WorldWideScience

Sample records for shoreline change results

  1. Massachusetts shoreline change project: a GIS compilation of vector shorelines and associated shoreline change data for the 2013 update

    Science.gov (United States)

    Smith, Theresa L.; Himmelstoss, Emily A.; Thieler, E. Robert

    2013-01-01

    Identifying the rates and trends associated with the position of the shoreline through time presents vital information on potential impacts these changes may have on coastal populations and infrastructure, and supports informed coastal management decisions. This report publishes the historical shoreline data used to assess the scale and timing of erosion and accretion along the Massachusetts coast from New Hampshire to Rhode Island including all of Cape Cod, Martha’s Vineyard, Nantucket and the Elizabeth Islands. This data is an update to the Massachusetts Office of Coastal Zone Management Shoreline Change Project. Shoreline positions from the past 164 years (1845 to 2009) were used to compute the shoreline change rates. These data include a combined length of 1,804 kilometers of new shoreline data derived from color orthophoto imagery collected in 2008 and 2009, and topographic lidar collected in 2007. These new shorelines have been added to previously published historic shoreline data from the Massachusetts Office of Coastal Zone Management and the U.S. Geological Survey. A detailed report containing a discussion of the shoreline change data presented here and a summary of the resulting rates is available and cited at the end of the Introduction section of this report.

  2. National assessment of shoreline change: historical shoreline change along the Pacific Northwest coast

    Science.gov (United States)

    Ruggerio, Peter; Kratzmann, Meredith G.; Himmelstoss, Emily A.; Reid, David; Allan, Jonathan; Kaminsky, George

    2013-01-01

    Beach erosion is a chronic problem along most open ocean shores of the United States. As coastal populations continue to increase and infrastructure is threatened by erosion, there is increased demand for accurate information regarding past and present trends and rates of shoreline movement. There is also a need for a comprehensive analysis of shoreline movement that is consistent from one coastal region to another. To meet these national needs, the U.S. Geological Survey (USGS) is conducting an analysis of historical shoreline changes along the open-ocean sandy shores of the conterminous United States and parts of Hawaii, Alaska, and the Great Lakes. One purpose of this work is to develop standard, repeatable methods for mapping and analyzing shoreline movement so that periodic, systematic, and internally consistent updates regarding coastal erosion and land loss can be made nationally. In the case of the analysis of shoreline change in the Pacific Northwest (PNW), the shoreline is the interpreted boundary between the ocean water surface and the sandy beach. This report on the PNW coasts of Oregon and Washington is the seventh in a series of regionally focused reports on historical shoreline change. Previous investigations include analyses and descriptive reports of the U.S. Gulf of Mexico (Morton and others, 2004), the southeastern Atlantic (Morton and Miller, 2005), the sandy shorelines (Hapke and others, 2006) and coastal cliffs (Hapke and Reid, 2007) of California, the New England and mid-Atlantic coasts (Hapke and others, 2011), and parts of the Hawaii coast (Fletcher and others, 2012). Like the earlier reports in this series, this report summarizes the methods of analysis, interprets the results of the analysis, provides explanations regarding long- and short-term trends and rates of shoreline change, and describes how different coastal communities are responding to coastal erosion. This report differs from the early USGS reports in the series in that those

  3. The Influence of Shoreline Curvature on Rates of Shoreline Change on Sandy Coasts

    Science.gov (United States)

    Murray, A. B.; Lauzon, R.; Cheng, S.; Liu, J.; Lazarus, E.

    2017-12-01

    The sandy, low-lying barrier islands which characterize much of the US East and Gulf coasts are popular spots to live and vacation, and are often heavily developed. However, sandy shorelines and barriers are also naturally mobile landforms, which are vulnerable to sea level rise and storms and can experience high rates of shoreline change. Many previous studies have attempted to understand and quantify the factors that contribute to those rates of shoreline change, such as grain size, underlying geology, sea level rise, and anthropogenic modification. Shoreline curvature has not been considered in such analyses, but previous research has demonstrated that subtle coastline curvature (and therefore alongshore variation in relative offshore wave angle) can result in gradients in net alongshore transport that cause significant shoreline erosion or accretion. Here we present the results of a spatially extensive analysis of the correlation between shoreline curvature and shoreline change rates for the sandy shorelines of the US East and Gulf coasts. We find that, for wave-dominated sandy coasts where nourishment and shoreline stabilization do not dominate the shoreline change signal (such as parts of Texas, North Carolina, and Florida), there is a significant negative correlation between shoreline curvature and shoreline change rates over 1 - 5 km and decadal to centurial space and time scales. This correlation indicates that a portion of the coastal erosion (and accretion) observed in these areas can be explained by the smoothing of subtle coastline curvature by gradients in alongshore transport, and suggests that shoreline curvature should be included in future attempts to understand historical and future rates of shoreline change. Shoreline stabilization, especially through beach nourishment, complicates the relationship between curvature and shoreline change. Beach construction during nourishment creates a seaward convex curvature in the part of the shoreline moves

  4. The National Assessment of Shoreline Change:A GIS Compilation of Vector Shorelines and Associated Shoreline Change Data for the Sandy Shorelines of the California Coast

    Science.gov (United States)

    Hapke, Cheryl J.; Reid, David

    2006-01-01

    Introduction The Coastal and Marine Geology Program of the U.S. Geological Survey has generated a comprehensive data clearinghouse of digital vector shorelines and shoreline change rates for the sandy shoreline along the California open coast. These data, which are presented herein, were compiled as part of the U.S. Geological Survey's National Assessment of Shoreline Change Project. Beach erosion is a chronic problem along many open-ocean shores of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information including rates and trends of shoreline migration. There is also a critical need for shoreline change data that is consistent from one coastal region to another. One purpose of this work is to develop standard, repeatable methods for mapping and analyzing shoreline movement so that periodic, systematic, and internally consistent updates of shorelines and shoreline change rates can be made at a National Scale. This data compilation for open-ocean, sandy shorelines of the California coast is one in a series that already includes the Gulf of Mexico and the Southeast Atlantic Coast (Morton et al., 2004; Morton et al., 2005) and will eventually cover Washington, Oregon, and parts of Hawaii and Alaska. Short- and long-term shoreline change evaluations are determined by comparing the positions of three historical shorelines digitized from maps, with a modern shoreline derived from LIDAR (light detection and ranging) topographic surveys. Historical shorelines generally represent the following time-periods: 1850s-1880s, 1920s-1930s, and late 1940s-1970s. The most recent shoreline is from data collected between 1997 and 2002. Long-term rates of change are calculated by linear regression using all four shorelines. Short-term rates of change are end-point rate calculations using the two most recent shorelines. Please refer to our full report on shoreline change of the

  5. The National Assessment of Shoreline Change: a GIS compilation of vector shorelines and associated shoreline change data for the U.S. southeast Atlantic coast

    Science.gov (United States)

    Miller, Tara L.; Morton, Robert A.; Sallenger, Asbury H.

    2006-01-01

    The Coastal and Marine Geology Program of the U.S. Geological Survey has generated a comprehensive database of digital vector shorelines and shoreline change rates for the U.S. Southeast Atlantic Coast (Florida, Georgia, South Carolina, North Carolina). These data, which are presented herein, were compiled as part of the U.S. Geological Survey's National Assessment of Shoreline Change Project. Beach erosion is a chronic problem along most open-ocean shores of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information including rates and trends of shoreline migration. There is also a critical need for shoreline change data that is consistent from one coastal region to another. One purpose of this work is to develop standard repeatable methods for mapping and analyzing shoreline movement so that periodic updates of shorelines and shoreline change rates can be made nationally that are systematic and internally consistent. This data compilation for open-ocean, sandy shorelines of the U.S. Southeast Atlantic Coast is the second in a series that already includes the Gulf of Mexico, and will eventually include the Pacific Coast, and parts of Hawaii and Alaska. Short- and long-term shoreline change evaluations are based on merging three historical shorelines with a modern shoreline derived from lidar (light detection and ranging) topographic surveys. Historical shorelines generally represent the following time periods: 1800s, 1920s-1930s, and 1970s. The most recent shoreline is derived from data collected over the period of 1997-2002. Long-term rates of change are calculated by linear regression using all four shorelines. Short-term rates of change are simple end-point rate calculations using the two most recent shorelines. Please refer to our full report on shoreline change for the U.S. Southeast Atlantic Coast at http://pubs.usgs.gov/of/2005/1401/ to get additional

  6. The National Assessment of Shoreline Change: A GIS Compilation of Vector Shorelines and Associated Shoreline Change Data for the U.S. Gulf of Mexico

    Science.gov (United States)

    Miller, Tara L.; Morton, Robert A.; Sallenger, Asbury H.; Moore, Laura J.

    2004-01-01

    Introduction The Coastal and Marine Geology Program of the U.S. Geological Survey has generated a comprehensive database of digital vector shorelines and shoreline change rates for the U.S. Gulf of Mexico. These data, which are presented herein, were compiled as part of the U.S. Geological Survey's National Assessment of Shoreline Change Project. Beach erosion is a chronic problem along most open-ocean shores of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information including rates and trends of shoreline migration. There is also a critical need for shoreline change data that is consistent from one coastal region to another. One purpose of this work is to develop standard repeatable methods for mapping and analyzing shoreline movement so that periodic updates regarding coastal erosion and land loss can be made nationally that are systematic and internally consistent. This data compilation for open-ocean, sandy shorelines of the Gulf of Mexico is the first in a series that will eventually include the Atlantic Coast, Pacific Coast, and parts of Hawaii and Alaska. Short- and long-term shoreline change evaluations are based on merging three historical shorelines with a modern shoreline derived from lidar (light detection and ranging) topographic surveys. Historical shorelines generally represent the following time periods: 1800s, 1920s-1930s, and 1970s. The most recent shoreline is derived from data collected over the period of 1998-2002. Long-term rates of change are calculated by linear regression using all four shorelines. Short-term rates of change are simple end-point rate calculations using the two most recent shorelines. Please refer to our full report on shoreline change in the Gulf of Mexico, National Assessment of Shoreline Change: Part 1, Historical Shoreline Changes and Associated Coastal Land Loss Along the U.S. Gulf of Mexico (USGS Open File

  7. Multidecadal shoreline changes in Denmark

    DEFF Research Database (Denmark)

    Kabuth, Alina Kristin; Kroon, Aart; Pedersen, Jørn Bjarke Torp

    2014-01-01

    Multidecadal shoreline changes along ca. 7000 km coastline around Denmark were computed for the time interval between 1862 AD and 2005 AD and were connected with a geomorphological coastal classification. The shoreline data set was based on shoreline positions from historical and modern topograph...... shoreline changes around Denmark, the mapping can contribute to enhanced adaptation and mitigation strategies in response to increased risks of erosion and flooding under a changing climate....

  8. National assessment of shoreline change: Historical shoreline change in the Hawaiian Islands

    Science.gov (United States)

    Fletcher, Charles H.; Romine, Bradley M.; Genz, Ayesha S.; Barbee, Matthew M.; Dyer, Matthew; Anderson, Tiffany R.; Lim, S. Chyn; Vitousek, Sean; Bochicchio, Christopher; Richmond, Bruce M.

    2012-01-01

    Sandy beaches of the United States are some of the most popular tourist and recreational destinations. Coastal property constitutes some of the most valuable real estate in the country. Beaches are an ephemeral environment between water and land with unique and fragile natural ecosystems that have evolved in equilibrium with the ever-changing winds, waves, and water levels. Beachfront lands are the site of intense residential and commercial development even though they are highly vulnerable to several natural hazards, including marine inundation, flooding and drainage problems, effects of storms, sea-level rise, and coastal erosion. Because the U.S. population continues to shift toward the coast where valuable coastal property is vulnerable to erosion, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change. One aspect of this effort, the National Assessment of Shoreline Change, uses shoreline position as a proxy for coastal change because shoreline position is one of the most commonly monitored indicators of environmental change (for example, Fletcher, 1992; Dolan and others, 1991; Douglas and others, 1998; Galgano and others, 1998). Additionally, the National Research Council (1990) recommended the use of historical shoreline analysis in the absence of a widely accepted model of shoreline change.

  9. The Digital Shoreline Analysis System (DSAS) Version 4.0 - An ArcGIS extension for calculating shoreline change

    Science.gov (United States)

    Thieler, E. Robert; Himmelstoss, Emily A.; Zichichi, Jessica L.; Ergul, Ayhan

    2009-01-01

    The Digital Shoreline Analysis System (DSAS) version 4.0 is a software extension to ESRI ArcGIS v.9.2 and above that enables a user to calculate shoreline rate-of-change statistics from multiple historic shoreline positions. A user-friendly interface of simple buttons and menus guides the user through the major steps of shoreline change analysis. Components of the extension and user guide include (1) instruction on the proper way to define a reference baseline for measurements, (2) automated and manual generation of measurement transects and metadata based on user-specified parameters, and (3) output of calculated rates of shoreline change and other statistical information. DSAS computes shoreline rates of change using four different methods: (1) endpoint rate, (2) simple linear regression, (3) weighted linear regression, and (4) least median of squares. The standard error, correlation coefficient, and confidence interval are also computed for the simple and weighted linear-regression methods. The results of all rate calculations are output to a table that can be linked to the transect file by a common attribute field. DSAS is intended to facilitate the shoreline change-calculation process and to provide rate-of-change information and the statistical data necessary to establish the reliability of the calculated results. The software is also suitable for any generic application that calculates positional change over time, such as assessing rates of change of glacier limits in sequential aerial photos, river edge boundaries, land-cover changes, and so on.

  10. National Assessment of Shoreline Change: Part 1, Historical Shoreline Changes and Associated Coastal Land Loss Along the U.S. Gulf of Mexico

    Science.gov (United States)

    Morton, Robert A.; Miller, Tara L.; Moore, Laura J.

    2004-01-01

    EXECUTIVE SUMMARY Beach erosion is a chronic problem along most open-ocean shores of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information regarding past and present trends and rates of shoreline movement. There is also a need for a comprehensive analysis of shoreline movement that is consistent from one coastal region to another. To meet these national needs, the U.S. Geological Survey is conducting an analysis of historical shoreline changes along open-ocean sandy shores of the conterminous United States and parts of Hawaii and Alaska. One purpose of this work is to develop standard repeatable methods for mapping and analyzing shoreline movement so that periodic updates regarding coastal erosion and land loss can be made nationally that are systematic and internally consistent. This report on states bordering the Gulf of Mexico (Florida, Alabama, Mississippi, Louisiana, and Texas) represents the first in a series that will eventually include the Atlantic Coast, Pacific Coast, and parts of Hawaii and Alaska. The report summarizes the methods of analysis, interprets the results, provides explanations regarding the historical and present trends and rates of change, and describes how different coastal communities are responding to coastal erosion. Shoreline change evaluations are based on comparing three historical shorelines with a recent shoreline derived from lidar (Light Detection and Ranging) topographic surveys. The historical shorelines generally represent the following periods: 1800s, 1920s-1930s, and 1970s, whereas the lidar shoreline is 1998-2002. Long-term rates of change are calculated using all four shorelines (1800s to lidar shoreline), whereas short-term rates of change are calculated for the most recent period (1970s to lidar shoreline). The historical rates of change presented in this report represent past conditions and therefore are not

  11. National Assessment of Shoreline Change; historical shoreline change along the New England and Mid-Atlantic coasts

    Science.gov (United States)

    Hapke, Cheryl J.; Himmelstoss, Emily A.; Kratzmann, Meredith G.; List, Jeffrey H.; Thieler, E. Robert

    2011-01-01

    Beach erosion is a chronic problem along many open-ocean shores of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information regarding past and present trends and rates of shoreline movement. There is also a need for a comprehensive analysis of shoreline movement that is consistent from one coastal region to another. To meet these national needs, the U.S. Geological Survey (USGS) is conducting an analysis of historical shoreline changes along open-ocean sandy shores of the conterminous United States and parts of Hawaii, Alaska, and the Great Lakes. One purpose of this work is to develop standard, repeatable methods for mapping and analyzing shoreline movement so that periodic, systematic, internally consistent updates regarding coastal erosion and land loss can be made nationally. In the case of this study, the shoreline is the interpreted boundary between the ocean water surface and the sandy beach. This report on the New England and Mid-Atlantic coasts is the fifth in a series of reports on historical shoreline change. Previous investigations include analyses and descriptive reports of the Gulf of Mexico, the Southeast Atlantic, and, for California, the sandy shoreline and the coastal cliffs. The rates of change presented in this report represent conditions up to the date of the most recent shoreline data and therefore are not intended for predicting future shoreline positions or rates of change. Because of the geomorphology of the New England and Mid-Atlantic (rocky coastlines, large embayments and beaches) as well as data gaps in some areas, this report presents beach erosion rates for 78 percent of the 1,360 kilometers of the New England and Mid-Atlantic coasts. The New England and Mid-Atlantic shores were subdivided into a total of 10 analysis regions for the purpose of reporting regional trends in shoreline change rates. The average rate of long

  12. National Assessment Of Shoreline Change: Part 2, Historical Shoreline Changes And Associated Coastal Land Loss Along The U.S. Southeast Atlantic Coast

    Science.gov (United States)

    Morton, Robert A.; Miller, Tara L.

    2005-01-01

    EXECUTIVE SUMMARY Beach erosion is a chronic problem along most open-ocean shores of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information regarding past and present trends and rates of shoreline movement. There is also a need for a comprehensive analysis of shoreline movement that is consistent from one coastal region to another. To meet these national needs, the U.S. Geological Survey is conducting an analysis of historical shoreline changes along open-ocean sandy shores of the conterminous United States and parts of Hawaii and Alaska. One purpose of this work is to develop standard repeatable methods for mapping and analyzing shoreline movement so that periodic updates regarding coastal erosion and land loss can be made nationally that are systematic and internally consistent. This report on states comprising the Southeast Atlantic Coast (east Florida, Georgia, South Carolina, North Carolina) represents the second in a series that already includes the Gulf of Mexico and will eventually include the Northeast Atlantic Coast, Pacific Coast, and parts of Hawaii and Alaska. The report summarizes the methods of analysis, interprets the results, provides explanations regarding the historical and present trends and rates of change, and describes how different coastal communities are responding to coastal erosion. Shoreline change evaluations are based on comparing three historical shorelines with a recent shoreline derived from lidar (Light Detection and Ranging) topographic surveys. The historical shorelines generally represent the following periods: 1800s, 1920s-1930s, and 1970s, whereas the lidar shoreline is 1998-2002. Long-term rates of change are calculated using four shorelines (1800s to lidar shoreline), whereas short-term rates of change are calculated for the most recent period (1970s to lidar shoreline). The historical rates of change presented in

  13. Massachusetts Shoreline Change Mapping and Analysis Project, 2013 Update

    Science.gov (United States)

    Thieler, E. Robert; Smith, Theresa L.; Knisel, Julia M.; Sampson, Daniel W.

    2013-01-01

    Information on rates and trends of shoreline change can be used to improve the understanding of the underlying causes and potential effects of coastal erosion on coastal populations and infrastructure and can support informed coastal management decisions. In this report, we summarize the changes in the historical positions of the shoreline of the Massachusetts coast for the 165 years from 1844 through 2009. The study area includes the Massachusetts coastal region from Salisbury to Westport, including Cape Cod, as well as Martha’s Vineyard, Nantucket, and the Elizabeth Islands. New statewide shoreline data were developed for approximately 1,804 kilometers (1,121 miles) of shoreline using color aerial orthoimagery from 2008 and 2009 and topographic lidar from 2007. The shoreline data were integrated with existing historical shoreline data from the U.S. Geological Survey (USGS) and Massachusetts Office of Coastal Zone Management (CZM) to compute long- (about 150 years) and short-term (about 30 years) rates of shoreline change. A linear regression method was used to calculate long- and short-term rates of shoreline change at 26,510 transects along the Massachusetts coast. In locations where shoreline data were insufficient to use the linear regression method, short-term rates were calculated using an end-point method. Long-term rates of shoreline change are calculated with (LTw) and without (LTwo) shorelines from the 1970s and 1994 to examine the effect of removing these data on measured rates of change. Regionally averaged rates are used to assess the general characteristics of the two-rate computations, and we find that (1) the rates of change for both LTw and LTwo are essentially the same; (2) including more data slightly reduces the uncertainty of the rate, which is expected as the number of shorelines increases; and (3) the data for the shorelines from the 1970s and 1994 are not outliers with respect to the long-term trend. These findings are true for regional

  14. Shoreline change due to coastal structures of power plants

    International Nuclear Information System (INIS)

    Kang, K. S.; Lee, T. S.; Kim, Y. I.

    2001-01-01

    Characteristics of shoreline change at the coastal area near power plant were analyzed. For a nuclear power plant located in the east coast of Korean peninsula, remote-sensing data, i.e.airborne images and satellite images are acquired and shoreline data were extracted. Recession and davance of shoreline due to coastal structures of powder plant and land reclamation was showed. 1-line numerical shoreline change model was established for simulating the response of shoreline to construction of coastal structures. The model uses curvilinear coordinates that follow the shoreline and is capable of handling the formation of tombolos as well as the growth of salients in the vicinity of coastal structures. The model predicted significant erosion of beach in case breakwaters were extended. Offshore breakwaters were suggested as a countermeasure to shoreline change

  15. Regional shoreline change and coastal erosion hazards in Arctic Alaska

    Science.gov (United States)

    Gibbs, Ann E.; Richmond, Bruce M.; Erikson, Li H.; Harden, E. Lynne; Wallendorf, Louise

    2011-01-01

    Historical shoreline positions along the mainland Beaufort Sea coast of Alaska were digitized and analyzed to determine the long-term rate of change. Average shoreline change rates and ranges from 1947 to the mid-2000s were determined every 50 meters between Barrow and Demarcation Point, at the U.S.-Canadian border. Results show that shoreline change rates are highly variable along the coast, with an average regional shoreline change rate of-2.0 m/yr and localized rates of up to -19 m/yr. The highest erosion rates were observed at headlands, points, and associated with breached thermokarst lakes. Areas of accretion were limited, and generally associated with spit extension and minor beach accretion. In general, erosion rates increase from east to west, with overall higher rates east of Harrison Bay.

  16. National assessment of shoreline change—Summary statistics for updated vector shorelines and associated shoreline change data for the Gulf of Mexico and Southeast Atlantic coasts

    Science.gov (United States)

    Himmelstoss, Emily A.; Kratzmann, Meredith G.; Thieler, E. Robert

    2017-07-18

    Long-term rates of shoreline change for the Gulf of Mexico and Southeast Atlantic regions of the United States have been updated as part of the U.S. Geological Survey’s National Assessment of Shoreline Change project. Additional shoreline position data were used to compute rates where the previous rate-of-change assessment only included four shoreline positions at a given location. The long-term shoreline change rates also incorporate the proxy-datum bias correction to account for the unidirectional onshore bias of the proxy-based high water line shorelines relative to the datum-based mean high water shorelines. The calculation of uncertainty associated with the long-term average rates has also been updated to match refined methods used in other study regions of the National Assessment project. The average rates reported here have a reduced amount of uncertainty relative to those presented in the previous assessments for these two regions.

  17. Multidecadal shoreline changes of atoll islands in the Marshall Islands

    Science.gov (United States)

    Ford, M.

    2012-12-01

    Atoll islands are considered highly vulnerable to the impacts of continued sea level rise. One of the most commonly predicted outcomes of continued sea level rise is widespread and chronic shoreline erosion. Despite the widespread implications of predicted erosion, the decadal scale changes of atoll island shorelines are poorly resolved. The Marshall Islands is one of only four countries where the majority of inhabited land is comprised of reef and atoll islands. Consisting of 29 atolls and 5 mid-ocean reef islands, the Marshall Islands are considered highly vulnerable to the impacts of sea level rise. A detailed analysis of shoreline change on over 300 islands on 10 atolls was undertaken using historic aerial photos (1945-1978) and modern high resolution satellite imagery (2004-2012). Results highlight the complex and dynamic nature of atoll islands, with significant shifts in shoreline position observed over the period of analysis. Results suggest shoreline accretion is the dominant mode of change on the islands studied, often associated with a net increase in vegetated island area. However, considerable inter- and intra-atoll variability exists with regards to shoreline stability. Findings are discussed with respect to island morphodynamics and potential hazard mitigation and planning responses within atoll settings.

  18. Positional Accuracy Assessment for Effective Shoreline Change ...

    African Journals Online (AJOL)

    Ghana Mining Journal ... Data quality may be expressed in terms of several indicators such as attributes, temporal or positional accuracies. ... It is concluded that for the purpose of shoreline change analysis, such as shoreline change trends, large scale data sources should be used where possible for accurate ...

  19. Positional Accuracy Assessment for Effective Shoreline Change ...

    African Journals Online (AJOL)

    Michael

    2016-06-01

    Jun 1, 2016 ... as backdrop in GIS environment. Positional error of ... integrated dataset obviously bore the cumulative effect of the input datasets. ... change. The shoreline, which is the interface between land ... modelling, which enables future shoreline change trend to ..... as gaps due to cloud cover and limitation of the.

  20. Monitoring Shoreline Change using Remote Sensing and GIS: A ...

    African Journals Online (AJOL)

    Key words: remote sensing, geographic information system (GIS), aerial photographs, shoreline change. Data from aerial photographs taken in 1981, 1992 and 2002 of the Kunduchi shoreline off the Dar es Salaam coast were integrated in a geographic information system (GIS) to determine shoreline change in that locality.

  1. USGS science for the Nation's changing coasts; shoreline change assessment

    Science.gov (United States)

    Thieler, E. Robert; Hapke, Cheryl J.

    2011-01-01

    The coastline of the United States features some of the most popular tourist and recreational destinations in the world and is the site of intense residential, commercial, and industrial development. The coastal zone also has extensive and pristine natural areas, with diverse ecosystems providing essential habitat and resources that support wildlife, fish, and human use. Coastal erosion is a widespread process along most open-ocean shores of the United States that affects both developed and natural coastlines. As the coast changes, there are a wide range of ways that change can affect coastal communities, habitats, and the physical characteristics of the coast?including beach erosion, shoreline retreat, land loss, and damage to infrastructure. Global climate change will likely increase the rate of coastal change. A recent study of the U.S. Mid-Atlantic coast, for example, found that it is virtually certain that sandy beaches will erode faster in the future as sea level rises because of climate change. The U.S. Geological Survey (USGS) is responsible for conducting research on coastal change hazards, understanding the processes that cause coastal change, and developing models to predict future change. To understand and adapt to shoreline change, accurate information regarding the past and present configurations of the shoreline is essential. A comprehensive, nationally consistent analysis of shoreline movement is needed. To meet this national need, the USGS is conducting an analysis of historical shoreline changes along open-ocean coasts of the conterminous United States and parts of Alaska and Hawaii, as well as the coasts of the Great Lakes.

  2. Emerging and Submerging Shorelines: Impacts of Physical Change on Bioband Length

    Science.gov (United States)

    Kruger, L. E.; Johnson, A. C.; Gregovich, D.; Buma, B.; Noel, J.

    2017-12-01

    We approximated shifts in coastal benthic species for shoreline length units undergoing both sea level rise and relative sea level lowering (often post-glacial, termed isostatic rebound) where subsistence-based, southeast Alaska Natives reside. From six community centers, we examined 30 km radii shoreline reaches by merging relevant portions of the NOAA ShoreZone database with near shore bathymetry and measures of mean global sea level rise with local global positioning system information (GIS) of tectonic shift and isostatic rebound. For our analysis, we estimated change for 9,868 assessed shoreline length units having uniform substrate and biologic type over a 100-yr time span (2008-2108) using geometric analysis of shoreline attributes. For each shoreline length unit we assessed relationships among substrate, slope, exposure, and presence of five benthic species including eel grass (Zostera marina), blue mussel (Mytilus edulis), butter clams (Saxidomus gigantean), bull kelp (Nereocytis leutkeana), and foliose red algae including ribbon kelp (Palmaria sp.). Our research indicates that both emergence, up to 1.8 m, and submergence, up 0.2 m, of the land will result in disportionately larger shoreline length segment alterations for habitats in protected low-slope gradient bays and estuaries (dominated by eelgrass and butter clam habitats) with less change for rocky steep-gradient exposed penninsulas (red algae and canopy kelp). This trend, holding true regardless of isostatic rebound, tectonic shift or sea level rise rate, highlights the importance of initial geomorphology-based assessments serving to improve bio-physical, chemical, and socially-related coastal research. Where shorelines are emerging 30% decreases in estuary lengths are predicted, but where shorelines are submerging up to 3% increases in estuaries are expected. Our research results are consistent with anthropology studies assessing past coastal change. Coastal change, influencing subsistance foods

  3. National assessment of shoreline change—Summary statistics for updated vector shorelines and associated shoreline change data for the north coast of Alaska, U.S.-Canadian Border to Icy Cape

    Science.gov (United States)

    Gibbs, Ann E.; Richmond, Bruce M.

    2017-09-25

    Long-term rates of shoreline change for the north coast of Alaska, from the U.S.-Canadian border to the Icy Cape region of northern Alaska, have been updated as part of the U.S. Geological Survey’s National Assessment of Shoreline Change Project. Short-term shoreline change rates are reported for the first time. Additional shoreline position data were used to compute rates where the previous rate-of-change assessment only included two shoreline positions at a given location. The calculation of uncertainty associated with the long-term average rates has also been updated to match refined methods used in other study regions of the National Assessment of Shoreline Change Project. The average rates of this report have a reduced amount of uncertainty compared to those presented in the first assessment for this region.

  4. Numerical simulation of hydrodynamic and water quality effects of shoreline changes in Bohai Bay

    Science.gov (United States)

    Jia, Han; Shen, Yongming; Su, Meirong; Yu, Chunxue

    2018-02-01

    This study uses the HD and Ecolab modules of MIKE to simulate the hydrodynamic and water quality and predict the influence of shoreline changes in Bohai Bay, China. The study shows that shoreline changes weaken the residual current and generate a counter-clockwise circulation south of Huanghua Port, thereby resulting in weak water exchange capacity and low pollutant-diffusing capacity. Shoreline changes reduce the area of Bohai Bay, resulting in a smaller tidal prism and further weakening the water exchange capacity. This situation is not conducive to the diffusion of pollutants, and therefore may lead to increased water pollution in the bay. Shoreline changes hinder the spread of runoff, weaken the dilution effect of the river on seawater, and block the spread of coastal residual current, thereby resulting in increased salinity near the reclamation area. Shoreline changes lead to an increase in PO4-P concentration and decrease in DIN concentration. The value of N/P near the project decreases, thereby weakening the phosphorus-limited effect.

  5. Monitoring of shoreline changes using remote sensing (case study: coastal city of Bandar Abbas)

    International Nuclear Information System (INIS)

    Tamassoki, E; Amiri, H; Soleymani, Z

    2014-01-01

    Shoreline change is one of the most common natural processes that prevail upon coastal areas. The most important aspect of managing coastal areas is identifying the location and change over time of shoreline. This requires frequent monitoring of the shoreline using satellite imagery over time. We have used imagery from the Landsat TM-5 sensor from 1984,1998 and 2009 in order to monitor shoreline changes using the Max Likelihood Classification method (MLC) in Bandar Abbas city. Monitoring showed that during the period from 1984 to 1998 the area of coastline of Bandar Abbas increased 804.09 hectares. The increase over the next 11-year period was as less, at only 140.81 hectares. In 2009 there was a drastic decrease in shoreline, with the total length of shoreline decreasing from 330 km to 271 km during the period from 1984 to 2009.Results showed that in each period in which the area of coastline advanced, changes in length of shoreline had been less prominent

  6. Performance of a process-based hydrodynamic model in predicting shoreline change

    Science.gov (United States)

    Safak, I.; Warner, J. C.; List, J. H.

    2012-12-01

    Shoreline change is controlled by a complex combination of processes that include waves, currents, sediment characteristics and availability, geologic framework, human interventions, and sea level rise. A comprehensive data set of shoreline position (14 shorelines between 1978-2002) along the continuous and relatively non-interrupted North Carolina Coast from Oregon Inlet to Cape Hatteras (65 km) reveals a spatial pattern of alternating erosion and accretion, with an erosional average shoreline change rate of -1.6 m/yr and up to -8 m/yr in some locations. This data set gives a unique opportunity to study long-term shoreline change in an area hit by frequent storm events while relatively uninfluenced by human interventions and the effects of tidal inlets. Accurate predictions of long-term shoreline change may require a model that accurately resolves surf zone processes and sediment transport patterns. Conventional methods for predicting shoreline change such as one-line models and regression of shoreline positions have been designed for computational efficiency. These methods, however, not only have several underlying restrictions (validity for small angle of wave approach, assuming bottom contours and shoreline to be parallel, depth of closure, etc.) but also their empirical estimates of sediment transport rates in the surf zone have been shown to vary greatly from the calculations of process-based hydrodynamic models. We focus on hind-casting long-term shoreline change using components of the process-based, three-dimensional coupled-ocean-atmosphere-wave-sediment transport modeling system (COAWST). COAWST is forced with historical predictions of atmospheric and oceanographic data from public-domain global models. Through a method of coupled concurrent grid-refinement approach in COAWST, the finest grid with resolution of O(10 m) that covers the surf zone along the section of interest is forced at its spatial boundaries with waves and currents computed on the grids

  7. Changes in the shoreline at Paradip Port, India in response to climate change

    Science.gov (United States)

    Gopikrishna, B.; Deo, M. C.

    2018-02-01

    One of the popular methods to predict shoreline shifts into the future involves use of a shoreline evolution model driven by the historical wave climate. It is however understood by now that historical wave conditions might substantially change in future in response to climate change induced by the global warming. The future shoreline changes as well as sediment transport therefore need to be determined with the help of future projections of wave climate. In this work this is done at the port of Paradip situated along the east coast of India. The high resolution wind resulting from a climate modelling experiment called: CORDEX, South Asia, was used to simulate waves over two time-slices of 25 years each in past and future. The wave simulations were carried out with the help of a numerical wave model. Thereafter, rates of longshore sediment transport as well as shoreline shifts were determined over past and future using a numerical shoreline model. It was found that at Paradip Port the net littoral drift per metre width of cross-shore might go up by 37% and so also the net accumulated drift over the entire cross-shore width by 71%. This could be caused by an increase in the mean significant wave height of around 32% and also by changes in the frequency and direction of waves. The intensification of waves in turn might result from an increase in the mean wind speed of around 19%. Similarly, the horizontal extent of the beach accretion and erosion at the port's southern breakwater might go up by 4 m and 8 m, respectively, from the current level in another 25 years. This study should be useful in framing future port management strategies.

  8. Quantification of shoreline change along Hatteras Island, North Carolina: Oregon Inlet to Cape Hatteras, 1978-2002, and associated vector shoreline data

    Science.gov (United States)

    Hapke, Cheryl J.; Henderson, Rachel E.

    2015-01-01

    Shoreline change spanning twenty-four years was assessed along the coastline of Cape Hatteras National Seashore, at Hatteras Island, North Carolina. The shorelines used in the analysis were generated from georeferenced historical aerial imagery and are used to develop shoreline change rates for Hatteras Island, from Oregon Inlet to Cape Hatteras. A total of 14 dates of aerial photographs ranging from 1978 through 2002 were obtained from the U.S. Army Corp of Engineers Field Research Facility in Duck, North Carolina, and scanned to generate digital imagery. The digital imagery was georeferenced and high water line shorelines (interpreted from the wet/dry line) were digitized from each date to produce a time series of shorelines for the study area. Rates of shoreline change were calculated for three periods: the full span of the time series, 1978 through 2002, and two approximately decadal subsets, 1978–89 and 1989–2002.

  9. Drivers of coastal shoreline change: case study of hon dat coast, Kien Giang, Vietnam.

    Science.gov (United States)

    Nguyen, Hai-Hoa; McAlpine, Clive; Pullar, David; Leisz, Stephen Joseph; Galina, Gramotnev

    2015-05-01

    Coastal shorelines are naturally dynamic, shifting in response to coastal geomorphological processes. Globally, land use change associated with coastal urban development and growing human population pressures is accelerating coastal shoreline change. In southern Vietnam, coastal erosion currently is posing considerable risks to shoreline land use and coastal inhabitants. The aim of this paper is to quantify historical shoreline changes along the Hon Dat coast between 1995 and 2009, and to document the relationships between coastal mangrove composition, width and density, and rates of shoreline change. The generalized linear mixed-effects models were used to quantify the major biophysical and land-use factors influencing shoreline change rates. Most significant drivers of the rates of change are cutting of mangroves, the dominant mangrove genus, changes in adjacent shoreline land use, changes of shoreline land cover, and width of fringing mangroves. We suggest that a possible and inexpensive strategy for robust mangrove shoreline defense is direct mangrove planting to promote mangrove density with the presence of breakwater structures. In the shorter term, construction of coastal barriers such as fence-structured melaleuca poles in combination with mangrove restoration schemes could help retain coastal sediments and increase the elevation of the accretion zone, thereby helping to stabilize eroding fringe shorelines. It also is recommended that implementation of a system of payments for mangrove ecosystem services and the stronger regulation of mangrove cutting and unsustainable land-use change to strengthen the effectiveness of mangrove conservation programs and coastal land-use management.

  10. Drivers of Coastal Shoreline Change: Case Study of Hon Dat Coast, Kien Giang, Vietnam

    Science.gov (United States)

    Nguyen, Hai-Hoa; McAlpine, Clive; Pullar, David; Leisz, Stephen Joseph; Galina, Gramotnev

    2015-05-01

    Coastal shorelines are naturally dynamic, shifting in response to coastal geomorphological processes. Globally, land use change associated with coastal urban development and growing human population pressures is accelerating coastal shoreline change. In southern Vietnam, coastal erosion currently is posing considerable risks to shoreline land use and coastal inhabitants. The aim of this paper is to quantify historical shoreline changes along the Hon Dat coast between 1995 and 2009, and to document the relationships between coastal mangrove composition, width and density, and rates of shoreline change. The generalized linear mixed-effects models were used to quantify the major biophysical and land-use factors influencing shoreline change rates. Most significant drivers of the rates of change are cutting of mangroves, the dominant mangrove genus, changes in adjacent shoreline land use, changes of shoreline land cover, and width of fringing mangroves. We suggest that a possible and inexpensive strategy for robust mangrove shoreline defense is direct mangrove planting to promote mangrove density with the presence of breakwater structures. In the shorter term, construction of coastal barriers such as fence-structured melaleuca poles in combination with mangrove restoration schemes could help retain coastal sediments and increase the elevation of the accretion zone, thereby helping to stabilize eroding fringe shorelines. It also is recommended that implementation of a system of payments for mangrove ecosystem services and the stronger regulation of mangrove cutting and unsustainable land-use change to strengthen the effectiveness of mangrove conservation programs and coastal land-use management.

  11. Shoreline changes in and around the Thubon River mouth, Central Vietnam

    Digital Repository Service at National Institute of Oceanography (India)

    Mau, L.D.; Nayak, G.N.; SanilKumar, V.

    Application of GENESIS model (GENEralized model for Simulating Shoreline change) for studying the shoreline change in and around the Thubon River Mouth, Central Vietnam is presented in this paper The input parameters used are the near shore wave...

  12. Subtidal Bathymetric Changes by Shoreline Armoring Removal and Restoration Projects

    Science.gov (United States)

    Wallace, J.

    2016-12-01

    The Salish Sea, a region with a diverse coastline, is altered by anthropogenic shoreline modifications such as seawalls. In recent years, local organizations have moved to restore these shorelines. Current research monitors the changes restoration projects have on the upper beach, lower beach, and intertidal, however little research exists to record possible negative effects on the subtidal. The purpose of this research is to utilize multibeam sonar bathymetric data to analyze possible changes to the seafloor structure of the subtidal in response to shoreline modification and to investigate potential ecosystem consequences of shoreline alteration. The subtidal is home to several species including eelgrass (Zostera marina). Eelgrass is an important species in Puget Sound as it provides many key ecosystem functions including providing habitat for a wide variety of organisms, affecting the physics of waves, and sediment transport in the subtidal. Thus bathymetric changes could impact eelgrass growth and reduce its ability to provide crucial ecosystem services. Three Washington state study sites of completed shoreline restoration projects were used to generate data from areas of varied topographic classification, Seahurst Park in Burien, the Snohomish County Nearshore Restoration Project in Everett, and Cornet Bay State Park on Whidbey Island. Multibeam sonar data was acquired using a Konsberg EM 2040 system and post-processed in Caris HIPS to generate a base surface of one-meter resolution. It was then imported into the ArcGIS software suite for the generation of spatial metrics. Measurements of change were calculated through a comparison of historical and generated data. Descriptive metrics generated included, total elevation change, percent area changed, and a transition matrix of positive and negative change. Additionally, pattern metrics such as, surface roughness, and Bathymetric Position Index (BPI), were calculated. The comparison of historical data to new data

  13. Exploring the Dominant Modes of Shoreline Change Along the Central Florida Atlantic Coast

    Science.gov (United States)

    Conlin, M. P.; Adams, P. N.; Jaeger, J. M.; MacKenzie, R.

    2017-12-01

    Geomorphic change within the littoral zone can place communities, ecosystems, and critical infrastructure at risk as the coastal environment responds to changes in sea level, sediment supply, and wave climate. At NASA's Kennedy Space Center near Cape Canaveral, Florida, chronic shoreline retreat currently threatens critical launch infrastructure, but the spatial (alongshore) pattern of this hazard has not been well documented. During a 5-year monitoring campaign (2009-2014), 86 monthly and rapid-response RTK GPS surveys were completed along this 11 km-long coastal reach in order to monitor and characterize shoreline change and identify links between ocean forcing and beach morphology. Results indicate that the study area can be divided into four behaviorally-distinct alongshore regions based on seasonal variability in shoreline change, mediated by the complex offshore bathymetry of the Cape Canaveral shoals. In addition, seasonal erosion/accretion cycles are regularly interrupted by large erosive storm events, especially during the anomalous wave climates produced during winter Nor'Easter storms. An effective tool for analyzing multidimensional datasets like this one is Empirical Orthogonal Function (EOF) analysis, a technique to determine the dominant spatial and temporal signals within a dataset. Using this approach, it is possible to identify the main time and space scales (modes) along which coastal changes are occurring. Through correlation of these changes with oceanographic forcing mechanisms, we are enabled to infer the principal drivers of shoreline change at this site. Here, we document the results of EOF analysis applied to the Cape Canaveral shoreline change dataset, and further correlate the results of this analysis with oceanographic forcings in order to reveal the dominant modes as well as drivers of coastal variability along the central Atlantic coast of Florida. This EOF-based analysis, which is the first such analysis in the region, is shedding

  14. 55-year (1960-2015) spatiotemporal shoreline change analysis using historical DISP and Landsat time series data in Shanghai

    Science.gov (United States)

    Qiao, Gang; Mi, Huan; Wang, Weian; Tong, Xiaohua; Li, Zhongbin; Li, Tan; Liu, Shijie; Hong, Yang

    2018-06-01

    Shoreline change has been an increasing concern for low-lying and vulnerable coastal zones worldwide, especially in estuarine delta regions, which generally have significant economic development, large human settlements and infrastructures. Thus, long time-series shoreline change data are useful for understanding how shorelines respond to natural and anthropogenic activities, as well as for providing greater insights into coastal protection and sustainable development in the future. For the first time, this study analyzes 55 years of spatiotemporal shoreline changes in Shanghai, China, by integrating the historical Declassified Intelligence Satellite Photography (DISP) and Landsat time series data at five-year intervals from 1960 to 2015. Twelve shorelines were interpreted from DISP and Landsat images. The spatiotemporal changes in the shorelines were explored at five-year intervals within the study period for the Shanghai mainland and islands. The results indicate that shorelines in Shanghai accreted significantly over the last 55 years, but different accretion patterns were observed in Chongming Dongtan. The rate of shoreline change varied in different areas, and the most noticeable expansions were Chongming Beitan, Chongming Dongtan, Hengsha Dongtan, and Nanhuizui. The length of the entire shoreline increased by 25.7% from 472.6 km in 1960 to 594.2 km in 2015. Due to the shoreline changes, the Shanghai area expanded by 1,192.5 km2 by 2015, which was an increase of 19.9% relative to its 1960 area. The Digital Shoreline Analysis System (DSAS) was used to compute rate-of-change statistics. Between 1960 and 2015, 10.6% of the total transects exceeded 3 km of Net Shoreline Movement (NSM), with a maximum value of approximately 20 km at eastern Hengsha Island. The average Weighted Linear Regression Rate (WLR) of the Shanghai shoreline was 52.2 m/yr from 1960 to 2015; there was 94.1% accretion, 3.1% erosion, and 2.8% with no significant change. In addition, the driving

  15. Shoreline change assessment using multi-temporal satellite images: a case study of Lake Sapanca, NW Turkey.

    Science.gov (United States)

    Duru, Umit

    2017-08-01

    The research summarized here determines historical shoreline changes along Lake Sapanca by using Remote Sensing (RS) and Geographical Information Systems (GIS). Six multi-temporal satellite images of Landsat Multispectral Scanner (L1-5 MMS), Enhanced Thematic Mapper Plus (L7 ETM+), and Operational Land Imager Sensors (L8 OLI), covering the period between 17 June 1975 and 15 July 2016, were used to monitor shoreline positions and estimate change rates along the coastal zone. After pre-possessing routines, the Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), and supervised classification techniques were utilized to extract six different shorelines. Digital Shoreline Analysis System (DSAS), a toolbox that enables transect-based computations of shoreline displacement, was used to compute historical shoreline change rates. The average rate of shoreline change for the entire cost was 2.7 m/year of progradation with an uncertainty of 0.2 m/year. While the great part of the lake shoreline remained stable, the study concluded that the easterly and westerly coasts and deltaic coasts are more vulnerable to shoreline displacements over the last four decades. The study also reveals that anthropogenic activities, more specifically over extraction of freshwater from the lake, cyclic variation in rainfall, and deposition of sediment transported by the surrounding creeks dominantly control spatiotemporal shoreline changes in the region. Monitoring shoreline changes using multi-temporal satellite images is a significant component for the coastal decision-making and management.

  16. Measuring Sea Level Rise-Induced Shoreline Changes and Inundation in Real Time

    Science.gov (United States)

    Shilling, F.; Waetjen, D.; Grijalva, E.

    2016-12-01

    We describe a method to monitor shoreline inundation and changes in response to sea level rise (SLR) using a network of time-lapse cameras. We found for coastal tidal marshes that this method was sensitive to vertical changes in sea level of 20 cm has occurred in the San Francisco Bay and other US coastal areas and is likely to rise by another 30-45 cm by mid-century, which will flood and erode many coastal ecosystems, highways, and urban areas. This rapid degree of rise means that it is imperative to co-plan for natural and built systems. Many public facilities are adjacent to shoreline ecosystems, which both protect infrastructure from wave and tide energy and are home to regulated species and habitats. Accurate and timely information about the actual extent of SLR impacts to shorelines will be critical during built-system adaptation. Currently, satellite-sourced imagery cannot provide the spatial or temporal resolution necessary to investigate fine-scale shoreline changes, leaving a gap between predictive models and knowing how, where and when these changes are occurring. The method described is feasible for near-term (1 to 10 years) to long-term application and can be used for measuring fine-resolution shoreline changes (organize photographs that could be combined with related external data (e.g., gauged water levels) to create an information mashup. This information could be used to validate models predicting shoreline inundation and loss, inform SLR-adaptation planning, and to visualize SLR impacts to the public.

  17. Correlation between land use changes and shoreline changes around THE Nakdong River in Korea using landsat images.

    Science.gov (United States)

    Kwon, J. S.; Lim, C.; Baek, S. G.; Shin, S.

    2015-12-01

    Coastal erosion has badly affected the marine environment, as well as the safety of various coastal structures. In order to monitor shoreline changes due to coastal erosion, remote sensing techniques are being utilized. The land-cover map classifies the physical material on the surface of the earth, and it can be utilized in establishing eco-policy and land-use policy. In this study, we analyzed the correlation between land-use changes around the Nakdong River and shoreline changes at Busan Dadaepo Beach adjacent to the river. We produced the land-cover map based on the guidelines published by the Ministry of Environment Korea, using eight Landsat satellite images obtained from 1984 to 2015. To observe land use changes around the Nakdong River, the study site was set to include the surroundings areas of the Busan Dadaepo Beach, the Nakdong River as well as its estuary, and also Busan New Port. For the land-use classification of the study site, we also produced a land-cover map divided into seven categories according to the Ministry of Environment, Korea guidelines and using the most accurate Maximum Likelihood Method (MLM). Land use changes inland, at 500m from the shoreline, were excluded for the correlation analysis between land use changes and shoreline changes. The other categories, except for the water category, were transformed into numerical values and the land-use classifications, using all other categories, were analyzed. Shoreline changes were observed by setting the base-line and three cut-lines. We assumed that longshore bars around the Nakdong River and the shoreline of the Busan Dadaepo Beach are affected. Therefore, we expect that shoreline changes happen due to the influence of barren land, wetlands, built-up areas and deposition. The causes are due to natural factors, such as weather, waves, tide currents, longshore currents, and also artificial factors such as coastal structures, construction, and dredging.

  18. Modeling of Shoreline Changes of Tulamben Coast, Bali Indonesia

    Science.gov (United States)

    Yuanita, Nita; Pratama, Roka; Husrin, Semeidi

    2015-04-01

    Modeling of Shoreline Changes of Tulamben Coast, Bali Indonesia Tulamben coast is located in Lombok Strait on the northeastern coast of Bali island, Indonesia, as part of Karang Asem district. Severe erosion along the coastline has long been occurred in Karang Asem area and threatening houses, religious buildings (Hindu temples), and a national heritage site. As one of most popular diving site in Bali Island, Tulamben attracted many local and international tourist since 1980. The main attraction of Tulamben diving site is the USAT Liberty ship that was shipwrecked in Tulamben beach in 1942, after attacked by Japanese torpedo in Lombok Strait. Currently about 150 diver visit Tulamben per day. Due to physical changes of coastal environmental such as coastal erosion, sliding, and scouring, the shipwreck is vulnerable. It had been slipped off the beach several times and is predicted would be moved to deeper offshore floor if it is not protected. Coastal erosion in Karang Asem district is occurred probably due to interaction between cross-shore and long-shore wave-generated current and river sand supply decreasing after sand mining activities. In this study, the effect of cross-shore and longshore transport to coastal erosion in Tulamben is analyzed by doing numerical model. Numerical simulation of shoreline changes is performed by using Beach Processes Module of CEDAS (Coastal Engineering Design and Analysis System) consists of SBEACH and GENESIS. The model domain is covered Karang Asem coastline about 60 km length and wave data is calculated from hourly wind data (10 years). Simulated shoreline is calibrated using shoreline data from 1972 to 2013. Using calibrated model, then the simulation is performed from 2003 - 2013. From the simulation it is determined that longshore current and longshore sediment contribute to coastal erosion in Tulamben. Based on model results, several alternatives of general layout and configuration of coastal protection structures is proposed

  19. Decision analysis of shoreline protection under climate change uncertainty

    Science.gov (United States)

    Chao, Philip T.; Hobbs, Benjamin F.

    1997-04-01

    If global warming occurs, it could significantly affect water resource distribution and availability. Yet it is unclear whether the prospect of such change is relevant to water resources management decisions being made today. We model a shoreline protection decision problem with a stochastic dynamic program (SDP) to determine whether consideration of the possibility of climate change would alter the decision. Three questions are addressed with the SDP: (l) How important is climate change compared to other uncertainties?, (2) What is the economic loss if climate change uncertainty is ignored?, and (3) How does belief in climate change affect the timing of the decision? In the case study, sensitivity analysis shows that uncertainty in real discount rates has a stronger effect upon the decision than belief in climate change. Nevertheless, a strong belief in climate change makes the shoreline protection project less attractive and often alters the decision to build it.

  20. Shoreline Changes at New Mangalore Port, India in the past and over future

    Science.gov (United States)

    Bharathan Radhamma, R.; Deo, M. C.

    2016-12-01

    The New Mangalore port is one of the major ports along the west coast of India. It is of artificial type with a pair of breakwaters constructed in phases from the year 1974 to 1996. The studies indicating the impact of constructing the breakwaters on adjacent shorelines after 1996 are difficult to find. The present work is aimed in this direction. For a 10 km stretch of the coast lying on both sides of the breakwaters 35 transects were constructed and shorelines were delineated from 4 satellite imageries that were recorded over the past 36 years at around 12 years' interval. Over each transect the rate of change of shoreline was calculated using linear regression and its adequacy was checked using the error statistics of R2 and RMSE. After such satisfactory cross-check, shorelines were predicted over the 12 and 36 years in future, i. e., in the years: 2028 and 2051. The patches undergoing erosion as well as accretion were identified. It was found that the rate of shoreline shifts fluctuated from -1.69 ± 0.45 m/year to 2.56 ± 0.45 m/year and about 52.28 % of the study area underwent substantial erosion. Most of the transects located toward north of the northern breakwater saw pro-gradation while those sited at south of the southern breakwater exhibited chronic erosion. The human interventions and presence of artificial structures accelerated the changes in the shoreline and also gave rise to higher uncertainties. The paper will present full details of the methodology, results and their interpretation.

  1. Automatic Detection of Decadal Shoreline Change on Northern Coastal of Gresik, East Java - Indonesia

    Science.gov (United States)

    Fuad, M. A. Z.; A, M. Fais D.

    2017-12-01

    The Coastal zone is a dynamic region that has high environmental and economic values. This present research focuses on the analyzing the rate of shoreline change using multi-temporal Landsat Imagery and Digital Shoreline Analysis Systems (DSAS) along the northern part of Gresik coastal area, East Java Indonesia. Five village were selected for analysis; Campurejo, Dalegan, Prupuh, Ngemboh, and Banyuurip. Erosion and Accretion were observed and detected on Multi-temporal satellite Images along the area of interest from 1972 - 2016. Landsat Images were radiometrically and geometrically corrected before using for analysis. Coastline delineation for each Landsat image was performed by MNDWI method before digitized for quantitative shoreline change analysis. DSAS was performed for quantitative analysis of Net Shoreline Movement (NSM) and End Point Rate (EPR). The results indicate that in the study area accretion and abrasion was occurred, but overall abrasion was dominated than accretion. The remarkable shoreline changes were observed in the entire region. The highest abrasion area was occurred in Ngemboh village. From 1972 to 2016, coastline was retreat 242.56 meter to the land and the rate of movement was -5.54m/yr. In contrast, Campurejo area was relatively stable due to the introduction of manmade structure, i.e. Jetty and Groin. The Shoreline movement and the rate of movement in this area were -6.11m and -0.12 m/yr respectively. The research represents an important step in understanding the dynamics of coastal area in this area. By identification and analysis of coastline evolution, the stake holder could perform a scenario for reducing the risk of coastal erosion and minimize the social and economic lost.

  2. Observations and 3D hydrodynamics-based modeling of decadal-scale shoreline change along the Outer Banks, North Carolina

    Science.gov (United States)

    Safak, Ilgar; List, Jeffrey; Warner, John C.; Kumar, Nirnimesh

    2017-01-01

    Long-term decadal-scale shoreline change is an important parameter for quantifying the stability of coastal systems. The decadal-scale coastal change is controlled by processes that occur on short time scales (such as storms) and long-term processes (such as prevailing waves). The ability to predict decadal-scale shoreline change is not well established and the fundamental physical processes controlling this change are not well understood. Here we investigate the processes that create large-scale long-term shoreline change along the Outer Banks of North Carolina, an uninterrupted 60 km stretch of coastline, using both observations and a numerical modeling approach. Shoreline positions for a 24-yr period were derived from aerial photographs of the Outer Banks. Analysis of the shoreline position data showed that, although variable, the shoreline eroded an average of 1.5 m/yr throughout this period. The modeling approach uses a three-dimensional hydrodynamics-based numerical model coupled to a spectral wave model and simulates the full 24-yr time period on a spatial grid running on a short (second scale) time-step to compute the sediment transport patterns. The observations and the model results show similar magnitudes (O(105 m3/yr)) and patterns of alongshore sediment fluxes. Both the observed and the modeled alongshore sediment transport rates have more rapid changes at the north of our section due to continuously curving coastline, and possible effects of alongshore variations in shelf bathymetry. The southern section with a relatively uniform orientation, on the other hand, has less rapid transport rate changes. Alongshore gradients of the modeled sediment fluxes are translated into shoreline change rates that have agreement in some locations but vary in others. Differences between observations and model results are potentially influenced by geologic framework processes not included in the model. Both the observations and the model results show higher rates of

  3. Wave energy fluxes and multi-decadal shoreline changes

    DEFF Research Database (Denmark)

    Kabuth, Alina Kristin; Kroon, Aart

    2014-01-01

    Spatial patterns of multidecadal shoreline changes in two microtidal, low-energetic embayments of southern Zealand, Denmark, were investigated by using the directional distribution of wave energy fluxes. The sites include a barrier island system attached to moraine bluffs, and a recurved spit...... variability of directional distributions of wave energy fluxes furthermore outlined potential sediment sources and sinks for the evolution of the barrier island system and for the evolution of the recurved spit....... adjacent to a cliff coast. The barrier island system is characterized by cross-shore translation and by an alignment of the barrier alongshore alternating directions of barrier-spit progradation in a bidirectional wave field. The recurved spit adjacent to the cliff coast experienced shoreline rotation...

  4. Application of the AMBUR R package for spatio-temporal analysis of shoreline change: Jekyll Island, Georgia, USA

    Science.gov (United States)

    Jackson, Chester W.; Alexander, Clark R.; Bush, David M.

    2012-04-01

    The AMBUR (Analyzing Moving Boundaries Using R) package for the R software environment provides a collection of functions for assisting with analyzing and visualizing historical shoreline change. The package allows import and export of geospatial data in ESRI shapefile format, which is compatible with most commercial and open-source GIS software. The "baseline and transect" method is the primary technique used to quantify distances and rates of shoreline movement, and to detect classification changes across time. Along with the traditional "perpendicular" transect method, two new transect methods, "near" and "filtered," assist with quantifying changes along curved shorelines that are problematic for perpendicular transect methods. Output from the analyses includes data tables, graphics, and geospatial data, which are useful in rapidly assessing trends and potential errors in the dataset. A forecasting function also allows the user to estimate the future location of the shoreline and store the results in a shapefile. Other utilities and tools provided in the package assist with preparing and manipulating geospatial data, error checking, and generating supporting graphics and shapefiles. The package can be customized to perform additional statistical, graphical, and geospatial functions, and, it is capable of analyzing the movement of any boundary (e.g., shorelines, glacier terminus, fire edge, and marine and terrestrial ecozones).

  5. Shoreline changes in reef islands of the Central Pacific: Takapoto Atoll, Northern Tuamotu, French Polynesia

    Science.gov (United States)

    Duvat, Virginie K. E.; Pillet, Valentin

    2017-04-01

    Atoll reef islands are considered highly vulnerable to the impacts of climate change. While accelerated sea-level rise is expected to destabilize reef islands, ocean warming and acidification are considered as major threats to coral reef growth, which is of primary importance for the persistence of islands and of food supply to islanders. Using multi-date aerial imagery, shoreline and island changes between 1969 and 2013 were assessed on Takapoto Atoll, Northern Tuamotu region, in French Polynesia. Results show that over the 44-year study period, 41% of islands were stable in area while 33% expanded and 26% contracted. Island expansion was the dominant mode of change on the leeward side of the atoll. Tropical Cyclone Orama (category 3, 1983) contributed to shoreline and island change on the windward side of the atoll through the reworking of previous storm deposits and the injection of fresh sediments in the island system (with up to 62% of an island's land area being covered with fresh sediments). Human activities contributed significantly to shoreline and island change throughout the atoll through infrastructure construction, the removal of the indigenous vegetation from a number of islets and sediment mining.

  6. Multidecadal (1960–2011 shoreline changes in Isbjørnhamna (Hornsund, Svalbard

    Directory of Open Access Journals (Sweden)

    Zagórski Piotr

    2015-12-01

    Full Text Available A section of a gravel-dominated coast in Isbjørnhamna (Hornsund, Svalbard was analysed to calculate the rate of shoreline changes and explain processes controlling coastal zone development over last 50 years. Between 1960 and 2011, coastal landscape of Isbjørnhamna experienced a significant shift from dominated by influence of tide-water glacier and protected by prolonged sea-ice conditions towards storm-affected and rapidly changing coast. Information derived from analyses of aerial images and geomorphological mapping shows that the Isbjørnhamna coastal zone is dominated by coastal erosion resulting in a shore area reduction of more than 31,600 m2. With ~3,500 m2 of local aggradation, the general balance of changes in the study area of the shore is negative, and amounts to a loss of more than 28,000 m2. Mean shoreline change is −13.1 m (−0.26 m a−1. Erosional processes threaten the Polish Polar Station infrastructure and may damage of one of the storage buildings in nearby future.

  7. Coral reefs as the first line of defense: Shoreline protection in face of climate change.

    Science.gov (United States)

    Elliff, Carla I; Silva, Iracema R

    2017-06-01

    Coral reefs are responsible for a wide array of ecosystem services including shoreline protection. However, the processes involved in delivering this particular service have not been fully understood. The objective of the present review was to compile the main results in the literature regarding the study of shoreline protection delivered by coral reefs, identifying the main threats climate change imposes to the service, and discuss mitigation and recovery strategies that can and have been applied to these ecosystems. While different zones of a reef have been associated with different levels of wave energy and wave height attenuation, more information is still needed regarding the capacity of different reef morphologies to deliver shoreline protection. Moreover, the synergy between the main threats imposed by climate change to coral reefs has also not been thoroughly investigated. Recovery strategies are being tested and while there are numerous mitigation options, the challenge remains as to how to implement them and monitor their efficacy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Shoreline change after 12 years of tsunami in Banda Aceh, Indonesia: a multi-resolution, multi-temporal satellite data and GIS approach

    Science.gov (United States)

    Sugianto, S.; Heriansyah; Darusman; Rusdi, M.; Karim, A.

    2018-04-01

    The Indian Ocean Tsunami event on the 26 December 2004 has caused severe damage of some shorelines in Banda Aceh City, Indonesia. Tracing back the impact can be seen using remote sensing data combined with GIS. The approach is incorporated with image processing to analyze the extent of shoreline changes with multi-temporal data after 12 years of tsunami. This study demonstrates multi-resolution and multi-temporal satellite images of QuickBird and IKONOS to demarcate the shoreline of Banda Aceh shoreline from before and after tsunami. The research has demonstrated a significant change to the shoreline in the form of abrasion between 2004 and 2005 from few meters to hundred meters’ change. The change between 2004 and 2011 has not returned to the previous stage of shoreline before the tsunami, considered post tsunami impact. The abrasion occurs between 18.3 to 194.93 meters. Further, the change in 2009-2011 shows slowly change of shoreline of Banda Aceh, considered without impact of tsunami e.g. abrasion caused by ocean waves that erode the coast and on specific areas accretion occurs caused by sediment carried by the river flow into the sea near the shoreline of the study area.

  9. Living Shorelines: Assessing Geomorphic Change and Water Quality in an Urban Waterway

    Science.gov (United States)

    Huggins, A.; Schwartz, M. C.; Schmutz, P. P.

    2017-12-01

    In recent years, alternative strategies for shoreline armoring have become increasingly popular with coastal property owners. In Northwest Florida, local agencies implemented plans to attenuate wave action and reduce landward shore recession in an urban bayou by installing living shorelines. Living shorelines are constructed in the inter-tidal zones and incorporate both hard and soft structured stabilization. Generally, the hard component is fossilized oyster shells and the soft component is planted intertidal vegetation, such as Spartina alterniflora (Smooth cordgrass) and Juncus roemererianus (Black needlerush). Living shorelines were intended to comprise both ecological and societal implications by significantly slowing erosion processes for property owners, by utilizing oyster beds to improve water quality, and by fostering new ecological habitats in the marsh grasses. The issue presented with living shoreline management is long-term studies have not been carried out on these engineered systems. For this study, geospatial technology was utilized to create 3D images of terrain by interpolation of data points using a TotalStation to compute geomorphic change. Additionally, water samples were analyzed using traditional wet chemistry laboratory methods to determine total oxidized nitrogen (TON), ammonium, and orthophosphate content in water. Over a short three-month preliminary study, sediment accretion was observed primarily within the vegetation with the bulk of the erosion occurring around the oyster beds. TON was detected at levels between 10 µM and 30 µM, ammonium up to 5 µM, and orthophosphate was only detected in very low levels, consistently quality data will be used to establish baseline data for future research to determine volumetric geomorphic change,and to set a standard for water quality trends, surrounding oyster beds and vegetation in response to climatic events.

  10. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change

    Science.gov (United States)

    Vitousek, Sean; Barnard, Patrick; Limber, Patrick W.; Erikson, Li; Cole, Blake

    2017-01-01

    We present a shoreline change model for coastal hazard assessment and management planning. The model, CoSMoS-COAST (Coastal One-line Assimilated Simulation Tool), is a transect-based, one-line model that predicts short-term and long-term shoreline response to climate change in the 21st century. The proposed model represents a novel, modular synthesis of process-based models of coastline evolution due to longshore and cross-shore transport by waves and sea-level rise. Additionally, the model uses an extended Kalman filter for data assimilation of historical shoreline positions to improve estimates of model parameters and thereby improve confidence in long-term predictions. We apply CoSMoS-COAST to simulate sandy shoreline evolution along 500 km of coastline in Southern California, which hosts complex mixtures of beach settings variably backed by dunes, bluffs, cliffs, estuaries, river mouths, and urban infrastructure, providing applicability of the model to virtually any coastal setting. Aided by data assimilation, the model is able to reproduce the observed signal of seasonal shoreline change for the hindcast period of 1995-2010, showing excellent agreement between modeled and observed beach states. The skill of the model during the hindcast period improves confidence in the model's predictive capability when applied to the forecast period (2010-2100) driven by GCM-projected wave and sea-level conditions. Predictions of shoreline change with limited human intervention indicate that 31% to 67% of Southern California beaches may become completely eroded by 2100 under sea-level rise scenarios of 0.93 to 2.0 m.

  11. Decadal changes in the land use/land cover and shoreline along the coastal districts of southern Gujarat, India.

    Science.gov (United States)

    Misra, A; Balaji, R

    2015-07-01

    The coastal zone along the districts of Surat, Navsari, and Valsad in southern Gujarat, India, is reported to be facing serious environmental challenges in the form of shoreline erosion, wetland loss, and man-made encroachments. This study assesses the decadal land use/ land cover (LULC) changes in these three districts for the years 1990, 2001, and 2014 using satellite datasets of Landsat TM, ETM, and OLI. The LULC changes are identified by using band ratios as a pre-classification step, followed by implementation of hybrid classification (a combination of supervised and unsupervised classification). An accuracy assessment is carried out for each dataset, and the overall accuracy ranges from 90 to 95%. It is observed that the spatial extents of aquaculture, urban built-up, and barren classes have appreciated over time, whereas the coverage of mudflats has depreciated due to rapid urbanization. The changes in the shoreline of these districts have also been analyzed for the same years, and significant changes are found in the form of shoreline erosion. The LULC maps prepared as well as the shoreline change analysis done for this study area will enable the local decision makers to adopt better land-use planning and shoreline protection measures, which will further aid in sustainable future developments in this region.

  12. Spatio-temporal evolution of shoreline changes along the coast between sousse- Monastir (Eastearn of Tunisia)

    Science.gov (United States)

    Fathallah, S.; Ben Amor, R.; Gueddari, M.

    2009-04-01

    Spatio-temporal evolution of shoreline Changes along the coast between Sousse-Monastir (Eastern of Tunisia). Safa Fathallah*, Rim Ben Amor and Moncef Gueddari Unit of Research of Geochemistry and Environmental Geology. Faculty of Science of Tunis, University of Tunis El Manar, 2092. (*) Corresponding author: safa_fathallah@yahoo.fr The coast of Sousse-Monastir in eastern of Tunisia, has undergone great changes, due to natural and anthropic factors. Increasing human use, the construction of two ports and coastal urbanization (hotels and industries) has accelerated the erosion process. The coastal defense structures (breakwaters and enrockment), built to protect the most eroded zone are efficient, but eroded zones appeared in the southern part of breakwaters. Recent and historic aerial photography was used to estimate, observe, and analyze past shoreline and bathymetric positions and trends involving shore evolution for Sousse-Monastir coast. All of the photographs were calibrated and mosaicked by Arc Map Gis 9.1, the years used are 1925, 1962, 1988, 1996, and 2001 for shoreline change analysis and 1884 and 2001 for bathymetric changes. The analyze of this photographs show that the zone located at the south of breakwater are mostly eroded with high speed process (2m/year). Another zone appears as eroded at the south part of Hamdoun River, with 1,5m/year erosion speed . Keywords: Shoreline evolution, defense structures, Sousse-Monastir coast, Tunisia.

  13. Hurricane impact and recovery shoreline change analysis of the Chandeleur Islands, Louisiana, USA: 1855 to 2005

    Science.gov (United States)

    Fearnley, Sarah M.; Miner, Michael; Brock, John C.

    2011-01-01

    Results from historical (1855-2005) shoreline change analysis of the Chandeleur Islands, Louisiana, demonstrate that tropical cyclone frequency dominates the long-term evolution of this barrier-island arc. The detailed results of this study were published in December 2009 as part of a special issue of Geo-Marine Letters that documents early results from the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility Project.

  14. Anthropogenic effects on shoreface and shoreline changes: Input from a multi-method analysis, Agadir Bay, Morocco

    Science.gov (United States)

    Aouiche, Ismail; Daoudi, Lahcen; Anthony, Edward J.; Sedrati, Mouncef; Ziane, Elhassane; Harti, Abderrazak; Dussouillez, Philippe

    2016-02-01

    In many situations, the links between shoreline fluctuations and larger-scale coastal change embracing the shoreface are not always well understood. In particular, meso-scale (years to decades) sand exchanges between the shoreface and the shoreline, considered as important on many wave-dominated coasts, are rather poorly understood and difficult to identify. Coastal systems where sediment transport is perturbed by engineering interventions on the shoreline and shoreface commonly provide fine examples liable to throw light on these links. This is especially so where shoreface bathymetric datasets, which are generally lacking, are collected over time, enabling more or less fine resolution of the meso-scale coastal sediment budget. Agadir Bay and the city of Agadir together form one of the two most important economic development poles on the Atlantic coast of Morocco. Using a combined methodological approach based on wave-current modelling, bathymetric chart-differencing, determination of shoreline fluctuations, and beach topographic surveying, we highlight the close links between variations in the bed of the inner shoreface and the bay shoreline involving both cross-shore and longshore sand transport pathways, sediment budget variations and new sediment cell patterns. We show that the significant changes that have affected the bay shoreline and shoreface since 1978 clearly reflect anthropogenic impacts, notably blocking of alongshore sand transport by Agadir harbour, completed in 1988, and the foundations of which lie well beyond the depth of wave closure. Construction of the harbour has led to the creation of a rapidly accreting beach against an original portion of rocky shoreline updrift and to a net sand loss exceeding 145,000 m3/year between 1978 and 2012 over 8.5 km2of the bay shoreface downdrift. Shoreline retreat has been further exacerbated by sand extraction from aeolian dunes and by flattening of these dunes to make space for tourist infrastructure. Digital

  15. Understanding Long-term, Large-scale Shoreline Change and the Sediment Budget on Fire Island, NY, using a 3D hydrodynamics-based model

    Science.gov (United States)

    List, J. H.; Safak, I.; Warner, J. C.; Schwab, W. C.; Hapke, C. J.; Lentz, E. E.

    2016-02-01

    The processes responsible for long-term (decadal) shoreline change and the related imbalance in the sediment budget on Fire Island, a 50 km long barrier island on the south coast of Long Island, NY, has been the subject of debate. The estimated net rate of sediment leaving the barrier at the west end of the island is approximately double the estimated net rate of sediment entering in the east, but the island-wide average sediment volume change associated with shoreline change is near zero and cannot account for this deficit. A long-held hypothesis is that onshore sediment flux from the inner continental shelf within the western half of the island is responsible for balancing the sediment budget. To investigate this possibility, we use a nested, 3-D, hydrodynamics-based modeling system (COAWST) to simulate the island-wide alongshore and cross-shore transport, in combination with shoreline change observations. The modeled, net alongshore transport gradients in the nearshore predict that the central part of Fire Island should be erosional, yet shoreline change observations show this area to be accretionary. We compare the model-predicted alongshore transport gradients with the flux gradients that would be required to generate the observed shoreline change, to give the pattern of sediment volume gains or losses that cannot be explained by the modeled alongshore transport gradients. Results show that the western 30 km of coast requires an input of sediment, supporting the hypothesis of onshore flux in this area. The modeled cross-shore flux of sediment between the shoreface and inner shelf is consistent these results, with onshore-directed bottom currents creating an environment more conducive to onshore sediment flux in the western 30 km of the island compared to the eastern 20 km. We conclude that the cross-shore flux of sediment can explain the shoreline change observations, and is an integral component of Fire Island's sediment budget.

  16. Hurricane impact and recovery shoreline change analysis of the Chandeleur Islands, Louisiana, USA: 1855 to 2005

    Science.gov (United States)

    Fearnley, Sarah Mary; Miner, Michael D.; Kulp, Mark; Bohling, Carl; Penland, Shea

    2009-12-01

    Results from historical (1855-2005) shoreline change analysis conducted along the Chandeleur Islands, Louisiana demonstrate that tropical cyclone frequency dominates the long-term evolution of this barrier island chain. Island area decreased at a rate of -0.16 km2/year for the relatively quiescent time period up until 1996, when an increase in tropical cyclone frequency accelerated this island area reduction to a rate of -1.01 km2/year. More frequent hurricanes also affected shoreline retreat rates, which increased from -11.4 m/year between 1922 and 1996 to -41.9 m/year between 1982 and 2005. The erosional impact caused by the passage of Hurricane Katrina in 2005 was unprecedented. Between 2004 and 2005, the shoreline of the northern islands retreated -201.5 m/year, compared with an average retreat rate of -38.4 m/year between 1922 and 2004. A linear regression analysis of shoreline change predicts that, as early as 2013, the backbarrier marsh that serves to stabilize the barrier island chain will be completely destroyed if storm frequency observed during the past decade persists. If storm frequency decreases to pre-1996 recurrence intervals, the backbarrier marsh is predicted to remain until 2037. Southern portions of the barrier island chain where backbarrier marsh is now absent behave as ephemeral islands that are destroyed after storm impacts and reemerge during extended periods of calm weather, a coastal behavior that will eventually characterize the entire island chain.

  17. Drivers of shoreline change in atoll reef islands of the Tuamotu Archipelago, French Polynesia

    Science.gov (United States)

    Duvat, Virginie K. E.; Salvat, Bernard; Salmon, Camille

    2017-11-01

    This paper increases by around 30% the sample of atoll reef islands studied from a shoreline change perspective, and covers an under-studied geographical area, i.e. the French Tuamotu Archipelago. It brings new irrefutable evidences on the persistence of reef islands over the last decades, as 77% of the 111 study islands exhibited areal stability while 15% and 8% showed expansion and contraction, respectively. This paper also addresses a key research gap by interpreting the major local drivers controlling recent shoreline and island change, i.e. tropical cyclones and seasonal swells, sediment supply by coral reefs and human activities. The 1983 tropical cyclones had contrasting impacts, depending on the shoreline indicator considered. While they generally caused a marked retreat of the stability line, the base of the beach advanced at some locations, as a result of either sediment reworking or fresh sediment inputs. The post-cyclone fair weather period was characterised by reversed trends indicating island morphological readjustment. Cyclonic waves contributed to island upwards growth, which reached up to 1 m in places, through the transfer of sediments up onto the island surface. However, the steep outer slopes of atolls limited sediment transfers to the reef flat and island system. We found that 57% of the study islands are disturbed by human activities, including 'rural' and uninhabited islands. Twenty-six percent of these islands have lost the capacity to respond to ocean-climate related pressures, including the 'capital' islands concentrating atolls' population, infrastructures and economic activities, which is preoccupying under climate change.

  18. Shoreline response to detached breakwaters in prototype

    NARCIS (Netherlands)

    Khuong, T.C.

    2016-01-01

    An accurate prediction of shoreline changes behind detached breakwaters is, in regard to the adjustment to the environmental impact, still a challenge for designers and coastal managers. This research is expected to fill the gaps in the estimation of shoreline changes by developing new and

  19. Coupling centennial-scale shoreline change to sea-level rise and coastal morphology in the Gulf of Mexico using a Bayesian network

    Science.gov (United States)

    Plant, Nathaniel G.

    2016-01-01

    Predictions of coastal evolution driven by episodic and persistent processes associated with storms and relative sea-level rise (SLR) are required to test our understanding, evaluate our predictive capability, and to provide guidance for coastal management decisions. Previous work demonstrated that the spatial variability of long-term shoreline change can be predicted using observed SLR rates, tide range, wave height, coastal slope, and a characterization of the geomorphic setting. The shoreline is not suf- ficient to indicate which processes are important in causing shoreline change, such as overwash that depends on coastal dune elevations. Predicting dune height is intrinsically important to assess future storm vulnerability. Here, we enhance shoreline-change predictions by including dune height as a vari- able in a statistical modeling approach. Dune height can also be used as an input variable, but it does not improve the shoreline-change prediction skill. Dune-height input does help to reduce prediction uncer- tainty. That is, by including dune height, the prediction is more precise but not more accurate. Comparing hindcast evaluations, better predictive skill was found when predicting dune height (0.8) compared with shoreline change (0.6). The skill depends on the level of detail of the model and we identify an optimized model that has high skill and minimal overfitting. The predictive model can be implemented with a range of forecast scenarios, and we illustrate the impacts of a higher future sea-level. This scenario shows that the shoreline change becomes increasingly erosional and more uncertain. Predicted dune heights are lower and the dune height uncertainty decreases.

  20. Living shorelines enhanced the resilience of saltmarshes to Hurricane Matthew (2016).

    Science.gov (United States)

    Smith, Carter S; Puckett, Brandon; Gittman, Rachel K; Peterson, Charles H

    2018-06-01

    Nature-based solutions, such as living shorelines, have the potential to restore critical ecosystems, enhance coastal sustainability, and increase resilience to natural disasters; however, their efficacy during storm events compared to traditional hardened shorelines is largely untested. This is a major impediment to their implementation and promotion to policy-makers and homeowners. To address this knowledge gap, we evaluated rock sill living shorelines as compared to natural marshes and hardened shorelines (i.e., bulkheads) in North Carolina, USA for changes in surface elevation, Spartina alterniflora stem density, and structural damage from 2015 to 2017, including before and after Hurricane Matthew (2016). Our results show that living shorelines exhibited better resistance to landward erosion during Hurricane Matthew than bulkheads and natural marshes. Additionally, living shorelines were more resilient than hardened shorelines, as they maintained landward elevation over the two-year study period without requiring any repair. Finally, rock sill living shorelines were able to enhance S. alterniflora stem densities over time when compared to natural marshes. Our results suggest that living shorelines have the potential to improve coastal resilience while supporting important coastal ecosystems. © 2018 by the Ecological Society of America.

  1. Application of remote sensing and GIS for detection of long-term mangrove shoreline changes in Ca Mau, Vietnam

    Science.gov (United States)

    Tran Thi, V.; Phan Nguyen, H.; Tien Thi Xuan, A.; Dahdouh-Guebas, F.; Koedam, N.

    2013-12-01

    Ca Mau at the southern tip of Vietnam supports a large area of mangroves and has a high value for biodiversity and scenic beauty. This area is affected by erosion along the East Sea and accretion along the Gulf of Thailand, leading to the loss of huge stretches of mangroves along the East Sea and, in some cases, loss of ecosystems services provided by mangroves. In this study, we used remotely sensed aerial (1953), Landsat (1979, 1988, and 2000) and SPOT (1992, 1995, 2004, 2008 and 2009, and 2011) images and the Digital Shoreline Analysis System (DSAS) to quantify the rate of mangrove shoreline change for a 58 yr period. There were 1129 transects sampled at 100 m intervals along the mangrove shoreline and two statistical methods, namely End Point Rate (EPR) and Linear Regression Rate (LRR), were used to calculate the rate of change of mangrove shorelines and distance from 1953 to 2011. The study confirms erosion and accretion respectively are significant at the Eastern and Western Sea sides of the Ca Mau tip. The East Sea side had a mean erosion LRR of 33.24 m yr-1. For the accretion trend at the Gulf of Thailand side averaged at rate of 40.65 m yr-1. The results are important in predicting changes of coastal ecosystem boundaries and enable advanced planning for specific sections of coastline, to minimize or neutralize losses, to inform provincial rehabilitation efforts and reduce threats to coastal development and human safety.

  2. Comparison of Two Simplification Methods for Shoreline Extraction from Digital Orthophoto Images

    Science.gov (United States)

    Bayram, B.; Sen, A.; Selbesoglu, M. O.; Vārna, I.; Petersons, P.; Aykut, N. O.; Seker, D. Z.

    2017-11-01

    The coastal ecosystems are very sensitive to external influences. Coastal resources such as sand dunes, coral reefs and mangroves has vital importance to prevent coastal erosion. Human based effects also threats the coastal areas. Therefore, the change of coastal areas should be monitored. Up-to-date, accurate shoreline information is indispensable for coastal managers and decision makers. Remote sensing and image processing techniques give a big opportunity to obtain reliable shoreline information. In the presented study, NIR bands of seven 1:5000 scaled digital orthophoto images of Riga Bay-Latvia have been used. The Object-oriented Simple Linear Clustering method has been utilized to extract shoreline of Riga Bay. Bend and Douglas-Peucker methods have been used to simplify the extracted shoreline to test the effect of both methods. Photogrammetrically digitized shoreline has been taken as reference data to compare obtained results. The accuracy assessment has been realised by Digital Shoreline Analysis tool. As a result, the achieved shoreline by the Bend method has been found closer to the extracted shoreline with Simple Linear Clustering method.

  3. COMPARISON OF TWO SIMPLIFICATION METHODS FOR SHORELINE EXTRACTION FROM DIGITAL ORTHOPHOTO IMAGES

    Directory of Open Access Journals (Sweden)

    B. Bayram

    2017-11-01

    Full Text Available The coastal ecosystems are very sensitive to external influences. Coastal resources such as sand dunes, coral reefs and mangroves has vital importance to prevent coastal erosion. Human based effects also threats the coastal areas. Therefore, the change of coastal areas should be monitored. Up-to-date, accurate shoreline information is indispensable for coastal managers and decision makers. Remote sensing and image processing techniques give a big opportunity to obtain reliable shoreline information. In the presented study, NIR bands of seven 1:5000 scaled digital orthophoto images of Riga Bay-Latvia have been used. The Object-oriented Simple Linear Clustering method has been utilized to extract shoreline of Riga Bay. Bend and Douglas-Peucker methods have been used to simplify the extracted shoreline to test the effect of both methods. Photogrammetrically digitized shoreline has been taken as reference data to compare obtained results. The accuracy assessment has been realised by Digital Shoreline Analysis tool. As a result, the achieved shoreline by the Bend method has been found closer to the extracted shoreline with Simple Linear Clustering method.

  4. SPATIO-TEMPORAL ANALYSIS OF SHORELINE CHANGES IN ...

    African Journals Online (AJOL)

    Osondu

    2011-12-05

    Dec 5, 2011 ... The study recommended periodic monitoring of the coastal area on monthly and yearly bases. Keywords: Shoreline, GIS, Remote sensing, Bonny Island, Water transport, .... imported to Arcview GIS 3.3 for enhancement.

  5. A numerical shoreline model for shorelines with large curvature

    DEFF Research Database (Denmark)

    Kærgaard, Kasper Hauberg; Fredsøe, Jørgen

    2013-01-01

    orthogonal horizontal directions are used. The volume error in the sediment continuity equation which is thereby introduced is removed through an iterative procedure. The model treats the shoreline changes by computing the sediment transport in a 2D coastal area model, and then integrating the sediment...

  6. Investigating Coastal Processes Responsible for Large-Scale Shoreline Responses to Human Shoreline Stabilization

    Science.gov (United States)

    Slott, J. M.; Murray, A. B.; Ashton, A. D.

    2006-12-01

    Human shoreline stabilization practices, such as beach nourishment (i.e. placing sand on an eroding beach), have become more prevalent as erosion threatens coastal communities. On sandy shorelines, recent experiments with a numerical model of shoreline change (Slott, et al., in press) indicate that moderate shifts in storminess patterns, one possible outcome of global warming, may accelerate the rate at which shorelines erode or accrete, by altering the angular distribution of approaching waves (the `wave climate'). Accelerated erosion would undoubtedly place greater demands on stabilization. Scientists and coastal engineers have typically only considered the site-specific consequences of shoreline stabilization; here we explore the coastal processes responsible for large-scale (10's kms) and long-term (decades) effects using a numerical model developed by Ashton, et al. (2001). In this numerical model, waves breaking at oblique angles drive a flux of sediment along the shoreline, where gradients in this flux can shape the coastline into surprisingly complex forms (e.g. cuspate-capes found on the Carolina coast). Wave "shadowing" plays a major role in shoreline evolution, whereby coastline features may block incoming waves from reaching distant parts. In this work, we include beach nourishment in the Ashton, et al. (2001) model. Using a cuspate-cape shoreline as our initial model condition, we conducted pairs of experiments and varied the wave-climate forcing across each pair, each representing different storminess scenarios. Here we report on one scenario featuring increased extra-tropical storm influence. For each experiment-pair we ran a control experiment with no shoreline stabilization and a second where a beach nourishment project stabilized a cape tip. By comparing the results of these two parallel runs, we isolate the tendency of the shoreline to migrate landward or seaward along the domain due solely to beach nourishment. Significant effects from beach

  7. Reservoir shorelines : a methodology for evaluating operational impacts

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, M.; Braund-Read, J.; Musgrave, B. [BC Hydro, Burnaby, BC (Canada)

    2009-07-01

    BC Hydro has been operating hydroelectric facilities for over a century in British Columbia. The integrity and stability of the shorelines and slopes bordering hydroelectric reservoirs is affected by changing water levels in the reservoir, natural processes of flooding, wind and wave action and modification of groundwater levels. Establishing setbacks landward of the shoreline are needed in order to protect useable shoreline property that may be at risk of flooding, erosion or instability due to reservoir operations. Many of the reservoirs in British Columbia are situated in steep, glaciated valleys with diverse geological, geomorphological and climatic conditions and a variety of eroding shorelines. As such, geotechnical studies are needed to determine the operational impacts on reservoir shorelines. Since the 1960s BC Hydro has been developing a methodology for evaluating reservoir impacts and determining the land around the reservoir perimeter that should remain as a right of way for operations while safeguarding waterfront development. The methodology was modified in the 1990s to include geomorphological and geological processes. However, uncertainties in the methodology still exist due to limited understanding of key issues such as rates of erosion and shoreline regression, immaturity of present day reservoir shorelines and impacts of climate change. 11 refs., 1 tab., 7 figs.

  8. Numerical prediction of shoreline adjacent to breakwater

    Digital Repository Service at National Institute of Oceanography (India)

    Mahadevan, R.; Chandramohan, P.; Nayak, B.U.

    Existing mathematical models for prediction of shoreline changes in the vicinity of a breakwater were reviewed The analytical and numerical results obtained from these models have been compared Under the numerical approach, two different implicit...

  9. Application of remote sensing and GIS for detection of long-term mangrove shoreline changes in Mui Ca Mau, Vietnam

    Science.gov (United States)

    Tran Thi, V.; Tien Thi Xuan, A.; Phan Nguyen, H.; Dahdouh-Guebas, F.; Koedam, N.

    2014-07-01

    Mui Ca Mau at the southern tip of Vietnam supports a large area of mangroves and has a high value for biodiversity and scenic beauty. This area is affected by erosion along the East Sea and accretion along the Gulf of Thailand, leading to the loss of huge stretches of mangroves along the East Sea and, in some cases, loss of environmental and ecosystem services provided by mangroves. In this study, we used remotely sensed aerial (1953), Landsat (1979, 1988 and 2000) and SPOT (1992, 1995, 2004, 2008, 2009 and 2011) images and the Digital Shoreline Analysis System (DSAS) to quantify the rate of mangrove shoreline change for a 58 yr period. There were 1129 transects sampled at 100 m intervals along the mangrove shoreline and two statistical methods, namely end point rate (EPR) and linear regression rate (LRR), were used to calculate the rate of change of mangrove shorelines and distance from 1953 to 2011. The study confirms that erosion and accretion, respectively, are significant at the East Sea and Gulf of Thailand sides of Mui Ca Mau. The East Sea side had a mean erosion LRR of 33.24 m yr-1. The accretion trend at the Gulf of Thailand side had an average rate of 40.65 m yr-1. The results are important in predicting changes of coastal ecosystem boundaries and enable advanced planning for specific sections of coastline, to minimize or neutralize losses, to inform provincial rehabilitation efforts and reduce threats to coastal development and human safety.

  10. Semi-automated procedures for shoreline extraction using single RADARSAT-1 SAR image

    Science.gov (United States)

    Al Fugura, A.'kif; Billa, Lawal; Pradhan, Biswajeet

    2011-12-01

    Coastline identification is important for surveying and mapping reasons. Coastline serves as the basic point of reference and is used on nautical charts for navigation purposes. Its delineation has become crucial and more important in the wake of the many recent earthquakes and tsunamis resulting in complete change and redraw of some shorelines. In a tropical country like Malaysia, presence of cloud cover hinders the application of optical remote sensing data. In this study a semi-automated technique and procedures are presented for shoreline delineation from RADARSAT-1 image. A scene of RADARSAT-1 satellite image was processed using enhanced filtering technique to identify and extract the shoreline coast of Kuala Terengganu, Malaysia. RADSARSAT image has many advantages over the optical data because of its ability to penetrate cloud cover and its night sensing capabilities. At first, speckles were removed from the image by using Lee sigma filter which was used to reduce random noise and to enhance the image and discriminate the boundary between land and water. The results showed an accurate and improved extraction and delineation of the entire coastline of Kuala Terrenganu. The study demonstrated the reliability of the image averaging filter in reducing random noise over the sea surface especially near the shoreline. It enhanced land-water boundary differentiation, enabling better delineation of the shoreline. Overall, the developed techniques showed the potential of radar imagery for accurate shoreline mapping and will be useful for monitoring shoreline changes during high and low tides as well as shoreline erosion in a tropical country like Malaysia.

  11. Digital shoreline analysis system-based change detection along the highly eroding Krishna-Godavari delta front

    Science.gov (United States)

    Kallepalli, Akhil; Kakani, Nageswara Rao; James, David B.; Richardson, Mark A.

    2017-07-01

    Coastal regions are highly vulnerable to rising sea levels due to global warming. Previous Intergovernmental Panel on Climate Change (2013) predictions of 26 to 82 cm global sea level rise are now considered conservative. Subsequent investigations predict much higher levels which would displace 10% of the world's population living less than 10 m above sea level. Remote sensing and GIS technologies form the mainstay of models on coastal retreat and inundation to future sea-level rise. This study estimates the varying trends along the Krishna-Godavari (K-G) delta region. The rate of shoreline shift along the 330-km long K-G delta coast was estimated using satellite images between 1977 and 2008. With reference to a selected baseline from along an inland position, end point rate and net shoreline movement were calculated using a GIS-based digital shoreline analysis system. The results indicated a net loss of about 42.1 km2 area during this 31-year period, which is in agreement with previous literature. Considering the nature of landforms and EPR, the future hazard line (or coastline) is predicted for the area; the predication indicates a net erosion of about 57.6 km2 along the K-G delta coast by 2050 AD.

  12. An empirical orthogonal function analysis of ocean shoreline location on the Virginia barrier islands

    Science.gov (United States)

    Haluska, J. D.

    2017-12-01

    Shoreline change along the Eastern Atlantic shore of Virginia has been studied for the individual barrier islands but not as an integrated system. This study combines the Atlantic shoreline locations for eleven barrier islands obtained from LANDSAT 5, 7, and 8 images. Approximately 250 shoreline locations over a 24-year period from Jan 1990 to Dec 2014 were extracted from the digitized shoreline data at 338 transects. The resulting 338 by 250 matrix was analyzed by the empirical orthogonal function (EOF) technique. The first four principal components (PC) explained 86 percent of the sample variance. Since the data was not detrended, the first PC was the overall trend of the data with a discontinuity in 2004-2005. The 2004-2005 interval included storm events and large shoreline changes. PCs 2 to 4 reflect the effects of El Nino events and tropical and non-tropical storms. Eigenvectors 1 to 4 all show the effects of the nine inlets in the island group. Eigenvector (EV) 1 explains 59 percent of the shoreline spatial variance and shows the largest changes at the northern and southern island ends. EVs 2 to 4 reflect the pattern of EV1 but at sequentially smaller percentages of the spatial variance. As a group, the eleven islands are losing ocean side shoreline. The lone exception is Hog Island. Sea level had the strongest correlation with the shoreline loss trend of PC1. The coefficient of determination was 0.41. The NAO and MEI also correlated with PC1 with correlations of determination of 0.05 and 0.12 respectively. These confidence level for the three factors was better than 99 percent. Sea level also correlated with PC3 and PC4. The PCs as a group show that the year intervals 2004-2005 and 2009-2010 had large effects on the shoreline change pattern for the island group. EVs 1 to 4 had the highest range of shoreline change at the island ends indicating the effect the changes of the inlets have on the adjacent islands. The smaller islands as a group had a higher level

  13. Integrated Shoreline Extraction Approach with Use of Rasat MS and SENTINEL-1A SAR Images

    Science.gov (United States)

    Demir, N.; Oy, S.; Erdem, F.; Şeker, D. Z.; Bayram, B.

    2017-09-01

    Shorelines are complex ecosystems and highly important socio-economic environments. They may change rapidly due to both natural and human-induced effects. Determination of movements along the shoreline and monitoring of the changes are essential for coastline management, modeling of sediment transportation and decision support systems. Remote sensing provides an opportunity to obtain rapid, up-to-date and reliable information for monitoring of shoreline. In this study, approximately 120 km of Antalya-Kemer shoreline which is under the threat of erosion, deposition, increasing of inhabitants and urbanization and touristic hotels, has been selected as the study area. In the study, RASAT pansharpened and SENTINEL-1A SAR images have been used to implement proposed shoreline extraction methods. The main motivation of this study is to combine the land/water body segmentation results of both RASAT MS and SENTINEL-1A SAR images to improve the quality of the results. The initial land/water body segmentation has been obtained using RASAT image by means of Random Forest classification method. This result has been used as training data set to define fuzzy parameters for shoreline extraction from SENTINEL-1A SAR image. Obtained results have been compared with the manually digitized shoreline. The accuracy assessment has been performed by calculating perpendicular distances between reference data and extracted shoreline by proposed method. As a result, the mean difference has been calculated around 1 pixel.

  14. Extended Kalman Filter framework for forecasting shoreline evolution

    Science.gov (United States)

    Long, Joseph; Plant, Nathaniel G.

    2012-01-01

    A shoreline change model incorporating both long- and short-term evolution is integrated into a data assimilation framework that uses sparse observations to generate an updated forecast of shoreline position and to estimate unobserved geophysical variables and model parameters. Application of the assimilation algorithm provides quantitative statistical estimates of combined model-data forecast uncertainty which is crucial for developing hazard vulnerability assessments, evaluation of prediction skill, and identifying future data collection needs. Significant attention is given to the estimation of four non-observable parameter values and separating two scales of shoreline evolution using only one observable morphological quantity (i.e. shoreline position).

  15. Projected atoll shoreline and run-up changes in response to sea-level rise and varying large wave conditions at Wake and Midway Atolls, Northwestern Hawaiian Islands

    Science.gov (United States)

    Shope, James B.; Storlazzi, Curt; Hoeke, Ron

    2017-01-01

    Atoll islands are dynamic features that respond to seasonal alterations in wave conditions and sea level. It is unclear how shoreline wave run-up and erosion patterns along these low elevation islands will respond to projected sea-level rise (SLR) and changes in wave climate over the next century, hindering communities' preparation for the future. To elucidate how these processes may respond to climate change, extreme boreal winter and summer wave conditions under future sea-level rise (SLR) and wave climate scenarios were simulated at two atolls, Wake and Midway, using a shallow-water hydrodynamic model. Nearshore wave conditions were used to compute the potential longshore sediment flux along island shorelines via the CERC empirical formula and wave-driven erosion was calculated as the divergence of the longshore drift; run-up and the locations where the run-up exceed the berm elevation were also determined. SLR is projected to predominantly drive future island morphological change and flooding. Seaward shorelines (i.e., ocean fronted shorelines directly facing incident wave energy) were projected to experience greater erosion and flooding with SLR and in hypothetical scenarios where changes to deep water wave directions were altered, as informed by previous climate change forced Pacific wave modeling efforts. These changes caused nearshore waves to become more shore-normal, increasing wave attack along previously protected shorelines. With SLR, leeward shorelines (i.e., an ocean facing shoreline but sheltered from incident wave energy) became more accretive on windward islands and marginally more erosive along leeward islands. These shorelines became more accretionary and subject to more flooding with nearshore waves becoming more shore-normal. Lagoon shorelines demonstrated the greatest SLR-driven increase in erosion and run-up. They exhibited the greatest relative change with increasing wave heights where both erosion and run-up magnitudes increased. Wider

  16. Projected atoll shoreline and run-up changes in response to sea-level rise and varying large wave conditions at Wake and Midway Atolls, Northwestern Hawaiian Islands

    Science.gov (United States)

    Shope, James B.; Storlazzi, Curt D.; Hoeke, Ron K.

    2017-10-01

    Atoll islands are dynamic features that respond to seasonal alterations in wave conditions and sea level. It is unclear how shoreline wave run-up and erosion patterns along these low elevation islands will respond to projected sea-level rise (SLR) and changes in wave climate over the next century, hindering communities' preparation for the future. To elucidate how these processes may respond to climate change, extreme boreal winter and summer wave conditions under future sea-level rise (SLR) and wave climate scenarios were simulated at two atolls, Wake and Midway, using a shallow-water hydrodynamic model. Nearshore wave conditions were used to compute the potential longshore sediment flux along island shorelines via the CERC empirical formula and wave-driven erosion was calculated as the divergence of the longshore drift; run-up and the locations where the run-up exceed the berm elevation were also determined. SLR is projected to predominantly drive future island morphological change and flooding. Seaward shorelines (i.e., ocean fronted shorelines directly facing incident wave energy) were projected to experience greater erosion and flooding with SLR and in hypothetical scenarios where changes to deep water wave directions were altered, as informed by previous climate change forced Pacific wave modeling efforts. These changes caused nearshore waves to become more shore-normal, increasing wave attack along previously protected shorelines. With SLR, leeward shorelines (i.e., an ocean facing shoreline but sheltered from incident wave energy) became more accretive on windward islands and marginally more erosive along leeward islands. These shorelines became more accretionary and subject to more flooding with nearshore waves becoming more shore-normal. Lagoon shorelines demonstrated the greatest SLR-driven increase in erosion and run-up. They exhibited the greatest relative change with increasing wave heights where both erosion and run-up magnitudes increased. Wider

  17. Mangroves and shoreline change on Molokai, Hawaii: Assessing the role of introduced Rhizophora mangle in sediment dynamics and coastal change using remote sensing and GIS

    Science.gov (United States)

    D'Iorio, Margaret Mary

    The Florida red mangrove, Rhizophora mangle, was introduced to the high volcanic island of Molokai, Hawaii in 1902 to trap sediment and stabilize eroding coastal mudflats along the island's reef-fringed south coast. This prolific invasive species now occupies 2.4 km2 of inter-tidal land and borders approximately 20% of the south coast shoreline. Integrating the fundamentals of remote sensing and Geographical Information Systems, this research investigates the effects of mangrove introduction on sediment dynamics and coastal change on south Molokai throughout the 20th century and provides a baseline of mangrove distribution, a detailed record of shoreline change rates, and a chronological history of island land use and environmental change. Monitoring of coastal change associated with mangroves is essential to understanding how natural coastal ecosystems react to alien species introductions and adapt overall to changing climatic regimes. Comparing the accuracy of various remote sensing instruments and processing techniques, this study has shown that the remote sensing with modern airborne and satellite sensors offers an effective management tool for mapping baseline conditions and monitoring change in remote island environments like that on the south coast of Molokai. Shoreline change assessment found that shoreline change rates on the island's south coast varied both alongshore and through time and that the dominant change has been one of progradation. Rates of change peaked in the early part of the 20th century and have since decayed exponentially over time. Changing land use practices coupled with the introduction of invasive species may have strongly influenced observed variability in rates of coastal change. Field observations and sediment analysis suggest that sediment transfer across the coastal boundary on the mangrove-fringed south coast is relatively limited and appears to be mainly event-driven. For shallow, reef-fringed, coastal regions vulnerable to

  18. Observations of Interannual Dune Morphological Evolution With Comparisons to Shoreline Change Along the Columbia River Littoral Cell

    Science.gov (United States)

    Doermann, L.; Kaminsky, G. M.; Ruggiero, P.

    2006-12-01

    Beach topographic data have been collected along the 160 km-long Columbia River Littoral Cell in southwest Washington and northwest Oregon, USA as part of the Southwest Washington Coastal Erosion Study and a NANOOS pilot project. The monitoring program includes the collection of cross-shore beach profiles at 49 sites for each of the 34 seasons since 1997 (with few exceptions), enabling the investigation of the seasonal to interannual morphological variability of this high-energy coast. We focus here on the dunes backing the beaches, aiming to quantitatively describe the wide variety of characteristics they exhibit, as well as to relate dune evolution to shoreline change. To analyze the large volume of high-quality data, we use automated algorithms and systematic processes to identify the location of the dune toe, crest, and face, and calculate a volume (where enough data are available) and beach width for each survey. We define the position of the dune face as the elevation half-way between the average dune toe and average dune crest elevations at each profile location, and beach width as the horizontal distance between the 2-m contour (~MSL) and the dune toe. Much like shoreline proxies lower on the beach profile, (e.g., the 3-m contour), the location of the dune toe shows large seasonal variability with onshore deposition of sand in summer months and offshore sand transport in the winter. However, the location of the dune face and the elevation of the dune crest are much less variable and are useful in describing the evolution of the dune/beach system in the horizontal and vertical directions, respectively, over interannual time scales. On beaches with the highest shoreline change rates in the study area, the dune face follows the progradational trend of the shoreline with the dune face prograding at approximately 25-50% of the rate of the shoreline. Along many of these beaches that experienced severe erosion during the El Niño of 1997/98, the dune face

  19. Variability and correlations of shoreline and dunes on the southern Baltic coast (CRS Lubiatowo, Poland)

    OpenAIRE

    Zbigniew Pruszak; Rafal Ostrowski; Jan Schönhofer

    2011-01-01

    The paper analyses the results of field investigations into the evolution of the shoreline and dune toe positions in a multi-bar,dissipative coastal zone. The correlations between the changes in the shoreline and the dune toe range from -0.4 to 0.8. It is most often the case that the dune toe is stable while the shoreline moves. Consistent cross-shore migration is slightly more likelyto happen than the divergent or convergent movements of both lines. Shoreline retreat and advance attain resp...

  20. Monitoring shoreline environment of Paradip, east coast of India using remote sensing

    Digital Repository Service at National Institute of Oceanography (India)

    ManiMurali, R.; Shrivastava, D.; Vethamony, P.

    -raey et al. 8 used remote sensing for detecting beach erosion and ac- cretion along Damietta Port, Egypt. Narayana and Priju 9 studied the shoreline changes along the central Kerala coast using satellite images. Shoreline-change mapping was carried... and detecting long-term change in the entire coastline. Meijerink 11 and Rao 12 studied the dynamic geomor- phology of Mahanadi delta and problems of coastal dyna- mics and shoreline changes which arose after the construction of Paradip port. Rupali 13...

  1. Engaging Local Communities in Arctic Observing Networks: A Collaborative Shoreline Change Risk WebGIS for Alaska's Arctic Slope Region

    Science.gov (United States)

    Brady, M.

    2017-12-01

    This study engaged local community stakeholders in Alaska's Arctic Slope Region to develop a web-based shoreline change risk geographic information system (WebGIS) in collaboration with the North Slope Borough and its residents. The value of the effort includes rich spatial documentation of local risks across the vast, remote, and rapidly changing shoreline, and identification of local manager information needs to direct WebGIS development. The study advances our understanding of shoreline change problems from the perspective of local Arctic communities beyond municipal impacts while building decision support. Over fifty local residents in three communities with collective coastal knowledge that extends across the National Petroleum Reserve - Alaska and Arctic National Wildlife Refuge shared their perspectives on hard copy maps. Sixteen managers provided usability perceptions of a beta WebGIS with shoreline change susceptibility information summarized at relevant asset locations such as subsistence camps. The hard copy maps with 300 "problem places" were digitized for analysis, which revealed problems across the coastline, especially challenges to boating for subsistence hunting such as shoaling cutting off access and creating hazards. The usability workshop revealed specific information needs including the need to monitor impacts at decommissioned national defense radar sites repurposed by locals to centralize oil and gas activity. These results were analyzed using an Instructional Systems Design (ISD) framework consisting of front-end and formative WebGIS evaluation phases. The front-end evaluation is the local input on hard copy maps, which provided local verification of coastal risks. The formative evaluation is the usability workshop with managers, which informed WebGIS development while promoting user buy-in. In terms of product and process, the local knowledge and information needs collected are significant because they establish local engagement with the

  2. Overview of shoreline cleaning agents

    International Nuclear Information System (INIS)

    Clayton, J.

    1992-01-01

    Chemical cleaning agents may be used to promote release of stranded oil from shorelines for reasons including biological sensitivity of indigenous fauna and flora to the oil, amenity considerations of the shoreline, or concern about refloating of the oil and subsequent stranding on adjacent shorelines. While use of chemical cleaning agents may be appropriate under proper toxic responses in circumstances, certain limitations should be recognized. The potential for toxic responses in indigenous fauna and flora to the cleaning agents must be considered. Enhanced penetration of oil into permeable shorelines following treatment with chemical cleaning agents also is not desirable. However, if conditions related to toxicity and substrate permeability are determined to be acceptable, the use of chemical cleaning agents for treatment of stranded oil can be considered. Chemical agents for cleaning oiled shorelines can be grouped into three categories: (1) non-surfactant-based solvents, (2) chemical dispersants, and (3) formulations especially designed to release stranded oil from shoreline substrates (i.e., shoreline-cleaning-agents). Depending on the specific circumstances present on an oiled shoreline, it is generally desirable that chemical agents used for cleaning will release oil from shoreline substrate(s) to surface waters. Recovery of the oil can then be accomplished by mechanical procedures such as booming and skimming operations

  3. Analysis of Decadal-Scale Shoreline Change along the Hamlet of Paulatuk (Canadian Arctic), using Landsat Satellite Imagery and GIS techniques from 1984 to 2014.

    Science.gov (United States)

    Sankar, R. D.; Murray, M. S.; Wells, P.

    2016-12-01

    Increased accuracy in estimating coastal change along localized segments of the Canadian Arctic coast is essential, in order to identify plausible adaptation initiatives to deal with the effects of climate change. This paper quantifies rates of shoreline movement along an 11 km segment of the Hamlet of Paulatuk (Northwest Territories, Canada), using an innovative modelling technique - Analyzing Moving Boundaries Using R (AMBUR). Approximately two dozen shorelines, obtained from high-resolution Landsat satellite imagery were analyzed. Shorelines were extracted using the band ratio method and compiled in ArcMapTM to determine decadal trends of coastal change. The unique geometry of Paulatuk facilitated an independent analysis of the western and eastern sections of the study area. Long-term (1984-2014) and short-term (1984-2003) erosion and accretion rates were calculated using the Linear Regression and End Point Rate methods respectively. Results reveal an elevated rate of erosion for the western section of the hamlet over the long-term (-1.1 m/yr), compared to the eastern portion (-0.92 m/yr). The study indicates a significant alongshore increase in the rates of erosion on both portions of the study area, over the short-term period 1984 to 2003. Mean annual erosion rates increased over the short-term along the western segment (-1.4 m/yr), while the eastern shoreline retreated at a rate of -1.3 m/yr over the same period. The analysis indicates that an amalgamation of factors may be responsible for the patterns of land loss experienced along Paulatuk. These include increased sea-surface temperature coupled with dwindling arctic ice and elevated storm hydrodynamics. The analysis further reveals that the coastline along the eastern portion of the hamlet, where the majority of the population reside, is vulnerable to a high rate of shoreline erosion.

  4. NOAA Composite Shoreline - Vectorized Shoreline Derived From NOAA-NOS Coastal Survey Maps and Aerial Photographs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Composite Shoreline is primarily intended for high-resolution cartographic representation of the shoreline. It is a high-resolution vector shoreline based...

  5. Uncertainties in sandy shorelines evolution under the Bruun rule assumption

    Directory of Open Access Journals (Sweden)

    Gonéri eLe Cozannet

    2016-04-01

    Full Text Available In the current practice of sandy shoreline change assessments, the local sedimentary budget is evaluated using the sediment balance equation, that is, by summing the contributions of longshore and cross-shore processes. The contribution of future sea-level-rise induced by climate change is usually obtained using the Bruun rule, which assumes that the shoreline retreat is equal to the change of sea-level divided by the slope of the upper shoreface. However, it remains unsure that this approach is appropriate to account for the impacts of future sea-level rise. This is due to the lack of relevant observations to validate the Bruun rule under the expected sea-level rise rates. To address this issue, this article estimates the coastal settings and period of time under which the use of the Bruun rule could be (invalidated, in the case of wave-exposed gently-sloping sandy beaches. Using the sedimentary budgets of Stive (2004 and probabilistic sea-level rise scenarios based on IPCC, we provide shoreline change projections that account for all uncertain hydrosedimentary processes affecting idealized coasts (impacts of sea-level rise, storms and other cross-shore and longshore processes. We evaluate the relative importance of each source of uncertainties in the sediment balance equation using a global sensitivity analysis. For scenario RCP 6.0 and 8.5 and in the absence of coastal defences, the model predicts a perceivable shift toward generalized beach erosion by the middle of the 21st century. In contrast, the model predictions are unlikely to differ from the current situation in case of scenario RCP 2.6. Finally, the contribution of sea-level rise and climate change scenarios to sandy shoreline change projections uncertainties increases with time during the 21st century. Our results have three primary implications for coastal settings similar to those provided described in Stive (2004 : first, the validation of the Bruun rule will not necessarily be

  6. Numerical Modeling of Shoreline Undulations

    DEFF Research Database (Denmark)

    Kærgaard, Kasper Hauberg

    model has been developed which describes the longshore sediment transport along arbitrarily shaped shorelines. The numerical model is based on a spectral wave model, a depth integrated flow model, a wave-phase resolving sediment transport description and a one-line shoreline model. First the theoretical...... of the feature and under predicts the migration speeds of the features. On the second shoreline, the shoreline model predicts undulations lengths which are longer than the observed undulations. Lastly the thesis considers field measurements of undulations of the bottom bathymetry along an otherwise straight...... length of the shoreline undulations is determined in the linear regime using a shoreline stability analysis based on the numerical model. The analysis shows that the length of the undulations in the linear regime depends on the incoming wave conditions and on the coastal profile. For larger waves...

  7. Variability and correlations of shoreline and dunes on the southern Baltic coast (CRS Lubiatowo, Poland

    Directory of Open Access Journals (Sweden)

    Zbigniew Pruszak

    2011-03-01

    Full Text Available The paper analyses the results of field investigations into the evolution of the shoreline and dune toe positions in a multi-bar,dissipative coastal zone. The correlations between the changes in the shoreline and the dune toe range from -0.4 to 0.8. It is most often the case that the dune toe is stable while the shoreline moves. Consistent cross-shore migration is slightly more likelyto happen than the divergent or convergent movements of both lines. Shoreline retreat and advance attain respective rates of 0.7 m day-1 and 0.4 m day-1. Deep-water wave energy of about 50 kJ m-1 constitutes the boundary between shore accumulation and erosion.

  8. Spatial and temporal patterns of shoreline change of a 280-km high-energy disrupted sandy coast from 1950 to 2014: SW France

    Science.gov (United States)

    Castelle, Bruno; Guillot, Benoit; Marieu, Vincent; Chaumillon, Eric; Hanquiez, Vincent; Bujan, Stéphane; Poppeschi, Coline

    2018-01-01

    A dataset of 15 geo-referenced orthomosaics photos was generated to address long-term shoreline change along approximately 270 km of high-energy sandy coast in SW France between 1950 and 2014. The coast consists of sandy beaches backed by coastal dunes, which are only disrupted by two wide tidal inlets (Arcachon and Maumusson), a wide estuary mouth (Gironde) and a few small wave-dominated inlets and coastal towns. A time and spatially averaged erosion trend of 1.12 m/year is found over 1950-2014, with a local maximum of approximately 11 m/year and a maximum local accretion of approximately 6 m/year, respectively. Maximum shoreline evolutions are observed along coasts adjacent to the inlets and to the estuary mouth, with erosion and accretion alternating over time on the timescale of decades. The two inlet-sandspit systems of Arcachon and Maumusson show a quasi-synchronous behaviour with the two updrift coasts accreting until the 1970s and subsequently eroding since then, which suggests that shoreline change at these locations is controlled by allocyclic mechanisms. Despite sea level rise and the well-established increase in winter wave height over the last decades, there is no capture of significant increase in mean erosion rate. This is hypothesized to be partly the result of relevant coastal dune management works from the 1960s to the 1980s after a long period of coastal dune disrepair during and after the Second World War. This study suggests that long-term shoreline change of high-energy sandy coasts disrupted by inlets and/or estuaries is complex and needs to consider a wide range of parameters including, non-extensively, waves, tides, inlet dynamics, sea level rise, coastal dune management and coastal defences, which challenges the development of reliable long-term coastal evolution numerical models.

  9. A Collaborative Geospatial Shoreline Inventory Tool to Guide Coastal Development and Habitat Conservation

    Directory of Open Access Journals (Sweden)

    Peter Gies

    2013-05-01

    Full Text Available We are developing a geospatial inventory tool that will guide habitat conservation, restoration and coastal development and benefit several stakeholders who seek mitigation and adaptation strategies to shoreline changes resulting from erosion and sea level rise. The ESRI Geoportal Server, which is a type of web portal used to find and access geospatial information in a central repository, is customized by adding a Geoinventory tool capability that allows any shoreline related data to be searched, displayed and analyzed on a map viewer. Users will be able to select sections of the shoreline and generate statistical reports in the map viewer to allow for comparisons. The tool will also facilitate map-based discussion forums and creation of user groups to encourage citizen participation in decisions regarding shoreline stabilization and restoration, thereby promoting sustainable coastal development.

  10. Impacts of shoreline erosion on coastal ecosystems in Songkhla Province

    Directory of Open Access Journals (Sweden)

    Nipaporn Chusrinuan

    2009-07-01

    Full Text Available Songkhla Province is located on the eastern coast of the southern Thai Peninsula, bordering the Gulf of Thailand for approximately 107 km. Most of the basin’s foreshores have been extensively developed for housing, tourism and shrimp farming. The beaches are under deteriorating impacts, often causing sediment transport which leads to an unnaturally high erosion rate. This natural phenomenon is considered to be a critical problem in the coastal areas affected by the hazard of coastal infrastructure and reduced beach esthetics for recreation. In this study, shoreline changes were compared between 1975 and 2006 using aerial photographs and Landsat imageries using Geographic Information System (GIS. The results revealed that 18.5 km2 of the coastal areas were altered during the period. Of this, 17.3 km2 suffered erosion and 1.2 km2were subjected to accretion. The most significant changes occurred between 1975-2006. Shoreline erosion was found at Ban Paktrae, Ranot District, with an average erosion rate of 5.3 m/year, while accretion occurred at Laem Samila, MuangSongkhla District with an average accretion rate of 2.04 m/year. The occurrences of shoreline erosion have contributed to the degradation of coastal soil and water quality, destruction of beach and mangrove forests, loss of human settlements and livelihood.These processes have led to deterioration of the quality of life of the residents. Prevention and mitigation measures to lessen economic and social impacts due to shoreline erosion are discussed.

  11. Shoreline change detection from Karwar to Gokarna - South West coast of India using remotely Sensed data

    Digital Repository Service at National Institute of Oceanography (India)

    Choudhary, R.; Gowthaman, R.; SanilKumar, V.

    -494 #02060313 Copyright ©2013 CAFET-INNOVA TECHNICAL SOCIETY. All rights reserved. Shoreline change detection from Karwar to Gokarna - South West coast of India using remotely Sensed data RICHA CHOUDHARY 1 , R. GOWTHAMAN 2 AND V. SANIL KUMAR 2 1... years period. Gangavali river mouth has narrowed due to siltation. Significant changes in the geomorphic features like spit growth, braided island, creeks, tidal flat are observed near Kali and Gangavali river mouth. Keywords: Remote sensing...

  12. Medium-term shoreline evolution of the mediterranean coast of Andalusia (SW Spain)

    Science.gov (United States)

    Liguori, Vincenzo; Manno, Giorgio; Messina, Enrica; Anfuso, Giorgio; Suffo, Miguel

    2015-04-01

    Coastal environment is a dynamic system in which numerous natural processes are continuously actuating and interacting among them. As a result, geomorphologic, physical and biological characteristics of coastal environments are constantly changing. Such dynamic balance is nowadays seriously threatened by the strong and increasing anthropic pressure that favors erosion processes, and the associated loss of environmental, ecologic and economic aspects. Sandy beaches are the most vulnerable environments in coastal areas. The aim of this work was to reconstruct the historical evolution of the Mediterranean coastline of Andalusia, Spain. The investigated area is about 500 km in length and includes the provinces of Cadiz, Malaga, Granada and Almeria. It is essentially composed by cliffed sectors with sand and gravel pocket beaches constituting independent morphological cells of different dimensions. This study was based on the analysis of aerial photos and satellite images covering a period of 55 years, between 1956 and 2011. Aerial photos were scanned and geo-referenced in order to solve scale and distortion problems. The shoreline was considered and mapped through the identification of the wet / dry sand limit which coincides with the line of maximum run-up; this indicator - representing the shoreline at the moment of the photo - is the most easily identifiable and representative one in microtidal coastal environments. Since shoreline position is linked to beach profile characteristics and to waves, tide and wind conditions at the moment of the photo, such parameters were taken into account in the calculation of shoreline position and changes. Specifically, retreat/accretion changes were reconstructed applying the DSAS method (Digital Shoreline Analysis System) proposed by the US Geological Survey. Significant beach accretion was observed at Playa La Mamola (Granada), with +1 m/y, because the construction of five breakwaters, and at Playa El Cantal (Almeria) and close

  13. Shoreline changes during the last 2000 years on the Saurashtra coast of India: Study based on archaeological evidences

    Digital Repository Service at National Institute of Oceanography (India)

    Gaur, A.S.; Vora, K.H.; Sundaresh

    . In this communication an attempt is made to study shoreline and sea-level changes during the last 2000 years on the basis of archaeological evidence. Archaeological excavations undertaken at Bet Dwarka (western most part of India) revealed an interesting cultural...

  14. Combining pre-spill shoreline segmentation data and shoreline assessment tools to support early response management and planning

    International Nuclear Information System (INIS)

    Lamarche, A.; Owens, E.H.; Martin, V.; Laforest, S.

    2003-01-01

    Several organizations, such as Environment Canada and the Alyeska Pipeline Service Company, are developing or refining pre-spill databases containing information about physical shoreline characteristics. Automated links between these pre-spill shoreline characteristic databases and computerized shoreline assessment tools were recently created by Environment Canada (Quebec and Ontario regions). The tools, which use Geographical Information System (GIS) technology, can be used for planning and documenting support needed for shoreline cleanup operations. A training exercise, designed to evaluate a spill management system integrating the Quebec region pre-spill shoreline database and the ShoreAssess R shoreline assessment system, was conducted at Vercheres, Quebec in October 2002 by Eastern Canada Response Corporation. The testing took place during the planning stage of the early phases of a spill, namely after the first over-flight. The computerized shoreline assessment tools made it possible to evaluate the length and type of shoreline that would potentially be impacted by oil. The tools also made it possible to assess the shoreline treatment methods most likely to be used, and evaluate the probable duration of the cleanup operation. The information would have to be available in time to be considered during the planning activities. The training exercise demonstrated that the integration of the databases is a valuable tool during the early phases of an oil spill response. 9 refs., 2 tabs., 6 figs

  15. Utilizing topobathy LIDAR datasets to identify shoreline variations and to direct charting updates in the northern Gulf of Mexico

    Science.gov (United States)

    Gremillion, S. L.; Wright, S. L.

    2017-12-01

    Topographic and bathymetric light detection and ranging (LIDAR), remote sensing tools used to measure vertical elevations, are commonly employed to monitor shoreline fluctuations. Many of these publicly available datasets provide wide-swath, nearshore topobathy which can be used to extract shoreline positions and analyze coastlines experiencing the greatest temporal and spatial variability. This study focused on the shorelines of Mississippi's Jackson County to determine the minimum time for significant positional changes to occur, relative to currently published NOAA navigational charts. Many of these dynamic shorelines are vulnerable to relative sea level rise, storm surge, and coastal erosion. Utilizing LIDAR datasets from 1998-2015, shoreline positions were derived and analyzed against NOAA's Continually Updated Shoreline Product (CUSP) to recommend the frequency at which future surveys should be conducted. Advisement of charting updates were based upon the resolution of published charts, and the magnitude of observed variances. Jackson County shorelines were divided into four areas for analysis; the mainland, Horn Island, Petit Bois Island (PBI), and a dredge spoil area west of PBI. The mainland shoreline experienced an average change rate of +0.57 m/yr during the study period. This stability was due to engineering structures implemented in the early 1920's to protect against tropical storms. Horn Island, the most stable barrier island, changed an average of -1.34 m/yr, while PBI had an average change of -2.70 m/yr throughout. Lastly, the dredge spoil area changed by +9.06 m/yr. Based on these results, it is recommended that LIDAR surveys for Jackson County's mainland be conducted at least every two years, while surveys of the offshore barrier islands be conducted annually. Furthermore, insufficient LIDAR data for Round Island and the Round Island Marsh Restoration Project highlight these two areas as priority targets for future surveys.

  16. Shoreline change and potential sea level rise impacts in a climate hazardous location in southeast coast of India.

    Science.gov (United States)

    Jayanthi, Marappan; Thirumurthy, Selvasekar; Samynathan, Muthusamy; Duraisamy, Muthusamy; Muralidhar, Moturi; Ashokkumar, Jangam; Vijayan, Koyadan Kizhakkedath

    2017-12-28

    Climate change impact on the environment makes the coastal areas vulnerable and demands the evaluation of such susceptibility. Historical changes in the shoreline positions and inundation based on projected sea-level scenarios of 0.5 and 1 m were assessed for Nagapattinam District, a low-lying coastal area in the southeast coast of India, using high-resolution Shuttle Radar Topography Mission data; multi-dated Landsat satellite images of 1978, 1991, 2003, and 2015; and census data of 2011. Image processing, geographical information system, and digital shoreline analysis system methods were used in the study. The shoreline variation indicated that erosion rate varied at different time scales. The end point rate indicated the highest mean erosion of - 3.12 m/year, occurred in 73% of coast between 1978 and 1991. Weighted linear regression analysis revealed that the coast length of 83% was under erosion at a mean rate of - 2.11 m/year from 1978 to 2015. Sea level rise (SLR) impact indicated that the coastal area of about 14,122 ha from 225 villages and 31,318 ha from 272 villages would be permanently inundated for the SLR of 0.5 and 1 m, respectively, which includes agriculture, mangroves, wetlands, aquaculture, and forest lands. The loss of coastal wetlands and its associated productivity will severely threaten more than half the coastal population. Adaptation measures in people participatory mode, integrated into coastal zone management with a focus on sub-regional coastal activities, are needed to respond to the consequences of climate change.

  17. Living Shorelines: Coastal Resilience with a Blue Carbon Benefit.

    Science.gov (United States)

    Davis, Jenny L; Currin, Carolyn A; O'Brien, Colleen; Raffenburg, Craig; Davis, Amanda

    2015-01-01

    Living shorelines are a type of estuarine shoreline erosion control that incorporates native vegetation and preserves native habitats. Because they provide the ecosystem services associated with natural coastal wetlands while also increasing shoreline resilience, living shorelines are part of the natural and hybrid infrastructure approach to coastal resiliency. Marshes created as living shorelines are typically narrow (erosion control and habitat for estuarine organisms has been documented but their capacity for carbon sequestration has not. We measured carbon sequestration rates in living shorelines and sandy transplanted Spartina alterniflora marshes in the Newport River Estuary, North Carolina. The marshes sampled here range in age from 12 to 38 years and represent a continuum of soil development. Carbon sequestration rates ranged from 58 to 283 g C m-2 yr-1 and decreased with marsh age. The pattern of lower sequestration rates in older marshes is hypothesized to be the result of a relative enrichment of labile organic matter in younger sites and illustrates the importance of choosing mature marshes for determination of long-term carbon sequestration potential. The data presented here are within the range of published carbon sequestration rates for S. alterniflora marshes and suggest that wide-scale use of the living shoreline approach to shoreline management may come with a substantial carbon benefit.

  18. Living Shorelines: Coastal Resilience with a Blue Carbon Benefit.

    Directory of Open Access Journals (Sweden)

    Jenny L Davis

    Full Text Available Living shorelines are a type of estuarine shoreline erosion control that incorporates native vegetation and preserves native habitats. Because they provide the ecosystem services associated with natural coastal wetlands while also increasing shoreline resilience, living shorelines are part of the natural and hybrid infrastructure approach to coastal resiliency. Marshes created as living shorelines are typically narrow (< 30 m fringing marshes with sandy substrates that are well flushed by tides. These characteristics distinguish living shorelines from the larger meadow marshes in which most of the current knowledge about created marshes was developed. The value of living shorelines for providing both erosion control and habitat for estuarine organisms has been documented but their capacity for carbon sequestration has not. We measured carbon sequestration rates in living shorelines and sandy transplanted Spartina alterniflora marshes in the Newport River Estuary, North Carolina. The marshes sampled here range in age from 12 to 38 years and represent a continuum of soil development. Carbon sequestration rates ranged from 58 to 283 g C m-2 yr-1 and decreased with marsh age. The pattern of lower sequestration rates in older marshes is hypothesized to be the result of a relative enrichment of labile organic matter in younger sites and illustrates the importance of choosing mature marshes for determination of long-term carbon sequestration potential. The data presented here are within the range of published carbon sequestration rates for S. alterniflora marshes and suggest that wide-scale use of the living shoreline approach to shoreline management may come with a substantial carbon benefit.

  19. Multi-decadal shoreline changes on Takú Atoll, Papua New Guinea: Observational evidence of early reef island recovery after the impact of storm waves

    Science.gov (United States)

    Mann, Thomas; Westphal, Hildegard

    2016-03-01

    Hurricanes, tropical cyclones and other high-magnitude events are important steering mechanisms in the geomorphic development of coral reef islands. Sandy reef islands located outside the storm belts are strongly sensitive to the impact of occasional high-magnitude events and show abrupt, commonly erosive geomorphic change in response to such events. Based on the interpretation of remote sensing data, it is well known that the process of landform recovery might take several decades or even longer. However, despite the increasing amount of scientific attention towards short- and long-term island dynamics, the lack of data and models often prevent a robust analysis of the timing and nature of recovery initiation. Here we show how natural island recovery starts immediately after the impact of a high-magnitude event. We analyze multi-temporal shoreline changes on Takú Atoll, Papua New Guinea and combine our findings with a unique set of published field observations (Smithers and Hoeke, 2014). Trends of shoreline change since 1943 and changes in planform island area indicate a long-term accretionary mode for most islands. Apparent shoreline instability is detected for the last decade of analysis, however this can be explained by the impact of storm waves in December 2008 that (temporarily?) masked the long-term trend. The transition from negative to positive rates of change in the aftermath of this storm event is indicative of inherent negative feedback processes that counteract short-term changes in energy input and represent the initiation of island recovery. Collectively, our results support the concept of dynamic rather than static reef islands and clearly demonstrate how short-term processes can influence interpretations of medium-term change.

  20. Instantaneous Shoreline Extraction Utilizing Integrated Spectrum and Shadow Analysis From LiDAR Data and High-resolution Satellite Imagery

    Science.gov (United States)

    Lee, I.-Chieh

    Shoreline delineation and shoreline change detection are expensive processes in data source acquisition and manual shoreline delineation. These costs confine the frequency and interval of shoreline mapping periods. In this dissertation, a new shoreline delineation approach was developed targeting on lowering the data source cost and reducing human labor. To lower the cost of data sources, we used the public domain LiDAR data sets and satellite images to delineate shorelines without the requirement of data sets being acquired simultaneously, which is a new concept in this field. To reduce the labor cost, we made improvements in classifying LiDAR points and satellite images. Analyzing shadow relations with topography to improve the satellite image classification performance is also a brand-new concept. The extracted shoreline of the proposed approach could achieve an accuracy of 1.495 m RMSE, or 4.452m at the 95% confidence level. Consequently, the proposed approach could successfully lower the cost and shorten the processing time, in other words, to increase the shoreline mapping frequency with a reasonable accuracy. However, the extracted shoreline may not compete with the shoreline extracted by aerial photogrammetric procedures in the aspect of accuracy. Hence, this is a trade-off between cost and accuracy. This approach consists of three phases, first, a shoreline extraction procedure based mainly on LiDAR point cloud data with multispectral information from satellite images. Second, an object oriented shoreline extraction procedure to delineate shoreline solely from satellite images; in this case WorldView-2 images were used. Third, a shoreline integration procedure combining these two shorelines based on actual shoreline changes and physical terrain properties. The actual data source cost would only be from the acquisition of satellite images. On the other hand, only two processes needed human attention. First, the shoreline within harbor areas needed to be

  1. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries.

    Directory of Open Access Journals (Sweden)

    Steven B Scyphers

    Full Text Available Shorelines at the interface of marine, estuarine and terrestrial biomes are among the most degraded and threatened habitats in the coastal zone because of their sensitivity to sea level rise, storms and increased human utilization. Previous efforts to protect shorelines have largely involved constructing bulkheads and seawalls which can detrimentally affect nearshore habitats. Recently, efforts have shifted towards "living shoreline" approaches that include biogenic breakwater reefs. Our study experimentally tested the efficacy of breakwater reefs constructed of oyster shell for protecting eroding coastal shorelines and their effect on nearshore fish and shellfish communities. Along two different stretches of eroding shoreline, we created replicated pairs of subtidal breakwater reefs and established unaltered reference areas as controls. At both sites we measured shoreline and bathymetric change and quantified oyster recruitment, fish and mobile macro-invertebrate abundances. Breakwater reef treatments mitigated shoreline retreat by more than 40% at one site, but overall vegetation retreat and erosion rates were high across all treatments and at both sites. Oyster settlement and subsequent survival were observed at both sites, with mean adult densities reaching more than eighty oysters m(-2 at one site. We found the corridor between intertidal marsh and oyster reef breakwaters supported higher abundances and different communities of fishes than control plots without oyster reef habitat. Among the fishes and mobile invertebrates that appeared to be strongly enhanced were several economically-important species. Blue crabs (Callinectes sapidus were the most clearly enhanced (+297% by the presence of breakwater reefs, while red drum (Sciaenops ocellatus (+108%, spotted seatrout (Cynoscion nebulosus (+88% and flounder (Paralichthys sp. (+79% also benefited. Although the vertical relief of the breakwater reefs was reduced over the course of our study

  2. Timing of oceans on Mars from shoreline deformation.

    Science.gov (United States)

    Citron, Robert I; Manga, Michael; Hemingway, Douglas J

    2018-03-29

    Widespread evidence points to the existence of an ancient Martian ocean. Most compelling are the putative ancient shorelines in the northern plains. However, these shorelines fail to follow an equipotential surface, and this has been used to challenge the notion that they formed via an early ocean and hence to question the existence of such an ocean. The shorelines' deviation from a constant elevation can be explained by true polar wander occurring after the formation of Tharsis, a volcanic province that dominates the gravity and topography of Mars. However, surface loading from the oceans can drive polar wander only if Tharsis formed far from the equator, and most evidence indicates that Tharsis formed near the equator, meaning that there is no current explanation for the shorelines' deviation from an equipotential that is consistent with our geophysical understanding of Mars. Here we show that variations in shoreline topography can be explained by deformation caused by the emplacement of Tharsis. We find that the shorelines must have formed before and during the emplacement of Tharsis, instead of afterwards, as previously assumed. Our results imply that oceans on Mars formed early, concurrent with the valley networks, and point to a close relationship between the evolution of oceans on Mars and the initiation and decline of Tharsis volcanism, with broad implications for the geology, hydrological cycle and climate of early Mars.

  3. Historical sediment budget and present-day catchment-shoreline coupling at Twofold Bay, southeastern Australia

    Science.gov (United States)

    Tamura, T.; Oliver, T.; Hudson, J.; Woodroffe, C. D.

    2017-12-01

    Considering projected impacts of sea-level rise in the 21st century on sandy shorelines, an understanding of long-term sediment budget for individual beaches or coastal compartments supports assessments of shoreline stability. We examined a low-lying coastal beach-ridge barrier in Twofold Bay using optically stimulated luminescence (OSL) dating , airborne LiDAR, sedimentological analysis and seismic data to assess changes in rates of sediment supply to this shoreline through time. Calculations of barrier volume, Twofold Bay bay-floor sediment volume and estimates of sediment delivery from a proximal river system provide a broad-scale assessment of past-sediment budget. Between ca. 7500 years ago and 1500 years ago, sources of sediment for shoreline progradation at Boydtown were bay-floor sediments either inherited or moved into the embayment during late-stage transgression. Progradation rate between ca. 7500-1500 years ago was 0.16 m/yr with subaerial barrier volume accumulating at 0.46 m3/m/yr. Between ca. 1500 years and present day, the Towamba River to the south has delivered additional sediment to the Boydtown shoreline more than doubling shoreline progradation rate to 0.65 m/yr and subaerial barrier accumulation has risen to 1.83 m3/m/yr. The delivery of fluvial sediment from the Towamba River was restricted to the past ca. 1500 years as prior to this, estuary infilling prevented floods delivering sediments to the bay. This recent historical coupling of river sand supply and shoreline progradation rate implies that anthropogenic modifications to the Towamba River catchment such as river damming, or climatic changes reducing rainfall or runoff, would negatively impact the Boydtown Beach shoreline. Conversely increased rainfall or deforestation may increase sediment discharge due to upstream erosion. The Boydtown shoreline within Twofold Bay may be able to maintain its current position in the coming century if fluvial sediment delivery continues. The fact that

  4. A multisource approach for coastline mapping and identification of shoreline changes

    Directory of Open Access Journals (Sweden)

    A. Zaccagnino

    2006-06-01

    Full Text Available Coastal dynamics are driven by phenomena of exogenous and endogenous nature. Characterizing factors that influence their equilibrium and continuous monitoring are fundamental for effective environmental planning and management of coastal areas. In order to monitor shoreline changes, we developed a methodology based on a multisource and multitemporal approach. A database, related to the Ionian coast of Basilicata region (about 50 km, was implemented by using cartographic data (IGMI data, satellite imagery (SPOT-PX/XS, Landsat-TM, Corona and aerial data covering the period form 1949 to 2001. In particular, airborne data (1 m spatial resolution were acquired during a specific campaign we performed in 2000 and 2001. To obtain the best performance from the available data, we applied a data fusion procedure on visible and thermal information. Different algorithms were tested, such as band ratios and clustering for extracting the coastline. The best results from multispectral data were obtained using a threshold algorithm we devised by exploiting the green, red and NIR bands, whereas for panchromatic data we selected clustering as the more suitable method. Moreover, a GPS survey was performed to evaluate the influence of tidal effects.

  5. UAV survey of a Thyrrenian micro-tidal beach for shoreline evolution update

    Science.gov (United States)

    Benassai, Guido; Pugliano, Giovanni; Di Paola, Gianluigi; Mucerino, Luigi

    2015-04-01

    shoreline change analysis was performed using the ArcGis 9.3 extension Digital Shoreline Analysis System (DSAS), v. 3.2 (Thieler et al., 2005). Transects orthogonal to the shoreline were generated at 100m intervals along the 1,4 km stretch of beach studied. The DSAS allowed the calculation of the rates of erosion/accretion between points, on the basis of the distance between them and the elapsed time, assuming changes to be linear processes. The rate of change of shoreline positions was evaluated at 14 points. The availability of shoreline data of the years 1954, 2000, 2006, 2008 and 2013 allowed to obtain the shoreline evolution trend in the last 60 years. Moreover, the UAV survey allowed to update the shoreline evolution and to obtain the volume of sediment lost by erosion, in order to suggest the locations and the amount of possible replenishments.

  6. a Study on Variations of Shoreline Changes and Temporal-Spatial Potentiality for Cloud Seeding at Urumia Lake

    Science.gov (United States)

    Agha Taher, R.; Jafari, M.; Fallah, M.; Alavi, A.

    2015-12-01

    Protecting the living environment has become one of the greatest human concerns; sudden increase of population, industry and technology development, unrestrained over consumption of the citizens and climate changes, have all caused many problems for mankind. Shores are special zones that are in contact with three Atmosphere, Hydrosphere and Lithosphere environments of earth. Shore lines are of the most important linear features of the earth's surface which have an animated and alive nature. In this regard, optimized management of the shores and environmental protection for stable development require observing the shorelines and their variations. Protection of shorelines within appropriate time periods is of high importance for the purpose of optimized management of the shores. The twenty first century has been called the era of information explosion. A time that, through benefits of new technologies, information experts attempt to generate more and up to date information in various fields and to provide them for managers and decision makers in order to be considered for future planning and also to assist the planners to arrange and set a comprehensive plan. Aerial images and remote sensing technology are economic methods to acquire the required data. Such methods are free from common time and place limitations in survey based methods. Among remote sensing data, the ones acquired from optical images have several benefits which include low cost, interpretation simplicity and ease of access. That is why most of the researches concerning extraction of shorelines are practiced using optical images. On the other hand, wide range coverage of satellite images along with rapid access to them caused these images to be used extensively for extracting the shorelines. The attempt in this research is to use satellite images and their application in order to study variations of the shorelines. Thus, for this purpose, Landsat satellite images from TM and ETM+ sensors in the 35

  7. A STUDY ON VARIATIONS OF SHORELINE CHANGES AND TEMPORAL-SPATIAL POTENTIALITY FOR CLOUD SEEDING AT URUMIA LAKE

    Directory of Open Access Journals (Sweden)

    R. Agha Taher

    2015-12-01

    Full Text Available Protecting the living environment has become one of the greatest human concerns; sudden increase of population, industry and technology development, unrestrained over consumption of the citizens and climate changes, have all caused many problems for mankind. Shores are special zones that are in contact with three Atmosphere, Hydrosphere and Lithosphere environments of earth. Shore lines are of the most important linear features of the earth’s surface which have an animated and alive nature. In this regard, optimized management of the shores and environmental protection for stable development require observing the shorelines and their variations. Protection of shorelines within appropriate time periods is of high importance for the purpose of optimized management of the shores. The twenty first century has been called the era of information explosion. A time that, through benefits of new technologies, information experts attempt to generate more and up to date information in various fields and to provide them for managers and decision makers in order to be considered for future planning and also to assist the planners to arrange and set a comprehensive plan. Aerial images and remote sensing technology are economic methods to acquire the required data. Such methods are free from common time and place limitations in survey based methods. Among remote sensing data, the ones acquired from optical images have several benefits which include low cost, interpretation simplicity and ease of access. That is why most of the researches concerning extraction of shorelines are practiced using optical images. On the other hand, wide range coverage of satellite images along with rapid access to them caused these images to be used extensively for extracting the shorelines. The attempt in this research is to use satellite images and their application in order to study variations of the shorelines. Thus, for this purpose, Landsat satellite images from TM and ETM

  8. Effects of oil on the rate and trajectory of Louisiana marsh shoreline erosion

    International Nuclear Information System (INIS)

    McClenachan, Giovanna; Eugene Turner, R; Tweel, Andrew W

    2013-01-01

    Oil can have long-term detrimental effects on marsh plant health, both above- and belowground. However, there are few data available that quantify the accelerated rate of erosion that oil may cause to marshes and the trajectory of change. Between November 2010 and August 2012, we collected data on shoreline erosion, soil strength, per cent cover of Spartina alterniflora, and marsh edge overhang at 30 closely spaced low oil and high oil sites in Bay Batiste, Louisiana. Surface oil samples were taken one meter into the marsh in February 2011. All high oiled sites in Bay Batiste were contaminated with Macondo 252 oil (oil from the Deepwater Horizon oil spill, 20 April–15 July 2010). The results suggest that there is a threshold where soil parameters change dramatically with a relatively small increase in oil concentration in the soil. Heavy oiling weakens the soil, creating a deeper undercut of the upper 50 cm of the marsh edge, and causing an accelerated rate of erosion that cascades along the shoreline. Our results demonstrate that it could take at least 2 yr to document the effects heavy oiling has had on the marsh shoreline. The presence of aboveground vegetation alone may not be an appropriate indicator of recovery. (letter)

  9. Ancient shoreline reconstruction at a Maritime Maya Port in Yucatan, Mexico

    Science.gov (United States)

    Jaijel, Roy; Goodman, Beverly; Glover, Jeffrey; Rissolo, Dominique; Beddows, Patricia; Carter, Alice; Smith, Derek; Ben Avraham, Zvi

    2017-04-01

    Throughout history, worldwide, a major part of the human experience has been to adapt to changing landscapes, and environments. These adaptations can take many forms, sometimes as innovation, manipulation of the conditions, behavioral or technological changes; and in some cases the decision to abandon the area. The northeastern Yucatan peninsula, home of the Maritime maya port site Vista-Alegre, shows signs of such human changes, though little is known about the corresponding landscape and environment. Vista Alegre is located on the meeting point of the Caribbean Sea and the Gulf of Mexico, at the north-eastern tip of the Yucatan peninsula, in the back of the Holbox lagoon. The site was inhabited from the 9th century B.C until the mid 16th century A.D., with an apparent two century abandonment phase from the mid 7th to 9th century A.D. A multidisciplinary effort ("Costa Escondida project") has been investigating the life of past Mayan inhabitants and the broader connections of the site to the Maritime Maya trade network. One of the questions that has arisen is what were the mutual influences between the inhabitants to their surrounding environment. In order to answer that question the site's shoreline geomorphology and climate history is being reconstructed for the past 2-3000 years. The reconstruction is based on multiproxy analysis of marine sediment cores and surface samples, combined with archaeological data. The study presented focuses on the shoreline shifts at the site, revealing the complexity, and significant affect of sea level rise on the marine environment of Vista Alegre. This study contributes to our understanding of the site's possible functions, the environmental challenges the local inhabits contended with, and the identification of ancient harboring locations. The results show five depositional phases over the past 2-3000 years. The ancient shoreline maps show a general trend of sea level rise, though with varying rates over time that relates well

  10. Recent shoreline changes in the Volta River delta, West Africa: the ...

    African Journals Online (AJOL)

    Spit growth has been accompanied by a wave of erosion over the last century of the immediate downdrift sector of the bight coast, endangering the town of Keta. Erosion since the 1960s may have been aggravated by the construction of the Akosombo hydropower dam. The tip of the spit has recently welded to the shoreline, ...

  11. Further ecological and shoreline stability reconnaissance surveys of Back Island, Behm Canal, Southeast Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.S.; Strand, J.A.; Ecker, R.M.

    1987-09-01

    A diver reconnaissance of the intertidal and subtidal zones of Back Island was performed to catalog potentially vulnerable shellfish, other invertebrates, and marine plant resources occurring at three proposed alternate pier sites on the west side of Back Island. Additionally, a limited survey of terrestrial vegetation was conducted in the vicinity of one of the proposed alternate pier sites to describe the littoral community and to list the dominant plant species found there. Finally, a reconnaissance survey of the shoreline of Back Island was conducted to evaluate potential changes in shoreline stability resulting from construction of onshore portions of the Southeast Alaska Acoustic Measurement Facility (SEAFAC).

  12. Observations and modelling of shoreline and multiple sandbar behaviour on a high-energy meso-tidal beach

    Science.gov (United States)

    Splinter, Kristen D.; Gonzalez, Maria V. G.; Oltman-Shay, Joan; Rutten, Jantien; Holman, Robert

    2018-05-01

    This contribution describes 10 years of observed sandbar and shoreline cross-shore position variability at a meso-tidal, high energy, multiple sandbar beach. To examine relationships between the temporal variability in shoreline/sandbar position with offshore wave forcing, a simple equilibrium model is applied to these data. The analysis presented in this paper shows that the equilibrium model is skilled at predicting the alongshore-averaged, time-varying position of the shoreline (R = 0.82) and the outer sandbar position (R = 0.75), suggesting that these end members of the nearshore sediment system are most strongly influenced by offshore wave forcing in a predictable, equilibrium-forced manner. The middle and inner bars are hypothesized to act as sediment transport pathways between the shoreline and the outer bar. Prediction of these more transient features by an equilibrium model was less skilful. Model coefficients reveal that these two end members (outer bar and shoreline) in the sediment system act in opposite directions to changes in the annual offshore wave forcing. During high wave events, sediment is removed from the shoreline and deposited in the nearshore sediment system with simultaneous landward retreat of the shoreline and offshore migration of the outer sandbar. While both end member features have cycles at annual and inter-annual scales, their respective equilibrium response factor differs by almost a factor of 10, with the shoreline responding around an inter-annual mean (ϕ = 1000 days) and the outer bar responding around a seasonal mean (ϕ = 170 days). The model accurately predicts shoreline response to both mild (e.g. 2004/05, 2008/09) and extreme (e.g. 2005/06, 2009/10) winter storms, as well as their summer recovery. The more mobile and dynamic outer sandbar is well-modelled during typical winters. Summer onshore sandbar migration of the outer bar in 2005 and 2006 is under-predicted as the system transitioned between a triple (winter) and

  13. Measuring Historical Coastal Change using GIS and the Change Polygon Approach

    Science.gov (United States)

    Smith, M.J.; Cromley, R.G.

    2012-01-01

    This study compares two automated approaches, the transect-from-baseline technique and a new change polygon method, for quantifying historical coastal change over time. The study shows that the transect-from-baseline technique is complicated by choice of a proper baseline as well as generating transects that intersect with each other rather than with the nearest shoreline. The change polygon method captures the full spatial difference between the positions of the two shorelines and average coastal change is the defined as the ratio of the net area divided by the shoreline length. Although then change polygon method is sensitive to the definition and measurement of shoreline length, the results are more invariant to parameter changes than the transect-from-baseline method, suggesting that the change polygon technique may be a more robust coastal change method. ?? 2012 Blackwell Publishing Ltd.

  14. Power Scaling of the Mainland Shoreline of the Atlantic Coast of the United States

    Science.gov (United States)

    Vasko, E.; Barton, C. C.; Geise, G. R.; Rizki, M. M.

    2017-12-01

    The fractal dimension of the mainland shoreline of the Atlantic coast of the United Stated from Maine to Homestead, FL has been measured in 1000 km increments using the box-counting method. The shoreline analyzed is the NOAA Medium Resolution Shoreline (https://shoreline.noaa.gov/data/datasheets/medres.html). The shoreline was reconstituted into sequentially numbered X-Y coordinate points in UTM Zone 18N which are spaced 50 meters apart, as measured continuously along the shoreline. We created a MATLAB computer code to measure the fractal dimension by box counting while "walking" along the shoreline. The range of box sizes is 0.7 to 450 km. The fractal dimension ranges from 1.0 to1.5 along the mainland shoreline of the Atlantic coast. The fractal dimension is compared with beach particle sizes (bedrock outcrop, cobbles, pebbles, sand, clay), tidal range, rate of sea level rise, rate and direction of vertical crustal movement, and wave energy, looking for correlation with the measured fractal dimensions. The results show a correlation between high fractal dimensions (1.3 - 1.4) and tectonically emergent coasts, and low fractal dimensions (1.0 - 1.2) along submergent and stable coastal regions. Fractal dimension averages 1.3 along shorelines with shoreline protection structures such as seawalls, jetties, and groins.

  15. Shoreline clean-up methods : biological treatments

    Energy Technology Data Exchange (ETDEWEB)

    Massoura, S.T. [Oil Spill Response Limited, Southampton (United Kingdom)

    2009-07-01

    The cleanup of oil spills in shoreline environments is a challenging issue worldwide. Oil spills receive public and media attention, particularly in the event of a coastal impact. It is important to evaluate the efficiency and effectiveness of cleanup methods when defining the level of effort and consequences that are appropriate to remove or treat different types of oil on different shoreline substrates. Of the many studies that have compared different mechanical, chemical and biological treatments for their effectiveness on various types of oil, biological techniques have received the most attention. For that reason, this paper evaluated the effectiveness and effects of shoreline cleanup methods using biological techniques. It summarized data from field experiments and oil spill incidents, including the Exxon Valdez, Sea Empress, Prestige, Grand Eagle, Nakhodka, Guanabara Bay and various Gulf war oil spills. Five major shoreline types were examined, notably rocky intertidal, cobble/pebble/gravel, sand/mud, saltmarsh, and mangrove/sea-grass. The biological techniques that were addressed were nutrient enrichment, hydrocarbon-utilizing bacteria, vegetable oil biosolvents, plants, surf washing, oil-particle interactions and natural attenuation. The study considered the oil type, volume and fate of stranded oil, location of coastal materials, extent of pollution and the impact of biological techniques. The main factors that affect biodegradation of hydrocarbons are the volume, chemical composition and weathering state of the petroleum product as well as the temperature, oxygen availability of nutrients, water salinity, pH level, water content, and microorganisms in the shoreline environment. The interaction of these factors also affect the biodegradation of oil. It was concluded that understanding the fate of stranded oil can help in the development of techniques that improve the weathering and degradation of oil on complex shoreline substrates. 39 refs.

  16. Potential for shoreline changes due to sea-level rise along the U.S. mid-Atlantic region

    Science.gov (United States)

    Gutierrez, Benjamin T.; Williams, S. Jeffress; Thieler, E. Robert

    2007-01-01

    Sea-level rise over the next century is expected to contribute significantly to physical changes along open-ocean shorelines. Predicting the form and magnitude of coastal changes is important for understanding the impacts to humans and the environment. Presently, the ability to predict coastal changes is limited by the scientific understanding of the many variables and processes involved in coastal change, and the lack of consensus regarding the validity of existing conceptual, analytical, or numerical models. In order to assess potential future coastal changes in the mid-Atlantic U.S. for the U.S. Climate Change Science Program (CCSP), a workshop was convened by the U.S. Geological Survey. Assessments of future coastal change were made by a committee of coastal scientists with extensive professional experience in the mid-Atlantic region. Thirteen scientists convened for a two-day meeting to exchange information and develop a consensus opinion on potential future coastal changes for the mid-Atlantic coast in response to sea-level rise. Using criteria defined in past work, the mid-Atlantic coast was divided into four geomorphic compartments: spits, headlands, wave-dominated barriers, and mixed-energy barriers. A range of potential coastal responses was identified for each compartment based on four sea-level rise scenarios. The four scenarios were based on the assumptions that: a) the long-term sea-level rise rate observed over the 20th century would persist over the 21st century, b) the 20th century rate would increase by 2 mm/yr, c) the 20th century rate would increase by 7 mm/yr, or d) sea-level would rise by 2 m over the next few hundred years. Potential responses to these sea-level rise scenarios depend on the landforms that occur within a region and include increased likelihood for erosion and shoreline retreat for all coastal types, increased likelihood for erosion, overwash and inlet breaching for barrier islands, as well as the possibility of a threshold

  17. Application of Low-Cost Fixed-Wing UAV for Inland Lakes Shoreline Investigation

    Science.gov (United States)

    Templin, Tomasz; Popielarczyk, Dariusz; Kosecki, Rafał

    2017-10-01

    One of the most important factors that influences the performance of geomorphologic parameters on urban lakes is the water level. It fluctuates periodically, causing shoreline changes. It is especially significant for typical environmental studies like bathymetric surveys, morphometric parameters calculation, sediment depth changes, thermal structure, water quality monitoring, etc. In most reservoirs, it can be obtained from digitized historical maps or plans or directly measured using the instruments such as: geodetic total station, GNSS receivers, UAV with different sensors, satellite and aerial photos, terrestrial and airborne light detection and ranging, or others. Today one of the most popular measuring platforms, increasingly applied in many applications is UAV. Unmanned aerial system can be a cheap, easy to use, on-demand technology for gathering remote sensing data. Our study presents a reliable methodology for shallow lake shoreline investigation with the use of a low-cost fixed-wing UAV system. The research was implemented on a small, eutrophic urban inland reservoir located in the northern part of Poland—Lake Suskie. The geodetic TS, and RTK/GNSS measurements, hydroacoustic soundings and experimental aerial mapping were conducted by the authors in 2012-2015. The article specifically describes the UAV system used for experimental measurements, the obtained results and the accuracy analysis. Final conclusions demonstrate that even a low-cost fixed-wing UAV can provide an excellent tool for accurately surveying a shallow lake shoreline and generate valuable geoinformation data collected definitely faster than when traditional geodetic methods are employed.

  18. Biological conditions of shorelines following the Exxon Valdez spill

    International Nuclear Information System (INIS)

    Stoker, S.W.; Neff, J.M.; Schroeder, T.R.; McCormick, D.M.

    1993-01-01

    This report is based primarily on survey results from Prince William Sound, where most of the heavy shoreline oiling occurred. Although not strictly quantitative, the shoreline surveys provide an unprecedented, broad base of professional observations covering the entire spill-affected area from 1989 through 1992 by which to evaluate spill impacts and recovery. Shoreline surveys documented that the extent of shoreline oiling declined substantially from 1989 to 1992. In 1989, oil was found on about 16 percent of the 3,000 miles of shoreline in Prince William Sound; by the spring of 1991, oil was found on only about 2 percent of the shoreline; and by May of 1992, on only 0.2 percent. In all years, most of this oil was located in the biologically least productive upper intertidal and supratidal zones. In both 1991 and 1992, small, isolated pockets of subsurface oil were found on some boulder/cobble beaches. Most of these deposits were also located in the upper intertidal and were usually buried beneath clean sediments. In almost all cases, the condition of intertidal biological communities improved correspondingly from 1989 to 1992. By the spring of 1991, recovery appeared to be well under way on virtually all previously oiled shores, with species composition, abundance, and diversity levels usually comparable to those of nearby shores that were not oiled in 1989. Recruitment of intertidal plants and animals was observed as early as the summer of 1989, and increasingly through 1991 and 1992. Recruitment was evident even in areas with remnant deposits of surface and subsurface oil, indicating that toxicity levels of the oil had declined substantially and that, in most cases, the residual oil no longer interfered with biological recovery. Observations of birds and marine mammals on or near shorelines surveyed during 1991 and 1992 confirmed that species present before the spill were still present and were feeding and reproducing in areas affected by oil in 1989

  19. Αutomated 2D shoreline detection from coastal video imagery: an example from the island of Crete

    Science.gov (United States)

    Velegrakis, A. F.; Trygonis, V.; Vousdoukas, M. I.; Ghionis, G.; Chatzipavlis, A.; Andreadis, O.; Psarros, F.; Hasiotis, Th.

    2015-06-01

    Beaches are both sensitive and critical coastal system components as they: (i) are vulnerable to coastal erosion (due to e.g. wave regime changes and the short- and long-term sea level rise) and (ii) form valuable ecosystems and economic resources. In order to identify/understand the current and future beach morphodynamics, effective monitoring of the beach spatial characteristics (e.g. the shoreline position) at adequate spatio-temporal resolutions is required. In this contribution we present the results of a new, fully-automated detection method of the (2-D) shoreline positions using high resolution video imaging from a Greek island beach (Ammoudara, Crete). A fully-automated feature detection method was developed/used to monitor the shoreline position in geo-rectified coastal imagery obtained through a video system set to collect 10 min videos every daylight hour with a sampling rate of 5 Hz, from which snapshot, time-averaged (TIMEX) and variance images (SIGMA) were generated. The developed coastal feature detector is based on a very fast algorithm using a localised kernel that progressively grows along the SIGMA or TIMEX digital image, following the maximum backscatter intensity along the feature of interest; the detector results were found to compare very well with those obtained from a semi-automated `manual' shoreline detection procedure. The automated procedure was tested on video imagery obtained from the eastern part of Ammoudara beach in two 5-day periods, a low wave energy period (6-10 April 2014) and a high wave energy period (1 -5 November 2014). The results showed that, during the high wave energy event, there have been much higher levels of shoreline variance which, however, appeared to be similarly unevenly distributed along the shoreline as that related to the low wave energy event, Shoreline variance `hot spots' were found to be related to the presence/architecture of an offshore submerged shallow beachrock reef, found at a distance of 50-80 m

  20. Decoupling processes and scales of shoreline morphodynamics

    Science.gov (United States)

    Hapke, Cheryl J.; Plant, Nathaniel G.; Henderson, Rachel E.; Schwab, William C.; Nelson, Timothy R.

    2016-01-01

    Behavior of coastal systems on time scales ranging from single storm events to years and decades is controlled by both small-scale sediment transport processes and large-scale geologic, oceanographic, and morphologic processes. Improved understanding of coastal behavior at multiple time scales is required for refining models that predict potential erosion hazards and for coastal management planning and decision-making. Here we investigate the primary controls on shoreline response along a geologically-variable barrier island on time scales resolving extreme storms and decadal variations over a period of nearly one century. An empirical orthogonal function analysis is applied to a time series of shoreline positions at Fire Island, NY to identify patterns of shoreline variance along the length of the island. We establish that there are separable patterns of shoreline behavior that represent response to oceanographic forcing as well as patterns that are not explained by this forcing. The dominant shoreline behavior occurs over large length scales in the form of alternating episodes of shoreline retreat and advance, presumably in response to storms cycles. Two secondary responses include long-term response that is correlated to known geologic variations of the island and the other reflects geomorphic patterns with medium length scale. Our study also includes the response to Hurricane Sandy and a period of post-storm recovery. It was expected that the impacts from Hurricane Sandy would disrupt long-term trends and spatial patterns. We found that the response to Sandy at Fire Island is not notable or distinguishable from several other large storms of the prior decade.

  1. Soil erosion and deposition in the new shorelines of the Three Gorges Reservoir.

    Science.gov (United States)

    Su, Xiaolei; Nilsson, Christer; Pilotto, Francesca; Liu, Songping; Shi, Shaohua; Zeng, Bo

    2017-12-01

    During the last few decades, the construction of storage reservoirs worldwide has led to the formation of many new shorelines in former upland areas. After the formation of such shorelines, a dynamic phase of soil erosion and deposition follows. We explored the factors regulating soil dynamics in the shorelines of the Three Gorges Reservoir (TGR) on the Yangtze River in China. We selected four study sites on the main stem and three on the tributaries in the upstream parts of the reservoir, and evaluated whether the sites close to the backwater tail (the point at which the river meets the reservoir) had more soil deposition than the sites far from the backwater tail. We also tested whether soil erosion differed between the main stem and the tributaries and across shorelines. We found that soil deposition in the new shorelines was higher close to the backwater tail and decreased downstream. Soil erosion was higher in the main stem than in the tributaries and higher at lower compared to higher shoreline altitudes. In the tributaries, erosion did not differ between higher and lower shoreline levels. Erosion increased with increasing fetch length, inundation duration and distance from the backwater tail, and decreased with increasing soil particle fineness. Our results provide a basis for identifying shorelines in need of restorative or protective measures. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cuspate Shoreline Morphology

    National Research Council Canada - National Science Library

    McWilliams, Brandon

    2005-01-01

    Large beach cusps with wavelengths O(200m), sometimes termed mega-cusps, were measured along 18km of the Southern Monterey Bay coastline from October 2004 to April 2005 to investigate the cuspate shoreline response to rip current systems...

  3. A METHOD OF EXTRACTING SHORELINE BASED ON SEMANTIC INFORMATION USING DUAL-LENGTH LiDAR DATA

    Directory of Open Access Journals (Sweden)

    C. Yao

    2017-09-01

    Full Text Available Shoreline is a spatial varying separation between water and land. By utilizing dual-wavelength LiDAR point data together with semantic information that shoreline often appears beyond water surface profile and is observable on the beach, the paper generates the shoreline and the details are as follows: (1 Gain the water surface profile: first we obtain water surface by roughly selecting water points based on several features of water body, then apply least square fitting method to get the whole water trend surface. Then we get the ground surface connecting the under -water surface by both TIN progressive filtering method and surface interpolation method. After that, we have two fitting surfaces intersected to get water surface profile of the island. (2 Gain the sandy beach: we grid all points and select the water surface profile grids points as seeds, then extract sandy beach points based on eight-neighborhood method and features, then we get all sandy beaches. (3 Get the island shoreline: first we get the sandy beach shoreline based on intensity information, then we get a threshold value to distinguish wet area and dry area, therefore we get the shoreline of several sandy beaches. In some extent, the shoreline has the same height values within a small area, by using all the sandy shoreline points to fit a plane P, and the intersection line of the ground surface and the shoreline plane P can be regarded as the island shoreline. By comparing with the surveying shoreline, the results show that the proposed method can successfully extract shoreline.

  4. Timing of oceans on Mars from shoreline deformation

    Science.gov (United States)

    Citron, Robert I.; Manga, Michael; Hemingway, Douglas J.

    2018-03-01

    Widespread evidence points to the existence of an ancient Martian ocean. Most compelling are the putative ancient shorelines in the northern plains. However, these shorelines fail to follow an equipotential surface, and this has been used to challenge the notion that they formed via an early ocean and hence to question the existence of such an ocean. The shorelines’ deviation from a constant elevation can be explained by true polar wander occurring after the formation of Tharsis, a volcanic province that dominates the gravity and topography of Mars. However, surface loading from the oceans can drive polar wander only if Tharsis formed far from the equator, and most evidence indicates that Tharsis formed near the equator, meaning that there is no current explanation for the shorelines’ deviation from an equipotential that is consistent with our geophysical understanding of Mars. Here we show that variations in shoreline topography can be explained by deformation caused by the emplacement of Tharsis. We find that the shorelines must have formed before and during the emplacement of Tharsis, instead of afterwards, as previously assumed. Our results imply that oceans on Mars formed early, concurrent with the valley networks, and point to a close relationship between the evolution of oceans on Mars and the initiation and decline of Tharsis volcanism, with broad implications for the geology, hydrological cycle and climate of early Mars.

  5. Development of Biotechnical Methods to Control Shoreline Erosion

    National Research Council Canada - National Science Library

    Mays, D

    1999-01-01

    .... Coconut fiber logs, straw bales wrapped in poultry netting, large round hay bales, and bundled logs anchored to the shoreline were all evaluated for their potential to control wave damage to the shoreline...

  6. Response of Living Shorelines to Wave Energy and Sea Level rise: Short-term Resilience and Long-term Vulnerability in North Carolina

    Science.gov (United States)

    Currin, C.; Davis, J.

    2017-12-01

    A decade of research and monitoring of Living Shoreline sites in North Carolina identifies both resilient and vulnerable features of this approach to estuarine shoreline stabilization. We used a wave energy model to calculate representative wave energy along 1500 miles of estuarine shoreline, and observed a linear, negative relationship between wind-wave energy and the width of fringing salt marshes. Proximity to navigation channels (boat wakes) further reduced fringing marsh width. These results provide guidance for Living Shoreline design alternatives. Surface elevation tables (SETs) deployed at the lower edge of both natural fringing marshes and `Living Shoreline' marsh-sill sites demonstrated that while natural marshes were losing surface elevation at an average rate of 6 mm y-1, marsh surface elevation at Living Shoreline sites increased at an average of 3 mm y-1. Marsh vegetation at the lower edge of natural sites exhibited a decline in biomass, while Living Shoreline sites exhibited an increase in upper marsh species and an extension of lower marsh into previous mudflat habitat. These changes provide Living Shoreline (marsh-sill) sites with added resilience to sea level rise, though decreased inundation alters the delivery of other ecosystem services (fish habitat, nutrient cycling). North Carolina lagoonal estuaries have low suspended sediment supply and low topography, and modeling predicts that landward transgression is the primary means by which salt marsh acreage can be maintained under moderate to high sea level rise scenarios. In this region, bank erosion can be important source of sediment to wetland habitats. Further, the association of built infrastructure with Living Shoreline sites portends a future scenario of coastal squeeze, as marsh migration landward will be inhibited.

  7. Statistical power to detect change in a mangrove shoreline fish community adjacent to a nuclear power plant.

    Science.gov (United States)

    Dolan, T E; Lynch, P D; Karazsia, J L; Serafy, J E

    2016-03-01

    An expansion is underway of a nuclear power plant on the shoreline of Biscayne Bay, Florida, USA. While the precise effects of its construction and operation are unknown, impacts on surrounding marine habitats and biota are considered by experts to be likely. The objective of the present study was to determine the adequacy of an ongoing monitoring survey of fish communities associated with mangrove habitats directly adjacent to the power plant to detect fish community changes, should they occur, at three spatial scales. Using seasonally resolved data recorded during 532 fish surveys over an 8-year period, power analyses were performed for four mangrove fish metrics (fish diversity, fish density, and the occurrence of two ecologically important fish species: gray snapper (Lutjanus griseus) and goldspotted killifish (Floridichthys carpio). Results indicated that the monitoring program at current sampling intensity allows for detection of <33% changes in fish density and diversity metrics in both the wet and the dry season in the two larger study areas. Sampling effort was found to be insufficient in either season to detect changes at this level (<33%) in species-specific occurrence metrics for the two fish species examined. The option of supplementing ongoing, biological monitoring programs for improved, focused change detection deserves consideration from both ecological and cost-benefit perspectives.

  8. Historical Shoreline for Louisiana, Geographic NAD83, NOAA (2001) [shoreline_la_NOAA_1986

    Data.gov (United States)

    Louisiana Geographic Information Center — These data were automated to provide a suitable geographic information system (GIS) data layer depicting the historical shoreline for Louisiana. These data are...

  9. A post-Calumet shoreline along southern Lake Michigan

    Science.gov (United States)

    Capps, D.K.; Thompson, T.A.; Booth, R.K.

    2007-01-01

    The southern shore of Lake Michigan is the type area for many of ancestral Lake Michigan's late Pleistocene lake phases, but coastal deposits and features of the Algonquin phase of northern Lake Michigan, Lake Huron, and Lake Superior are not recognized in the area. Isostatic rebound models suggest that Algonquin phase deposits should be 100 m or more below modern lake level. A relict shoreline, however, exists along the lakeward margin of the Calumet Beach that was erosional west of Deep River and depositional east of the river. For this post-Calumet shoreline, the elevation of basal foreshore deposits east of Deep River and the base of the scarp west of Deep River indicate a slightly westward dipping water plane that is centered at ???184 m above mean sea level. Basal foreshore elevations also indicate that lake level fell ???2 m during the development of the shoreline. The pooled mean of radiocarbon dates from the surface of the peat below post-Calumet shoreline foreshore deposits indicate that the lake transgressed over the peat at 10,560 ?? 70 years B.P. Pollen assemblages from the peat are consistent with this age. The elevation and age of the post-Calumet shoreline are similar to the Main Algonquin phase of Lake Huron. Recent isostatic rebound models do not adequately address a high-elevation Algonquin-age shoreline along the southern shore of Lake Michigan, but the Goldthwait (1908) hinge-line model does. ?? 2006 Springer Science+Business Media B.V.

  10. 36 CFR 327.30 - Shoreline Management on Civil Works Projects.

    Science.gov (United States)

    2010-07-01

    ... ADMINISTERED BY THE CHIEF OF ENGINEERS § 327.30 Shoreline Management on Civil Works Projects. (a) Purpose. The... this regulation, shoreline management plans are not required for those projects where construction was... approval, one copy of each project Shoreline Management Plan will be forwarded to HQUSACE (CECW-ON) WASH DC...

  11. Shoreline dynamics of the active Yellow River delta since the implementation of Water-Sediment Regulation Scheme: A remote-sensing and statistics-based approach

    Science.gov (United States)

    Fan, Yaoshen; Chen, Shenliang; Zhao, Bo; Pan, Shunqi; Jiang, Chao; Ji, Hongyu

    2018-01-01

    The Active Yellow River (Huanghe) Delta (AYRD) is a complex landform in which rapid deposition takes place due to its geologic formation and evolution. Continuous monitoring of shoreline dynamics at high-temporal frequency is crucial for understanding the processes and the driving factors behind this rapidly changing coast. Great efforts have been devoted to map the changing shoreline of the Yellow River delta and explain such changes through remote sensing data. However, the temporal frequency of shoreline in the obtained datasets are generally not fine enough to reflect the detailed or subtly variable processes of shoreline retreat and advance. To overcome these limitations, we continuously monitored the dynamics of this shoreline using time series of Landsat data based on tidal-level calibration model and orthogonal-transect method. The Abrupt Change Value (ACV) results indicated that the retreat-advance patterns had a significant impact regardless of season or year. The Water-Sediment Regulation Scheme (WSRS) plays a dominant role in delivering river sediment discharge to the sea and has an impact on the annual average maximum ACV, especially at the mouth of the river. The positive relationship among the average ACV, runoff and sediment load are relatively obvious; however, we found that the Relative Exposure Index (REI) that measures wave energy was able to explain only approximately 20% of the variation in the data. Based on the abrupt change at the shoreline of the AYRD, river flow and time, we developed a binary regression model to calculate the critical sediment load and water discharge for maintaining the equilibrium of the active delta from 2002 to 2015. These values were approximately 0.48 × 108 t/yr and 144.37 × 108 m3/yr. If the current water and sediment proportions released from the Xiaolangdi Reservoir during the WSRS remain stable, the erosion-accretion patterns of the active delta will shift from rapid accretion to a dynamic balance.

  12. Early Cambrian wave-formed shoreline deposits

    DEFF Research Database (Denmark)

    Clemmensen, Lars B; Glad, Aslaug Clemmensen; Pedersen, Gunver Krarup

    2017-01-01

    -preserved subaqueous dunes and wave ripples indicates deposition in a wave-dominated upper shoreface (littoral zone) environment, and the presence of interference ripples indicates that the littoral zone environment experienced water level fluctuations due to tides and/or changing meteorological conditions. Discoidal....... During this period, wave-formed shoreline sediments (the Vik Member, Hardeberga Formation) were deposited on Bornholm and are presently exposed at Strøby quarry. The sediments consist of fine- and medium-grained quartz-cemented arenites in association with a few silt-rich mudstones. The presence of well...

  13. Vegetation of natural and artificial shorelines in Upper Klamath Basin’s fringe wetlands

    Science.gov (United States)

    Ray, Andrew M.; Irvine, Kathryn M.; Hamilton, Andy S.

    2013-01-01

    The Upper Klamath Basin (UKB) in northern California and southern Oregon supports large hypereutrophic lakes surrounded by natural and artificial shorelines. Lake shorelines contain fringe wetlands that provide key ecological services to the people of this region. These wetlands also provide a context for drawing inferences about how differing wetland types and wave exposure contribute to the vegetative assemblages in lake-fringe wetlands. Here, we summarize how elevation profiles and vegetation richness vary as a function of wave exposure and wetland type. Our results show that levee wetland shorelines are 4X steeper and support fewer species than other wetland types. We also summarize the occurrence probability of the five common wetland plant species that represent the overwhelming majority of the diversity of these wetlands. In brief, the occurrence probability of the culturally significant Nuphar lutea spp. polysepala and the invasive Phalaris arundinacea in wave exposed and sheltered sites varies based on wetland type. The occurrence probability for P. arundinacea was greatest in exposed portions of deltaic shorelines, but these trends were reversed on levees where the occurrence probability was greater in sheltered sites. The widespread Schoenoplectus acutus var. acutus occurred throughout all wetland and exposure type combinations but had a higher probability of occurrence in wave exposed sites. Results from this work will add to our current understanding of how wetland shoreline profiles interact with wave exposure to influence the occurrence probability of the dominant vegetative species in UKB’s shoreline wetlands.

  14. NOAA's Shoreline Survey Maps - Raster NOAA-NOS Shoreline Survey Manuscripts that define the shoreline and alongshore natural and man-made features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOS coastal survey maps (often called t-sheet or tp-sheet maps) are special use planimetric or topographic maps that precisely define the shoreline and alongshore...

  15. Microbial diversity in oiled and un-oiled shoreline sediments in the Norwegian Arctic

    International Nuclear Information System (INIS)

    Grossman, M.J.; Prince, R.C.; Garrett, R.M.; Garrett, K.K.; Bare, R.E.; O'Neil, K.R.; Sowlay, M.R.; Hinton, S.M.; Lee, K.; Sergy, G.A.; Guenette, C.C.

    2000-01-01

    Field trials were conducted at an oiled shoreline on the island of Spitsbergen to examine the effect of nutrient addition on the metabolic status, potential for aromatic hydrocarbon degradation, and the phylogenetic diversity of the microbial community in oiled Arctic shoreline sediments. IF-30 intermediate fuel grade oil was applied to the shoreline which was then divided into four plots. One was left untreated and two were tilled. Four applications of fertilizer were applied over a two-month period. Phospholipid fatty acid (PLFA), gene probe and 16S microbial community analysis suggested that bioremediation stimulated the metabolic activity, increased microbial biomass and genetic potential for aromatic hydrocarbon degradation, and increased the population of hydrocarbon degradation of an oiled Arctic shoreline microbial community. The results of this study are in agreement with the results from stimulation of oil biodegradation in temperate marine environments. It was concluded that biodegradation and fertilizer addition are feasible treatment methods for oil spills in Arctic regions. 31 refs., 3 tabs., 3 figs

  16. Linking Backbarrier Lacustrine Stratigraphy with Spatial Dynamics of Shoreline Retreat in a Rapidly Subsiding Region of the Mississippi River Delta

    Science.gov (United States)

    Dietz, M.; Liu, K. B.; Bianchette, T. A.; Yao, Q.

    2017-12-01

    The shoreline along the northern Gulf of Mexico is rapidly retreating as coastal features of abandoned Mississippi River delta complexes erode and subside. Bay Champagne is located in the Caminada-Moreau headland, a region of shoreline west of the currently active delta that has one of the highest rates of retreat and land loss. As a result, this site has transitioned from a stable, circular inland lake several kilometers from the shore to a frequently perturbed, semi-circular backbarrier lagoon, making it ideal to study the environmental effects of progressive land loss. Analyses of clastic layers in a series of sediment cores collected at this site over the past decade indicate the lake was less perturbed in the past and has become increasingly more sensitive to marine incursion events caused by tropical cyclones. Geochemical and pollen analyses of these cores also reveal profound changes in environmental and chemical conditions in Bay Champagne over the past century as the shoreline has retreated. Through relating stratigraphy to spatial changes observed from satellite imagery, this study attempts to identify the tipping point at which Bay Champagne began the transition from an inland lake to a backbarrier environment, and to determine the rate at which this transition occurred. Results will be used to develop a model of the environmental transition experienced by a rapidly retreating coastline and to predict how other regions of the Mississippi River deltaic system could respond to future shoreline retreat.

  17. Impact of port structures on the shoreline of Karnataka, west coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Deepa, N.; Kunte, P.D.

    (GIS) as the location of the shoreline and its historical rate of change can provide important information for the design of coastal protection, plans for coastal development, coastal and social vulnerability study, and the calibration...

  18. Back-island and open-ocean shorelines, and sand areas of Assateague Island, Maryland and Virginia, April 12, 1989, to September 5, 2013

    Science.gov (United States)

    Guy, Kristy K.

    2015-01-01

    Assessing the physical change to shorelines and wetlands is critical in determining the resiliency of wetland systems that protect adjacent habitat and communities. The wetland and back-barrier shorelines of Assateague Island, located in Maryland and Virginia, changed as a result of wave action and storm surge that occurred during Hurricane Sandy in 2012. As part of the U.S. Geological Survey Coastal and Marine Geology Program, the impact of Hurricane Sandy will be assessed and placed in its historical context to understand the future vulnerability of wetland systems. Making these assessments will rely on data extracted from current and historical resources such as maps, aerial photographs, satellite imagery, and lidar elevation data, which document physical changes over time.

  19. Optimal index related to the shoreline dynamics during a storm: the case of Jesolo beach

    Science.gov (United States)

    Archetti, Renata; Paci, Agnese; Carniel, Sandro; Bonaldo, Davide

    2016-05-01

    The paper presents an application of shoreline monitoring aimed at understanding the response of a beach to single storms and at identifying its typical behaviour, in order to be able to predict shoreline changes and to properly plan the defence of the shore zone. On the study area, in Jesolo beach (northern Adriatic Sea, Italy), a video monitoring station and an acoustic wave and current profiler were installed in spring 2013, recording, respectively, images and hydrodynamic data. The site lacks previous detailed hydrodynamic and morphodynamic data. Variations in the shoreline were quantified in combination with available near-shore wave conditions, making it possible to analyse the relationship between the shoreline displacement and the wave features. Results denote characteristic patterns of beach response to storm events, and highlight the importance of improving beach protection in this zone, notwithstanding the many interventions experimented in the last decades. A total of 31 independent storm events were selected during the period October 2013-October 2014, and for each of them synthetic indexes based on storm duration, energy and maximum wave height were developed and estimated. It was found that the net shoreline displacements during a storm are well correlated with the total wave energy associated to the considered storm by an empirical power law equation. A sub-selection of storms in the presence of an artificial dune protecting the beach (in the winter season) was examined in detail, allowing to conclude that the adoption of this coastal defence strategy in the study area can reduce shoreline retreat during a storm. This type of intervention can sometimes contribute to prolonging overall stability not only in the replenished zone but also in downdrift areas. The implemented methodology, which confirms to be economically attractive if compared to more traditional monitoring systems, proves to be a valuable system to monitor beach erosive processes and

  20. Use of synthetic aperture radar for recognition of Coastal Geomorphological Features, land-use assessment and shoreline changes in Bragança coast, Pará, Northern Brazil

    Directory of Open Access Journals (Sweden)

    Souza-Filho Pedro W. M.

    2003-01-01

    Full Text Available Synthetic Aperture Radar (SAR images are being used more extensively than ever before for geoscience applications in the moist tropics. In this investigation, a RADARSAT1-1 C-HH SAR image acquired in 1998 was used for coastal mapping and land-cover assessment in the Bragança area, in the northern Brazil. The airborne GEMS 1000 X-HH radar image acquired in 1972 during the RADAM Project was also used for evaluating coastal changes occurring over the last three decades. The research has confirmed the usefulness of RADARSAT-1 image for geomorphological mapping and land-cover assessment, particularly in macrotidal mangrove coasts. It was possible to map mangroves, salt marshes, chenier sand ridges, dunes, barrier-beach ridges, shallow water morphologies and different forms of land-use. Furthermore, a new method to estimate shoreline changes based on the superimposition of vectors extracted from both sources of SAR data has indicated that the shoreline has been subjected to severe coastal erosion responsible for retreat of 32 km² and accretion of 20 km², resulting in a mangrove land loss of almost 12 km². In an application perspective, orbital and airborne SAR data proved to be a fundamental source of information for both geomorphological mapping and monitoring coastal changes in moist tropical environments.

  1. Eureka Littoral Cell CRSMP Humboldt Bay Shoreline Types 2011

    Data.gov (United States)

    California Natural Resource Agency — In 2011 Aldaron Laird walked and kayaked the entire shoreline of Humboldt Bay mapping the shoreline conditions onto 11x17 laminated fieldmaps at a scale of 1' = 200'...

  2. Simulation of shoreline development in a groyne system, with a case study Sanur Bali beach

    Science.gov (United States)

    Gunawan, P. H.; Pudjaprasetya, S. R.

    2018-03-01

    The process of shoreline changes due to transport of sediment by littoral drift is studied in this paper. Pelnard-Considère is the commonly adopted model. This model is based on the principle of sediment conservation, without diffraction. In this research, we adopt the Pelnard-Considère equation with diffraction, and a numerical scheme based on the finite volume method is implemented. Shoreline development in a groyne system is then simulated. For a case study, the Sanur Bali Beach, Indonesia is considered, in which from Google Earth photos, the beach experiences changes of coastline caused by sediment trapped in a groyne system.

  3. Sea-level rise and shoreline retreat: time to abandon the Bruun Rule

    Science.gov (United States)

    Cooper, J. Andrew G.; Pilkey, Orrin H.

    2004-11-01

    In the face of a global rise in sea level, understanding the response of the shoreline to changes in sea level is a critical scientific goal to inform policy makers and managers. A body of scientific information exists that illustrates both the complexity of the linkages between sea-level rise and shoreline response, and the comparative lack of understanding of these linkages. In spite of the lack of understanding, many appraisals have been undertaken that employ a concept known as the "Bruun Rule". This is a simple two-dimensional model of shoreline response to rising sea level. The model has seen near global application since its original formulation in 1954. The concept provided an advance in understanding of the coastal system at the time of its first publication. It has, however, been superseded by numerous subsequent findings and is now invalid. Several assumptions behind the Bruun Rule are known to be false and nowhere has the Bruun Rule been adequately proven; on the contrary several studies disprove it in the field. No universally applicable model of shoreline retreat under sea-level rise has yet been developed. Despite this, the Bruun Rule is in widespread contemporary use at a global scale both as a management tool and as a scientific concept. The persistence of this concept beyond its original assumption base is attributed to the following factors: Appeal of a simple, easy to use analytical model that is in widespread use. Difficulty of determining the relative validity of 'proofs' and 'disproofs'. Ease of application. Positive advocacy by some scientists. Application by other scientists without critical appraisal. The simple numerical expression of the model. Lack of easy alternatives. The Bruun Rule has no power for predicting shoreline behaviour under rising sea level and should be abandoned. It is a concept whose time has passed. The belief by policy makers that it offers a prediction of future shoreline position may well have stifled much

  4. Quantifying the effectiveness of shoreline armoring removal on coastal biota of Puget Sound.

    Science.gov (United States)

    Lee, Timothy S; Toft, Jason D; Cordell, Jeffery R; Dethier, Megan N; Adams, Jeffrey W; Kelly, Ryan P

    2018-01-01

    Shoreline armoring is prevalent around the world with unprecedented human population growth and urbanization along coastal habitats. Armoring structures, such as riprap and bulkheads, that are built to prevent beach erosion and protect coastal infrastructure from storms and flooding can cause deterioration of habitats for migratory fish species, disrupt aquatic-terrestrial connectivity, and reduce overall coastal ecosystem health. Relative to armored shorelines, natural shorelines retain valuable habitats for macroinvertebrates and other coastal biota. One question is whether the impacts of armoring are reversible, allowing restoration via armoring removal and related actions of sediment nourishment and replanting of native riparian vegetation. Armoring removal is targeted as a viable option for restoring some habitat functions, but few assessments of coastal biota response exist. Here, we use opportunistic sampling of pre- and post-restoration data for five biotic measures (wrack % cover, saltmarsh % cover, number of logs, and macroinvertebrate abundance and richness) from a set of six restored sites in Puget Sound, WA, USA. This broad suite of ecosystem metrics responded strongly and positively to armor removal, and these results were evident after less than one year. Restoration responses remained positive and statistically significant across different shoreline elevations and temporal trajectories. This analysis shows that removing shoreline armoring is effective for restoration projects aimed at improving the health and productivity of coastal ecosystems, and these results may be widely applicable.

  5. Quantifying the effectiveness of shoreline armoring removal on coastal biota of Puget Sound

    Directory of Open Access Journals (Sweden)

    Timothy S. Lee

    2018-02-01

    Full Text Available Shoreline armoring is prevalent around the world with unprecedented human population growth and urbanization along coastal habitats. Armoring structures, such as riprap and bulkheads, that are built to prevent beach erosion and protect coastal infrastructure from storms and flooding can cause deterioration of habitats for migratory fish species, disrupt aquatic–terrestrial connectivity, and reduce overall coastal ecosystem health. Relative to armored shorelines, natural shorelines retain valuable habitats for macroinvertebrates and other coastal biota. One question is whether the impacts of armoring are reversible, allowing restoration via armoring removal and related actions of sediment nourishment and replanting of native riparian vegetation. Armoring removal is targeted as a viable option for restoring some habitat functions, but few assessments of coastal biota response exist. Here, we use opportunistic sampling of pre- and post-restoration data for five biotic measures (wrack % cover, saltmarsh % cover, number of logs, and macroinvertebrate abundance and richness from a set of six restored sites in Puget Sound, WA, USA. This broad suite of ecosystem metrics responded strongly and positively to armor removal, and these results were evident after less than one year. Restoration responses remained positive and statistically significant across different shoreline elevations and temporal trajectories. This analysis shows that removing shoreline armoring is effective for restoration projects aimed at improving the health and productivity of coastal ecosystems, and these results may be widely applicable.

  6. Driftcretions: The legacy impacts of driftwood on shoreline morphology

    Science.gov (United States)

    Kramer, Natalie; Wohl, Ellen

    2015-07-01

    This research demonstrates how vegetation interacts with physical processes to govern landscape development. We quantify and describe interactions among driftwood, sedimentation, and vegetation for Great Slave Lake, which is used as proxy for shoreline dynamics and landforms before deforestation and wood removal along major waterways. We introduce driftcretion to describe large, persistent concentrations of driftwood that interact with vegetation and sedimentation to influence shoreline evolution. We report the volume and distribution of driftwood along shorelines, the morphological impacts of driftwood delivery throughout the Holocene, and rates of driftwood accretion. Driftcretions facilitate the formation of complex, diverse morphologies that increase biological productivity and organic carbon capture and buffer against erosion. Driftcretions should be common on shorelines receiving a large wood supply and with processes which store wood permanently. We encourage others to work in these depositional zones to understand the physical and biological impacts of large wood export from river basins.

  7. County Boundaries with Shorelines (National)

    Data.gov (United States)

    Department of Transportation — County boundaries with shorelines cut in (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and...

  8. Decadal shoreline changes in the muddy coastline of Ondo State, Nigeria

    Directory of Open Access Journals (Sweden)

    TEMITOPE D. TIMOTHY OYEDOTUN

    2015-12-01

    Full Text Available Modifications du littoral décennales dans le l ittoral boueux de l'Etat d'Ondo , Nigeria . Les changements dans les positions du rivage à proximité du littoral boueux de l'Etat d'Ondo (sud - ouest du Nigeria sont étudiés, entre 1972 et 2014. Les mouvements de l'eau (HW rivage haut ont été étudiés en utilisant le système n umérique Shoreline Analyse (DSAS, une extension ArcGIS développé par l'USGS. Les ensembles de données comprend plusieurs éditions de photographie de Landsat et le Nigeria Imageries satellite. le Shoreline délimitées les unes des images année inclus les po sitions de HW, qui ont été calculées à partir du rivage Mouvement net (NSM et End Point Noter (EPR, le taux annuel de mouvement. Les résultats préliminaires montrent que les rivages de Ondo côte État ont connu un mouvement vers la terre constante au cour s des quatre décennies. Ces changements sont attribués à des attaques d'onde, l'augmentation des niveaux des marées dans le golfe de l'Atlantique du Bénin, la récente hausse du niveau de la mer, canalisation de la rivière qui réduisent le transport de sédi ments dans la zone côtière, l'extraction historique probable de sable et d'autres activités anthropiques dans la zone côtière.

  9. Monitoring oiled shorelines in Prince William Sound Alaska, following the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    Gilfillan, E.S.; Page, D.S.; Harner, E.J.; Boehm, P.D.; Stoker, S.W.

    1993-01-01

    Three types of shoreline monitoring programs were employed to evaluate the recovery of the ecological communities of Prince William Sound (PWS) shorelines after the oil spill: (a) Extensive shoreline surveys conducted (1989--1992) over much of the oiled shoreline to define extent of shoreline oiling and to assess biological conditions; (b) Detailed sampling in 1989 at nonrandomly chosen locations representing a range of oiling conditions (c) Comprehensive shoreline ecology program initiated in 1990 to assess shoreline recovery in Prince William Sound using (1) a rigorous stratified random sampling study design with 64 sites representing 4 shoreline habitats and 4 oiling levels (unoiled, light, moderate, heavy); (2) periodic sampling at 12 nonrandomly chosen sites of particular concern. Biological communities were analyzed to detect differences due to oiling in each of 16 habitat/tide zone combinations. Following the spill, populations of all major species survived as sources for recolonization. Recruitment to oiled shores began in summer 1989. By 1990, shoreline biota in PWS had largely recovered. Estimates of shoreline recovery (biological community indistinguishable from reference) ranged from 91% based on univariate analysis of standard community parameters to 73% based on multivariate correspondence analysis

  10. Using GPS-surveyed intertidal zones to determine the validity of shorelines automatically mapped by Landsat water indices

    Science.gov (United States)

    Kelly, Joshua T.; Gontz, Allen M.

    2018-03-01

    Satellite remote sensing has been used extensively in a variety of shoreline studies and validated using aerial photography. This ground truth method only represents an instantaneous depiction of the shoreline at the time of acquisition and does not take into account the spatial and temporal variability of the dynamic shoreline boundary. Landsat 8‧s Operational Land Imager sensor's capability to accurately delineate a shoreline is assessed by comparing all known Landsat water index-derived shorelines with two GPS-surveyed intertidal zones that coincide with the satellite flyover date, one of which had near-neap tide conditions. Seven indices developed for automatically classifying water pixels were evaluated for their ability to delineate shorelines. The shoreline is described here as the area above and below maximum low and high tide, otherwise known as the intertidal zone. The high-water line, or wet/dry sediment line, was chosen as the shoreline indicator to be mapped using a handheld GPS. The proportion of the Landsat-derived shorelines that fell within this zone and their alongshore profile lengths were calculated. The most frequently used water index and the predecessor to Modified Normalized Difference Water Index (MNDWI), Normalized Difference Water Index (NDWI), was found to be the least accurate by a significant margin. Other indices required calibration of their threshold value to achieve accurate results, thus diminishing their replicability success for other regions. MNDWI was determined to be the best index for automated shoreline mapping, based on its superior accuracy and repeatable, stable threshold value.

  11. NOAA Coastal Mapping Shoreline Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Coastal Mapping Shoreline Products from the Remote Sensing Division are primarily for application to the nautical charts produced by NOAA's Office of Coast...

  12. Wetland shoreline recession in the Mississippi River Delta from petroleum oiling and cyclonic storms

    Science.gov (United States)

    Rangoonwala, Amina; Jones, Cathleen E.; Ramsey, Elijah W.

    2016-01-01

    We evaluate the relative impact of petroleum spill and storm surge on near-shore wetland loss by quantifying the lateral movement of coastal shores in upper Barataria Bay, Louisiana (USA), between June 2009 and October 2012, a study period that extends from the year prior to the Deepwater Horizon spill to 2.5 years following the spill. We document a distinctly different pattern of shoreline loss in the 2 years following the spill, both from that observed in the year prior to the spill, during which there was no major cyclonic storm, and from change related to Hurricane Isaac, which made landfall in August 2012. Shoreline erosion following oiling was far more spatially extensive and included loss in areas protected from wave-induced erosion. We conclude that petroleum exposure can substantially increase shoreline recession particularly in areas protected from storm-induced degradation and disproportionally alters small oil-exposed barrier islands relative to natural erosion.

  13. Preliminary study of soil liquefaction hazard at Terengganu shoreline, Peninsular Malaysia

    Science.gov (United States)

    Hashim, H.; Suhatril, M.; Hashim, R.

    2017-06-01

    Terengganu is a shoreline state located in Peninsular Malaysia which is a growing hub for port industries and tourism centre. The northern part offers pristine settings of a relax beach areas whereas the southern part are observed to be a growing centre for development. The serious erosion on soil deposit along the beach line presents vulnerable soil condition to soil liquefaction consists of sandy with low plasticity and shallow ground water. Moreover, local earthquake from nearby fault have present significant tremors over the past few years which need to be considered in the land usage or future development in catering the seismic loading. Liquefaction analysis based on field standard penetration of soil is applied on 546 boreholes scattered along the shoreline areas ranging 244 km of shoreline stretch. Based on simplified approach, it is found that more than 70% of the studied areas pose high liquefaction potential since there are saturated loose sand and silt deposits layer ranges at depth 3 m and up to 20 m. The presence of clay deposits and hard stratum at the remaining 30% of the studied areas shows good resistance to soil liquefaction hence making the area less significant to liquefaction hazard. Result indicates that liquefaction improving technique is advisable in future development of shoreline areas of Terengganu state.

  14. A chronology for glacial Lake Agassiz shorelines along Upham's namesake transect

    Science.gov (United States)

    Lepper, Kenneth; Buell, Alex W.; Fisher, Timothy G.; Lowell, Thomas V.

    2013-07-01

    Four traditionally recognized strandline complexes in the southern basin of glacial Lake Agassiz are the Herman, Norcross, Tintah and Campbell, whose names correspond to towns in west-central Minnesota that lie on a linear transect defined by the Great Northern railroad grade; the active corridor for commerce at the time when Warren Upham was mapping and naming the shorelines of Lake Agassiz (ca.1880-1895). Because shorelines represent static water planes, their extension around the lake margin establishes time-synchronous lake levels. Transitions between shoreline positions represent significant water-level fluctuations. However, geologic ages have never been obtained from sites near the namesake towns in the vicinity of the southern outlet. Here we report the first geologic ages for Lake Agassiz shorelines obtained at field sites along the namesake transect, and evaluate the emerging chronology in light of other paleoclimate records. Our current work from 11 sampling sites has yielded 16 independent ages. These results combined with a growing OSL age data set for Lake Agassiz's southern basin provide robust age constraints for the Herman, Norcross and Campbell strandlines with averages and standard deviations of 14.1 ± 0.3 ka, 13.6 ± 0.2 ka, and 10.5 ± 0.3 ka, respectively.

  15. Pleistocene Lake Bonneville and Eberswalde Crater of Mars: Quantitative Methods for Recognizing Poorly Developed Lacustrine Shorelines

    Science.gov (United States)

    Jewell, P. W.

    2014-12-01

    The ability to quantify shoreline features on Earth has been aided by advances in acquisition of high-resolution topography through laser imaging and photogrammetry. Well-defined and well-documented features such as the Bonneville, Provo, and Stansbury shorelines of Late Pleistocene Lake Bonneville are recognizable to the untrained eye and easily mappable on aerial photos. The continuity and correlation of lesser shorelines must rely quantitative algorithms for processing high-resolution data in order to gain widespread scientific acceptance. Using Savitsky-Golay filters and the geomorphic methods and criteria described by Hare et al. [2001], minor, transgressive, erosional shorelines of Lake Bonneville have been identified and correlated across the basin with varying degrees of statistical confidence. Results solve one of the key paradoxes of Lake Bonneville first described by G. K. Gilbert in the late 19th century and point the way for understanding climatically driven oscillations of the Last Glacial Maximum in the Great Basin of the United States. Similar techniques have been applied to the Eberswalde Crater area of Mars using HRiSE DEMs (1 m horizontal resolution) where a paleolake is hypothesized to have existed. Results illustrate the challenges of identifying shorelines where long term aeolian processes have degraded the shorelines and field validation is not possible. The work illustrates the promises and challenges of indentifying remnants of a global ocean elsewhere on the red planet.

  16. Field guide for the protection and cleanup of oiled Arctic shorelines

    International Nuclear Information System (INIS)

    Owens, E.H.

    1996-01-01

    Practical suggestions for the protection, treatment and cleanup of oiled shorelines during summer and open-water conditions are described. This manual was developed as a field guide to be used during spill response operations for the rapid identification of shoreline response options. Special attention is given to techniques that are normally available and appropriate for shoreline types and coastal environmental setting that are typical of Arctic regions. The guide is divided into four main sections: (1) shoreline protection, (2) treatment strategy by shoreline type, (3) treatment or cleanup methods, and (4) response strategies for specific environments. The importance of the type and volume of oil spilled, and the environmental factors that should be taken into account in the event of a spill (time of year, weather, ice and wave conditions) are stressed. The presence of sensitive resources such as wildlife, fish stocks, plant communities and human-use activities are also considered. tabs., figs

  17. Quebec region's shoreline segmentation in the St. Lawrence River : response tool for oil spills

    International Nuclear Information System (INIS)

    Laforest, S.; Martin, V.

    2004-01-01

    Environment Canada, the Canadian Coast Guard, and the Eastern Canada Response Corporation are developing and refining pre-spill databases containing information about physical shoreline characteristics. Automated links between these pre-spill shoreline characteristic databases and computerized shoreline assessment tools have also been created using Geographical Information System (GIS) technology. The pre-spill databases can be used for planning shoreline cleanup operations. A training exercise, designed to evaluate a spill management system integrating the Quebec region pre-spill shoreline database and the ShoreAssess R shoreline assessment system was performed by Eastern Canada Response Corporation during an aerial survey where shoreline was segmented into digitized information. The cartography of segmentation covers the fluvial part of the St. Lawrence River. The oil spill-oriented database includes geomorphologic information from the supratidal to the lower intertidal zones. It also includes some statistical information and other requirements for cleanup operations. The computerized shoreline assessment tools made it possible to evaluate the length and type of shoreline that would potentially be impacted by oil. The tools also made it possible to assess the shoreline treatment methods most likely to be used, and evaluate the probable duration of the cleanup operation. The training exercise demonstrated that the integration of the databases is a valuable tool during the early phases of an oil spill response. 9 refs., 3 figs

  18. Development of a practical methodology for integrating shoreline oil-holding capacity into modeling

    International Nuclear Information System (INIS)

    Schmidt Etkin, D.; French-McCay, D.; Rowe, J.; Michel, J.; Boufadel, M.; Li, H.

    2008-01-01

    The factors that influence the behaviour of oil in the aftermath of an oil spill on water include oil type and characteristics; oil thickness on the shoreline; time until shoreline impact; timing with regards to tides; weathering during and after the spill; and nearshore wave energy. The oil behaviour also depends on the shoreline characteristics, particularly porosity and permeability. The interactions of spilled oil with sediments on beaches must be well understood in order to model the oil spill trajectory, fate and risk. The movement of oil can be most accurately simulated if the algorithm incorporates an estimate of shoreline oil retention. This paper presented a literature review of relevant shoreline oiling studies and considered the relevance of study findings for inclusion in modelling. Survey data from a detailed shoreline cleanup assessment team (SCAT) were analyzed for patterns in oil penetration and oil-holding capacity by shoreline sediment type and oil type for potential use in modelling algorithms. A theoretical beach hydraulics model was then developed for use in a stochastic spill model. Gaps in information were identified, including the manner in which wave action and other environmental variables have an impact on the dynamic processes involved in shoreline oiling. The methodology presented in this paper can be used to estimate the amount of oil held by a shoreline upon impact to allow a trajectory model to more accurately project the total spread of oil. 27 refs., 13 tabs., 3 figs

  19. Geographic information systems-based expert system modelling for shoreline sensitivity to oil spill disaster in Rivers State, Nigeria

    Directory of Open Access Journals (Sweden)

    Olanrewaju Lawal

    2017-07-01

    Full Text Available In the absence of adequate and appropriate actions, hazards often result in disaster. Oil spills across any environment are very hazardous; thus, oil spill contingency planning is pertinent, supported by Environmental Sensitivity Index (ESI mapping. However, a significant data gap exists across many low- and middle-income countries in aspect of environmental monitoring. This study developed a geographic information system (GIS-based expert system (ES for shoreline sensitivity to oiling. It focused on the biophysical attributes of the shoreline with Rivers State as a case study. Data on elevation, soil, relative wave exposure and satellite imageries were collated and used for the development of ES decision rules within GIS. Results show that about 70% of the shoreline are lined with swamp forest/mangroves/nympa palm, and 97% have silt and clay as dominant sediment type. From the ES, six ranks were identified; 61% of the shoreline has a rank of 9 and 19% has a rank of 3 for shoreline sensitivity. A total of 568 km out of the 728 km shoreline is highly sensitive (ranks 7–10. There is a clear indication that the study area is a complex mixture of sensitive environments to oil spill. GIS-based ES with classification rules for shoreline sensitivity represents a rapid and flexible framework for automatic ranking of shoreline sensitivity to oiling. It is expected that this approach would kick-start sensitivity index mapping which is comprehensive and openly available to support disaster risk management around the oil producing regions of the country.

  20. Shoreline type and subsurface oil persistence in the Exon Valdez spill zone of Prince William Sound, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Page, D.S. [Bowdoin College, Brunswick, ME (United States). Dept. of Chemistry; Boehm, P.D. [Exponent Inc., Maynard, MA (United States); Neff, J.M. [Neff and Associates, Duxbury, MA (United States)

    2008-07-01

    The grounding of the Exxon Valdez in Prince William Sound (PWS), Alaska in the spring of 1989 resulted in the release of 258,000 barrels of Alaska North Slope crude oil into the marine environment. Nearly 800 km of shoreline were oiled to some degree. There was an unprecedented oil spill cleanup effort following the spill. The shoreline surveys of the spill zone were synthesized in this paper in an effort to demonstrate the relationship between shoreline type and persistence of subsurface oil (SSO) residues. Shoreline surveys of surface and SSO indicate rapid initial oil loss with a decline from about 800 linear km of PWS shoreline in 1989 to about 10 km of oiled shoreline in 1992. The period of rapid loss was attributed to natural physical process, biodegradation and cleanup activities that removed accessible spill remnants from shorelines. This was followed by a slower natural average loss rate for less accessible surface and SSO deposits of about 22 per cent per year for the period 1992-2001. This paper emphasized that shoreline type plays a key role in determining SSO persistence. The geology of PWS is complex. Many of the shorelines where SSO persists have armouring layers composed of hard, dense clasts, such as the quartzite boulders and cobblestones that can protect SSO deposits. Eighteen years after the spill, persistent SSO deposits in PWS shorelines remain protected from tidal water-washing and biodegradation by a surface boulder/cobble armour and low sediment porosity. The SSO deposits are in a physical/chemical form and location where they do not pose a health risk to intertidal biological communities and animals. The surveys continue to substantiate that remaining SSO deposits in PWS continue to degrade and go away slowly. 37 refs., 5 tabs., 7 figs.

  1. Numerical modeling of shoreline undulations part 1: Constant wave climate

    DEFF Research Database (Denmark)

    Kærgaard, Kasper Hauberg; Fredsøe, Jørgen

    2013-01-01

    integrated flow model, a wave-phase resolving sediment transport description and a one-line shoreline model.First the length of the shoreline undulations is determined in the linear regime using a stability analysis. Next the further evolution from the linear to the fully non-linear regime is described...

  2. Sedimentation and erosion in Lake Diefenbaker, Canada: solutions for shoreline retreat monitoring.

    Science.gov (United States)

    Sadeghian, Amir; de Boer, Dirk; Lindenschmidt, Karl-Erich

    2017-09-15

    This study looks into sedimentation and erosion rates in Lake Diefenbaker, a prairie reservoir, in Saskatchewan, Canada, which has been in operation since 1968. First, we looked at the historical data in all different formats over the last 70 years, which includes data from more than 20 years before the formation of the lake. The field observations indicate high rates of shoreline erosion, especially in the upstream portion as a potential region for shoreline retreat. Because of the great importance of this waterbody to the province, monitoring sedimentation and erosion rates is necessary for maintaining the quality of water especially after severe floods which are more common due to climate change effects. Second, we used Google Maps Elevation API, a new tool from Google that provides elevation data for cross sections drawn between two points, by drawing 24 cross sections in the upstream area extending 250 m from each bank. This feature from Google can be used as an easy and fast monitoring tool, is free of charge, and provides excellent control capabilities for monitoring changes in cross-sectional profiles.

  3. The national assessment of shoreline change: a GIS compilation of vector cliff edges and associated cliff erosion data for the California coast

    Science.gov (United States)

    Hapke, Cheryl; Reid, David; Borrelli, Mark

    2007-01-01

    The U.S. Geological Survey has generated a comprehensive data clearinghouse of digital vector cliff edges and associated rates of cliff retreat along the open-ocean California coast. These data, which are presented herein, were compiled as part of the U.S. Geological Survey's National Assessment of Shoreline Change Project. Cliff erosion is a chronic problem along many coastlines of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information including rates and trends of coastal cliff retreat. There is also a critical need for these data to be consistent from one region to another. One objective of this work is to a develop standard, repeatable methodology for mapping and analyzing cliff edge retreat so that periodic, systematic, and internally consistent updates of cliff edge position and associated rates of erosion can be made at a national scale. This data compilation for open-ocean cliff edges for the California coast is a separate, yet related study to Hapke and others, 2006 documenting shoreline change along sandy shorelines of the California coast, which is itself one in a series that includes the Gulf of Mexico and the Southeast Atlantic coast (Morton and others, 2004; Morton and Miller, 2005). Future reports and data compilations will include coverage of the Northeast U.S., the Great Lakes, Hawaii and Alaska. Cliff edge change is determined by comparing the positions of one historical cliff edge digitized from maps with a modern cliff edge derived from topographic LIDAR (light detection and ranging) surveys. Historical cliff edges for the California coast represent the 1920s-1930s time-period; the most recent cliff edge was delineated using data collected between 1998 and 2002. End-point rate calculations were used to evaluate rates of erosion between the two cliff edges. Please refer to our full report on cliff edge erosion along the California

  4. Sand spit and shoreline dynamics near Terekhol river mouth, Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Rajasekaran, C.; Jayakumar, S.; Gowthaman, R.; Jishad, M.; Yadhunath, E.M.; Pednekar, P.S.

    Evolution of shoreline and sand spit at the mouth of the Terekhol River, near Keri beach, located in the Indian state of Goa has been investigated From the analysis of the data collected, the shoreline oscillation (accretion & erosion) is seasonal...

  5. Living Shoreline Designs in Urban Systems: Examples from New York and Baltimore Harbors

    Science.gov (United States)

    Doss, T.

    2017-12-01

    In the aftermath of Hurricanes Irene and Sandy, there was a renewed interest in protecting our shorelines and restoring community resiliency by using natural and nature based features. We observed in the wake of these storms that those shorelines that had been protected by natural features sustained less damage. But how well can we mimic these natural features? And how do we determine which strategy is best along a given shoreline? A series of living shoreline pilot projects are presented, highlighting the design and construction for the different strategies and how they are being monitored and adapted to sea level rise.

  6. Archaeological sites along the Gujarat coast: Proxies to decipher the past shoreline

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.; Gaur, A; Sundaresh

    on northwestern Saurashtra coast presents a classical case of shoreline shift in recent past. The paper discusses the archaeological evidences to decipher the past shoreline of the Saurashtra region...

  7. The Efficiency of Random Forest Method for Shoreline Extraction from LANDSAT-8 and GOKTURK-2 Imageries

    Science.gov (United States)

    Bayram, B.; Erdem, F.; Akpinar, B.; Ince, A. K.; Bozkurt, S.; Catal Reis, H.; Seker, D. Z.

    2017-11-01

    Coastal monitoring plays a vital role in environmental planning and hazard management related issues. Since shorelines are fundamental data for environment management, disaster management, coastal erosion studies, modelling of sediment transport and coastal morphodynamics, various techniques have been developed to extract shorelines. Random Forest is one of these techniques which is used in this study for shoreline extraction.. This algorithm is a machine learning method based on decision trees. Decision trees analyse classes of training data creates rules for classification. In this study, Terkos region has been chosen for the proposed method within the scope of "TUBITAK Project (Project No: 115Y718) titled "Integration of Unmanned Aerial Vehicles for Sustainable Coastal Zone Monitoring Model - Three-Dimensional Automatic Coastline Extraction and Analysis: Istanbul-Terkos Example". Random Forest algorithm has been implemented to extract the shoreline of the Black Sea where near the lake from LANDSAT-8 and GOKTURK-2 satellite imageries taken in 2015. The MATLAB environment was used for classification. To obtain land and water-body classes, the Random Forest method has been applied to NIR bands of LANDSAT-8 (5th band) and GOKTURK-2 (4th band) imageries. Each image has been digitized manually and shorelines obtained for accuracy assessment. According to accuracy assessment results, Random Forest method is efficient for both medium and high resolution images for shoreline extraction studies.

  8. THE EFFICIENCY OF RANDOM FOREST METHOD FOR SHORELINE EXTRACTION FROM LANDSAT-8 AND GOKTURK-2 IMAGERIES

    Directory of Open Access Journals (Sweden)

    B. Bayram

    2017-11-01

    Full Text Available Coastal monitoring plays a vital role in environmental planning and hazard management related issues. Since shorelines are fundamental data for environment management, disaster management, coastal erosion studies, modelling of sediment transport and coastal morphodynamics, various techniques have been developed to extract shorelines. Random Forest is one of these techniques which is used in this study for shoreline extraction.. This algorithm is a machine learning method based on decision trees. Decision trees analyse classes of training data creates rules for classification. In this study, Terkos region has been chosen for the proposed method within the scope of "TUBITAK Project (Project No: 115Y718 titled "Integration of Unmanned Aerial Vehicles for Sustainable Coastal Zone Monitoring Model – Three-Dimensional Automatic Coastline Extraction and Analysis: Istanbul-Terkos Example". Random Forest algorithm has been implemented to extract the shoreline of the Black Sea where near the lake from LANDSAT-8 and GOKTURK-2 satellite imageries taken in 2015. The MATLAB environment was used for classification. To obtain land and water-body classes, the Random Forest method has been applied to NIR bands of LANDSAT-8 (5th band and GOKTURK-2 (4th band imageries. Each image has been digitized manually and shorelines obtained for accuracy assessment. According to accuracy assessment results, Random Forest method is efficient for both medium and high resolution images for shoreline extraction studies.

  9. Simulation of the landfall of the Deepwater Horizon oil on the shorelines of the Gulf of Mexico.

    Science.gov (United States)

    Boufadel, Michel C; Abdollahi-Nasab, Ali; Geng, Xiaolong; Galt, Jerry; Torlapati, Jagadish

    2014-08-19

    We conducted simulations of oil transport from the footprint of the Macondo Well on the water surface throughout the Gulf of Mexico, including deposition on the shorelines. We used the U.S. National Oceanic Atmospheric Administration (NOAA) model General NOAA Operational Modeling Environment (GNOME) and the same parameter values and input adopted by NOAA following the Deepwater Horizon (DWH) blowout. We found that the disappearance rate of oil off the water surface was most likely around 20% per day based on satellite-based observations of the disappearance rate of oil detected on the sea surface after the DWH wellhead was capped. The simulations and oil mass estimates suggest that the mass of oil that reached the shorelines was between 10,000 and 30,000 tons, with an expected value of 22,000 tons. More than 90% of the oil deposition occurred on the Louisiana shorelines, and it occurred in two batches. Simulations revealed that capping the well after 2 weeks would have resulted in only 30% of the total oil depositing on the shorelines, while capping after 3 weeks would have resulted in 60% deposition. Additional delay in capping after 3 weeks would have averted little additional shoreline oiling over the ensuing 4 weeks.

  10. Aquifer Sampling Tube Completion Report: 100 Area and Hanford Townsite Shorelines

    International Nuclear Information System (INIS)

    Peterson, R.E.; Borghese, J.V.; Erb, D.B.

    1998-02-01

    Groundwater contamination is known or suspected along the Hanford Site shoreline of the Columbia River adjacent to the retired reactor areas. Along the shoreline away from the reactor areas, where contamination is presumed to be absent, monitoring sites are frequently widely spaced or unavailable to confirm the presumption. Previous characterizations of contamination near the river have relied on data from a limited number of near-river wells, contaminant plume migration predictions, and river bank seepage sampling to anticipate shoreline conditions. In recent years, new methods have been developed to obtain groundwater samples from the aquifer near the groundwater/river water interface. These methods include using (1) divers to obtain samples of pore water from riverbed sediment and (2) sampling tubes that are driven into the aquifer at the shoreline. The latter method also permits sampling the aquifer at multiple depths, which helps to determine the thickness of the potentially contaminated groundwater layer that discharges into the river

  11. Research on bioremediation of oil polluted shorelines in Norway

    International Nuclear Information System (INIS)

    Sveum, P.

    1995-01-01

    Marine bioremediation research in Norway has been directed towards the use of fertilizers on arctic shorelines and ice infested waters. In addition from the focus on fertilizers, the research has paid considerable attention to nutrient dynamics, and the influence of microfauna such as bacterial and fungal grazers on the dynamics of macronutrients. The interactions between microbial and physical processes on the shorelines, between photochemical processes and nutrient dynamics, have also been addressed. 29 refs., 5 figs., 2 tabs

  12. Effects of erosion control structures along a portion of the northern Chesapeake Bay shoreline

    Science.gov (United States)

    Zabawa, C.F.; Kerhin, R.T.; Bayley, S.

    1981-01-01

    A 6.500-meter reach of western Chesapeake Bay shoreline (lower Mayo Peninsula) lost about 1.1??106 cubic meters of sediment (equivalent to 170 cubic meters lost per meter of shoreline) between 1846 and 1932, when the first aerial photographs show the shoreline already substantially protected by a system of groins and intermittent bulkheading. These structures have eliminated the fastland as a source of erodable material, and have starved the supply of sand for littoral drift, thus limiting the extent of the beaches to the remaining groin fields. Volumes of sediment involved in these impacts are small in the overall sediment budget. Bulkheads produce no deficit in the budget since scouring of the beaches on their seaward sides makes up for the decreased erosion of protected fastland. Groins trap little of the potential littoral drift (computed to be about 104 cubic meters per meter of shoreline per year). The sand supply in the remaining beaches is nearly equivalent to the annual loss of sediment from the entire shoreline system due to the long-term rate of erosion of the shoreline and nearshore between 1846 and 1932. ?? 1981 Springer-Verlag New York Inc.

  13. Spatiotemporal shoreline dynamics of Namibian coastal lagoons derived by a dense remote sensing time series approach

    Science.gov (United States)

    Behling, Robert; Milewski, Robert; Chabrillat, Sabine

    2018-06-01

    This paper proposes the remote sensing time series approach WLMO (Water-Land MOnitor) to monitor spatiotemporal shoreline changes. The approach uses a hierarchical classification system based on temporal MNDWI-trajectories with the goal to accommodate typical uncertainties in remote sensing shoreline extraction techniques such as existence of clouds and geometric mismatches between images. Applied to a dense Landsat time series between 1984 and 2014 for the two Namibian coastal lagoons at Walvis Bay and Sandwich Harbour the WLMO was able to identify detailed accretion and erosion progressions at the sand spits forming these lagoons. For both lagoons a northward expansion of the sand spits of up to 1000 m was identified, which corresponds well with the prevailing northwards directed ocean current and wind processes that are responsible for the material transport along the shore. At Walvis Bay we could also show that in the 30 years of analysis the sand spit's width has decreased by more than a half from 750 m in 1984-360 m in 2014. This ongoing cross-shore erosion process is a severe risk for future sand spit breaching, which would expose parts of the lagoon and the city to the open ocean. One of the major advantages of WLMO is the opportunity to analyze detailed spatiotemporal shoreline changes. Thus, it could be shown that the observed long-term accretion and erosion processes underwent great variations over time and cannot a priori be assumed as linear processes. Such detailed spatiotemporal process patterns are a prerequisite to improve the understanding of the processes forming the Namibian shorelines. Moreover, the approach has also the potential to be used in other coastal areas, because the focus on MNDWI-trajectories allows the transfer to many multispectral satellite sensors (e.g. Sentinel-2, ASTER) available worldwide.

  14. Anthropogenic influences on shoreline and nearshore evolution in the San Francisco Bay coastal system

    Science.gov (United States)

    Dallas, K.L.; Barnard, P.L.

    2011-01-01

    Analysis of four historical bathymetric surveys over a 132-year period has revealed significant changes to the morphology of the San Francisco Bar, an ebb-tidal delta at the mouth of San Francisco Bay estuary. From 1873 to 2005 the San Francisco Bar vertically-eroded an average of 80 cm over a 125 km2 area, which equates to a total volume loss of 100 ± 52 million m3 of fine- to coarse-grained sand. Comparison of the surveys indicates the entire ebb-tidal delta contracted radially, with the crest moving landward an average of 1 km. Long-term erosion of the ebb-tidal delta is hypothesized to be due to a reduction in the tidal prism of San Francisco Bay and a decrease in coastal sediment supply, both as a result of anthropogenic activities. Prior research indicates that the tidal prism of the estuary was reduced by 9% from filling, diking, and sedimentation. Compilation of historical records dating back to 1900 reveals that a minimum of 200 million m3 of sediment has been permanently removed from the San Francisco Bay coastal system through dredging, aggregate mining, and borrow pit mining. Of this total, ~54 million m3 of sand-sized or coarser sediment was removed from central San Francisco Bay. With grain sizes comparable to the ebb-tidal delta, and its direct connection to the bay mouth, removal of sediments from central San Francisco Bay may limit the sand supply to the delta and open coast beaches. SWAN wave modeling illustrates that changes to the morphology of the San Francisco Bar have altered the alongshore wave energy distribution at adjacent Ocean Beach, and thus may be a significant factor in a persistent beach erosion ‘hot spot’ occurring in the area. Shoreline change analyses show that the sandy shoreline in the shadow of the ebb-tidal delta experienced long-term (1850s/1890s to 2002) and short-term (1960s/1980s to 2002) accretion while the adjacent sandy shoreline exposed to open-ocean waves experienced long-term and short-term erosion. Therefore

  15. Pre-spill shoreline mapping in Prince William Sound, Alaska

    International Nuclear Information System (INIS)

    Owens, E.H.; Lamarche, A.; Reimer, P.D.; Marchant, S.O.; O'Brien, D.K.

    2003-01-01

    A long-term shoreline mapping program has been initiated in Prince William Sound, Alaska, to generate pre-spill data to assist in the planning activities for oil spill response in the area. Low-altitude aerial videotape surveys and video images form the basis for the mapping effort. The coast was initially divided into alongshore segments. The physical shore-zone is relatively homogeneous within each segment. A pre-spill Shoreline Cleanup Assessment Team (SCAT) database, using the ShoreData software, was created based on this initial detailed mapping. The SCAT field teams are therefore equipped with a detailed analysis of the shore-zone character. The same information was also used to develop a separate database for use by planning and response operations groups. The data is entered into the Graphical Resource Database (GRD), and a Geographic Information System (GIS). A simplified characterization of the primary features of each segment is then made available through interpretation of the data. In the event of an oil spill, the SCAT data in the ShoreData files can be combined with field data on shoreline oiling conditions using a second software package called ShoreAccess R which provides summaries of the main parameters required by the planning group. It can also be used as a data storage and management tool. As part of this program, more than 1700 kilometres of shoreline in Prince William Sound have already been mapped. 24 refs., 4 tabs., 5 figs

  16. An integrated approach to shoreline mapping for spill response planning

    International Nuclear Information System (INIS)

    Owens, E.H.; LeBlanc, S.R.; Percy, R.J.

    1996-01-01

    A desktop mapping package was introduced which has the capability to provide consistent and standardized application of mapping and data collection/generation techniques. Its application in oil spill cleanup was discussed. The data base can be updated easily as new information becomes available. This provides a response team with access to a wide range of information that would otherwise be difficult to obtain. Standard terms and definitions and shoreline segmentation procedures are part of the system to describe the shore-zone character and shore-zone oiling conditions. The program that is in place for Atlantic Canada involves the integration of (1) Environment Canada's SCAT methodology in pre-spill data generation, (2) shoreline segmentation, (3) response management by objectives, (4) Environment Canada's national sensitivity mapping program, and (5) Environment Canada's field guide for the protection and treatment of oiled shorelines. 7 refs., 6 figs

  17. Morphodynamic implications for shoreline management of the western-Mediterranean sector of Egypt

    Science.gov (United States)

    Frihy, Omran E.

    2009-09-01

    Although the western-Mediterranean coast of Egypt between Sallum and Alexandria, ~550 km long, has maintained a considerable equilibrium throughout history, developers have built traditional protective structures in an effort to form sheltered recreational beaches without taking into consideration its geomorphologic characteristics, coastal processes and their harmful impact on the coastal environment and human safety. The improper practices in this environmentally valuable region have induced us to undertake an initiative to carry out a morphodynamic analysis to provide a framework for understanding the relationship between coastal morphology and the prevailing dynamic forces. Based on the degree of natural protection or wave sheltering, the study shoreline can be categorized into four distinct morphotypical stretches: (1) high-energy wave-exposed shores and the outer margins of the rocky headlands, (2) moderate to high wave-energy beaches along semi-exposed embayments and bays mostly downdrift of the rocky headlands, (3) low-wave energy at semi-exposed headland lee-sided and pocket beaches, and (4) calm wave-sheltered enclosing water basins for safe anchorages, moorings and recreation beaches. The results deducted will have practical applications for shoreline management initiatives regarding sustained sites suitable for future beachfront development such as safe swimming conditions, sport facilities, water intakes and sheltered areas for vessels. In addition, benefits realized by the understanding of the morphodynamic processes would enhance our awareness of the significance of the role of western coast morphodynamics in supporting sustainable development via shoreline management. As far as sustainability is concerned, the selection of appropriate sites would help avoiding or minimizing the formation of the hard structures needed for creating safe recreation beaches. On a national scale, results reached could provide reliable database for information that can be

  18. Detection of Oil near Shorelines during the Deepwater Horizon Oil Spill Using Synthetic Aperture Radar (SAR

    Directory of Open Access Journals (Sweden)

    Oscar Garcia-Pineda

    2017-06-01

    Full Text Available During any marine oil spill, floating oil slicks that reach shorelines threaten a wide array of coastal habitats. To assess the presence of oil near shorelines during the Deepwater Horizon (DWH oil spill, we scanned the library of Synthetic Aperture Radar (SAR imagery collected during the event to determine which images intersected shorelines and appeared to contain oil. In total, 715 SAR images taken during the DWH spill were analyzed and processed, with 188 of the images clearly showing oil. Of these, 156 SAR images showed oil within 10 km of the shoreline with appropriate weather conditions for the detection of oil on SAR data. We found detectable oil in SAR images within 10 km of the shoreline from west Louisiana to west Florida, including near beaches, marshes, and islands. The high number of SAR images collected in Barataria Bay, Louisiana in 2010 allowed for the creation of a nearshore oiling persistence map. This analysis shows that, in some areas inside Barataria Bay, floating oil was detected on as many as 29 different days in 2010. The nearshore areas with persistent floating oil corresponded well with areas where ground survey crews discovered heavy shoreline oiling. We conclude that satellite-based SAR imagery can detect oil slicks near shorelines, even in sheltered areas. These data can help assess potential shoreline oil exposure without requiring boats or aircraft. This method can be particularly helpful when shoreline assessment crews are hampered by difficult access or, in the case of DWH, a particularly large spatial and temporal spill extent.

  19. Growth and decline of shoreline industry in Sydney estuary (Australia) and influence on adjacent estuarine sediments.

    Science.gov (United States)

    Birch, G F; Lean, J; Gunns, T

    2015-06-01

    Sydney estuary (Australia), like many urbanised waterways, is degraded due to an extended history of anthropogenic activity. Two major sources of contamination to this estuary are discharge by former shoreline industries and historic and contemporary catchment stormwater. The objectives of the present study were to document changes in shoreline land use from European settlement to the present day and determine the influence of this trend on the metal content of adjacent estuarine sediments. Temporal analysis of land use for seven time horizons between 1788 and 2010 showed rapid expansion of industry along much of the Sydney estuary foreshore soon after European settlement due to the benefits of easy and inexpensive access and readily available water for cooling and power. Shoreline industry attained maximum development in 1978 (32-km length) and declined rapidly to the present-day (9-km length) through redevelopment of industrial sites into medium- to high-density, high-value residential housing. Cores taken adjacent to 11 long-term industrial sites showed that past industrial practices contributed significantly to contamination of estuarine sediment. Subsurface metal concentrations were up to 35 times that of present-day surface sediment and over 100 times greater than natural background concentrations. Sedimentation rates for areas adjacent to shoreline industry were between 0.6 and 2.5 cm/year, and relaxation times were estimated at 50 to 100 years. Natural relaxation and non-disturbance of sediments may be the best management practice in most locations.

  20. Comparing Fuzzy Sets and Random Sets to Model the Uncertainty of Fuzzy Shorelines

    NARCIS (Netherlands)

    Dewi, Ratna Sari; Bijker, Wietske; Stein, Alfred

    2017-01-01

    This paper addresses uncertainty modelling of shorelines by comparing fuzzy sets and random sets. Both methods quantify extensional uncertainty of shorelines extracted from remote sensing images. Two datasets were tested: pan-sharpened Pleiades with four bands (Pleiades) and pan-sharpened Pleiades

  1. Back-Island and Open-Ocean Shorelines, and Sand Areas of the Undeveloped Areas of New Jersey Barrier Islands, March 9, 1991, to July 30, 2013

    Science.gov (United States)

    Guy, Kristy K.

    2015-11-09

    Assessing the physical change to shorelines and wetlands is critical for determining the resiliency of wetland systems that protect adjacent habitat and communities. The wetland and back-barrier shorelines of the New Jersey barrier islands were changed by wave action and storm surge from Hurricane Sandy in 2012. The U.S. Geological Survey Coastal and Marine Geology Program is assessing the impact of Hurricane Sandy to understand its historical context and the vulnerability of wetland systems. These assessments require data that document physical changes over time, such as maps, aerial photographs, satellite imagery, and lidar elevation data.

  2. Impact of an offshore wind farm on wave conditions and shoreline development

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Kristensen, Sten Esbjørn; Deigaard, Rolf

    2014-01-01

    the shoreline’s sensitivity to the distance from the OWF to the shoreline was studied. The effect of the reduced wind speed inside and on the lee side of the offshore wind farm was incorporated in a parameterized way in a spectral wind wave model. The shoreline impact was studied with a one-line model....

  3. Interaction of oil and mineral fines on shorelines: review and assessment

    International Nuclear Information System (INIS)

    Owens, Edward H.; Lee, Kenneth

    2003-01-01

    The interaction of fine mineral particles with stranded oil in an aqueous medium reduces the adhesion of the oil to solid surfaces, such as sediments or bedrock. The net result is the formation of stable, micron-sized, oil droplets that disperse into the water column. In turn, the increase in surface area makes the oil more available for biodegradation. This interaction, referred to as oil-mineral aggregate (OMA) formation, can explain how oiled shorelines are cleaned naturally in the absence of wave action in very sheltered coastal environments. OMA formation also plays an important role in the efficacy of shoreline treatment techniques, such as physical mixing and sediment relocation that move oiled sediments into the zone of wave action to promote the interaction between oil and mineral fines. Successful application of these shoreline treatment options has been demonstrated at two spill events (the Tampa Bay response in Florida and the Sea Empress operation in Wales) and at a controlled oil spill experiment in the field (the 1997 Svalbard ITOSS program). Sediment relocation harnesses the hydraulic action of waves so that the processes of fine-particle interaction and physical abrasion usually occur in tandem on open coasts. There has been no evidence of significant detrimental side-effects of residual oil in pelagic or benthic environments associated with the use of these treatment options to enhance rates of dispersion and oil biodegradation

  4. Interaction of oil and mineral fines on shorelines: review and assessment

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Edward H.; Lee, Kenneth

    2003-12-01

    The interaction of fine mineral particles with stranded oil in an aqueous medium reduces the adhesion of the oil to solid surfaces, such as sediments or bedrock. The net result is the formation of stable, micron-sized, oil droplets that disperse into the water column. In turn, the increase in surface area makes the oil more available for biodegradation. This interaction, referred to as oil-mineral aggregate (OMA) formation, can explain how oiled shorelines are cleaned naturally in the absence of wave action in very sheltered coastal environments. OMA formation also plays an important role in the efficacy of shoreline treatment techniques, such as physical mixing and sediment relocation that move oiled sediments into the zone of wave action to promote the interaction between oil and mineral fines. Successful application of these shoreline treatment options has been demonstrated at two spill events (the Tampa Bay response in Florida and the Sea Empress operation in Wales) and at a controlled oil spill experiment in the field (the 1997 Svalbard ITOSS program). Sediment relocation harnesses the hydraulic action of waves so that the processes of fine-particle interaction and physical abrasion usually occur in tandem on open coasts. There has been no evidence of significant detrimental side-effects of residual oil in pelagic or benthic environments associated with the use of these treatment options to enhance rates of dispersion and oil biodegradation.

  5. Canadian coastal environments, shoreline processes, and oil spill cleanup

    International Nuclear Information System (INIS)

    Owens, E.H.

    1994-03-01

    The coastal zone is a dynamic environment, so that in developing practical and effective oil spill response strategies it is necessary to understand the forces that contribute to shore-zone processs. The coasts of Canada encompass a wide range of environments and are characterized by a variety of shoreline types that include the exposed, resistant cliffs of eastern Newfoundland and the sheltered marshes of the Beaufort Sea. A report is presented to provide an understanding of the dynamics and physical processes as they vary on the different coasts of Canada, including the Great Lakes. An outline of the general character and processes on a regional basis describes the coastal environments and introduces the literature that can be consulted for more specific information. The likely fate and persistence of oil that reaches the shoreline is discussed to provide the framework for development of spill response strategies and for the selection of appropriate shoreline cleanup or treatment countermeasures. Lessons learned from recent experience with major oil spills and field experiments are integrated into the discussion. Separate abstracts have been prepared for each of the four sections of this report. 502 refs., 5 figs

  6. Natural shorelines promote the stability of fish communities in an urbanized coastal system.

    Directory of Open Access Journals (Sweden)

    Steven B Scyphers

    Full Text Available Habitat loss and fragmentation are leading causes of species extinctions in terrestrial, aquatic and marine systems. Along coastlines, natural habitats support high biodiversity and valuable ecosystem services but are often replaced with engineered structures for coastal protection or erosion control. We coupled high-resolution shoreline condition data with an eleven-year time series of fish community structure to examine how coastal protection structures impact community stability. Our analyses revealed that the most stable fish communities were nearest natural shorelines. Structurally complex engineered shorelines appeared to promote greater stability than simpler alternatives as communities nearest vertical walls, which are among the most prevalent structures, were most dissimilar from natural shorelines and had the lowest stability. We conclude that conserving and restoring natural habitats is essential for promoting ecological stability. However, in scenarios when natural habitats are not viable, engineered landscapes designed to mimic the complexity of natural habitats may provide similar ecological functions.

  7. Modeling plan-form deltaic response to changes in fluvial sediment supply

    NARCIS (Netherlands)

    Nienhuis, J.H.; Ashton, A.D.; Roos, Pieter C.; Hulscher, Suzanne J.M.H.; Giosan, L.; Kranenburg, W.M.; Horstman, E.M.; Wijnberg, K.M.

    2012-01-01

    This study focuses on the effects of changes in fluvial sediment supply on the plan-form shape of wave-dominated deltas. We apply a one-line numerical shoreline model to calculate shoreline evolution after (I) elimination and (II) time-periodic variation of fluvial input. Model results suggest four

  8. A field guide for the protection and treatment of shorelines following an Orimulsion spill

    International Nuclear Information System (INIS)

    Owens, E. O.; Sergy, G.

    1997-01-01

    A field guide for use in marine shoreline protection and treatment for Orimulsion was prepared. Orimulsion is a bitumen-based fuel consisting of 70 per cent bitumen and 30 per cent water, stabilized by a surfactant. The guide addresses a wide range of issues related to the protection and cleanup of Orimulsion contamination. Topics covered include the fate, behaviour, persistence and natural removal rates, recommended techniques for shoreline protection, terminology for assessment documentation, and response decision guidelines. The manual covers both forms of Orimulsion, i.e. the non-sticky dispersed bitumen, as well as the tarry residue that results from weathering. 13 refs., 8 figs

  9. Preliminary assessment of bioengineered fringing shoreline reefs in Grand Isle and Breton Sound, Louisiana

    Science.gov (United States)

    La Peyre, Megan K.; Schwarting, Lindsay; Miller, Shea

    2013-01-01

    Restoration of three-dimensional shell habitats in coastal Louisiana presents a valuable and potentially self-sustaining approach to providing shoreline protection and critical nekton habitat and may contribute to water quality maintenance. The use of what has been called “living shorelines” is particularly promising because in addition to the hypothesized shoreline protection services, it is predicted that, if built and located in viable sites, these living shorelines may ultimately contribute to water quality maintenance through filtration of bivalves and may enhance nekton habitat. This approach, however, has not been tested extensively in different shallow water estuarine settings; understanding under what conditions a living shoreline must have to support a sustainable oyster population, and where these reefs may provide valuable shoreline protection, is key to ensuring that this approach provides an effective tool for coastal restoration. This project gathered preliminary data on the sustainability and shoreline stabilization of three large bioengineered fringing reefs located in Grand Isle, Lake Eloi, and Lake Fortuna, Louisiana. We collected preconstruction and postconstruction physiochemical and biological data by using a before-after-control-impact approach to evaluate the effectiveness of these living shoreline structures on reducing marsh erosion, enabling reef sustainability, and providing other ecosystem benefits. Although this project was originally designed to compare reef performance and impacts across three different locations over 2 years, delays in construction because of the Deepwater Horizon oil spill resulted in reefs being built from 12 to 18 months later than anticipated. As a result, monitoring postconstruction was severely limited. One reef, Grand Isle, was completed in March 2011 and monitored up to 18 months postcreation, whereas Lake Eloi and Lake Fortuna reefs were not completed until January 2012, and only 8 months of

  10. SCAT 2000 : a new generation of forms for the description and documentation of oiled shorelines

    International Nuclear Information System (INIS)

    Owens, E.H.; Sergy, G.A.; Martin, R.D.; Tarpley, J.A.; Michel, J.; Yender, R.

    2000-01-01

    Over ten years ago, the Exxon Valdez and the Nestucca both generated major oil spills which highlighted the need to develop appropriate response procedures and documentation protocols. The Shoreline Cleanup Assessment Team approach was born. In recent years, the forms were used to describe the conditions resulting from oil spills and shoreline oiling conditions and recommendations were made for improvements and modifications. The call was heard and the staff at Environment Canada worked closely with the staff at the National Oceanic and Atmospheric Administration (NOAA) to review the forms and provide a suitable upgrade for the third generation set of forms. The authors described the improvements which included: (1) a revised standard shoreline oiling form, (2) a revised short form, (3) a tar ball form, and (4) a revised marsh/wetlands oiling form. Environment Canada also introduced (5) a tidal flat form, and (6) a revised sketch map base. It also made provisions for the use of those forms for large freshwater lakes, arctic coasts, mangroves, coral reefs, rivers, and stream environments and for winter ice or snow conditions with a few minor adjustments suggested. Only a few minor differences remained, specifically in the standard shoreline types, between the systems used by NOAA and Environment Canada since both agencies cooperated for their development. 24 refs., 3 tabs., 2 figs

  11. The impact of Cyclone Nargis on the Ayeyarwady (Irrawaddy) River delta shoreline and nearshore zone (Myanmar): Towards degraded delta resilience?

    Science.gov (United States)

    Besset, Manon; Anthony, Edward J.; Dussouillez, Philippe; Goichot, Marc

    2017-10-01

    The Ayeyarwady River delta (Myanmar) is exposed to tropical cyclones, of which the most devastating has been cyclone Nargis (2-4 May 2008). We analysed waves, flooded area, nearshore suspended sediments, and shoreline change from satellite images. Suspended sediment concentrations up to 40% above average during the cyclone may reflect fluvial mud supply following heavy rainfall and wave reworking of shoreface mud. Massive recession of the high-water line resulted from backshore flooding by cyclone surge. The shoreline showed a mean retreat of 47 m following Nargis. Erosion was stronger afterwards (-148 m between August 2008 and April 2010), largely exceeding rates prior to Nargis (2000-2005: -2.14 m/year) and over 41 years (1974-2015: -0.62 m/year). This implies that resilience was weak following cyclone impact. Consequently, the increasingly more populous Ayeyarwady delta, rendered more and more vulnerable by decreasing fluvial sediment supply, could, potentially, become more severely impacted by future high-energy events.

  12. Hurricane Sandy beach response and recovery at Fire Island, New York: Shoreline and beach profile data, October 2012 to October 2014

    Science.gov (United States)

    Hehre Henderson, Rachel E.; Hapke, Cheryl J.; Brenner, Owen T.; Reynolds, Billy J.

    2015-04-30

    In response to the forecasted impact of Hurricane Sandy, which made landfall on October 29, 2012, the U.S. Geological Survey (USGS) began a substantial data-collection effort to assess the morphological impacts to the beach and dune system at Fire Island, New York. Global positioning system (GPS) field surveys of the beach and dunes were conducted just prior to and after landfall and these data were used to quantify change in several focus areas. In order to quantify morphologic change along the entire length of the island, pre-storm (May 2012) and post-storm (November 2012) lidar and aerial photography were used to assess changes to the shoreline and beach.As part of the USGS Hurricane Sandy Supplemental Fire Island Study, the beach is monitored periodically to enable better understanding of post-Sandy recovery. The alongshore state of the beach is recorded using a differential global positioning system (DGPS) to collect data around the mean high water (MHW; 0.46 meter North American Vertical Datum of 1988) to derive a shoreline, and the cross-shore response and recovery are measured along a series of 10 profiles.Overall, Hurricane Sandy substantially altered the morphology of Fire Island. However, the coastal system rapidly began to recover after the 2012­–13 winter storm season and continues to recover in the form of volume gains and shoreline adjustment.

  13. 78 FR 33051 - Non-Rock Alternatives to Shoreline Protection Demonstration Project (LA-16) Iberia, Jefferson...

    Science.gov (United States)

    2013-06-03

    ... DEPARTMENT OF AGRICULTURE Natural Resources Conservation Service Non-Rock Alternatives to...-Rock Alternatives to Shoreline Protection Demonstration Project (LA-16), Iberia, Jefferson, and... and environmental limitations preclude the use of rock structures. The shoreline protection systems...

  14. Shoreline erosion and decadal sediment accumulation in the Tar-Pamlico estuary, North Carolina, USA: A source-to-sink analysis

    Science.gov (United States)

    Eulie, Devon O.; Corbett, D. Reide; Walsh, J. P.

    2018-03-01

    Estuaries contain vital habitats and it is important to understand how these areas respond to human activities and natural processes such as sea-level rise and wave attack. As estuarine shorelines erode or become modified with hard structures, there is potential for significantly altering the availability of sediment and the filling of coastal systems. This study used a source-to-sink approach and quantified rates of shoreline erosion in the Tar-Pamlico sub-estuary, a tributary of the larger Albemarle-Pamlico Estuarine System (APES). The average shoreline change rate (SCR) determined using an end-point method was -0.5 ± 0.9 m yr-1 for the Tar-Pamlico. Incorporating bulk density estimates, this contributes 0.6 × 105 tons of fine sediment to the system annually, or after accounting for fluvial input, about 40% of the total sediment supply to the sub-estuary. The role of the Tar-Pamlico as a sink for these sediments was addressed using the radionuclide tracers 210Pb and 137Cs. Radionuclide activities and sediment accumulation rates identified several depositional regions, in particular in the middle of the estuary. Linear sediment accumulation rates ranged from 0.10 ± 0.02 to 0.38 ± 0.02 g cm-2 yr-1, and total storage of fine sediment in the system was 1.6 × 105 t yr-1. It was not possible to confidently discern a change in the rate of shoreline erosion or seabed accumulation. A preliminary budget for fine sediments (grain-size <63 μm) was then calculated to compare erosional sources with sedimentary sinks. Almost all (∼93.0%) of the fine sediment entering the system was accumulated and stored, while only about 7.0% was exported to Pamlico Sound.

  15. Shoreline stability in the vicinity of Cochin Harbour

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Vethamony, P.

    , showing stability over a period of one year. The growth of shoreline north of Cochin harbour channel takes place at the cost of sediment that should have otherwise by-passed the estuarine mouth. During the southwest monsoon the development of opposing...

  16. Palaeoenvironment and shoreline displacement on Suursaari Island, the Gulf of Finland

    Directory of Open Access Journals (Sweden)

    Atko Heinsalu

    2000-01-01

    Full Text Available The island of Suursaari in the middle of the Gulf of Finland is exceptionally high (175 m a.s.l.. Sediment profiles from one mire and three lakes were investigated using diatom and pollen analysis, radiocarbon dating and levelling of the elevations of ancient shorelines. The pollen stratigraphy of the Lounatkorkiasuo Mire sediment suggests a sedimentary record dating from the late Allerød.The development of late-glacial vegetation went through the same phases as in southern Finland, however these are probably somewhat earlier on the island of Suursaari. There are differences in the Holocene vegetation history of the higher and lower areas of the island. Lake Ruokalahenjärvi was isolated around 10 000 BP during the initial phase of the Yoldia Sea and the diatom assemblage indicates that at that time brackish-water flow had not penetrated into the Gulfof Finland. Diatoms from the isolation sediments of Lake Liivalahenjärvi and Lake Veteljärvi indicate a freshwater environment for the Yoldia Sea final phase at 9500–9600 BP. Levelling of coastal formations on Suursaari Island reveals that the Late Weichselian and early Holocene ancient shorelines are 5–15 m higher than expected from the isobase data for similar land uplift areas on the mainland.The anomalous shoreline levels on Suursaari Island may be explained byirregular land uplift. By the time of the Litorina Sea differences in shoreline altitudes had disappeared.

  17. Land-cover types, shoreline positions, and sand extents derived From Landsat satellite imagery, Assateague Island to Metompkin Island, Maryland and Virginia, 1984 to 2014

    Science.gov (United States)

    Bernier, Julie C.; Douglas, Steven H.; Terrano, Joseph F.; Barras, John A.; Plant, Nathaniel G.; Smith, Christopher G.

    2015-12-17

    The U.S. Geological Survey has a long history of responding to and documenting the impacts of storms along the Nation’s coasts and incorporating these data into storm impact and coastal change vulnerability assessments. These studies, however, have traditionally focused on sandy shorelines and sandy barrier-island systems, without consideration of impacts to coastal wetlands. The goal of the Barrier Island and Estuarine Wetland Physical Change Assessment project is to integrate a wetland-change assessment with existing coastal-change assessments for the adjacent sandy dunes and beaches, initially focusing on Assateague Island along the Maryland and Virginia coastline. Assateague Island was impacted by waves and storm surge associated with the passage of Hurricane Sandy in October 2012, including erosion and overwash along the ocean-facing sandy shoreline as well as erosion and overwash deposition in the back-barrier and estuarine bay environments.

  18. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm

    Science.gov (United States)

    Gedan, Keryn B.; Kirwan, Matthew L.; Wolanski, Eric; Barbier, Edward B.; Silliman, Brian R.

    2011-01-01

    For more than a century, coastal wetlands have been recognized for their ability to stabilize shorelines and protect coastal communities. However, this paradigm has recently been called into question by small-scale experimental evidence. Here, we conduct a literature review and a small meta-analysis of wave attenuation data, and we find overwhelming evidence in support of established theory. Our review suggests that mangrove and salt marsh vegetation afford context-dependent protection from erosion, storm surge, and potentially small tsunami waves. In biophysical models, field tests, and natural experiments, the presence of wetlands reduces wave heights, property damage, and human deaths. Meta-analysis of wave attenuation by vegetated and unvegetated wetland sites highlights the critical role of vegetation in attenuating waves. Although we find coastal wetland vegetation to be an effective shoreline buffer, wetlands cannot protect shorelines in all locations or scenarios; indeed large-scale regional erosion, river meandering, and large tsunami waves and storm surges can overwhelm the attenuation effect of vegetation. However, due to a nonlinear relationship between wave attenuation and wetland size, even small wetlands afford substantial protection from waves. Combining man-made structures with wetlands in ways that mimic nature is likely to increase coastal protection. Oyster domes, for example, can be used in combination with natural wetlands to protect shorelines and restore critical fishery habitat. Finally, coastal wetland vegetation modifies shorelines in ways (e.g. peat accretion) that increase shoreline integrity over long timescales and thus provides a lasting coastal adaptation measure that can protect shorelines against accelerated sea level rise and more frequent storm inundation. We conclude that the shoreline protection paradigm still stands, but that gaps remain in our knowledge about the mechanistic and context-dependent aspects of shoreline

  19. TOXICITY TRENDS DURING AN OIL SPILL BIOREMEDIATION EXPERIMENT ON A SANDY SHORELINE IN DELAWARE, USA

    Science.gov (United States)

    A 13-week, refereed, inter-agency toxicity testing program involving five bioassay methods was used to document the effectiveness of shoreline bioremediation to accelerate toxicity reduction of an oiled sandy shoreline at Fowler Beach, Delaware, USA. The study was part of an inte...

  20. Two centuries of coastal change at Caesarea, Israel: natural processes vs. human intervention

    Science.gov (United States)

    Shtienberg, Gilad; Zviely, Dov; Sivan, Dorit; Lazar, Michael

    2014-08-01

    The coast at Caesarea, Israel, has been inhabited almost continuously for the last 2,400 years, and the archeological sites are today a major international tourist attraction. Because the sites straddle the shoreline, they are subject to constant damage by wave action, and must therefore be frequently restored. In this paper, local shoreline migrations over the last 200 years are investigated with the aim of distinguishing between natural and man-made coastal changes. In order to assess these changes accurately, geomorphological and sedimentological data were examined based on detailed beach profile measurements, bathymetric surveys, and grain-size analyses. In addition, series of old aerial photographs, as well as historical topographic maps and nautical charts were consulted. The results show that shoreline changes can be grouped into two main time periods. During the first period from 1862 to 1949 before the expansion of modern settlements, the position of the shoreline changed irregularly by up to 30 m. In the second period from 1949 onward, numerous coastal structures have been erected, and various coastal modifications have been carried out. The evaluation of the data suggests that human interventions have had relatively little effect on the overall position of the shoreline, as displacements ranged only from 5 to 18 m. Thus, coastal changes at Caesarea are predominantly due to natural wave action reflected in the heterogeneous geomorphological and sedimentological characteristics of the shore. This contradicts the common assumption that human activities are always mainly responsible for large-scale shoreline modifications in the region. It is concluded that, in order to implement meaningful mitigating countermeasures, coastal archeological sites need to be individually assessed with respect to the dominant factors causing local coastal change.

  1. Barrier-island and estuarine-wetland physical-change assessment after Hurricane Sandy

    Science.gov (United States)

    Plant, Nathaniel G.; Smith, Kathryn E.L.; Passeri, Davina L.; Smith, Christopher G.; Bernier, Julie C.

    2018-04-03

    IntroductionThe Nation’s eastern coast is fringed by beaches, dunes, barrier islands, wetlands, and bluffs. These natural coastal barriers provide critical benefits and services, and can mitigate the impact of storms, erosion, and sea-level rise on our coastal communities. Waves and storm surge resulting from Hurricane Sandy, which made landfall along the New Jersey coast on October 29, 2012, impacted the U.S. coastline from North Carolina to Massachusetts, including Assateague Island, Maryland and Virginia, and the Delmarva coastal system. The storm impacts included changes in topography, coastal morphology, geology, hydrology, environmental quality, and ecosystems.In the immediate aftermath of the storm, light detection and ranging (lidar) surveys from North Carolina to New York documented storm impacts to coastal barriers, providing a baseline to assess vulnerability of the reconfigured coast. The focus of much of the existing coastal change assessment is along the ocean-facing coastline; however, much of the coastline affected by Hurricane Sandy includes the estuarine-facing coastlines of barrier-island systems. Specifically, the wetland and back-barrier shorelines experienced substantial change as a result of wave action and storm surge that occurred during Hurricane Sandy (see also USGS photograph, http://coastal.er.usgs.gov/hurricanes/sandy/photo-comparisons/virginia.php). Assessing physical shoreline and wetland change (land loss as well as land gains) can help to determine the resiliency of wetland systems that protect adjacent habitat, shorelines, and communities.To address storm impacts to wetlands, a vulnerability assessment should describe both long-term (for example, several decades) and short-term (for example, Sandy’s landfall) extent and character of the interior wetlands and the back-barrier-shoreline changes. The objective of this report is to describe several new wetland vulnerability assessments based on the detailed physical changes

  2. Automated Techniques for Quantification of Coastline Change Rates using Landsat Imagery along Caofeidian, China

    International Nuclear Information System (INIS)

    Dong, Di; Li, Ziwei; Liu, Zhaoqin; Yu, Yang

    2014-01-01

    This paper focuses on automated extraction and monitoring of coastlines by remote sensing techniques using multi-temporal Landsat imagery along Caofeidian, China. Caofeidian, as one of the active economic regions in China, has experienced dramatic change due to enhanced human activities, such as land reclamation. These processes have caused morphological changes of the Caofeidian shoreline. In this study, shoreline extraction and change analysis are researched. An algorithm based on image texture and mathematical morphology is proposed to automate coastline extraction. We tested this approach and found that it's capable of extracting coastlines from TM and ETM+ images with little human modifications. Then, the detected coastline vectors are imported into Arcgis software, and the Digital Shoreline Analysis System (DSAS) is used to calculate the change rate (the end point rate and linear regression rate). The results show that in some parts of the research area, remarkable coastline changes are observed, especially the accretion rate. The abnormal accretion is mostly attributed to the large-scale land reclamation during 2003 and 2004 in Caofeidian. So we can conclude that various construction projects, especially the land reclamation project, have made Caofeidian shorelines change greatly, far above the normal

  3. Automated Techniques for Quantification of Coastline Change Rates using Landsat Imagery along Caofeidian, China

    Science.gov (United States)

    Dong, Di; Li, Ziwei; Liu, Zhaoqin; Yu, Yang

    2014-03-01

    This paper focuses on automated extraction and monitoring of coastlines by remote sensing techniques using multi-temporal Landsat imagery along Caofeidian, China. Caofeidian, as one of the active economic regions in China, has experienced dramatic change due to enhanced human activities, such as land reclamation. These processes have caused morphological changes of the Caofeidian shoreline. In this study, shoreline extraction and change analysis are researched. An algorithm based on image texture and mathematical morphology is proposed to automate coastline extraction. We tested this approach and found that it's capable of extracting coastlines from TM and ETM+ images with little human modifications. Then, the detected coastline vectors are imported into Arcgis software, and the Digital Shoreline Analysis System (DSAS) is used to calculate the change rate (the end point rate and linear regression rate). The results show that in some parts of the research area, remarkable coastline changes are observed, especially the accretion rate. The abnormal accretion is mostly attributed to the large-scale land reclamation during 2003 and 2004 in Caofeidian. So we can conclude that various construction projects, especially the land reclamation project, have made Caofeidian shorelines change greatly, far above the normal.

  4. Risk Assessment of Failure of Outdoor High Voltage Polluted Insulators under Combined Stresses Near Shoreline

    Directory of Open Access Journals (Sweden)

    Muhammad Majid Hussain

    2017-10-01

    Full Text Available The aim of this paper is to investigate the various effects of climate conditions on outdoor insulators in coastal areas as a result of saline contamination under acidic and normal cold fog, determining significant electrical and physico-chemical changes on the insulator surface and considering the effect of discharge current, electric field distribution and surface roughness. To replicate similar conditions near the shoreline, experimental investigations have been carried out on insulation materials with the combined application of saline contamination and acidic or normal cold fog. The test samples included silicone rubber (SiR, ethylene propylene diene monomer (EPDM and high-density polyethylene (HDPE, which were used as reference. The materials are of the same composition as those used in real-life outdoor high voltage insulators. All samples were aged separately in an environmental chamber for 150 h for various saline contaminations combined with acidic and normal cold fog, and were generated by means of the adopted experimental setup. This analysis represented conditions similar to those existing near the shoreline exposed to saline and acid spray during winter and early spring. Electric field and discharge current along polymeric samples were examined under acidic and normal cold fog. Fourier transform infrared (FTIR spectroscopy and scanning electron microscopic (SEM were used to probe the physico-chemical changes on the samples surface and investigate the hydrophobicity recovery property after aging tests. Finally, a comparative study was carried out on polymeric samples before and after being exposed to the acidic and normal cold fog based on the results obtained from the experiment. Research data may provide references for the better prediction of surface degradation as well as for the better material coating and design of external insulation.

  5. 15 CFR 923.25 - Shoreline erosion/mitigation planning.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Shoreline erosion/mitigation planning... erosion/mitigation planning. (a) The management program must include a planning process for assessing the... planning process may be within the broader context of coastal hazard mitigation planning. (b) The basic...

  6. COREXIT 9580 shoreline cleaner: Development, application, and status

    International Nuclear Information System (INIS)

    Canevari, G.P.; Fiocco, R.J.; Lessard, R.R.; Fingas, M.

    1995-01-01

    This paper will describe research on chemical beach cleaners for treatment of oiled shorelines that was initiated in support of the cleaning activities in Prince William Sound (PWS) following the Valdez oil spill in March 1989. The concept for using beach cleaners for shoreline cleanup is to apply a pre-soak to the weathered crude oil on shore and then flush with sea water to wash the oil into a boomed area for subsequent recovery. Criteria imposed on the use of chemical beach cleaners for the cleanup of the Valdez spill were: (1) effective rock cleaning agents should have very little or no toxicity to marine and terrestrial life, (2) there should be no dispersion of the oil washed from the shoreline into the water column; oil was to be recovered by techniques such as skimming or sorbents, and (3) the agents should be on the EPA National Contingency Plan (NCP) list. A laboratory-scale rock washing test was developed to measure cleaner effectiveness and dispersion. A large number of commercially available formulated products were evaluated, as well as development formulations. The commercial products included all of the available NCP-listed products which could function as cleaners. None of the commercial products completely satisfied all the requirements established by the agencies for beach cleaning. However, a new formula, called COREXIT 9580, consisting of two surfactants and a solvent was developed. It exhibited low fish toxicity, low dispersancy and effective rock cleaning capability. The paper reviews the laboratory and field testing to explore the potential use of the COREXIT 9580 to save and restore oiled vegetation

  7. Comparison of two shoreline assessment programs conducted for the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    Harner, E.J.; Gilfillan, E.S.

    1995-01-01

    Two large shoreline assessment studies conducted in 1990 in Prince William Sound, Alaska, after the Exxon Valdez oil spill used different design strategies to determine the impact of oiling on shoreline biota. One of the studies, the Coastal Habitat Injury Assessment (CHIA) conducted for the Exxon Valdez Oil Spill Council, used matched pairs of sites, normal population distributions for biota, and meta-analysis. The power of the CHIA study to detect oiling impacts depends on being able to identify and select appropriate pairs of sites for comparison. The CHIA study also increased the oiling signal by focusing on moderate to heavily oiled sites. The Shoreline Ecology Program (SEP), conducted for Exxon, used a stratified-random-sampling study design, normal and non-normal population distributions and covariates. The SEP study was able to detect oiling impacts by using a sufficient number of sites and widely spaced transects

  8. Shoreline oiling conditions in Prince William Sound following the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    Neff, J.M.; Owens, E.H.; Stoker, S.W.; McCormick, D.M.

    1995-01-01

    Following the Exxon Valdez oil spill of March 24, 1989, in Prince William Sound, Alaska, Exxon conducted comprehensive, systematic shoreline surveys in cooperation with federal and state authorities to obtain information on the distribution and magnitude of shoreline oiling and to identify natural and cultural resources requiring special protection. Similar joint surveys were performed during the springs of 1990, 1991, and 1992 on all Prince william Sound and Gulf of Alaska shorelines that were suspected of having remnants of weathered oil and that would benefit from further cleanup. In the springs of 1990, 1991, and 1992, isolated pockets of subsurface oil were found, chiefly in small scattered zones in coarse cobble/boulder sediments in the upper intertidal or supratidal zones. In 1991, about one-third of the subdivisions in Prince William Sound with surface oil also contained some subsurface oil. The areal extent of this subsurface oil declined by nearly 70% between 1991 and 1992, from about 37,000 m 2 to about 12,000 m 2 . Moreover, where subsurface oil remained in 1992, it was present in lesser amounts. Rates of oil removal were greatest on coastal sections treated early in the spring and summer of 1989. Where shoreline treatment was delayed, the subsequent rate of removal of oil from the shore by natural processes was slower. 27 refs., 10 figs., 3 tabs

  9. Uplift of quaternary shorelines in eastern Patagonia: Darwin revisited

    Science.gov (United States)

    Pedoja, Kevin; Regard, Vincent; Husson, Laurent; Martinod, Joseph; Guillaume, Benjamin; Fucks, Enrique; Iglesias, Maximiliano; Weill, Pierre

    2011-04-01

    During his journey on the Beagle, Darwin observed the uniformity in the elevation of coastal Eastern Patagonia along more than 2000 km. More than one century later, the sequences of Quaternary shorelines of eastern Patagonia have been described and their deposits dated but not yet interpreted in terms of geodynamics. Consequently, we i) mapped the repartition of the Quaternary coastal sequences in Argentinean Patagonia, ii) secured accurate altitudes of shoreline angles associated with erosional morphologies (i.e. marine terraces and notches), iii) took into account previous chrono-stratigraphical interpretations in order to calculate mean uplift rates since ~ 440 ka (MIS 11) and proposed age ranges for the higher and older features (up to ~ 180 m), and iv) focused on the Last Interglacial Maximum terrace (MIS 5e) as the best constrained marine terrace (in terms of age and altitude) in order to use it as a tectonic benchmark to quantify uplift rates along the entire passive margin of Eastern South America. Our results show that the eastern Patagonia uplift is constant through time and twice the uplift of the rest of the South American margin. We suggest that the enhanced uplift along the eastern Patagonian coast that interested Darwin during his journey around South America on the Beagle could originate from the subduction of the Chile ridge and the associated dynamic uplift.

  10. Lake Izabal (Guatemala) shoreline detection and inundated area estimation from ENVISAT ASAR images

    Science.gov (United States)

    Medina, C.; Gomez-Enri, J.; Alonso, J. J.; Villares, P.

    2008-10-01

    The surface extent of a lake reflects its water storage variations. This information has important hydrological and operational applications. However, there is a lack of information regarding this subject because the traditional methodologies for this purposes (ground surveys, aerial photos) requires high resources investments. Remote sensing techniques (optical/radar sensors) permit a low cost, constant and accurate monitoring of this parameter. The objective of this study was to determine the surface variations of Lake Izabal, the largest one in Guatemala. The lake is located close to the Caribbean Sea coastline. The climate in the region is predominantly cloudy and rainy, being the Synthetic Aperture Radar (SAR) the best suited sensor for this purpose. Although several studies have successfully used SAR products in detecting land-water boundaries, all of them highlighted some sensor limitations. These limitations are mainly caused by roughened water surfaces caused by strong winds which are frequent in Lake Izabal. The ESA's ASAR data products were used. From the set of 9 ASAR images used, all of them have wind-roughened ashore waters in several levels. Here, a chain of image processing steps were applied in order to extract a reliable shoreline. The shoreline detection is the key task for the surface estimation. After the shoreline extraction, the inundated area of the lake was estimated. In-situ lake level measurements were used for validation. The results showed good agreement between the inundated areas estimations and the lake level gauges.

  11. Radiation dates of holocene shorelines in Peninsula Malaysia

    International Nuclear Information System (INIS)

    Tjia, H.D.; Kigoshi, K.

    1977-01-01

    Fifteen newly determined radiocarbon dates indicate the presence of former shorelines up to 3 meters above present high tide level in the tectonically stable Peninsula of Malaysia. The sea level indicators consist of oysters in growth position (9 samples), molluscs in beach deposits (2), corals in growth position (3), and beachrock (1). In the Peninsula living oysters occur up to or slightly above high tide, modern beach deposits may occur as high as 1.5 meters above high tide, and corals live up to low tide level. The literature shows that high tide, and corals live up to low tide level. The literature shows that beachrock marks intertidal zones. Combined with seven previously published ages of raised shorelines in the region, strong evidence is presented for one or more high Holocene, eustatic sea level stands in the continental part of Southeast Asia. Periods of high sea levels occur between 2500 and 2900 yr BP, and between 4200 and 5700 yr BP. There is also some indication of high sea level between 8300 and 9500 yr BP. (author)

  12. The ecology, status, and conservation of marine and shoreline birds on the west coast of Vancouver Island

    International Nuclear Information System (INIS)

    Vermeer, K.; Butler, R.W.; Morgan, K.H.

    1992-01-01

    A symposium was held to combine various disciplines to provide a review of current knowledge about the marine biology of the west coast of Vancouver Island, with a particular emphasis on birds. Papers were presented on the physical and biological environment of the study region, the population and breeding ecology of marine and shoreline birds, the distribution of marine and shoreline birds at sea, the effects of oil pollution on the bird population, and the conservation of marine and shoreline birds. Separate abstracts have been prepared for two papers from this symposium

  13. Effect of climate change on morphology around a port

    Science.gov (United States)

    Bharathan Radhamma, R.; Deo, M. C.

    2017-12-01

    It is well known that with the construction of a port and harbour structure the natural shoreline gets interrupted and this disturbs the surrounding coastal morphology. Added to this concern is another one of recent origin, namely, the likely impact of climate change induced by global warming. The present work addresses this issue by describing a case study at New Mangalore Port situated along the west coast of India. The harbour was formed by constructing two breakwaters along either side of the port since the year 1975. We have first determined the rate of change of the shoreline surrounding the port using historic satellite imageries over a period of 36 years. Thereafter a numerical shoreline change model: LITPACK was used to do the same and it was forced by waves simulated over a period of past 36 years varying from 1979 to 2016 and future 36 years ranging from 2016 to 2052. The wave simulation was done with the help of numerical wave model: Mike21-SW which was driven by the wind from a regional climate model called CORDEX. This climate model was earlier run for a moderate global warming pathway called: RCP-4.5. The analysis of satellite imageries indicated that in the past the shoreline change varied from -1.69 m/year to 2.56 m/year with an uncertainty of ± 0.35 m/year and approximately half of the coastal stretch faced extensive erosion. It was found that the wind and waves at this region would intensify in future and also raise the probability of occurrence of high waves. As per the numerical shoreline modelling this would give rise to a much enhanced rate of erosion, namely -2.87 m/year to -3.62 m/year. This would call for a modified shoreline management strategy around the port area. The study highlights the importance of considering potential changes in wind and wave forcing because of the climate change in evaluating future rates of shoreline changes around a port and harbour structure.

  14. Effects of shoreline erosion on infrastructure development along the ...

    African Journals Online (AJOL)

    ... coastal environment and affected the socio-economic life of local populations, threatened cultural heritage and hindered coastal tourism development. This paper assessed the extent of shoreline recession and its effects on buildings and infrastructure along Ghana's coastline through a study of the Nkontompo Community ...

  15. Elastic source model of the North Mono eruption (1325-1368 A.D.) based on shoreline deformation

    Science.gov (United States)

    Shaffer, Wil; Bursik, Marcus; Renshaw, Carl

    2010-12-01

    Topographic data from the Shuttle Radar Topography Mission (SRTM) captures the permanent deformation of a prominent highstand of Mono Lake, California USA. Deformation of the Dechambeau Ranch highstand shoreline was measured using the elevation of the beach berm—shoreline bluff break-in-slope. Point source models and a boundary element dike model were used to approximate the source of deformation underneath the northern end of the Mono Craters. The point source model could not adequately explain the observed deformation. The dike model yielded the best results for a NW trending dike dipping 60° NE and inflated to widths greater than 60 m. The results suggest that the geometry of the source is more complex than a simple vertical dike and that the deformation is better explained with a dipping dike following a normal fault, or an elongated cryptodome.

  16. River delta shoreline reworking and erosion in the Mediterranean and Black Seas: the potential roles of fluvial sediment starvation and other factors

    Directory of Open Access Journals (Sweden)

    Manon Besset

    2017-09-01

    Full Text Available The Mediterranean basin (including the Black Sea is characterized by a plethora of deltas that have developed in a wave-influenced setting. Many of these deltas are sourced in sediments by river catchments that have been variably dammed. The vulnerability status of a selection of ten deltas subject to different levels of reduction in fluvial sediment supply following damming was analysed by quantifying changes in delta protrusion area and protrusion angle over the last 30 years. The rationale for choosing these two metrics, which do not require tricky calculations of longshore bedload transport volumes and river ‘influence’, is that as sediment supply wanes, increasing relative efficiency of waves leads to longshore redistribution of reworked sediments and progressive ‘flattening’ of the delta protrusion. The results show that eight of the ten deltas (Nile, Rhône, Ebro, Ceyhan, Arno, Ombrone, Moulouya, Medjerda are in erosion, whereas two (Danube, Po show stability, but the statistical relationship between change in delta protrusion area and sediment flux reduction is poor, thus suggesting that the role of dams in causing delta shoreline erosion may have been over-estimated. But this poor relationship could also be due to a long temporal lag between dam construction and bedload removal and transport to the coast downstream of dams, and, where the delta protrusion is being eroded, to bedload trapping by shoreline engineering structures and by elongating delta-flank spits. Other potential influential factors in shoreline change include subsidence, sea-level rise, storminess, exceptional river floods, and managed sediment releases downstream of dams. A longer observation period and high-resolution sediment-budget studies will be necessary to determine more definitively to which extent continued trapping of sediment behind dams will impact overall delta stability in the Mediterranean and Black Seas. Mitigation of delta erosion is likely to

  17. Investigation of groundwater seepage from the Hanford shoreline of the Columbia River

    International Nuclear Information System (INIS)

    McCormack, W.D.; Carlile, J.M.V.

    1984-11-01

    Groundwater discharges to the Columbia River are evaluated by the Hanford Environmental Surveillance and Groundwater Surveillance Programs via monitoring of the Columbia River and Hanford groundwater. Both programs concluded that Hanford groundwater has not adversely affected Columbia River water quality. This report supplements the above programs by investigating the general characteristics of groundwater entering the Columbia River from the Hanford Site. Specific objectives of the investigation were to identify general shoreline areas where Hanford-related materials were entering the river, and to evaluate qualitatively the physical characteristics and relative magnitudes of those discharges. The study was conducted in two phases. Phase 1 involved visual inspection of Columbia River shoreline, within the Hanford Site, for indications of groundwater seepage. As a result of that inspection, 115 springs suspected of discharging groundwater were recorded. During Phase 2, water samples were collected from these springs and analyzed for Hanford-related materials known to be present in the groundwater. The specific materials used as indicators for the majority of samples were tritium or uranium and nitrate. The magnitude and distribution of concentrations measured in the spring samples were consistent with concentrations of these materials measured in groundwater near the sampled spring locations. Water samples were also collected from the Columbia River to investigate the localized effects of groundwater discharges occurring above and below river level. These samples were collected within 2 to 4 m of the Hanford shoreline and analyzed for tritium, nitrate, and uranium. Elevated concentrations were measured in river samples collected near areas where groundwater and spring concentrations were elevated. All concentrations were below applicable DOE Concentration Guides. 8 references, 6 figures, 7 tables

  18. Ancient shorelines of Gujarat, India, during the Indus civilization (Late Mid-Holocene): A study based on archaeological evidences

    Digital Repository Service at National Institute of Oceanography (India)

    Gaur, A.S.; Vora, K.H.

    or production of salt, etc. as indicators of palaeo-shorelines. As of today, these sites are located away from the present shoreline. Lothal, believed to be the oldest dockyard in the world, is located at the head of the Gulf of Khambhat, now situated about... shorelines of Gujarat, India, during the Indus civilization (Late Mid-Holocene): A study ... 16-Nov-06http://www.ias.ac.in/currsci/jul10/articles29.htm centre for acquiring and processing raw materials for manufacturing articles for export. Discovery of two...

  19. Investigation of coastline changes in three provinces of Thailand using remote sensing

    Science.gov (United States)

    Tochamnanvita, T.; Muttitanon, W.

    2014-11-01

    The measuring of coastal in the certain short period of time is almost impossible, but applying the remote sensing with the satellite imagery bring mankind to track down and analyze the approximately length of the coastal changes at the Nano technology speed. An attempt has been made to study the length of shoreline changes along three provinces in the upper gulf of Thailand. The significant purpose is to investigate coastline length changes and to evaluate those different coastal changes at different times. Two specialties of chosen areas are the outstanding location at mouth of river in curve pattern and ecological important mangrove forest, as nominated and designated area listed in Ramsar convention, international wetlands treaty. In employing the remote sensing will help to investigate the shoreline erosion, stable or construction shoreline. Rapid and drastic shoreline changes have been compared and measured base on satellite image Landsat 5 TM on 1994, 2002 and 2007 at path129 row 051. There were geometrically co-registered and, in the process were resampled to 25 m. By composing RGB band, fusion, supervised classification. By apply different theories will give different results but the similarly pattern. Training sites were selected by signature editor, area of interest, evaluate by seperabilitly and contingency. Principle component analysis (PCA) was employed as a method of change detection. This is to conclude that these shoreline areas were in erosion from natural processes and manmade activities, for example, aquaculture and agriculture expansion, such as shrimp farm. These coastal line lost were not just losing the land; it's losing the soul of the cycle of marine life, economically, and environmentally. Moreover, this project, in the future, could benefit to set the recovery buffer zone for mangrove restoration also.

  20. Virginia ESI: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats for Virginia, classified according to the Environmental Sensitivity...

  1. Maryland ESI: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats for Maryland, classified according to the Environmental Sensitivity...

  2. Mid Holocene lake level and shoreline behavior during the Nipissing phase of the upper Great Lakes at Alpena, Michigan, USA

    Science.gov (United States)

    Thompson, T.A.; Lepper, K.; Endres, A.L.; Johnston, J.W.; Baedke, S.J.; Argyilan, E.P.; Booth, R.K.; Wilcox, D.A.

    2011-01-01

    The Nipissing phase was the last pre-modern high-water stage of the upper Great Lakes. Represented as either a one- or two-peak highstand, the Nipissing occurred following a long-term lake-level rise. This transgression was primarily an erosional event with only the final stage of the transgression preserved as barriers, spits, and strandplains of beach ridges. South of Alpena, Michigan, mid to late Holocene coastal deposits occur as a strandplain between Devils Lake and Lake Huron. The landward part of this strandplain is a higher elevation platform that formed during the final stage of lake-level rise to the Nipissing peak. The pre-Nipissing shoreline transgressed over Devils Lake lagoonal deposits from 6.4 to 6.1. ka. The first beach ridge formed ~ 6. ka, and then the shoreline advanced toward Lake Huron, producing beach ridges about every 70. years. This depositional regression produced a slightly thickening wedge of sediment during a lake-level rise that formed 20 beach ridges. The rise ended at 4.5. ka at the Nipissing peak. This peak was short-lived, as lake level fell > 4. m during the following 500. years. During this lake-level rise and subsequent fall, the shoreline underwent several forms of shoreline behavior, including erosional transgression, aggradation, depositional transgression, depositional regression, and forced regression. Other upper Great Lakes Nipissing platforms indicate that the lake-level change observed at Alpena of a rapid pre-Nipissing lake-level rise followed by a slower rise to the Nipissing peak, and a post-Nipissing rapid lake-level fall is representative of mid Holocene lake level in the upper Great Lakes. ?? 2011 Elsevier B.V.

  3. Multiscale analysis of restoration priorities for marine shoreline planning.

    Science.gov (United States)

    Diefenderfer, Heida L; Sobocinski, Kathryn L; Thom, Ronald M; May, Christopher W; Borde, Amy B; Southard, Susan L; Vavrinec, John; Sather, Nichole K

    2009-10-01

    Planners are being called on to prioritize marine shorelines for conservation status and restoration action. This study documents an approach to determining the management strategy most likely to succeed based on current conditions at local and landscape scales. The conceptual framework based in restoration ecology pairs appropriate restoration strategies with sites based on the likelihood of producing long-term resilience given the condition of ecosystem structures and processes at three scales: the shorezone unit (site), the drift cell reach (nearshore marine landscape), and the watershed (terrestrial landscape). The analysis is structured by a conceptual ecosystem model that identifies anthropogenic impacts on targeted ecosystem functions. A scoring system, weighted by geomorphic class, is applied to available spatial data for indicators of stress and function using geographic information systems. This planning tool augments other approaches to prioritizing restoration, including historical conditions and change analysis and ecosystem valuation.

  4. A multi-indicator approach for identifying shoreline sewage pollution hotspots adjacent to coral reefs.

    Science.gov (United States)

    Abaya, Leilani M; Wiegner, Tracy N; Colbert, Steven L; Beets, James P; Carlson, Kaile'a M; Kramer, K Lindsey; Most, Rebecca; Couch, Courtney S

    2018-04-01

    Sewage pollution is contributing to the global decline of coral reefs. Identifying locations where it is entering waters near reefs is therefore a management priority. Our study documented shoreline sewage pollution hotspots in a coastal community with a fringing coral reef (Puakō, Hawai'i) using dye tracer studies, sewage indicator measurements, and a pollution scoring tool. Sewage reached shoreline waters within 9 h to 3 d. Fecal indicator bacteria concentrations were high and variable, and δ 15 N macroalgal values were indicative of sewage at many stations. Shoreline nutrient concentrations were two times higher than those in upland groundwater. Pollution hotspots were identified with a scoring tool using three sewage indicators. It confirmed known locations of sewage pollution from dye tracer studies. Our study highlights the need for a multi-indicator approach and scoring tool to identify sewage pollution hotspots. This approach will be useful for other coastal communities grappling with sewage pollution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Bioremediation: Application of slow-release fertilizers on low-energy shorelines

    International Nuclear Information System (INIS)

    Lee, K.; Tremblay, G.H.; Levy, E.M.

    1993-01-01

    In situ biodegradation, the activation of microbial processes capable of destroying contaminants where they are found in the environment, is a biological process that responds rapidly to changing environmental factors. Accordingly, in situ sediment enclosures were used to test the efficacy of selected nutrient formulations to enhance the biodegradation of a waxy crude oil in a low-energy shoreline environment. The addition of soluble inorganic fertilizers (ammonium nitrate and triple superphosphate) and slow-release nutrient formulations (sulfur-coated urea) stimulated microbial activity and prolonged the period of oil degradation, despite a decline in seasonal temperatures. Low temperatures reduced the permeability of the coating on the slow-release fertilizers, effectively suppressing nutrient release. Of the nutrient formulations evaluated, the authors recommend the application of granular slow-release fertilizers (such as sulfur-coated urea) when the overlying water temperatures are above 15 degrees C, and the application of soluble inorganic fertilizers (such as ammonium nitrate) at lower temperatures. Comprehensive analysis of the experimental results indicate that application protocols for bioremediation (form and type of fertilizer or type and frequency of application), be specifically tailored to account for differences in environmental parameters (including oil characteristics) at each contaminated site

  6. Waves Generated by Asteroid Impacts and Their Hazard Consequences on The Shorelines

    Science.gov (United States)

    Ezzedine, S. M.; Miller, P. L.; Dearborn, D. S.

    2014-12-01

    We have performed numerical simulations of a hypothetical asteroid impact onto the ocean in support of an emergency preparedness, planning, and management exercise. We addressed the scenario from asteroid entry; to ocean impact (splash rim); to wave generation, propagation, and interaction with the shoreline. For the analysis we used GEODYN, a hydrocode, to simulate the impact and generate the source wave for the large-scale shallow water wave program, SWWP. Using state-of-the-art, high-performance computing codes we simulated three impact areas — two are located on the West Coast near Los Angeles's shoreline and the San Francisco Bay, respectively, and the third is located in the Gulf of Mexico, with a possible impact location between Texas and Florida. On account of uncertainty in the exact impact location within the asteroid risk corridor, we examined multiple possibilities for impact points within each area. Uncertainty in the asteroid impact location was then convolved and represented as uncertainty in the shoreline flooding zones. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and partially funded by the Laboratory Directed Research and Development Program at LLNL under tracking code 12-ERD-005.

  7. Integrating millennial and interdecadal shoreline changes: Morpho-sedimentary investigation of two prograded barriers in southeastern Australia

    Science.gov (United States)

    Oliver, T. S. N.; Tamura, T.; Hudson, J. P.; Woodroffe, C. D.

    2017-07-01

    Prograded barriers are distinctive coastal landforms preserving the position of past shorelines as low relief, shore-parallel ridges composed of beach sediments and commonly adorned with variable amounts of dune sand. Prograded barriers have been valued as coastal archives which contain palaeoenvironmental information, however integrating the millennial timescale geological history of barriers with observed inter-decadal modern beach processes has proved difficult. Technologies such as airborne LiDAR, ground penetrating radar (GPR) and optically stimulated luminescence dating (OSL) were utilised at Boydtown and Wonboyn, in southeastern Australia, and combined with previously reported radiocarbon dates and offshore seismic and sedimentological data to reconstruct the morpho-sedimentary history of prograded barrier systems. These technologies enabled reconstruction of geological timescale processes integrated with an inter-decadal model of ridge formation explaining the GPR-imaged subsurface character of the barriers. Both the Boydtown and Wonboyn barriers began prograding 7500-8000 years ago when sea level attained at or near present height along this coastline and continued prograding until the present-day with an initially slower rate of shoreline advancement. Sources of sediment for progradation appear to be the inner shelf and shoreface with a large shelf sand body likely contributing to progradation at Wonboyn. The Towamba River seems to have delivered sediment to Twofold Bay during flood events after transitioning to a mature estuarine system sometime after 4000 cal. yr BP. Some of this material appears to have been reworked onto the Boydtown barrier, increasing the rate of progradation in the seaward 50% of the barrier deposited over the past 1500 years. The GPR imaged beachfaces are shown to have similar geometry to beach profiles following recent storm events and a model of ridge formation involving cut and fill of the beachface, and dune building in the

  8. Are mangroves as tough as a seawall? Flow-vegetation interaction in a living shoreline restoration

    Science.gov (United States)

    Kibler, K. M.; Kitsikoudis, V.; Spiering, D. W.

    2017-12-01

    This study aims to assess the impact of an established living shoreline restoration on near-shore hydraulics, shoreline slope, and sediment texture and organic matter content. We collected data from three 100 m shoreline sites within an estuarine lagoon in Canaveral National Seashore: one restored; one that had been stabilized by a seawall; and one in a reference condition stabilized by mature mangrove vegetation. The living shoreline site was restored five years prior with a breakwater of oyster shell bags, emergent marsh grasses (Spartina alterniflora), and mangroves (Rhizophora mangle and Avicennia germinans). We sampled water depth and incoming velocity profiles of the full water column at 2 Hz using a 2 MHz Acoustic Doppler Current Profiler (ADCP, Nortek), stationed down-looking, approximately 10 m offshore. A 2 - 3 cm velocity profile above the bed was sampled on the shoreline at 100 Hz, using a Nortek Vectrino profiler. In restored and reference sites, the onshore probe was placed within vegetation. We surveyed vegetation upstream of the probe for species and diameter at water level. Windspeed and direction were collected 2 m above the water surface. Shorelines were surveyed in transects using GPS survey equipment. Five sediment cores were collected to 20 cm depth from both onshore and offshore of each site. Individual cores were processed for loss on ignition before being pooled by site for analysis of grain size distribution. While incoming velocity profiles were similar between sites, hydraulic conditions onshore within the vegetated sites deviated from the seawall site, which was devoid of vegetation. Offshore to onshore gradients in shear stress, mean velocity, and turbulent kinetic energy differed widely between sites, despite similar wind and tidal conditions. Sediment grain sizes were finer and contained more organic matter in the restored and reference sites than in the seawall site. Profiles of the restored and seawall sites were similar, though

  9. Archaeological Site Vulnerability Modelling: The Influence of High Impact Storm Events on Models of Shoreline Erosion in the Western Canadian Arctic

    Directory of Open Access Journals (Sweden)

    O’Rourke Michael J. E.

    2017-01-01

    Full Text Available Much of the Inuvialuit archaeological record is situated along shorelines of the western Canadian Arctic. These coastal sites are at substantial risk of damage due to a number of geomorphological processes at work in the region. The identification of threatened heritage remains is critical in the Mackenzie Delta, where landscape changes are taking place at an increasingly rapid pace. This paper outlines some preliminary observations from a research program directed toward identifying vulnerable archaeological remains within the Inuvialuit Settlement Region. Coastal erosion rates have been calculated for over 280 km of the Kugmallit Bay shoreline, extending along the eastern extent of Richards Island and neighbouring areas of the Tuktoyaktuk Peninsula. Helicopter surveys conducted during the 2014 field season confirmed that areas exposed to heavy erosive forces in the past continue to erode at alarming rates. Some of the calculated rates, however, have proven far too conservative. An extreme period of erosion at Toker Point in the autumn of 2013 has yielded a prime example of how increasingly volatile weather patterns can influence shoreline erosion models. It has also provided a case with which to demonstrate the value of using more recent, shorter time-interval imagery in assessing impacts to cultural landscapes.

  10. Seasonal dynamics of the shoreline vegetation in the Zapatosa floodplain lake complex, Colombia

    Directory of Open Access Journals (Sweden)

    Udo Schmidt-Mumm

    2014-09-01

    Full Text Available Floodplain lakes and associated wetlands in tropical dry climates are controlled by pronounced and severe seasonal hydrologic fluctuations. We examined the plant community response to a bimodal flooding pattern in the Zapatosa Floodplain Lake Complex (ZFLC, Northern Colombia. We measured floristic and quantitative change in four sampling periods emphasizing seasonal differences in plant abundance and life-form structure. Of 79 species identified in the lake complex, 52 were used to characterize eight community types via classification and ordination procedures. Results showed that community structure does not change significantly during the flooding/receding stages. But maximum drawdown phase significantly disrupts the aquatic community structure and the exposed shorelines become colonized by ruderal terrestrial plants. Early rainfalls at the beginning of the wet season are emphasized as an important feature of plant regeneration and community development. The general strategy of the ZFLC vegetation can be framed into the flood pulse concept of river-floodplain systems. Thus, plant communities are mainly responding to disturbances and destruction events imposed by extreme water level fluctuations. Rev. Biol. Trop. 62 (3: 1073-1097. Epub 2014 September 01.

  11. Bioremediation of oil on shoreline environments: development of techniques and guidelines

    International Nuclear Information System (INIS)

    Lee, K.; Merlin, F.X.

    1999-01-01

    Over the last 20 years, the development of operational procedures to accelerate the natural biodegradation rates of oil spilled on shoreline environments has been the focus of numerous research programs. As a result, bioremediation has been demonstrated to be an effective oil spill countermeasure for use in cobble, sand beach, salt marsh, and mudflat environments. Today, studies are directed towards improving the efficacy and evaluating the ecological impacts of available bioremediation agents and/or procedures. This review describes the latest developments in bioremediation strategies and their key success factors. (author)

  12. A Personal Digital Assistant (PDA) system for data acquisition during shoreline assessment field surveys

    International Nuclear Information System (INIS)

    Lamarche, A.; Owens, E.H.; Laflamme, A.; Laforest, S.; Clement, S.

    2004-01-01

    The Shoreline Cleanup Assessment Technique (SCAT) is a recognized method in North America to collect shoreline information and report observations on an oil spill. The long processing time required to analyze SCAT observations sometimes causes delays in oil spill response. Computerized systems have been developed to address this problem, but data entry of SCAT within such system involves much effort and is subject to potential errors. This paper described the development of a tool dedicated to the field capture of SCAT data on a Windows CE based Personal Digital Assistant (PDA). The system is compatible with both the SCAT methodology and Global Positioning System technology. A prototype of the system was tested during oil spills in Ontario and Nova Scotia. This paper described how the field data collection system was designed, developed and tested. Details of some user interfaces were provided to demonstrate how the large paper Shoreline Oiling Summary forms were made to fit on the small display screen of pocket-size devices. 8 refs., 1 tab., 12 figs

  13. Evaluation of the Variability of the Shoreline of the Tsimlyansk Reservoir and Lake Ilmen according to Space Sounding Data

    Science.gov (United States)

    Rumyantsev, V. A.; Pozdnyakov, Sh. R.; Ulichev, V. I.; Chichkova, E. F.; Ryzhikov, D. M.

    2017-12-01

    This article presents the results of a study of the dynamics of the shorelines of Lake Ilmen and the Tsimlyansk Reservoir to indicate the location of the boundaries of the water protection zone. The study uses the method of processing information from Terra/MODIS, Landsat-7 and -8, and WorldView-1 space systems. The analysis of remote-sensing data reveal the off-season and yearly variability in the area of the surface and shoreline, which is characteristic of water bodies under flat relief conditions. On the basis of the results of the research, the issue of the necessity of allocating a water protection zone, taking into account the morphometric features of water bodies and the characteristics of their hydrological regime, followed by amendments to the Water Code of the Russian Federation, is posed.

  14. Shoreline changes and its impact on archaeological sites in West Greenland

    Science.gov (United States)

    Fenger-Nielsen, R.; Kroon, A.; Elberling, B.; Hollesen, J.

    2017-12-01

    Coastal erosion is regarded as a major threat to archaeological sites in the Arctic region. The problem arises because the predominantly marine-focused lifeways of Arctic people means that the majority of archaeological sites are found near the coast. On a Pan-Arctic scale, coastal erosion is often explained by long-term processes such as sea level rise, lengthening of open water periods due to a decline in sea ice, and a predicted increase in the frequency of major storms. However, on a local scale other short-term processes may be important parameters determining the coastal development. In this study, we focus on the Nuuk fjord system in West Greenland, which has been inhabited over the past 4000 years by different cultures and holds around 260 registered archaeological settlements. The fjord is characterized by its large branching of narrow deep-water and well-shaded water bodies, where tidal processes and local sources of sediment supply by rivers are observed to be the dominant factors determining the coastal development. We present a regional model showing the vulnerability of the shoreline and archeological sites due to coastal processes. The model is based on a) levelling surveys and historical aerial photographs of nine specific sites distributed in the region, b) water level measurements at three sites representing the inner-, middle- and outer fjord system, c) aerial photographs, satellite images and meteorological data of the entire region used to up-scale our local information at a specific settlement scale towards a regional scale. This deals with spatial and temporal variability in erosion and accumulation patterns along the shores in fjords and open seas.

  15. Climate change-driven cliff and beach evolution at decadal to centennial time scales

    Science.gov (United States)

    Erikson, Li; O'Neill, Andrea; Barnard, Patrick; Vitousek, Sean; Limber, Patrick

    2017-01-01

    Here we develop a computationally efficient method that evolves cross-shore profiles of sand beaches with or without cliffs along natural and urban coastal environments and across expansive geographic areas at decadal to centennial time-scales driven by 21st century climate change projections. The model requires projected sea level rise rates, extrema of nearshore wave conditions, bluff recession and shoreline change rates, and cross-shore profiles representing present-day conditions. The model is applied to the ~470-km long coast of the Southern California Bight, USA, using recently available projected nearshore waves and bluff recession and shoreline change rates. The results indicate that eroded cliff material, from unarmored cliffs, contribute 11% to 26% to the total sediment budget. Historical beach nourishment rates will need to increase by more than 30% for a 0.25 m sea level rise (~2044) and by at least 75% by the year 2100 for a 1 m sea level rise, if evolution of the shoreline is to keep pace with rising sea levels.

  16. Climate and shoreline in Sweden during Weichsel and the next 150,000 years

    Energy Technology Data Exchange (ETDEWEB)

    Moren, L. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Paasse, T. [Geological Survey of Sweden, Uppsala (Sweden)

    2001-08-01

    In this report scenarios of the climate, ice sheet and shoreline in Sweden during the Weichselian and the next 150,000 years are presented. The scenarios are intended to be used in performance and safety analysis of a deep geological repository, as a framework for the analysis of the impact of climate induced changes. First scenarios of the past and future climate are lined out. Based on these and observations of past ice sheets, scenarios of the evolution of the Scandinavian ice sheet are described. Finally the evolution of the shoreline is calculated using an empirical model based on observations from the Late Weichselian and the Holocene. There can be several causes of climate change. External causes are variation of solar radiation and dissipation of internal earth energy producing volcanism or shifts in earth physiography. Change in the internal dynamics of the climate system is another source of climate change. The concentration of different gases in the atmosphere affects the heat balance and the meteorological processes and thereby climate. Important for the climate are also the dynamics of ocean currents and ice sheets, albedo and biological processes. Changes of the earth orbit around the sun cause variations in the seasonal distribution and amount of solar radiation reaching the earth. Records of past climate show that there is a correlation between these variations and long-term climate changes. The theory that climate changes are triggered by variations in the earth orbital parameters is refereed to as the astronomical limate theory or the Milankowich theory. In spite of some ambiguities this theory is generally accepted. In this report results from three different models based on the astronomical climate theory are utilised. Simulations are compared to observations of past climate and ice sheets. The climate and ice sheet scenario for the Weichselian is based on deep-sea sediment data and a reconstruction of the Scandinavian ice sheet. The future

  17. Uncertainties in shoreline position analysis: the role of run-up and tide in a gentle slope beach

    Directory of Open Access Journals (Sweden)

    G. Manno

    2017-09-01

    Full Text Available In recent decades in the Mediterranean Sea, high anthropic pressure from increasing economic and touristic development has affected several coastal areas. Today the erosion phenomena threaten human activities and existing structures, and interdisciplinary studies are needed to better understand actual coastal dynamics. Beach evolution analysis can be conducted using GIS methodologies, such as the well-known Digital Shoreline Analysis System (DSAS, in which error assessment based on shoreline positioning plays a significant role. In this study, a new approach is proposed to estimate the positioning errors due to tide and wave run-up influence. To improve the assessment of the wave run-up uncertainty, a spectral numerical model was used to propagate waves from deep to intermediate water and a Boussinesq-type model for intermediate water up to the swash zone. Tide effects on the uncertainty of shoreline position were evaluated using data collected by a nearby tide gauge. The proposed methodology was applied to an unprotected, dissipative Sicilian beach far from harbors and subjected to intense human activities over the last 20 years. The results show wave run-up and tide errors ranging from 0.12 to 4.5 m and from 1.20 to 1.39 m, respectively.

  18. Tracking of the LAZIO region shoreline from orthophotos AGEA 2014 and implementation of the database layer

    Science.gov (United States)

    Biscotti, Erik; Pizzeghello, Nicola; Murri, Chiara; Colistra, Graziano; Batzu, Ilenia

    2018-05-01

    The integrated coastal zone management (ICZM) is the modern approach used in the study, management and exploitation of the coastal area in various applications whereas in this area are concentrated interests concerning the most different fields, economic, environmental, legal, scientific and social. The coast is in fact inherently unstable by nature and consequently its characterization should take into account a continuous monitoring and updating of its variations and trends. The coastal area is that portion of land emerged and submerged containing the shoreline and is subject to both continental and marine geomorphic processes. The shoreline is the clearest expression of how this sector is particularly dynamic. Proper analysis and representation of the shape and nature of the coastal area are a first step to provide reliable and comparable tools to those who study and manage it. This paper presents the results of a study aimed to the realization of an integrated approach in the extraction of the shoreline using a case study of Lazio coast as a part of the European Project "Intercoast". This work is based on national and international directives on the coastal zone, whether linked to a more terrestrial or maritime area, still within the broad definition of Hydrography provided by the International Hydrographic Organization (IHO). The spatial information extracted by direct or indirect measurements of the most dynamic coastal sector emerged and submerged (emerged coast and sea bottom) have been provided by associating with a budget of measurement uncertainties, and assessing the quality.

  19. Climate and shoreline in Sweden during Weichsel and the next 150,000 years

    International Nuclear Information System (INIS)

    Moren, L.; Paasse, T.

    2001-08-01

    In this report scenarios of the climate, ice sheet and shoreline in Sweden during the Weichselian and the next 150,000 years are presented. The scenarios are intended to be used in performance and safety analysis of a deep geological repository, as a framework for the analysis of the impact of climate induced changes. First scenarios of the past and future climate are lined out. Based on these and observations of past ice sheets, scenarios of the evolution of the Scandinavian ice sheet are described. Finally the evolution of the shoreline is calculated using an empirical model based on observations from the Late Weichselian and the Holocene. There can be several causes of climate change. External causes are variation of solar radiation and dissipation of internal earth energy producing volcanism or shifts in earth physiography. Change in the internal dynamics of the climate system is another source of climate change. The concentration of different gases in the atmosphere affects the heat balance and the meteorological processes and thereby climate. Important for the climate are also the dynamics of ocean currents and ice sheets, albedo and biological processes. Changes of the earth orbit around the sun cause variations in the seasonal distribution and amount of solar radiation reaching the earth. Records of past climate show that there is a correlation between these variations and long-term climate changes. The theory that climate changes are triggered by variations in the earth orbital parameters is refereed to as the astronomical limate theory or the Milankowich theory. In spite of some ambiguities this theory is generally accepted. In this report results from three different models based on the astronomical climate theory are utilised. Simulations are compared to observations of past climate and ice sheets. The climate and ice sheet scenario for the Weichselian is based on deep-sea sediment data and a reconstruction of the Scandinavian ice sheet. The future

  20. Shoreline clean up during the Sea Empress incident: the role of surf washing (clay-oil flocculation), dispersants and bioremediation

    International Nuclear Information System (INIS)

    Lunel, T.; Lee, K.

    1996-01-01

    An outline of the at sea operations which took place in response to the Sea Empress oil spill, was presented. The grounding of the Sea Empress resulted in the release of 70,000 tonnes of blended crude oil into the environment. A qualitative account of the events which followed the incident were described. The early mobilization of a monitoring team has demonstrated the importance of scientific measurements to identify and maximize the efficiency of various cleanup operations. One of the important responses to this incident was the application of dispersants which by inducing flocculation, thereby reducing contact of oil directly with the substrate, and by reducing adhesion of the oil to the shoreline, contributed greatly to minimizing shoreline impact. 19 refs., 7 figs

  1. Correlating sea level rise still-stands to marine terraces and undiscovered submerged shoreline features in the Channel Islands (USA) using autonomous and remotely operated systems

    Science.gov (United States)

    Raineault, N.; Ballard, R. D.; Fahy, J.; Mayer, L. A.; Heffron, E.; Krasnosky, K.; Roman, C.; Schmidt, V. E.; McLeod, A.; Bursek, J.; Broad, K.

    2017-12-01

    In 2017, the Ocean Exploration Trust aggregated onboard and autonomous mapping technologies to identify and explore paleo shorelines and discover previously undocumented submerged shoreline features in and around the Channel Islands offshore of California. Broad area mapping was conducted with the hull mounted multibeam echosounder aboard the E/V Nautilus. This Kongsberg EM302 provided maps at 2-10 m resolution, at depths generally greater than 50 m. From this data marine terraces were identified for higher resolution mapping via an Autonomous Surface Vehicle (ASV). The precision data from the ASV's Kongsberg EM2040p echosounder allowed identification of the knickpoints associated with cliffs on the landward extent of each terrace. Sub-sea cave targets were identified using backscatter and slope maps from a combination of both the broad area and high resolution multibeam data. To ground-truth the targets identified through mapping, remotely operated vehicles (ROVs) and a highly specialized team of cave divers explored these targets. The results from the visual inspection were then fed back into the analysis fostering the rapid iteration of the onboard identification criteria and resulted in locating submerged shorelines containing numerous large caves, arches, and concretions. Caves were found at still-stands at 8, 33, 66, and 103 m depth at Santa Cruz Island, Santa Barbara Island platform, and Osborn Bank, along the vertical escarpment at the cliff-face and aligned with the strike of fractures in the volcanic rock. These terraces correspond to different sea level still-stands. ROV grab samples of fossiliferous marine terraces will provide ages and aid in reconstructions of sea level change and tectonic history for each location. Finally, caves were mapped in sub-cm resolution using a Kongsberg M3 sonar mounted vertically on the front of the ROV to test the capabilities of the system to provide accurate information about exterior dimensions and morphology.

  2. Decadal shoreline assessment using remote sensing along the central Odisha coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    ManiMurali, R.; Dhiman, R.; Choudhary, R.; Jayakumar, S.; Ilangovan, D.; Vethamony, P.

    sensing data (Landsat and IRS P6) were used in the study. Digital shoreline analysis system discovered the eroded and accreted parts of the study area. Gahirmatha and coast above Devi River experienced heavy erosion during 2000–2012 compared with 1990...

  3. Guidance For The Bioremediation Of Oil-Contaminated Wetlands, Marshes, And Marine Shorelines

    Science.gov (United States)

    Marine shorelines are important public and ecological resources that serve as a home to a variety of wildlife and provide public recreation. Marine oil spills, particularly large scale spill accidents, have posed great threats and cause extensive damage to the marine coastal env...

  4. Shoreline deposits and diagenesis resulting from two Late Pleistocene highstands near +5 and +6 metres, Durban, South Africa

    Science.gov (United States)

    Cooper, J.A.G.; Flores, R.M.

    1991-01-01

    In exposures of Pleistocene rocks on the east coast of South Africa, eight sedimentary facies were distinguished on the basis of petrology, grain size, internal structures and field relationships. These are interpreted as deposits of surf zone, breaker zone, swash zone, backbeach, boulder beach and dune environments. Three phases of deposition and diagenesis are recognized. As a result of the stabilising effect of pre-existing coastal facies, the deposits from successive sea level stands are stacked vertically in a narrow coast-normal strip. Early cementation prevented erosion of the deposits during subsequent transgressions. Deposition of subsequent facies took place on an existing coastal dune (Facies 1). A terrace was cut into this dune at a sea level 4.5 to 5 m above present. At this sea level, clastic shoreline sediments were deposited which make up the main sedimentary sequence exposed (Facies 2-7). The steep swash zone, coarse grain size, and comparison with modern conditions in the study area indicate clastic deposition on a high-energy, wave-dominated, microtidal coastline. Vertical stacking of progressively shallower water facies indicates progradation associated with slightly regressive conditions, prior to stranding of the succession above sea level. During a subsequent transgression to 5.5 or 6 m above present sea level, a second terrace was cut across the existing facies, which by then were partly lithified. A boulder beach (Facies 8) deposited on this terrace is indicative of high wave energy and a rocky coastline, formed by existing cemented coastal facies. Comparison with dated deposits from other parts of the South African coast suggest a Late Pleistocene age for Facies 2-8. Deposition was terminated by subsequent regression and continuing low sea levels during the remainder of the Pleistocene. Cementation of the facies took place almost entirely by carbonate precipitation. The presence of isopachous fibrous cements suggests early cementation of

  5. Monitoring beach changes using GPS surveying techniques

    Science.gov (United States)

    Morton, Robert; Leach, Mark P.; Paine, Jeffrey G.; Cardoza, Michael A.

    1993-01-01

    A need exists for frequent and prompt updating of shoreline positions, rates of shoreline movement, and volumetric nearshore changes. To effectively monitor and predict these beach changes, accurate measurements of beach morphology incorporating both shore-parallel and shore-normal transects are required. Although it is possible to monitor beach dynamics using land-based surveying methods, it is generally not practical to collect data of sufficient density and resolution to satisfy a three-dimensional beach-change model of long segments of the coast. The challenge to coastal scientists is to devise new beach monitoring methods that address these needs and are rapid, reliable, relatively inexpensive, and maintain or improve measurement accuracy.

  6. Shoreline ecology program for Prince William Sound, Alaska, following the Exxon Valdez oil spill. Part 3: Biology

    International Nuclear Information System (INIS)

    Gilfillan, E.S.; Page, D.S.; Harner, E.J.; Boehm, P.D.

    1995-01-01

    This study describes the biological results of a comprehensive shoreline ecology program designed to assess ecological recovery in Prince William Sound following the Exxon Valdez oil spill on march 24, 1989. The program is an application of the ''Sediment Quality Triad'' approach, combining chemical, toxicological, and biological measurements. The study was designed so that results could be extrapolated to the entire spill zone in Prince William Sound. The spill affected four major shoreline habitat types in Prince William Sound: pebble/gravel, boulder/cobble, sheltered bedrock, and exposed bedrock. The study design had two components: (1) one-time stratified random sampling at 64 sites representing four habitats and four oiling levels (including unoiled reference sites) and (2) periodic sampling at 12 nonrandomly chosen sites that included some of the most heavily oiled locations in the sound. Biological communities on rock surfaces and in intertidal and shallow subtidal sediments were analyzed for differences resulting from to oiling in each of 16 habitat/tide zone combinations. Statistical methods included univariate analyses of individual species abundances and community parameter variables (total abundance, species richness, and Shannon diversity), and multivariate correspondence analysis of community structure. 58 refs., 13 figs., 9 tabs

  7. Providing support for day-to-day monitoring of shoreline cleanup operations

    International Nuclear Information System (INIS)

    Lamarche, A.; Tarpley, J.

    1997-01-01

    Experiences gained during the 'Cape Mohican' incident in October 1996, in San Francisco Bay, were recounted and proposed as a potential example of day-to-day monitoring, evaluation and reporting of shoreline cleanup effort. During this cleanup a set of communications procedures, progress reports and maps were developed which should be equally useful in other similar situations. The cartographic representations were specially highlighted as they focused on ways to provide a clear picture of the short term modifications in oiling conditions of the affected shoreline. The most important lesson learned from this oil spill was the importance of having personnel and equipment sufficiently matched to the task in order to evaluate oil conditions, produce cleanup recommendations, execute and communicate the status of the cleanup effort as fast, and as efficiently and effectively as possible. It was clearly demonstrated that unless the decision process is streamlined and supported with the best, most up-to-date information, the efforts of the cleanup team would be seriously undermined. 8 refs., 2 tabs., 6 figs

  8. Deepwater Horizon MC252 shoreline data from the Environmental Response Management Application (ERMA) containing shoreline exposure and data related to the shoreline exposure model, coastal wetland vegetation sites and other datasets collected between 2010-01-01 to 2015-01-01 for the DWH response in the Northern Gulf of Mexico (NCEI Accession 0163814)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Archival Information Package (AIP) contains Environmental Resource Management Application (ERMA) GIS layers including shoreline exposure model for beach and...

  9. 18 CFR 1304.208 - Shoreline stabilization on TVA-owned residential access shoreland.

    Science.gov (United States)

    2010-04-01

    ... of gabions and riprap to stabilize eroded shorelines. (1) The riprap material must be quarry-run stone, natural stone, or other material approved by TVA. (2) Rubber tires, concrete rubble, or other... concrete, gabions, or other materials acceptable to TVA. Railroad ties, rubber tires, broken concrete...

  10. Guam and the Northern Mariana Islands ESI: ESI (Environmental Sensitivity Index Shoreline Types - Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines representing the shoreline and coastal habitats for Guam and the Northern Mariana Islands, classified according to the...

  11. Shoreline Erosion and Slope Failure Detection over Southwest Lakeshore Michigan using Temporal Radar and Digital Elevation Model

    Science.gov (United States)

    Sataer, G.; Sultan, M.; Yellich, J. A.; Becker, R.; Emil, M. K.; Palaseanu, M.

    2017-12-01

    Throughout the 20th century and into the 21st century, significant losses of residential, commercial and governmental property were reported along the shores of the Great Lakes region due to one or more of the following factors: high lake levels, wave actions, groundwater discharge. A collaborative effort (Western Michigan University, University of Toledo, Michigan Geological Survey [MGS], United States Geological Survey [USGS], National Oceanographic and Atmospheric Administration [NOAA]) is underway to examine the temporal topographic variations along the shoreline and the adjacent bluff extending from the City of South Haven in the south to the City of Saugatuck in the north within the Allegan County. Our objectives include two main tasks: (1) identification of the timing of, and the areas, witnessing slope failure and shoreline erosion, and (2) investigating the factors causing the observed failures and erosion. This is being accomplished over the study area by: (1) detecting and measuring slope subsidence rates (velocities along line of site) and failures using radar interferometric persistent scatter (PS) techniques applied to ESA's European Remote Sensing (ERS) satellites, ERS-1 and -2 (spatial resolution: 25 m) that were acquired in 1995 to 2007, (2) extracting temporal high resolution (20 cm) digital elevation models (DEM) for the study area from temporal imagery acquired by Unmanned Aerial Vehicles (UAVs), and applying change detection techniques to the extracted DEMs, (3) detecting change in elevation and slope profiles extracted from two LIDAR Coastal National Elevation Database (CoNED) DEMs (spatial resolution: 0.5m), acquired on 2008 and 2012, and (4) spatial and temporal correlation of the detected changes in elevation with relevant data sets (e.g., lake levels, precipitation, groundwater levels) in search of causal effects.

  12. Satellite observation of bio-optical indicators related to North-Western Black Sea coastal zone changes

    Science.gov (United States)

    Zoran, Maria

    Satellite remote sensing provides a means for locating, identifying and mapping certain coastal zone features and assessing of spatio-temporal changes.The Romanian coastal zone of the Black Sea is a mosaic of complex, interacting ecosystems, exposed to dramatic changes due to natural and anthropogenic causes (increase in the nutrient and pollutant load of rivers input, industrial and municipal wastewater pollution along the coast, and dumping on the open sea). This study focuses on the assessment of coastal zone land cover changes based on the fusion of satellite remote sensing data.The evaluation of coastal zone landscapes is based upon different sub-functions which refer to landscape features such as water, soil, land-use, buildings, groundwater, biotope types. Mixed pixels result when the sensor's instantaneous field-of-view includes more than one land cover class on the ground. Based on different satellite data (Landsat TM, ETM, SAR ERS, IKONOS, Quickbird, and MODIS) was performed object recognition for North-Western Black Sea coastal zone. Preliminary results show significant coastline position changes of North Western Black Sea during the period of 1987-2007 and urban growth of Constantza town. Also the change in the position of the coastline is examined and linked to the urban expansion in order to determine if the changes are natural or anthropogenic. A distinction is made between landfill/sedimentation processes on the one hand and dredging/erosion processes on the other. Waves play an important role for shoreline configuration. Wave pattern could induce erosion and sedimentation. A quasi-linear model was used to model the rate of shoreline change. The vectors of shoreline were used to compare with wave spectra model in order to examine the accuracy of the coastal erosion model. The shoreline rate modeled from vectors data of SAR ERS-1 has a good correlation with a quasi-linear model. Wave refraction patterns are a good index for shoreline erosion. A coast

  13. Recent Niger Delta shoreline response to Niger River hydrology: Conflict between forces of Nature and Humans

    Science.gov (United States)

    Dada, Olusegun A.; Li, Guangxue; Qiao, Lulu; Asiwaju-Bello, Yinusa Ayodele; Anifowose, Adeleye Yekini Biodun

    2018-03-01

    The Niger River Delta is a prolific hydrocarbon province and a mega-delta of economic and environmental relevance. To understand patterns of its recent shoreline evolution (1923-2013) in response to the Niger River hydrology, and establish the role played by forces of Nature and Human, available topographic and satellite remote sensing data, combined with hydro-climatic (rainfall and runoff) data were analyzed. Results indicate that the entire delta coastline dramatically receded: 82% of the >400 km-long coast retreated, during the period 1950-1987; and 69% between 2007 and 2012. Prior to 1950, there was a continuation of seaward advancement along 53-74% of the delta coast. The 1950-1987 shoreline recession coincided with occurrences of two major events in the Niger River basin; these are downward trends in hydro-climatic conditions (the great droughts of the 1970s-1980s), and dam construction on the Lower Niger River at Kainji (1964-1968). The 2007-2012 event corresponded with the extensive channel dredging during 2009-2012 in the Lower Niger River from the coastal town of Warri in the south to Baro in the north. Remarkably, the largest net shoreline advancement recorded in 74% of the entire delta area occurred within a year (2012-2013), which we link to increased sediment supply to the coast caused by the '2012' floods, adjudged the worst floods in the entire Niger River Basin in the last few decades. With both anthropogenic and environmental factors inducing delta evolution, only innovative river and coastal management can determine the fortune of the future coastal development of the Niger Delta.

  14. Satellite images survey for the identification of the coastal sedimentary system changes and associated vulnerability along the western bay of the Gulf of Tunis (northern Africa)

    Science.gov (United States)

    Hzami, Abderraouf; Amrouni, Oula; Romanescu, Gheorghe; Constantin Stoleriu, Cristian; Mihu-Pintilie, Alin; Saâdi, Abdeljaouad

    2018-04-01

    The aim of this study consists in testing the effectiveness of satellite data in order to monitoring shoreline and sedimentary features changes, especially the rapidly changing of Gulf of Tunis coast. The study area is located in the Gulf of Tunis western bay (Southern Mediterranean Sea) which is characterized by sandy beaches of Ghar Melah and Raoued (Medjerda Delta area). The aerial photographs and satellite imageries were used for mapping the evolution of shoreline. Diachronic data (satellite imagery, aerial photography and topographic maps) were used to monitor and to quantify, the evolution of the coastal areas. These thematic data were digitally overlaid and vectorised for highlighting the shoreline changes between 1936 and 2016, in order to map the rate of erosion and accretion along the shoreline. Results show that the accretion and degradation are related to the Medjerda: change of outlet in 1973 and impoundment of the Sidi Salem dam in 1982. We found that the general trend of the coastal geomorphic processes can be monitored with satellite imageries (such as Sentinel A2, Spots 4 and 5), due to its repetitive coverage along the time and their high quality concerning the spectral contrast between land and sea areas. Improved satellite imageries with high resolution should be a valuable tool for complementing traditional methods for mapping and assessing the sedimentary structures (such as shoreline, delta, marine bars), and monitoring especially the lowlands coastal areas (slightly eroded).

  15. Raised Holocene paleo-shorelines along the Capo Vaticano coast (western Calabria, Italy): Evidence of co-seismic and steady-state deformation

    Science.gov (United States)

    Spampinato, Cecilia Rita; Ferranti, Luigi; Monaco, Carmelo; Scicchitano, Giovanni; Antonioli, Fabrizio

    2014-12-01

    Detailed mapping of geomorphological and biological sea-level markers around the Capo Vaticano promontory (western Calabria, Italy), has documented the occurrence of four Holocene paleo-shorelines raised at different altitudes. The uppermost shoreline (PS1) is represented by a deeply eroded fossiliferous beach deposit, reaching an elevation of ∼2.2 m above the present sea-level, and by a notch whose roof is at ∼2.3 m. The subjacent shoreline PS2 is found at an elevation of ∼1.8 m and is represented by a Dendropoma rim, a barnacle band and by a wave-cut platform. Shoreline PS3 includes remnants of vermetid concretions, a barnacle band, a notch and a marine deposit, and reaches an elevation of ∼1.4 m. The lowermost paleo-shoreline (PS4) includes a wave-cut platform and a notch and reaches an elevation of ∼0.8 m. Radiocarbon dating of material from individual paleo-shorelines points to an average uplift rate of 1.2-1.4 mm/yr in the last ∼6 ka at Capo Vaticano. Our data suggest that Holocene uplift was asymmetric, with a greater magnitude in the south-west sector of the promontory, in a manner similar to the long-term deformation attested by Pleistocene terraces. The larger uplift in the south-western sector is possibly related to the additional contribution, onto a large-wavelength regional signal, of co-seismic deformation events, which are not registered to the north-east. We have recognized four co-seismic uplift events at 5.7-5.4 ka, 3.9-3.5 ka, ∼1.9 ka and <1.8 ka ago, superposed on a regional uplift that in the area, is occurring at a rate of ∼1 mm/yr. Our findings places new constrains on the recent activity of border faults south of the peninsula and on the location of the seismogenic source the 1905 destructive earthquake.

  16. Validation of a short-term shoreline evolution model and coastal risk management implications. The case of the NW Portuguese coast (Ovar-Marinha Grande)

    Science.gov (United States)

    Cenci, Luca; Giuseppina Persichillo, Maria; Disperati, Leonardo; Oliveira, Eduardo R.; de Fátima Lopes Alves, Maria; Boni, Giorgio; Pulvirenti, Luca; Phillips, Mike

    2015-04-01

    ; selected images, ranging from 1984 to 2011, were processed in order to extract two different vegetation-related proxies (i.e. the Stable Dune Vegetation Line and the Seaward Dune Vegetation Line) and to quantify their uncertainty. The proxies' rates of advance/retreat were calculated by exploiting the Digital Shoreline Analysis System (DSAS), an ESRI ArcGIS software application. Subsequently, it was used a recent Landsat 8 image to extract the 2014 observed shoreline proxies' positions. The latter were compared with the ones predicted for the same year adopting the rates previously obtained from DSAS. Statistical analyses based on the differences between predicted and observed values were calculated in order to i) study the coastal evolution of the study area, ii) predict short-term scenarios (3 years), iii) assess the predictions accuracy and iv) identify the more reliable proxy for the study area. Finally, results were interpreted in terms of coastal planning and management perspectives. This was achieved by taking into account the official coastal risk management framework implemented in 2012 to promote a flexible, integrated and adaptive approach. This new generation of Coastal Zone Master Plans had inspired this research because it reinforced the need for mechanisms of risks prevention and environmental safeguarding.

  17. Using Imaging Spectroscopy to Map Changing Distributions of Dominant Species in Oil-Contaminated Salt Marshes of Louisiana

    Science.gov (United States)

    Beland, M. C.; Roberts, D. A.; Peterson, S.; Biggs, T. W.; Kokaly, R. F.; Piazza, S.; Roth, K. L.; Khanna, S.; Ustin, S.

    2016-12-01

    The April 2010 Deepwater Horizon (DWH) oil spill was the largest coastal spill in U.S. history. Monitoring subsequent change in marsh plant community distributions is critical to assess ecosystem impacts and to establish future coastal management priorities. Strategically deployed airborne imaging spectrometers, like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), offer the spectral and spatial resolution needed to differentiate plant species. However, obtaining satisfactory and consistent classification accuracies over time is a major challenge, particularly in dynamic intertidal landscapes. Here, we develop and evaluate an image classification system for a time series of AVIRIS data for mapping dominant species in a heavily oiled salt marsh ecosystem. Using field-referenced image endmembers and canonical discriminant analysis (CDA), we classified 21 AVIRIS images acquired during the fall of 2010, 2011 and 2012. Classification results were evaluated using ground surveys that were conducted contemporaneously to AVIRIS collection dates. We analyzed changes in dominant species cover from 2010-2012 for oiled and non-oiled shorelines. CDA discriminated dominant species with a high level of accuracy (overall accuracy = 82%, kappa = 0.78) and consistency over three imaging dates (overall2010 = 82%, overall2011 = 82%, overall2012 = 88%). Marshes dominated by Spartina alterniflora were the most spatially abundant in shoreline zones (≤ 28m from shore) for all three dates (2010 = 79%, 2011 = 61%, 2012 = 63%), followed by Juncus roemerianus (2010 = 11%, 2011 = 19%, 2012 = 17%) and Distichlis spicata (2010 = 4%, 2011 = 10%, 2012 = 7%). Marshes that were heavily contaminated with oil exhibited variable responses from 2010-2012. Marsh vegetation classes converted to a subtidal, open water class along oiled and non-oiled shorelines that were similarly situated in the landscape. However, marsh loss along oil-contaminated shorelines doubled that of non

  18. Post-glacial inflation-deflation cycles, tilting, and faulting in the Yellowstone Caldera based on Yellowstone Lake shorelines

    Science.gov (United States)

    Pierce, Kenneth L.; Cannon, Kenneth P.; Meyer, Grant A.; Trebesch, Matthew J.; Watts, Raymond D.

    2002-01-01

    The Yellowstone caldera, like many other later Quaternary calderas of the world, exhibits dramatic unrest. Between 1923 and 1985, the center of the Yellowstone caldera rose nearly one meter along an axis between its two resurgent domes (Pelton and Smith, 1979, Dzurisin and Yamashita, 1987). From 1985 until 1995-6, it subsided at about two cm/yr (Dzurisin and others, 1990). More recent radar interferometry studies show renewed inflation of the northeastern resurgent dome between 1995 and 1996; this inflation migrated to the southwestern resurgent dome from 1996 to 1997 (Wicks and others, 1998). We extend this record back in time using dated geomorphic evidence of postglacial Yellowstone Lake shorelines around the northern shore, and Yellowstone River levels in the outlet area. We date these shorelines using carbon isotopic and archeological methods. Following Meyer and Locke (1986) and Locke and Meyer (1994), we identify the modern shoreline as S1 (1.9 ? 0.3 m above the lake gage datum), map paleoshoreline terraces S2 to S6, and infer that the prominent shorelines were cut during intracaldera uplift episodes that produced rising water levels. Doming along the caldera axis reduces the gradient of the Yellowstone River from Le Hardys Rapids to the Yellowstone Lake outlet and ultimately causes an increase in lake level. The 1923-1985 doming is part of a longer uplift episode that has reduced the Yellowstone River gradient to a ?pool? with a drop of only 0.25 m over most of this 5 km reach. We also present new evidence that doming has caused submergence of some Holocene lake and river levels. Shoreline S5 is about 14 m above datum and estimated to be ~12.6 ka, because it post-dates a large hydrothermal explosion deposit from the Mary Bay area (MB-II) that occurred ~13 ka. S4 formed about 8 m above datum ~10.7 ka as dated by archeology and 14C, and was accompanied by offset on the Fishing Bridge fault. About 9.7 ka, the Yellowstone River eroded the ?S-meander?, followed

  19. Sheen surveillance: An environmental monitoring program subsequent to the 1989 Exxon Valdez shoreline cleanup

    International Nuclear Information System (INIS)

    Taft, D.G.; Egging, D.E.; Kuhn, H.A.

    1995-01-01

    In the fall of 1989, an aerial surveillance program was implemented to locate oil sheens (or slicks) originating from shorelines affected by the Exxon Valdez spill. The objectives of the program were to identify any oil on the water that warranted response and to identify those sections of shoreline that would be priority candidates for further cleanup in 1990. The program initially surveyed the entire affected area, but, because proportionally fewer sheens were spotted in the Gulf of Alaska, the program was refocused on Prince Williams Sound in early 1990. The surveillance program consisted of frequent low-altitude flights with trained observers in a deHavilland Twin otter outfitted with observation ports and communication equipment. The primary surveillance technique used was direct visual observation. Other techniques, including photography, were tested but proved less effective. The flights targeted all shorelines of concern, particularly those near fishing, subsistence, and recreational areas.the observers attempted to locate all sheens, estimate their size and color, ad identify the source of the oil found in the sheen. Size and color were used to estimate the volume of oil in each sheen. Samples were collected whenever possible during the summer of 1990 using a floating Teflon trademark sampling device that was developed for easy deployment from a boat or the pontoon of a float plane. Forty four samples were analyzed by UV-fluorescence spectroscopy. Eleven of these samples were also analyzed by GC/MS. In general, the analyses confirmed the observers' judgment of source. 16 refs., 9 figs., 2 tabs

  20. Shoreline ecology program for Prince William Sound, Alaska, following the Exxon Valdez oil spill. Part 1: Study design and methods

    International Nuclear Information System (INIS)

    Page, D.S.; Gilfillan, E.S.; Boehm, P.D.; Harner, E.J.

    1995-01-01

    This paper describes the design and analysis of a large field and laboratory program to assess shoreline recovery in Prince William Sound following the Exxon Valdez oil spill. The study was designed so that results could be generalized area-wide (biology, chemistry) or habitat-wide (toxicology) and projected forward in time (chemistry). It made use of the sediment quality triad approach, combining biological, chemical, and toxicological measurements to assess shoreline recovery. Key aspects of the study include the following: coordinated field sampling for chemical, toxicological, and biological studies; stratified random sampling (SRS) as a basis for spatial generalization; periodic sampling to assess trends, including sites with worst-case conditions; analysis of oil-spill effects on hundreds of species; statistical methods based on normal and non-normal theory, consistent with the structure of the data, including generalized linear models and multivariate correspondence analysis. 45 refs., 5 figs., 4 tabs

  1. Wave climate change, coastline response and hazard prediction in New South Wales, Australia

    International Nuclear Information System (INIS)

    Goodwin, Ian D.; Verdon, Danielle; Cowell, Peter

    2007-01-01

    Full text: Full text: Considerable research effort has been directed towards understanding and the gross prediction of shoreline response to sea level rise (eg. Cowell ef a/. 2003a, b). In contrast, synoptic prediction of changes in the planform configuration of shorelines in response to changes in wind and wave climates over many decades has been limited by the lack of geohistorical data on shoreline alignment evolution and long time series of wave climate. This paper presents new data sets on monthly mean wave direction variability based on: a. Waverider buoy data; b. a reconstruction of monthly mid-shelf wave direction, 1877 to 2002 AD from historical MSLP data (Goodwin 2005); and c. a multi-decadal reconstruction of wave direction, in association with the Interdecadal Pacific Oscillation and the Southern Annular Mode of climate variability, covering the past millennium. A model of coastline response to the wave climate variability is presented for northern and central New South Wales (NSW) for decadal to multi-decadal time scales, and is based on instrumental and geohistorical data. The sensitivity of the coastline position and alignment, and beach state to mean and extreme wave climate changes is demonstrated (e.g. Goodwin et al. 2006). State changes in geometric shoreline alignment rotation, sand volume (progradation/recession) for NSW and mean wave direction, are shown to be in agreement with the low-frequency change in Pacific-wide climate. Synoptic typing of climate patterns using Self Organised Mapping methods is used to downscale CSIRO GCM output for this century. The synoptic types are correlated to instrumental wave climate data and coastal behaviour. The shifts in downscaled synoptic types for 2030 and 2070 AD are then used as the basis for predicting mean wave climate changes, coastal behaviour and hazards along the NSW coastline. The associated coastal hazards relate to the definition of coastal land loss through rising sea levels and shoreline

  2. National Coastal Condition Assessment (NCCA) Sampling Areas Polygons, Hawaiian Islands Shoreline, 2015, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a polygon feature dataset with areas along the shoreline of the Hawaiian islands. The National Coastal Condition Assessment (NCCA) is a national coastal...

  3. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: ESIP (ESI Shoreline Types - Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ESIP data set contains vector polygons representing the shoreline and coastal habitats of South Florida classified according to the Environmental Sensitivity...

  4. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Florida Panhandle: ESIL (ESI Shoreline Types - Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ESIL data set contains vector lines representing the shoreline and coastal habitats of the Florida Panhandle, classified according to the Environmental...

  5. Radiological survey of shoreline vegetation from the Hanford Reach of the Columbia River, 1990--1992

    International Nuclear Information System (INIS)

    Antonio, E.J.; Poston, T.M.; Rickard, W.H. Jr.

    1993-09-01

    A great deal of interest exists concerning the seepage of radiologically contaminated groundwater into the Columbia River where it borders the US Department of Energy's Hanford Site (Hanford Reach). Areas of particular interest include the 100-N Area, the Old Hanford Townsite, and the 300 Area springs. While the radiological character of the seeps and springs along the Hanford Site shoreline has been studied, less attention has been given to characterizing the radionuclides that may be present in shoreline vegetation. The objective of this study was to characterize radionuclide concentrations in shoreline plants along the Hanford Reach of the Columbia River that were usable by humans for food or other purposes. Vegetation in two areas was found to have elevated levels of radionuclides. Those areas were the 100-N Area and the Old Hanford Townsite. There was also some indication of uranium accumulation in milfoil and onions collected from the 300 Area. Tritium was elevated above background in all areas; 60 Co and 9O Sr were found in highest concentrations in vegetation from the 100-N Area. Technetium-99 was found in 2 of 12 plants collected from the Old Hanford Townsite and 1 of 10 samples collected upstream from the Vernita Bridge. The concentrations of 137 Cs, 238 Pu, 239,240 Pu, and isotopes of uranium were just above background in all three areas (100-N Area, Old Hanford Townsite, and 300 Area)

  6. Radiological survey of shoreline vegetation from the Hanford Reach of the Columbia River, 1990--1992

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.; Poston, T.M.; Rickard, W.H. Jr.

    1993-09-01

    A great deal of interest exists concerning the seepage of radiologically contaminated groundwater into the Columbia River where it borders the US Department of Energy`s Hanford Site (Hanford Reach). Areas of particular interest include the 100-N Area, the Old Hanford Townsite, and the 300 Area springs. While the radiological character of the seeps and springs along the Hanford Site shoreline has been studied, less attention has been given to characterizing the radionuclides that may be present in shoreline vegetation. The objective of this study was to characterize radionuclide concentrations in shoreline plants along the Hanford Reach of the Columbia River that were usable by humans for food or other purposes. Vegetation in two areas was found to have elevated levels of radionuclides. Those areas were the 100-N Area and the Old Hanford Townsite. There was also some indication of uranium accumulation in milfoil and onions collected from the 300 Area. Tritium was elevated above background in all areas; {sup 60}Co and {sup 9O}Sr were found in highest concentrations in vegetation from the 100-N Area. Technetium-99 was found in 2 of 12 plants collected from the Old Hanford Townsite and 1 of 10 samples collected upstream from the Vernita Bridge. The concentrations of {sup 137}Cs, {sup 238}Pu, {sup 239,240}Pu, and isotopes of uranium were just above background in all three areas (100-N Area, Old Hanford Townsite, and 300 Area).

  7. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: ESIL (ESI Shoreline Types - Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ESIL data set contains vector lines representing the shoreline and coastal habitats of South Florida classified according to the Environmental Sensitivity Index...

  8. Fast shoreline erosion induced by ship wakes in a coastal lagoon: Field evidence and remote sensing analysis.

    Directory of Open Access Journals (Sweden)

    Luca Zaggia

    Full Text Available An investigation based on in-situ surveys combined with remote sensing and GIS analysis revealed fast shoreline retreat on the side of a major waterway, the Malamocco Marghera Channel, in the Lagoon of Venice, Italy. Monthly and long-term regression rates caused by ship wakes in a reclaimed industrial area were considered. The short-term analysis, based on field surveys carried out between April 2014 and January 2015, revealed that the speed of shoreline regression was insignificantly dependent on the distance from the navigation channel, but was not constant through time. Periods of high water levels due to tidal forcing or storm surges, more common in the winter season, are characterized by faster regression rates. The retreat is a discontinuous process in time and space depending on the morpho-stratigraphy and the vegetation cover of the artificial deposits. A GIS analysis performed with the available imagery shows an average retreat of 3-4 m/yr in the period between 1974 and 2015. Digitization of historical maps and bathymetric surveys made in April 2015 enabled the construction of two digital terrain models for both past and present situations. The two models have been used to calculate the total volume of sediment lost during the period 1968-2015 (1.19×106 m3. The results show that in the presence of heavy ship traffic, ship-channel interactions can dominate the morphodynamics of a waterway and its margins. The analysis enables a better understanding of how shallow-water systems react to the human activities in the post-industrial period. An adequate evaluation of the temporal and spatial variation of shoreline position is also crucial for the development of future scenarios and for the sustainable management port traffic worldwide.

  9. Fast shoreline erosion induced by ship wakes in a coastal lagoon: Field evidence and remote sensing analysis.

    Science.gov (United States)

    Zaggia, Luca; Lorenzetti, Giuliano; Manfé, Giorgia; Scarpa, Gian Marco; Molinaroli, Emanuela; Parnell, Kevin Ellis; Rapaglia, John Paul; Gionta, Maria; Soomere, Tarmo

    2017-01-01

    An investigation based on in-situ surveys combined with remote sensing and GIS analysis revealed fast shoreline retreat on the side of a major waterway, the Malamocco Marghera Channel, in the Lagoon of Venice, Italy. Monthly and long-term regression rates caused by ship wakes in a reclaimed industrial area were considered. The short-term analysis, based on field surveys carried out between April 2014 and January 2015, revealed that the speed of shoreline regression was insignificantly dependent on the distance from the navigation channel, but was not constant through time. Periods of high water levels due to tidal forcing or storm surges, more common in the winter season, are characterized by faster regression rates. The retreat is a discontinuous process in time and space depending on the morpho-stratigraphy and the vegetation cover of the artificial deposits. A GIS analysis performed with the available imagery shows an average retreat of 3-4 m/yr in the period between 1974 and 2015. Digitization of historical maps and bathymetric surveys made in April 2015 enabled the construction of two digital terrain models for both past and present situations. The two models have been used to calculate the total volume of sediment lost during the period 1968-2015 (1.19×106 m3). The results show that in the presence of heavy ship traffic, ship-channel interactions can dominate the morphodynamics of a waterway and its margins. The analysis enables a better understanding of how shallow-water systems react to the human activities in the post-industrial period. An adequate evaluation of the temporal and spatial variation of shoreline position is also crucial for the development of future scenarios and for the sustainable management port traffic worldwide.

  10. Cook Inlet and Kenai Peninsula, Alaska ESI: ESI (Environmental Sensitivity Index Shoreline Types - Polygons and Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats of Cook Inlet and Kenai Peninsula, Alaska, classified according to...

  11. Mapping changing distributions of dominant species in oil-contaminated salt marshes of Louisiana using imaging spectroscopy

    Science.gov (United States)

    Beland, Michael; Roberts, Dar A.; Peterson, Seth H.; Biggs, Trent W.; Kokaly, Raymond F.; Piazza, Sarai; Roth, Keely L.; Khanna, Shruti; Ustin, Susan L.

    2016-01-01

    The April 2010 Deepwater Horizon (DWH) oil spill was the largest coastal spill in U.S. history. Monitoring subsequent change in marsh plant community distributions is critical to assess ecosystem impacts and to establish future coastal management priorities. Strategically deployed airborne imaging spectrometers, like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), offer the spectral and spatial resolution needed to differentiate plant species. However, obtaining satisfactory and consistent classification accuracies over time is a major challenge, particularly in dynamic intertidal landscapes.Here, we develop and evaluate an image classification system for a time series of AVIRIS data for mapping dominant species in a heavily oiled salt marsh ecosystem. Using field-referenced image endmembers and canonical discriminant analysis (CDA), we classified 21 AVIRIS images acquired during the fall of 2010, 2011 and 2012. Classification results were evaluated using ground surveys that were conducted contemporaneously to AVIRIS collection dates. We analyzed changes in dominant species cover from 2010 to 2012 for oiled and non-oiled shorelines.CDA discriminated dominant species with a high level of accuracy (overall accuracy = 82%, kappa = 0.78) and consistency over three imaging dates (overall2010 = 82%, overall2011 = 82%, overall2012 = 88%). Marshes dominated by Spartina alterniflora were the most spatially abundant in shoreline zones (≤ 28 m from shore) for all three dates (2010 = 79%, 2011 = 61%, 2012 = 63%), followed by Juncus roemerianus (2010 = 11%, 2011 = 19%, 2012 = 17%) and Distichlis spicata (2010 = 4%, 2011 = 10%, 2012 = 7%).Marshes that were heavily contaminated with oil exhibited variable responses from 2010 to 2012. Marsh vegetation classes converted to a subtidal, open water class along oiled and non-oiled shorelines that were similarly situated in the landscape. However, marsh loss along oil-contaminated shorelines

  12. Rapid shoreline erosion induced by human impacts in a tropical muddy coast context, an example from western French Guiana.

    Science.gov (United States)

    Brunier, Guillaume; Anthony, Edward; Gardel, Antoine

    2015-04-01

    The Guyanas coast (French Guiana, Surinam and Guiana) is the longest muddy coast in the world (1500 km). It is under the influence of mud banks in transit from the Amazon delta in Brazil to the Orinoco delta in Venezuela. This westward mud bank migration induces a strong geomorphic control on the shoreline which can be summarized in terms of "bank" (shoreline advance and wave energy dissipation) and "inter-bank" phases (erosion of shoreline by waves). Our study site, rice polders close to Mana city (western French Guiana), is a fine example of the exacerbation, by human activities, of the erosional dynamics on this muddy coast during an "inter-bank" phase. The polders cover 50,000 ha, in 200 x 600 m compartments flanked by earth dikes and canals. They were built in the muddy Holocene coastal plain in the 1980s and are rapidly eroding. Waves (mean significant height = 1.5 m height) comprise Atlantic swell and local trade wind-waves, and the tidal context is semi-diurnal and meso-tidal. We determined historical shoreline evolution from satellite (Landsat & SPOT) and orthophotography images, and conducted four field campaigns between October 2013 and October 2014, comprising topographic (RTK-DGPS) and hydrodynamic (pressure sensors) measurements. The results show intense erosion of 150 m/year affecting the polders since 2001, and lesser retreat (30 to 100 m/year) of the adjacent sectors colonized by mangrove forests. The erosive shoreface shows the same structure in each polder compartment: a chenier beach which freely retreats backwards under the influence of wave overwash. The chenier retreat rate is 100 m/year and it appears to be more intense (net retreat of 45 m) during the high wave-energy season (December to March), which generates more overwashing. In front of the chenier, we observed a large (50 m) inter-tidal mud bed showing different levels of induration and bioturbation by mangrove roots. The mud shorefaces exhibit an erosion rate of 100 m/year on average

  13. Saving oiled mangroves using a new non-dispersing shoreline cleaner

    International Nuclear Information System (INIS)

    Teas, H.J.; Lessard, R.R.; Canevari, G.P.; Brown, C.D.; Glenn, R.

    1993-01-01

    Mangroves are ranked as one of the most sensitive marine environments. If mangroves are oiled and no further action is taken, the probability of mortality to the trees is high. One of the ways that viscous spilled oil can kill mangroves is by covering the breathing ports, called lenticels (red mangroves) and pneumatophores (black mangroves), and asphyxiating them by preventing flow of oxygen from the atmosphere into the roots. Mangroves can also be killed by continuous inundation of their prop roots or pneumatophores for a period of ten days to two weeks, but they can survive lenticel covering by water for a few hours at high tide - so there appears to be some grace period during which lenticels can be nonfunctional and the plant can still survive once lenticel function is restored. This suggests that if oil is removed from the breathing ports during the early days after a spill, the lenticels may be able to restore oxygen delivery to the roots and spare the mangroves. Such oils are poorly removed by the washing of tidal waters or by water sprays alone. So a new shoreline cleaner (Corexit 9580), which was specially developed during the cleanup of the Valdez spill in Alaska, was tested to determine its ability to help loosen the oil so it can be washed away with water. Laboratory experiments using excised prop roots of red mangrove (Rhizophora mangle) were initially conducted to determine the feasibility of the approach. Subsequently experiments were carried out using about a hundred potted red mangroves at a test site in Florida. The prop roots, including the lenticels, were coated with a heavy oil (bunker C). After various periods of time, groups of oiled trees were treated with the shoreline cleaner to loosen and remove the oil deposit and then washed with seawater. The results showed that oiled trees could be saved by cleaning within seven days after oiling, indicating that the grace period after oiling extends for about one week

  14. Shoreline Erosion and Proposed Control at Experimental Facility 15-Spesutie Island

    Science.gov (United States)

    2017-09-01

    distribution is unlimited. 1 1. Introduction Coastal erosion is the wearing away of land and the removal of beach or dune sediments by wave action...the land , air, and water defines the wetted perimeter where land use and clearing practices have taken on an adversarial role with regard to the...stand with approximately 30–40 ft of manicured lawn to the shoreline. There are no trees on the range proper, with only a smattering of indigenous

  15. Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach

    NARCIS (Netherlands)

    Angnuureng, Donatus Bapentire; Almar, Rafael; Senechal, Nadia; Castelle, Bruno; Addo, Kwasi Appeaning; Marieu, Vincent; Ranasinghe, Roshanka

    2017-01-01

    This study investigates the impact of individual storms and storm clusters on shoreline recovery for the meso-to macrotidal, barred Biscarrosse beach in SW France, using 6 years of daily video observations. While the study area experienced 60 storms during the 6-year study period, only 36 storms

  16. Morphological evolution of the southwestern Black Sea coast of Turkey since the early 2000s: medium- vs. short-term changes

    Science.gov (United States)

    LiBassi, Nick; Özener, Haluk; Otay, Emre; Doğru, Aslı

    2018-06-01

    Coastal zones are in a state of continual flux worldwide, due in part to seasonal factors and in part to influences operating over longer periods of time. Discerning changes on different timescales remains a challenge. This study compares shoreline position and nearshore bathymetry over a time interval of 16 years in order to determine the extent of medium-term changes in comparison with short-term changes along the southwestern Black Sea coast of Turkey near Kilyos. For this purpose the results of surveys completed in 2001 and 2002 are compared with data collected in December 2015, September 2016, and March 2017 at the same location using a differential global positioning system (DGPS) in real-time kinematic (RTK) configuration combined with echo-sounder profiling. Average shoreline recession over the 16-year period (medium term) has been estimated at 3-4 cm/year as opposed to an average of 9.5 m in the 12-month period from June 2001 to June 2002 (short term). The medium-term nearshore sediment loss has been approx. 100-125 m3/m shoreline since the early 2000s. Over the same period a prominent offshore bar has moved seaward at a maximum rate of 1 m/year since 2002. Considering the large discrepancy in the shoreline recession rates recorded in the short and medium term, this aspect must be taken into account in any integrated coastal zone management strategy.

  17. Research into the further development of the LIMPET shoreline wave energy plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report summarises the findings of a project focussing on technical issues associated with the design of the LIMPET shoreline oscillating water column (OWC) wave energy plant. Fifteen tasks are listed as the objectives of the project which was carried out to broaden the knowledge of the wave environment and the construction and operation of a wave energy plant. The experience gained in LIMPET instrumentation, control systems, and grid integration issues are discussed.

  18. Book Review of The New Digital Shoreline: How Web 2.0 and Millennials are Revolutionizing Higher Education

    Directory of Open Access Journals (Sweden)

    Dana Bodewes

    2016-03-01

    Full Text Available In higher education, the integration of new technologies and pedagogies of instruction is often a source of apprehension. The New Digital Shoreline, written by Roger McHaney of Kansas State University, is a guide for understanding millennial learners along with current technologies and strategies used in college classrooms. The audience for this book would likely be faculty and administrators with limited knowledge of the shifting expectations for technology in higher education. On the spectrum of technology adoption ranging from innovators to laggards, The New Digital Shoreline is best suited for late majority adopters. The book is organized around the metaphor of exploring a new world, one with an unfamiliar population, landscape, and culture; the author is your guide on a journey to successfully adapt to the realities of this new world.

  19. Nutrient-enhanced bioremediation of oil-contaminated shoreline

    International Nuclear Information System (INIS)

    Glaser, J.A.

    1991-01-01

    On March 24, 1989, the collision of the supertanker Exxon Valdez with a submerged reef in Prince William Sound AK, released 41.6 million L (11 million gal) of Prudhoe Bay crude oil. The oil spread with time to contaminate an estimated 565 km (350 miles) of shoreline. The degradation of oil components by biological mechanisms has been intensively studied during the last 20 years. The general outline of biodegradation pathways for aliphatic and aromatic hydrocarbons has been formulated and continues to be developed in greater detail. Consequently, the microbial decomposition of oil in aquatic environments is well understood to include descriptions of biodegradation kinetics; temperature effects for biodegradation can be described by an Arrhenius relationship. Even cold-water environments have been shown to support the biodegradation of oil components. This paper reports that a panel of experts was assembled to assist the U.S. Environmental Protection Agency (EPA) in determining the best treatment strategy to accelerate the natural biodegradation process in Prince William Sound

  20. Megascale rhythmic shoreline forms on a beach with multiple bars

    Directory of Open Access Journals (Sweden)

    Zbigniew Pruszak

    2008-06-01

    Full Text Available The study, carried out in 2003 and 2006 at the Lubiatowo Coastal ResearchStation (Poland, located on the non-tidal southern Baltic coast(tidal range < 0.06 m, focused on larger rhythmic forms (mega-cusps withwavelengths in the interval 500 m > Lc > 20 m. Statistical analyses of detailed shoreline configurations were performed mostly with the Discrete Wavelet Transformmethod (DWT. The beach is composed of fine sand with grain diameter D50 ≈ 0.22 mm, which produces 4 longshore sandbars and a gently sloping seabed with β = 0.015. The analysis confirms the key role of bars in hydro- and morphodynamic surf zone processes.The hypothesis was therefore set up that, in a surf zone with multiple bars, the bars and mega-scale shoreline rhythmic forms form one integrated physical system; experimental evidence to substantiate this hypothesis was also sought.In such a system not only do self-regulation processes include swash zone phenomena, they also incorporate processes in offshore surf zone locations.The longshore dimensions of large cusps are thus related to the distances between periodically active large bed forms (bars. The spatial dimension of bar system activity (number of active bars depends, at a given time scale, on the associated hydrodynamic conditions. It was assumed that such a time scale could include either the development and duration of a storm, or a period of stable, yet distinct waves, capable of remodelling the beach configuration.The indentation to wavelength ratio of mega-cusps for the studied non-tidal dissipative environment may be one order of magnitude greater than for mesotidal, reflective beaches.

  1. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: ESIP (ESI Shoreline Types - Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ESIP data set contains polygons representing the shoreline and coastal habitats of the Upper Coast of Texas, classified according to the Environmental...

  2. The management of shoreline protection and treatment operations

    International Nuclear Information System (INIS)

    Owens, E.H.

    1996-01-01

    The management of shoreline cleaning operations in the event of an oil spill, was discussed. An eight-step approach was introduced which was based on the definition of objectives and strategies. The discussion included evaluation of the feasibility of each of these strategies, as well as the effects of the proposed actions. It was emphasized that apart from natural recovery, any response action will have an effect either directly, by the protection or treatment actions, or indirectly, by the support actions, on the shore zone or the adjacent backshore. The main purpose of a response is to accelerate natural recovery. This new response approach can be an effective management tool, since the use of standard terms and strategy statements give operations personnel a well defined set of instruction which reduce the potential for misinterpretation. 4 refs., 9 figs

  3. Biological effects of three different shoreline cleanup methods

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, J.; Lethinen, C.; Linden, O.

    1981-06-01

    In order to simulate a real oil spill the shore of a small island in the Baltic proper was treated with a weathered crude oil. The aim of the study was to investigate and compare environmental impact of some shoreline cleanup techniques as well as the effectiveness of these methods. Hot water was the quickest cleanup method, whereas cleaning with a solvent took twice as much time and mechanical recovery three and a half time as much. The hot water treatment resulted in the smallest amounts of oil left in the soil compared to the two other methods, where two to three times as much was left. The oil content in sedimenting material and in mussels was highest outside the area cleaned with hot water. The oil content in mussel tissues increased 75 times after cleaning and the sediment contained about twice as much oil as outside the other areas. The vegetation on all four oiled areas was considerably reduced and the soil fauna was completely eliminated. Since no animals were found on the four oiled areas, not even on the untreated area, it appeared to be the oil itself that caused this effect. The number of animals caught with pitfall traps decreased after oiling and cleanup to between 10-40 % of the original amount. The results from the investigation of the fauna in the Cladophora-belt do not indicate any effects so far.

  4. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: ESIL (ESI Shoreline Types - Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ESIL data set contains lines representing the shoreline and coastal habitats of the Upper Coast of Texas, classified according to the Environmental Sensitivity...

  5. Shoreline oil cleanup, recovery and treatment evaluation system (SOCRATES)

    International Nuclear Information System (INIS)

    Rusin, J.; Lunel, T.; Sommerville, M.; Tyler, A.; Marshall, I.

    1996-01-01

    A beach cleanup computer system was developed to mitigate the impact of shoreline oiling. The program, entitled SOCRATES, was meant to determine the most suitable cleanup methodologies for a range of different spill scenarios. The development, operation and capabilities of SOCRATES was described, with recent examples of successful use during the Sea Empress spill. The factors which influenced decision making and which were central to the numerical solution were: (1) the volumetric removal rate of oil, (2) area removal rate of oil, (3) length of oil slick removed per hour, (4) volumetric removal rate of oily waste, (5) area of the oil slick, (6) length of the oil slick, (7) volume of liquid emulsion, and (8) length of beach. 14 figs

  6. 75 FR 41881 - Notice of Intent To Prepare a Shoreline Restoration and Management Plan/Environmental Impact...

    Science.gov (United States)

    2010-07-19

    ... lakeshore; and improved water quality. DATES: Any comments on the scope of issues to be addressed in the EIS... Restoration and Management Plan/Environmental Impact Statement (EIS) for Indiana Dunes National Lakeshore... impact statement (EIS) for a Shoreline Restoration and Management Plan (SRMP) for Indiana Dunes National...

  7. Environmental disturbance and conservation of marine and shoreline birds on the west coast of Vancouver Island

    International Nuclear Information System (INIS)

    Morgan, K.H.; Butler, R.W.; Vermeer, R.W.

    1992-01-01

    Loss of habitat and oiling of birds represent two major threats to marine and shoreline bird populations on Vancouver Island's west coast, since their effects are widespread and cumulative. Offshore tanker traffic and local inshore shipments of petroleum products expose the coast to high risks of oiling. Large numbers of birds are most at risk when concentrated in relatively small areas, such as highly productive feeding areas, at communal roosting sites, and around nesting colonies. Logging of mature and old-growth forests has led to destruction of the nesting habitat of marbled murrelets (Brachyramphus marmoratus), while industrial development of estuaries, mudflats, and spawning grounds of Pacific herring (Clupea harengus pallasi) has diminished feeding habitats for other marine and shoreline birds. Fisheries operations, human disturbance of colonies, and introduced predators, notably the raccoon (Procyon lotor) and mink (Mustela vison), have impacted upon local populations. Management actions and research needs to mitigate these threats are addressed. 40 refs

  8. Methodologies for estimating toxicity of shoreline cleaning agents in the field

    International Nuclear Information System (INIS)

    Clayton, J.R.Jr.; Stransky, B.C.; Schwartz, M.J.; Snyder, B.J.; Lees, D.C.; Michel, J.; Reilly, T.J.

    1996-01-01

    Four methodologies that could be used in a portable kit to estimate quantitative and qualitative information regarding the toxicity of oil spill cleaning agents, were evaluated. Onshore cleaning agents (SCAs) are meant to enhance the removal of treated oil from shoreline surfaces, and should not increase adverse impacts to organisms in a treated area. Tests, therefore, should be performed with resident organisms likely to be impacted during the use of SCAs. The four methodologies were Microtox T M, fertilization success for echinoderm eggs, byssal thread attachment in mussels, and righting and water-escaping ability in periwinkle snails. Site specific variations in physical and chemical properties of the oil and SCAs were considered. Results were provided, showing all combinations of oils and SCAs. Evaluation showed that all four methodologies provided sufficient information to assist a user in deciding whether or not the use of an SCA was warranted. 33 refs., 7 tabs., 11 figs

  9. Mineral potential tracts for shoreline Ti-Zr placer deposits (phase V, deliverable 85): Chapter P in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    Science.gov (United States)

    Beaudoin, Georges

    2015-01-01

    Shoreline placer Ti deposits are composed of ilmenite, rutile, zircon, monazite, and magnetite in well-sorted, fine- to medium-grained sand in coastal dunes, beaches and inlets. In addition to titanium, zirconium, in particular, and rare earth elements (REE) have become a major source of value in shoreline placer deposits. Shoreline placer deposits form mostly on tropical beaches around the world (fig. 1), and consist of dark sand layers rich in heavy minerals that are resistant to mechanical abrasion and chemical weathering. According to Hamilton (1995), shoreline placer deposits supply approximately 80 percent of the world’s rutile production, 25 percent of ilmenite, 100 percent of zircon, and 50 percent of both monazite and xenotime.

  10. Hurricane Ike: Observations and Analysis of Coastal Change

    Science.gov (United States)

    Doran, Kara S.; Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger, Asbury H.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with the storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, and wave climate. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and large waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to those processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is equally important to the coastal change observed during extreme storm events. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms The U.S. Geological Survey's (USGS) National Assessment of Coastal Change Hazards Project (http://coastal.er.usgs.gov/hurricanes), strives to provide hazard information to those interested in the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure coastal changes associated with Hurricane Ike, which made landfall near Galveston, Texas, on September 13, 2008. Methods of observation included aerial photography and airborne topographic surveys. This report documents these data-collection efforts and presents qualitative and quantitative descriptions of hurricane-induced changes to the shoreline

  11. New tools and technologies to manage operational data and help in decision-making concerning shoreline pollution

    International Nuclear Information System (INIS)

    Gouriou, V.; Quintin, K.; Legrand, S.; Mazurier, A.; Le Junter, Y.; Gicquel, M.

    2006-01-01

    This paper addressed the issue of effectively collecting and organizing all data related to an oil spill. It referred to lessons learned from the Erika and Prestige oil spills which polluted the French coastal waters. A user-friendly tool for data management and storage for shoreline pollution was developed following the 2 incidents. The tool was developed under the auspices of the Argepol project and has helped response teams and decision-makers use web technologies and interactive cartography to access, capture and make use of data about shoreline landings, collected waste, disposed waste, manpower, equipment requirements, evolution of the spill and cleaning. The tool has allowed maximum flexibility regarding connections and possible adaptations to other systems, particularly foreign ones. A prototype was tested and validated by simulating an exercise involving the marine pollution (POLMAR) response teams. The tool allows users to create and edit geographical information online, modify databases and shore information using a web browser. Improvements are still in progress and regular updates are scheduled in order to keep the tool in use for the long term. 11 refs., 6 figs

  12. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Northern California: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats of Northern California, classified according to the Environmental...

  13. Shoreline ecology program for Prince William Sound, Alaska, following the Exxon Valdez oil spill. Part 2: Chemistry and toxicology

    International Nuclear Information System (INIS)

    Boehm, P.D.; Page, D.S.; Gilfillan, E.S.; Stubblefield, W.A.; Harner, E.J.

    1995-01-01

    This paper describes chemical and toxicological results of a comprehensive shoreline ecology program that was designed to assess recovery in Prince William Sound following the Exxon Valdez oil spill of March 24, 1989. The program is an application of the sediment quality triad approach, combining chemical, toxicological, and biological measurements. The study was designed so that results could be extrapolated to the entire spill zone in the sound and projected forward in time. It combined one-time sampling of 64 randomly chosen study sites representing four major habitats and four oiling levels (including unoiled reference sites), with periodic sampling at 12 subjectively chosen fixed sites. Sediment samples--or when conditions required, filter-wipes from rock surfaces--were collected in each of three intertidal zones and from subtidal stations up to 30-m deep. Oil removal was generally quite rapid: by 1991 the concentration of oil spilled from the Exxon Valdez had been dramatically reduced on the majority of shorelines by both natural processes and cleanup efforts. Acute sediment toxicity from oil (as measured by standard toxicity tests) was virtually absent by 1990--91, except at a small number of isolated locations. The petroleum residues had degraded below the threshold of acute toxic effects. Measurable polycyclic aromatic hydrocarbon (PAH) levels are, in general, well below those conservatively associated with adverse effects, and biological recovery has been considerably more rapid than the removal of the last chemical remnants. 55 refs., 15 figs., 4 tabs

  14. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats for the Hudson River, classified according to the Environmental...

  15. The ichthyofauna of the shoreline zone in the longitudinal profile of the Danube River, Bulgaria

    Czech Academy of Sciences Publication Activity Database

    Polačik, Matej; Trichkova, T.; Janáč, Michal; Vassilev, M.; Jurajda, Pavel

    2008-01-01

    Roč. 60, č. 1 (2008), s. 77-88 ISSN 0324-0770 R&D Projects: GA MŠk LC522 Grant - others:National Science Fund(BG) B-1510/05 Institutional research plan: CEZ:AV0Z60930519 Keywords : Lower Danube * shoreline zone * fish community * distribution * abundance * endangered species Subject RIV: EH - Ecology, Behaviour http://www.acta-zoologica-bulgarica.eu/downloads/acta-zoologica-bulgarica/2008/60-1-077-088.pdf

  16. Indigenous community health and climate change: integrating biophysical and social science indicators

    Science.gov (United States)

    Donatuto, Jamie; Grossman, Eric E.; Konovsky, John; Grossman, Sarah; Campbell, Larry W.

    2014-01-01

    This article describes a pilot study evaluating the sensitivity of Indigenous community health to climate change impacts on Salish Sea shorelines (Washington State, United States and British Columbia, Canada). Current climate change assessments omit key community health concerns, which are vital to successful adaptation plans, particularly for Indigenous communities. Descriptive scaling techniques, employed in facilitated workshops with two Indigenous communities, tested the efficacy of ranking six key indicators of community health in relation to projected impacts to shellfish habitat and shoreline archaeological sites stemming from changes in the biophysical environment. Findings demonstrate that: when shellfish habitat and archaeological resources are impacted, so is Indigenous community health; not all community health indicators are equally impacted; and, the community health indicators of highest concern are not necessarily the same indicators most likely to be impacted. Based on the findings and feedback from community participants, exploratory trials were successful; Indigenous-specific health indicators may be useful to Indigenous communities who are assessing climate change sensitivities and creating adaptation plans.

  17. Historical changes to Lake Washington and route of the Lake Washington Ship Canal, King County, Washington

    Science.gov (United States)

    Chrzastowski, Michael J.

    1983-01-01

    Lake Washington, in the midst of the greater Seattle metropolitan area of the Puget Sound region (fig. 1), is an exceptional commercial, recreational, and esthetic resource for the region . In the past 130 years, Lake Washington has been changed from a " wild " lake in a wilderness setting to a regulated lake surrounded by a growing metropolis--a transformation that provides an unusual opportunity to study changes to a lake's shoreline and hydrologic characteristics -resulting from urbanization.

  18. Toxicity of oiled sediments treated with bioremediation agents: A shoreline experiment in Delaware, USA

    International Nuclear Information System (INIS)

    Mearna, A.; Doe, K.; Fisher, W.; Lee, K.; Mueller, C.

    1995-01-01

    Using a randomized complete block design, a battery of five pore water and sediment bioassays were used to monitor and compare toxicity among un-oiled, oiled (light Nigerian crude) and nutrient and bacteria-treated shoreline plots on a sandy beach. Tests included sea urchin fertilization, water and modified-solid phase microtox, 10-day amphipod survival and grass shrimp embryo bioassays. During the 13-week study, bioremediation treatment with nutrients and/or bacteria did not decrease toxicity relative to that in untreated plots. Results from at least one bioassay suggested that, relative to no treatment, treatment may have increased toxicity for several weeks. The least and most sensitive tests were sea urchin fertilization (pore water) and 10-day amphipod test, respectively. Coupled with chemical monitoring, the study produced a large data-base for evaluating toxic concentrations of petroleum hydrocarbons in sandy sediments

  19. Using Shoreline Video Assessment for coastal planning and restoration in the context of climate change in Kien Giang, Vietnam

    Science.gov (United States)

    Van Cuong, Chu; Russell, Michael; Brown, Sharon; Dart, Peter

    2015-06-01

    Kien Giang, bordering Cambodia in the Mekong River Delta, is one of the two most vulnerable provinces in the region to coastal erosion and flooding. Coastal protection can conflict with current land use and economic development activities. The conditions of the mangrove forest and mainland coastline of the Kien Giang province were assessed using the Shoreline Video Assessment Method (SVAM) backed up with information from satellite images. Half of the 206 km Kien Giang coastline has been eroded or is being eroded. Protective mangrove forests naturally occurred in 74% of the coastline but have been under threat from illegal cutting, erosion and coastal retreat. Accurate information on the state of the coastline and mangrove forest health provided invaluable data for developing a new coastal rehabilitation plan to guard against future sea level rise. In contrast to the current boundary management of land and natural resources, this plan divided the provincial coastline into 19 sections based on the landscape condition and exposure to erosion. Priority strategic actions for erosion management, mangrove restoration and sustainable livelihood development for local communities for each section of coast were developed based on an integrated cross sectoral approach and practical experience in the Conservation and Development of the Kien Giang Biosphere Reserve Project.

  20. LiDAR Mapping of Earthquake Uplifted Paleo-shorelines, Southern Wairarapa Coast, North Island, New Zealand

    Science.gov (United States)

    Valenciano, J.; Angenent, J.; Marshall, J. S.; Clark, K.; Litchfield, N. J.

    2017-12-01

    The Hikurangi subduction margin along the east coast of the North Island, New Zealand accommodates oblique convergence of the Pacific Plate westward beneath the Australian plate at 45 mm/yr. Pronounced forearc uplift occurs at the southern end of the margin along the Wairarapa coast, onshore of the subducting Hikurangi plateau. Along a narrow coastal lowland, a series of uplifted Holocene marine terraces and beach ridges preserve a geologic record of prehistoric coseismic uplift events. In January 2017, we participated in the Research Experience for Undergraduates (REU) program of the NSF SHIRE Project (Subduction at Hikurangi Integrated Research Experiment). We visited multiple coastal sites for reconnaissance fieldwork to select locations for future in-depth study. For the coastline between Flat Point and Te Kaukau Point, we used airborne LiDAR data provided by Land Information New Zealand (LINZ) to create ArcGIS digital terrain models for mapping and correlating uplifted paleo-shorelines. Terrace elevations derived from the LiDAR data were calibrated through the use of Real Time Kinematic (RTK) GPS surveying at one field site (Glenburn Station). Prior field mapping and radiocarbon dating results (Berryman et al., 2001; Litchfield and Clark, 2015) were used to guide our LiDAR mapping efforts. The resultant maps show between four and seven uplifted terraces and associated beach ridges along this coastal segment. At some sites, terrace mapping and lateral correlation are impeded by discontinuous exposures and the presence of landslide debris, alluvial fan deposits, and sand dunes. Tectonic uplift along the southern Hikurangi margin is generated by a complex interaction between deep megathrust slip and shallow upper-plate faulting. Each uplifted Holocene paleo-shoreline is interpreted to represent a single coseismic uplift event. Continued mapping, surveying, and age dating may help differentiate between very large margin-wide megathrust earthquakes (M8.0-9.0+) and

  1. Submersed aquatic vegetation in Chesapeake Bay: Sentinel species in a changing world

    Science.gov (United States)

    Orth, Robert J.; Dennison, William C.; Lefcheck, Jonathon S.; Gurbisz, Cassie; Hannam, Michael; Keisman, Jennifer; Landry, J. Brooke; Moore, Kenneth A.; Murphy, Rebecca R.; Patrick, Christopher J.; Testa, Jeremy; Weller, Donald E.; Wilcox, David J.

    2017-01-01

    Chesapeake Bay has undergone profound changes since European settlement. Increases in human and livestock populations, associated changes in land use, increases in nutrient loadings, shoreline armoring, and depletion of fish stocks have altered the important habitats within the Bay. Submersed aquatic vegetation (SAV) is a critical foundational habitat and provides numerous benefits and services to society. In Chesapeake Bay, SAV species are also indicators of environmental change because of their sensitivity to water quality and shoreline development. As such, SAV has been deeply integrated into regional regulations and annual assessments of management outcomes, restoration efforts, the scientific literature, and popular media coverage. Even so, SAV in Chesapeake Bay faces many historical and emerging challenges. The future of Chesapeake Bay is indicated by and contingent on the success of SAV. Its persistence will require continued action, coupled with new practices, to promote a healthy and sustainable ecosystem.

  2. Nile Delta exhibited a spatial reversal in the rates of shoreline retreat on the Rosetta promontory comparing pre- and post-beach protection

    Science.gov (United States)

    Ghoneim, Eman; Mashaly, Jehan; Gamble, Douglas; Halls, Joanne; AbuBakr, Mostafa

    2015-01-01

    The coastline of the Nile Delta experienced accelerated erosion since the construction of the Aswan High Dam in 1964 and, consequently, the entrapment of a large amount of river sediments behind it. The coastline of the Rosetta promontory showed the highest erosion in the Delta with an average retreat rate of 137.4 m year- 1. In 1991, in an effort to mitigate sediment loss, a 4.85 km long seawall was built on the outer margin of the promontory. For additional beach protection, 15 groins were constructed along the eastern and western sides of the seawall in 2003 and 2005. To quantify erosion and accretion patterns along the Rosetta promontory, 11 Landsat images acquired at unequal intervals during a 40 year time span (1972 and 2012) were analyzed. The positions of shorelines were automatically extracted from satellite imagery and compared with three very high resolution QuickBird and WorldView2 images for data validation. Analysis of the rates of shoreline change revealed that the construction of the seawall was largely successful in halting the recession along the tip of the promontory, which lost 10.8 km2 prior to coastal protection. Conversely, the construction of the 15 groins has negatively affected the coastal morphology of the promontory and caused a reversal from accretion to fast erosion along the promontory leeside, where some segments of the shoreline have undergone as much as 30.8 m year- 1 of erosion. Without hard structures, the tip of the Rosetta promontory would have retreated 2.3 km by 2013 and lost 7.2 km2 of land. About 10% of this land is deltaic fertile cultivated farms. Moreover, without additional protection the sides of the promontory will lose about 1.3 km2 of land and the coastline would recede at an average rate of 200 m by 2020. Unless action is taken, coastal erosion, enhanced by rising sea level, will steadily eat away the Nile Delta at an alarming rate. The successful demonstration of the advocated procedures in this study could be

  3. Hurricane Gustav: Observations and Analysis of Coastal Change

    Science.gov (United States)

    Doran, Kara S.; Stockdon, Hilary F.; Plant, Nathaniel G.; Sallenger, Asbury H.; Guy, Kristy K.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, currents, and wave field. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and surface waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to these processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is also a significant aspect of the coastal change observed during extreme storms. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms. The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards project (http://coastal.er.usgs.gov/hurricanes) strives to provide hazard information to those concerned about the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure morphological changes associated with Hurricane Gustav, which made landfall near Cocodrie, Louisiana, on September 1, 2008. Methods of observation included oblique aerial photography, airborne topographic surveys, and ground-based topographic surveys. This report documents these data-collection efforts and presents qualitative and

  4. Ikaite precipitation by mixing of shoreline springs and lake water, Mono Lake, California, USA

    Science.gov (United States)

    Bischoff, James L.; Stine, Scott; Rosenbauer, Robert J.; Fitzpatrick, John A.; Stafford, Thomas W., Jr.

    1993-08-01

    Metastable ikaite (CaCO 3·6H 2O) forms abundantly during winter months along the south shoreline of Mono Lake where shoreline springs mix with lake water. Ikaite precipitates because of its decreased solubility at low temperature and because of orthophosphate-ion inhibition of calcite and aragonite. During the spring some of the ikaite is transformed to anhydrous CaCO 3 and is incorporated into tufa, but most is dispersed by wave action into the lake where it reacts to form gaylussite (Na 2Ca(CO 3) 2· 5H 2O). Spring waters have low pH values, are dominantly Ca-Na-HCO 3, have low radiocarbon activities, and are mixtures of deep-seated geothermal and cold groundwaters. Chemical modeling reveals that precipitation of CaCO 3 can occur over a broad range of mixtures of spring and lake water with a maximum production occurring at 96% spring water and 4% lake water. Under these conditions all the Ca and a significant fraction of the CO 3 of the precipitate is spring supplied. A radiocarbon age of 19,580 years obtained on a natural ikaite sample supports this conclusion. With the springs supplying a large and probably variable portion of the carbonate, and with apparent 14C age of the carbonate varying from spring to spring, tufa of similar actual antiquity may yield significantly different 14C dates, making tufa at this location unsuitable for absolute age dating by the radiocarbon method.

  5. Quantitative Estimation of Coastal Changes along Selected Locations of Karnataka, India: A GIS and Remote Sensing Approach

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayaraj, P.; Johnson, G.; Dora, G.U.; Philip, C.S.; SanilKumar, V.; Gowthaman, R.

    Qualitative and quantitative studies on changes of coastal geomorphology and shoreline of Karnataka, India have been carried out using toposheets of Survey of India and satellite imageries (IRS-P6 and IRS-1D). Changes during 30 years period...

  6. A Climate Change Adaptation Strategy for Management of ...

    Science.gov (United States)

    Sea level rise is causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, including species of concern, such as the saltmarsh sparrow (Ammodramus caudacutus). We present a climate change adaptation strategy (CCAS) adopted by scientific, management, and policy stakeholders for managing coastal marshes and enhancing system resiliency. A common adaptive management approach previously used for restoration projects was modified to identify climate-related vulnerabilities and plan climate change adaptive actions. As an example of implementation of the CCAS, we describe the stakeholder plans and management actions the US Fish and Wildlife Service and partners developed to build coastal resiliency in the Narrow River Estuary, RI, in the aftermath of Superstorm Sandy. When possible, an experimental BACI (before-after, control-impact) design, described as pre- and post-sampling at the impact site and one or more control sites, was incorporated into the climate change adaptation and implementation plans. Specific climate change adaptive actions and monitoring plans are described and include shoreline stabilization, restoring marsh drainage, increasing marsh elevation, and enabling upland marsh migration. The CCAS provides a framework and methodology for successfully managing coa

  7. Superstorm Sandy-related Morphologic and Sedimentologic Changes in an Estuarine System: Barnegat Bay-Little Egg Harbor Estuary, New Jersey

    Science.gov (United States)

    Miselis, J. L.; Ganju, N. K.; Navoy, A.; Nicholson, R.; Andrews, B.

    2013-12-01

    Despite the well-recognized ecological importance of back-barrier estuaries, the role of storms in their geomorphic evolution is poorly understood. Moreover, the focus of storm impact assessments is often the ocean shorelines of barrier islands rather than the exchange of sediment from barrier to estuary. In order to better understand and ultimately predict short-term morphologic and sedimentologic changes in coastal systems, a comprehensive research approach is required but is often difficult to achieve given the diversity of data required. An opportunity to use such an approach in assessing the storm-response of a barrier-estuary system occurred when Superstorm Sandy made landfall near Atlantic City, New Jersey on 29 October 2012. Since 2011, the US Geological Survey has been investigating water circulation and water-quality degradation in Barnegat Bay-Little Egg Harbor (BBLEH) Estuary, the southern end of which is approximately 25 kilometers north of the landfall location. This effort includes shallow-water geophysical surveys to map the bathymetry and sediment distribution within BBLEH, airborne topo-bathymetric lidar surveys for mapping the shallow shoals that border the estuary, and sediment sampling, all of which have provided a recent picture of the pre-storm estuarine geomorphology. We combined these pre-storm data with similar post-storm data from the estuary and pre- and post-storm topographic data from the ocean shoreline of the barrier island to begin to understand the response of the barrier-estuary system. Breaches in the barrier island resulted in water exchange between the estuary and the ocean, briefly reducing residence times in the northern part of the estuary until the breaches were closed. Few morphologic changes in water depths greater than 1.5 m were noted. However, morphologic changes observed in shallower depths along the eastern shoreline of the estuary are likely related to overwash processes. In general, surficial estuarine sediments

  8. The use of color infrared photography for wetlands mapping with special reference to shoreline and waterfowl habitat assessment

    Science.gov (United States)

    1973-01-01

    Evaluation of low altitude oblique photography obtained by hand-held cameras was useful in determining specifications of operational mission requirements for conventional smaller-scaled vertical photography. Remote sensing techniques were used to assess the rapid destruction of marsh areas at Pointe Mouillee. In an estuarian environment where shoreline features change yearly, there is a need for revision in existing area maps. A land cover inventory, mapped from aerial photography, provided essential data necessary for determining adjacent lands suitable for marshland development. To quantitatively assess the wetlands environment, a detailed inventory of vegetative communities (19 categories) was made using color infrared photography and intensive ground truth. A carefully selected and well laid-out transect was found to be a key asset to photointerpretation and to the analysis of vegetative conditions. Transect data provided the interpreter with locally representative areas of various vegetative types. This facilitated development of a photointerpretation key. Additional information on vegetative conditions in the area was also obtained by evaluating the transect data.

  9. In situ bioremediation strategies for oiled shoreline environments

    International Nuclear Information System (INIS)

    Lee, K.; Mora, S. de

    1999-01-01

    Despite advances in preventative measures, recent events have demonstrated that accidental oil spills at sea will still occur. While physical (e.g. booms and skimmers) and chemical (e.g. chemical dispersants) methods have been developed to recover and/or disperse oil spilled at sea, they are not 100% effective and are frequently limited by operational constraints attributed to sea state and/or nature of the contamination. As a result, oil spills frequently impact shoreline environments. In situ bioremediation, the addition of substances or modification of habitat at contaminated sites to accelerate natural biodegradation processes, is now recognised as an alternative spill response technology of the remediation of these sites. Recommended for use following the physical removal of bulk oil, this treatment strategy has an operational advantage in that it breaks down and/or removes the residual contamination in place. Laboratory experiments and field trials have demonstrated the feasibility and success of bioremediation strategies such as nutrient enrichment to enhance bacterial degradation of oil on cobble, sand beach and salt marsh environments. With improved knowledge of the factors that limit natural oil degradation rates, the feasibility of other strategies such as phytoremediation, enhanced oil-mineral fines interaction and the addition of oxygen or alternative electron acceptors are now being evaluated. Laboratory and field test protocols are being refined for the selection of effective bioremediation agents and methods of application. It is recommended that future operational guidelines include real time product efficacy test and environmental effects monitoring programs. Termination of treatment should be implemented when: 1) it is no longer effective; 2) the oil has degraded to acceptable biologically benign concentrations; or 3) toxicity due to the treatment is increasing. (Author)

  10. Distribution of basic sediments (bedload transport) on changes in coastal coastline Donggala, Central Sulawesi Province, Indonesia

    Science.gov (United States)

    Amiruddin

    2018-03-01

    This study entitled "Distribution of Bedload Transport Against Coastline Changes in Donggala Coast", the formulation of the problem (1) how much of the estimated bedload transport in Donggala Bodies; (2) where were the location of erosion and sedimentation strong point based on the estimation of bed load transport; (3) the extent to which the prediction of shoreline change rate of transport of sediments in coastal areas Donggala. This study aims to: (1) the calculation of estimated bed load transport in Donggala waters; (2) determining the location of the point of erosion and sedimentation strong basis of estimated bedload transport; (3) the prediction of shoreline change rate of transport of sediments in coastal areas Donggala.The survey method used in this research to collect primary data include: (1) decision point waypoint coordinates of each location of measurement; (2) measurement of height, period and direction of the waves; (3) a large measurement of sediment transport; (4) The angle measurement coastline, angle of attack and wave direction, and secondary data include: (1) information from the public; (2) the physical condition data field. The results showed that: (1) general estimate sediment transport base in each location data collection is varied. This is due to the different points of the coastline as well as the angle of attack of the shoreline waters broke Donggala; (2) strong abrasion at the study site occurs at the point Ts4 (622.75 m3/yr) and TS11 (755.25 m3/yr) located in the Village Tosale and point Tw7 and Tw17 (649.25 m3/yr) in Village of Towale. As for the strong sedimentation occurs at the point Ts3 (450.50 m3/yr) located in the Village Tosale and Tg3 point (357.75 m3/yr) located in the Village Tolonggano; (3) of the predicted outcome coastline changes based on the input data estimate sediment transport, beaches and waves parameters is seen that the changes in the location prophyl coastline tends toward research into or undergo a process of

  11. The documentation of tar balls on oiled shorelines : lessons from the New Carissa, Oregon

    International Nuclear Information System (INIS)

    Owens, E.H.; Zimlicki-Owens, L.M.; Lamarche, A.; Reimer, P.D.; Martin, C.A.

    2000-01-01

    The New Carissa, carrying approximately 400,000 gallons of fuel oils ran aground on the outer shore of North Spit, in the vicinity of Coos Bay, Oregon, on February 4, 1999. The oil was released directly into the nearshore surf zone. Following the spill, a stretch of approximately 300 km of the coast of Oregon was surveyed and monitored. The need for the documentation of stranded tar balls in the neighbourhood of the spill site prompted the implementation of a long-term observation program. Initially, Shoreline Clean-up and Assessment Technique (SCAT) reporting procedures were required. Heavy oiling was followed by stranded oil taking the form of tar balls. The amount of oil on the shoreline decreased and the SCAT procedures alone were no longer adequate. They provided estimations of oil quantities that were too high and failed to provide any discrimination between amounts of oil observed on the beaches. A new reporting technique called Beach Assessment Reporting was designed to overcome the difficulties and record adequately the character and frequency of stranded tar balls. Maps, tables and histograms of stranded tar ball volumes and concentrations were discussed. Since the data spanned nine orders of magnitude at times, the semi-logarithmic scale time series plots of the concentration of the tar balls was used in order to identify trends. Conventional histograms only identified large values and camouflaged smaller trends in the time series. A direct method for describing tar ball concentrations geographically proved to be the use of weekly maximum tar ball concentration maps by segment. 10 refs., 2 tabs., 9 figs

  12. Subbottom seismic profiling survey of Lake Azuei, Haiti: Seismic signature of paleo-shorelines in a transpressional environment and possible tectonic implications

    Science.gov (United States)

    Sloan, H.; Cormier, M. H.; Boisson, D.; Brown, B.; Guerrier, K.; Hearn, C. K.; Heil, C. W., Jr.; Hines, L.; Kelly, R. P.; King, J. W.; Knotts, P.; Lucier, O. F.; Momplaisir, R.; Stempel, R.; Symithe, S. J.; Ulysse, S. M. J.; Wattrus, N. J.

    2017-12-01

    The left-lateral Enriquillo-Plantain Garden Fault (EPGF) is one of two major transform faults that form the North American-Caribbean plate boundary. GPS measurements indicate that relative motion evolves from nearly pure strike-slip in western Haiti to highly transpressional near Lake Azuei in eastern Haiti, where the EPGF may terminate against a south-dipping oblique reverse fault. Lake Azuei, one of the largest lakes in the Caribbean region (10 km x 23 km), is surrounded by two high-elevation sierras (> 2,000 m). Because the lake has no outlet to the sea, its level is sensitive to variations in precipitation and is thought to have fluctuated by 10's of meters during the Holocene. A rise of 5 m over the past 10 years has had a devastating impact, submerging villages, farmland, and roads. A grid of high-resolution ( 10 cm) subbottom seismic (CHIRP) profiles acquired in January 2017 captures the subtle signature of the 5 m-deep shoreline and also images a prominent paleo-shoreline at 10 m water depth. This 10 m paleo-shoreline is well expressed in the CHIRP data suggesting it was occupied for a long period of time. It is buried beneath a thin (water depths of 14 m and 17 m, each bottomed 80-90 cm below the lakebed into a distinctively coarser bed. On-going radiometric dating is expected to constrain the age of this distinctive layer. Should this layer be tied to the perduring 10-m lowstand of the lake, determining its age could help quantify vertical deformation rates around Lake Azuei.

  13. San Francisco Bay Area CHARG: Coastal Hazards Adaptation Resiliency Group, a Multi-Jurisdictional Collaboration to Develop Innovative Regional Solutions to Address Sea Level Rise and Improve Shoreline Resiliency

    Science.gov (United States)

    Saleh, R.

    2017-12-01

    For a challenge as complex and far-reaching as sea level rise and improving shoreline resiliency, strong partnerships between scientists, elected officials, decision-makers, and the general public are the only way that effective solutions can be developed. The San Francisco Bay, like many similar sheltered water coastal environments (for example, Galveston Bay, Tampa Bay, or Venetian Lagoon) offers a unique opportunity for multiple jurisdictions to collaborate to address sea level rise on a regional basis. For the San Francisco Bay, significant scientific progress has been made in building a real-time simulation model for riverine and Bay hydrodynamics. Other major scientific initiatives, such as morphology mapping, shoreline mapping, and a sediment budget are also underway. In 2014, leaders from the Bay Area science, engineering, planning, policy, elected, and regulatory communities representing jurisdictions around the Bay joined together to address sea level rise. The group includes people from local, regional, state, and federal agencies and organizations. Together, CHARG (Coastal Hazards Adaptation Resiliency Group) established a collective vision and approach to implementing regional solutions. Decision-makers within many Bay Area jurisdictions are motivated to show demonstrable progress toward addressing sea level rise. However, the cost to implement shoreline resiliency solutions will be very large, and must be founded on strong science.CHARG is now tackling several key technical challenges. One is to develop science-based guidelines for local jurisdictions to determine when a project is local, sub-regional, or regional. Concurrently, several organizations are planning or implementing pilot shoreline resiliency projects and other programs. Many creative regional solutions are possible in a sheltered water environment that simply would not be feasible along the open coast. By definition, these solutions cannot be undertaken by one entity alone. Large

  14. USE OF COMPOSITE DATA SETS FOR SOURCE-TRACKING ENTEROCCOCCI IN THE WATER COLUMN AND SHORELINE INTERSTITIAL WATERS ON PENSACOLA BEACH, FL

    Science.gov (United States)

    Genthner, Fred J., Joseph B. James, Diane F. Yates and Stephanie D. Friedman. Submitted. Use of Composite Data Sets for Source-Tracking Enterococci in the Water Column and Shoreline Interstitial Waters on Pensacola Beach Florida. Mar. Pollut. Bull. 33 p. (ERL,GB 1212). So...

  15. Bioremediation of diesel from a rocky shoreline in an arid tropical climate.

    Science.gov (United States)

    Guerin, Turlough F

    2015-10-15

    A non invasive sampling and remediation strategy was developed and implemented at shoreline contaminated with spilt diesel. To treat the contamination, in a practical, cost-effective, and safe manner (to personnel working on the stockpiles and their ship loading activity), a non-invasive sampling and remediation strategy was designed and implemented since the location and nature of the impacted geology (rock fill) and sediment, precluded conventional ex-situ and any in-situ treatment where drilling is required. A bioremediation process using surfactant, and added N & P and increased aeration, increased the degradation rate allowing the site owner to meet their regulatory obligations. Petroleum hydrocarbons decreased from saturation concentrations to less than detectable amounts at the completion of treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Looking for evidence of climate change impacts in the eastern Irish Sea

    Directory of Open Access Journals (Sweden)

    L. S. Esteves

    2011-06-01

    Full Text Available Although storminess is often cited as a driver of long-term coastal erosion, a lack of suitable datasets has only allowed objective assessment of this claim in a handful of case studies. This reduces our ability to understand and predict how the coastline may respond to an increase in "storminess" as suggested by global and regional climate models. With focus on 16 km of the Sefton coastline bordering the eastern Irish Sea (UK, this paper analyses available measured datasets of water level, surge level, wave height, wind speed and barometric pressure with the objective of finding trends in metocean climate that are consistent with predictions. The paper then examines rates of change in shoreline position over the period 1894 to 2005 with the aim of establishing relationships with climatic variability using a range of measured and modelled metocean parameters (with time spans varying from two to eight decades. With the exception of the mean monthly wind speed, available metocean data do not indicate any statistically significant changes outside seasonal and decadal cycles. No clear relationship was found between changes in metocean conditions and rates of shoreline change along the Sefton coast. High interannual variability and the lack of long-term measurements make unambiguous correlations between climate change and shoreline evolution problematic. However, comparison between the North Atlantic Oscillation winter index (NAOw and coastline changes suggest increased erosion at times of decreasing NAOw values and reduced erosion at times of increasing NAOw values. Erosion tends to be more pronounced when decreasing NAOw values lead to a strong negative NAO phase. At present, anthropogenic changes in the local sediment budget and the short-term impact of extreme events are still the largest threat likely to affect coastal flooding and erosion risk in the short- and medium-term. Nevertheless, the potential impacts of climate change in the long

  17. Tsunami Waves Extensively Resurfaced the Shorelines of an Early Martian Ocean

    Science.gov (United States)

    Rodriguez, J. A. P.; Fairen, A. G.; Linares, R.; Zarroca, M.; Platz, T.; Komatsu, G.; Kargel, J. S.; Gulick, V.; Jianguo, Y.; Higuchi, K.; hide

    2016-01-01

    Viking image-based mapping of a widespread deposit covering most of the northern low-lands of Mars led to the proposal by Parker et al. that the deposit represents the vestiges of an enormous ocean that existed approx. 3.4 Ga. Later identified as the Vastitas Borealis Formation, the latest geologic map of Mars identifies this deposit as the Late Hesperian lowland unit (lHl). This deposit is typically bounded by raised lobate margins. In addition, some margins have associated rille channels, which could have been produced sub-aerially by the back-wash of high-energy tsunami waves. Radar-sounding data indicate that the deposit is ice-rich. However, until now, the lack of wave-cut shoreline features and the presence of lobate margins have remained an im-pediment to the acceptance of the paleo-ocean hypothesis.

  18. Seismic surface-wave prospecting methods for sinkhole hazard assessment along the Dead Sea shoreline

    Science.gov (United States)

    Ezersky, M.; Bodet, L.; Al-Zoubi, A.; Camerlynck, C.; Dhemaied, A.; Galibert, P.-Y.; Keydar, S.

    2012-04-01

    The Dead Sea's coastal areas have been dramatically hit by sinkholes occurrences since around 1990 and there is an obvious potential for further collapse beneath main highways, agricultural lands and other populated places. The sinkhole hazard in this area threatens human lives and compromise future economic developments. The understanding of such phenomenon is consequently of great importance in the development of protective solutions. Several geological and geophysical studies tend to show that evaporite karsts, caused by slow salt dissolution, are linked to the mechanism of sinkhole formation along both Israel and Jordan shorelines. The continuous drop of the Dead Sea level, at a rate of 1m/yr during the past decade, is generally proposed as the main triggering factor. The water table lowering induces the desaturation of shallow sediments overlying buried cavities in 10 to 30 meters thick salt layers, at depths from 25 to 50 meters. Both the timing and location of sinkholes suggest that: (1) the salt weakens as result of increasing fresh water circulation, thus enhancing the karstification process; (2) sinkholes appear to be related to the decompaction of the sediments above karstified zones. The location, depth, thickness and weakening of salt layers along the Dead Sea shorelines, as well as the thickness and mechanical properties of the upper sedimentary deposits, are thus considered as controlling factors of this ongoing process. Pressure-wave seismic methods are typically used to study sinkhole developments in this area. P-wave refraction and reflection methods are very useful to delineate the salt layers and to determine the thickness of overlying sediments. But the knowledge of shear-wave velocities (Vs) should add valuable insights on their mechanical properties, more particularly when the groundwater level plays an important role in the process. However, from a practical point of view, the measurement of Vs remains delicate because of well-known shear

  19. Book Review of The New Digital Shoreline: How Web 2.0 and Millennials are Revolutionizing Higher Education

    OpenAIRE

    Bodewes, Dana

    2016-01-01

    In higher education, the integration of new technologies and pedagogies of instruction is often a source of apprehension. The New Digital Shoreline, written by Roger McHaney of Kansas State University, is a guide for understanding millennial learners along with current technologies and strategies used in college classrooms. The audience for this book would likely be faculty and administrators with limited knowledge of the shifting expectations for technology in higher education. On the spectr...

  20. The development of a probabilistic approach to forecast coastal change

    Science.gov (United States)

    Lentz, Erika E.; Hapke, Cheryl J.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.

    2011-01-01

    This study demonstrates the applicability of a Bayesian probabilistic model as an effective tool in predicting post-storm beach changes along sandy coastlines. Volume change and net shoreline movement are modeled for two study sites at Fire Island, New York in response to two extratropical storms in 2007 and 2009. Both study areas include modified areas adjacent to unmodified areas in morphologically different segments of coast. Predicted outcomes are evaluated against observed changes to test model accuracy and uncertainty along 163 cross-shore transects. Results show strong agreement in the cross validation of predictions vs. observations, with 70-82% accuracies reported. Although no consistent spatial pattern in inaccurate predictions could be determined, the highest prediction uncertainties appeared in locations that had been recently replenished. Further testing and model refinement are needed; however, these initial results show that Bayesian networks have the potential to serve as important decision-support tools in forecasting coastal change.

  1. Zebra mussels (Dreissena polymorpha) as a biomonitor of trace elements along the southern shoreline of Lake Michigan.

    Science.gov (United States)

    Shoults-Wilson, W Aaron; Elsayed, Norhan; Leckrone, Kristen; Unrine, Jason

    2015-02-01

    The invasive zebra mussel (Dreissena polymorpha) has become an accepted biomonitor organism for trace elements, but it has yet to be studied along the Lake Michigan shoreline. Likewise, the relationships between tissue concentrations of elements, organism size, and sediment concentrations of elements have not been fully explained. The present study found that a variety of allometric variables such as length, dry tissue mass, shell mass, organism condition indices, and shell thickness index were useful in explaining intrasite variability in elemental concentrations. The flesh condition index (grams of tissue dry mass per gram of shell mass) explained variability at the most sites for most elements. Once allometric intrasite variability was taken into account, additional significant differences were found between sites, although the net effect was small. Significant positive relationships between sediment and tissue concentrations were found for Pb and Zn, with a significant negative relationship for Cd. It was also found that Cu and Zn concentrations in tissues increased significantly along the shoreline in the southeasterly direction, whereas Hg increased in a northwesterly direction. Opportunistic sampling found that zebra mussels accumulate significantly higher concentrations of nearly all elements analyzed compared to Asian clams (Corbicula fluminea) at the same site. The present study demonstrates the need to fully explain natural sources of variability before using biomonitors to explain spatial distributions of trace elements. © 2014 SETAC.

  2. Late quaternary sea level changes of Gabes coastal plain and shelf ...

    Indian Academy of Sciences (India)

    site to study coastal changes at time scale, rang- ing from ... regional shoreline during MIS 5c (100 ka) and MIS .... Remote sensing drainage network anal- ... Around Gabes city, the Pleistocene deposits are ... tems are well developed and fluvial discharges are ..... relative sea-level rise: A case study from trab el makhadha.

  3. Effect of the Spanish Conquest on coastal change in Northwestern Peru

    Science.gov (United States)

    Belknap, Daniel F.; Sandweiss, Daniel H.

    2014-06-01

    When Francisco Pizarro and his small band of Spanish conquistadores landed in northern Peru in A.D. 1532 to begin their conquest of the vast Inca Empire, they initiated profound changes in the culture, language, technology, economics, and demography of western South America. They also altered anthropogenically modulated processes of shoreline change that had functioned for millennia. Beginning with the extirpation of local cultures as a result of the Spanish Conquest, and continuing through today, the intersection of demography, economy, and El Niño-driven beach-ridge formation on the Chira beach-ridge plain of Northwestern Peru has changed the nature of coastal evolution in this region. A similar event may have occurred at about 2800 calibrated y B.P. in association with increased El Niño frequency.

  4. Implementing the shoreline cleanup assessment team process in the Gulf of Mexico

    International Nuclear Information System (INIS)

    Debusschere, K.; Penland, S.; Ramsey, K.E.; Lindstedt, D.; Westphal, K.A.; Seal, R.; McBride, R.A.; Byrnes, M.R.; Owens, E.

    1993-01-01

    Louisiana State University (LSU) and Woodward-Clyde Consultants are working with state and federal agencies and industry through the LSU Gulf of Mexico Oil Spill Research and Response Program to establish a shoreline cleanup assessment team program (SCAT) in the Gulf of Mexico. Each SCAT team consists of a coastal geomorphologist and ecologist (and archaeologist when appropriate), as well as representatives from the responsible federal, state, and private agencies. This cooperative effort is aimed at identifying oil spill impact and interagency coastal resource concerns and recommendations, and developing a cleanup strategy based on interagency cooperation and concurrence within a systematic and standardized framework. The SCAT program provides interagency coordination, SCAT preparedness, spill drill participation, interagency training, geographic information systems services, monitoring, and routine aerial videotape surveys. It also offers technical support to the decision-making process within spill response operations

  5. Climate change at the coast: from global to local

    International Nuclear Information System (INIS)

    Watkinson, A.R.

    2009-01-01

    The IPCC has recently documented substantial changes in the global heat content of the oceans, salinity, sea level, thermal expansion and biogeochemistry. Over the 21. century anticipated climate related changes include: a rise in sea level of up to 0.6 m or more; increases in sea surface temperatures up to 3 deg. C; an intensification of tropical and extra tropical cyclones; larger extreme waves and storm surges; altered precipitation/ run-off; and ocean acidification. The Tyndall Centre has been exploring how to down-scale the global analysis to the local level within the framework of a coastal simulator. The simulator provides information on possible future states of the coast through the 21. Century under a range of climate and socio-economic futures and shoreline management options. It links models within a nested framework, recognizing three scales: (1) global, (2) regional, and (3) local. The linked models describe a range of processes, including marine climate (waves, surges and mean sea level), sand bank morpho-dynamics, wave transformation, shoreline morpho-dynamics, built environment scenarios, ecosystem change, and erosion and flood risk. Analyses from the simulator reinforce conclusions from IPCC WG2: coasts will be exposed to increasing risks over coming decades due to many compounding climate-change factors; the impact of climate change on coasts will be exacerbated by increasing human induced pressures; the unavoidability of sea-level rise even in the longer-term frequently conflicts with present day human development patterns and trends. (author)

  6. Geochemical distribution of trace metals and organochlorine contaminants of a lake ontario shoreline marsh

    Energy Technology Data Exchange (ETDEWEB)

    Glooschenko, W A; Capocianco, J; Coburn, J; Glooschenko, V

    1981-02-01

    Rattray Marsh, an 8 ha marsh on the Lake Ontario shoreline at Mississauga, Ontario, is an important local habitat for waterfowl and shorebirds during spring and fall migration. A study was conducted to determine the distribution of nutrients (carbon, nitrogen, and phosphorus) and potential trace metal and organochlorine pollutants in the marsh as evidenced by the sedimentary concentrations of these compounds. Generally, copper, zinc, lead, and mercury were higher in concentration in local soils than in Lake Ontario sediments. Metals and organic carbon levels did not correlate, and the metals appeared to be associated with silts and clays. Organochlorine contaminants include p,p1-DDE, p,p1-DDD, p,p1-DDT, alpha-chlordane, PCB, mirex, and HCB.

  7. Implications of climatic change for tourism and recreation in Ontario

    International Nuclear Information System (INIS)

    Wall, G.; Harrison, R.; Kinnaird, V.; McBoyle, G.; Quinland, C.

    1988-01-01

    Scenarios for climatic change associated with a doubling of atmospheric carbon dioxide were employed in an assessment of the impacts of climate change on tourism and recreation in Ontario. A warmer climate resulting from such change may mean declining lake levels with associated changes in the ecological interest and recreational potential of wetlands, as shown by case studies on two parks near Great Lakes shorelines. In the skiing industry, the length of ski seasons will be reduced in the northern part of the province, but the key holiday periods (when a large portion of total business is conducted) should still fall within the reliable ski season. Further south, the ski season in the South Georgian Bay region could be eliminated. Summer recreational activities are likely to have extended seasons, and the viability of summer recreational enterprises may increase, with associated positive benefits to neighboring communities. 2 refs., 6 figs., 3 tabs

  8. BANK STABILIZATION, SHORELINE LAND-USE, AND THE DISTRIBUTION OF LARGE WOODY DEBRIS IN A REGULATED REACH OF THE UPPER MISSOURI RIVER, NORTH DAKOTA, USA

    Science.gov (United States)

    Large woody debris (LWD) is an important component of ecosystem function in floodplain rivers. We examined the effects on LWD distribution of shoreline land use, bank stabilization, local channel geomorphology, and distance from the dam in the Garrison Reach, a regulated reach of...

  9. Effects of nearshore evaporation rates on the design of seabed gallery intake systems for SWRO facilities located along the Red Sea shoreline of Saudi Arabia

    KAUST Repository

    Dehwah, Abdullah; Jadoon, Khan; Almashharawi, Samir; Missimer, Thomas M.

    2015-01-01

    circulation cell develops between the shoreline and deeper water offshore. Lower salinity seawater should migrate landward to replace water loss caused by evaporation with seaward moving of high-salinity water occurring along the bottom to balance the flow

  10. SPATIAL-TEMPORAL DETECTION OF CHANGES ON THE SOUTHERN COAST OF THE BALTIC SEA BASED ON MULTITEMPORAL AERIAL PHOTOGRAPHS

    Directory of Open Access Journals (Sweden)

    K. Michalowska

    2016-06-01

    Full Text Available Digital photogrammetry and remote sensing solutions applied under the project and combined with the geographical information system made it possible to utilize data originating from various sources and dating back to different periods. Research works made use of archival and up-to-date aerial images, satellite images, orthophotomaps. Multitemporal data served for mapping and monitoring intermediate conditions of the Baltic Sea shore zone without a need for a direct interference in the environment. The main objective of research was to determine the dynamics and volume of sea shore changes along the selected part of coast in the period of 1951-2004, and to assess the tendencies of shore development in that area. For each of the six annual data sets, the following were determined: front dune base line, water line and the beach width. The location of the dune base line, which reflects the course of the shoreline in a given year was reconstructed based on stereoscopic study of images from each annual set. Unidirectional changes in the period of 1951-2004 occurred only within 10% of the examined shore section length. The examined shore is marked by a high and considerable dynamics of changes. Almost half of the shore, in particular the middle coast shows big changes, in excess of 2 m/year. The limits of shoreline changes ranged from 120 to -90 m, and their velocity from 0 to 11 m/year, save that the middle and west parts of the examined coast section were subjected to definitely more intense shore transformations. Research based on the analysis of multitemporal aerial images made it possible to reconstruct the intermediate conditions of the Baltic Sea shoreline and determine the volume and rate of changes in the location of dune base line in the examined period of 53 years, and to find out tendencies of shore development and dynamics.

  11. Oblique Aerial Photography of the Arctic Coast of Alaska, Nulavik to Demarcation Point, August 7-10, 2006

    Science.gov (United States)

    Gibbs, Ann E.; Richmond, Bruce M.

    2009-01-01

    The Arctic Coastal Plain of northern Alaska, an area of strategic economic importance to the United States, is home to remote Native American communities and encompasses unique habitats of global significance. Coastal erosion along the Arctic coast is chronic and widespread; recent evidence suggests that erosion rates are among the highest in the world (up to ~16 m/yr) and may be accelerating. Coastal erosion adversely impacts energy-related infrastructure, natural shoreline habitats, and Native American communities. Climate change is thought to be a key component of recent environmental changes in the Arctic. Reduced sea-ice cover in the Arctic Ocean is one of the probable mechanisms responsible for increasing coastal exposure to wave attack and the resulting increase in erosion. Extended periods of permafrost melting and associated decrease in bluff cohesion and stability are another possible source of the increase in erosion. Several studies of selected areas on the Alaska coast document past shoreline positions and coastal change, but none have examined the entire North coast systematically. Results from these studies indicate high rates of coastal retreat that vary spatially along the coast. To address the need for a comprehensive and regionally consistent evaluation of shoreline change along the North coast of Alaska, the U.S. Geological Survey (USGS), as part of their Coastal and Marine Geology Program's (CMGP) National Assessment of Shoreline Change Study, is evaluating shoreline change from Peard Bay to the United States/Canadian border, using historical maps and photography and a standardized methodology that is consistent with other shoreline-change studies along the Nation's coastlines (for example, URL http://coastal.er.usgs.gov/shoreline-change/ (last accessed March 2, 2009). This report contains photographs collected during an aerial-reconnaissance survey conducted in support of this study. An accompanying ESRI ArcGIS shape file (and plain-text copy

  12. Modelling shoreline evolution in the vicinity of a groyne and a river

    Science.gov (United States)

    Valsamidis, Antonios; Reeve, Dominic E.

    2017-01-01

    Analytical solutions to the equations governing shoreline evolution are well-known and have value both as pedagogical tools and for conceptual design. Nevertheless, solutions have been restricted to a fairly narrow class of conditions with limited applicability to real-life situations. We present a new analytical solution for a widely encountered situation where a groyne is constructed close to a river to control sediment movement. The solution, which employs Laplace transforms, has the advantage that a solution for time-varying conditions may be constructed from the solution for constant conditions by means of the Heaviside procedure. Solutions are presented for various combinations of wave conditions and sediment supply/removal by the river. An innovation introduced in this work is the capability to provide an analytical assessment of the accretion or erosion caused near the groyne due to its proximity to the river which may act either as a source or a sink of sediment material.

  13. Future rise of the sea level: consequences and strategies on the shoreline

    International Nuclear Information System (INIS)

    Teisson, C.

    1991-11-01

    The Mean Sea Level may rise in a near future due to the warming of the atmosphere associated with the 'greenhouse effect'. The alarming estimations issued in the 1980's (several meters of surelevation in the next centuries) are now lowered: the ice sheets, the melting of which could induce such a rise, do not present signs of instability. A rise from 30 to 50 cm is likely to occur in the middle of the next century; there is a probability of 25% that the rise of sea level relative to the year 1980 stands beyond 1 meter by 2100. The consequences of such a rise on the shoreline and the maritime works are reviewed, and planning strategies are discussed. This study has been performed in the framework of a convention between EDF-LNH and the Sea State Secretary (Service Technique des Ports Maritimes et Voies Navigables) 41 refs., 31 figs., 6 tabs

  14. EnviroAtlas - Percentage of stream and water body shoreline lengths within 30 meters of >= 5% or >= 15% impervious cover by 12-Digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the percentages of stream and water body shoreline lengths within 30 meters of impervious cover by 12-digit Hydrologic Unit (HUC)...

  15. Climate change and epidemiology of human parasitoses in Saudi Arabia: A review

    Directory of Open Access Journals (Sweden)

    Wael Mohamed Lotfy

    2016-07-01

    Full Text Available Climate change is an emerging global problem. It has hazardous effects that vary across different geographic regions and populations. It is anticipated to have significant effects in Saudi Arabia. The present work reviews the future of human parasitoses in Saudi Arabia in response to the expected climate change. The key projections are increased precipitations, flash floods, unstable temperatures, sea-level rise and shoreline retreat. Such environmental changes could strongly influence the epidemiology of fly-borne, mosquito-borne, snail-borne and water-borne human parasitoses in the country.

  16. Tilted lake shorelines record the onset of motion along the Hilton Creek fault adjacent to Long Valley caldera, CA, USA

    Science.gov (United States)

    Perkins, J. P.; Finnegan, N. J.; Cervelli, P. F.; Langbein, J. O.

    2010-12-01

    Prominent normal faults occur within and around Long Valley caldera, in the eastern Sierra Nevada of California. However, their relationship to both the magmatic and tectonic evolution of the caldera since the 760 ka eruption of the Bishop Tuff remains poorly understood. In particular, in the Mono-Inyo Craters north of Long Valley, extensional faulting appears to be replaced by dike intrusion where magma is available in the crust. However, it is unclear whether extensional faults in Long Valley caldera have been active since the eruption of the Bishop Tuff (when the current topography was established) or are a relatively young phenomenon owing to the cooling and crystallization of the Long Valley magma reservoir. Here we use GPS geodesy and geomorphology to investigate the evolution of the Hilton Creek fault, the primary range-front fault bounding Long Valley caldera to the southwest. Our primary goals are to determine how long the Hilton Creek fault has been active and whether slip rates have been constant over that time interval. To characterize the modern deformation field, we capitalize on recently (July, 2010) reoccupied GPS benchmarks first established in 1999-2000. These fixed-array GPS data show no discernible evidence for recent slip on the Hilton Creek fault, which further highlights the need for longer-term constraints on fault motion. To establish a fault slip history, we rely on a suite of five prominent shorelines from Pleistocene Long Valley Lake whose ages are well constrained based on field relationships to dated lavas, and that are tilted southward toward the Hilton Creek fault. A preliminary analysis of shoreline orientations using GPS surveys and a 5-m-resolution Topographic Synthetic Aperture Radar (TOPSAR) digital elevation model shows that lake shorelines tilt towards the Hilton Creek fault at roughly parallel gradients (~ 0.6%). The measured shorelines range in inferred age from 100 ka to 500 ka, which constrain recent slip on the Hilton

  17. Coastline change mapping using a spectral band method and Sobel edge operator

    Science.gov (United States)

    Al-Mansoori, Saeed; Al-Marzouqi, Fatima

    2016-10-01

    Coastline extraction has become an essential activity in wake of the natural disasters taking place in some regions such as tsunami, flooding etc. Salient feature of such catastrophes is lack of reaction time available for combating emergency, thus it is the endeavor of any country to develop constant monitoring mechanism of shorelines. This is a challenging task because of the magnitude of changes taking place to the coastline regularly. Previous research findings highlight a need of formulating automation driven methodology for timely and accurate detection of alterations in the coastline impacting sustainability of mankind operating in the coastal zone. In this study, we propose a new approach for automatic extraction of the coastline using remote sensing data. This approach is composed of three main stages. Firstly, classifying pixels of the image into two categories i.e. land and water body by applying two normalized difference indices i.e. Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). Then, the process of binary conversion of classified image takes place using a local threshold method. Finally, the coastline is extracted by applying Sobel edge operator with a pair of (3×3) kernels. The approach is tested using 2.5m DubaiSat-1 (DS1) and DubaiSat-2 (DS2) images captured to detect and monitor the changes occurring along Dubai coastal zone within a period of six years from 2009 till 2015. Experimental results prove that the approach is capable of extracting the coastlines from DS1 and DS2 images with moderate human interaction. The results of the study show an increase of 6% in Dubai shoreline resulting on account of numerous man-made infrastructure development projects in tourism and allied sectors.

  18. Feedback Limiting the Coastal Response to Irregularities in Shelf Bathymetry

    Science.gov (United States)

    List, J. H.; Benedet, L.

    2007-12-01

    Observations and engineering studies have shown that non-uniform inner shelf bathymetry can influence longshore sediment transport gradients and create patterns of shoreline change. One classic example is from Grand Isle, Louisiana, where two offshore borrow pits caused two zones of shoreline accretion landward of the pits. In addition to anthropogenic cases, many natural situations exist in which irregularities in coastal planform are thought to result from offshore shoals or depressions. Recent studies using the hydrodynamic model Delft3D have successfully simulated the observed nearshore erosion and accretion patterns landward of an inner shelf borrow pit. An analysis of the momentum balance in a steady-state simulation has demonstrated that both alongshore pressure gradients (due to alongshore variations in wave setup) and radiation stress gradients (terms relevant to alongshore forcing) are important for forcing the initial pattern of nearshore sedimentation in response to the borrow pit. The response of the coast to non-uniform inner shelf bathymetry appears to be limited, however, because observed shoreline undulations are often rather subtle. (An exception may exist in the case of a very high angle wave climate.) Therefore, feedbacks in processes must exist such that growth of the shoreline salient itself modifies the transport processes in a way that limits further growth (assuming the perturbation in inner shelf bathymetry itself remains unchanged). Examination of the Delft3D momentum balance for an inner shelf pit test case demonstrates that after a certain degree of morphologic development the forcing associated with the well-known shoreline smoothing process (a.k.a., diffusion) counteracts the forcing associated with the inner shelf pit, producing a negative feedback which arrests further growth of the shoreline salient. These results provide insights into the physical processes that control shoreline changes behind inner shelf bathymetric anomalies (i

  19. 2002 Upper Texas Coast Lidar Point Data, Gulf of Mexico Shoreline in the Northeast 3.75-Minute Quadrant of the Lake Como 7.5-Minute Quadrangle: Post Fay Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains elevation data derived from a lidar survey approximately 300m wide of the Gulf of Mexico shoreline in the Northeast Lake Como...

  20. The discharge of nitrate-contaminated groundwater from developed shoreline to marsh-fringed estuary

    Science.gov (United States)

    Portnoy, J.W.; Nowicki, B.L.; Roman, C.T.; Urish, D.W.

    1998-01-01

    As residential development, on-site wastewater disposal, and groundwater contamination increase in the coastal zone, assessment of nutrient removal by soil and sedimentary processes becomes increasingly important. Nitrogen removal efficiency depends largely on the specific flow paths taken by groundwater as it discharges into nitrogen-limited estuarine waters. Shoreline salinity surveys, hydraulic studies, and thermal infrared imagery indicated that groundwater discharge into the Nauset Marsh estuary (Eastham, Massachusetts) occurred in high-velocity seeps immediately seaward of the upland-fringing salt marsh. Discharge was highly variable spatially and occurred through permeable, sandy sediments during low tide. Seepage chamber monitoring showed that dissolved inorganic nitrogen (principally nitrate) traversed nearly conservatively from the aquifer through shallow estuarine sediments to coastal waters at flux rates of 1–3 mmol m−2 h−1. A significant relationship between pore water NO3-N concentrations and NO3-N flux rates may provide a rapid method of estimating nitrogen loading from groundwater to the water column.

  1. Optimizing romanian maritime coastline using mathematical model Litpack

    Science.gov (United States)

    Anton, I. A.; Panaitescu, M.; Panaitescu, F. V.

    2017-08-01

    There are many methods and tools to study shoreline change in coastal engineering. LITPACK is a numerical model included in MIKE software developed by DHI (Danish Hydraulic Institute). With this matehematical model we can simulate coastline evolution and profile along beach. Research and methodology: the paper contents location of the study area, the current status of Midia-Mangalia shoreline, protection objectives, the changes of shoreline after having protected constructions. In this paper are presented numerical and graphycal results obtained with this model for studying the romanian maritime coastline in area MIDIA-MANGALIA: non-cohesive sediment transport, long-shore current and littoral drift, coastline evolution, crossshore profile evolution, the development of the coastline position in time.

  2. Modeling Water-Surface Elevations and Virtual Shorelines for the Colorado River in Grand Canyon, Arizona

    Science.gov (United States)

    Magirl, Christopher S.; Breedlove, Michael J.; Webb, Robert H.; Griffiths, Peter G.

    2008-01-01

    Using widely-available software intended for modeling rivers, a new one-dimensional hydraulic model was developed for the Colorado River through Grand Canyon from Lees Ferry to Diamond Creek. Solving one-dimensional equations of energy and continuity, the model predicts stage for a known steady-state discharge at specific locations, or cross sections, along the river corridor. This model uses 2,680 cross sections built with high-resolution digital topography of ground locations away from the river flowing at a discharge of 227 m3/s; synthetic bathymetry was created for topography submerged below the 227 m3/s water surface. The synthetic bathymetry was created by adjusting the water depth at each cross section up or down until the model?s predicted water-surface elevation closely matched a known water surface. This approach is unorthodox and offers a technique to construct one-dimensional hydraulic models of bedrock-controlled rivers where bathymetric data have not been collected. An analysis of this modeling approach shows that while effective in enabling a useful model, the synthetic bathymetry can differ from the actual bathymetry. The known water-surface profile was measured using elevation data collected in 2000 and 2002, and the model can simulate discharges up to 5,900 m3/s. In addition to the hydraulic model, GIS-based techniques were used to estimate virtual shorelines and construct inundation maps. The error of the hydraulic model in predicting stage is within 0.4 m for discharges less than 1,300 m3/s. Between 1,300-2,500 m3/s, the model accuracy is about 1.0 m, and for discharges between 2,500-5,900 m3/s, the model accuracy is on the order of 1.5 m. In the absence of large floods on the flow-regulated Colorado River in Grand Canyon, the new hydraulic model and the accompanying inundation maps are a useful resource for researchers interested in water depths, shorelines, and stage-discharge curves for flows within the river corridor with 2002 topographic

  3. Climate change impacts on U.S. coastal and marine ecosystems

    Science.gov (United States)

    Scavia, Donald; Field, John C.; Boesch, Donald F.; Buddemeier, Robert W.; Burkett, Virginia; Cayan, Daniel R.; Fogarty, Michael; Harwell, Mark A.; Howarth, Robert W.; Mason, Curt; Reed, Denise J.; Royer, Thomas C.; Sallenger, Asbury H.; Titus, James G.

    2002-01-01

    Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction

  4. Centennial-scale human alterations, unintended natural-system responses, and event-driven mitigation within a coupled fluvial-coastal system: Lessons for collective management and long-term coastal change planning

    Science.gov (United States)

    Hein, C. J.; Hoagland, P.; Huang, J. C.; Canuel, E. A.; Fitzsimons, G.; Rosen, P.; Shi, W.; Fallon, A. R.; Shawler, J. L.

    2017-12-01

    On decadal to millennial timescales, human modifications of linked riparian and coastal landscapes have altered the natural transport of sediments to the coast, causing time-varying sediment fluxes to estuaries, wetlands, and beaches. This study explored the role of historical changes in land use and river/coastal engineering on patterns of coastal erosion in the coupled system comprising the Merrimack River and the Plum Island barrier beach (northern Massachusetts, USA). Recreational values of the beach, attendant impacts on the local housing market, human perceptions of future beach utilization, and collective management options were investigated. Key historical changes included the installation of dams to benefit industry and control flooding in the early 19th century; river-mouth jetties to maintain navigation and allow for the residential development of a more stable barrier in the early 20th century; and the progressive hardening of the shoreline in response to multi-decadal cyclical erosion and house losses throughout the latter 20th and 21st centuries. The tools of sedimentology, shoreline-change analysis, historic documentation, population surveys, and economic modeling were used to examine these changes and the dynamic linked responses of the natural system and human populations. We found cascading effects of human alterations to the river that changed sediment fluxes to the coastal zone, driving a need for mitigation over centennial timescales. More recently, multidecadal erosion-accretion cycles of the beach have had little impact on the housing market, which is instead more responsive to public shoreline stabilization efforts in response to short-term (sustainable management of coupled fluvial-coastal systems.

  5. Influences of sediment redistribution on sea-level changes along the U.S. Atlantic margin since the mid-Pliocene

    Science.gov (United States)

    Li, Q.; Ferrier, K.; Austermann, J.; Mitrovica, J. X.

    2017-12-01

    The Orangeburg Scarp is a paleo-shoreline formed along the southeastern U.S. Atlantic coast during the mid-Pliocene warm period (MPWP; 3.3 - 2.9 Ma). The MPWP is a time of interest because it is often cited as an analog for modern climate and thus an important target for understanding sea-level responses to climate change. The present Orangeburg Scarp exhibits 40-meter variations in elevation along its length, implying that it has been warped since its formation, which complicates efforts to infer global ice volume at the MPWP. Previous studies have shown that the effects of glacial isostatic adjustment (GIA) and dynamic topography (DT) on sea level can explain a significant fraction of the observed variability in elevation along the Orangeburg Scarp. Here we build on these studies by using a gravitationally self-consistent ice age sea-level model to compute the effects of sediment loading and unloading on paleo-shoreline elevation since the mid-Pliocene. To constrain the sediment loading history in this region, we present a new compilation of erosion and deposition rates along the U.S. Atlantic margin, from which we generate a range of sediment redistribution scenarios since the MPWP. We simultaneously drive the sea-level model with these sediment redistribution histories and existing ice and dynamic topography histories. Our results show that sediment loading and unloading is capable of warping the elevation of this paleo-shoreline by 20 meters since its formation, similar in magnitude to the contributions from GIA and DT over the same time period. These results demonstrate that sediment redistribution can induce significant perturbations in sea-level markers from the MPWP, and thus accounting for its influence will improve reconstructions of sea level and global ice volume during the MPWP and perhaps other periods of relative ice age warmth.

  6. Bioremediation of oil on shorelines with organic and inorganic nutrients

    International Nuclear Information System (INIS)

    Sveum, P.; Ramstad, S.

    1995-01-01

    Two experiments to study the mechanisms associated with nutrient-enhanced biodegradation of oil (Statfjord crude oil)-contaminated shorelines were done in continuous-flow seawater exchange basins with simulated tides. The fertilizers included fish and meal pellets, stick water pellets, and two concentrations of Max Bac: standard and five times higher. Both one-time and repeated additions of fish meal were studied. The number of oil-degrading bacteria in the sediment increased by three to four orders of magnitude after adding oil and fertilizer, and repeated fertilization had little effect. Oil degradation was found to be extensive with all treatments in both experiments, which lasted 35 or 98 days. Polycyclic aromatic hydrocarbon degradation seems to be most extensive in the sediments with repeated application of fish meal. The relation between accumulated total soluble nitrogen in interstitial water and nC 17 /pristane differs between the sediments treated with Max Bac and the organic additives, and indicates that this concentration cannot be used as a sole indication of the oil degradation rate if organic nutrients are used. The relation between accumulated CO 2 production and nC 17 /pristane ratio indicates a diauxic use of the two different sources of carbon present, without being absolute. Repeated fertilization with organic additives is neither beneficial nor detrimental to the oil degradation activity

  7. Oblique Aerial Photography of the Arctic Coast of Alaska, Cape Sabine to Milne Point, July 16-19, 2009

    Science.gov (United States)

    Gibbs, Ann E.; Richmond, Bruce M.

    2010-01-01

    The Arctic Coastal Plain of northern Alaska, an area of strategic economic importance to the United States, is home to remote Native American communities and encompasses unique habitats of global significance. Coastal erosion along the Arctic coast is chronic and widespread; recent evidence suggests that erosion rates are among the highest in the world (as high as ~16 m/yr) and may be accelerating. Coastal erosion adversely impacts energy-related infrastructure, natural shoreline habitats, and Native American communities. Climate change is thought to be a key component of recent environmental changes in the Arctic. Reduced sea-ice cover in the Arctic Ocean is one of the probable mechanisms responsible for increasing coastal exposure to wave attack and the resulting increase in erosion. Extended periods of permafrost melting and associated decreases in bluff cohesion and stability are another possible source of the increase in erosion. Several studies of selected areas on the Alaska coast document past shoreline positions and coastal change, but none have examined the entire North coast systematically. Results from these studies indicate high rates of coastal retreat that vary spatially along the coast. To address the need for a comprehensive and regionally consistent evaluation of shoreline change along the North coast of Alaska, the U.S. Geological Survey (USGS), as part of their Coastal and Marine Geology Program's (CMGP) National Assessment of Shoreline Change Study, is evaluating shoreline change from Peard Bay to the United States/Canadian border, using historical maps and photography and a standardized methodology that is consistent with other shoreline-change studies along the Nation's coastlines (see, for example, http://coastal.er.usgs.gov/shoreline-change/, last accessed February 12, 2010). This is the second in a series of publications containing photographs collected during reconnaissance surveys conducted in support of the National Assessment of

  8. Investigating Nonlinear Shoreline Multiperiod Change from Orthophoto Map Information by Using a Neural Network Model

    Directory of Open Access Journals (Sweden)

    Tienfuan Kerh

    2014-01-01

    Full Text Available The effects of extreme weather and overdevelopment may cause some coastal areas to exhibit erosion problems, which in turn may contribute to creating disasters of varying scale, particularly in regions comprising islands. This study used aerial survey information from three periods (1990, 2001, and 2010 and used graphical software to establish the spatial data of six beaches surrounding the island of Taiwan. An overlaying technique was then implemented to compare the sandy area of each beach in the aforementioned study periods. In addition, an artificial neural network model was developed based on available digitised coordinates for predicting coastline variation for 2015 and 2020. An onsite investigation was performed using a global positioning system for comparing the beaches. The results revealed that two beaches from this study may have experienced significant changes in total sandy areas under a statistical 95% confidence interval. The proposed method and the result of this study may provide a valuable reference in follow-up research and applications.

  9. Detection of decadal shoreline changes along Dhamara and Maipura coast, Odisha, India

    Digital Repository Service at National Institute of Oceanography (India)

    ManiMurali, R.; Dhiman, R.; Jayakumar, S.; Ilangovan, D.; Vethamony, P.

    activities in the area. Keywords: Remote sensing; Erosion; Accretion; Odisha coast; DSAS. 1. INTRODUCTION The coastline of India comprises of variety of habitats and ecosystems such as sandy and rocky beaches, cliffs, water and lagoons to bays.... These changes are attributed to construction of artificial barriers like breakwater, jetties, etc. (Nayak, 1992). The rising number of coastal disasters along the world’s coastlines throws light on the need for better and more efficient methodologies...

  10. Modelling of Sediment Transport in Beris Fishery Port

    Directory of Open Access Journals (Sweden)

    Samira Ardani

    2015-06-01

    Full Text Available In this paper, the large amount of sedimentation and the resultant shoreline advancements at the breakwaters of Beris Fishery Port are studied. A series of numerical modeling of waves, sediment transport, and shoreline changes were conducted to predict the complicated equilibrium shoreline. The outputs show that the nearshore directions of wave components are not perpendicular to the coast which reveals the existence of longshore currents and consequently sediment transport along the bay. Considering the dynamic equilibrium condition of the bay, the effect of the existing sediment resources in the studied area is also investigated. The study also shows that in spite of the change of the diffraction point of Beris Bay after the construction of the fishery port, the bay is approaching its dynamic equilibrium condition, and the shoreline advancement behind secondary breakwater will stop before blocking the entrance of the port. The probable solutions to overcome the sedimentation problem at the main breakwater are also discussed.

  11. Petroleum hydrocarbons in sediment from the northern Gulf of Mexico shoreline, Texas to Florida

    Science.gov (United States)

    Rosenbauer, Robert J.; Campbell, Pamela L.; Lam, Angela; Lorenson, T.D.; Hostettler, Frances D.; Thomas, Burt; Wong, Florence L.

    2011-01-01

    Petroleum hydrocarbons were extracted and analyzed from shoreline sediment collected from the northern Gulf of Mexico (nGOM) coastline that could potentially be impacted by Macondo-1 (M-1) well oil. Sediment was collected before M-1 well oil made significant local landfall and analyzed for baseline conditions by a suite of diagnostic petroleum biomarkers. Oil residue in trace quantities was detected in 45 of 69 samples. With the aid of multivariate statistical analysis, three different oil groups, based on biomarker similarity, were identified that were distributed geographically along the nGOM from Texas to Florida. None of the sediment hydrocarbon extracts correlated with the M-1 well oil extract, however, the similarity of tarballs collected at one site (FL-18) with the M-1 well oil suggests that some oil from the Deepwater Horizon spill may have been transported to this site in the Florida Keys, perhaps by a loop current, before that site was sampled.

  12. Rhodotorula mucilaginosa, a quorum quenching yeast exhibiting lactonase activity isolated from a tropical shoreline.

    Science.gov (United States)

    Ghani, Norshazliza Ab; Sulaiman, Joanita; Ismail, Zahidah; Chan, Xin-Yue; Yin, Wai-Fong; Chan, Kok-Gan

    2014-04-09

    Two microbial isolates from a Malaysian shoreline were found to be capable of degrading N-acylhomoserine lactones. Both Matrix Assisted Laser Desorption Ionization-Time of Flight-Mass Spectrometry and 18S rDNA phylogenetic analyses confirmed that these isolates are Rhodotorula mucilaginosa. Quorum quenching activities were detected by a series of bioassays and rapid resolution liquid chromatography analysis. The isolates were able to degrade various quorum sensing molecules namely N-hexanoyl-L-homoserine lactone (C6-HSL), N-(3-oxo-hexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-(3-hydroxyhexanoyl)-L-homoserine lactone (3-hydroxy-C6-HSL). Using a relactonisation assay to verify the quorum quenching mechanism, it is confirmed that Rh. mucilaginosa degrades the quorum sensing molecules via lactonase activity. To the best of our knowledge, this is the first documentation of the fact that Rh. mucilaginosa has activity against a broad range of AHLs namely C6-HSL, 3-oxo-C6-HSL and 3-hydroxy-C6-HSL.

  13. Effects of nearshore evaporation rates on the design of seabed gallery intake systems for SWRO facilities located along the Red Sea shoreline of Saudi Arabia

    KAUST Repository

    Dehwah, Abdullah

    2015-10-12

    Feed water to seawater reverse osmosis desalination systems should have a constant salinity with minimal variation. Intake systems that extract water from shallow nearshore areas in arid regions can exhibit significant fluctuations in salinity caused by high rates of evaporation and lack of circulation. Such fluctuations in salinity could inhibit the design, construction, and operation of seabed gallery intake systems located in shallow nearshore areas, such as the Red Sea inner shelf. Water depths range from 0 to 2 m between the beach and the edge of the fringing reef in the optimal locations for the development of seabed gallery intakes along the coast of the Red Sea of Saudi Arabia. The evaporation rate in this area is between 2 and 3 m per year. The bottom consists of mostly a marine hardground containing a thin veneer of unlithified sediment and no significant cover of corals or seagrass. The rather barren nature of the bottom suggests that periodic hypersalinity may contribute to the formation of hardgrounds on the bottom by causing supersaturation of the seawater with calcium carbonate and may limit the growth of corals and grasses. To assess the changes in salinity, a conceptual model was developed which assumes that a shallow circulation cell develops between the shoreline and deeper water offshore. Lower salinity seawater should migrate landward to replace water loss caused by evaporation with seaward moving of high-salinity water occurring along the bottom to balance the flow with ultimate mixing before the reef tract. To test this circulation pattern, a series of sensors were deployed to continuously monitor the water temperature, conductivity, and salinity at the surface and at the bottom during several periods of high air temperature. Surprisingly, the results show very little variation in salinity, despite the very high evaporation loss. The water salinity ranged between 39,000 and 40,000 mg/L with no diurnal variations of significance. Based on the

  14. Recreation value of a waterway and changes in this value

    International Nuclear Information System (INIS)

    Aittoniemi, P.

    1991-01-01

    The uniquely rich hydrological and archipelagic nature of Finland creates versatile opportunities for spending of leisure time. As various uses of waterways compete with each other, it is difficult to compare advantages and disadvantages of operations in view of various interests. This is why efforts have been made to develop methods to make the effect commensurable. Usability of shores is one important factor in the assessment of recreation use of waterways. When influence of water level changes in usability of shores is estimated, shore and bottom slope and quality, and uses and user numbers of the shores must be known. In several assessment methods, usability of shore is depicted by distance of the shifted shoreline (due to the changed water level) from the 'good' status. The studies on changes in the recreation value or usability of shores should be started by making efforts to classify and estimate various effects separately. If the value is wished to be given as one figure, the calculation basis applied, the weights and the used value functions must be stated clearly with the results. It is equally important to make a sensitivity analysis, i.e. to study effects of changes in uncertain input data on the results

  15. Utilizing NASA Earth Observations to Assist the National Park Service in Monitoring Shoreline Land Cover Change in the Lower Grand Canyon

    Science.gov (United States)

    Stevens, C. L.; Phillips, A.; Young, S.; Counts, A.

    2017-12-01

    Sustained drought conditions have contributed to a significant decrease in the volume of the Colorado River in the Lake Mead reservoir and lower portion of the Grand Canyon. As a result, changes in riparian conditions have occurred in the region, such as sediment exposure and receding vegetation. These changes have large negative impacts on ecological health, including water and air pollution, aquatic, terrestrial and avian habitat alterations, and invasive species introduction. Scientists at Grand Canyon National Park seek to quantify changes in water surface and land cover area in the Lower Grand Canyon from 1998 to 2016 to better understand the effects of these changing conditions within the park. Landsat imagery was used to detect changes of the water surface and land cover area across this time period to assess the effects of long-term drought on the riparian zone. The resulting land cover and water surface time-series from this project will assist in monitoring future changes in water, sediment, and vegetation extent, increasing the ability of park scientists to create adaptation strategies for the ecosystem in the Lower Grand Canyon.

  16. Macondo-1 well oil in sediment and tarballs from the northern Gulf of Mexico shoreline

    Science.gov (United States)

    Wong, Florence L.; Rosenbauer, Robert J.; Campbell, Pamela L.; Lam, Angela; Lorenson, T.D.; Hostettler, Frances D.; Thomas, Burt

    2011-01-01

    From April 20 through July 15, 2010, an estimated 4.4 million barrels (1 barrel = 42 gallons [~700,000 cu m]) of crude oil spilled into the northern Gulf of Mexico (nGOM) from the ruptured British Petroleum (BP) Macondo-1 (M-1) well after the explosion of the drilling platform Deepwater Horizon. In addition, ~1.84 million gallons (~7,000 cu m) of hydrocarbon-based Corexit dispersants were applied to the oil both on and below the sea surface (Operational Science Advisory Team, 2010). An estimate of the total extent of the surface oil slick, derived from wind, ocean currents, aerial photography, and satellite imagery, was 68,000 square miles (~180,000 sq km; Amos and Norse, 2010). Spilled oil from this event impacted sensitive habitat along the shores of the nGOM. In response to this environmental catastrophe, the U.S. Geological Survey (USGS) collected coastal sediment and tarball samples along the shores of the nGOM from Texas to Florida before and after oil made landfall. These sites included priority areas of the nGOM at highest risk for oil contamination. These areas included coastal wetlands, shorelines, and barrier islands that could suffer severe environmental damage if a significant amount of oil came ashore. Samples were collected before oil reached land from 69 sites; 49 were revisited to collect samples after oil landfall. This poster focuses on the samples from locations that were sampled on both occasions. The USGS samples and one M-1 well-oil sample provided by BP were analyzed for a suite of diagnostic geochemical biomarkers. Aided by multivariate statistical analysis, the M-1 well oil was not detected in the samples collected before landfall but have been identified in sediment and tarballs collected from Louisiana, Alabama, Mississippi, and Florida after landfall. None of the sediment hydrocarbon extracts from Texas correlated with the M-1 well oil. Oil-impacted sediment is confined to the shoreline adjacent to the cumulative oil slick of the

  17. What is the impact on fish recruitment of anthropogenic physical and structural habitat change in shallow nearshore areas in temperate systems? : A systematic review protocol

    NARCIS (Netherlands)

    Macura, Biljana; Lönnstedt, Oona; Byström, Pär; Airoldi, Laura; Eriksson, Britas; Rudstam, Lars; Støttrup, Josianne

    2016-01-01

    Shallow nearshore marine ecosystems are changing at an increasing rate due to a range of human activities such as urbanisation and commercial development. The growing numbers of constructions and other physical and structural alterations of the shoreline often take place in nursery and spawning

  18. 8000 years of coastal changes on a western Mediterranean island: A multiproxy approach from the Posada plain of Sardinia

    DEFF Research Database (Denmark)

    Melis, Rita T.; Di Rita, Federico; French, Charles

    2018-01-01

    -stratigraphy exhibited by a series of new cores taken from the coastal plain. This new study elucidates the main paleoecological changes, phases of shoreline migration and relative sea-level change during the last 8000 years. These results indicate the major role of sea-level stabilization and high sediment supply...... in driving major landscape changes, especially during the Neolithic period (6th–4th millennia BC), and the long-term settlement history of this coastal valley area. It is concluded that human occupation of the coastal plain, from prehistoric to historical times, was most likely constrained by the rapid......A multi-proxy palaeoenvironmental investigation was conducted to reconstruct the Holocene history of coastal landscape change in the lower Posada coastal plain of eastern Sardinia. In the Mediterranean region, coastal modifications during the Holocene have been driven by a complex interplay between...

  19. The changing shoreline of Suriname (South America)

    NARCIS (Netherlands)

    Augustinus, P.G.E.F.

    1978-01-01

    The Surinam coast forms part of the extensive tropical mud coast between the Amazon River (Brazil) and the Orinoco River (Venezuela). It is classified as a low to medium energy coast. A substantially longshore supply of mud originates from the Amazon River. The fine grained sediment (pelite) is

  20. Shoreline changes along the Poompuhar Tranquebar region

    Digital Repository Service at National Institute of Oceanography (India)

    Sundaresh; Jayakumar, S.; SanilKumar, V.

    Poompuhar, a flourishing port in the beginning of the Christian era played a major role in maritime activities and cultural expansion in the history of India. The marine archaeological explorations around Poompuhar brought to light the remains...

  1. Constraining Big Hurricanes: Remotely sensing Galveston Islands' changing coastal landscape from days to millennia

    Science.gov (United States)

    Dougherty, A. J.; Choi, J. H.; Heo, S.; Dosseto, A.

    2017-12-01

    Climate change models forecast increased storm intensity, which will drive coastal erosion as sea-level rise accelerates with global warming. Over the last five years the largest hurricanes ever recorded in the Pacific (Patricia) and the Atlantic (Irma) occurred as well as the devastation of Harvey. The preceding decade was marked with Super Storm Sandy, Katrina and Ike. A century prior, the deadliest natural disaster in North America occurred as a category 4 hurricane known as `The 1900 Storm' hit Galveston Island. This research aims to contextualize the impact of storms long before infrastructure and historical/scientific accounts documented erosion. Unlike the majority of barrier islands in the US, Galveston built seaward over the Holocene. As the beach prograded it preserved a history of storms and shoreline change over millennia to the present-day. These systems (called prograded barriers) were first studied over 50 years ago using topographic profiles, sediment cores and radiocarbon dating. This research revisits some of these benchmark study sites to augment existing data utilizing state-of-the-art Light Detection and Ranging (LiDAR), Ground Penetrating Radar (GPR), and Optically Stimulated Luminescence (OSL) techniques. In 2016 GPR and OSL data were collected from Galveston Island, with the aim to combine GPR, OSL and LiDAR (GOaL) to extract a high-resolution geologic record spanning 6,000 years. The resulting millennia-scale coastal evolution can be used to contextualize the impact of historic hurricanes over the past century (`The 1900 Storm'), decade (Ike in 2008) and year (now with Harvey). Preliminary results reveal a recent change in shoreline behaviour, and data from Harvey are currently being accessed within the perspective of these initial findings. This dataset will be discussed with respect to the other two benchmark prograded barriers studied in North America: Nayarit Barrier (Mexico) that Hurricane Patricia passed directly over in 2013 and

  2. Monitoring and modeling shoreline response due to shoreface nourishment on a high-energy coast

    Science.gov (United States)

    Barnard, P. L.; Erikson, Li H.; Hansen, J. E.

    2009-01-01

    Shoreface nourishment can be an efficient technique to feed sediment into the littoral zone without the order of magnitude cost increase incurred by directly nourishing the beach. An erosion hot spot at Ocean Beach in San Francisco, California, USA, threatens valuable public infrastructure as well as safe recreational use of the beach. In an effort to reduce the erosion at this location, a new beneficial reuse plan was implemented in May 2005 for the sediment dredged annually from the main shipping channel at the mouth of San Francisco Bay. From 2005 to 2007, approximately 230,000 m of sand was placed annually at depths between 9 and 14 m, in a location where strong tidal currents and open-ocean waves could potentially feed sediment onto the section of beach experiencing critical erosion. The evolution of the disposal mound and adjacent beach were monitored with 12 multibeam bathymetric surveys, and over 40 high-resolution beach topographic surveys. In addition, sediment transport processes were investigated using sediment grab samples, acoustic Doppler profilers, and two separate models: a cross-shore profile model (UNIBEST-TC) and a coastal area model (Delft3D). The results of the monitoring and modeling demonstrate that the disposal mound may be effective in dissipating wave energy striking this vulnerable stretch of coast with negligible shadowing effects, but a positive shoreline response can only be achieved by placing the sediment in water depths less than 5 m. 

  3. Identification and visualisation of possible ancient ocean shoreline on Mars using submeter-resolution Digital Terrain Models

    Science.gov (United States)

    Świąder, Andrzej

    2014-12-01

    Digital Terrain Models (DTMs) produced from stereoscopic, submeter-resolution High Resolution Imaging Science Experiment (HiRISE) imagery provide a solid basis for all morphometric analyses of the surface of Mars. In view of the fact that a more effective use of DTMs is hindered by complicated and time-consuming manual handling, the automated process provided by specialists of the Ames Intelligent Robotics Group (NASA), Ames Stereo Pipeline, constitutes a good alternative. Four DTMs, covering the global dichotomy boundary between the southern highlands and northern lowlands along the line of the presumable Arabia shoreline, were produced and analysed. One of them included forms that are likely to be indicative of an oceanic basin that extended across the lowland northern hemisphere of Mars in the geological past. The high resolution DTMs obtained were used in the process of landscape visualisation.

  4. Metrics to assess ecological condition, change, and impacts in sandy beach ecosystems.

    Science.gov (United States)

    Schlacher, Thomas A; Schoeman, David S; Jones, Alan R; Dugan, Jenifer E; Hubbard, David M; Defeo, Omar; Peterson, Charles H; Weston, Michael A; Maslo, Brooke; Olds, Andrew D; Scapini, Felicita; Nel, Ronel; Harris, Linda R; Lucrezi, Serena; Lastra, Mariano; Huijbers, Chantal M; Connolly, Rod M

    2014-11-01

    Complexity is increasingly the hallmark in environmental management practices of sandy shorelines. This arises primarily from meeting growing public demands (e.g., real estate, recreation) whilst reconciling economic demands with expectations of coastal users who have modern conservation ethics. Ideally, shoreline management is underpinned by empirical data, but selecting ecologically-meaningful metrics to accurately measure the condition of systems, and the ecological effects of human activities, is a complex task. Here we construct a framework for metric selection, considering six categories of issues that authorities commonly address: erosion; habitat loss; recreation; fishing; pollution (litter and chemical contaminants); and wildlife conservation. Possible metrics were scored in terms of their ability to reflect environmental change, and against criteria that are widely used for judging the performance of ecological indicators (i.e., sensitivity, practicability, costs, and public appeal). From this analysis, four types of broadly applicable metrics that also performed very well against the indicator criteria emerged: 1.) traits of bird populations and assemblages (e.g., abundance, diversity, distributions, habitat use); 2.) breeding/reproductive performance sensu lato (especially relevant for birds and turtles nesting on beaches and in dunes, but equally applicable to invertebrates and plants); 3.) population parameters and distributions of vertebrates associated primarily with dunes and the supralittoral beach zone (traditionally focused on birds and turtles, but expandable to mammals); 4.) compound measurements of the abundance/cover/biomass of biota (plants, invertebrates, vertebrates) at both the population and assemblage level. Local constraints (i.e., the absence of birds in highly degraded urban settings or lack of dunes on bluff-backed beaches) and particular issues may require alternatives. Metrics - if selected and applied correctly - provide

  5. Some Preliminary Scientific Results of Chang'E-3 Mission

    Science.gov (United States)

    Zou, Y.; Li, W.; Zheng, Y.; Li, H.

    2015-12-01

    Chang'E-3 mission is the main task of Phase two of China Lunar Exploration Program (CLEP), and also is Chinese first probe of landing, working and roving on the moon. Chang'E-3 craft composed of a lander and a rover, and each of them carry four scientific payloads respectively. The landing site of Chang'E-3 was located at 44.12 degrees north latitude and 19.51 degrees west longitude, where is in the northern part of Imbrium Which the distance in its west direction from the landing site of former Soviet probe Luna-17 is about 400 km, and about 780km far from the landing site of Appolo-17 in its southeast direction. Unfortunately, after a series of scientific tests and exploration on the surface of the moon, the motor controller communication of the rover emerged a breakdown on January 16, 2014, which leaded the four payloads onboard the rover can't obtain data anymore. However, we have received some interesting scientific data which have been studied by Chinese scientists. During the landing process of Chang'E-3, the Landing camera got total 4673 images with the Resolution in millimeters to meters, and the lander and rover took pictures for each other at different point with Topography camera and Panoramic camera. We can find characteristic changes in celestial brightness with time by analyzing image data from Lunar-based Ultraviolet Telescope (LUT) and an unprecedented constraint on water content in the sunlit lunar exosphere seen by LUT). The figure observed by EUV camera (EUVC) shows that there is a transient weak area of the Earth's plasma sphere; This event took place about three hours. The scientists think that it might be related to the change of the particle density of mid-latitude ionosphere. The preliminary spectral and mineralogical results from the landing site are derived according to the data of Visible and Near-infrared Imaging Spectrometer (VNIS). Seven major elements including Mg, Al, Si, K, Ca, Ti and Fe have been identified by the Active Particle

  6. Quantification of changes in seabed topography with special reference to Hansthal Creek, Gulf of Kachchh, India

    Digital Repository Service at National Institute of Oceanography (India)

    Pattanshetti, S.S.; Chauhan, O.S; Sivakholundu, K.M.

    of 1984 and 1950 have been modelled. The profile wise comparison along the transects indicates a dynamic deformation due to distinct alteration in the shoreline and a shift in the channel course. The shoreline has retreated 650 and 450 m on the northern...

  7. Modelling rainfall erosion resulting from climate change

    Science.gov (United States)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  8. Habitat structure and zonation patterns of northwestern Mediterranean shoreline strands

    Directory of Open Access Journals (Sweden)

    Simone Mariani

    2017-06-01

    Full Text Available We studied the habitat structure (macrofaunal assemblages and bottom types and zonation patterns of 29 unvegetated shoreline strands along the 900-km coast of Catalonia (NW Mediterranean Sea. Organisms were sampled with grabs, pitfall traps, sticky traps, clam nets and spades to ensure capture of the different proportions of macrofaunal assemblages from the supra-, medio- and infralittoral levels. We collected 211 taxa: 194 animals and 17 algae. The most abundant and dominant organisms collected with van Veen grabs were Nematoda, Oligochaeta and Collembola at the supralittoral level; the polychaetes Saccocirrus spp. and Pisione remota, the amphipod Corophium orientale, Nematoda, and Turbellaria at the mediolittoral level; and Nematoda at the upper infralittoral level. SIMPER analysis revealed great dissimilarity between the organisms inhabiting the supralittoral and the other littoral levels. Regarding the epifauna, the sticky traps used at the supralittoral level mainly collected Collembola, which were nearly absent in pitfall traps. The qualitative study performed with a clam net and a small spade revealed that Nematoda, Saccocirrus spp., Turbellaria, Nemertea and the polychaete P. remota were the most abundant animals at both the medio- and the infralittoral levels and no differences were found between these levels. Different qualitative sampling methodologies showed that in fine sediments the bivalves Donax trunculus and D. semistriatus determined more than 97% of dissimilarity from coarse-sand sites. Richness increased in protected sandy and cobble shores. Littoral level and bottom-type features were only to a certain extent valid indicators of specific biotic components for a specific habitat.

  9. Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: Environmental legacy after twelve years of the Gulf war oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Adriana C., E-mail: ABejarano@researchplanning.co [Research Planning Inc., 1121 Park St., Columbia, SC 29201 (United States); Michel, Jacqueline [Research Planning Inc., 1121 Park St., Columbia, SC 29201 (United States)

    2010-05-15

    A large-scale assessment of polycyclic aromatic hydrocarbons (PAHs) from the 1991 Gulf War oil spill was performed for 2002-2003 sediment samples (n = 1679) collected from habitats along the shoreline of Saudi Arabia. Benthic sediment toxicity was characterized using the Equilibrium Partitioning Sediment Benchmark Toxic Unit approach for 43 PAHs (ESBTU{sub FCV,43}). Samples were assigned to risk categories according to ESBTU{sub FCV,43} values: no-risk (<=1), low (>1-<=2), low-medium (>2-<=3), medium (>3-<=5) and high-risk (>5). Sixty seven percent of samples had ESBTU{sub FCV,43} > 1 indicating potential adverse ecological effects. Sediments from the 0-30 cm layer from tidal flats, and the >30-<60 cm layer from heavily oiled halophytes and mangroves had high frequency of high-risk samples. No-risk samples were characterized by chrysene enrichment and depletion of lighter molecular weight PAHs, while high-risk samples showed little oil weathering and PAH patterns similar to 1993 samples. North of Safaniya sediments were not likely to pose adverse ecological effects contrary to sediments south of Tanaqib. Landscape and geomorphology has played a role on the distribution and persistence in sediments of oil from the Gulf War. - Risk Assessment of PAHs in shoreline sediments 12 years after the Gulf War oil spill.

  10. Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: Environmental legacy after twelve years of the Gulf war oil spill

    International Nuclear Information System (INIS)

    Bejarano, Adriana C.; Michel, Jacqueline

    2010-01-01

    A large-scale assessment of polycyclic aromatic hydrocarbons (PAHs) from the 1991 Gulf War oil spill was performed for 2002-2003 sediment samples (n = 1679) collected from habitats along the shoreline of Saudi Arabia. Benthic sediment toxicity was characterized using the Equilibrium Partitioning Sediment Benchmark Toxic Unit approach for 43 PAHs (ESBTU FCV,43 ). Samples were assigned to risk categories according to ESBTU FCV,43 values: no-risk (≤1), low (>1-≤2), low-medium (>2-≤3), medium (>3-≤5) and high-risk (>5). Sixty seven percent of samples had ESBTU FCV,43 > 1 indicating potential adverse ecological effects. Sediments from the 0-30 cm layer from tidal flats, and the >30-<60 cm layer from heavily oiled halophytes and mangroves had high frequency of high-risk samples. No-risk samples were characterized by chrysene enrichment and depletion of lighter molecular weight PAHs, while high-risk samples showed little oil weathering and PAH patterns similar to 1993 samples. North of Safaniya sediments were not likely to pose adverse ecological effects contrary to sediments south of Tanaqib. Landscape and geomorphology has played a role on the distribution and persistence in sediments of oil from the Gulf War. - Risk Assessment of PAHs in shoreline sediments 12 years after the Gulf War oil spill.

  11. Marsh canopy structure changes and the Deepwater Horizon oil spill

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2016-01-01

    Marsh canopy structure was mapped yearly from 2009 to 2012 in the Barataria Bay, Louisiana coastal region that was impacted by the 2010 Deepwater Horizon (DWH) oil spill. Based on the previously demonstrated capability of NASA's UAVSAR polarimetric synthetic aperture radar (PolSAR) image data to map Spartina alterniflora marsh canopy structure, structure maps combining the leaf area index (LAI) and leaf angle distribution (LAD, orientation) were constructed for yearly intervals that were directly relatable to the 2010 LAI-LAD classification. The yearly LAI-LAD and LAI difference maps were used to investigate causes for the previously revealed dramatic change in marsh structure from prespill (2009) to postspill (2010, spill cessation), and the occurrence of structure features that exhibited abnormal spatial and temporal patterns. Water level and salinity records showed that freshwater releases used to keep the oil offshore did not cause the rapid growth from 2009 to 2010 in marsh surrounding the inner Bay. Photointerpretation of optical image data determined that interior marsh patches exhibiting rapid change were caused by burns and burn recovery, and that the pattern of 2010 to 2011 LAI decreases in backshore marsh and extending along some tidal channels into the interior marsh were not associated with burns. Instead, the majority of 2010 to 2011 shoreline features aligned with vectors displaying the severity of 2010 shoreline oiling from the DWH spill. Although the association is not conclusive of a causal oil impact, the coexistent pattern is a significant discovery. PolSAR marsh structure mapping provided a unique perspective of marsh biophysical status that enhanced detection of change and monitoring of trends important to management effectiveness.

  12. The impact of a port on the surrounding seashores based on the 13-year monitoring results

    Science.gov (United States)

    Tõnisson, Hannes; Orviku, Kaarel; Kont, Are

    2017-04-01

    The study was carried out in the vicinity of Sillamäe town and industrial port, located on the north-eastern coast of Estonia in the south-eastern part of the Gulf of Finland (The Baltic Sea). Sillamäe was potentially one of the most serious threats for the whole Baltic Sea environment. The town was founded together with the construction of a highly specialized chemical and metallurgy plant in 1946, where fuel rods and nuclear materials for the Soviet nuclear power plants and weapons were produced. The current study is focusing on the shore processes and the coastal sea fronting Sillamäe. The town is located east of the port. It is the region with the highest potential impact of the port. Until the town was founded and the factory with its nuclear waste depository was constructed, the shores near the town were described as one litho-dynamic system with a good natural balance. Major human influence (construction of the port, waste depository, etc.) and additionally climate warming has taken place since then. The shores in front of the nuclear waste depository are well protected today. However, the rapidly expanding port is the major obstacle of the longshore sediment transport since 2001. The aim of the study is to analyze the impact of the port to the changes in coastal evolution and sediment budget in the vicinity of the port based on the regular monitoring results. The dynamics of the seashores was assessed using remote methods and in situ measurements. Remote methods included the analyses of shoreline changes and changes in scarp positions in space and time using orthophotos. The study is also based on the measurements of scarp edges, shorelines and shore profiles conducted in 2004-2016. The measurements were carried out using Leica GS09 RTK-GPS and Leica level. The volume of sediments in the active zone of each profile was calculated. The active zone was defined as the zone from the mean shoreline to the elevation where storm waves were still able to

  13. Reconnaissance of Macondo-1 well oil in sediment and tarballs from the northern Gulf of Mexico shoreline, Texas to Florida

    Science.gov (United States)

    Rosenbauer, Robert J.; Campbell, Pamela L.; Lam, Angela; Lorenson, T.D.; Hostettler, Frances D.; Thomas, Burt; Wong, Florence L.

    2010-01-01

    Hydrocarbons were extracted and analyzed from sediment and tarballs collected from the northern Gulf of Mexico (nGOM) coast that is potentially impacted by Macondo-1 (M-1) well oil. The samples were analyzed for a suite of diagnostic geochemical biomarkers. Aided by multivariate statistical analysis, the M-1 well oil has been identified in sediment and tarballs collected from Louisiana, Alabama, Mississippi, and Florida. None of the sediment hydrocarbon extracts from Texas correlated with the M-1 well oil. Oil-impacted sediments are confined to the shoreline adjacent to the cumulative oil slick of the Deepwater Horizon oil spill, and no impact was observed outside of this area.

  14. Hurricane Isaac: observations and analysis of coastal change

    Science.gov (United States)

    Guy, Kristy K.; Stockdon, Hilary F.; Plant, Nathaniel G.; Doran, Kara S.; Morgan, Karen L.M.

    2013-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical process of interest is sediment transport that is driven by waves, currents, and storm surge associated with storms. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to impact parts of the coast not normally exposed to these processes. Coastal geomorphology reflects the coastal changes associated with extreme-storm processes. Relevant geomorphic variables that are observable before and after storms include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to quantify coastal change and are used to predict coastal vulnerability to storms (Stockdon and others, 2007). The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards (NACCH) project (http://coastal.er.usgs.gov/national-assessment/) provides hazard information to those concerned about the Nation’s coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. Extreme-storm research is a component of the NACCH project (http://coastal.er.usgs.gov/hurricanes/) that includes development of predictive understanding, vulnerability assessments using models, and updated observations in response to specific storm events. In particular, observations were made to determine morphological changes associated with Hurricane Isaac, which made landfall in the United States first at Southwest Pass, at the mouth of the Mississippi River, at 0000 August 29, 2012 UTC (Coordinated Universal Time) and again, 8 hours later, west of Port Fourchon, Louisiana (Berg, 2013). Methods of observation included oblique aerial photography

  15. Global change and paraglacial morphodynamic modification in Svalbard

    International Nuclear Information System (INIS)

    Lafly, D.; Mercier, D.

    2000-01-01

    The study of glaciers is a good means by which to determine the impact of global climatic change. Svalbard is an area located in the polar oceanic environment that records contemporary global climatic change with acute sensitivity through the paraglacial process called runoff, which is considered to be the most effective erosional process, relegating glacial and periglacial processes to a lesser level of influence. This study introduced the method of cartography and field data acquisition through systematic non-aligned surveys to determine changes in glacial morphology. A large prograding shoreline was observed at the down side of sand dunes, which gain ground over the space occupied by the fjords because of a large amount of sediment. These sediments are carried by flowing water that feeds off glacier meltwater, following climatic global change. The study showed that remote sensing makes it possible to map landscapes while still taking into account certain aspects of their dynamics. 27 refs., 10 figs

  16. A field demonstration of the efficacy of bioremediation to treat oiled shorelines following the Sea Empress incident

    Energy Technology Data Exchange (ETDEWEB)

    Swannell, R.P.J.; Mitchell, D. [AEA Technology Environment, National Environmental Technology Centre, Culham (United Kingdom); Lethbridge, G. [Texaco Ltd., Environment, Health and Safety, Pembroke (GB)] (and others)

    1999-08-01

    Bioremediation was investigated as a method of treating a mixture of Forties Crude Oil and Heavy Fuel Oil stranded on Bullwell Bay, Milford Haven, UK after the grounding of the Sea Empress in 1996. A randomised block design in triplicate was used to test the efficacy of two bioremediation treatments: a weekly application of mineral nutrient dissolved in sea water and a single application of a slow-release fertiliser. Each treatment supplied an equivalent amount of nitrogen and phosphorus. Concentrations of residual hydrocarbon normalised to the biomarker 17{alpha}(H),21{beta}(H)-hopane showed that after two months the oil was significantly (p<0.001) more biodegraded in the treated plots than in the controls. On average, the oil in the nutrient amended plots was 37% more degraded than that found in the controls. There was no evidence that the bioremediation treatment increased the toxicity of the oiled sediment. The results confirm that bioremediation can be used to treat a mixture of crude and heavy fuel oil on a pebble beach. In particular, the data suggest that the application of a slow-release fertiliser alone may be a cost-effective method of treating low-energy, contaminated shorelines after a spill incident. (Author)

  17. A field demonstration of the efficacy of bioremediation to treat oiled shorelines following the Sea Empress incident

    International Nuclear Information System (INIS)

    Swannell, R.P.J.; Mitchell, D.; Lethbridge, G.

    1999-01-01

    Bioremediation was investigated as a method of treating a mixture of Forties Crude Oil and Heavy Fuel Oil stranded on Bullwell Bay, Milford Haven, UK after the grounding of the Sea Empress in 1996. A randomised block design in triplicate was used to test the efficacy of two bioremediation treatments: a weekly application of mineral nutrient dissolved in sea water and a single application of a slow-release fertiliser. Each treatment supplied an equivalent amount of nitrogen and phosphorus. Concentrations of residual hydrocarbon normalised to the biomarker 17α(H),21β(H)-hopane showed that after two months the oil was significantly (p<0.001) more biodegraded in the treated plots than in the controls. On average, the oil in the nutrient amended plots was 37% more degraded than that found in the controls. There was no evidence that the bioremediation treatment increased the toxicity of the oiled sediment. The results confirm that bioremediation can be used to treat a mixture of crude and heavy fuel oil on a pebble beach. In particular, the data suggest that the application of a slow-release fertiliser alone may be a cost-effective method of treating low-energy, contaminated shorelines after a spill incident. (Author)

  18. Types and Origins of Debris Found on Maui Shorelines: Implications for Mitigation Policies and Strategies

    Science.gov (United States)

    Blickley, L.; Currie, J. J.; Kaufman, G. D.

    2016-02-01

    Marine debris is an identified concern for coastal areas and is known to accumulate in large quantities in the North Pacific Ocean. The proximity of the Main Hawaiian Islands to these "garbage patches" represents an ongoing concern with little understanding of debris origins or efficacy of current mitigation policies. Debris accumulation surveys were conducted monthly between October 2013 and August 2014 and daily during January 2015 at 3 beaches on Maui's coastline. Debris accumulation rates, loads, and sources varied between sites and were influenced by both environmental and anthropogenic factors. Debris accumulation was strongly influenced by the temporal scale of sampling, with daily surveys showing a significant increase in accumulation rate. Plastics were the most common debris item at each site ranging from local, land-based debris including cigarette butts, straws, and food wrappers, to foreign, ocean-based debris such as oyster spacer tubes and hagfish traps. The results of this study indicate that the passage of a tobacco free beaches bill on Maui has not significantly reduced the amount of tobacco related debris. Alternatively, a ban on plastic grocery bags has eliminated this type of debris from Maui's shorelines, with no bags found at any of the sampling sites. The wide spread origins of collected debris further suggests that mitigation strategies to reduce debris will need to take place across hundreds of local municipalities. The efficacy of marine debris policies furthermore depends on enforcement and implementation strategy, as current results suggest policy enforcement at the producer level affords more effective results than that at the consumer level. Local debris mitigation actions have nevertheless been shown to affect debris loads, and municipalities are therefore encouraged to adopt a holistic combination of policy, community-based debris removal programs, increased public awareness, and ongoing monitoring to address marine debris.

  19. Application of RAD-BCG calculator to Hanford's 300 area shoreline characterization dataset

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Ernest J.; Poston, Ted M.; Tiller, Brett L.; Patton, Gene W.

    2003-07-01

    Abstract. In 2001, a multi-agency study was conducted to characterize potential environmental effects from radiological and chemical contaminants on the near-shore environment of the Columbia River at the 300 Area of the U.S. Department of Energy’s Hanford Site. Historically, the 300 Area was the location of nuclear fuel fabrication and was the main location for research and development activities from the 1940s until the late 1980s. During past waste handling practices uranium, copper, and other heavy metals were routed to liquid waste streams and ponds near the Columbia River shoreline. The Washington State Department of Health and the Pacific Northwest National Laboratory’s Surface Environmental Surveillance Project sampled various environmental components including river water, riverbank spring water, sediment, fishes, crustaceans, bivalve mollusks, aquatic insects, riparian vegetation, small mammals, and terrestrial invertebrates for analyses of radiological and chemical constituents. The radiological analysis results for water and sediment were used as initial input into the RAD-BCG Calculator. The RAD-BCG Calculator, a computer program that uses an Excel® spreadsheet and Visual Basic® software, showed that maximum radionuclide concentrations measured in water and sediment were lower than the initial screening criteria for concentrations to produce dose rates at existing or proposed limits. Radionuclide concentrations measured in biota samples were used to calculate site-specific bioaccumulation coefficients (Biv) to test the utility of the RAD-BCG-Calculator’s site-specific screening phase. To further evaluate site-specific effects, the default Relative Biological Effect (RBE) for internal alpha particle emissions was reduced by half and the program’s kinetic/allometric calculation approach was initiated. The subsequent calculations showed the initial RAD-BCG Calculator results to be conservative, which is appropriate for screening purposes.

  20. A GIS-model for predicting the impact of climate change on shore erosion in hydroelectric reservoirs

    International Nuclear Information System (INIS)

    Penner, L.A.; Zimmer, T.A.M.; St Laurent, M.

    2008-01-01

    Shoreline erosion affects inland lakes and hydroelectric reservoirs in several ways. This poster described a vector-based geographic information system (GIS) model designed to predict changes in shore zone geometry, top-of-bluff recession, and eroded sediment volumes. The model was designed for use in Manitoba Hydro's reservoirs in northern Manitoba, and simulated near-shore downcutting and bank recession caused by wind-generated waves. Parameters for the model included deep water wave energy, and water level fluctuations. Effective wave energy was seen as a function of the water level fluctuation range, wave conditions, and near-shore slope. The model was validated by field monitoring studies that included repeated shore zone transect surveys and sediment coring studies. Results of the study showed that the model provides a systematic method of predicting potential changes in erosion associated with climatic change. The volume and mass of eroded sediment predicted for the different modelling scenarios will be used as input data for future sedimentation models. tabs., figs

  1. Scale-dependent behavior of the foredune: Implications for barrier island response to storms and sea-level rise

    Science.gov (United States)

    Houser, Chris; Wernette, Phil; Weymer, Bradley A.

    2018-02-01

    The impact of storm surge on a barrier island tends to be considered from a single cross-shore dimension, dependent on the relative elevations of the storm surge and dune crest. However, the foredune is rarely uniform and can exhibit considerable variation in height and width at a range of length scales. In this study, LiDAR data from barrier islands in Texas and Florida are used to explore how shoreline position and dune morphology vary alongshore, and to determine how this variability is altered or reinforced by storms and post-storm recovery. Wavelet analysis reveals that a power law can approximate historical shoreline change across all scales, but that storm-scale shoreline change ( 10 years) and dune height exhibit similar scale-dependent variations at swash and surf zone scales (< 1000 m). The in-phase nature of the relationship between dune height and storm-scale shoreline change indicates that areas of greater storm-scale shoreline retreat are associated with areas of smaller dunes. It is argued that the decoupling of storm-scale and historical shoreline change at swash and surf zone scales is also associated with the alongshore redistribution of sediment and the tendency of shorelines to evolve to a more diffusive (or straight) pattern with time. The wavelet analysis of the data for post-storm dune recovery is also characterized by red noise at the smallest scales characteristic of diffusive systems, suggesting that it is possible that small-scale variations in dune height can be repaired through alongshore recovery and expansion if there is sufficient time between storms. However, the time required for dune recovery exceeds the time between storms capable of eroding and overwashing the dune. Correlation between historical shoreline retreat and the variance of the dune at swash and surf zone scales suggests that the persistence of the dune is an important control on transgression through island migration or shoreline retreat with relative sea-level rise.

  2. Quantifying anthropogenically driven morphologic changes on a barrier island: Fire Island National Seashore, New York

    Science.gov (United States)

    Kratzmann, Meredith G.; Hapke, Cheryl J.

    2012-01-01

    Beach scraping, beach replenishment, and the presence of moderate development have altered the morphology of the dune–beach system at Fire Island National Seashore, located on a barrier island on the south coast of Long Island, New York. Seventeen communities are interspersed with sections of natural, nonmodified land within the park boundary. Beach width, dune elevation change, volume change, and shoreline change were calculated from light detection and ranging (LIDAR), real-time kinematic global positioning system (RTK GPS), and beach profile data sets at two ∼4 km long study sites. Each site contains both modified (developed, replenished, and/or scraped) and nonmodified (natural) areas. The analysis spans 9 years, from 1998 to 2007, which encompasses both scraping and replenishment events at Fire Island. The objectives of this study were to quantify and compare morphological changes in modified and nonmodified zones, and to identify erosional areas within the study sites.Areas of increased volume and shoreline accretion were observed at both sites and at the western site are consistent with sand replenishment activities. The results indicate that from 1998 to 2007 locations backed by development and that employed beach scraping and/or replenishment as erosion control measures experienced more loss of volume, width, and dune elevation as compared with adjacent nonmodified areas. A detailed analysis of one specific modification, beach scraping, shows distinct morphological differences in scraped areas relative to nonscraped areas of the beach. In general, scraped areas where there is development on the dunes showed decreases in all measured parameters and are more likely to experience overwash during storm events. Furthermore, the rapid mobilization of material from the anthropogenic (scraped) dune results in increased beach accretion downcoast.National park lands are immediately adjacent to developed areas on Fire Island, and even relatively small human

  3. Maximizing effectiveness of adaptation action in Pacific Island communities using coastal wave attenuation models

    Science.gov (United States)

    Jung, H.; Carruthers, T.; Allison, M. A.; Weathers, D.; Moss, L.; Timmermans, H.

    2017-12-01

    Pacific Island communities are highly vulnerable to the effects of climate change, specifically accelerating rates of sea level rise, changes to storm intensity and associated rainfall patterns resulting in flooding and shoreline erosion. Nature-based adaptation is being planned not only to reduce the risk from shoreline erosion, but also to support benefits of a healthy ecosystem (e.g., supporting fisheries or coral reefs). In order to assess potential effectiveness of the nature-based actions to dissipate wave energy, two-dimensional X-Beach models were developed to predict the wave attenuation effect of coastal adaptation actions at the pilot sites—the villages of Naselesele and Somosomo on Taveuni island, Fiji. Both sites are experiencing serious shoreline erosion due to sea level rise and storm wave. The water depth (single-beam bathymetry), land elevation (truck-based LiDAR), and vegetation data including stem density and height were collected in both locations in a June 2017 field experiment. Wave height and water velocity were also measured for the model setup and calibration using a series of bottom-mounted instruments deployed in the 0-15 m water depth portions of the study grid. The calibrated model will be used to evaluate a range of possible adaptation actions identified by the community members of Naselesele and Somosomo. Particularly, multiple storm scenario runs with management-relevant shoreline restoration/adaptation options will be implemented to evaluate efficiencies of each adaptation action (e.g., no action, with additional planted trees, with sand mining, with seawalls constructed with natural materials, etc.). These model results will help to better understand how proposed adaption actions may influence future shoreline change and maximize benefits to communities in island nations across the SW Pacific.

  4. Nearshore waves and longshore sediment transport along Rameshwaram Island off the east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Gowthaman, R.; SanilKumar, V.; Dwarakish, G.S.; Shanas, P.R.; Jena, B.K.; Singh, J.

    changing. The accurate demarcation and monitoring of a shoreline are necessary for understanding coastal processes (Natesan, 2008). Remote sensing technology is commonly used to map the shoreline and offers the potential of updating maps frequently (Frihy... influence is less at 2 m water depth may be due to the frictional dissipation and breaking. Fig. 5 indicates that the numerical model will not give good results during tropical storm/depression. During the study period, the breaking wave height varied...

  5. Coastal Hazard Vulnerability Assessment: A Case Study of Erosion and Flooding on Herschel Island, Yukon Territory, Canada

    Science.gov (United States)

    Radosavljevic, B.; Lantuit, H.; Overduin, P. P.; Fritz, M.

    2015-12-01

    Coastal infrastructure, cultural, and archeological sites are increasingly vulnerable to erosion and flooding along permafrost coasts. Amplified warming of the Arctic, sea level rise, lengthening of the open water period, and a predicted increase in frequency of major storms compound these threats. Mitigation necessitates decision-making tools at an appropriate scale. We present a study of coastal erosion combining it with a flooding risk assessment for the culturally important historic settlement on Herschel Island, a UNESCO World Heritage candidate site. The resulting map may help local stakeholders devise management strategies to cope with rapidly changing environmental conditions. We analyzed shoreline movement using the Digital Shoreline Analysis System (DSAS) after digitizing shorelines from 1952, 1970, and 2011. Using these data, forecasts of shoreline positions were made for 20 and 50 years into the future. Flooding risk was assessed using a cost-distance map based on a high-resolution Light Detection and Ranging (LiDAR) dataset and current Intergovernmental Panel on Climate Change sea level estimates. Widespread erosion characterizes the study area. The rate of shoreline movement for different periods of the study ranges from -5.5 to 2.7 m·a-1 (mean -0.6 m·a-1). Mean coastal retreat decreased from -0.6 m·a-1 to -0.5 m·a-1, for 1952-1970 and 1970-2000, respectively, and increased to -1.3 m·a-1 in the period 2000-2011. Ice-rich coastal sections, and coastal sections most exposed to wave attack exhibited the highest rates of coastal retreat. The geohazard map resulting from shoreline projections and flood risk analysis indicates that most of the area occupied by the historic settlement is at extreme or very high risk of flooding, and some buildings are vulnerable to coastal erosion. The results of this study indicate a greater threat by coastal flooding than erosion. Our assessment may be applied in other locations where limited data are available.

  6. Evaluation of ground deformations induced by the 1999 Kocaeli earthquake (Turkey) at selected sites on shorelines

    Science.gov (United States)

    Aydan, Ömer; Ulusay, Reşat; Atak, Veysel Okan

    2008-03-01

    The Kocaeli earthquake ( M w = 7.4) of 17 August 1999 occurred in the Eastern Marmara Region of Turkey along the North Anadolu Fault and resulted in a very serious loss of life and property. One of the most important geotechnical issues of this event was the permanent ground deformations because of both liquefaction and faulting. These deformations occurred particularly along the southern shores of İzmit Bay and Sapanca Lake between the cities of Yalova and Adapazarı in the west and east, respectively. In this study, three sites founded on delta fans, namely Değirmendere Nose, Yeniköy tea garden at Seymen on the coast of İzmit Bay, and Vakıf Hotel site on the coast of Sapanca Lake were selected as typical cases. The main causes of the ground deformations at these sites were then investigated. Geotechnical characterization of the ground, derivation of displacement vectors from the pre- and post-earthquake aerial photographs, liquefaction assessments based on field performance data, and analyses carried out using the sliding body method have been fundamental in this study. The displacement vectors determined from photogrammetric evaluations conducted at Değirmendere and Seymen showed a combined movement of faulting and liquefaction. But except the movements in the close vicinity of shorelines, the dominant factor in this movement was faulting. The results obtained from the analyses suggested that the ground failure at Değirmendere was a submarine landslide mainly because of earthquake shaking rather than liquefaction. On the other hand, the ground failures at the Yeniköy tea garden on the coast of Seymen and the hotel area in Sapanca town resulted from liquefaction-induced lateral spreading. It was also obtained that the ground deformations estimated from the sliding body method were quite close to those measured by aerial photogrammetry technique.

  7. Small drains, big problems: the impact of dry weather runoff on shoreline water quality at enclosed beaches.

    Science.gov (United States)

    Rippy, Megan A; Stein, Robert; Sanders, Brett F; Davis, Kristen; McLaughlin, Karen; Skinner, John F; Kappeler, John; Grant, Stanley B

    2014-12-16

    Enclosed beaches along urban coastlines are frequent hot spots of fecal indicator bacteria (FIB) pollution. In this paper we present field measurements and modeling studies aimed at evaluating the impact of small storm drains on FIB pollution at enclosed beaches in Newport Bay, the second largest tidal embayment in Southern California. Our results suggest that small drains have a disproportionate impact on enclosed beach water quality for five reasons: (1) dry weather surface flows (primarily from overirrigation of lawns and ornamental plants) harbor FIB at concentrations exceeding recreational water quality criteria; (2) small drains can trap dry weather runoff during high tide, and then release it in a bolus during the falling tide when drainpipe outlets are exposed; (3) nearshore turbulence is low (turbulent diffusivities approximately 10(-3) m(2) s(-1)), limiting dilution of FIB and other runoff-associated pollutants once they enter the bay; (4) once in the bay, runoff can form buoyant plumes that further limit vertical mixing and dilution; and (5) local winds can force buoyant runoff plumes back against the shoreline, where water depth is minimal and human contact likely. Outdoor water conservation and urban retrofits that minimize the volume of dry and wet weather runoff entering the local storm drain system may be the best option for improving beach water quality in Newport Bay and other urban-impacted enclosed beaches.

  8. Projected 21st century coastal flooding in the Southern California Bight. Part 2: Tools for assessing climate change-driven coastal hazards and socio-economic impacts

    Science.gov (United States)

    Erikson, Li; Barnard, Patrick; O'Neill, Andrea; Wood, Nathan J.; Jones, Jeanne M.; Finzi Hart, Juliette; Vitousek, Sean; Limber, Patrick; Hayden, Maya; Fitzgibbon, Michael; Lovering, Jessica; Foxgrover, Amy C.

    2018-01-01

    This paper is the second of two that describes the Coastal Storm Modeling System (CoSMoS) approach for quantifying physical hazards and socio-economic hazard exposure in coastal zones affected by sea-level rise and changing coastal storms. The modelling approach, presented in Part 1, downscales atmospheric global-scale projections to local scale coastal flood impacts by deterministically computing the combined hazards of sea-level rise, waves, storm surges, astronomic tides, fluvial discharges, and changes in shoreline positions. The method is demonstrated through an application to Southern California, United States, where the shoreline is a mix of bluffs, beaches, highly managed coastal communities, and infrastructure of high economic value. Results show that inclusion of 100-year projected coastal storms will increase flooding by 9–350% (an additional average 53.0 ± 16.0 km2) in addition to a 25–500 cm sea-level rise. The greater flooding extents translate to a 55–110% increase in residential impact and a 40–90% increase in building replacement costs. To communicate hazards and ranges in socio-economic exposures to these hazards, a set of tools were collaboratively designed and tested with stakeholders and policy makers; these tools consist of two web-based mapping and analytic applications as well as virtual reality visualizations. To reach a larger audience and enhance usability of the data, outreach and engagement included workshop-style trainings for targeted end-users and innovative applications of the virtual reality visualizations.

  9. Transgressive Shoreface Response in the Mississippi River DeltaShoreface Sediment Budget Influence on Barrier Island Evolution, Louisiana, USA

    Science.gov (United States)

    Beasley, B.; Georgiou, I. Y.; Miner, M. D.

    2017-12-01

    In Louisiana barrier islands are undergoing rapid morphological change due to shoreface retreat and increasing bay tidal prism driven by high rates of relative sea-level rise (RSLR) (1 cm/yr) and interior wetland loss, respectively. Previous works utilized historical region-scale bathymetry change and shoreline change analyses to assess large-scale coastal evolution. However, more localized assessments considering the role of sediment transport processes in regional evolution are lacking. This is essential to predicting coastal change trajectories and allocating limited sand resources for nourishment. Using historic bathymetric and shoreline data dating to the 1890s for the Louisiana coast, 100-m spaced shore-normal transects were created to track meter-scale elevation change for 1890, 1930, 1980, 2006, and 2015. An automated framework was used to quantify and track barrier island evolution parameters such as shoreline change, area, width, bathymetric contour migration, and shoreface slope. During the 125 yr analysis period, shoreline erosion mean rates slowed from 12 to 6 m/yr while lower shoreface migration mean rates increased from 5 to 25 m/yr. Locally, retreat rates for the Caminada Headland upper shoreface slowed from 18 to 8 m/yr while lower shoreface retreat rates increased from 8 to 14m/yr. The Timbalier Islands experienced increased migration rates along the entire shoreface, while the lower shoreface of the Isles Dernieres transitioned from progradational to erosional (-5 m/yr in 1890 to 20 m/yr in 2006). Our analysis suggests that although shoreline erosion rates decreased, overall landward migration of the barrier system increased as the shoreface steepened. Our results illustrate that monitoring subaerial island erosion rates are insufficient for evaluating regional dynamics of transgressive coastal systems. The longevity of barriers appears diminished due to a reduction in the shoreface sediment available and further corroborates the role of the

  10. Decadal changes in shoreline patterns in Sundarbans, India

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterjee, N.; Mukhopadhyay, R.; Mitra, D.

    islands in Indian Sundarbans (ISD) since 1979. Using multi temporal satellite images of LANDSAT, we found that as many as four islands within ISD have lost area in excess of 30%. While the area loss for another three islands has been between 10 and 30...

  11. Bank erosion of navigation canals in the western and central Gulf of Mexico

    Science.gov (United States)

    Thatcher, Cindy A.; Hartley, Stephen B.; Wilson, Scott A.

    2011-01-01

    Erosion of navigation canal banks is a direct cause of land loss, but there has been little quantitative analysis to determine why certain major canals exhibit faster widening rates (indicative of erosion) than others in the coastal zones of Texas, Louisiana, Mississippi, and Alabama. We hypothesize that navigation canals exhibit varying rates of erosion based on soil properties of the embankment substrate, vegetation type, geologic region (derived from digital versions of state geologic maps), and the presence or absence of canal bank armaments (that is, rock rip-rap, concrete bulkheads, or other shoreline protection structures). The first objective of this project was to map the shoreline position and substrate along both banks of the navigation canals, which were digitized from 3 different time periods of aerial photography spanning the years of 1978/79 to 2005/06. The second objective was to quantify the erosion rates of the navigation canals in the study area and to determine whether differences in erosion rates are related to embankment substrate, vegetation type, geologic region, or soil type. To measure changes in shoreline position over time, transects spaced at 50-m (164-ft) intervals were intersected with shorelines from all three time periods, and an annual rate of change was calculated for each transect. Mean annual rates of shoreline change ranged from 1.75 m/year (5.74 ft/year) on the west side of the Atchafalaya River, La., where there was shoreline advancement or canal narrowing, to -3.29 m/year (-10.79 ft/year) on the south side of the Theodore Ship Channel, Ala., where there was shoreline retreat or erosion. Statistical analysis indicated that there were significant differences in shoreline retreat rates according to geologic region and marsh vegetation type, and a weak relationship with soil organic content. This information can be used to better estimate future land loss rates associated with navigation canals and to prioritize the location of

  12. Importance of flexure in response to sedimentation and erosion along the US Atlantic passive margin in reconciling sea level change and paleoshorelines

    Science.gov (United States)

    Moucha, R.; Ruetenik, G.; de Boer, B.

    2017-12-01

    Reconciling elevations of paleoshorelines along the US Atlantic passive margin with estimates of eustatic sea level have long posed to be a challenge. Discrepancies between shoreline elevation and sea level have been attributed to combinations of tectonics, glacial isostatic adjustment, mantle convection, gravitation and/or errors, for example, in the inference of eustatic sea level from the marine 18O record. Herein we present a numerical model of landscape evolution combined with sea level change and solid Earth deformations to demonstrate the importance of flexural effects in response to erosion and sedimentation along the US Atlantic passive margin. We quantify these effects using two different temporal models. One reconciles the Orangeburg scarp, a well-documented 3.5 million-year-old mid-Pliocene shoreline, with a 15 m mid-Pliocene sea level above present-day (Moucha and Ruetenik, 2017). The other model focuses on the evolution of the South Carolina and northern Georgia margin since MIS 11 ( 400 Ka) using a fully coupled ice sheet, sea level and solid Earth model (de Boer et al, 2014) while relating our results to a series of enigmatic sea level high stand markers. de Boer, B., Stocci, P., and van de Wal, R. (2014). A fully coupled 3-d ice-sheet-sea-level model: algorithm and applications. Geoscientific Model Development, 7:2141-2156. Moucha, R. and Ruetenik, G. A. (2017). Interplay between dynamic topography and flexure along the US Atlantic passive margin: Insights from landscape evolution modeling. Global and Planetary Change, 149: 72-78

  13. Temporal shift of sea turtle nest sites in an eroding barrier island beach

    Science.gov (United States)

    Fujisaki, Ikuko; Lamont, Margaret M.; Carthy, Raymond R.

    2018-01-01

    Shoreline changes affect functionality of a sandy beach as a wildlife habitat and coastal erosion is among the primary causes of the changes. We examined temporal shifts in locations where loggerheads placed nests in relation to coastal erosion along a barrier island beach in the northern Gulf of Mexico. We first confirmed consistency in long-term (1855–2001), short-term (1976–2001), and more recent (2002–2012) shoreline change rates in two adjacent beach sections, one historically eroding (west beach) and the other accreting (east beach). The mean annual shoreline change rate in the two sections was significantly different in all time periods. The recent (1998–2012) mean change rate was −10.9 ± 9.9 m/year in the west beach and −2.8 ± 4.9 m/year in the east beach, which resulted in the loss of about 70% and 30% of area in the west and east beaches, respectively. Loggerheads nested significantly closer to the vegetation line in 2012 than in 2002 in the west beach but the difference between the two time periods was not significant in the east beach. However, the distance from nests to the vegetation line from 2002 to 2014 was significantly reduced annually in both beaches; on average, loggerheads nested closer to the vegetation line by 9 m/year in the west beach and 5.8 m/year in the east beach. The observed shoreline change rate and corresponding shift of nest placement sites, combined with the forecasted future beach loss, highlighted the importance of addressing the issue of beach erosion to conserve sandy beach habitats.

  14. Spillway design implications resulting from changes in rainfall extremes

    International Nuclear Information System (INIS)

    Muzik, I.

    1999-01-01

    A study was conducted in order to determine how serious implications regarding spillway design of small dams would result from changes in flood frequencies and magnitudes, because of changes in rainfall regime in turn brought on by climate change due to carbon dioxide accumulation in the atmosphere. The region selected for study was the central Alberta foothills and adjacent prairie environment. A study watershed, representative of the region, was chosen to assess the present and possible future flood frequency-magnitude relationships. A Monte Carlo simulation method was used in conjunction with rainfall-runoff modelling of the study watershed to generate data for flood frequency analysis of maximum annual flood series corresponding to the present and future climate scenarios. The impact of resulting differences in design floods for small dams on spillway design was investigated using the Prairie Farm Rehabilitation Administration small dam design method. Changes in the mean and standard deviation of rainfall depth of design storms in a region will result in new probability distributions of the maximum annual flood flows. A 25% increase in the mean and standard deviation of design rainfall depth resulted in greater increases of 1:2 and 1:100 flood flows than a 50% increase in the standard deviation alone did. Under scenario 1, the 1:2 flood flows increased more than did the 1:100 flows. Scenario 2 produced opposite results, whereby the 1:100 flows increased more than did the 1:2 flows. It seems that a climate change of the type of scenario 1 would result in a more severe increase in flood flows than scenario 2 would. Retrofitting existing spillways of small dams would in most cases require increasing flow capacities of both operating and auxilliary spillways. 23 refs

  15. The impact of climate change on an emerging coastline affected by discontinuous permafrost: Manitounuk Strait, northern Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, N.; Allard, M. [Laval Univ., Centre of Nordic Studies, Ste-Foy, PQ (Canada)

    2003-10-01

    When results of a field survey and aerial photographs were compared and analyzed, it was observed that permafrost-affected sectors of the coastline along the Manitounuk Strait receded at an increasing rate between 1950 and 1995. During the same period sand beaches at the mouths of streams and rock and till shorelines on headlands were observed to prograde at the pace of isostatic uplift. This study attempts to answer the question whether recent climate warming has had a counterbalancing effect on land uplift, balancing out the coastal prograding associated with this uplift. Results showed that warming during the twentieth century induced its degradation through a succession of environmental impacts driven by climate change. The chain of impacts involved forest growth linked to slowly warming summers and ecologically driven changes in snow cover and groundwater flow, creating a positive feedback loop that accelerated thermokarst over the 50-year period of gradual change in seasonal climate. This degradation is believed to have been responsible for localized coastal retreat along the coastline that is otherwise prograding because of fast land uplift. Littoral factors also played a role, mainly by removing thawed and slumped sediments. 31 refs., 2 tabs., 7 figs.

  16. Does major depression result in lasting personality change?

    Science.gov (United States)

    Shea, M T; Leon, A C; Mueller, T I; Solomon, D A; Warshaw, M G; Keller, M B

    1996-11-01

    Individuals with a history of depression are characterized by high levels of certain personality traits, particularly neuroticism, introversion, and interpersonal dependency. The authors examined the "scar hypothesis," i.e., the possibility that episodes of major depression result in lasting personality changes that persist beyond recovery from the depression. A large sample of first-degree relatives, spouses, and comparison subjects ascertained in connection with the proband sample from the National Institute of Mental Health Collaborative Program on the Psychobiology of Depression were assessed at two points in time separated by an interval of 6 years. Subjects with a prospectively observed first episode of major depression during the interval were compared with subjects remaining well in terms of change from time 1 to time 2 in self-reported personality traits. All subjects studied were well (had no mental disorders) at the time of both assessments. There was no evidence of negative change from premorbid to postmorbid assessment in any of the personality traits for subjects with a prospectively observed first episode of major depression during the interval. The results suggested a possible association of number and length of episodes with increased levels of emotional reliance and introversion, respectively. The findings suggest that self-reported personality traits do not change after a typical episode of major depression. Future studies are needed to determine whether such change occurs following more severe, chronic, or recurrent episodes of depression.

  17. Radiation Dose Assessment For The Biota Of Terrestrial Ecosystems In The Shoreline Zone Of The Chernobyl Nuclear Power Plant Cooling Pond

    International Nuclear Information System (INIS)

    Farfan, E.; Jannik, T.

    2011-01-01

    Radiation exposure of the biota in the shoreline area of the Chernobyl Nuclear Power Plant Cooling Pond was assessed to evaluate radiological consequences from the decommissioning of the Cooling Pond. The article addresses studies of radioactive contamination of the terrestrial faunal complex and radionuclide concentration ratios in bodies of small birds, small mammals, amphibians, and reptiles living in the area. The data were used to calculate doses to biota using the ERICA Tool software. Doses from 90 Sr and 137 Cs were calculated using the default parameters of the ERICA Tool and were shown to be consistent with biota doses calculated from the field data. However, the ERICA dose calculations for plutonium isotopes were much higher (2-5 times for small mammals and 10-14 times for birds) than the doses calculated using the experimental data. Currently, the total doses for the terrestrial biota do not exceed maximum recommended levels. However, if the Cooling Pond is allowed to drawdown naturally and the contaminants of the bottom sediments are exposed and enter the biological cycle, the calculated doses to biota may exceed the maximum recommended values. The study is important in establishing the current exposure conditions such that a baseline exists from which changes can be documented following the lowering of the reservoir water. Additionally, the study provided useful radioecological data on biota concentration ratios for some species that are poorly represented in the literature.

  18. Ground-Penetrating Radar Study of Fort Morgan Peninsula Holocene Beach Ridges as Sea-level Indicators

    Science.gov (United States)

    Philbin, A.; Frederick, B.; Blum, M. D.; Tsoflias, G. P.

    2017-12-01

    one protracted period in the late Holocene. In addition to contributing to our understanding of Holocene SL change for the eastern GoM, results of this research provide context for sea-level conditions during which the Mississippi delta was constructed, and may provide insight into future shoreline response to rising sea levels.

  19. Contributions of changes in climatology and perturbation and the resulting nonlinearity to regional climate change.

    Science.gov (United States)

    Adachi, Sachiho A; Nishizawa, Seiya; Yoshida, Ryuji; Yamaura, Tsuyoshi; Ando, Kazuto; Yashiro, Hisashi; Kajikawa, Yoshiyuki; Tomita, Hirofumi

    2017-12-20

    Future changes in large-scale climatology and perturbation may have different impacts on regional climate change. It is important to understand the impacts of climatology and perturbation in terms of both thermodynamic and dynamic changes. Although many studies have investigated the influence of climatology changes on regional climate, the significance of perturbation changes is still debated. The nonlinear effect of these two changes is also unknown. We propose a systematic procedure that extracts the influences of three factors: changes in climatology, changes in perturbation and the resulting nonlinear effect. We then demonstrate the usefulness of the procedure, applying it to future changes in precipitation. All three factors have the same degree of influence, especially for extreme rainfall events. Thus, regional climate assessments should consider not only the climatology change but also the perturbation change and their nonlinearity. This procedure can advance interpretations of future regional climates.

  20. Modeling Reef Island Morphodynamics in Profile and Plan View

    Science.gov (United States)

    Ashton, A. D.; Ortiz, A. C.; Lorenzo-Trueba, J.

    2016-12-01

    Reef islands are carbonate detrital landforms perched atop shallow reef flats of atolls and barrier reef systems. Often comprising the only subaerial, inhabitable land of many island chains and island nations, these low-lying, geomorphically active landforms face considerable hazards from climate change. While there hazards include wave overtopping and groundwater salinization, sea-level rise and wave climate change will affect sediment transport and shoreline dynamics, including the possibility for wholesale reorganization of the islands themselves. Here we present a simplified morphodynamic model that can spatially quantify the potential impacts of climate change on reef islands. Using parameterizations of sediment transport pathways and feedbacks from previously presented XBeach modeling results, we investigate how sea-level rise, change in storminess, and different carbonate production rates can affect the profile evolution of reef islands, including feedbacks with the shallow reef flat that bounds the islands offshore (and lagoonward). Model results demonstrate that during rising sea levels, the reef flat can serve as a sediment trap, starving reef islands of detrital sediment that could otherwise fortify the shore against sea-level-rise-driven erosion. On the other hand, if reef flats are currently shallow (likely due to geologic inheritance or biologic cementation processes) such that sea-level rise does not result in sediment accumulation on the flat, reef island shorelines may be more resilient to rising seas. We extend the model in plan view to examine how long-term (decadal) changes in wave approach direction could affect reef island shoreline orientation. We compare model results to historical and geologic change for different case studies on the Marshall Islands. This simplified modeling approach, focusing on boundary dynamics and mass fluxes, provides a quantitative tool to predict the response of reef island environments to climate change.

  1. Spatio-Temporal Dynamics of a Coastal Island Using Geospatial Techniques: A Case in Hatiya Island, Bangladesh

    Science.gov (United States)

    Ramjan, S.; Mahmud, M. S.; Hossain, M. A.; Hasan, M.; Ashrafi, Z. M.

    2016-12-01

    Bangladesh is recognized for its high vulnerability to sea level rise (SLR). SLR directly and indirectly (by altering morphology of river estuary) accelerates erosion processes, washes out the loose materials of the coast and coastal islands. Hatiya, highly populated coastal island, located in Meghna river estuary is under severe threat of coastal erosion, which has not been quantified yet. The accurate mapping of the shoreline and coastal changes are very important for adopting conservation measures e.g. protection of human life, property and the natural environment. The objectives of the present study are to use remote sensing and Geographical Information System techniques to evaluate spatial and temporal changes in the shoreline and coastal land area of the Hatiya Island between the year of 1985 and 2016 from multi-temporal satellite images, i.e. assessing shifting of the shoreline position through digital shoreline analysis besides the erosion-accretion measurements. Study reveals that about 67 square kilometer areas has been lost between 1985 and 2016 which was about 17 percent of original area (1985). Erosion mainly took place in northern, north-western banks of the island. In these areas, the landward movement and rate of the shoreline were higher with a highest value of the net shoreline movement (NSM) around 6.2 km. Erosion rate is significant in exposed part of the island where tidal water pressure, shoreline configuration, loose bank materials and steep slope were observed. However, the accretion was noticed in recent years (2010-2016) in southern part of the island where slopes were gentle, perhaps due to backwash sediment deposition. As erosion process is prominent in this island, significant amounnt of usable land was lost. Therefore, local livelihood pattern has changed that has noticable effect on local economy. By quantifying the erosion-accretion rate, livelihood planning can be initiated in climatically threated vulnerable islands.

  2. Floating like a cork: The importance of glacial isostasy in the deglaciation progress in Iceland

    Science.gov (United States)

    Norddahl, H.; Ingolfsson, O.

    2016-12-01

    Being positioned on top of a hotspot and between two spreading ocean plates explains rheological structure of Iceland and the properties of a 30-35 km thick lithosphere, possibly with high proportion of partial melt, on top of a low viscous asthenosphere below Iceland, in the middle of the North Atlantic Ocean. Rapid variations in glacier loading on the Iceland crust have been proved to generate more or less an instantaneous depression or uplift of the crust and, thus, uphold both temporal and spacial glacio-isostatic equilibrium. Formation of a shoreline requires at least temporal equilibrium between glacial isostasy and eustasy. Eminent raised shorelines - found throughout Iceland - were formed during two separate but consecutive culmination of climatically induced glacier re-advance and consequent transgression of relative sea-level in Younger Dryas and Preboreal times (12.0 and 11.3 kcal BP). A Marine Limit shoreline in W Iceland was formed at 14.7 kcal BP, subsequent to a collapse-like retreat of the marine based part of the Icelandic Ice Sheet (IIS) and just prior to the onset of the Bølling warming, i.e. during a period of anticipated rapid isostatic uplift. A temporary glacio-isostatic equilibrium at that time is best explained by changes in the mode of deglaciation generating dynamic changes within the Ice Sheet itself, changes that resulted in reduced rates of mass-loss and glacio-isostatic uplift to such a degree that a temporal quasi-equilibrium between eustatic rise and isostatic uplift was established. Formation of well-developed raised shoreline is generally regarded as a deglaciation proxy signaling large ice volume changes. Formation of the ML shoreline in W Iceland during the rapid climatic improvement at the beginning of the Bølling/Allerød Interstadial underlines the importance of, beside the geological data, also to take into consideration physical properties of both the lithosphere and asthenosphere in each location.

  3. 42 CFR 476.84 - Changes as a result of DRG validation.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Changes as a result of DRG validation. 476.84... § 476.84 Changes as a result of DRG validation. A provider or practitioner may obtain a review by a QIO... in DRG assignment as a result of QIO validation activities. ...

  4. Global inter-annual gravity changes from GRACE: Early results

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Hinderer, J.

    2005-01-01

    with an accuracy of 0.4 muGal corresponding to 9 mm water thickness on spatial scales longer than 1300 km. Four of the most widely used global hydrological models have been investigated for their spatial comparison with GRACE observations of inter-annual gravity field variations due to changes in continental water...... storage. The Global Land Data Assimilation System model has a spatial correlation coefficient with GRACE observations of 0.65 over the northern hemisphere. This demonstrates that the observed gravity field changes on these scales are largely related to changes in continental water storage.......Fifteen monthly gravity field solutions from the GRACE twin satellites launched more than two years ago have been studied to estimate gravity field changes between 2002 and 2003. The results demonstrate that GRACE is capable of capturing the changes in ground water on inter-annual scales...

  5. 42 CFR 478.15 - QIO review of changes resulting from DRG validation.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false QIO review of changes resulting from DRG validation... review of changes resulting from DRG validation. (a) General rules. (1) A provider or practitioner dissatisfied with a change to the diagnostic or procedural coding information made by a QIO as a result of DRG...

  6. Data processing and initial results of Chang'e-3 lunar penetrating radar

    Science.gov (United States)

    Su, Yan; Fang, Guang-You; Feng, Jian-Qing; Xing, Shu-Guo; Ji, Yi-Cai; Zhou, Bin; Gao, Yun-Ze; Li, Han; Dai, Shun; Xiao, Yuan; Li, Chun-Lai

    2014-12-01

    To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsurface to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the configuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected.

  7. USING REMOTE SENSING AND GIS-TECHNIQUES IN SOUTH EAST CASPIAN COASTAL CHANGES DETECTION

    Directory of Open Access Journals (Sweden)

    S. R. Mousavi

    2008-01-01

    Full Text Available Remote sensing and GIS techniques have been used to detect the shoreline changes along Miankaleh peninsula promontory of the Gorgan Bay entrance over the last three decades (1975-2002. For this purpose satellite data including LANDSAT ETM+, TM, SPOT, ASTER L1A and RADARSAT have been analyzed. SPOT-Pan data were georeferenced with respect to 1 : 50 000 topographic maps using a Universal Transverse Mercator (UTM projection, then all the needed data sets were registered to the SPOT-Pan image. The hydrological data showed a rapid rise of the Caspian Sea level by 2.6 m between “1975-1996”.

  8. Multi-Decadal Coastal Behavioural States From A Fusion Of Geohistorical Conceptual Modelling With 2-D Morphodynamic Modelling

    Science.gov (United States)

    Goodwin, I. D.; Mortlock, T.

    2016-02-01

    Geohistorical archives of shoreline and foredune planform geometry provides a unique evidence-based record of the time integral response to coupled directional wave climate and sediment supply variability on annual to multi-decadal time scales. We develop conceptual shoreline modelling from the geohistorical shoreline archive using a novel combination of methods, including: LIDAR DEM and field mapping of coastal geology; a decadal-scale climate reconstruction of sea-level pressure, marine windfields, and paleo-storm synoptic type and frequency, and historical bathymetry. The conceptual modelling allows for the discrimination of directional wave climate shifts and the relative contributions of cross-shore and along-shore sand supply rates at multi-decadal resolution. We present regional examples from south-eastern Australia over a large latitudinal gradient from subtropical Queensland (S 25°) to mid-latitude Bass Strait (S 40°) that illustrate the morphodynamic evolution and reorganization to wave climate change. We then use the conceptual modeling to inform a two-dimensional coupled spectral wave-hydrodynamic-morphodynamic model to investigate the shoreface response to paleo-directional wind and wave climates. Unlike one-line shoreline modelling, this fully dynamical approach allows for the investigation of cumulative and spatial bathymetric change due to wave-induced currents, as well as proxy-shoreline change. The fusion of the two modeling approaches allows for: (i) the identification of the natural range of coastal planform geometries in response to wave climate shifts; and, (ii) the decomposition of the multidecadal coastal change into the cross-shore and along-shore sand supply drivers, according to the best-matching planforms.

  9. Two-Dimensional Depth-Averaged Beach Evolution Modeling: Case Study of the Kizilirmak River Mouth, Turkey

    DEFF Research Database (Denmark)

    Baykal, Cüneyt; Ergin, Ayşen; Güler, Işikhan

    2014-01-01

    investigated by satellite images, physical model tests, and one-dimensional numerical models. The current study uses a two-dimensional depth-averaged numerical beach evolution model, developed based on existing methodologies. This model is mainly composed of four main submodels: a phase-averaged spectral wave......This study presents an application of a two-dimensional beach evolution model to a shoreline change problem at the Kizilirmak River mouth, which has been facing severe coastal erosion problems for more than 20 years. The shoreline changes at the Kizilirmak River mouth have been thus far...... transformation model, a two-dimensional depth-averaged numerical waveinduced circulation model, a sediment transport model, and a bottom evolution model. To validate and verify the numerical model, it is applied to several cases of laboratory experiments. Later, the model is applied to a shoreline change problem...

  10. Dispersion of atmospheric pollutants in flow over the shoreline of a large body of water

    International Nuclear Information System (INIS)

    Dobosy, R.

    1979-01-01

    Simulation of pollutant dispersion and mixed-layer development in a shoreline fumigation regime was studied using a two-dimensional vertical plane model employing level two or three (depending on the experiment) from the hierarchy of turbulence closure schemes of Mellor and Yamada (1974). A one-dimensional version of the model using hierarchy level three which includes nonlocal effects in the turbulence simulation was verified with Wangara data from Day 34. Levels two and three were then compared using the two-dimensional model under conditions as measured at Waukegan, Illinois, on 28 June 1974. Predictions from level two, a simpler and purely local scheme, are comparable to level three for both pollutant concentration and mixed-layer depth at least with winds about 3 m s -1 , except within 500m of shore and for a short distance above the inversion base. There is, however, little difference in cost between the two schemes in the present model, making level three preferable because of its greater generality and smoother predicted fields. Predicted mixed-layer depth over land was much less than observed at Waukegan using either turbulence scheme. It appears that this is not due to inadequacies of the turbulence simulation but to three-dimensional features of the actual situation which could not be described by the two-dimensional model

  11. Benthic community structure and composition in sediment from the northern Gulf of Mexico shoreline, Texas to Florida

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Strom, Douglas G.

    2012-01-01

    From April 20 through July 15, 2010, approximately 4.93 million barrels of crude oil spilled into the Gulf of Mexico from the British Petroleum Macondo-1 well, representing the largest spill in U.S. waters. Baseline benthic community conditions were assessed from shoreline sediment samples collected from 56 stations within the swash zone (for example, sample depth ranged from 0 to 1.5 feet) along the northern Gulf of Mexico coastline. These sites were selected because they had a high probability of being impacted by the oil. Cores collected at 24 stations contained no sediment infauna. Benthic community metrics varied greatly among the remaining stations. Mississippi stations had the highest mean abundances (38.9 ± 23.9 individuals per 32 square centimeters (cm2); range: 0 to 186), while Texas had the lowest abundances, 4.9 ± 3 individuals per 32 cm2 (range: 0 to 25). Dominant phyla included Annelida, Arthropoda, and Mollusca, but proportional contributions of each group varied by State. Diversity indices Margalef's richness (d) and Shannon-Wiener diversity (H') were highest at Louisiana and Mississippi stations (0.4 and 0.4, for both, respectively) and lowest at Texas (values for both indices were 0.1 ± 0.1). Evenness (J') was low for all the States, ranging from 0.2 to 0.3, indicating a high degree of patchiness at these sites. Across stations within a State, average similarity ranged from 11.1 percent (Mississippi) to 41.1 percent (Louisiana). Low within-state similarity may be a consequence of differing habitat and physical environment conditions. Results provide necessary baseline information that will facilitate future comparisons with post-spill community metrics.

  12. Schistosomiasis in Lake Malawi villages

    DEFF Research Database (Denmark)

    Madsen, Henry; Bloch, Paul; Makaula, Peter

    2011-01-01

    Historically, open shorelines of Lake Malawi were free from schistosome, Schistosoma haematobium, transmission, but this changed in the mid-1980s, possibly as a result of over-fishing reducing density of molluscivore fishes. Very little information is available on schistosome infections among...

  13. Tidally influenced alongshore circulation at an inlet-adjacent shoreline

    Science.gov (United States)

    Hansen, Jeff E.; Elias, Edwin P.L.; List, Jeffrey H.; Erikson, Li H.; Barnard, Patrick L.

    2013-01-01

    The contribution of tidal forcing to alongshore circulation inside the surfzone is investigated at a 7 km long sandy beach adjacent to a large tidal inlet. Ocean Beach in San Francisco, CA (USA) is onshore of a ∼150 km2 ebb-tidal delta and directly south of the Golden Gate, the sole entrance to San Francisco Bay. Using a coupled flow-wave numerical model, we find that the tides modulate, and in some cases can reverse the direction of, surfzone alongshore flows through two separate mechanisms. First, tidal flow through the inlet results in a barotropic tidal pressure gradient that, when integrated across the surfzone, represents an important contribution to the surfzone alongshore force balance. Even during energetic wave conditions, the tidal pressure gradient can account for more than 30% of the total alongshore pressure gradient (wave and tidal components) and up to 55% during small waves. The wave driven component of the alongshore pressure gradient results from alongshore wave height and corresponding setup gradients induced by refraction over the ebb-tidal delta. Second, wave refraction patterns over the inner shelf are tidally modulated as a result of both tidal water depth changes and strong tidal flows (∼1 m/s), with the effect from currents being larger. These tidally induced changes in wave refraction result in corresponding variability of the alongshore radiation stress and pressure gradients within the surfzone. Our results indicate that tidal contributions to the surfzone force balance can be significant and important in determining the direction and magnitude of alongshore flow.

  14. Contrasting responses to long-term climate change of carbon flows to benthic consumers in two different sized lakes in the Baltic area.

    Science.gov (United States)

    Belle, Simon; Freiberg, Rene; Poska, Anneli; Agasild, Helen; Alliksaar, Tiiu; Tõnno, Ilmar

    2018-05-01

    The study of lake sediments and archived biological remains is a promising approach to better understand the impacts of climate change on aquatic ecosystems. Small lakes have been shown to be strongly sensitive to past climate change, but similar information is lacking for large lakes. By identifying responses to climate change of carbon flows through benthic food web in two different sized lakes, we aimed to understand how lake morphometry can mediate the effects of climate change. We reconstructed the dynamics of phytoplankton community composition and carbon resources sustaining chironomid biomass during the Holocene from the combined analysis of sedimentary pigment quantification and carbon stable isotopic composition of subfossil chironomid head capsules (δ13CHC) in a large lake in the Baltic area (Estonia). Our results showed that chironomid biomass in the large lake was mainly sustained by phytoplankton, with no significant relationship between δ13CHC values and temperature fluctuations. We suggest that lake morphometry (including distance of the sampling zone to the shoreline, and lake volume for primary producers) mediates the effects of climate change, making large lakes less sensitive to climate change. Complementary studies are needed to better understand differences in organic matter dynamics in different sized lakes and to characterize the response of the aquatic carbon cycle to past climate change.

  15. Modeling erosion and accretion along the Illinois Lake Michigan shore using integrated airborne, waterborne and ground-based method

    Science.gov (United States)

    Mwakanyamale, K. E.; Brown, S.; Larson, T. H.; Theuerkauf, E.; Ntarlagiannis, D.; Phillips, A.; Anderson, A.

    2017-12-01

    Sediment distribution at the Illinois Lake Michigan shoreline is constantly changing in response to increased human activities and complex natural coastal processes associated with wave action, short and long term fluctuations in lake level, and the influence of coastal ice. Understanding changes to volume, distribution and thickness of sand along the shore through time, is essential for modeling shoreline changes and predicting changes due to extreme weather events and lake-level fluctuation. The use of helicopter transient electromagnetic (HTEM) method and integration with ground-based and waterborne geophysical and geologic methods provides high resolution spatial rich data required for modeling the extent of erosion and accretion at this dynamic coastal system. Analysis and interpretation of HTEM, ground and waterborne geophysical and geological data identify spatial distribution and thickness of beach and lake-bottom sand. The results provide information on existence of littoral sand deposits and identify coastal hazards such as lakebed down-cutting that occurs in sand-starved areas.

  16. Rapid anthropogenic response to short-term aeolian-fluvial palaeoenvironmental changes during the Late Pleistocene-Holocene transition in the northern Negev Desert, Israel

    Science.gov (United States)

    Roskin, Joel; Katra, Itzhak; Agha, Nuha; Goring-Morris, A. Nigel; Porat, Naomi; Barzilai, Omry

    2014-09-01

    Archaeological investigations along Nahal Sekher on the eastern edge of Israel's northwestern Negev Desert dunefield revealed concentrations of Epipalaeolithic campsites associated respectively with ancient water bodies. This study, aimed at better understanding the connections between these camps and the water bodies, is concerned with a cluster of Natufian sites. A comprehensive geomorphological study integrating field mapping, stratigraphic sections, sedimentological analysis and optically stimulated luminescence (OSL) ages was conducted in the vicinity of a recently excavated Natufian campsite of Nahal Sekher VI whose artifacts directly overlay aeolian sand dated by OSL to 12.4 ± 0.7 and 11.7 ± 0.5 ka. Residual sequences of diagnostic silty sediments, defined here as low-energy fluvial fine-grained deposits (LFFDs), were identified within the drainage system of central Nahal Sekher around the Nahal Sekher VI site. LFFD sections were found to represent both shoreline and mid-water deposits. The thicker mid-water LFFD deposits (15.7 ± 0.7-10.7 ± 0.5 ka) date within the range of the Epipalaeolithic campsites, while the upper and shoreline LFFD units that thin out into the sands adjacent to the Nahal Sekher VI site display slightly younger ages (10.8 ± 0.4 ka-7.6 ± 0.4 ka). LFFD sedimentation by low-energy concentrated flow and standing-water developed as a result of proximal downstream dune-damming. These water bodies developed as a result of encroaching sand that initially crossed central Nahal Sekher by 15.7 ± 0.7 ka and probably intermittently blocked the course of the wadi. LFFD deposition was therefore a response to a unique combination of regional sand supply due to frequent powerful winds and does not represent climate change in the form of increased precipitation or temperature change. The chronostratigraphies affiliate the Natufian sites to the adjacent ancient water bodies. These relations reflect a rapid, but temporary anthropogenic response to a

  17. Updating the results of glacier contribution to the sea level change

    Science.gov (United States)

    Dyurgerov, Mark B.; Abdalati, Waleed Dr. (Technical Monitor)

    2005-01-01

    I have completed an update of global glacier volume change. All data of glacier annual mass balances, surface area over the period 1945/46 till 2004, outside the Greenland and Antarctic ice sheets were included in this update. As the result global glacier volume change have been calculated, also in terms of glacier contribution to sea level change. These results were sent to Working Group 1 and 2 of IPCC-4 as the basis for modeling of sea level towards the end of 2100. In this study I have concentrated on studying glacier systems of different scales, from primary (e.g. Devon ice cap) to regional (e.g. Canadian Arctic), continental scale (e,g., entire Arctic), and global (e.g., change in glacier volume and contribution to sea level rise).

  18. Coral reefs for coastal protection: A new methodological approach and engineering case study in Grenada.

    Science.gov (United States)

    Reguero, Borja G; Beck, Michael W; Agostini, Vera N; Kramer, Philip; Hancock, Boze

    2018-03-15

    Coastal communities in tropical environments are at increasing risk from both environmental degradation and climate change and require urgent local adaptation action. Evidences show coral reefs play a critical role in wave attenuation but relatively little direct connection has been drawn between these effects and impacts on shorelines. Reefs are rarely assessed for their coastal protection service and thus not managed for their infrastructure benefits, while widespread damage and degradation continues. This paper presents a systematic approach to assess the protective role of coral reefs and to examine solutions based on the reef's influence on wave propagation patterns. Portions of the shoreline of Grenville Bay, Grenada, have seen acute shoreline erosion and coastal flooding. This paper (i) analyzes the historical changes in the shoreline and the local marine, (ii) assess the role of coral reefs in shoreline positioning through a shoreline equilibrium model first applied to coral reef environments, and (iii) design and begin implementation of a reef-based solution to reduce erosion and flooding. Coastline changes in the bay over the past 6 decades are analyzed from bathymetry and benthic surveys, historical imagery, historical wave and sea level data and modeling of wave dynamics. The analysis shows that, at present, the healthy and well-developed coral reefs system in the southern bay keeps the shoreline in equilibrium and stable, whereas reef degradation in the northern bay is linked with severe coastal erosion. A comparison of wave energy modeling for past bathymetry indicates that degradation of the coral reefs better explains erosion than changes in climate and historical sea level rise. Using this knowledge on how reefs affect the hydrodynamics, a reef restoration solution is designed and studied to ameliorate the coastal erosion and flooding. A characteristic design provides a modular design that can meet specific engineering, ecological and

  19. Pan-European Coastal Erosion and Accretion: translating incomplete data and information for coastal reslience assessments

    Science.gov (United States)

    van Heteren, Sytze; Moses, Cherith; van der Ven, Tamara

    2017-04-01

    EMODnet has changed the face of the European marine data landscape and is developing tools to connect national data and information resources to make them easily available for multiple users, for multiple purposes. Building on the results of EUROSION, an EU-project completed some ten years ago, EMODnet-Geology has been compiling coastal erosion and sedimentation data and information for all European shorelines. Coverage is being expanded, and data and information are being updated. Challenges faced during this compilation phase are posed by a) differences between parameters used as indicators of shoreline migration, b) restricted access to third-party data, and c) data gaps. There are many indicators of coastal behaviour, with inherent incompatibilities and variations between low-lying sediment and cliffed rock shorelines. Regionally, low data availability and limited access result in poor coverage. With Sentinel data expected to become increasingly available, it is time to invest in automated methods to derive coastal-erosion data from satellite monitoring. Even so, consistency of data and derived information on coastal erosion and accretion does not necessarily translate into usability in pan-European coastal-zone management. Indicators of shoreline change need to be assessed and weighted regionally in light of other parameters in order to be of value in assessing coastal resilience or vulnerability. There is no single way to portray coastal vulnerability for all of Europe in a meaningful way. A common legend, however attractive intuitively, results in data products that work well for one region but show insufficient or excessive detail elsewhere. For decision making, uniform products are often not very helpful. The ability to zoom in on different spatial levels is not a solution either. It is better to compile and visualize vulnerability studies with different legends, and to provide each map with a confidence assessment and other relevant metadata.

  20. From Site Data to Safety Assessment: Analysis of Present and Future Hydrological Conditions at a Coastal Site in Sweden

    International Nuclear Information System (INIS)

    Berglund, Sten; Bosson, Emma; Sassner, Mona

    2013-01-01

    This paper presents an analysis of present and future hydrological conditions at the Forsmark site in Sweden, which has been proposed as the site for a geological repository for spent nuclear fuel. Forsmark is a coastal site that changes in response to shoreline displacement. In the considered time frame (until year 10 000 ad), the hydrological system will be affected by landscape succession associated with shoreline displacement and changes in vegetation, regolith stratigraphy, and climate. Based on extensive site investigations and modeling of present hydrological conditions, the effects of different processes on future site hydrology are quantified. As expected, shoreline displacement has a strong effect on local hydrology (e.g., groundwater flow) in areas that change from sea to land. The comparison between present and future land areas emphasizes the importance of climate variables relative to other factors for main hydrological features such as water balances

  1. Future Reef Growth Can Mitigate Physical Impacts of Sea-Level Rise on Atoll Islands

    Science.gov (United States)

    Beetham, Edward; Kench, Paul S.; Popinet, Stéphane

    2017-10-01

    We present new detail on how future sea-level rise (SLR) will modify nonlinear wave transformation processes, shoreline wave energy, and wave driven flooding on atoll islands. Frequent and destructive wave inundation is a primary climate-change hazard that may render atoll islands uninhabitable in the near future. However, limited research has examined the physical vulnerability of atoll islands to future SLR and sparse information are available to implement process-based coastal management on coral reef environments. We utilize a field-verified numerical model capable of resolving all nonlinear wave transformation processes to simulate how future SLR will modify wave dissipation and overtopping on Funafuti Atoll, Tuvalu, accounting for static and accretionary reef adjustment morphologies. Results show that future SLR coupled with a static reef morphology will not only increase shoreline wave energy and overtopping but will fundamentally alter the spectral composition of shoreline energy by decreasing the contemporary influence of low-frequency infragravity waves. "Business-as-usual" emissions (RCP 8.5) will result in annual wave overtopping on Funafuti Atoll by 2030, with overtopping at high tide under mean wave conditions occurring from 2090. Comparatively, vertical reef accretion in response to SLR will prevent any significant increase in shoreline wave energy and mitigate wave driven flooding volume by 72%. Our results provide the first quantitative assessment of how effective future reef accretion can be at mitigating SLR-associated flooding on atoll islands and endorse active reef conservation and restoration for future coastal protection.

  2. Response of roseate tern to a shoreline protection project on Falkner Island, Connecticut

    Science.gov (United States)

    Rogers, C.J.; Spendelow, J.A.; Guilfoyle, Michael P.; Fischer, Richard A.; Pashley, David N.; Lott, Casey A.

    2007-01-01

    Construction was initiated following the 2000 tern breeding season for Phase 1 of a planned two-phase ?Shoreline Protection and Erosion Control Project? at the Falkner Island Unit of the USFWS Stewart B. McKinney National Wildlife Refuge located in Long Island Sound off the coast of Guilford, CT. When the Common Tern (Sterna hirundo) and federally endangered Roseate Tern (S. dougallii) arrived in spring 2001, they encountered several major habitat changes from what had existed in previous years. These changes included: a rock revetment covering most of the former nesting habitat on the beach from the northwestern section around the northern tip and covering about 60% of the eastern side; an elevated 60- ? 4-m shelf covering the beach and lower bank of the southwestern section; and about 2,000 sq m of devegetated areas on top of the island on the northeast side above the revetment, and about one-third of the southern half of the island. The southwest shelf was created by bulldozing and compacting extra construction fill and in situ materials. This shelf differed in internal structure from the main revetment on the north and eastern sections of the island because it lacked the deep internal crevices of the revetment. The deep internal crevices were created from the large stones and boulders (up to 2 tons) used in the construction of the main revetment. Small rock and gravel was used to fill the crevices to within 3 feet (0.9 m) of the surface of the revetment. Because half-buried tires and nest boxes for the six Roseate Tern (Sterna dougallii) sub-colony areas were deployed in similar patterns on the remaining beach, and nest boxes were placed on the newly elevated shelf areas several meters above previous locations on the now-covered beach areas, the distribution of Roseate Tern nests did not change much from 2000 to 2001. However, the movements of Roseate Tern chicks ? in many cases led by their parents towards traditional hiding places ? into the labyrinth of

  3. Technological Change and Employment: Some Results from BLS Research.

    Science.gov (United States)

    Mark, Jerome A.

    1987-01-01

    Data from Bureau of Labor Statistics research projects indicate that the pace of technological advancement varies significantly from industry to industry and few employees have been laid off as a result of these changes. Implications for industry concern productivity and retraining. (CH)

  4. Climate change, nuclear power, and the adaptation-mitigation dilemma

    International Nuclear Information System (INIS)

    Kopytko, Natalie; Perkins, John

    2011-01-01

    Many policy-makers view nuclear power as a mitigation for climate change. Efforts to mitigate and adapt to climate change, however, interact with existing and new nuclear power plants, and these installations must contend with dilemmas between adaptation and mitigation. This paper develops five criteria to assess the adaptation-mitigation dilemma on two major points: (1) the ability of nuclear power to adapt to climate change and (2) the potential for nuclear power operation to hinder climate change adaptation. Sea level rise models for nine coastal sites in the United States, a review of US Nuclear Regulatory Commission documents, and reports from France's nuclear regulatory agency provided insights into issues that have arisen from sea level rise, shoreline erosion, coastal storms, floods, and heat waves. Applying the criteria to inland and coastal nuclear power plants reveals several weaknesses. Safety stands out as the primary concern at coastal locations, while inland locations encounter greater problems with interrupted operation. Adapting nuclear power to climate change entails either increased expenses for construction and operation or incurs significant costs to the environment and public health and welfare. Mere absence of greenhouse gas emissions is not sufficient to assess nuclear power as a mitigation for climate change. - Research Highlights: → The adaptation-mitigation criteria reveal nuclear power's vulnerabilities. → Climate change adaptation could become too costly at many sites. → Nuclear power operation jeopardizes climate change adaptation. → Extreme climate events pose a safety challenge.

  5. Implications of climatic change for tourism and recreation in Ontario. Incidences du changement climatique sur le tourisme et les loisirs en Ontario; Sommaire de Phase 1 et 2. Le changement climatique et son incidence sur le tourisme et les loisirs en Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Wall, G; Harrison, R; Kinnaird, V; McBoyle, G; Quinland, C

    1988-01-01

    Scenarios for climatic change associated with a doubling of atmospheric carbon dioxide were employed in an assessment of the impacts of climate change on tourism and recreation in Ontario. A warmer climate resulting from such change may mean declining lake levels with associated changes in the ecological interest and recreational potential of wetlands, as shown by case studies on two parks near Great Lakes shorelines. In the skiing industry, the length of ski seasons will be reduced in the northern part of the province, but the key holiday periods (when a large portion of total business is conducted) should still fall within the reliable ski season. Further south, the ski season in the South Georgian Bay region could be eliminated. Summer recreational activities are likely to have extended seasons, and the viability of summer recreational enterprises may increase, with associated positive benefits to neighboring communities. 2 refs., 6 figs., 3 tabs.

  6. Implications of sea-level rise in a modern carbonate ramp setting

    Science.gov (United States)

    Lokier, Stephen W.; Court, Wesley M.; Onuma, Takumi; Paul, Andreas

    2018-03-01

    This study addresses a gap in our understanding of the effects of sea-level rise on the sedimentary systems and morphological development of recent and ancient carbonate ramp settings. Many ancient carbonate sequences are interpreted as having been deposited in carbonate ramp settings. These settings are poorly-represented in the Recent. The study documents the present-day transgressive flooding of the Abu Dhabi coastline at the southern shoreline of the Arabian/Persian Gulf, a carbonate ramp depositional system that is widely employed as a Recent analogue for numerous ancient carbonate systems. Fourteen years of field-based observations are integrated with historical and recent high-resolution satellite imagery in order to document and assess the onset of flooding. Predicted rates of transgression (i.e. landward movement of the shoreline) of 2.5 m yr- 1 (± 0.2 m yr- 1) based on global sea-level rise alone were far exceeded by the flooding rate calculated from the back-stepping of coastal features (10-29 m yr- 1). This discrepancy results from the dynamic nature of the flooding with increased water depth exposing the coastline to increased erosion and, thereby, enhancing back-stepping. A non-accretionary transgressive shoreline trajectory results from relatively rapid sea-level rise coupled with a low-angle ramp geometry and a paucity of sediments. The flooding is represented by the landward migration of facies belts, a range of erosive features and the onset of bioturbation. Employing Intergovernmental Panel on Climate Change (Church et al., 2013) predictions for 21st century sea-level rise, and allowing for the post-flooding lag time that is typical for the start-up of carbonate factories, it is calculated that the coastline will continue to retrograde for the foreseeable future. Total passive flooding (without considering feedback in the modification of the shoreline) by the year 2100 is calculated to likely be between 340 and 571 m with a flooding rate of 3

  7. Widespread Lake Highstands in the Southernmost Andean Altiplano during Heinrich Event 1: Implications for the South American Summer Monsoon

    Science.gov (United States)

    Chen, C. Y.; McGee, D.; Quade, J.

    2014-12-01

    Speleothem-based oxygen isotope records provide strong evidence of anti-phased behavior of the northern and southern hemisphere summer monsoons during Heinrich events, but we lack rigorous constraints on the amount of wetting or drying occurring in monsoon regions. Studies centered on shoreline deposits of closed-basin lakes are well suited for establishing such quantitative controls on water balance changes by providing unequivocal evidence of lake volume variations. Here we present new dating constraints on the highstands of several high-altitude (3800-4350 m) paleolakes in the southern Andean Altiplano, an outlying arid region of the Atacama Desert stretching across the Chilean-Bolivian-Argentinian border east of the Andes (20-25°S). These lakes once occupied the closed basins where only phreatic playas, dry salars, and shallow ponds exist today. Initial U-Th dating of massive shoreline tufas reveals that these deposits are dateable to within ±150 to 300 yrs due to high U concentrations and low initial Th content (as indicated by high 230Th/232Th). Our U-Th and 14C dates show that lake highstands predominantly occur between 18.5 and 14.5 kyrs BP, coinciding with Heinrich Event 1 (HE1) and the expansion of other nearby lakes, such as Lake Titicaca. Because of their (1) location at the modern-day southwestern edge of the summer monsoon, (2) intact shoreline preservation, and (3) precise age control, these lakes may uniquely enable us to reconstruct the evolution of water balance (P-E) changes associated with HE1. Hydrologic modeling constrained by temperature estimates provided by local glacial records is used to provide bounds for past precipitation changes. We also examine North Atlantic cooling as the mechanism for these changes by comparing a compilation of S. American lake level records with various hosing experiments and transient climate simulations at HE1. Our results lend us confidence in expanding our U-Th work to other shoreline tufas in the

  8. A Climate Change Adaptation Strategy for Management of Coastal Marsh Systems

    Science.gov (United States)

    Sea level rise is causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, includin...

  9. Emerging methods for the study of coastal ecosystem landscape structure and change

    Science.gov (United States)

    Brock, John C.; Danielson, Jeffrey J.; Purkis, Sam

    2013-01-01

    Coastal landscapes are heterogeneous, dynamic, and evolve over a range of time scales due to intertwined climatic, geologic, hydrologic, biologic, and meteorological processes, and are also heavily impacted by human development, commercial activities, and resource extraction. A diversity of complex coastal systems around the globe, spanning glaciated shorelines to tropical atolls, wetlands, and barrier islands are responding to multiple human and natural drivers. Interdisciplinary research based on remote-sensing observations linked to process studies and models is required to understand coastal ecosystem landscape structure and change. Moreover, new techniques for coastal mapping and monitoring are increasingly serving the needs of policy-makers and resource managers across local, regional, and national scales. Emerging remote-sensing methods associated with a diversity of instruments and platforms are a key enabling element of integrated coastal ecosystem studies. These investigations require both targeted and synoptic mapping, and involve the monitoring of formative processes such as hydrodynamics, sediment transport, erosion, accretion, flooding, habitat modification, land-cover change, and biogeochemical fluxes.

  10. Ladtap XL Version 2017: A Spreadsheet For Estimating Dose Resulting From Aqueous Releases

    Energy Technology Data Exchange (ETDEWEB)

    Minter, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jannik, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-15

    LADTAP XL© is an EXCEL© spreadsheet used to estimate dose to offsite individuals and populations resulting from routine and accidental releases of radioactive materials to the Savannah River. LADTAP XL© contains two worksheets: LADTAP and IRRIDOSE. The LADTAP worksheet estimates dose for environmental pathways including external exposure resulting from recreational activities on the Savannah River and internal exposure resulting from ingestion of water, fish, and invertebrates originating from the Savannah River. IRRIDOSE estimates offsite dose to individuals and populations from irrigation of foodstuffs with contaminated water from the Savannah River. In 2004, a complete description of the LADTAP XL© code and an associated user’s manual was documented in LADTAP XL©: A Spreadsheet for Estimating Dose Resulting from Aqueous Release (WSRC-TR-2004-00059) and revised input parameters, dose coefficients, and radionuclide decay constants were incorporated into LADTAP XL© Version 2013 (SRNL-STI-2011-00238). LADTAP XL© Version 2017 is a slight modification to Version 2013 with minor changes made for more user-friendly parameter inputs and organization, updates in the time conversion factors used within the dose calculations, and fixed an issue with the expected time build-up parameter referenced within the population shoreline dose calculations. This manual has been produced to update the code description, verification of the models, and provide an updated user’s manual. LADTAP XL© Version 2017 has been verified by Minter (2017) and is ready for use at the Savannah River Site (SRS).

  11. Management changes resulting from hospital accreditation.

    Science.gov (United States)

    Oliveira, João Lucas Campos de; Gabriel, Carmen Silvia; Fertonani, Hosanna Pattrig; Matsuda, Laura Misue

    2017-03-02

    to analyze managers and professionals' perceptions on the changes in hospital management deriving from accreditation. descriptive study with qualitative approach. The participants were five hospital quality managers and 91 other professionals from a wide range of professional categories, hierarchical levels and activity areas at four hospitals in the South of Brazil certified at different levels in the Brazilian accreditation system. They answered the question "Tell me about the management of this hospital before and after the Accreditation". The data were recorded, fully transcribed and transported to the software ATLAS.ti, version 7.1 for access and management. Then, thematic content analysis was applied within the reference framework of Avedis Donabedian's Evaluation in Health. one large family was apprehended, called "Management Changes Resulting from the Accreditation: perspectives of managers and professionals" and five codes, related to the management changes in the operational, structural, financial and cost; top hospital management and quality management domains. the management changes in the hospital organizations resulting from the Accreditation were broad, multifaceted and in line with the improvements of the service quality. analizar las percepciones de gestores y trabajadores sobre los cambios en la gestión hospitalaria resultantes de la Acreditación. estudio descriptivo con aproximación cualitativa. Participaron cinco gestores de calidad hospitalaria y otros 91 trabajadores de las más diversas categorías profesionales, niveles jerárquicos y áreas de actuación de cuatro hospitales del sur de Brasil certificados por la Acreditación nacional de diferentes niveles, que contestaron la pregunta "Cuéntame sobre la gestión de este hospital, antes y después de la Acreditación". Los datos fueron grabados, transcritos por completo y transportados para acceso y manoseo en el software ATLAS.ti, versión 7.1. A seguir, fue aplicado el análisis de

  12. Baseline data for evaluating development trajectory and provision of ecosystem services of created fringing oyster reefs in Vermilion Bay, Louisiana

    Science.gov (United States)

    La Peyre, Megan K.; Schwarting, Lindsay; Miller, Shea

    2013-01-01

    project were additional construction and restoration projects along the same shorelines which occurred between 2011 and June 2012. Because of constant activity near and around the reefs and continuing construction, development trajectories could not be compared among reef types at this time. This report presents the data collected at the sites over 3 years (2010–2012), describing only conditions and trends. In addition, these data provide an extensive and detailed dataset documenting initial conditions and initial ecosystem changes which will prove valuable in future data collection and analyses of reef development at this site. Data collection characterized the local water quality conditions (salinity, temperature, total suspended sediments, dissolved oxygen, chlorophyll a), adjacent marsh vegetation, soils, and shoreline position along the project shoreline at Vermilion Bay. During the study, marsh vegetation and soil characteristics were similar across the study area and did not change over time. Shoreline movement indicated shoreline loss at all sites, which varied by reefs. Water quality conditions followed expected seasonal patterns for this region, and no significant nonseasonal changes were measured throughout the study period. Despite oyster recruitment in fall 2010 and 2011, few if any oysters survived from the 2010 year class to 2012. At the last sampling of this project, some oysters recruited in fall 2011 survived through 2012, resulting in an on-reef density of 18.3 ± 2.1 individuals per square meter (mean size: 85.6 ± 2.2 millimeters). Because project goals were to compare reef development and provision of ecosystem services over time, as well as many of the processes identified for monitoring reflect long-term processes, results and data are presented only qualitatively, and trends or observations should be interpreted cautiously at this point. Measurable system responses to reef establishment require more time than was available for this study. These

  13. Exploring differences between average and critical engineering changes: Survey results from Denmark

    DEFF Research Database (Denmark)

    Langer, Stefan; Maier, Anja; Wilberg, J.

    2012-01-01

    , such as characterisations of changes, causes, initiators, objectives, effects, and potential strategies, and software support to anticipate and handle changes. Studying characterisations of changes, some investigate late engineering changes (e.g. [Coughlan 1992]), others describe strategies to detect avoidable and to cope...... is structured as follows: Section 2 describes in brief what motivated criticality of engineering changes as the research focus of this paper and outlines the data acquisition and analysis procedure. We present results of this study in Section 3. Section 4 summarises contributions and concludes with suggestions...

  14. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    International Nuclear Information System (INIS)

    Gustafsson, Bo G.

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m 3 /s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say ±1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m 3 /s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the shoreline

  15. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Bo G. [Oceanus Havsundersoekningar, Goeteborg (Sweden)

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m{sup 3}/s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say {+-}1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m{sup 3}/s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the

  16. Engaging Scientists and Users in Climate Change Research and Results

    Science.gov (United States)

    Cloyd, E. T.; Reeves, K.; Shimamoto, M. M.; Zerbonne, S.

    2016-12-01

    The U.S. Global Change Research Program has a mandate to "consult with actual and potential users of the results of the program" in developing products that will support learning about and responding to climate change. USGCRP has sought to engage stakeholders throughout the development and dissemination of key products, such as the Third National Climate Assessment (NCA3, 2014) and the Climate and Health Assessment (CHA, 2016), in the strategic planning processes leading to the National Global Change Research Plan (2012) and Update to the Strategic Plan (2016), and through regular postings to social media that highlight research results and opportunities for engagement. Overall, USGCRP seeks to promote dialogue between scientific experts, stakeholders, and decision makers about information needs in regions or sectors, the potential impacts of climate change, and possible responses. This presentation will describe how USGCRP has implemented various stakeholder engagement measures during the planning, development, and release of products such as NCA3 and CHA. Through repeated opportunities for stakeholder input, USGCRP has promoted process transparency and inclusiveness in the framing of assessments and other products. In addition, USGCRP has supported scientists' engagement with a range of audiences and potential collaborators through a variety of mechanisms, including community-based meetings, deliberative forums, and identification of non-Federal speaking and knowledge co-production opportunities. We will discuss key lessons learned and successful approaches for engaging users as well as opportunities and challenges for future engagement.

  17. Assessment of a combination between hard structures and sand nourishment eastern of Damietta harbor using numerical modeling

    Directory of Open Access Journals (Sweden)

    A.M. Khalifa

    2017-12-01

    Full Text Available Damietta harbor was constructed in 1982 as an inland harbor with its 15 m depth navigation channel and two jetties acting like an obstacle to not allow sediment deposition in the harbor. On the other hand, they significantly affect the northern coast shoreline and hinder the sediment circulation in Damietta promontory. Satellite images show that new headlands are being implemented in the coastal shores of As-senaneyah. The proposed project consists of implementation of four headlands with length of 160 m, spacing of 400 m and using 150,000 m3 nourishment in those spacing between the hard structures only once during the construction time. Litpack 1D-model is used to predict shoreline responses to number of different five scenarios considered as combination between hard structures such as headlands and sand nourishment. A total number of 32 profiles were used to assess the shoreline changes along Gamasa, Damietta and Ras El-bar resort from 2010 to 2015. This study prevails a high erosion rate of the eastern and western shorelines of the proposed headlands. Nourishment of 200,000 m3/year is found to be a reasonable solution due to simplicity of being attained from Damietta harbor’s annual dredged materials which was reported to be average of 1 million m3/year. Keywords: Numerical modeling, Damietta harbor, Egyptian shoreline changes, Inland harbor

  18. Sedimentary deposits study of the 2006 Java tsunami, in Pangandaran, West Java (preliminary result)

    Energy Technology Data Exchange (ETDEWEB)

    Maemunah, Imun, E-mail: imun-m2001@yahoo.com [Geological Agency, Ministry of Energy and Mineral Resources (Indonesia); Institute Technology of Bandung (Indonesia); Suparka, Emmy, E-mail: emmy@gc.itb.ac.id; Puspito, Nanang T, E-mail: nanang@staff.itb.ac.id [Institute Technology of Bandung (Indonesia); Hidayati, Sri, E-mail: shidayati@gmail.com [Geological Agency, Ministry of Energy and Mineral Resources (Indonesia)

    2015-04-24

    The 2006 Java Earthquake (Mw 7.2) has generated a tsunami that reached Pangandaran coastal plain with 9.7 m above sea level height of wave. In 2014 we examined the tsunami deposit exposed in shallow trenches along a∼300 m at 5 transect from shoreline to inland on Karapyak and Madasari, Pangandaran. We documented stratigraphically and sedimentologically, the characteristics of Java Tsunami deposit on Karapyak and Madasari and compared both sediments. In local farmland a moderately-sorted, brown soil is buried by a poorly-sorted, grey, medium-grained sand-sheet. The tsunami deposit was distinguished from the underlying soil by a pronounced increase in grain size that becomes finner upwards and landwards. Decreasing concentration of coarse size particles with distance toward inland are in agreement with grain size analysis. The thickest tsunami deposit is about 25 cm found at 84 m from shoreline in Madasari and about 15 cm found at 80 m from shoreline in Karapyak. The thickness of tsunami deposits in some transect become thinner landward but in some other transect lack a consistent suggested strongly affected by local topography. Tsunami deposits at Karapyak and Madasari show many similarities. Both deposits consist of coarse sand that sharply overlies a finer sandy soil. The presence mud drapes and other sedimentary structure like graded bedding, massive beds, mud clasts in many locations shows a dynamics process of tsunami waves. The imbrication coarse and shell fragments of the 2006 Java, tsunami deposits also provide information about the curent direction, allowing us to distinguish run up deposits from backwash deposits.

  19. Sedimentary deposits study of the 2006 Java tsunami, in Pangandaran, West Java (preliminary result)

    International Nuclear Information System (INIS)

    Maemunah, Imun; Suparka, Emmy; Puspito, Nanang T; Hidayati, Sri

    2015-01-01

    The 2006 Java Earthquake (Mw 7.2) has generated a tsunami that reached Pangandaran coastal plain with 9.7 m above sea level height of wave. In 2014 we examined the tsunami deposit exposed in shallow trenches along a∼300 m at 5 transect from shoreline to inland on Karapyak and Madasari, Pangandaran. We documented stratigraphically and sedimentologically, the characteristics of Java Tsunami deposit on Karapyak and Madasari and compared both sediments. In local farmland a moderately-sorted, brown soil is buried by a poorly-sorted, grey, medium-grained sand-sheet. The tsunami deposit was distinguished from the underlying soil by a pronounced increase in grain size that becomes finner upwards and landwards. Decreasing concentration of coarse size particles with distance toward inland are in agreement with grain size analysis. The thickest tsunami deposit is about 25 cm found at 84 m from shoreline in Madasari and about 15 cm found at 80 m from shoreline in Karapyak. The thickness of tsunami deposits in some transect become thinner landward but in some other transect lack a consistent suggested strongly affected by local topography. Tsunami deposits at Karapyak and Madasari show many similarities. Both deposits consist of coarse sand that sharply overlies a finer sandy soil. The presence mud drapes and other sedimentary structure like graded bedding, massive beds, mud clasts in many locations shows a dynamics process of tsunami waves. The imbrication coarse and shell fragments of the 2006 Java, tsunami deposits also provide information about the curent direction, allowing us to distinguish run up deposits from backwash deposits

  20. Impacts of changing hydrology on permanent gully growth: experimental results

    Science.gov (United States)

    Day, Stephanie S.; Gran, Karen B.; Paola, Chris

    2018-06-01

    Permanent gullies grow through head cut propagation in response to overland flow coupled with incision and widening in the channel bottom leading to hillslope failures. Altered hydrology can impact the rate at which permanent gullies grow by changing head cut propagation, channel incision, and channel widening rates. Using a set of small physical experiments, we tested how changing overland flow rates and flow volumes alter the total volume of erosion and resulting gully morphology. Permanent gullies were modeled as both detachment-limited and transport-limited systems, using two different substrates with varying cohesion. In both cases, the erosion rate varied linearly with water discharge, such that the volume of sediment eroded was a function not of flow rate, but of total water volume. This implies that efforts to reduce peak flow rates alone without addressing flow volumes entering gully systems may not reduce erosion. The documented response in these experiments is not typical when compared to larger preexisting channels where higher flow rates result in greater erosion through nonlinear relationships between water discharge and sediment discharge. Permanent gullies do not respond like preexisting channels because channel slope remains a free parameter and can adjust relatively quickly in response to changing flows.

  1. Landscape Development During a Glacial Cycle: Modeling Ecosystems from the Past into the Future

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, Tobias; Andersson, Eva [Swedish Nuclear Fuel and Waste Management Co, Stockholm (Sweden)], E-mail: tobias.lindborg@skb.se; Brydsten, Lars [Umeaa Marine Sciences Centre, Umeaa (Sweden); Stroemgren, Maarten [Dept. of Ecology and Environmental Science, Umeaa Univ., Umeaa (Sweden); Sohlenius, Gustav [Geological Survey of Sweden, Uppsala (Sweden)] Loefgren, Anders [EcoAnalytica, Haegersten (Sweden)

    2013-05-15

    Understanding how long-term abiotic and biotic processes are linked at a landscape level is of major interest for analyzing future impact on humans and the environment from present-day societal planning. This article uses results derived from multidisciplinary work at a coastal site in Sweden, with the aim of describing future landscape development. First, based on current and historical data, we identified climate change, shoreline displacement, and accumulation/erosion processes as the main drivers of landscape development. Second, site-specific information was combined with data from the Scandinavian region to build models that describe how the identified processes may affect the site development through time. Finally, the process models were combined to describe a whole interglacial period. With this article, we show how the landscape and ecosystem boundaries are affected by changing permafrost conditions, peat formation, sedimentation, human land use, and shoreline displacement.

  2. Landscape Development During a Glacial Cycle: Modeling Ecosystems from the Past into the Future

    International Nuclear Information System (INIS)

    Lindborg, Tobias; Andersson, Eva; Brydsten, Lars; Stroemgren, Maarten; Sohlenius, Gustav; Loefgren, Anders

    2013-01-01

    Understanding how long-term abiotic and biotic processes are linked at a landscape level is of major interest for analyzing future impact on humans and the environment from present-day societal planning. This article uses results derived from multidisciplinary work at a coastal site in Sweden, with the aim of describing future landscape development. First, based on current and historical data, we identified climate change, shoreline displacement, and accumulation/erosion processes as the main drivers of landscape development. Second, site-specific information was combined with data from the Scandinavian region to build models that describe how the identified processes may affect the site development through time. Finally, the process models were combined to describe a whole interglacial period. With this article, we show how the landscape and ecosystem boundaries are affected by changing permafrost conditions, peat formation, sedimentation, human land use, and shoreline displacement

  3. Cosmogenic 10Be Dating of Northern Quebec-Labrador Glacial Lake Shorelines and Drainage Deposits: Implications for the Final Meltwater Discharges of the Last Deglaciation

    Science.gov (United States)

    Roy, M.; Dube-Loubert, H.; Schaefer, J. M.; Hébert, S.

    2017-12-01

    The decay of the Laurentide ice sheet played an important role in the climate variability of the last deglaciation, notably through large discharges of meltwater from glacial lakes that disturbed the Atlantic meridional overturning oceanic circulation (AMOC). These former climate-forcing events are now under focus due to growing evidence showing that the present-day increase in freshwater releases from Greenland and other Arctic glaciers may potentially lead to a slowdown of the AMOC and cause important climate feedbacks. In northern Quebec and Labrador, the end of the deglaciation led to the formation of at least 10 important glacial lakes that drained into the nearby Labrador Sea where repeated meltwater discharges could have destabilized the ocean surface conditions in this key sector of the North Atlantic Ocean. Although the drainage of these ice-dammed lakes may form a good analogue for modern processes, the lack of direct constraints on the physiographic configuration and temporal evolution of these lakes limits our understanding of the timing and climate impact of these final meltwater pulses. Here we applied cosmogenic 10Be dating to raised boulder shorelines belonging to Lake Naskaupi, one of the largest glacial lakes in northern Quebec and Labrador. We reconstructed the lake extent and meltwater volume, as well as its lake-level history by systematic mapping of geomorphic features. We sampled a total of 16 boulders at 4 sites along the valley. In addition, we dated five boulders belonging to a large-scale outburst flood deposit recording the abrupt drainage of the lake. The distribution of the 21 ages shows a remarkable consistency, yielding a mean age of 7.8 ± 0.4 ka (1 outlier excluded). The ages from the shorelines are indistinguishable from those of the outburst flood deposit, suggesting that Lake Naskaupi existed for a relatively short time span. These new chronological data constrain the timing of the lake development and attendant drainage

  4. Beach and Morphology Change Using Lidar

    Science.gov (United States)

    2016-11-01

    of Expertise. Beach profile surveys were provided by USACE Jacksonville District (SAJ), University of South Florida (USF), and Coastal Planning ...the Gulf of Mexico from Clearwater Beach in Pinellas County, FL, to Venice Beach in Sarasota County, FL (Figure 1). Active Federal projects existing...since the early 1900s. At present, most of the shoreline is considered to be urban . The coastal area is directly under the influence of past and present

  5. Tools and methods for evaluating and refining alternative futures for coastal ecosystem management—the Puget Sound Ecosystem Portfolio Model

    Science.gov (United States)

    Byrd, Kristin B.; Kreitler, Jason R.; Labiosa, William B.

    2011-01-01

    The U.S. Geological Survey Puget Sound Ecosystem Portfolio Model (PSEPM) is a decision-support tool that uses scenarios to evaluate where, when, and to what extent future population growth, urban growth, and shoreline development may threaten the Puget Sound nearshore environment. This tool was designed to be used iteratively in a workshop setting in which experts, stakeholders, and decisionmakers discuss consequences to the Puget Sound nearshore within an alternative-futures framework. The PSEPM presents three possible futures of the nearshore by analyzing three growth scenarios developed out to 2060: Status Quo—continuation of current trends; Managed Growth—adoption of an aggressive set of land-use management policies; and Unconstrained Growth—relaxation of land-use restrictions. The PSEPM focuses on nearshore environments associated with barrier and bluff-backed beaches—the most dominant shoreforms in Puget Sound—which represent 50 percent of Puget Sound shorelines by length. This report provides detailed methodologies for development of three submodels within the PSEPM—the Shellfish Pollution Model, the Beach Armoring Index, and the Recreation Visits Model. Results from the PSEPM identify where and when future changes to nearshore ecosystems and ecosystem services will likely occur within the three growth scenarios. Model outputs include maps that highlight shoreline sections where nearshore resources may be at greater risk from upland land-use changes. The background discussed in this report serves to document and supplement model results displayed on the PSEPM Web site located at http://geography.wr.usgs.gov/pugetSound/.

  6. What is the impact on fish recruitment of anthropogenic physical and structural habitat change in shallow nearshore areas in temperate systems? A systematic review protocol

    DEFF Research Database (Denmark)

    MacUra, B.; Lönnstedt, O.M.; Byström, P.

    2016-01-01

    and spawning habitats of many fish and other aquatic species. Several coastal fish populations have seen marked declines in abundance and diversity during the past two decades. A systematic review on the topic would clarify if anthropogenic physical and structural changes of near-shore areas have effects...... on fish recruitment and which these effects are. Methods: The review will examine how various physical and structural anthropogenic changes of nearshore fish habitats affect fish recruitment. Relevant studies include small- and large-scale field studies in marine and brackish systems or large lakes......Background: Shallow nearshore marine ecosystems are changing at an increasing rate due to a range of human activities such as urbanisation and commercial development. The growing numbers of constructions and other physical and structural alterations of the shoreline often take place in nursery...

  7. Adapting to the impacts of climate change and variability

    International Nuclear Information System (INIS)

    Mortsch, L.; Koshida, G.; Tavares, D.

    1993-05-01

    A workshop was held to encourage awareness of the climate change impact issues and build collaboration among the Great Lakes/St. Lawrence basin (GLSLB) research, resource management, and policy-making community; to identify research opportunities to address the issues of water management, ecosystem health, human health, and land use and management; and to recommend directions and priority areas for future studies to develop an integrated climate impact assessment for the GLSLB. Presentations at the workshop were on topics including an overview of the GLSLB Project, the impacts of climate change on water supply and demand, and impacts on water quality, fisheries, wetlands, agriculture, shoreline management, and human health. Panel sessions were also convened to discuss information requirements that would assist in decision- and policy-making and to address the concept of integration. Working groups on water management, ecosystem health, land use and management, and human health were formed and made recommendations. A synthesis is presented of the reports from and recommendations of the four working groups as well as extended abstracts of the plenary presentations. A separate abstract has been prepared for one of the presentations from this workshop

  8. Unpacking Changes in Mangrove Social-Ecological Systems: Lessons from Brazil, Zanzibar, and Vietnam

    Directory of Open Access Journals (Sweden)

    Claire H. Quinn

    2017-03-01

    Full Text Available Mangroves provide multiple benefits, from carbon storage and shoreline protection to food and energy for natural resource-dependent coastal communities. However, they are coming under increasing pressure from climate change, coastal development, and aquaculture. There is increasing need to better understand the changes mangroves face and whether these changes differ or are similar in different parts of the world. Using a multiple case study approach, focused on Vietnam, Zanzibar, and Brazil, this research analyzed the drivers, pressures, states, impacts, and responses (DPSIR of mangrove systems. A qualitative content analysis was used on a purposively sampled document set for each country to identify and collate evidence under each of the DPSIR categories. Population growth and changing political and economic processes were key drivers across the three countries, leading to land use change and declining states of mangroves. This had an impact on the delivery of regulatory and provisioning ecosystem services from mangroves and on the welfare of coastal communities. Responses have been predominantly regulatory and aim to improve mangrove states, but without always considering ecosystem services or the consequences for welfare. The issue of scale emerged as a critical factor with drivers, pressures, impacts, and responses operating at different levels (from international to local, with consequences for response effectiveness.

  9. The greatest soda-water lake in the world and how it is influenced by climatic change

    Directory of Open Access Journals (Sweden)

    M. Kadioğlu

    1997-11-01

    Full Text Available Global warming resulting from increasing greenhouse gases in the atmosphere and the local climate changes that follow affect local hydrospheric and biospheric environments. These include lakes that serve surrounding populations as a fresh water resource or provide regional navigation. Although there may well be steady water-quality alterations in the lakes with time, many of these are very much climate-change dependent. During cool and wet periods, there may be water-level rises that may cause economic losses to agriculture and human activities along the lake shores. Such rises become nuisances especially in the case of shoreline settlements and low-lying agricultural land. Lake Van, in eastern Turkey currently faces such problems due to water-level rises. The lake is unique for at least two reasons. First, it is a closed basin with no natural or artificial outlet and second, its waters contain high concentrations of soda which prevent the use of its water as a drinking or agricultural water source. Consequently, the water level fluctuations are entirely dependent on the natural variability of the hydrological cycle and any climatic change affects the drainage basin. In the past, the lake-level fluctuations appear to have been rather systematic and unrepresentable by mathematical equations. Herein, monthly polygonal climate diagrams are constructed to show the relation between lake level and some meteorological variables, as indications of significant and possible climatic changes. This procedure is applied to Lake Van, eastern Turkey, and relevant interpretations are presented.

  10. Barrier Island Dynamics Using Mass Center Analysis: A New Way to Detect and Track Large-Scale Change

    Directory of Open Access Journals (Sweden)

    Paul Paris

    2014-01-01

    Full Text Available A geographic information system (GIS was used to introduce and test a new method for quantitatively characterizing topographic change. Borrowing from classic Newtonian mechanics, the concept of a body’s center of mass is applied to the geomorphic landscape, and the barrier island environment in particular, to evaluate the metric’s potential as a proxy for detecting, tracking and visualizing change. Two barrier islands along North Carolina’s Outer Banks are used to test this idea: Core Banks, uninhabited and largely-undeveloped, and Hatteras Island, altered by the presence of a protective dune system. Findings indicate that for Core Banks, the alongshore change in the center of mass is in accord with dominate littoral transport and wind conditions. Cross-shore change agrees with independent estimates for the island migration rates. This lends credence to our assertion that the mass center metric has the potential to be a viable proxy for describing wholesale barrier migration and would be a valuable addition to the already-established ocean shoreline and subaerial volume metrics. More research is, however, required to demonstrate efficacy.

  11. Coastal erosion management in Accra: Combining local knowledge and empirical research

    Directory of Open Access Journals (Sweden)

    Kwasi Appeaning Addo

    2016-11-01

    Full Text Available Coastal erosion along the Accra coast has become a chronic phenomenon that threatens both life and property. The issue has assumed a centre stage of national debate in recent times because of its impact on the coastal communities. Lack of reliable geospatial data hinders effective scientific investigations into the changing trends in the shoreline position. However, knowledge about coastal erosion, by the local people, and how far the shoreline has migrated inland over time is high in the coastal communities in Accra. This opens a new chapter in coastal erosion research to include local knowledge of the local settlers in developing sustainable coastal management. This article adopted a scientific approach to estimate rate of erosion and tested the results against perceived erosion trend by the local settlers. The study used a 1974 digital topographic map and 1996 aerial photographs. The end point rate statistical method in DSAS was used to compute the rates of change. The short-term rate of change for the 22-year period under study was estimated as -0.91 m/annum ± 0.49 m/annum. It was revealed that about 79% of the shoreline is eroding, while the remaining 21% is either stabilised or accreting. It emerged, from semi-structured interviews with inhabitants in the Accra coastal communities, that an average of about 30 m of coastal lands are perceived to have been lost to erosion for a period of about 20 years. This translates to a historic rate of change of about 1.5 m/year, which corroborates the results of the scientific study. Again this study has established that the local knowledge of the inhabitants, about coastal erosion, can serve as reliable information under scarcity of scientific data for coastal erosion analyses in developing countries.

  12. How Teachers' Beliefs About Climate Change Influence Their Instruction and Resulting Student Outcomes

    Science.gov (United States)

    Nation, M.; Feldman, A.; Smith, G.

    2017-12-01

    The purpose of the study was to understand the relationship between teachers' beliefs and understandings of climate change and their instructional practices to determine if and how they impact student outcomes. Limited research has been done in the area of teacher beliefs on climate change, their instruction, and resulting student outcomes. This study contributes to the greater understanding of teachers' beliefs and impact on climate change curriculum implementation. The study utilized a mixed methods approach to data collection and analysis. Data were collected in the form of classroom observations, surveys, and interviews from teachers and students participating in the study over a four-month period. Qualitative and quantitative findings were analyzed through thematic coding and descriptive analysis and compared in an effort to triangulate findings. The results of the study suggest teachers and students believe climate change is occurring and humans are largely to blame. Personal beliefs are important when teaching controversial topics, such as climate change, but participants maintained neutrality within their instruction of the topic, as not to appear biased or influence students' decisions about climate change, and avoid political controversy in the classroom. Overall, the study found teachers' level of understandings and beliefs about climate change had little impact on their instruction and resulting student outcomes. Based on the findings, simply adding climate change to the existing science curriculum is not sufficient for teachers or students. Teachers need to be better prepared about effective pedagogical practices of the content in order to effectively teach a climate-centered curriculum. The barriers that exist for the inclusion of teachers' personal beliefs need to be removed in order for teachers to assert their own personal beliefs about climate change within their classroom instruction. Administrators and stakeholders need to support science

  13. 32 questions concerning climate change (results of a questionnaire)

    Energy Technology Data Exchange (ETDEWEB)

    Auer, I; Boehm, R [Central Inst. for Meteorology and Geodynamics, Vienna (Austria); Steinacker, R [Vienna Univ. (Austria).Inst. for Meteorology and Geophysics

    1996-12-31

    The intention of the inquiry was to investigate the opinion within the scientific community about climate change questions that are believed to be already well solved in the public opinion. 32 questions were formulated that deal with 12 main assumptions about the existence, the predictability and the impacts of climate changes due to an artificially enhanced greenhouse effect. The possibilities to answer reached from `sure yes`, over `guess yes`, `not answerable or no opinion` to `guess no` and `sure no`. There were additional questions about the way the answers were gained: `by own research`, `by studying scientific literature or discussion with colleagues` and `by mass media consumption`. In the following some of the key assumptions about climate change topics will be discussed as the predictability of future evolution of climate by climate models and the detectability of an artificially enhanced greenhouse effect in climate time series. The other assumptions can be shown here only in the form of a comprehensive overview. In a very comprehensive form the results of the inquiry could be described in the following: A weak majority of climatologists believe today`s climate models to be able to describe a greenhouse gas induced climate change in global scale - much less in regional scale and not in local scale. A majority of climatologists believe an anthropogenic greenhouse gas forced climate and its impacts to be developing in the future but not already at present. The shape of the opinion spectra is in most cases far from that of a scientifically solved problem - a lot of work still has to be done

  14. 32 questions concerning climate change (results of a questionnaire)

    Energy Technology Data Exchange (ETDEWEB)

    Auer, I.; Boehm, R. [Central Inst. for Meteorology and Geodynamics, Vienna (Austria); Steinacker, R. [Vienna Univ. (Austria).Inst. for Meteorology and Geophysics

    1995-12-31

    The intention of the inquiry was to investigate the opinion within the scientific community about climate change questions that are believed to be already well solved in the public opinion. 32 questions were formulated that deal with 12 main assumptions about the existence, the predictability and the impacts of climate changes due to an artificially enhanced greenhouse effect. The possibilities to answer reached from `sure yes`, over `guess yes`, `not answerable or no opinion` to `guess no` and `sure no`. There were additional questions about the way the answers were gained: `by own research`, `by studying scientific literature or discussion with colleagues` and `by mass media consumption`. In the following some of the key assumptions about climate change topics will be discussed as the predictability of future evolution of climate by climate models and the detectability of an artificially enhanced greenhouse effect in climate time series. The other assumptions can be shown here only in the form of a comprehensive overview. In a very comprehensive form the results of the inquiry could be described in the following: A weak majority of climatologists believe today`s climate models to be able to describe a greenhouse gas induced climate change in global scale - much less in regional scale and not in local scale. A majority of climatologists believe an anthropogenic greenhouse gas forced climate and its impacts to be developing in the future but not already at present. The shape of the opinion spectra is in most cases far from that of a scientifically solved problem - a lot of work still has to be done

  15. Using an Engaged Scholarship Symposium to Change Perceptions: Evaluation Results

    Science.gov (United States)

    Varkey, Sapna; Smirnova, Olga; Gallien, Tara Lee

    2018-01-01

    Engaged scholarship (ES) entails a symbiotic relationship between the community and the university. This article reports results from an evaluation of an ES symposium Eastern Carolina University held to increase awareness of ES as a means for integrating research, teaching, and service and to potentially change unfavorable perceptions about ES…

  16. Decadal trends in beach morphology on the east coast of South Africa and likely causative factors

    Directory of Open Access Journals (Sweden)

    S. Corbella

    2012-08-01

    Full Text Available Sandy shorelines are dynamic with constant changes that can cause hazards in developed areas. The causes of change may be either natural or anthropogenic. This paper evaluates evidence for shoreline changes and their causative factors using a case study on the east coast of South Africa. Beach morphology trends were found to be location-specific, but overall the beaches show a receding trend. It was hypothesized that wave, tide, sea level and wind trends as well as anthropogenic influences are causative factors, and their contributions to shoreline changes were evaluated. Maximum significant wave heights, average wave direction, peak period and storm event frequencies all show weak increasing trends, but only the increases in peak period and wave direction are statistically significant. The chronic beach erosion cannot be attributed to wave climate changes since they are still too small to explain the observations. Instead, the impacts of sea level rise and reductions in the supply of beach sediments are suggested as the main causative factors. The analysis also identifies a trend in the frequency of severe erosion events due to storms that coincide with a 4.5-yr extreme tide cycle, which demonstrates the potential impact of future sea level rise.

  17. Future flooding impacts on transportation infrastructure and traffic patterns resulting from climate change.

    Science.gov (United States)

    2011-11-01

    "This study investigated potential impacts of climate change on travel disruption resulting from road closures in two urban watersheds in the : Portland metropolitan area. We used ensemble climate change scenarios, a hydrologic model, stream channel ...

  18. Analysis of seafloor change at Breton Island, Gosier Shoals, and surrounding waters, 1869–2014, Breton National Wildlife Refuge, Louisiana

    Science.gov (United States)

    Flocks, James G.; Terrano, Joseph F.

    2016-08-01

    Characterizing bathymetric change in coastal environments is an important component in understanding shoreline evolution, especially along barrier island platforms. Bathymetric change is a function of the regional sediment budget, long-term wave and current patterns, and episodic impact from high-energy events such as storms. Human modifications may also cause changes in seafloor elevation. This study, conducted by the U.S. Geological Survey in collaboration with the U.S. Fish and Wildlife Service, evaluates bathymetric and volumetric change and sediment characteristics around Breton Island and Gosier Shoals located offshore of the Mississippi River Delta in Louisiana. This area has been affected by significant storm events such as Hurricane Katrina in 2005. Sedimentation patterns at Breton Island and offshore have also been modified by the excavation of a shipping channel north of the island. Four time periods are considered that encompass these episodes and include long-term change and short-term storm recovery: 1869–2014, 1869–1920, 1920–2014, and 2007–2014. Finally, sediment characteristics are reported in the context of seafloor elevation.

  19. Comparison of Laboratory Experimental Data to XBeach Numerical Model Output

    Science.gov (United States)

    Demirci, Ebru; Baykal, Cuneyt; Guler, Isikhan; Sogut, Erdinc

    2016-04-01

    Coastal zones are living and constantly changing environments where both the natural events and the human-interaction results come into picture regarding to the shoreline behavior. Both the nature of the coastal zone and the human activities shape together the resultants of the interaction with oceans and coasts. Natural extreme events may result in the need of human interference, such as building coastal structures in order to prevent from disasters or any man-made structure throughout a coastline may affect the hydrodynamics and morphology in the nearshore. In order to understand and cope with this cycle of cause and effect relationship, the numerical models developed. XBeach is an open-source, 2DH, depth average numerical model including the hydrodynamic processes of short wave transformation (refraction, shoaling and breaking), long wave (infragravity wave) transformation (generation, propagation and dissipation), wave-induced setup and unsteady currents, as well as overwash and inundation and morphodynamic processes of bed load and suspended sediment transport, dune face avalanching, bed update and breaching (Roelvink et al., 2010). Together with XBeach numerical model, it is possible to both verify and visualize the resultant external effects to the initial shorelines in coastal zones. Recently, Baykal et al. (2015) modelled the long term morphology changes with XBeach near Kızılırmak river mouth consisting of one I-shaped and one Y-shaped groins. In order to investigate the nature of the shoreline and near shore hydrodynamic conditions and morphology, the five laboratory experiments are conducted in the Largescale Sediment Transport Facility at the U.S. Army Engineer Research and Development Center in order to be used to improve longshore sand transport relationships under the combined influence of waves and currents and the enhancement of predictive numerical models of beach morphology evolution. The first series of the experiments were aimed at

  20. Radiochemical data obtained by α spectrometry on unrecrystallized fossil coral samples from the Egyptian shoreline of the north-western Red Sea

    International Nuclear Information System (INIS)

    Choukri, A.; Hakam, O.K.; Reyss, J.L.; Plaziat, J.C.

    2007-01-01

    In this work, radiochemical results obtained by α spectrometry on 80 unrecrystallized fossil coral samples from the Egyptian shoreline of the north-western Red Sea are presented and discussed. The coral samples were collected in Egypt from the emerged 5e coral reef terraces over 500km from The Ras Gharib-Ras Shukeir depression (28 deg. 10 ' ) in the north to Wadi Lahami (north of Ras Banas, 24 deg. 10 ' ) in the south. The statistical description of radiochemical results (concentrations of U and Th radioisotopes, 234 U/ 238 U activity ratios and ages) obtained on a great number of coral samples showed that it is possible to establish methodological criterions which could be used to validate the measured ages before confronting them to the geological context of sampling sites. The obtained results confirm that the unrecrystallized corals ( 232 Th 238 U varies between 2.2 and 4.9ppm around an average of 3.18+/-0.65ppm. 234 U/ 238 U activity ratios are between 1.08 and 1.28 with an averaged value of 1.164+/-0.016 which exceeds that of present day sea water but which is in agreement with the ratio of 1.16 measured by a precise mass spectrometry in many Pleistocene coral samples. Except three samples dated at least 100ka, the radiochemical age of 5e coral samples vary between 108 and 131ka with an average value of 122.2ka and a standard deviation of 4.3ka. Except for samples from the Zeit area, the reef terrace is between 2 and 6m above the present sea level. This position is similar to the highest sea level from the last interglacial according to the glacio-isostatic rebound calculated for stable regions. This work proves that the large tectonic motions which affected the studied area after the Oligocene ceased after at least the last interglacial period

  1. Beach Volume Change Using Uav Photogrammetry Songjung Beach, Korea

    Science.gov (United States)

    Yoo, C. I.; Oh, T. S.

    2016-06-01

    Natural beach is controlled by many factors related to wave and tidal forces, wind, sediment, and initial topography. For this reason, if numerous topographic data of beach is accurately collected, coastal erosion/acceleration is able to be assessed and clarified. Generally, however, many studies on coastal erosion have limitation to analyse the whole beach, carried out of partial area as like shoreline (horizontal 2D) and beach profile (vertical 2D) on account of limitation of numerical simulation. This is an important application for prevention of coastal erosion, and UAV photogrammetry is also used to 3D topographic data. This paper analyses the use of unmanned aerial vehicles (UAV) to 3D map and beach volume change. UAV (Quadcopter) equipped with a non-metric camera was used to acquire images in Songjung beach which is located south-east Korea peninsula. The dynamics of beach topography, its geometric properties and estimates of eroded and deposited sand volumes were determined by combining elevation data with quarterly RTK-VRS measurements. To explore the new possibilities for assessment of coastal change we have developed a methodology for 3D analysis of coastal topography evolution based on existing high resolution elevation data combined with low coast, UAV and on-ground RTK-VRS surveys. DSMs were obtained by stereo-matching using Agisoft Photoscan. Using GCPs the vertical accuracy of the DSMs was found to be 10 cm or better. The resulting datasets were integrated in a local coordinates and the method proved to be a very useful fool for the detection of areas where coastal erosion occurs and for the quantification of beach change. The value of such analysis is illustrated by applications to coastal of South Korea sites that face significant management challenges.

  2. BEACH VOLUME CHANGE USING UAV PHOTOGRAMMETRY SONGJUNG BEACH, KOREA

    Directory of Open Access Journals (Sweden)

    C. I. Yoo

    2016-06-01

    Full Text Available Natural beach is controlled by many factors related to wave and tidal forces, wind, sediment, and initial topography. For this reason, if numerous topographic data of beach is accurately collected, coastal erosion/acceleration is able to be assessed and clarified. Generally, however, many studies on coastal erosion have limitation to analyse the whole beach, carried out of partial area as like shoreline (horizontal 2D and beach profile (vertical 2D on account of limitation of numerical simulation. This is an important application for prevention of coastal erosion, and UAV photogrammetry is also used to 3D topographic data. This paper analyses the use of unmanned aerial vehicles (UAV to 3D map and beach volume change. UAV (Quadcopter equipped with a non-metric camera was used to acquire images in Songjung beach which is located south-east Korea peninsula. The dynamics of beach topography, its geometric properties and estimates of eroded and deposited sand volumes were determined by combining elevation data with quarterly RTK-VRS measurements. To explore the new possibilities for assessment of coastal change we have developed a methodology for 3D analysis of coastal topography evolution based on existing high resolution elevation data combined with low coast, UAV and on-ground RTK-VRS surveys. DSMs were obtained by stereo-matching using Agisoft Photoscan. Using GCPs the vertical accuracy of the DSMs was found to be 10 cm or better. The resulting datasets were integrated in a local coordinates and the method proved to be a very useful fool for the detection of areas where coastal erosion occurs and for the quantification of beach change. The value of such analysis is illustrated by applications to coastal of South Korea sites that face significant management challenges.

  3. Emergent behavior in a coupled economic and coastline model for beach nourishment

    Directory of Open Access Journals (Sweden)

    E. D. Lazarus

    2011-12-01

    Full Text Available Developed coastal areas often exhibit a strong systemic coupling between shoreline dynamics and economic dynamics. "Beach nourishment", a common erosion-control practice, involves mechanically depositing sediment from outside the local littoral system onto an actively eroding shoreline to alter shoreline morphology. Natural sediment-transport processes quickly rework the newly engineered beach, causing further changes to the shoreline that in turn affect subsequent beach-nourishment decisions. To the limited extent that this landscape/economic coupling has been considered, evidence suggests that towns tend to employ spatially myopic economic strategies under which individual towns make isolated decisions that do not account for their neighbors. What happens when an optimization strategy that explicitly ignores spatial interactions is incorporated into a physical model that is spatially dynamic? The long-term attractor that develops for the coupled system (the state and behavior to which the system evolves over time is unclear. We link an economic model, in which town-manager agents choose economically optimal beach-nourishment intervals according to past observations of their immediate shoreline, to a simplified coastal-dynamics model that includes alongshore sediment transport and background erosion (e.g. from sea-level rise. Simulations suggest that feedbacks between these human and natural coastal processes can generate emergent behaviors. When alongshore sediment transport and spatially myopic nourishment decisions are coupled, increases in the rate of sea-level rise can destabilize economically optimal nourishment practices into a regime characterized by the emergence of chaotic shoreline evolution.

  4. Evaluating the Impact of Land Use Change on Submerged Aquatic Vegetation Stressors in Mobile Bay

    Science.gov (United States)

    Al-Hamdan, Mohammad; Estes, Maurice G., Jr.; Quattrochi, Dale; Thom, Ronald; Woodruff, Dana; Judd, Chaeli; Ellis, Jean; Watson, Brian; Rodriquez, Hugo; Johnson, Hoyt

    2009-01-01

    Alabama coastal systems have been subjected to increasing pressure from a variety of activities including urban and rural development, shoreline modifications, industrial activities, and dredging of shipping and navigation channels. The impacts on coastal ecosystems are often observed through the use of indicator species. One such indicator species for aquatic ecosystem health is submerged aquatic vegetation (SAV). Watershed and hydrodynamic modeling has been performed to evaluate the impact of land use change in Mobile and Baldwin counties on SAV stressors and controlling factors (temperature, salinity, and sediment) in Mobile Bay. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for land use scenarios in 1948, 1992, 2001, and 2030. Landsat-derived National Land Cover Data (NLCD) were used in the 1992 and 2001 simulations after having been reclassified to a common classification scheme. The Prescott Spatial Growth Model was used to project the 2030 land use scenario based on current trends. The LSPC model simulations provided output on changes in flow, temperature, and sediment for 22 discharge points into the Bay. Theses results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment on a grid with four vertical profiles throughout Mobile Bay. The changes in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on SAV habitat suitability. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of temperature, salinity, and sediment due to land use driven flow changes with the restoration potential of SAVs.

  5. A Bayesian Network to Predict Barrier Island Geomorphologic Characteristics

    Science.gov (United States)

    Gutierrez, B.; Plant, N. G.; Thieler, E. R.; Turecek, A.; Stippa, S.

    2014-12-01

    Understanding how barrier islands along the Atlantic and Gulf coasts of the United States respond to storms and sea-level rise is an important management concern. Although these threats are well recognized, quantifying the integrated vulnerability is challenging due to the range of time and space scalesover which these processes act. Developing datasets and methods to identify the physical vulnerabilities of coastal environments due to storms and sea-level rise thus is an important scientific focus that supports land management decision making. Here we employ a Bayesian Network (BN) to model the interactions between geomorphic variables sampled from existing datasets that capture both storm-and sea-level rise related coastal evolution. The BN provides a means of estimating probabilities of changes in specific geomorphic characteristics such as foredune crest height, beach width, beach height, given knowledge of barrier island width, maximum barrier island elevation, distance from an inlet, the presence of anthropogenic modifications, and long-term shoreline change rates, which we assume to be directly related to sea-level rise. We evaluate BN skill and explore how different constraints, such as shoreline change characteristics (eroding, stable, accreting), distance to nearby inlets and island width, affect the probability distributions of future morphological characteristics. Our work demonstrates that a skillful BN can be constructed and that factors such as distance to inlet, shoreline change rate, and the presence of human alterations have the strongest influences on network performance. For Assateague Island, Maryland/Virginia, USA, we find that different shoreline change behaviors affect the probabilities of specific geomorphic characteristics, such as dune height, which allows us to identify vulnerable locations on the barrier island where habitat or infrastructure may be vulnerable to storms and sea-level rise.

  6. Meretas Tantangan Baru: Studi Komparasi Desentralisasi Pengelolaan Pesisir di Indonesia Timur

    Directory of Open Access Journals (Sweden)

    Hendra Yusran Siry

    2015-12-01

    Full Text Available The mandate of article 18 Law 32/2004 is about the authority given to regency government by local government in managing the shoreline and resources contained, but it has to be suitable with local characteristic which one third away from province government authority area. This kinds of decentralization demands on not only an equipped government, but also government responsiveness in managing the shoreline based on justice and sustainability values for those local stakeholders whom in charge. But the obstacles were appeared such as lack of personnel, minimum budget, and poor equipment and document (P3D in implementing shoreline decentralization. This paper explores the role taken by local politics that surely appeared in shoreline management. Refers to the results of field study that had be done in 2005 and 2007 based on qualitative research method, this paper show the comparative study between two regencies in the eastern island in Indonesia, Pangkajene Island and Konawe. Comparison between these two regencies offers three important reviews on shoreline management. It did not only reveal a contrast outlook and experience at management mechanism in shoreline, but also highlighted the varied managements and obstacles which can be very much enriching of shoreline has been triggered and increased patterns of management and important roles for local stakeholders in dealing with new obstacles in shoreline management.

  7. Probabilistic Forecasting of Coastal Morphodynamic Storm Response at Fire Island, New York

    Science.gov (United States)

    Wilson, K.; Adams, P. N.; Hapke, C. J.; Lentz, E. E.; Brenner, O.

    2013-12-01

    Site-specific probabilistic models of shoreline change are useful because they are derived from direct observations so that local factors, which greatly influence coastal response, are inherently considered by the model. Fire Island, a 50-km barrier island off Long Island, New York, is periodically subject to large storms, whose waves and storm surge dramatically alter beach morphology. Nor'Ida, which impacted the Fire Island coast in 2009, was one of the larger storms to occur in the early 2000s. In this study, we improve upon a Bayesian Network (BN) model informed with historical data to predict shoreline change from Nor'Ida. We present two BN models, referred to as 'original' model (BNo) and 'revised' model (BNr), designed to predict the most probable magnitude of net shoreline movement (NSM), as measured at 934 cross-shore transects, spanning 46 km. Both are informed with observational data (wave impact hours, shoreline and dune toe change rates, pre-storm beach width, and measured NSM) organized within five nodes, but the revised model contains a sixth node to represent the distribution of material added during an April 2009 nourishment project. We evaluate model success by examining the percentage of transects on which the model chooses the correct (observed) bin value of NSM. Comparisons of observed to model-predicted NSM show BNr has slightly higher predictive success over the total study area and significantly higher success at nourished locations. The BNo, which neglects anthropogenic modification history, correctly predicted the most probable NSM in 66.6% of transects, with ambiguous prediction at 12.7% of the locations. BNr, which incorporates anthropogenic modification history, resulted in 69.4% predictive accuracy and 13.9% ambiguity. However, across nourished transects, BNr reported 72.9% predictive success, while BNo reported 61.5% success. Further, at nourished transects, BNr reported higher ambiguity of 23.5% compared to 9.9% in BNo. These results

  8. Using a Bayesian network to predict barrier island geomorphologic characteristics

    Science.gov (United States)

    Gutierrez, Ben; Plant, Nathaniel G.; Thieler, E. Robert; Turecek, Aaron

    2015-01-01

    Quantifying geomorphic variability of coastal environments is important for understanding and describing the vulnerability of coastal topography, infrastructure, and ecosystems to future storms and sea level rise. Here we use a Bayesian network (BN) to test the importance of multiple interactions between barrier island geomorphic variables. This approach models complex interactions and handles uncertainty, which is intrinsic to future sea level rise, storminess, or anthropogenic processes (e.g., beach nourishment and other forms of coastal management). The BN was developed and tested at Assateague Island, Maryland/Virginia, USA, a barrier island with sufficient geomorphic and temporal variability to evaluate our approach. We tested the ability to predict dune height, beach width, and beach height variables using inputs that included longer-term, larger-scale, or external variables (historical shoreline change rates, distances to inlets, barrier width, mean barrier elevation, and anthropogenic modification). Data sets from three different years spanning nearly a decade sampled substantial temporal variability and serve as a proxy for analysis of future conditions. We show that distinct geomorphic conditions are associated with different long-term shoreline change rates and that the most skillful predictions of dune height, beach width, and beach height depend on including multiple input variables simultaneously. The predictive relationships are robust to variations in the amount of input data and to variations in model complexity. The resulting model can be used to evaluate scenarios related to coastal management plans and/or future scenarios where shoreline change rates may differ from those observed historically.

  9. Optically stimulated luminescence age controls on late Pleistocene and Holocene coastal lithosomes, North Carolina, USA

    Science.gov (United States)

    Mallinson, D.; Burdette, K.; Mahan, S.; Brook, G.

    2008-01-01

    Luminescence ages from a variety of coastal features on the North Carolina Coastal Plain provide age control for shoreline formation and relative sea-level position during the late Pleistocene. A series of paleoshoreline ridges, dating to Marine Isotope Stage (MIS) 5a and MIS 3 have been defined. The Kitty Hawk beach ridges, on the modern Outer Banks, yield ages of 3 to 2??ka. Oxygen-isotope data are used to place these deposits in the context of global climate and sea-level change. The occurrence of MIS 5a and MIS 3 shorelines suggests that glacio-isostatic adjustment (GIA) of the study area is large (ca. 22 to 26??m), as suggested and modeled by other workers, and/or MIS 3 sea level was briefly higher than suggested by some coral reef studies. Correcting the shoreline elevations for GIA brings their elevation in line with other sea-level indicators. The age of the Kitty Hawk beach ridges places the Holocene shoreline well west of its present location at ca. 3 to 2??ka. The age of shoreline progradation is consistent with the ages of other beach ridge complexes in the southeast USA, suggesting some regionally contemporaneous forcing mechanism. ?? 2007 University of Washington.

  10. Global change effects on early holocene sedimentation of the Brazilian continental shelf determined from TM-LANDSAT 5 data of the seafloor

    International Nuclear Information System (INIS)

    Cabral, A.P.; Vianna, M.L.; Gherardi, D.F.M.

    1992-01-01

    A study of the shaping of the seafloor morphology on the Brazilian northeast continental shelf caused by climatic changes in the beginning of the Holocene is being made with the support of TM-Landsat 5 data. Special emphasis is given on analysis of data from ancient shorelines between 20-45m depth, to be correlated with abrupt global climate change between 10,000-8,000 BP. The transport of a quartz sand deposit by the ocean currents through time, effected by active sandwave fields at the 20 m isobath is also described. Two images were used corresponding to two dates: 1984 and 1989. Geometric correction, filter application and contrast enhancement were performed. A comparison between 84' and 89' images was carried out, to detect changing patterns of the sand waves, along a 5 year period, caused by the seasonal wintertime wind-forced ocean currents. Based on this registration, estimates of displacement rates for the sand deposit could be made

  11. 75 FR 61702 - Notice of Initiation and Preliminary Results of Antidumping Duty Changed Circumstances Review...

    Science.gov (United States)

    2010-10-06

    .../supplier relationships have not changed as a result of the corporate name change. To support its claims, A... 1, 2010, A Foods informed the Department that it changed its name from May Ao and [[Page 61703... that May Ao officially changed its name to A Foods on December 25, 2009. This constitutes changed...

  12. Water-level fluctuations and metapopulation dynamics as drivers of genetic diversity in populations of three Tanganyikan cichlid fish species.

    Science.gov (United States)

    Nevado, B; Mautner, S; Sturmbauer, C; Verheyen, E

    2013-08-01

    Understanding how genetic variation is generated and maintained in natural populations, and how this process unfolds in a changing environment, remains a central issue in biological research. In this work, we analysed patterns of genetic diversity from several populations of three cichlid species from Lake Tanganyika in parallel, using the mitochondrial DNA control region. We sampled populations inhabiting the littoral rocky habitats in both very deep and very shallow areas of the lake. We hypothesized that the former would constitute relatively older, more stable and genetically more diverse populations, because they should have been less severely affected by the well-documented episodes of dramatic water-level fluctuations. In agreement with our predictions, populations of all three species sampled in very shallow shorelines showed traces of stronger population growth than populations of the same species inhabiting deep shorelines. However, contrary to our working hypothesis, we found a significant trend towards increased genetic diversity in the younger, demographically less stable populations inhabiting shallow areas, in comparison with the older and more stable populations inhabiting the deep shorelines. We interpret this finding as the result of the establishment of metapopulation dynamics in the former shorelines, by the frequent perturbation and reshuffling of individuals between populations due to the lake-level fluctuations. The repeated succession of periods of allopatric separation and secondary contact is likely to have further increased the rapid pace of speciation in lacustrine cichlids. © 2013 John Wiley & Sons Ltd.

  13. Mediterranean coastal dune systems: Which abiotic factors have the most influence on plant communities?

    Science.gov (United States)

    Ruocco, Matteo; Bertoni, Duccio; Sarti, Giovanni; Ciccarelli, Daniela

    2014-08-01

    Mediterranean coastal dunes are dynamic and heterogeneous ecosystems characterised by a strong interaction between abiotic and biotic factors. The present study aimed to adopt a multidisciplinary approach - integrating data on dune morphology, sediment texture and soil parameters as well as shoreline trend - in order to define which are the abiotic factors that most affect the distribution and composition of Mediterranean plant dune communities. The study was carried out in two protected areas, located in central Italy, subjected to different shoreline trends in recent years. 75 plots were identified along eleven randomly positioned cross-shore transects, starting from the beach continuing up to the plant communities of the backdunes. In each plot floristic and environmental data - such as distance to the coastline, plot altitude, inclination, shoreline trend, mean grain-size, sorting, pH, conductivity and organic matter concentration - were collected. The analyses revealed significant changes of vegetational cover, dune morphology and geopedological features along the coast-to-inland gradient. Relationships between vegetation composition and environmental factors were investigated through Canonical Correspondence Analysis (CCA). Four factors - distance to the coastline, mean grain-size, shoreline trend and organic matter - were found to be closely correlated with the floristic composition of plant communities. Finally, soil properties were highlighted as the most determinant factors of community zonation in these Mediterranean coastal dune ecosystems. These results could be taken into account by local managers in conservation actions such as protecting the eroding foredunes as well as in artificial dune reconstructions.

  14. Occurrence, source and ecological assessment of baseline hydrocarbons in the intertidal marine sediments along the shoreline of Douglas Channel to Hecate Strait in British Columbia.

    Science.gov (United States)

    Yang, Zeyu; Hollebone, Bruce P; Laforest, Sonia; Lambert, Patrick; Brown, Carl E; Yang, Chun; Shah, Keval; Landriault, Mike; Goldthorp, Michael

    2017-09-15

    The occurrence, source and ecological assessment of baseline hydrocarbons in the intertidal zone along the northern British shoreline were evaluated based on analyzing total petroleum hydrocarbons (TPH), n-alkanes, petroleum related biomarkers such as terpanes and steranes, and polycyclic aromatic hydrocarbons (PAHs) including non-alkylated and alkylated homologues (APAHs). The TPH levels, n-alkanes, petroleum biomarkers and PAHs in all the sampling sites, except for Masset Harbor/York Point at Gil Island were low, without obvious unresolved complex mixture (UCM) and petroleum contamination input. Specifically, n-alkanes showed a major terrestrial plants input; PAHs with abundant non-alkylated PAHs but minor APAHs showed a major pyrogenic input. However, obvious petroleum-derived hydrocarbons have impacted Masset Harbor. A historical petroleum input was found in York Point at Gil Island, due to the presence of the low level of petroleum biomarkers. Ecological assessment of 13 non-alkylated PAHs in Masset Harbor indicated no potential toxicity to the benthic organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Hybrid morphological modelling of shoreline response to a detached breakwater

    DEFF Research Database (Denmark)

    Kristensen, Sten Esbjørn; Drønen, Nils; Deigaard, Rolf

    2013-01-01

    We present a new type of model for calculating morphological changes induced by the presence of breakwaters. The model combines a process based area model, used to calculate the sediment transport field in the two horizontal dimensions, with a simplified morphological updating scheme where the ev...... in more detail the evolving morphology behind coastal breakwaters. It is demonstrated how the model is able to calculate the evolution of either salient or tombolo planforms, and furthermore it is shown that the results are in reasonable agreement with existing rules....

  16. Measuring Change in Academic Self-Concept Resulting from Curricular and Instructional Innovations

    Science.gov (United States)

    Anderson, Lorin W.

    1977-01-01

    The Rasch Model was applied to the results of an academic self-concept test administered to junior high school students, and some items were eliminated. The resulting scale possessed several properties permitting its use in the measurement of school-induced change in self-concept. The questionnaire is appended. (Author/MV)

  17. Soybean yield in relation to distance from the Itaipu reservoir

    Science.gov (United States)

    de Faria, Rogério Teixeira; Junior, Ruy Casão; Werner, Simone Silmara; Junior, Luiz Antônio Zanão; Hoogenboom, Gerrit

    2016-07-01

    Crops close to small water bodies may exhibit changes in yield if the water mass causes significant changes in the microclimate of areas near the reservoir shoreline. The scientific literature describes this effect as occurring gradually, with higher intensity in the sites near the shoreline and decreasing intensity with distance from the reservoir. Experiments with two soybean cultivars were conducted during four crop seasons to evaluate soybean yield in relation to distance from the Itaipu reservoir and determine the effect of air temperature and water availability on soybean crop yield. Fifteen experimental sites were distributed in three transects perpendicular to the Itaipu reservoir, covering an area at approximately 10 km from the shoreline. The yield gradient between the site closest to the reservoir and the sites farther away in each transect did not show a consistent trend, but varied as a function of distance, crop season, and cultivar. This finding indicates that the Itaipu reservoir does not affect the yield of soybean plants grown within approximately 10 km from the shoreline. In addition, the variation in yield among the experimental sites was not attributed to thermal conditions because the temperature was similar within transects. However, the crop water availability was responsible for higher differences in yield among the neighboring experimental sites related to water stress caused by spatial variability in rainfall, especially during the soybean reproductive period in January and February.

  18. Numerical dating of a Late Quaternary spit-shoreline complex at the northern end of Silver Lake playa, Mojave Desert, California: A comparison of the applicability of radiocarbon, luminescence, terrestrial cosmogenic nuclide, electron spin resonance, U-series and amino acid racemization methods

    Science.gov (United States)

    Owen, L.A.; Bright, Jordon; Finkel, R.C.; Jaiswal, M.K.; Kaufman, D.S.; Mahan, S.; Radtke, U.; Schneider, J.S.; Sharp, W.; Singhvi, A.K.; Warren, C.N.

    2007-01-01

    A Late Quaternary spit-shoreline complex on the northern shore of Pleistocene Lake Mojave of southeastern California, USA was studied with the goal of comparing accelerator mass spectrometry (AMS) radiocarbon, luminescence, electron spin resonance (ESR), terrestrial cosmogenic radionuclide (TCN) surface exposure, amino acid racemization (AAR) and U-series dating methods. The pattern of ages obtained by the different methods illustrates the complexity of processes acting in the lakeshore environment and highlights the utility of a multi-method approach. TCN surface exposure ages (mostly ???20-30 ka) record the initial erosion of shoreline benches, whereas radiocarbon ages on shells (determined in this and previous studies) within the spit, supported by AAR data, record its construction at fluctuating lake levels from ???16 to 10 ka. Luminescence ages on spit sediment (???6-7 ka) and ESR ages on spit shells (???4 ka) are anomalously young relative to radiocarbon ages of shells within the same deposits. The significance of the surprisingly young luminescence ages is not clear. The younger ESR ages could be a consequence of post-mortem enrichment of U in the shells. High concentrations of detrital thorium in tufa coating spit gravels inhibited the use of single-sample U-series dating. Detailed comparisons such as this provide one of the few means of assessing the accuracy of Quaternary dating techniques. More such comparisons are needed. ?? 2007 Elsevier Ltd and INQUA.

  19. Morphodynamic changes as an impact of human intervention at the Ras El-Bar-Damietta Harbor coast, NW Damietta Promontory, Nile Delta, Egypt

    Science.gov (United States)

    El-Asmar, Hesham M.; Taha, Maysa M. N.; El-Sorogy, Abdelbaset S.

    2016-12-01

    Due to the absence of a national strategic plan for coastal management, the Nile Delta coast is no longer described as a fully dissipative, divergent, low-gradient beach face composed of fine to very fine sand. Instead, new patterns have emerged depending on rock type, geomorphology of the coast, direction of the shoreline in relation to waves and current, and the implemented defense measures. This study attempts to record the morphodynamic changes which occurred due to human intervention. Landsat satellite images acquired for the periods of time of 1973, 1984, 1989, 2003, and 2015 are used together with geomorphologic observations in order to monitor the changes along the coastal strip between Ras El-Bar and Damietta Harbor. This study reveals two beach segments; one of which lies to the east, it is protected with detached breakwater system, and shows average shoreline accretions of +4.73 myr-1, +5.0 myr-1, and +0.89myr-1 during the periods of 1984-1998, 1998-2003, and 2003-2015 respectively. This segment still has the geomorphologic imprints of the dissipative beach, wave divergence, low-gradient beach face, fine grained sand and spilling breakers. The second is to the west, between the detached breakwaters and the eastern jetty of the Damietta Harbor. It is an erosional segment with shoreline retreat of -7.43 myr-1, -10.90 myr-1, and -3.11myr-1 for the same periods. This segment shows intermediate "d" beach or intermediate-reflective, wave convergence, rip currents, with the characteristic steep sloped and cuspate beach face, cliffy, reworked sediments of coarse grained sands, mud clasts, discoidal gravels, shelly beach, and plunging breakings. The presence of convergent waves along this segment confirms the concept of an emergence of a new wave pattern of reversed eddy which enhances the steepness of the beach face, accelerates erosion, and increases the possibility of drowning of swimmers at Ras El-Bar resort. Under such circumstances the plunge step

  20. Acquisition and Cataloguing Processes: Changes as a Result of Customer Value Discovery Research

    Directory of Open Access Journals (Sweden)

    Sue McKnight

    2007-12-01

    Full Text Available Objective ‐ This study seeks to highlight the profound effect of Customer Value Discovery research on the internal business processes of two university libraries in the areas of cataloguing and acquisitions.Methods ‐ In this project, “Customer Discovery Workshops” with academic staff, students, and university stakeholders provided library managers and staff with information on what services and resources were of value to customers. The workshops also aimed to discover what features of existing library services and resources irritated the students, staff, and faculty. A student satisfaction survey assessed longer‐term impact of library changes to students in one university.Results ‐ The findings resulted in significant changes to collection development, acquisitions, and cataloguing processes. A number of value added services were introduced for the customer. The project also resulted in greater speed and efficiency in dealing with collection development, acquisitions, and cataloguing by the introduction of more technology‐enhanced services. Overall customer satisfaction was improved during the project period.Conclusion ‐ The changes to services introduced as a result of customer feedback also improved relationships between librarians and their university community, through the introduction of a more proactive and supportive service.

  1. Proceedings of the CEATI water management 2008 workshop : climate change impacts on hydroelectric water resource management

    International Nuclear Information System (INIS)

    2008-01-01

    Hydroelectric power will occupy a significant portion of future renewable energy sources. This conference provided a forum for scientists, industry experts, and utility operators to discuss methods of determining and managing the potential impacts of climatic change on water resources. Attendants at the conference discussed issues related to future water supplies, and examined methods of predicting hydrological shifts and pattern changes for various watersheds and basins. Methods of using global climate and regional climate models for predicting the impacts of climatic change on water resources were reviewed, and new strategies for simulating and predicting shifts in sedimentation and shoreline erosion were discussed. New technologies and tools designed to improve the accuracy of utility risk assessments were also presented. The conference was divided into the following 11 sessions: (1) climate change impacts, (2) hydroclimatic variability, (3) downscaling of climate models, (4) global climate models and regional climate models, (5) watershed modelling, (6) adaptation on short-, medium-, and long-term planning, (7) climate change adaptation, (8) operations and planning, (9) risk assessment and uncertainty, (10) operations and planning, and (11) extreme events. A series of workshop posters presented new forecasting and simulation tools. The conference featured 35 presentations, of which 11 have been catalogued separately for inclusion in this database. tabs., figs

  2. The impact of the 2009-10 El Niño Modoki on U.S. West Coast beaches

    Science.gov (United States)

    Barnard, Patrick L.; Allan, Jonathan; Hansen, Jeff E.; Kaminsky, George M.; Ruggiero, Peter; Doria, André

    2011-01-01

    High-resolution beach morphology data collected along much of the U.S. West Coast are synthesized to evaluate the coastal impacts of the 2009-10 El Nio. Coastal change observations were collected as part of five beach monitoring programs that span between 5 and 13 years in duration. In California, regional wave and water level data show that the environmental forcing during the 2009-10 winter was similar to the last significant El Nio of 1997-98, producing the largest seasonal shoreline retreat and/or most landward shoreline position since monitoring began. In contrast, the 2009-10 El Nio did not produce anomalously high mean winter-wave energy in the Pacific Northwest (Oregon and Washington), although the highest 5% of the winter wave-energy measurements were comparable to 1997-98 and two significant non-El Nio winters. The increase in extreme waves in the 2009-10 winter was coupled with elevated water levels and a more southerly wave approach than the long-term mean, resulting in greater shoreline retreat than during 1997-98, including anomalously high shoreline retreat immediately north of jetties, tidal inlets, and rocky headlands. The morphodynamic response observed throughout the U.S. West Coast during the 2009-10 El Nio is principally linked to the El Nio Modoki phenomena, where the warm sea surface temperature (SST) anomaly is focused in the central equatorial Pacific (as opposed to the eastern Pacific during a classic El Nio), featuring a more temporally persistent SST anomaly that results in longer periods of elevated wave energy but lower coastal water levels. ?? 2011 by the American Geophysical Union.

  3. The Race to Nourish: Exploring resource equity in a coupled human coastline model

    Science.gov (United States)

    Williams, Z. C.; McNamara, D.; Murray, A.; Smith, M.

    2011-12-01

    Many coastal communities are faced with eroding shorelines due to gradients in the alongshore transport of sediment and rising sea level. These communities often employ a beach nourishment mitigation strategy to counter erosion from natural forces. These nourishment activities provide economic benefits in the form of protection from storms and enhanced recreation on the stabilized beach. Previous work has shown that economically optimal nourishment decisions indicate that rising nourishment costs can lead to more frequent nourishment. Given that the cost of nourishing is likely to rise as offshore sediment borrow sites become more scarce, this suggests a positive feedback whereby nourishment that dwindles offshore borrow sites causes more frequent nourishment. We explore the dynamics of this feedback in a coupled economic-coastline model and how resulting long term shoreline and economic patterns respond to forcing changes in the form of increased sea level rise and changing storminess along both a straight shoreline and a cuspate Carolina like shoreline. The economic model utilizes myopic manager agents that inform a community of the optimal nourishment interval based on the current cost of sand and locally observed erosion rate since the last nourishment episode. Communities nourish independently but can affect the erosion rate of adjacent communities through alongshore sediment transport dynamics. The coastline model tracks large-scale coastline change via alongshore sediment transport calculations and erosion due to rising sea level. Model experiments show that when the economic model is coupled to a flat coastline, the feedback in sand cost leads to resource inequity as communities that become caught in the feedback nourish frequently while adjacent communities maintain coastline position by "free riding" on these neighbor towns. Model experiments also show that on cuspate coastlines, the emergent cuspate features enhance the cost feedback and create unequal

  4. Working group report on wetlands, wildlife and fisheries

    International Nuclear Information System (INIS)

    Maltby, L.

    1990-01-01

    A workshop was held to discuss the impacts of climatic change on wetlands, wildlife and fisheries. Impacts that could occur as a result of climatic change include: sea level rise affecting coastal wetlands by inundation, erosion and saltwater intrusion; temperature rise/moisture balance changes on other wetlands; lake level changes affecting shoreline wetlands; vegetation species/community modification of biological systems; and changes in values derived from wetlands impacting socio-economic systems. The Great Lakes shoreline is considered to be at high risk, and it is predicted that there will be profound effects on the ecological and socio-economic value of the Great Lakes wetlands. Presentations were given on wildlife as biological indicators, modelling the effects of climate warming on the stream habitats of brook trout, and the effects of an altered water regime on Great Lakes coastal wetlands. It was concluded that a fundamental research program of an interdisciplinary nature be established to determine current linkages of climatic variables to the function, distribution and productivity of wetlands and associated fish and wildlife resources. A national wetlands monitoring network should be established to trace the influence of climatic variables on wetlands and fish, to identify environmental indicators for reporting and to complement other monitoring programs

  5. Characterizing storm response and recovery using the beach change envelope: Fire Island, New York

    Science.gov (United States)

    Brenner, Owen T.; Lentz, Erika E.; Hapke, Cheryl J.; Henderson, Rachel E.; Wilson, Kat E.; Nelson, Timothy R.

    2018-01-01

    Hurricane Sandy at Fire Island, New York presented unique challenges in the quantification of storm impacts using traditional metrics of coastal change, wherein measured changes (shoreline, dune crest, and volume change) did not fully reflect the substantial changes in sediment redistribution following the storm. We used a time series of beach profile data at Fire Island, New York to define a new contour-based morphologic change metric, the Beach Change Envelope (BCE). The BCE quantifies changes to the upper portion of the beach likely to sustain measurable impacts from storm waves and capture a variety of storm and post-storm beach states. We evaluated the ability of the BCE to characterize cycles of beach change by relating it to a conceptual beach recovery regime, and demonstrated that BCE width and BCE height from the profile time series correlate well with established stages of recovery. We also investigated additional applications of this metric to capture impacts from storms and human modification by applying it to several post-storm historical datasets in which impacts varied considerably; Nor'Ida (2009), Hurricane Irene (2011), Hurricane Sandy (2012), and a 2009 community replenishment. In each case, the BCE captured distinctive upper beach morphologic change characteristic of these different beach building and erosional events. Analysis of the beach state at multiple profile locations showed spatial trends in recovery consistent with recent morphologic island evolution, which other studies have linked with sediment availability and the geologic framework. Ultimately we demonstrate a new way of more effectively characterizing beach response and recovery cycles to evaluate change along sandy coasts.

  6. Climate Change and Migration along the Albemarle and Pamlico Sounds, North Carolina

    Science.gov (United States)

    Rummel, J. D.; Griffith, D. C.; Kimmel, D. G.; Landry, C. E.; Montz, B. E.

    2012-12-01

    Climactic events that have stimulated or enhanced human migrations have been documented historically. For example, the U.S. granted Temporary Protective Status to Honduran migrants following Hurricane Mitch in 1998, and many of those migrated to North Carolina and other parts of the U.S. South. In North Carolina and elsewhere, changing environmental conditions have led to shifting migration patterns among fish, birds, marine mammals, and other species—with a concomitant change in fishing practices and other forms of marine resource exploitation. Now, significant landscape changes are taking place as a result of global climate change, including sea level rise, changing ice cover at the poles, an increasing frequency and duration of drought, forest fires, and storms. Anthropocentric responses to the occasional disasters that will punctuate these changes suggest that the relationship between climate/environmental change and migration is likely to become central to the future of the geosciences along with the environmental and social sciences, as well as an essential focus to policies influencing population movements, environmental health, and risk management. Over the last two decades, the Albemarle-Pamlico region of North Carolina has harbored one of the nation's fastest growing populations, with immigrants to the region primarily consisting of two distinct, yet interconnected, groups: 1) relatively affluent U.S. citizens (including many retirees seeking proximity to coastal amenities); and, 2) relatively poor workers (many from Mexico and Central America) attracted to the region for work in agriculture, fisheries, food processing, construction/ landscaping, tourism, and forestry. By settling near the coast, these immigrants can be particularly susceptible to storm surge and other damage from the combination of sea level rise, hurricanes, and related processes that are reshaping coastal environments. This paper considers the past, present, and future of climate

  7. Sea Level Change and Coastal Climate Services: The Way Forward

    Directory of Open Access Journals (Sweden)

    Gonéri Le Cozannet

    2017-10-01

    Full Text Available For many climate change impacts such as drought and heat waves, global and national frameworks for climate services are providing ever more critical support to adaptation activities. Coastal zones are especially in need of climate services for adaptation, as they are increasingly threatened by sea level rise and its impacts, such as submergence, flooding, shoreline erosion, salinization and wetland change. In this paper, we examine how annual to multi-decadal sea level projections can be used within coastal climate services (CCS. To this end, we review the current state-of-the art of coastal climate services in the US, Australia and France, and identify lessons learned. More broadly, we also review current barriers in the development of CCS, and identify research and development efforts for overcoming barriers and facilitating their continued growth. The latter includes: (1 research in the field of sea level, coastal and adaptation science and (2 cross-cutting research in the area of user interactions, decision making, propagation of uncertainties and overall service architecture design. We suggest that standard approaches are required to translate relative sea level information into the forms required to inform the wide range of relevant decisions across coastal management, including coastal adaptation.

  8. Key uncertainties in climate change policy: Results from ICAM-2

    Energy Technology Data Exchange (ETDEWEB)

    Dowlatabadi, H.; Kandlikar, M.

    1995-12-31

    A critical aspect of climate change decision-making is uncertainties in current understanding of the socioeconomic, climatic and biogeochemical processes involved. Decision-making processes are much better informed if these uncertainties are characterized and their implications understood. Quantitative analysis of these uncertainties serve to: inform decision makers about the likely outcome of policy initiatives; and help set priorities for research so that outcome ambiguities faced by the decision-makers are reduced. A family of integrated assessment models of climate change have been developed at Carnegie Mellon. These models are distinguished from other integrated assessment efforts in that they were designed from the outset to characterize and propagate parameter, model, value, and decision-rule uncertainties. The most recent of these models is ICAM 2.0. This model includes demographics, economic activities, emissions, atmospheric chemistry, climate change, sea level rise and other impact modules and the numerous associated feedbacks. The model has over 700 objects of which over 1/3 are uncertain. These have been grouped into seven different classes of uncertain items. The impact of uncertainties in each of these items can be considered individually or in combinations with the others. In this paper we demonstrate the relative contribution of various sources of uncertainty to different outcomes in the model. The analysis shows that climatic uncertainties are most important, followed by uncertainties in damage calculations, economic uncertainties and direct aerosol forcing uncertainties. Extreme uncertainties in indirect aerosol forcing and behavioral response to climate change (adaptation) were characterized by using bounding analyses; the results suggest that these extreme uncertainties can dominate the choice of policy outcomes.

  9. Sediment fluxes and the littoral drift along northeast Andhra Pradesh Coast, India: Estimation by remote sensing

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Alagarsamy, R.; Hursthouse, A.S.

    ). However, field study revealed a predominance of erosion rather than deposition along the estuarine banks and delta front shoreline (Malini and Rao 2004). The study reported here analyzes the littoral-drift regime along the coastal stretch between... by detecting the landform and shoreline changes during the decade (1988/89 to 2000). The multi-date color composite for each sector was generated by assigning red color to a band of ETM 8 data and green and blue color to the corresponding band of TM data...

  10. Critical Beach Habitat for Hawaiian Green Sea Turtle Endangered Before Mid-Century

    Science.gov (United States)

    Burstein, J. T.; Fletcher, C. H., III; Dominique Tavares, K.

    2017-12-01

    Many Hawaiian beaches provide critical habitat for the Hawaiian Green Sea Turtle (Chelonia Mydas). However, sea level rise drives beaches and dunes to migrate landward where they may encounter roads and other types of developed lands. Where developed lands are threatened by coastal erosion, defined as a distance of 20 ft (6.1 m) by state rules, property owners are eligible to apply for an emergency permit. These have historically led to coastal armoring. Seawalls and revetments on chronically receding shorelines cause permanent beach loss by restricting sand supply to the beach in front of the sea wall, as well as to beaches adjacent to the restrictive structure (flanking). This study focuses on four primary beach habitats along the North Shore of Oahu, Hawai'i: Waimea, Haleiwa, Kawailoa, and Mokuleia. We utilize GIS techniques to apply spatial analysis of nesting and basking locations collected from the National Oceanic Atmospheric Administration (NOAA). We then estimate the number of homes and the length of shoreline threatened by coastal armoring for 0 m, 0.17 m, 0.32 m, 0.60 m, and 0.98 m of sea-level rise. We demonstrate that 0.17 m of sea level rise impacts 31% of all beach front homes, and 4.6 km of shoreline, or 21% of the total shoreline. An increase to 0.32 m of sea level rise impacts 42% of all beach front homes, and 5.8 km of shoreline, or 31% of the total shoreline. The upper bound of the most recent sea level rise projection by the International Panel on Climate Change (IPCC RCP 8.5) affirms that 0.17 m of sea level rise may be reached by 2030, and 0.32 m by 2050. This sea level projection is a "worst-case" under IPCC-AR5, however, Sweet et al. (2017) depicts this as an "Intermediate" scenario on the basis of faster than expected mass loss by Greenland and Antarctica ice sheets, and rapid heat uptake and thermal expansion by the world's oceans. We conclude that the impacts of sea level rise and reactive coastal armoring currently endanger critical

  11. On the Application of an Enthalpy Method to the Evolution of Fluvial Deltas Under Sea-Level Changes

    Science.gov (United States)

    Anderson, W.; Lorenzo-Trueba, J.; Voller, V. R.

    2017-12-01

    Fluvial deltas are composites of two primary sedimentary environments: a depositional fluvial region and an offshore region. The fluvial region is defined by two geomorphic moving boundaries: an alluvial-bedrock transition (ABT), which separates the sediment prism from the non-erodible bedrock basement, and the shoreline (SH), where the delta meets the ocean. The trajectories of these boundaries in time and space define the evolution of the shape of the sedimentary prism, and are often used as stratigraphic indicators, particularly in seismic studies, of changes in relative sea level and the identification of stratigraphic sequences. In order to better understand the relative role of sea-level variations, tectonics, and sediment supply on the evolution of these boundaries, we develop a forward stratigraphic model that captures the dynamic behavior of the fluvial surface and treats the SH and ABT as moving boundaries (i.e., internal boundaries whose location must be determined as part of the solution to the overall morphological evolution problem). This forward model extends a numerical technique from heat transfer (i.e., enthalpy method), previously applied to the evolution of sedimentary basins, to account for sea-level changes. The mathematics of the approach are verified by comparing predictions from the numerical model with both existing and newly developed closed form analytical solutions. Model results support previous work, which suggests that the migration of the ABT can respond very differently to the sea-level signal. This response depends on factors such as sediment supply and delta length, which can vary greatly between basins. These results can have important implications for the reconstruction of past sea-level changes from the stratigraphic record of sedimentary basins.

  12. 77 FR 27156 - Safety Zone, Temporary Change for Recurring Fifth Coast Guard District Fireworks Displays...

    Science.gov (United States)

    2012-05-09

    ..., Cavalier Golf & Yacht Club Independence Day Fireworks Display, Broad Bay Virginia Beach, VA AGENCY: Coast... the safety of life on navigable waters during the Cavalier Golf & Yacht Club Independence Day..., 2012 Cavalier Golf & Yacht Club will host a fireworks display on the shoreline of the navigable waters...

  13. Oil Characterization and Distribution in Florida Estuary Sediments Following the Deepwater Horizon Spill

    Directory of Open Access Journals (Sweden)

    Mace G. Barron

    2015-09-01

    Full Text Available Barrier islands of Northwest Florida were heavily oiled during the Deepwater Horizon spill, but less is known about the impacts to the shorelines of the associated estuaries. Shoreline sediment oiling was investigated at 18 sites within the Pensacola Bay, Florida system prior to impact, during peak oiling, and post-wellhead capping. Only two locations closest to the Gulf of Mexico had elevated levels of total petroleum hydrocarbons (TPH and total polycyclic aromatic hydrocarbons (PAHs. These samples showed a clear weathered crude oil signature, pattern of depletion of C9 to C19 alkanes and C0 to C4 naphthalenes, and geochemical biomarker ratios in concordance with weathered Macondo crude oil. All other locations and sample times showed only trace petroleum contamination. The results of this study are consistent with available satellite imagery and visual shoreline survey data showing heavy shoreline oiling limited to sandy beaches near the entrance to Pensacola Bay and shorelines of Santa Rosa Island.

  14. Development of a Climate Change Adaptation Strategy for Management of Coastal Marsh Systems in Southern New England USA

    Science.gov (United States)

    Sea level rise is accelerating throughout the U.S. Northeast causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat ...

  15. Development of a Climate-Change Adaptation Strategy for Management of Coastal Marsh Systems in Southern New England USA

    Science.gov (United States)

    Sea level rise is accelerating throughout the U.S. Northeast causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat ...

  16. Louisiana Barrier Island Comprehensive Monitoring (BICM) Program Summary Report: Data and Analyses 2006 through 2010

    Science.gov (United States)

    Kindinger, Jack G.; Buster, Noreen A.; Flocks, James G.; Bernier, Julie C.; Kulp, Mark A.

    2013-01-01

    The Barrier Island Comprehensive Monitoring (BICM) program was implemented under the Louisiana Coastal Area Science and Technology (LCA S&T) office as a component of the System Wide Assessment and Monitoring (SWAMP) program. The BICM project was developed by the State of Louisiana (Coastal Protection Restoration Authority [CPRA], formerly Department of Natural Resources [DNR]) to complement other Louisiana coastal monitoring programs such as the Coastwide Reference Monitoring System-Wetlands (CRMS-Wetlands) and was a collaborative research effort by CPRA, University of New Orleans (UNO), and the U.S. Geological Survey (USGS). The goal of the BICM program was to provide long-term data on the barrier islands of Louisiana that could be used to plan, design, evaluate, and maintain current and future barrier-island restoration projects. The BICM program used both historical and newly acquired (2006 to 2010) data to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment texture and geotechnical properties, environmental processes, and vegetation composition. BICM datasets included aerial still and video photography (multiple time series) for shoreline positions, habitat mapping, and land loss; light detection and ranging (lidar) surveys for topographic elevations; single-beam and swath bathymetry; and sediment grab samples. Products produced using BICM data and analyses included (but were not limited to) storm-impact assessments, rate of shoreline and bathymetric change, shoreline-erosion and accretion maps, high-resolution elevation maps, coastal-shoreline and barrier-island habitat-classification maps, and coastal surficial-sediment characterization maps. Discussions in this report summarize the extensive data-collection efforts and present brief interpretive analyses for four coastal Louisiana geographic regions. In addition, several coastal-wide and topical themes were selected that integrate the data and analyses within a

  17. The influence of anthropic actions on the evolution of an urban beach: Case study of Marineta Cassiana beach, Spain.

    Science.gov (United States)

    Pagán, J I; Aragonés, L; Tenza-Abril, A J; Pallarés, P

    2016-07-15

    Coastal areas have been historically characterized as being a source of wealth. Nowadays, beaches have become more relevant as a place for rest and leisure. This had led to a very high population pressure due to rapid urbanisation processes. The impacts associated with coastal tourism, demand the development of anthropic actions to protect the shoreline. This paper has studied the impacts of these actions on the Marineta Cassiana beach, in Denia, Spain. This particular Mediterranean beach has traditionally suffered a major shoreline regression, and the beach nourishments carried out in the 1980s would not have achieved the reliability desired. This research has analysed the historic evolution of the beach and its environment for a period of 65years (1950-2015). A Geographic Information System (GIS) has been used to integrate and perform a spatial analysis of urban development, soil erosion, stream flow, swell, longshore transport, submerged vegetation species and shoreline evolution. The results show how the anthropic actions have affected the shoreline. After the excessive urban development of the catchments, there is no natural sediment supply to the beach. The change in the typology of the sediment, from pebbles to sand, during the beach nourishments has led to a crucial imbalance in the studied area. Moreover, the beach area gained has disappeared, affecting the Posidonia oceanica meadow, and incrementing the erosion rates. The findings obtained are relevant, not only in the management and maintenance of the beaches, but also, in the decision-making for future nourishments. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Climatic change and variability: The effects of an altered water regime on Great Lakes coastal wetlands

    International Nuclear Information System (INIS)

    Mortsch, L.

    1990-01-01

    Wetlands of Canada are disappearing at a rapid rate due to urban encroachment and agricultural land drainage. Climatic change may be another threat to their continued viability. Wetlands perform numerous functions such as providing wildlife habitat, enhancing water quality, providing recreation opportunities and supporting commercial activities. Impact scenarios of global warming on Great Lakes hydrology and wetland ecosystem response to water level changes are tabulated. Wetland response to lower annual water levels depends on the type of wetland, its geomorphology and bathymetry. Marshes and open water wetland adapt more readily to lower levels than swamps. Swamps are less resilient since trees cannot regenerate and colonize quickly. Enclosed and barrier beach wetlands are more prone to drying out and loosing wetland vegetation during low water periods. In open shoreline wetlands, the areal extent could increase if there is a gentle slope and other suitable conditions. Precambrian Shield wetlands are located in areas of irregular slope and rocky substrate, and would have fewer sites for successful colonization. 15 refs., 2 tabs

  19. Coastal flooding hazard related to storms and coastal evolution in Valdelagrana spit (Cadiz Bay Natural Park, SW Spain)

    Science.gov (United States)

    Benavente, J.; Del Río, L.; Gracia, F. J.; Martínez-del-Pozo, J. A.

    2006-06-01

    Mapping of coastal inundation hazard related to storms requires the combination of multiple sources of information regarding meteorological, morphological and dynamic characteristics of both the area at risk and the studied phenomena. Variables such as beach slope, storm wave height or wind speed have traditionally been used, but detailed geomorphological features of the area as well as long-term shoreline evolution trends must also be taken into account in order to achieve more realistic results. This work presents an evaluation of storm flooding hazard in Valdelagrana spit and marshes (SW Spain), considering two types of storm that are characteristic of the area: a modal storm with 1 year of recurrence interval (maximum wave height of 3.3 m), and an extreme storm with 6-10 years of recurrence interval (maximum wave height of 10.6 m), both approaching the coast perpendicularly. After calculating theoretical storm surge elevation, a digital terrain model was made by adjusting topographic data to field work and detailed geomorphological analysis. A model of flooding extent was subsequently developed for each storm type, and then corrected according to the rates of shoreline change in the last decades, which were assessed by means of aerial photographs taking the dune toe as shoreline indicator. Results show that long-term coastline trend represents an important factor in the prediction of flooding extent, since shoreline retreat causes the deterioration of natural coastal defences as dune ridges, thus increasing coastal exposure to high-energy waves. This way, it has been stated that the lack of sedimentary supply plays an important role in spatial variability of inundation extent in Valdelagrana spit. Finally, a hazard map is presented, where calculated coastal retreat rates are employed in order to predict the areas that could be affected by future inundation events.

  20. Coherent Change Detection: Theoretical Description and Experimental Results

    Science.gov (United States)

    2006-08-01

    scene changes created using a rotary hoe and lawn mower . In the first collection the repeat pass delay is 24 hours and for a false alarm rate of 1 in 20...the rotary hoe and lawn mower . . . . . . . . . . . . . . . . . 65 35 Intensity SAR image of the scene used for repeat pass interferometry experi...ments. Superimposed on the image is a schematic showing the scene changes carried out with the rotary hoe and lawn mower . . . . . . . . . . . . . . . . . 66