzes the current context and the prospects for crop development as well as offering a number of examples of short rotation coppicing projects. The industrial outlets created through state aid remain the primary driving force behind plantations at this time. (author)

  16. Transcranial direct current stimulation improves short-term memory in an animal model of attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Leffa, Douglas Teixeira; de Souza, Andressa; Scarabelot, Vanessa Leal; Medeiros, Liciane Fernandes; de Oliveira, Carla; Grevet, Eugenio Horacio; Caumo, Wolnei; de Souza, Diogo Onofre; Rohde, Luis Augusto Paim; Torres, Iraci L S

    2016-02-01

    Attention deficit hyperactivity disorder (ADHD) is characterized by impairing levels of hyperactivity, impulsivity and inattention. However, different meta-analyses have reported disruptions in short and long-term memory in ADHD patients. Previous studies indicate that mnemonic dysfunctions might be the result of deficits in attentional circuits, probably due to ineffective dopaminergic modulation of hippocampal synaptic plasticity. In this study we aimed to evaluate the potential therapeutic effects of a neuromodulatory technique, transcranial direct current stimulation (tDCS), in short-term memory (STM) deficits presented by the spontaneous hypertensive rats (SHR), the most widely used animal model of ADHD. Adult male SHR and Wistar Kyoto rats (WKY) were subjected to a constant electrical current of 0.5 mA intensity applied on the frontal cortex for 20 min/day during 8 days. STM was evaluated with an object recognition test conducted in an open field. Exploration time and locomotion were recorded, and brain regions were dissected to determine dopamine and BDNF levels. SHR spent less time exploring the new object when compared to WKY, and tDCS improved object recognition deficits in SHR without affecting WKY performance. Locomotor activity was higher in SHR and it was not affected by tDCS. After stimulation, dopamine levels were increased in the hippocampus and striatum of both strains, while BDNF levels were increased only in the striatum of WKY. These findings suggest that tDCS on the frontal cortex might be able to improve STM deficits present in SHR, which is potentially related to dopaminergic neurotransmission in the hippocampus and striatum of those animals. Copyright © 2016. Published by Elsevier B.V.

  17. Dimensioning of optimal probe circuits for the non-destructive testing of materials by eddy-current using Buschbeck-Meinke chart

    International Nuclear Information System (INIS)

    Ott, A.

    1982-01-01

    By application of a modified form of the Buschbeck-Meinke-diagram, known from conduction theory, easy-to use dimensioning rules can be given for the probe circuits of single-frequency eddy-current test instruments. Dimensioning is found for circuits that work with amplitude or phase measurements, that suppress optimal the disturbance parameters in certain regions. In a similar way one can determine dimensioning, with which the measurement quantity causes the highest possible signal charge. (orig.) [de

  18. FPGAs and wavelets on circuit testing based on current signal measurements

    International Nuclear Information System (INIS)

    Pouros, Sotirios; Vassios, Vassilios; Manolakis, Dimitrios; Bamnios, Georgios; Papakostas, Dimitrios K.; Hatzopoulos, Alkis A.; Hristov, Valentin

    2015-01-01

    The research team designed and implemented a prototype testing system using FPGAs, where test methods for analog and digital (mixed) electronics using wavelets can be incorporated. The prototype has been evaluated and the results are promising. Moreover, the usability and verification of the system’s functionality are presented. The current sensing unit is described in detail. The new automated fault testing system incorporates reconfigurability and parallel processing capabilities.

  19. First-year university Physics students’ knowledge about direct current circuits: probing improvement in understanding as a function of teaching and learning interventions

    Science.gov (United States)

    Newman, Richard; van der Ventel, Brandon; Hanekom, Crischelle

    2017-07-01

    Probing university students’ understanding of direct-current (DC) resistive circuits is still a field of active physics education research. We report here on a study we conducted of this understanding, where the cohort consisted of students in a large-enrollment first-year physics module. This is a non-calculus based physics module for students in the life sciences stream. The study involved 366 students enrolled in the physics (bio) 154 module at Stellenbosch University in 2015. Students’ understanding of DC resistive circuits was probed by means of a standardized test instrument. The instrument comprises 29 multiple choice questions that students have to answer in ~40 min. Students were required to first complete the standardized test at the start of semester (July 2015). For ease of reference we call this test the pre-test. Students answered the pre-test having no university-level formal exposure to DC circuits in theory or practice. The pre-test therefore served to probe students’ school level knowledge of DC circuits. As the semester progressed students were exposed to a practical (E1), lectures, a prescribed textbook, a tutorial and online videos focusing on DC circuits. The E1 practical required students to solve DC circuit problems by means of physically constructing circuits, algebraically using Kirchhoff's Rules and Ohm’s Law, and by means of simulating circuits using the app iCircuit running on iPads (iOS platform). Each E1 practical involved ~50 students in a three hour session. The practical was repeated three afternoons per week over an eight week period. Twenty three iPads were distributed among students on a practical afternoon in order for them to do the circuit simulations in groups (of 4-5 students). At the end of the practical students were again required to do the standardized test on circuits and complete a survey on their experience of the use of the iPad and iCircuit app. For ease of reference we refer to this second test as the

  20. Eddy current measurement of the thickness of top Cu film of the multilayer interconnects in the integrated circuit (IC) manufacturing process

    Science.gov (United States)

    Qu, Zilian; Meng, Yonggang; Zhao, Qian

    2015-03-01

    This paper proposes a new eddy current method, named equivalent unit method (EUM), for the thickness measurement of the top copper film of multilayer interconnects in the chemical mechanical polishing (CMP) process, which is an important step in the integrated circuit (IC) manufacturing. The influence of the underneath circuit layers on the eddy current is modeled and treated as an equivalent film thickness. By subtracting this equivalent film component, the accuracy of the thickness measurement of the top copper layer with an eddy current sensor is improved and the absolute error is 3 nm for sampler measurement.

  1. New equivalent lumped electrical circuit for piezoelectric transformers.

    Science.gov (United States)

    Gonnard, Paul; Schmitt, P M; Brissaud, Michel

    2006-04-01

    A new equivalent circuit is proposed for a contour-vibration-mode piezoelectric transformer (PT). It is shown that the usual lumped equivalent circuit derived from the conventional Mason approach is not accurate. The proposed circuit, built on experimental measurements, makes an explicit difference between the elastic energies stored respectively on the primary and secondary parts. The experimental and theoretical resonance frequencies with the secondary in open or short circuit are in good agreement as well as the output "voltage-current" characteristic and the optimum efficiency working point. This circuit can be extended to various PT configurations and appears to be a useful tool for modeling electronic devices that integrate piezoelectric transformers.

  2. Water quality, hydrology, and the effects of changes in phosphorus loading to Pike Lake, Washington County, Wisconsin, with special emphasis on inlet-to-outlet short-circuiting

    Science.gov (United States)

    Rose, William J.; Robertson, Dale M.; Mergener, Elizabeth A.

    2004-01-01

    Pike Lake is a 459-acre, mesotrophic to eutrophic dimictic lake in southeastern Wisconsin. Because of concern over degrading water quality in the lake associated with further development in its watershed, a study was conducted by the U.S. Geological Survey from 1998 to 2000 to describe the water quality and hydrology of the lake, quantify sources of phosphorus including the effects of short-circuiting of inflows, and determine how changes in phosphorus loading should affect the water quality of the lake. Measuring all significant water and phosphorus sources and estimating lesser sources was the method used to construct detailed water and phosphorus budgets. The Rubicon River, ungaged near-lake surface inflow, precipitation, and ground water provide 55, 20, 17, and 7 percent of the total inflow, respectively. Water leaves the lake through the Rubicon River outlet (87 percent) or by evaporation (13 percent). Total input of phosphorus to the lake was about 3,500 pounds in 1999 and 2,400 pounds in 2000. About 80 percent of the phosphorus was from the Rubicon River, about half of which came from the watershed and half from a waste-water treatment plant in Slinger, Wisconsin. Inlet-to-outlet short-circuiting of phosphorus is facilitated by a meandering segment of the Rubicon River channel through a marsh at the north end of the lake. It is estimated that 77 percent of phosphorus from the Rubicon River in monitoring year 1999 and 65 percent in monitoring year 2000 was short-circuited to the outlet without entering the main body of the lake.

  3. Self-commutated high-voltage direct current transmission with DC circuit breakers. Backbone for the energy policy turnaround; Selbstgefuehrte Hochspannungs-Gleichstromuebertragung mit DC-Leistungsschalter. Rueckgrat fuer die Energiewende

    Energy Technology Data Exchange (ETDEWEB)

    Goerner, Raphael [ABB AG, Mannheim (Germany). Marketing und Vertrieb, Geschaeftsbereich Grid Systems

    2013-06-01

    The 'current war' between direct current and alternating current is extended by a new location. In the future, both technologies work together in order to provide a reliable power transmission in Germany and long-term in Europe. This is based on the self-guided high-voltage direct current transmission. In conjunction with direct current circuit breakers (DC circuit breaker) the power circuit breakers may help to make the transmission grids more flexible and to minimize losses.

  4. Fault clearance in medium-voltage networks using remote-monitored short-circuit alarms; Stoerungsbeseitigung im MS-Netz mit fernueberwachten Kurzschlussmeldern

    Energy Technology Data Exchange (ETDEWEB)

    Beran, B. [Reginalzentrum Neckar-Franken der EnBW Regional AG, Oehringen (Germany). Bereich Netzfuehrung; Deiss, R. [RBS Genius GmbH, Stuttgart (Germany). Bereich Korrosionsschutz und Gaslecksuche; Stibbe, T. [Phoenix Contact GmbH und Co KG, Blomberg (Lippe) (Germany). Vertrieb Deutschland

    2006-04-15

    In March 2005, a pilot project on remote monitoring of short-circuit alarms using GSM was started. In cooperation with RBS Genius GmbH (100 percent subsidiary of EnBW Regional AG) who already use a similar technology for controlling cathodic corrosion protection systems, and the EnBW-Regionalzentrum Neckar-Franken, the functionalities were specified. After only five months of development and assembly time, the first 15 units were installed in exposed and difficult-to-access sites. All sites were located along very long power lines in which localisation of the defect would be very time-consuming. (orig.)

  5. A Flexible Power Control Method of VSC-HVDC Link for the Enhancement of Effective Short-Circuit Ratio in a Hybrid Multi-Infeed HVDC System

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2013-01-01

    . To evaluate the contribution of the VSC-HVDC link on the voltage stability of HMIDC system, this paper proposes an effective short circuit ratio (ESCR) calculation method. Through the calculation, the voltage support capability of the VSC-HVDC link can be quantitatively represented by the ESCR. Furthermore......, based on the calculation results, a flexible power control strategy for the VSC-HVDC link is developed to provide maximum reactive power support under grid faults. The theoretical analysis of the HMIDC system is based on the Danish transmission grid, evaluated through PSCAD simulations under different...

  6. Short (

    NARCIS (Netherlands)

    Telleman, Gerdien; den Hartog, Laurens

    2013-01-01

    Aim: This systematic review assessed the implant survival rate of short (<10 mm) dental implants installed in partially edentulous patients. A case report of a short implant in the posterior region have been added. Materials and methods: A search was conducted in the electronic databases of MEDLINE

  7. Evolution of short circuit levels in the National Electric System, years 2007 to 2011; Evolucion de los niveles de cortocircuito del Sistema Electrico Nacional, anos 2007 al 2011

    Energy Technology Data Exchange (ETDEWEB)

    Quintana Castaneda, J; Reyes Escobedo, G [Instituto de Investigaciones Electricas (Mexico)]. E-mails: jqc@iie.org.mx; gustavo.reyes@iie.org.mx; Ibarra Romo, F.G. [Comision Federal de Electricidad (Mexico)]. E-mail: federico.ibarra@cfe.gob.mx

    2013-03-15

    The present document shows an analysis of 2011 short-circuit levels on the different nodes (substations) that integrate the National Electric System. This analysis presents the figures of short-circuit levels on past years, stating on 2007, with the purpose of detecting the variation on each one of these nodes and identify the cases that because it's high levels are considered as critical nodes of the transmission system. At the end of the analysis some recommendations to minimize the potential risks are given on those substations classified as critical nodes. [Spanish] En este documento se expone un analisis de los niveles de cortocircuito que se presentaron en el 2011 en los distintos nodos (subestaciones) que conforman la red del Sistema Electrico Nacional (SEN). Este analisis muestra las cifras de los niveles de cortocircuito que se han presentado desde el ano 2007, a fin de estudiar el comportamiento y evolucion que han tenido los nodos de la red electrica, identificando aquellos puntos que por sus altos niveles de cortocircuito se consideran como nodos criticos. En la parte final del analisis se dan algunas recomendaciones para disminuir los riesgos que se pudieran presentar en aquellas subestaciones clasificadas como nodos criticos.

  8. Detecting the single line to ground short circuit fault in the submarine’s power system using the artificial neural network

    Directory of Open Access Journals (Sweden)

    Behniafar Ali

    2013-01-01

    Full Text Available The electric marine instruments are newly inserted in the trade and industry, for which the existence of an equipped and reliable power system is necessitated. One of the features of such a power system is that it cannot have an earth system causing the protection relays not to be able to detect the single line to ground short circuit fault. While on the other hand, the occurrence of another similar fault at the same time can lead to the double line fault and thereby the tripping of relays and shortening of vital loads. This in turn endangers the personals' security and causes the loss of military plans. From the above considerations, it is inferred that detecting the single line to ground fault in the marine instruments is of a special importance. In this way, this paper intends to detect the single line to ground fault in the power systems of the marine instruments using the wavelet transform and Multi-Layer Perceptron (MLP neural network. In the numerical analysis, several different types of short circuit faults are simulated on several marine power systems and the proposed approach is applied to detect the single line to ground fault. The results are of a high quality and preciseness and perfectly demonstrate the effectiveness of the proposed approach.

  9. Association between Early Attention-Deficit/Hyperactivity Symptoms and Current Verbal and Visuo-Spatial Short-Term Memory

    Science.gov (United States)

    Gau, Susan Shur-Fen; Chiang, Huey-Ling

    2013-01-01

    Deficits in short-term memory are common in adolescents with attention-deficit/hyperactivity disorder (ADHD), but their current ADHD symptoms cannot well predict their short-term performance. Taking a developmental perspective, we wanted to clarify the association between ADHD symptoms at early childhood and short-term memory in late childhood and…

  10. An origin for short gamma-ray bursts unassociated with current star formation.

    Science.gov (United States)

    Barthelmy, S D; Chincarini, G; Burrows, D N; Gehrels, N; Covino, S; Moretti, A; Romano, P; O'Brien, P T; Sarazin, C L; Kouveliotou, C; Goad, M; Vaughan, S; Tagliaferri, G; Zhang, B; Antonelli, L A; Campana, S; Cummings, J R; D'Avanzo, P; Davies, M B; Giommi, P; Grupe, D; Kaneko, Y; Kennea, J A; King, A; Kobayashi, S; Melandri, A; Meszaros, P; Nousek, J A; Patel, S; Sakamoto, T; Wijers, R A M J

    2005-12-15

    Two short (gamma-ray bursts (GRBs) have recently been localized and fading afterglow counterparts detected. The combination of these two results left unclear the nature of the host galaxies of the bursts, because one was a star-forming dwarf, while the other was probably an elliptical galaxy. Here we report the X-ray localization of a short burst (GRB 050724) with unusual gamma-ray and X-ray properties. The X-ray afterglow lies off the centre of an elliptical galaxy at a redshift of z = 0.258 (ref. 5), coincident with the position determined by ground-based optical and radio observations. The low level of star formation typical for elliptical galaxies makes it unlikely that the burst originated in a supernova explosion. A supernova origin was also ruled out for GRB 050709 (refs 3, 31), even though that burst took place in a galaxy with current star formation. The isotropic energy for the short bursts is 2-3 orders of magnitude lower than that for the long bursts. Our results therefore suggest that an alternative source of bursts--the coalescence of binary systems of neutron stars or a neutron star-black hole pair--are the progenitors of short bursts.

  11. Controllable circuit

    DEFF Research Database (Denmark)

    2010-01-01

    A switch-mode power circuit comprises a controllable element and a control unit. The controllable element is configured to control a current in response to a control signal supplied to the controllable element. The control unit is connected to the controllable element and provides the control...

  12. Digital algorithms to recognize shot circuits just in right time. Digitale Algorithmen zur fruehzeitigen Kurzschlusserkennung

    Energy Technology Data Exchange (ETDEWEB)

    Lindmayer, M.; Stege, M. (Technische Univ. Braunschweig (Germany, F.R.). Inst. fuer Elektrische Energieanlagen)

    1991-07-01

    Algorithms for early detection and prevention of short circuits are presented. Data on current levels and steepness in the a.c. network to be protected are evaluated by microcomputers. In particular, a simplified low-voltage grid is considered whose load circuit is formed in normal conditions by a serial R-L circuit. An optimum short-circuit detection algorithm is proposed for this network, which forecasts a current value from the current and steepness signals and compares this value with a limiting value. (orig.).

  13. Description of Self-efficacy and Initial Cognitive Abilities on the Students’ Physics Learning of the Direct Current Electrical Circuits

    Science.gov (United States)

    Zaenudin; Maknun, J.; Muslim

    2017-03-01

    This study aims to determine description of self -efficacy and initial cognitive abilities on the students of MAN 1 Bandung (senior high school) in learning physics on the subject of electrical circuits Direct Current (DC) before they get academy ask assigned in the classroom. From the results of this research can be used as a reference to provide appropriate measures for the advancement of student learning. The theory used in this research is the theory of Bandura. The design in this study using case study and data collection is done by tests and questionnaires, sampling techniques used by random sampling, the study was conducted on 10th grade students of MAN 1 Bandung by the amount of students 35 participants. The results of data analysis showed that the percentage of students who have moderate self-efficacy amounted to 67.05 %, and cognitive ability 50 %, this shows that the process of learning that takes place in school before that junior high school is not much scientific implement processes that provide students the opportunity to discover new things, then learning approaches of right is Problem Based Learning (PBL).

  14. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M.

    1996-01-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several μs) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution

  15. High ion charge states in a high-current, short-pulse, vacuum arc ion source

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M.

    1995-09-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1--4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several micros) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution

  16. The Solenarc circuit-breaker of high performance level

    International Nuclear Information System (INIS)

    Lehmann, J.M.

    1983-01-01

    After recalling the breaking principle involved in MV circuit-breakers manufactured by Merlin Gerin, it is showed how Solenarc technique enables specific problems to be solved that are set by the equipment of Eurodif plant at Tricastin and that represent constraints similar to those encountered with protective equipment for power station auxiliaries (high rated currents, long duration overloads, very high short-circuit currents, current breaks without natural passage through zero, etc.) [fr

  17. Numerical study of turbulence-influence mechanism on arc characteristics in an air direct current circuit breaker

    Science.gov (United States)

    Wu, Mingliang; Yang, Fei; Rong, Mingzhe; Wu, Yi; Qi, Yang; Cui, Yufei; Liu, Zirui; Guo, Anxiang

    2016-04-01

    This paper focuses on the numerical investigation of arc characteristics in an air direct current circuit breaker (air DCCB). Using magneto-hydrodynamics (MHD) theory, 3D laminar model and turbulence model are constructed and calculated. The standard k-epsilon model is utilized to consider the turbulence effect in the arc chamber of the DCCB. Several important phenomena are found: the arc column in the turbulence-model case is more extensive, moves much more slowly than the counterpart in the laminar-model case, and shows stagnation at the entrance of the chamber, unlike in the laminar-model case. Moreover, the arc voltage in the turbulence-model case is much lower than in the laminar-model case. However, the results in the turbulence-model case show a much better agreement with the results of the breaking experiments under DC condition than in the laminar-model case, which is contradictory to the previous conclusions from the arc researches of both the low-voltage circuit breaker and the sulfur hexafluoride (SF6) nozzle. First, in the previous air-arc research of the low-voltage circuit breaker, it is assumed that the air plasma inside the chamber is in the state of laminar, and the laminar-model application gives quite satisfactory results compared with the experiments, while in this paper, the laminar-model application works badly. Second, the turbulence-model application in the arc research of the SF6-nozzle performs much better and gives higher arc voltage than the laminar-model application does, whereas in this paper, the turbulence-model application predicts lower arc voltage than the laminar-model application does. Based on the analysis of simulation results in detail, the mechanism of the above phenomena is revealed. The transport coefficients are strongly changed by turbulence, which will enhance the arc diffusion and make the arc volume much larger. Consequently, the arc appearance and the distribution of Lorentz force in the turbulence-model case

  18. Numerical study of turbulence-influence mechanism on arc characteristics in an air direct current circuit breaker

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Mingliang; Yang, Fei, E-mail: yfei2007@mail.xjtu.edu.cn; Rong, Mingzhe; Wu, Yi; Qi, Yang; Cui, Yufei [State Key Lab of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi' an Jiaotong University, Xi' an Shaanxi 710049 (China); Liu, Zirui [State Grid Shaanxi Electric Power Company, Xi' an, Shaanxi (China); Guo, Anxiang [Electric Power Research Institute of State Grid Shaanxi Electric Power Company, Xi' an, Shaanxi (China)

    2016-04-15

    This paper focuses on the numerical investigation of arc characteristics in an air direct current circuit breaker (air DCCB). Using magneto-hydrodynamics (MHD) theory, 3D laminar model and turbulence model are constructed and calculated. The standard k-epsilon model is utilized to consider the turbulence effect in the arc chamber of the DCCB. Several important phenomena are found: the arc column in the turbulence-model case is more extensive, moves much more slowly than the counterpart in the laminar-model case, and shows stagnation at the entrance of the chamber, unlike in the laminar-model case. Moreover, the arc voltage in the turbulence-model case is much lower than in the laminar-model case. However, the results in the turbulence-model case show a much better agreement with the results of the breaking experiments under DC condition than in the laminar-model case, which is contradictory to the previous conclusions from the arc researches of both the low-voltage circuit breaker and the sulfur hexafluoride (SF6) nozzle. First, in the previous air-arc research of the low-voltage circuit breaker, it is assumed that the air plasma inside the chamber is in the state of laminar, and the laminar-model application gives quite satisfactory results compared with the experiments, while in this paper, the laminar-model application works badly. Second, the turbulence-model application in the arc research of the SF6-nozzle performs much better and gives higher arc voltage than the laminar-model application does, whereas in this paper, the turbulence-model application predicts lower arc voltage than the laminar-model application does. Based on the analysis of simulation results in detail, the mechanism of the above phenomena is revealed. The transport coefficients are strongly changed by turbulence, which will enhance the arc diffusion and make the arc volume much larger. Consequently, the arc appearance and the distribution of Lorentz force in the turbulence-model case

  19. Direct readout flux locked loop circuit with automatic tuning of bias current and bias flux for high-Tc SQUID

    International Nuclear Information System (INIS)

    Hirano, T.; Nagaishi, T.; Itozaki, H.

    1999-01-01

    Measurement of high-frequency magnetic signals has been required from some SQUID applications. We fabricated a high-T c SQUID magnetic sensor system that can treat high-frequency signals. This system is composed of a SQUID, a preamplifier circuit, a flux locked loop (FLL) circuit with I/O and a personal computer and a PC card. We used the FLL circuit with no modulation to treat the high-frequency signal and to simplify the circuit. This system can treat a signal from dc to 1 MHz. All the sequence from tuning the SQUID to data acquisition can be done by a personal computer. This system successfully realized easy operation of SQUID measurement. (author)

  20. Effect of the depth base along the vertical on the electrical parameters of a vertical parallel silicon solar cell in open and short circuit

    Directory of Open Access Journals (Sweden)

    Gokhan Sahin

    2018-03-01

    Full Text Available This article presented a modeling study of effect of the depth base initiating on vertical parallel silicon solar cell’s photovoltaic conversion efficiency. After the resolution of the continuity equation of excess minority carriers, we calculated the electrical parameters such as the photocurrent density, the photovoltage, series resistance and shunt resistances, diffusion capacitance, electric power, fill factor and the photovoltaic conversion efficiency. We determined the maximum electric power, the operating point of the solar cell and photovoltaic conversion efficiency according to the depth z in the base. We showed that the photocurrent density decreases with the depth z. The photovoltage decreased when the depth base increases. Series and shunt resistances were deduced from electrical model and were influenced and the applied the depth base. The capacity decreased with the depth z of the base. We had studied the influence of the variation of the depth z on the electrical parameters in the base. Keywords: Depth base, Conversion efficiency, Electrical parameters, Open circuit, Short circuit

  1. Size optimization for complex permeability measurement of magnetic thin films using a short-circuited microstrip line up to 30 GHz

    Science.gov (United States)

    Takeda, Shigeru; Naoe, Masayuki

    2018-03-01

    High-frequency permeability spectra of magnetic films were measured over a wideband frequency range of 0.1-30 GHz using a shielded and short-circuited microstrip line jig. In this measurement, spurious resonances had to be suppressed up to the highest frequency. To suppress these resonances, characteristic impedance of the microstrip line should approach 50 Ω at the junction between connector and microstrip line. The main factors dominating these resonances were structures of the jig and the sample. The dimensions were optimized in various experiments, and results demonstrated that the frequency could be raised to at least 20 GHz. For the transverse electromagnetic mode to transmit stably along the microstrip line, the preferred sample was rectangular, with the shorter side parallel to the line and the longer side perpendicular to it, and characteristic impedance strongly depended on the signal line width of the jig. However, too small a jig and sample led to a lower S/N ratio.

  2. A 1.4-V 48-μW current-mode front-end circuit for analog hearing aids with frequency compensation

    International Nuclear Information System (INIS)

    Wang Xiaoyu; Yang Haigang; Li Fanyang; Yin Tao; Liu Fei

    2012-01-01

    A current-mode front-end circuit with low voltage and low power for analog hearing aids is presented. The circuit consists of a current-mode AGC (automatic gain control) and a current-mode adaptive filter. Compared with its conventional voltage-mode counterparts, the proposed front-end circuit has the identified features of frequency compensation based on the state space theory and continuous gain with an exponential characteristic. The frequency compensation which appears only in the DSP unit of the digital hearing aid can upgrade the performance of the analog hearing aid in the field of low-frequency hearing loss. The continuous gain should meet the requirement of any input amplitude level, while its exponential characteristic leads to a large input dynamic range in accordance with the dB SPL (sound pressure level). Furthermore, the front-end circuit also provides a discrete knee point and discrete compression ratio to allow for high calibration flexibility. These features can accommodate users whose ears have different pain thresholds. Taking advantage of the current-mode technique, the MOS transistors work in the subthreshold region so that the quiescent current is small. Moreover, the input current can be compressed to a low voltage signal for processing according to the compression principle from the current-domain to the voltage-domain. Therefore, the objective of low voltage and low power (48 μW at 1.4 V) can be easily achieved in a high threshold-voltage CMOS process of 0.35 μm (V TON + |V TOP |≈ 1.35 V). The THD is below −45 dB. The fabricated chip only occupies the area of 1 × 0.5 mm 2 and 1 × 1 mm 2 .

  3. Short-term effects of upper extremity circuit resistance training on muscle strength and functional independence in patients with paraplegia.

    Science.gov (United States)

    Yildirim, Adem; Sürücü, Gülseren Dost; Karamercan, Ayşe; Gedik, Dilay Eken; Atci, Nermin; Dülgeroǧlu, Deniz; Özgirgin, Neşe

    2016-11-21

    A number of exercises to strengthen the upper extremities are recommended to increase functional independence and quality of life (QoL) in patients with paraplegia. Circuit resistance training (CRT) is a type of progressive resistive exercise performed repeatedly at fixed mechanical exercise stations. The aim of this study was to investigate the potential benefits of CRT for upper extremity muscle strength, functional independence, and QoL in patients with paraplegia. Twenty-six patients with paraplegia who were participating in a conventional rehabilitation program at a tertiary education and research hospital were enrolled in this study. The participants were randomly assigned to two groups. The exercise group participated in the CRT program, which consisted of repetitive exercises for the upper extremities performed at fixed mechanical stations 5 sessions per week for 6 weeks, in addition to conventional rehabilitation. Participants in the control group received only conventional rehabilitation over the same period. We compared the groups with respect to QoL, as well as isokinetic muscle test outcomes in the upper extremities, using the Functional Independence Measure (FIM) and Borg's scale. We observed significant increases in scores on the physical component of the FIM, Borg's scale, and QoL in both the exercise and control groups. Furthermore, the large majority of isokinetic values were significantly more improved in the exercise group compared to the control group. When post-treatment outcomes were compared between the groups, improvements in scores on the physical component of the FIM and in most isokinetic values were significantly greater in the exercise group. This study showed that CRT has positive effects on muscle strength in the upper extremities and the physical disability components of the FIM when added to conventional rehabilitation programs for paraplegic patients. However, we observed no significant improvement in QoL scores after adding CRT

  4. Asbestos as 'toxic short-circuit' optic-fibre for UV within the cell-net: — Likely roles and hazards for secret UV and IR metabolism

    International Nuclear Information System (INIS)

    Traill, Robert R

    2011-01-01

    The most toxic asbestos fibres have widths 250nm-10nm, and this toxicity is 'physical', which could mean either mechanical or optical: Tangling with chromosomes is a mechanical hazard occasionally reported, and fibres 100nm wide — or chrysotile (white asbestos) is >150nm. In both cases, UV A /UV B -transmission would then predominate. (Chrysotile 150nm might be benign — escaping both mechanical and optical!). But what would generate such UV, and why would its transmission be toxic? Thar and Kühl (J.Theor.Biol.:2004) explain that the long mitochondria on microtubules may be able to act as UV-lasers, (and many observers since Gurwitsch 1923 have reported ultraweak UV emissions escaping from all types of living bio-tissue). That all suggests some universal secret role for UV, apparently related to mitosis. Insertion of fibre 'short-circuits' could then cause upsets in mitosis-control, and hence DNA irregularities. Such UV-control could parallel similar lower-powered Infra-Red control-systems (as considered elsewhere for coaxial myelin; or as portrayed by G.Albrecht-Buehler's online animations etc.); and the traditional short mitochondria seem better suited for this IR task.

  5. A Review on Grid-connected Converter Control for Short Circuit Power Provision under Grid Unbalanced Faults

    DEFF Research Database (Denmark)

    Jia, Jundi; Yang, Guangya; Nielsen, Arne Hejde

    2017-01-01

    behave significantly different from the traditional alternators under grid faults. In order to evaluate the potential impact of future converter-based power systems on protective relays, it is necessary to consider diverse current control strategies of voltage source converters (VSC) under unbalanced...

  6. Short fiber-reinforced composite restorations: A review of the current literature.

    Science.gov (United States)

    Garoushi, Sufyan; Gargoum, Ausama; Vallittu, Pekka K; Lassila, Lippo

    2018-02-25

    A newly-recommended method for restoring large cavities is the biomimetic approach of using short fiber-reinforced composite (SFRC) as dentine-replacing material. The aim of the current review was to present an overview of SFRC and to give the clinician a detailed understanding of this new material and treatment strategy based on available-literature review. A thorough literature search was done up to December 2017. The range of relevant publications was surveyed using PubMed and Google Scholar. From the search results, articles related to our search terms were only considered. The search terms used were "short fiber-reinforced composite", "everX posterior", and "fiber-reinforced composite restorations". Of the assessed articles selected (N = 70), most were laboratory-based research with various test specimen designs prepared according to the ISO standard or with extracted teeth; only four articles were clinical reports. A common finding was that by combining the SFRC as a bulk base with conventional composite, the load-bearing capacity and failure mode of the material combination were improved, as compared to plain conventional composite restoration. In the reviewed studies, the biomimetic restoration technique of using SFRC showed promising characteristics, and therefore, might be recommended as an alternative treatment option for large cavities. © 2018 John Wiley & Sons Australia, Ltd.

  7. [Materials/Biomaterials in Clinical Practice - a Short Review and Current Trends].

    Science.gov (United States)

    Bolle, T; Meyer, F; Walcher, F; Lohmann, C; Jockenhövel, S; Gries, T; Hoffmann, W

    2017-04-01

    Biomaterials play a major role in interventional medicine and surgery. However, the development of biomaterials is still in its early phases in spite of the huge progress made within the last decades. On the one hand, this is because our knowledge of the molecular and cellular processes associated with biomaterials is still increasing exponentially. On the other hand, a wide variety of advanced materials with highly interesting properties is being developed currently. This review provides a short introduction into the variety of materials in use as well as their application in interventional medicine and surgery. Also the importance of biomaterials for tissue engineering in the field of regenerative medicine and the functionalisation of biomaterials, including sterilisation methods are discussed. For the future, an even broader interdisciplinary scientific collaboration is necessary in order to develop novel biomaterials and facilitate their translation into clinical practice. Georg Thieme Verlag KG Stuttgart · New York.

  8. A robust predictive current controller for healthy and open-circuit faulty conditions of five-phase BLDC drives applicable for wind generators and electric vehicles

    International Nuclear Information System (INIS)

    Salehi Arashloo, Ramin; Salehifar, Mehdi; Romeral, Luis; Sala, Vicent

    2015-01-01

    Highlights: • Model predictive deadbeat control of generator stator phase currents. • Fault tolerant control of five-phase BLDC generator. • Control of stator phase currents under normal and open-circuit faulty conditions. • MATLAB simulation and experimental verification of proposed control method. • Verification of robustness and fast respond of proposed controlling method. - Abstract: Fault tolerant control of five-phase brushless direct current (BLDC) machines is gaining more importance in high-safety applications such as offshore wind generators and automotive industries. In many applications, traditional controllers (such as PI controllers) are used to control the stator currents under faulty conditions. These controllers have good performance with dc signals. However, in the case of missing one or two of the phases, appropriate reference currents of these machines have oscillatory dynamics both in phase- and synchronous-reference frames. Non-constant nature of these reference values requires the implication of fast current controllers. In this paper, model predictive deadbeat controllers are proposed to control the stator currents of five-phase BLDC machines under normal and faulty conditions. Open circuit fault is considered for both one and two stator phases, and the behaviour of proposed controlling method is evaluated. This evaluation is generally focused on first, sensitivity of proposed controlling method and second, its speed in following reference current values under transient states. Proposed method is simulated and is verified experimentally on a five-phase BLDC drive

  9. Electrothermal Action of the Pulse of the Current of a Short Artificial-Lightning Stroke on Test Specimens of Wires and Cables of Electric Power Objects

    Science.gov (United States)

    Baranov, M. I.; Rudakov, S. V.

    2018-03-01

    The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.

  10. Electrothermal Action of the Pulse of the Current of a Short Artificial-Lightning Stroke on Test Specimens of Wires and Cables of Electric Power Objects

    Science.gov (United States)

    Baranov, M. I.; Rudakov, S. V.

    2018-05-01

    The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.

  11. Correlation between photoconductivity in nanocrystalline titania and short circuit current transients in MEH-PPV/titania solar cells

    International Nuclear Information System (INIS)

    Xie, Z B; Henry, B M; Kirov, K R; Barkhouse, D A R; Burlakov, V M; Smith, H E; Grovenor, C R M; Assender, H E; Briggs, G A D; Kano, M; Tsukahara, Y

    2007-01-01

    We report the first experimental observation of a direct relationship between electron transport in different nanocrystalline TiO 2 thin films and the photovoltaic performance of TiO 2 /MEH-PPV composite solar cells made using these same TiO 2 films. We show that the transient behaviour in the composite solar cells under illumination can be explained by the transient photoconductivity performance of the TiO 2 layer

  12. Functionalized carbon nanotube doping of P3HT:PCBM photovoltaic devices for enhancing short circuit current and efficiency

    Directory of Open Access Journals (Sweden)

    Rohit Bhatia

    2017-03-01

    Full Text Available We have successfully functionalized multiwalled carbon nanotubes (MWCNTs using nitrene approach employing the two aryl azides as a precursor for nitrene generation. The dispersion of functionalized MWCNTs has been enhanced in various organic solvents. These functionalized MWCNTs have been successfully doped in various concentrations in the bulk heterojunction (BHJ organic photovoltaic (OPV cells with a poly (3-hexyl thiophene (P3HT and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM photoactive blended layer. The incorporation of MWCNTs with aryl functional groups, in active the layer, results in enhanced performance with respect to a reference cell. The maximum power conversion efficiency of 1.86% is achieved with adduct I while in the case of adduct II it gets double to 2.0% in comparison with a reference cell. This improvement in the device performance is attributed to enhanced exciton dissociation and improved charge transport properties due to the formation of a nanotube percolation network in the photoactive composite layer.

  13. Modelling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells

    NARCIS (Netherlands)

    Conings, B.S.T.; Bertho, S.; Vandewal, K.; Senes, A.; D'Haen, J.; Manca, J.V.; Janssen, R.A.J.

    2010-01-01

    In organic bulk heterojunction solar cells, the nanoscale morphology of interpenetrating donor-acceptor materials and the resulting photovoltaic parameters alter as a consequence of prolonged operation at temperatures above the glass transition temperature. Thermal annealing induces clustering of

  14. Mutual influences of rated currents, short circuit levels, fault durations and integrated protective schemes for industrial distribution MV switchgears

    Energy Technology Data Exchange (ETDEWEB)

    Gaidano, G. (FIAT Engineering, Torino, Italy); Lionetto, P.F.; Pelizza, C.; Tommazzolli, F.

    1979-01-01

    This paper deals with the problem of integrated and coordinated design of distribution systems, as regards the definition of system structure and parameters together with protection criteria and schemes. Advantages in system operation, dynamic response, heavier loads with reduced machinery rating margins and overall cost reduction, can be achieved. It must be noted that MV switchgears installed in industrial main distribution substations are the vital nodes of the distribution system. Very large amounts of power (up to 100 MW and more) are conveyed through MV busbars, coming from Utility and from in-plant generators and outgoing to subdistribution substations, to step-down transformers and to main concentrated loads (big drivers, furnaces etc.). Criteria and methods already studied and applied to public distribution are examined to assess service continuity and economics by means of the reduction of thermal stresses, minimization of disturbances and improvement of system stability. The life of network components depends on sizing, on fault energy levels and on probability of fault occurrence. Constructional measures and protection schemes, which reduce probability and duration of faults, are the most important tools to improve overall reliability. The introduction of advanced techniques, mainly based on computer application, not only allows drastic reduction of fault duration, but also permits the system to operate, under any possible contingency, in the optimal conditions, as the computer provides adaptive control. This mode of system management makes it possible to size network components with reference to the true magnitude of system quantities, avoiding expensive oversizing connected to the unflexibility of conventional protection and control schemes.

  15. New Canonic Active RC Sinusoidal Oscillator Circuits Using Second-Generation Current Conveyors with Application as a Wide-Frequency Digitally Controlled Sinusoid Generator

    OpenAIRE

    Abhirup Lahiri

    2011-01-01

    This paper reports two new circuit topologies using second-generation current conveyors (CCIIs) for realizing variable frequency sinusoidal oscillators with minimum passive components. The proposed topologies in this paper provide new realizations of resistance-controlled and capacitor-controlled variable frequency oscillators (VFOs) using only four passive components. The first topology employs three CCIIs, while the second topology employs two CCIIs. The second topology provides an advantag...

  16. Post-arc current simulation based on measurement in vacuum circuit breaker with a one-dimensional particle-in-cell model

    Science.gov (United States)

    Jia, Shenli; Mo, Yongpeng; Shi, Zongqian; Li, Junliang; Wang, Lijun

    2017-10-01

    The post-arc dielectric recovery process has a decisive effect on the current interruption performance in a vacuum circuit breaker. The dissipation of residual plasma at the moment of current zero under the transient recovery voltage, which is the first stage of the post-arc dielectric recovery process and forms the post-arc current, has attracted many concerns. A one-dimensional particle-in-cell model is developed to simulate the measured post-arc current in the vacuum circuit breaker in this paper. At first, the parameters of the residual plasma are estimated roughly by the waveform of the post-arc current which is taken from measurements. After that, different components of the post-arc current, which are formed by the movement of charged particles in the residual plasma, are discussed. Then, the residual plasma density is adjusted according to the proportion of electrons and ions absorbed by the post-arc anode derived from the particle-in-cell simulation. After this adjustment, the post-arc current waveform obtained from the simulation is closer to that obtained from measurements.

  17. Electric circuits and signals

    CERN Document Server

    Sabah, Nassir H

    2007-01-01

    Circuit Variables and Elements Overview Learning Objectives Electric Current Voltage Electric Power and Energy Assigned Positive Directions Active and Passive Circuit Elements Voltage and Current Sources The Resistor The Capacitor The Inductor Concluding Remarks Summary of Main Concepts and Results Learning Outcomes Supplementary Topics on CD Problems and Exercises Basic Circuit Connections and Laws Overview Learning Objectives Circuit Terminology Kirchhoff's Laws Voltage Division and Series Connection of Resistors Current Division and Parallel Connection of Resistors D-Y Transformation Source Equivalence and Transformation Reduced-Voltage Supply Summary of Main Concepts and Results Learning Outcomes Supplementary Topics and Examples on CD Problems and Exercises Basic Analysis of Resistive Circuits Overview Learning Objectives Number of Independent Circuit Equations Node-Voltage Analysis Special Considerations in Node-Voltage Analysis Mesh-Current Analysis Special Conside...

  18. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market

    Directory of Open Access Journals (Sweden)

    Ivan Baumann

    2016-01-01

    Full Text Available Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed.

  19. Investigation on the Short-Circuit Behavior of an Aged IGBT Module Through a 6 kA/1.1 kV Non-Destructive Testing Equipment

    DEFF Research Database (Denmark)

    Wu, Rui; Smirnova, Liudmila; Iannuzzo, Francesco

    2014-01-01

    This paper describes the design and development of a 6 kA/1.1 kV non-destructive testing system, which aims for short circuit testing of high-power IGBT modules. An ultralow stray inductance of 37 nH is achieved in the implementation of the tester. An 100 MHz FPGA supervising unit enables 10 ns...

  20. Theory, analysis and applications of the operation of the superconducting transformer supplying a direct current to a non-dissipative superconducting charge circuit

    International Nuclear Information System (INIS)

    Sole, J.

    1967-01-01

    The author derives the very simple equations governing the operation of a transformer with superconducting windings supplying direct current to a non-dissipative superconducting charge circuit. An analysis of the various possible modes of operation with direct or slowly varying current raises the problem of the magnetic core. The study. leads to a conclusion which a priori might be surprising: the elimination of the magnetic core and the use of a primary super-conductor. An example of a possible realization of such a transformer is given as an indication, and the present prospects for different applications are considered. (author) [fr

  1. Approaching the Processes in the Generator Circuit Breaker at Disconnection through Sustainability Concepts

    Directory of Open Access Journals (Sweden)

    Carmen A. Bulucea

    2013-03-01

    Full Text Available Nowadays, the electric connection circuits of power plants (based on fossil fuels as well as renewable sources entail generator circuit-breakers (GCBs at the generator terminals, since the presence of that electric equipment offers many advantages related to the sustainability of a power plant. In an alternating current (a.c. circuit the interruption of a short circuit is performed by the circuit-breaker at the natural passing through zero of the short-circuit current. During the current interruption, an electric arc is generated between the opened contacts of the circuit-breaker. This arc must be cooled and extinguished in a controlled way. Since the synchronous generator stator can flow via highly asymmetrical short-circuit currents, the phenomena which occur in the case of short-circuit currents interruption determine the main stresses of the generator circuit-breaker; the current interruption requirements of a GCB are significantly higher than for the distribution network circuit breakers. For shedding light on the proper moment when the generator circuit-breaker must operate, using the space phasor of the short-circuit currents, the time expression to the first zero passing of the short-circuit current is determined. Here, the manner is investigated in which various factors influence the delay of the zero passing of the short-circuit current. It is shown that the delay time is influenced by the synchronous machine parameters and by the load conditions which precede the short-circuit. Numerical simulations were conducted of the asymmetrical currents in the case of the sudden three-phase short circuit at the terminals of synchronous generators. Further in this study it is emphasized that although the phenomena produced in the electric arc at the terminals of the circuit-breaker are complicated and not completely explained, the concept of exergy is useful in understanding the physical phenomena. The article points out that just after the short-circuit

  2. Oscillator circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing

  3. Measuring circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for measuring circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listings

  4. Two-nucleon electromagnetic current in chiral effective field theory: One-pion exchange and short-range contributions

    International Nuclear Information System (INIS)

    Koelling, S.; Epelbaum, E.; Krebs, H.; Meissner, U.-G.

    2011-01-01

    We derive the leading one-loop contribution to the one-pion exchange and short-range two-nucleon electromagnetic current operator in the framework of chiral effective field theory. The derivation is carried out using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.

  5. A current-excited triple-time-voltage oversampling method for bio-impedance model for cost-efficient circuit system.

    Science.gov (United States)

    Yan Hong; Yong Wang; Wang Ling Goh; Yuan Gao; Lei Yao

    2015-08-01

    This paper presents a mathematic method and a cost-efficient circuit to measure the value of each component of the bio-impedance model at electrode-electrolyte interface. The proposed current excited triple-time-voltage oversampling (TTVO) method deduces the component values by solving triple simultaneous electric equation (TSEE) at different time nodes during a current excitation, which are the voltage functions of time. The proposed triple simultaneous electric equations (TSEEs) allows random selections of the time nodes, hence numerous solutions can be obtained during a single current excitation. Following that, the oversampling approach is engaged by averaging all solutions of multiple TSEEs acquired after a single current excitation, which increases the practical measurement accuracy through the improvement of the signal-to-noise ratio (SNR). In addition, a print circuit board (PCB) that consists a switched current exciter and an analog-to-digital converter (ADC) is designed for signal acquisition. This presents a great cost reduction when compared against other instrument-based measurement data reported [1]. Through testing, the measured values of this work is proven to be in superb agreements on the true component values of the electrode-electrolyte interface model. This work is most suited and also useful for biological and biomedical applications, to perform tasks such as stimulations, recordings, impedance characterizations, etc.

  6. Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O(2).

    Science.gov (United States)

    Rutherford, A William; Osyczka, Artur; Rappaport, Fabrice

    2012-03-09

    The energy-converting redox enzymes perform productive reactions efficiently despite the involvement of high energy intermediates in their catalytic cycles. This is achieved by kinetic control: with forward reactions being faster than competing, energy-wasteful reactions. This requires appropriate cofactor spacing, driving forces and reorganizational energies. These features evolved in ancestral enzymes in a low O(2) environment. When O(2) appeared, energy-converting enzymes had to deal with its troublesome chemistry. Various protective mechanisms duly evolved that are not directly related to the enzymes' principal redox roles. These protective mechanisms involve fine-tuning of reduction potentials, switching of pathways and the use of short circuits, back-reactions and side-paths, all of which compromise efficiency. This energetic loss is worth it since it minimises damage from reactive derivatives of O(2) and thus gives the organism a better chance of survival. We examine photosynthetic reaction centres, bc(1) and b(6)f complexes from this view point. In particular, the evolution of the heterodimeric PSI from its homodimeric ancestors is explained as providing a protective back-reaction pathway. This "sacrifice-of-efficiency-for-protection" concept should be generally applicable to bioenergetic enzymes in aerobic environments. Copyright © 2012 Federation of European Biochemical Societies. All rights reserved.

  7. Stator Vibration Characteristic Identification of Turbogenerator among Single and Composite Faults Composed of Static Air-Gap Eccentricity and Rotor Interturn Short Circuit

    Directory of Open Access Journals (Sweden)

    Yu-Ling He

    2016-01-01

    Full Text Available This paper investigates the radial stator vibration characteristics of turbogenerator under the static air-gap eccentricity (SAGE fault, the rotor interturn short circuit (RISC fault, and the composite faults (CFs composed of SAGE and RISC, respectively. Firstly, the impact of the faulty types on the magnetic flux density (MFD is analyzed, based on which the detailed expressions of the magnetic pull per unit area (MPPUA on the stator under different performing conditions are deduced. Then, numerical FEM simulations based on Ansoft and an experimental study are carried out, taking the SDF-9 type fault simulating generator as the study object. It is shown that SAGE will increase the stator vibration at 2f (f is the electrical frequency which already exists even in normal condition, while RISC and CF will bring in stator vibrations at f, 2f, 3f, and 4f at the same time. The vibration amplitudes under CF are larger than those under RISC. As SAGE increases, the vibration amplitudes of each harmonic component under CF will all be increased, while the development of RISC will decrease the 2nd harmonic vibration but meanwhile increase the 4th harmonic vibration. The achievements of this paper are beneficial for fault identification and condition monitoring of the turbogenerator.

  8. Microwave integrated circuit for Josephson voltage standards

    Science.gov (United States)

    Holdeman, L. B.; Toots, J.; Chang, C. C. (Inventor)

    1980-01-01

    A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained.

  9. Dissipative NEGF methodology to treat short range Coulomb interaction: Current through a 1D nanostructure.

    Science.gov (United States)

    Martinez, Antonio; Barker, John R; Di Prieto, Riccardo

    2018-06-13

    A methodology describing Coulomb blockade in the Non-equilibrium Green Function formalism is presented. We carried out ballistic and dissipative simulations through a 1D quantum dot using an Einstein phonon model. Inelastic phonons with different energies have been considered. The methodology incorporates the short-range Coulomb interaction between two electrons through the use of a two-particle Green's function. Unlike previous work, the quantum dot has spatial resolution i.e. it is not just parameterized by the energy level and coupling constants of the dot. Our method intends to describe the effect of electron localization while maintaining an open boundary or extended wave function. The formalism conserves the current through the nanostructure. A simple 1D model is used to explain the increase of mobility in semi-crystalline polymers as a function of the electron concentration. The mechanism suggested is based on the lifting of energy levels into the transmission window as a result of the local electron-electron repulsion inside a crystalline domain. The results are aligned with recent experimental findings. Finally, as a proof of concept, we present a simulation of a low temperature resonant structure showing the stability diagram in the Coulomb blockade regime. . © 2018 IOP Publishing Ltd.

  10. Investigation of the extraction of short diffusion lengths from simulated electron-beam induced current

    Energy Technology Data Exchange (ETDEWEB)

    Wee, D.; Parish, G.; Nener, B. [Microelectronics Research Group, The University of Western Australia, 35 Stirling Highway, 6009 Crawley (Perth) (Australia)

    2010-10-15

    This paper reports on the investigations via 2-D simulation into the accuracy of diffusion length extraction from scanning electron-beam induced current measurements when the diffusion length, L is very short. L is extracted by using the direct method proposed by Chan et al.[1] and later refined by Kurniawan and Ong[2] to take finite junction depth into account. The 2-D simulations were undertaken using Synopsys {sup registered} Sentaurus TCAD and a realistic electron-hole pair generation volume was created using CASINO v2.42[3], a Monte Carlo Scanning Electron Microscope interaction simulation software, and imported into Sentaurus. The voltage and diameter of the electron beam and diffusion length and surface recombination velocity of the semiconductor materials were varied in the simulations to determine the errors in the diffusion length extracted from the EBIC signals as a function of these parameters. The results of the simulation show that the accuracy of the method proposed in[1] is reasonably accurate and that the beam voltage and spot size do not have significant effects on the accuracy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Investigation of the extraction of short diffusion lengths from simulated electron-beam induced current

    International Nuclear Information System (INIS)

    Wee, D.; Parish, G.; Nener, B.

    2010-01-01

    This paper reports on the investigations via 2-D simulation into the accuracy of diffusion length extraction from scanning electron-beam induced current measurements when the diffusion length, L is very short. L is extracted by using the direct method proposed by Chan et al.[1] and later refined by Kurniawan and Ong[2] to take finite junction depth into account. The 2-D simulations were undertaken using Synopsys registered Sentaurus TCAD and a realistic electron-hole pair generation volume was created using CASINO v2.42[3], a Monte Carlo Scanning Electron Microscope interaction simulation software, and imported into Sentaurus. The voltage and diameter of the electron beam and diffusion length and surface recombination velocity of the semiconductor materials were varied in the simulations to determine the errors in the diffusion length extracted from the EBIC signals as a function of these parameters. The results of the simulation show that the accuracy of the method proposed in[1] is reasonably accurate and that the beam voltage and spot size do not have significant effects on the accuracy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators

    Science.gov (United States)

    Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David

    2011-06-01

    We describe the factors that go into the component choices for a short wavelength IR (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7 °C. In addition, we have mated our InGaAs detector arrays to 640×512 readout integrated integrated circuits to make focal plane arrays (FPAs). The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 μm at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0 °C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling. In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, and provide artifact-free imagery versus conventional laser illuminators.

  13. Study on Oscillations during Short Circuit of MW-Scale IGBT Power Modules by Means of a 6-kA/1.1-kV Nondestructive Testing System

    DEFF Research Database (Denmark)

    Wu, Rui; Diaz Reigosa, Paula; Iannuzzo, Francesco

    2015-01-01

    This paper uses a 6-kA/1.1-kV nondestructive testing system for the analysis of the short-circuit behavior of insulated-gate bipolar transistor (IGBT) power modules. A field-programmable gate array enables the definition of control signals to an accuracy of 10 ns. Multiple 1.7-kV/1-kA IGBT power...... modules displayed severe divergent oscillations, which were subsequently characterized. Experimental tests indicate that nonnegligible circuit stray inductance plays an important role in the divergent oscillations. In addition, the temperature dependence of the transconductance is proposed as an important...

  14. Thermally-induced voltage alteration for integrated circuit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.I. Jr.

    2000-06-20

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing an integrated circuit (IC) either from a device side of the IC or through the IC substrate to locate any open-circuit or short-circuit defects therein. The TIVA apparatus uses constant-current biasing of the IC while scanning a focused laser beam over electrical conductors (i.e. a patterned metallization) in the IC to produce localized heating of the conductors. This localized heating produces a thermoelectric potential due to the Seebeck effect in any conductors with open-circuit defects and a resistance change in any conductors with short-circuit defects, both of which alter the power demand by the IC and thereby change the voltage of a source or power supply providing the constant-current biasing. By measuring the change in the supply voltage and the position of the focused and scanned laser beam over time, any open-circuit or short-circuit defects in the IC can be located and imaged. The TIVA apparatus can be formed in part from a scanning optical microscope, and has applications for qualification testing or failure analysis of ICs.

  15. Asymptotic and numerical prediction of current-voltage curves for an organic bilayer solar cell under varying illumination and comparison to the Shockley equivalent circuit

    KAUST Repository

    Foster, J. M.

    2013-01-01

    In this study, a drift-diffusion model is used to derive the current-voltage curves of an organic bilayer solar cell consisting of slabs of electron acceptor and electron donor materials sandwiched together between current collectors. A simplified version of the standard drift-diffusion equations is employed in which minority carrier densities are neglected. This is justified by the large disparities in electron affinity and ionisation potential between the two materials. The resulting equations are solved (via both asymptotic and numerical techniques) in conjunction with (i) Ohmic boundary conditions on the contacts and (ii) an internal boundary condition, imposed on the interface between the two materials, that accounts for charge pair generation (resulting from the dissociation of excitons) and charge pair recombination. Current-voltage curves are calculated from the solution to this model as a function of the strength of the solar charge generation. In the physically relevant power generating regime, it is shown that these current-voltage curves are well-approximated by a Shockley equivalent circuit model. Furthermore, since our drift-diffusion model is predictive, it can be used to directly calculate equivalent circuit parameters from the material parameters of the device. © 2013 AIP Publishing LLC.

  16. Association between early attention-deficit/hyperactivity symptoms and current verbal and visuo-spatial short-term memory.

    Science.gov (United States)

    Gau, Susan Shur-Fen; Chiang, Huey-Ling

    2013-01-01

    Deficits in short-term memory are common in adolescents with attention-deficit/hyperactivity disorder (ADHD), but their current ADHD symptoms cannot well predict their short-term performance. Taking a developmental perspective, we wanted to clarify the association between ADHD symptoms at early childhood and short-term memory in late childhood and adolescence. The participants included 401 patients with a clinical diagnosis of DSM-IV ADHD, 213 siblings, and 176 unaffected controls aged 8-17 years (mean age, 12.02 ± 2.24). All participants and their mothers were interviewed using the Chinese Kiddie Epidemiologic version of the Schedule for Affective Disorders and Schizophrenia to obtain information about ADHD symptoms and other psychiatric disorders retrospectively, at an earlier age first, then currently. The participants were assessed with the Wechsler Intelligence Scale for Children--3rd edition, including Digit Span, and the Spatial working memory task of the Cambridge Neuropsychological Test Automated Battery. Multi-level regression models were used for data analysis. Although crude analyses revealed that inattention, hyperactivity, and impulsivity symptoms significantly predicted deficits in short-term memory, only inattention symptoms had significant effects (all pshort-term memory at the current assessment. Therefore, our findings suggest that earlier inattention symptoms are associated with impaired verbal and visuo-spatial short-term memory at a later development stage. Impaired short-term memory in adolescence can be detected earlier by screening for the severity of inattention in childhood. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Direct current induced short-term modulation of the left dorsolateral prefrontal cortex while learning auditory presented nouns

    Directory of Open Access Journals (Sweden)

    Meyer Martin

    2009-07-01

    Full Text Available Abstract Background Little is known about the contribution of transcranial direct current stimulation (tDCS to the exploration of memory functions. The aim of the present study was to examine the behavioural effects of right or left-hemisphere frontal direct current delivery while committing to memory auditory presented nouns on short-term learning and subsequent long-term retrieval. Methods Twenty subjects, divided into two groups, performed an episodic verbal memory task during anodal, cathodal and sham current application on the right or left dorsolateral prefrontal cortex (DLPFC. Results Our results imply that only cathodal tDCS elicits behavioural effects on verbal memory performance. In particular, left-sided application of cathodal tDCS impaired short-term verbal learning when compared to the baseline. We did not observe tDCS effects on long-term retrieval. Conclusion Our results imply that the left DLPFC is a crucial area involved in short-term verbal learning mechanisms. However, we found further support that direct current delivery with an intensity of 1.5 mA to the DLPFC during short-term learning does not disrupt longer lasting consolidation processes that are mainly known to be related to mesial temporal lobe areas. In the present study, we have shown that the tDCS technique has the potential to modulate short-term verbal learning mechanism.

  18. A circuital model of switching behaviour of 4H-SiC p+-n-n+ diodes valid at any current and temperature

    International Nuclear Information System (INIS)

    Bellone, S; Benedetto, L Di; Licciardo, G D; Corte, F Della

    2014-01-01

    A circuital model of 4H-SiC p + -n-n + diodes is presented, which is able to describe the switching behaviour of the devices in a wide range of current, voltage and temperature, at an arbitrary instant, with comparable accuracy of numerical simulations. The model has been analytically derived under generic conditions and is capable to calculate also the dynamic spatial distribution of minority carriers in the epitaxial layer. The accuracy of the model is shown by comparison with numerical simulations and experimental measurements.

  19. A Short Term Analogue Memory

    DEFF Research Database (Denmark)

    Shah, Peter Jivan

    1992-01-01

    A short term analogue memory is described. It is based on a well-known sample-hold topology in which leakage currents have been minimized partly by circuit design and partly by layout techniques. Measurements on a test chip implemented in a standard 2.4 micron analogue CMOS process show a droop...

  20. Monolitic integrated circuit for the strobed charge-to-time converter

    International Nuclear Information System (INIS)

    Bel'skij, V.I.; Bushnin, Yu.B.; Zimin, S.A.; Punzhin, Yu.N.; Sen'ko, V.A.; Soldatov, M.M.; Tokarchuk, V.P.

    1985-01-01

    The developed and comercially produced semiconducting circuit - gating charge-to-time converter KR1101PD1 is described. The considered integrated circuit is a short pulse charge-to-time converter with integration of input current. The circuit is designed for construction of time-to-pulse analog-to-digital converters utilized in multichannel detection systems when studying complex topology processes. Input resistance of the circuit is 0.1 Ω permissible input current is 50 mA, maximum measured charge is 300-1000 pC