WorldWideScience

Sample records for shocks electron heating

  1. Efficient electron heating in relativistic shocks and gamma-ray-burst afterglow.

    Science.gov (United States)

    Gedalin, M; Balikhin, M A; Eichler, D

    2008-02-01

    Electrons in shocks are efficiently energized due to the cross-shock potential, which develops because of differential deflection of electrons and ions by the magnetic field in the shock front. The electron energization is necessarily accompanied by scattering and thermalization. The mechanism is efficient in both magnetized and nonmagnetized relativistic electron-ion shocks. It is proposed that the synchrotron emission from the heated electrons in a layer of strongly enhanced magnetic field is responsible for gamma-ray-burst afterglows.

  2. Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks

    Science.gov (United States)

    Veltri, P.; Mangeney, A.; Scudder, J. D.

    1992-01-01

    The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.

  3. Balmer line diagnostic of electron heating at collisionless shocks in supernova remnants

    International Nuclear Information System (INIS)

    Rakowski, C.

    2008-01-01

    The mechanism and extent of electron heating at collisionless shocks has recently been under intense investigation. H α Balmer line emission is excited immediately behind the shock front and provides the best diagnostic for the electron to proton temperature ratio at supernova remnant shocks. Two components of emission are produced, a narrow component from electron and proton impact excitation of cold neutrals, and a broad component produced through charge exchange between the cold neutrals and the shock heated protons. Thus the broad and narrow component fluxes reflect the competition between electron and proton impact ionization, electron and proton impact excitation and charge exchange. This diagnostic has led to the discovery of an approximate inverse square relationship between the electron to proton temperature ratio and the shock velocity. In turn, this implies a constant level of electron heating, independent of shock speed above ∼ 450 km/s. In this talk I will present the observational evidence to date. Time permitting, I will introduce how lower-hybrid waves in an extended cosmic ray precursor could explain such a relationship, and how this and other parameters in the H α profile might relate to properties of cosmic rays and magnetic field amplification ahead of the shock. (author)

  4. Ion Thermalization and Electron Heating across Quasi-Perpendicular Shocks Observed by the MMS Mission

    Science.gov (United States)

    Chen, L. J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Figueroa-Vinas, A.; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Y. V.

    2017-12-01

    Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We `image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.

  5. Electron velocity distributions near collisionless shocks

    International Nuclear Information System (INIS)

    Feldman, W.C.

    1984-01-01

    Recent studies of the amount of electron heating and of the shapes of electron velocity distributions across shocks near the earth are reviewed. It is found that electron heating increases with increasing shock strength but is always less than the ion heating. The scale length of electron heating is also less than that for the ions. Electron velocity distributions show characteristic shapes which depend on the strength of the shocks. At the weaker shocks, electron heating is mostly perpendicular to the ambient magnetic field, bar B, and results in Gaussian-shaped velocity distributions at low-to-moderate energies. At the stronger shocks, parallel heating predominates resulting in flat-topped velocity distributions. A reasonable interpretation of these results indicates that at the weaker shocks electron heating is dominated by a tendency toward conservation of the magnetic moment. At the stronger fast-mode shocks, this heating is thought to be dominated by an acceleration parallel to bar B produced by the macroscopic shock electric field followed by beam driven plasma instabilities. Some contribution to the heating at the stronger shocks from conservation of the magnetic moment and cross-field current-driven instabilities cannot be ruled out. Although the heating at slow-mode shocks is also dominated by instabilities driven by magnetic field-aligned electron beams, their acceleration mechanism is not yet established

  6. Time development of a blast wave with shock heated electrons

    International Nuclear Information System (INIS)

    Edgar, R.J.; Cox, D.P.

    1983-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures

  7. Nonlocal electron heat relaxation in a plasma shock at arbitrary ionization number

    International Nuclear Information System (INIS)

    Ramirez, J.; Sanmartin, J.R.; Fernandez-Feria, R.

    1993-01-01

    A recently obtained nonlocal expression for the electron heat flux valid for arbitrary ionization numbers Z is used to study the structure of a plane shock wave in a fully ionized plasma. Nonlocal effects are only important in the foot of the electronic preheating region, where the electron temperature gradient is the steepest. The results are quantified as a function of a characteristic Knudsen number of that region. This work also generalizes to arbitrary values of Z previous results on plasma shock wave structure

  8. New evidence for efficient collisionless heating of electrons at the reverse shock of a young supernova remnant

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Hiroya; Petre, Robert [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Eriksen, Kristoffer A. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Badenes, Carles [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O' Hara St, Pittsburgh, PA 15260 (United States); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Brickhouse, Nancy S.; Foster, Adam R.; Patnaude, Daniel J.; Slane, Patrick O.; Smith, Randall K., E-mail: hiroya.yamaguchi@nasa.gov [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-01-10

    Although collisionless shocks are ubiquitous in astrophysics, certain key aspects of them are not well understood. In particular, the process known as collisionless electron heating, whereby electrons are rapidly energized at the shock front, is one of the main open issues in shock physics. Here, we present the first clear evidence for efficient collisionless electron heating at the reverse shock of Tycho's supernova remnant (SNR), revealed by Fe K diagnostics using high-quality X-ray data obtained by the Suzaku satellite. We detect Kβ (3p → 1s) fluorescence emission from low-ionization Fe ejecta excited by energetic thermal electrons at the reverse shock front, which peaks at a smaller radius than Fe Kα (2p → 1s) emission dominated by a relatively highly ionized component. Comparisons with our hydrodynamical simulations imply instantaneous electron heating to a temperature 1000 times higher than expected from Coulomb collisions alone. The unique environment of the reverse shock, which is propagating with a high Mach number into rarefied ejecta with a low magnetic field strength, puts strong constraints on the physical mechanism responsible for this heating and favors a cross-shock potential created by charge deflection at the shock front. Our sensitive observation also reveals that the reverse shock radius of this SNR is about 10% smaller than the previous measurement using the Fe Kα morphology from the Chandra observations. Since strong Fe Kβ fluorescence is expected only from low-ionization plasma where Fe ions still have many 3p electrons, this feature is key to diagnosing the plasma state and distribution of the immediate postshock ejecta in a young SNR.

  9. New Evidence for Efficient Collisionless Heating of Electrons at the Reverse Shock of a Young Supernova Remnant

    Science.gov (United States)

    Yamaguchi, Hiroya; Eriksen, Kristoffer A.; Badenes, Carles; Hughes, John P.; Brickhouse, Nancy S.; Foster, Adam R.; Patnaude, Daniel J.; Petre, Robert; Slane, Patrick O.; Smith, Randall K.

    2013-01-01

    Although collisionless shocks are ubiquitous in astrophysics, certain key aspects of them are not well understood. In particular, the process known as collisionless electron heating, whereby electrons are rapidly energized at the shock front, is one of the main open issues in shock physics. Here, we present the first clear evidence for efficient collisionless electron heating at the reverse shock of Tycho's supernova remnant (SNR), revealed by Fe K diagnostics using high-quality X-ray data obtained by the Suzaku satellite. We detect K beta (3p yields 1s) fluorescence emission from low-ionization Fe ejecta excited by energetic thermal electrons at the reverse shock front, which peaks at a smaller radius than Fe K alpha (2p yields 1s) emission dominated by a relatively highly ionized component. Comparisons with our hydrodynamical simulations imply instantaneous electron heating to a temperature 1000 times higher than expected from Coulomb collisions alone. The unique environment of the reverse shock, which is propagating with a high Mach number into rarefied ejecta with a low magnetic field strength, puts strong constraints on the physical mechanism responsible for this heating and favors a cross-shock potential created by charge deflection at the shock front. Our sensitive observation also reveals that the reverse shock radius of this SNR is about 10% smaller than the previous measurement using the Fe K alpha morphology from the Chandra observations. Since strong Fe K beta fluorescence is expected only from low-ionization plasma where Fe ions still have many 3p electrons, this feature is key to diagnosing the plasma state and distribution of the immediate postshock ejecta in a young SNR.

  10. Electron transport and shock ignition

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A R; Tzoufras, M, E-mail: t.bell1@physics.ox.ac.uk [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2011-04-15

    Inertial fusion energy (IFE) offers one possible route to commercial energy generation. In the proposed 'shock ignition' route to fusion, the target is compressed at a relatively low temperature and then ignited using high intensity laser irradiation which drives a strong converging shock into the centre of the fuel. With a series of idealized calculations we analyse the electron transport of energy into the target, which produces the pressure responsible for driving the shock. We show that transport in shock ignition lies near the boundary between ablative and heat front regimes. Moreover, simulations indicate that non-local effects are significant in the heat front regime and might lead to increased efficiency by driving the shock more effectively and reducing heat losses to the plasma corona.

  11. Particle simulation study of electron heating by counter-streaming ion beams ahead of supernova remnant shocks

    International Nuclear Information System (INIS)

    Dieckmann, M E; Sarri, G; Kourakis, I; Borghesi, M; Bret, A; Perez Alvaro, E

    2012-01-01

    The growth and saturation of Buneman-type instabilities is examined with a particle-in-cell (PIC) simulation for parameters that are representative for the foreshock region of fast supernova remnant shocks. A dense ion beam and the electrons correspond to the upstream plasma and a fast ion beam to the shock-reflected ions. The purpose of the 2D simulation is to identify the nonlinear saturation mechanisms, the electron heating and potential secondary instabilities that arise from anisotropic electron heating and result in the growth of magnetic fields. We confirm that the instabilities between both ion beams and the electrons saturate by the formation of phase space holes by the beam-aligned modes. The slower oblique modes accelerate some electrons, but they cannot heat up the electrons significantly before they are trapped by the faster beam-aligned modes. Two circular electron velocity distributions develop, which are centred around the velocity of each ion beam. They develop due to the scattering of the electrons by the electrostatic wave potentials. The growth of magnetic fields is observed, but their amplitude remains low. (paper)

  12. Electron heating, magnetic field amplification, and cosmic-ray precursor length at supernova remnant shocks

    Energy Technology Data Exchange (ETDEWEB)

    Laming, J. Martin [Space Science Division, Naval Research Laboratory, Code 7684, Washington, DC 20375 (United States); Hwang, Una [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Ghavamian, Parviz [Department of Physics, Astronomy and Geosciences, Towson University, Towson, MD 21252 (United States); Rakowski, Cara, E-mail: laming@nrl.navy.mil, E-mail: Una.Hwang-1@nasa.gov, E-mail: pghavamian@towson.edu

    2014-07-20

    We investigate the observability, by direct and indirect means, of a shock precursor arising from magnetic field amplification by cosmic rays. We estimate the depth of such a precursor under conditions of nonresonant amplification, which can provide magnetic field strengths comparable to those inferred for supernova remnants. Magnetic field generation occurs as the streaming cosmic rays induce a plasma return current, and it may be quenched by either nonresonant or resonant channels. In the case of nonresonant saturation, the cosmic rays become magnetized and amplification saturates at higher magnetic fields. The precursor can extend out to 10{sup 17}-10{sup 18} cm and is potentially detectable. If resonant saturation occurs, the cosmic rays are scattered by turbulence and the precursor length will likely be much smaller. The dependence of precursor length on shock velocity has implications for electron heating. In the case of resonant saturation, this dependence is similar to that in the more familiar resonantly generated shock precursor, which when expressed in terms of the cosmic-ray diffusion coefficient kappav and shock velocity v{sub s} is kappav/v{sub s} . In the nonresonantly saturated case, the precursor length declines less quickly with increasing v{sub s} . Where precursor length proportional to 1/v{sub s} gives constant electron heating, this increased precursor length could be expected to lead to higher electron temperatures for nonresonant amplification. This should be expected at faster supernova remnant shocks than studied by previous works. Existing results and new data analysis of SN 1006 and Cas A suggest some observational support for this idea.

  13. Electron bulk acceleration and thermalization at Earth's quasi-perpendicular bow shock

    Science.gov (United States)

    Chen, L.-J.; Wang, S.; Wilson, L. B., III; Schwartz, S. J.; Bessho, N.; Moore, T. E.; Gershman, D. J.; Giles, B. L.; Malaspina, D. M.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Vinas, A. F.-; Burch, J. L.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W. R.; Ahmadi, N.; Goodrich, K. A.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L. A.

    2018-05-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  14. On the electron-ion temperature ratio established by collisionless shocks

    Science.gov (United States)

    Vink, Jacco; Broersen, Sjors; Bykov, Andrei; Gabici, Stefano

    2015-07-01

    Astrophysical shocks are often collisionless shocks, in which the changes in plasma flow and temperatures across the shock are established not through Coulomb interactions, but through electric and magnetic fields. An open question about collisionless shocks is whether electrons and ions each establish their own post-shock temperature (non-equilibration of temperatures), or whether they quickly equilibrate in the shock region. Here we provide a simple, thermodynamic, relation for the minimum electron-ion temperature ratios that should be expected as a function of Mach number. The basic assumption is that the enthalpy-flux of the electrons is conserved separately, but that all particle species should undergo the same density jump across the shock, in order for the plasma to remain charge neutral. The only form of additional electron heating that we allow for is adiabatic heating, caused by the compression of the electron gas. These assumptions result in an analytic treatment of expected electron-ion temperature ratio that agrees with observations of collisionless shocks: at low sonic Mach numbers, Ms ≲ 2, the electron-ion temperature ratio is close to unity, whereas for Mach numbers above Ms ≈ 60 the electron-ion temperature ratio asymptotically approaches a temperature ratio of Te/Ti = me/ ⟨ mi ⟩. In the intermediate Mach number range the electron-ion temperature ratio scales as Te/Ti ∝ Ms-2. In addition, we calculate the electron-ion temperature ratios under the assumption of adiabatic heating of the electrons only, which results in a higher electron-ion temperature ratio, but preserves the Te/Ti ∝ Ms-2 scaling. We also show that for magnetised shocks the electron-ion temperature ratio approaches the asymptotic value Te/Ti = me/ ⟨ mi ⟩ for lower magnetosonic Mach numbers (Mms), mainly because for a strongly magnetised shock the sonic Mach number is larger than the magnetosonic Mach number (Mms ≤ Ms). The predicted scaling of the electron

  15. Kinetic Alfven waves and electron physics. II. Oblique slow shocks

    International Nuclear Information System (INIS)

    Yin, L.; Winske, D.; Daughton, W.

    2007-01-01

    One-dimensional (1D) particle-in-cell (PIC; kinetic ions and electrons) and hybrid (kinetic ions; adiabatic and massless fluid electrons) simulations of highly oblique slow shocks (θ Bn =84 deg. and β=0.1) [Yin et al., J. Geophys. Res., 110, A09217 (2005)] have shown that the dissipation from the ions is too weak to form a shock and that kinetic electron physics is required. The PIC simulations also showed that the downstream electron temperature becomes anisotropic (T e parallel )>T e perpendicular ), as observed in slow shocks in space. The electron anisotropy results, in part, from the electron acceleration/heating by parallel electric fields of obliquely propagating kinetic Alfven waves (KAWs) excited by ion-ion streaming, which cannot be modeled accurately in hybrid simulations. In the shock ramp, spiky structures occur in density and electron parallel temperature, where the ion parallel temperature decreases due to the reduction of the ion backstreaming speed. In this paper, KAW and electron physics in oblique slow shocks are further examined under lower electron beta conditions. It is found that as the electron beta is reduced, the resonant interaction between electrons and the wave parallel electric fields shifts to the tail of the electron velocity distribution, providing more efficient parallel heating. As a consequence, for β e =0.02, the electron physics is shown to influence the formation of a θ Bn =75 deg. shock. Electron effects are further enhanced at a more oblique shock angle (θ Bn =84 deg.) when both the growth rate and the range of unstable modes on the KAW branch increase. Small-scale electron and ion phase-space vortices in the shock ramp formed by electron-KAW interactions and the reduction of the ion backstreaming speed, respectively, are observed in the simulations and confirmed in homogeneous geometries in one and two spatial dimensions in the accompanying paper [Yin et al., Phys. Plasmas 14, 062104 (2007)]. Results from this study

  16. Heating and generation of suprathermal particles at collisionless shocks

    International Nuclear Information System (INIS)

    Thomsen, M.F.

    1985-01-01

    Collisionless plasma shocks are different from ordinary collisional fluid shocks in several important respects. They do not in general heat the electrons and ions equally, nor do they produce Maxwellian velocity distributions downstream. Furthermore, they commonly generate suprathermal particles which propagate into the upstream region, giving advance warning of the presence of the shock and providing a ''seed'' population for further acceleration to high energies. Recent space observations and theory have revealed a great deal about the heating mechanisms which occur in collisionless shocks and about the origin of the various suprathermal particle populations which are found in association with them. An overview of the present understanding of these subjects is presented herein. 83 refs., 8 figs

  17. Heat shock proteins of higher plants

    International Nuclear Information System (INIS)

    Key, J.L.; Lin, C.Y.; Chen, Y.M.

    1981-01-01

    The pattern of protein synthesis changes rapidly and dramatically when the growth temperture of soybean seedling tissue is increased from 28 0 C (normal) to about 40 0 C (heat shock). The synthesis of normal proteins is greatly decreased and a new set of proteins, heat shock proteins, is induced. The heat shock proteins of soybean consist of 10 new bands on one-dimensional NaDodSO 4 gels; a more complex pattern is observed on two-dimensional gels. when the tissue is returned to 28 0 C after 4 hr at 40 0 C, there is progressive decline in the synthesis of heat shock proteins and reappearance of a normal pattern of synthesis by 3 or 4 hr. In vitro translation of poly(A) + RNAs isolated from tissued grown at 28 and 40 0 C shows that the heat shock proteins are translated from a ndw set of mRNAs induced at 40 0 C; furthermore, the abundant class mRNAs for many of the normal proteins persist even though they are translated weakly (or not at all) in vivo at 40 or 42.5 0 C. The heat shock response in soybean appears similar to the much-studied heat shock phenomenon in Drosophila

  18. Shock compression and flash-heating of molecular adsorbates on the picosecond time scale

    Science.gov (United States)

    Berg, Christopher Michael

    An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock

  19. A comparative study of plasma heating by ion acoustic and modified two-stream instabilities at subcritical quasi-perpendicular shocks

    International Nuclear Information System (INIS)

    Winske, D.; Giacalone, J.; Thomsen, M.F.; Mellott, M.M.

    1987-01-01

    Plasma heating due to the ion instability and the modified two-stream instability is examined for quasi-perpendicular subcritical shocks. Electron and ion heating is investigated as a function of upstream electron to ion temperature ratio and plasma beta using second-order heating rates. A simple shock model is employed in which the cross-field electron-ion drift speed is adjusted until the total (adiabatic plus anomalous) heating matches that required by the Rankine-Hugoniot relations. Quantities such as the width of the shock and the maximum electric field fluctuations are also calculated, and the results are compared with the ISEE data set of subcritical box shock crossings. The observed width of the shock, the amount of plasma heating, and the low-frequency electric field intensity are in reasonably good agreement with the calculations for the modified two-stream instability. On the other hand, the wave intensities at higher frequency are about 4 orders of magnitude smaller than those predicted for the ion acoustic instability at saturation, consistent with the fact that the measured shock widths imply cross-field drift speeds that are below threshold for this instability. It is therefore concluded that the dissipation at these shocks is most likely due to the lower frequency, modified two-stream instability

  20. ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

    Science.gov (United States)

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko

    2014-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. PMID:25312646

  1. Heat shock transcription factors regulate heat induced cell death in a ...

    Indian Academy of Sciences (India)

    2007-03-29

    Mar 29, 2007 ... Heat shock transcription factors regulate heat induced cell death in a rat ... the synthesis of heat shock proteins (Hsps) which is strictly regulated by ... The lack of Hsp synthesis in these cells was due to a failure in HSF1 DNA ...

  2. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress.

    Science.gov (United States)

    Tang, Shu; Chen, Hongbo; Cheng, Yanfen; Nasir, Mohammad Abdel; Kemper, Nicole; Bao, Endong

    2016-01-01

    Heat shock factor 1 (HSF1) is a heat shock transcription factor that rapidly induces heat shock gene transcription following thermal stress. In this study, we subjected primary neonatal rat myocardial cells to heat stress in vitro to create a model system for investigating the trends in expression and association between various heat shock proteins (HSPs) and HSF1 under adverse environmental conditions. After the cells were subjected to heat stress at 42˚C for different periods of time, HSP and HSF1 mRNA and protein levels were detected by qPCR and western blot analysis in the heat-stressed cells. The HSF1 expression levels significantly increased in the cells following 120 min of exposure to heat stess compared to the levels observed at the beginning of heat stress exposure. HSP90 followed a similar trend in expression to HSF1, whereas HSP70 followed an opposite trend. However, no significant changes were observed in the crystallin, alpha B (CRYAB, also known as HSP beta-5) expression levels during the 480‑min period of exposure to heat stress. The interaction between the HSPs and HSF1 was analyzed by STRING 9.1, and it was found that HSF1 interacted with HSP90 and HSP70, and that it did not play a role in regulating CRYAB expression. Based on our findings, HSP70 may suppress HSF1 in rat myocardial cells under conditions of heat stress. Furthermore, our data demonstrate that HSF1 is not the key factor for all HSPs, and this was particularly the case for CRYAB.

  3. Numerical studies of electron dynamics in oblique quasi-perpendicular collisionless shock waves

    International Nuclear Information System (INIS)

    Liewer, P.C.; Decyk, V.K.; Dawson, J.M.; Lembege, B.

    1991-01-01

    Linear and nonlinear electron damping of the whistler precursor wave train to low Mach number quasi-perpendicular oblique shocks is studied using a one-dimensional electromagnetic plasma simulation code with particle electrons and ions. In some parameter regimes, electrons are observed to trap along the magnetic field lines in the potential of the whistler precursor wave train. This trapping can lead to significant electron heating in front of the shock for β e (∼10% or less). Use of the 64-processor Caltech/JPL Mark IIIfp hypercube concurrent computer has enables us to make long runs using realistic mass ratios (m i /m e = 1,600) in the full particle in-cell code and thus simulate shock parameter regimes and phenomena not previously studied numerically

  4. Synthesis and thermotolerance of heat shock proteins in Campylobacter jejuni

    International Nuclear Information System (INIS)

    Kim, C.K.; Kim, H.O.; Lee, K.J.

    1991-01-01

    The heat shock responses of Campylobacter jejuni were studied by examination of their survival rates and synthesis of heat shock proteins. When C. jejuni cells were treated at the sublethal temperatures of 48C° for 30 minutes, most of the cells maintained their viabilities and synthesized the heat shock proteins of 90, 73, and 66 kD in molecular weight. By the method of two-dimensional electrophoresis, the heat shock proteins of C. jejuni were identified to be Hsp90, Hsp73, and Hsp66. During the heat shock at 48C°, the heat shock proteins were induced from about 5 minutes after the heat shock treatment. Their synthesis was continued upto 30 minutes, but remarkably retarded after 50 minutes. When C. jejune cells were heat shocked at 51C° for 30 minutes, the survival rates of the cells were decreased by about 10 3 fold and synthesis of heat shock proteins and normal proteins was also generally retarded. The cells exposed to 55C° for 30 minutes died off by more than 10 5 cells and the new protein synthesis was not observed. But when C. jejuni cells were heat-shocked at the sublethal temperature of 48C° for 15 to 20 minutes and then were exposed at the lethal temperature of 55C° for 30 minutes, their viabilities were higher than those exposed at 55C° for 30 minutes without pre-heat shock at 48C°. Therefore, the heat shock proteins synthesized at the sublethal temperature of 48C° in C. jejuni were thought to be responsible for thermotolerance. However, when C. jejuni cells heat-shocked at various ranges of sublethal and lethal temperatures were placed back to the optimum temperature of 42C°, the multiplication patterns of the cells pretreated at different temperatures were not much different each other

  5. Forkhead Box M1 Is Regulated by Heat Shock Factor 1 and Promotes Glioma Cells Survival under Heat Shock Stress*

    Science.gov (United States)

    Dai, Bingbing; Gong, Aihua; Jing, Zhitao; Aldape, Kenneth D.; Kang, Shin-Hyuk; Sawaya, Raymond; Huang, Suyun

    2013-01-01

    The forkhead box M1 (FoxM1) is a key transcription factor regulating multiple aspects of cell biology. Prior studies have shown that FoxM1 is overexpressed in a variety of human tumors, including brain tumor, and plays a critical role in cancer development and progression. In this study we found that FoxM1 was up-regulated by heat shock factor 1 (HSF1) under heat shock stress condition in multiple cell lines. Knockdown of HSF1 with HSF1 siRNA or inhibition of HSF1 with a HSF1 inhibitor abrogated heat shock-induced expression of FoxM1. Genetic deletion of HSF1 in mouse embryo fibroblast cells also abolished heat shock stress-induced FoxM1 expression. Moreover, we showed that HSF1 directly bound to FoxM1 promoter and increased FoxM1 promoter activity. Furthermore, we demonstrated that FoxM1 was required for the G2-M phase progression through regulating Cdc2, Cdc20, and Cdc25B under a mild heat shock stress but enhanced cell survival under lethal heat shock stress condition. Finally, in human glioblastoma specimens, FoxM1 overexpression correlated with elevated HSF1 expression. Our results indicate that FoxM1 is regulated by HSF1 and is critical for HSF1-mediated heat shock response. We demonstrated a novel mechanism of stress resistance controlled by HSF1 and a new HSF-FoxM1 connection that mediates cellular thermotolerance. PMID:23192351

  6. Heat shock protection against cold stress of Drosophila melanogaster

    OpenAIRE

    Burton, Vicky; Mitchell, Herschel K.; Young, Patricia; Petersen, Nancy S.

    1988-01-01

    Heat shock protein synthesis can be induced during recovery from cold treatment of Drosophila melanogaster larvae. Survival of larvae after a cold treatment is dramatically improved by a mild heat shock just before the cold shock. The conditions which induce tolerance to cold are similar to those which confer tolerance to heat.

  7. Structure of fast shocks in the presence of heat conduction

    International Nuclear Information System (INIS)

    Tsai, C. L.; Chen, H. H.; Wu, B. H.; Lee, L. C.

    2007-01-01

    There are three types of magnetohydrodynamic (MHD) shocks: the fast shock, intermediate shock, and slow shock. The structure of slow shocks and intermediate shocks in the presence of heat conduction has been studied earlier [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002); C. L. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 12, 82501 (2005)]. Based on one-dimensional MHD numerical simulations with a heat conduction term, the evolution and structure of fast shocks are studied. The fast shock will form a foreshock in the presence of heat conduction. The foreshock is formed due to the heat flow from downstream to upstream and located in the immediate upstream of the main shock. In the steady state, the value of diffusion velocity V d in the foreshock is found to nearly equal the upstream convection velocity in the fast shock frame. It is found that the density jump across the main shock in high Mach number case can be much larger than 4 in the early simulation time. However the density jump will gradually evolve to a value smaller than 4 at steady state. By using the modified Rankine-Hugoniot relations with heat flux, the density jump across the fast shock is examined for various upstream parameters. The results show that the calculated density jump with heat flux is very close to the simulation value and the density jump can far exceed the maximum value of 4 without heat conduction. The structure of foreshock and main shock is also studied under different plasma parameters, such as the heat conductivity K 0 , the ratio of upstream plasma pressure to magnetic pressure β 1 , Alfven Mach number M A1 , and the angle θ 1 between shock normal and magnetic field. It is found that as the upstream shock parameters K 0 , β 1 , and M A1 increase or θ 1 decreases, the width of foreshock L d increases. The present results can be applied to fast shocks in the solar corona, solar wind, and magnetosphere, in which the heat conduction effects are

  8. Temporally resolved characterization of shock-heated foam target with Al absorption spectroscopy for fast electron transport study

    Energy Technology Data Exchange (ETDEWEB)

    Yabuuchi, T.; Sawada, H.; Wei, M. S.; Beg, F. N. [Center for Energy Research, University of California, San Diego, La Jolla, California 92093 (United States); Regan, S. P.; Anderson, K.; Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Hund, J.; Paguio, R. R.; Saito, K. M.; Stephens, R. B. [General Atomics, San Diego, California 92186 (United States); Key, M. H.; Mackinnon, A. J.; McLean, H. S.; Patel, P. K.; Wilks, S. C. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2012-09-15

    The CH foam plasma produced by a laser-driven shock wave has been characterized by a temporally resolved Al 1s-2p absorption spectroscopy technique. A 200 mg/cm{sup 3} foam target with Al dopant was developed for this experiment, which used an OMEGA EP [D. D. Meyerhofer et al., J. Phys.: Conf. Ser. 244, 032010 (2010)] long pulse beam with an energy of 1.2 kJ and 3.5 ns pulselength. The plasma temperatures were inferred with the accuracy of 5 eV from the fits to the measurements using an atomic physics code. The results show that the inferred temperature is sustained at 40-45 eV between 6 and 7 ns and decreases to 25 eV at 8 ns. 2-D radiation hydrodynamic simulations show a good agreement with the measurements. Application of the shock-heated foam plasma platform toward fast electron transport experiments is discussed.

  9. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    International Nuclear Information System (INIS)

    Kuznetsov, E A; Poniaev, S A

    2015-01-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux. (paper)

  10. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    Science.gov (United States)

    Kuznetsov, E. A.; Poniaev, S. A.

    2015-12-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux.

  11. Simple, economical heat-shock devices for zebrafish housing racks.

    Science.gov (United States)

    Duszynski, Robert J; Topczewski, Jacek; LeClair, Elizabeth E

    2011-12-01

    One reason for the popularity of the zebrafish (Danio rerio) as a model vertebrate is the ability to manipulate gene expression in this organism. A common method is to induce gene expression transiently under control of a heat-shock promoter (e.g., hsp70l). By making simple mechanical adjustments to small aquarium heaters (25-50W), we were able to produce consistent and reliable heat-shock conditions within a conventional zebrafish housing system. Up to two heat-shock intervals per day (>37°C) could be maintained under conditions of continuous flow (5-25 mL/min). Temperature logging every 30 s indicated rapid warm up times, consistent heat-shock lengths, and accurate and precise peak water temperatures (mean±SD=38°C±0.2°C). The biological effects of these heat-shock treatments were confirmed by observing inducible expression of enhanced green fluorescent protein (EGFP) and inhibition of caudal fin regeneration in a transgenic fish line expressing a dominant negative fibroblast growth factor receptor (Tg(hsp70l:dnfgfr1-EGFP)(pd1)). These devices are inexpensive, easily modified, and can be calibrated to accommodate a variety of experimental designs. After setup on a programmable timer, the heaters require no intervention to produce consistent daily heat shocks, and all other standard care protocols can be followed in the fish facility. The simplicity and stability of these devices make them suitable for long-term heat shocks at any stage of the zebrafish lifecycle (>7 days postfertilization), and useful for both laboratory and classroom experiments on transgenic zebrafish.

  12. Mechanical analysis of a heat-shock induced developmental defect

    Science.gov (United States)

    Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane

    2014-03-01

    Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.

  13. Selective activation of human heat shock gene transcription by nitrosourea antitumor drugs mediated by isocyanate-induced damage and activation of heat shock transcription factor.

    Science.gov (United States)

    Kroes, R A; Abravaya, K; Seidenfeld, J; Morimoto, R I

    1991-01-01

    Treatment of cultured human tumor cells with the chloroethylnitrosourea antitumor drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) selectively induces transcription and protein synthesis of a subset of the human heat shock or stress-induced genes (HSP90 and HSP70) with little effect on other stress genes or on expression of the c-fos, c-myc, or beta-actin genes. The active component of BCNU and related compounds appears to be the isocyanate moiety that causes carbamoylation of proteins and nucleic acids. Transcriptional activation of the human HSP70 gene by BCNU is dependent on the heat shock element and correlates with the level of heat shock transcription factor and its binding to the heat shock element in vivo. Unlike activation by heat or heavy metals, BCNU-mediated activation is strongly dependent upon new protein synthesis. This suggests that BCNU-induced, isocyanate-mediated damage to newly synthesized protein(s) may be responsible for activation of the heat shock transcription factor and increased transcription of the HSP90 and HSP70 genes. Images PMID:2052560

  14. Structure of intermediate shocks and slow shocks in a magnetized plasma with heat conduction

    International Nuclear Information System (INIS)

    Tsai, C.L.; Wu, B.H.; Lee, L.C.

    2005-01-01

    The structure of slow shocks and intermediate shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. This study is an extension of an earlier work [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002)], in which the effects of heat conduction are examined for the case that the tangential magnetic fields on the two side of initial current sheet are exactly antiparallel (B y =0). For the B y =0 case, a pair of slow shocks is formed as the result of evolution of the initial current sheet, and each slow shock consists of two parts: the isothermal main shock and the foreshock. In the present paper, cases with B y ≠0 are also considered, in which the evolution process leads to the presence of an additional pair of time-dependent intermediate shocks (TDISs). Across the main shock of the slow shock, jumps in plasma density, velocity, and magnetic field are significant, but the temperature is continuous. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. In contrast to the earlier study, the foreshock is found to reach a steady state with a constant width in the slow shock frame. In cases with B y ≠0, the plasma density and pressure increase and the magnetic field decreases across TDIS. The TDIS initially can be embedded in the slow shock's foreshock structure, and then moves out of the foreshock region. With an increasing B y , the propagation speed of foreshock leading edge tends to decrease and the foreshock reaches its steady state at an earlier time. Both the pressure and temperature downstreams of the main shock decrease with increasing B y . The results can be applied to the shock heating in the solar corona and

  15. Riboflavin protects mice against liposaccharide-induced shock through expression of heat shock protein 25

    Science.gov (United States)

    Riboflavin (vitamin B2) is a water-soluble vitamin essential for normal cellular functions, growth and development. The study was aimed at investigating the effects of vitamin B2 on the survival rate, and expressions of tissue heat shock protein 25 (HSP25) and heat shock factor 1 (HSF1) in mice und...

  16. Barcoding heat shock proteins to human diseases : looking beyond the heat shock response

    NARCIS (Netherlands)

    Kakkar, Vaishali; Meister-Broekema, Melanie; Minoia, Melania; Carra, Serena; Kampinga, Harm H.

    There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR) - and thus generally restoring the disturbed protein homeostasis associated with such diseases - has often been suggested as a

  17. Biophoton emission induced by heat shock.

    Directory of Open Access Journals (Sweden)

    Katsuhiro Kobayashi

    Full Text Available Ultraweak biophoton emission originates from the generation of reactive oxygen species (ROS that are produced in mitochondria as by-products of cellular respiration. In healthy cells, the concentration of ROS is minimized by a system of biological antioxidants. However, heat shock changes the equilibrium between oxidative stress and antioxidant activity, that is, a rapid rise in temperature induces biophoton emission from ROS. Although the rate and intensity of biophoton emission was observed to increase in response to elevated temperatures, pretreatment at lower high temperatures inhibited photon emission at higher temperatures. Biophoton measurements are useful for observing and evaluating heat shock.

  18. Shock Heating of the Merging Galaxy Cluster A521

    Science.gov (United States)

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-01-01

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 +/- 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  19. Destabilization and recovery of a yeast prion after mild heat shock.

    Science.gov (United States)

    Newnam, Gary P; Birchmore, Jennifer L; Chernoff, Yury O

    2011-05-06

    Yeast prion [PSI(+)] is a self-perpetuating amyloid of the translational termination factor Sup35. Although [PSI(+)] propagation is modulated by heat shock proteins (Hsps), high temperature was previously reported to have little or no effect on [PSI(+)]. Our results show that short-term exposure of exponentially growing yeast culture to mild heat shock, followed by immediate resumption of growth, leads to [PSI(+)] destabilization, sometimes persisting for several cell divisions after heat shock. Prion loss occurring in the first division after heat shock is preferentially detected in a daughter cell, indicating the impairment of prion segregation that results in asymmetric prion distribution between a mother cell and a bud. Longer heat shock or prolonged incubation in the absence of nutrients after heat shock led to [PSI(+)] recovery. Both prion destabilization and recovery during heat shock depend on protein synthesis. Maximal prion destabilization coincides with maximal imbalance between Hsp104 and other Hsps such as Hsp70-Ssa. Deletions of individual SSA genes increase prion destabilization and/or counteract recovery. The dynamics of prion aggregation during destabilization and recovery are consistent with the notion that efficient prion fragmentation and segregation require a proper balance between Hsp104 and other (e.g., Hsp70-Ssa) chaperones. In contrast to heat shock, [PSI(+)] destabilization by osmotic stressors does not always depend on cell proliferation and/or protein synthesis, indicating that different stresses may impact the prion via different mechanisms. Our data demonstrate that heat stress causes asymmetric prion distribution in a cell division and confirm that the effects of Hsps on prions are physiologically relevant. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. COLLISIONLESS ELECTRON–ION SHOCKS IN RELATIVISTIC UNMAGNETIZED JET–AMBIENT INTERACTIONS: NON-THERMAL ELECTRON INJECTION BY DOUBLE LAYER

    International Nuclear Information System (INIS)

    Ardaneh, Kazem; Cai, Dongsheng; Nishikawa, Ken-Ichi

    2016-01-01

    The course of non-thermal electron ejection in relativistic unmagnetized electron–ion shocks is investigated by performing self-consistent particle-in-cell simulations. The shocks are excited through the injection of a relativistic jet into ambient plasma, leading to two distinct shocks (referred to as the trailing shock and leading shock) and a contact discontinuity. The Weibel-like instabilities heat the electrons up to approximately half of the ion kinetic energy. The double layers formed in the trailing and leading edges then accelerate the electrons up to the ion kinetic energy. The electron distribution function in the leading edge shows a clear, non-thermal power-law tail which contains ∼1% of electrons and ∼8% of the electron energy. Its power-law index is −2.6. The acceleration efficiency is ∼23% by number and ∼50% by energy, and the power-law index is −1.8 for the electron distribution function in the trailing edge. The effect of the dimensionality is examined by comparing the results of three-dimensional simulations with those of two-dimensional simulations. The comparison demonstrates that electron acceleration is more efficient in two dimensions.

  1. Impact of Heat-Shock Treatment on Yellowing of Pak Choy Leaves

    Institute of Scientific and Technical Information of China (English)

    WANG Xiang-yang; SHEN Lian-qing; YUAN Hai-na

    2004-01-01

    The physiological mechanism of maintaining the green colour of pak choy leaves (Brassica rapa var chinensis) with heat-shock treatment was studied. Chlorophyll in the outer leaves of pak choy degraded rapidly during storage at ambient temperature (20 ± 2℃), a slight yellow appeared. Heat-shock treatment (46- 50℃) had a mild effect on maintaining the green colour of outer leaves. Normal chlorophyll degradation was associated with a binding of chlorophyll with chlorophyll-binding-protein preceding chlorophyll breakdown.Heat-shock treatment was found to reduce the binding-capacity between chlorophyllbinding-protein and chlorophyll. In the chlorophyll degradation pathway, pheide dioxygenase was synthesized during leaf senescence which was considered to be a key enzyme in chlorophyll degradation. Activity of this enzyme was reduced following heat-shock treatment, which might explain the observed reduction in chlorophyll breakdown. Two groups of heat-shock proteins were detected in treated leaves, the first group containing proteins from 54KDa to 74 Kda, and the second group contained proteins from 15 KDa to 29KDa. Heat-shock treatment was also found to retard the decline of glucose and fructose (the main energy substrates) of outer leaves.

  2. Electromagnetic Structure and Electron Acceleration in Shock–Shock Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakanotani, Masaru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Matsukiyo, Shuichi; Hada, Tohru [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Mazelle, Christian X., E-mail: nakanot@esst.kyushu-u.ac.jp [IRAP, Université Paul Sabatier Toulouse III-CNRS, F-31028 Toulouse Cedex 4 (France)

    2017-09-10

    A shock–shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock are due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.

  3. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Chan-Gi, E-mail: changipack@amc.seoul.kr [Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Ahn, Sang-Gun [Dept. of Pathology, College of Dentistry, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  4. SUPRATHERMAL ELECTRONS AT SATURN'S BOW SHOCK

    International Nuclear Information System (INIS)

    Masters, A.; Dougherty, M. K.; Sulaiman, A. H.; Sergis, N.; Stawarz, L.; Fujimoto, M.; Coates, A. J.

    2016-01-01

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini . The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with the theory in which the “injection” of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ∼1 MeV).

  5. SUPRATHERMAL ELECTRONS AT SATURN'S BOW SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Masters, A.; Dougherty, M. K. [The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Sulaiman, A. H. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Sergis, N. [Office of Space Research and Technology, Academy of Athens, Soranou Efesiou 4, 11527 Athens (Greece); Stawarz, L. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Krakow (Poland); Fujimoto, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Coates, A. J., E-mail: a.masters@imperial.ac.uk [Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, Holmbury St. Mary, Dorking RH5 6NT (United Kingdom)

    2016-07-20

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini . The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with the theory in which the “injection” of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ∼1 MeV).

  6. Barcoding heat shock proteins to human diseases: looking beyond the heat shock response.

    Science.gov (United States)

    Kakkar, Vaishali; Meister-Broekema, Melanie; Minoia, Melania; Carra, Serena; Kampinga, Harm H

    2014-04-01

    There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR)--and thus generally restoring the disturbed protein homeostasis associated with such diseases--has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or 'barcoded' by a different set of HSPs that can rescue specific types of aggregation. Some of these 'non-canonical' HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated--so-called chaperonopathies--which are also discussed in this Review.

  7. An overview on the small heat shock proteins | Mahmood | African ...

    African Journals Online (AJOL)

    In eukaryotes, different heat shock genes are expressed uncoordinatedly, whereas in prokaryote, heat shock genes form a regulon and appear simultaneously. sHSPs are associated with nuclei, cytoskeleton and membranes. They bind partially to denatured proteins, preventing irreversible protein aggregation during stress.

  8. Cognitive Function and Heat Shock Protein 70 in Children With Temporal Lobe Epilepsy.

    Science.gov (United States)

    Oraby, Azza M; Raouf, Ehab R Abdol; El-Saied, Mostafa M; Abou-Khadra, Maha K; Helal, Suzette I; Hashish, Adel F

    2017-01-01

    We conducted the present study to examine cognitive function and serum heat shock protein 70 levels among children with temporal lobe epilepsy. The Stanford-Binet Intelligence Test was carried out to examine cognitive function in 30 children with temporal lobe epilepsy and 30 controls. Serum heat shock protein 70 levels were determined with an enzyme-linked immunosorbent assay. The epilepsy group had significantly lower cognitive function testing scores and significantly higher serum heat shock protein 70 levels than the control group; there were significant negative correlations between serum heat shock protein 70 levels and short-term memory and composite scores. Children with uncontrolled seizures had significantly lower verbal reasoning scores and significantly higher serum heat shock protein 70 levels than children with controlled seizures. Children with temporal lobe epilepsy have cognitive dysfunction and elevated levels of serum heat shock protein 70, which may be considered a stress biomarker.

  9. Impact of Shock Front Rippling and Self-reformation on the Electron Dynamics at Low-Mach-number Shocks

    Science.gov (United States)

    Yang, Zhongwei; Lu, Quanming; Liu, Ying D.; Wang, Rui

    2018-04-01

    Electron dynamics at low-Mach-number collisionless shocks are investigated by using two-dimensional electromagnetic particle-in-cell simulations with various shock normal angles. We found: (1) The reflected ions and incident electrons at the shock front provide an effective mechanism for the quasi-electrostatic wave generation due to the charge-separation. A fraction of incident electrons can be effectively trapped and accelerated at the leading edge of the shock foot. (2) At quasi-perpendicular shocks, the electron trapping and reflection is nonuniform due to the shock rippling along the shock surface and is more likely to take place at some locations accompanied by intense reflected ion-beams. The electron trapping process has a periodical evolution over time due to the shock front self-reformation, which is controlled by ion dynamics. Thus, this is a cross-scale coupling phenomenon. (3) At quasi-parallel shocks, reflected ions can travel far back upstream. Consequently, quasi-electrostatic waves can be excited in the shock transition and the foreshock region. The electron trajectory analysis shows these waves can trap electrons at the foot region and reflect a fraction of them far back upstream. Simulation runs in this paper indicate that the micro-turbulence at the shock foot can provide a possible scenario for producing the reflected electron beam, which is a basic condition for the type II radio burst emission at low-Mach-number interplanetary shocks driven by Coronal Mass Ejections (CMEs).

  10. Heat-flow equation motivated by the ideal-gas shock wave.

    Science.gov (United States)

    Holian, Brad Lee; Mareschal, Michel

    2010-08-01

    We present an equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, in order to model shockwave propagation in gases. Our approach is motivated by the observation of a disequilibrium among the three components of temperature, namely, the difference between the temperature component in the direction of a planar shock wave, versus those in the transverse directions. This difference is most prominent near the shock front. We test our heat-flow equation for the case of strong shock waves in the ideal gas, which has been studied in the past and compared to Navier-Stokes solutions. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations of hard spheres under strong shockwave conditions.

  11. Heat Shock Proteins in Tendinopathy: Novel Molecular Regulators

    Directory of Open Access Journals (Sweden)

    Neal L. Millar

    2012-01-01

    Full Text Available Tendon disorders—tendinopathies—are the primary reason for musculoskeletal consultation in primary care and account for up to 30% of rheumatological consultations. Whilst the molecular pathophysiology of tendinopathy remains difficult to interpret the disease process involving repetitive stress, and cellular load provides important mechanistic insight into the area of heat shock proteins which spans many disease processes in the autoimmune community. Heat shock proteins, also called damage-associated molecular patterns (DAMPs, are rapidly released following nonprogrammed cell death, are key effectors of the innate immune system, and critically restore homeostasis by promoting the reconstruction of the effected tissue. Our investigations have highlighted a key role for HSPs in tendion disease which may ultimately affect tissue rescue mechanisms in tendon pathology. This paper aims to provide an overview of the biology of heat shock proteins in soft tissue and how these mediators may be important regulators of inflammatory mediators and matrix regulation in tendinopathy.

  12. Analysis of heat shock gene expression in Lactococcus lactis MG1363

    DEFF Research Database (Denmark)

    Arnau, José; Sørensen, Kim; Appel, Karen Fuglede

    1996-01-01

    The induction of the heat shock response in Lactococcus lactis subsp. cremoris strain MG1363 was analysed at the RNA level using a novel RNA isolation procedure to prevent degradation. Cloning of the dnaJ and groEL homologous was carried out. Nothern blot analysis showed a similar induction pattern...... in the heat shock response in L. lactis MG1363 is presented. A gene located downstream of the dnaK operon in strain MG1363, named orf4, was shown not to be regulated by heat shock....

  13. Heat shock protein 90 in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Rodina Anna

    2010-06-01

    Full Text Available Abstract Hsp90 is a molecular chaperone with important roles in regulating pathogenic transformation. In addition to its well-characterized functions in malignancy, recent evidence from several laboratories suggests a role for Hsp90 in maintaining the functional stability of neuronal proteins of aberrant capacity, whether mutated or over-activated, allowing and sustaining the accumulation of toxic aggregates. In addition, Hsp90 regulates the activity of the transcription factor heat shock factor-1 (HSF-1, the master regulator of the heat shock response, mechanism that cells use for protection when exposed to conditions of stress. These biological functions therefore propose Hsp90 inhibition as a dual therapeutic modality in neurodegenerative diseases. First, by suppressing aberrant neuronal activity, Hsp90 inhibitors may ameliorate protein aggregation and its associated toxicity. Second, by activation of HSF-1 and the subsequent induction of heat shock proteins, such as Hsp70, Hsp90 inhibitors may redirect neuronal aggregate formation, and protect against protein toxicity. This mini-review will summarize our current knowledge on Hsp90 in neurodegeneration and will focus on the potential beneficial application of Hsp90 inhibitors in neurodegenerative diseases.

  14. DNA damage-responsive Drosophila melanogaster gene is also induced by heat shock

    International Nuclear Information System (INIS)

    Vivino, A.A.; Smith, M.D.; Minton, K.W.

    1986-01-01

    A gene isolated by screening Drosophila melanogaster tissue culture cells for DNA damage regulation was also found to be regulated by heat shock. After UV irradiation or heat shock, induction is at the transcriptional level and results in the accumulation of a 1.0-kilobase polyadenylated transcript. The restriction map of the clone bears no resemblance to the known heat shock genes, which are shown to be uninduced by UV irradiation

  15. Induction of heat-shock proteins and phagocytic function of chicken macrophage following in vitro heat exposure

    International Nuclear Information System (INIS)

    Miller, L.; Qureshi, M.A.

    1992-01-01

    The protein profiles and phagocytic ability of Sephadex-elicited chicken peritoneal macrophages were examined following heat-shock exposure. Macrophage cultures were exposed to various temperatures, time exposures and recovery periods. Densitometric analysis of SDS-PAGE autoradiographs revealed that heat-induced macrophages synthesized three major (23, 70 and 90 kD) heat-shock proteins (HSPs). The optimal temperature and time for induction of these HSPs was 45-46 degrees C for 1 h, with a variable recovery period for each HSP. Macrophages exposed to 45 degrees C for 30 and 60 min were significantly depressed in phagocytosis of uncoated sheep erythrocytes (SE) under 45 degrees C incubation conditions. However, phagocytosis of antibody-coated SE was not affected when compared to 41 degrees C control cultures. Macrophages allowed to recover at 41 degrees C following heat-shock exhibited no alterations in their phagocytic ability for either antibody-coated or uncoated SE. This study suggests that heat shock induces three major HSPs in chicken peritoneal macrophages in addition to maintaining their Fc-mediated phagocytic function while significantly depressing their nonspecific phagocytosis

  16. Effects of Shock and Turbulence Properties on Electron Acceleration

    Science.gov (United States)

    Qin, G.; Kong, F.-J.; Zhang, L.-H.

    2018-06-01

    Using test particle simulations, we study electron acceleration at collisionless shocks with a two-component model turbulent magnetic field with slab component including dissipation range. We investigate the importance of the shock-normal angle θ Bn, magnetic turbulence level {(b/{B}0)}2, and shock thickness on the acceleration efficiency of electrons. It is shown that at perpendicular shocks the electron acceleration efficiency is enhanced with the decrease of {(b/{B}0)}2, and at {(b/{B}0)}2=0.01 the acceleration becomes significant due to a strong drift electric field with long time particles staying near the shock front for shock drift acceleration (SDA). In addition, at parallel shocks the electron acceleration efficiency is increasing with the increase of {(b/{B}0)}2, and at {(b/{B}0)}2=10.0 the acceleration is very strong due to sufficient pitch-angle scattering for first-order Fermi acceleration, as well as due to the large local component of the magnetic field perpendicular to the shock-normal angle for SDA. On the other hand, the high perpendicular shock acceleration with {(b/{B}0)}2=0.01 is stronger than the high parallel shock acceleration with {(b/{B}0)}2=10.0, the reason might be the assumption that SDA is more efficient than first-order Fermi acceleration. Furthermore, for oblique shocks, the acceleration efficiency is small no matter whether the turbulence level is low or high. Moreover, for the effect of shock thickness on electron acceleration at perpendicular shocks, we show that there exists the bendover thickness, L diff,b. The acceleration efficiency does not noticeably change if the shock thickness is much smaller than L diff,b. However, if the shock thickness is much larger than L diff,b, the acceleration efficiency starts to drop abruptly.

  17. The pretective effects of heat shock protein 70 on radiation injury of V79 cells

    International Nuclear Information System (INIS)

    Qin Yongchun; Zhang Baoguo; Hong Chengjiao

    2008-01-01

    Westem blot was used to detect the expression of heat shock protein 70 in V79 cells after heat shock pretreatment; V79 cells were irradiated using γ-ray after heat shock pretreatment, survival rate was observed using Colony formation assay. Our study shows that 1) the overexpression of heat shock protein 70 was observed in cells recovering for 1 hour after heat shock pretreatment, with peak expression in cells recovering for 4 hours, and could last for 24 hours; 2) heat shock pretreatment was able to elevate survival rate of V79 cells after irradiation by 60 Co γ ray (when the irradiation dose was less than 6 Gy). The results indicate that heat shock protein 70 has protective effect on radiation induced cell death of V79 cells (when the irradiation dose was less than 6 Gy). (authors)

  18. Electron beams by shock waves in the solar corona

    International Nuclear Information System (INIS)

    Mann, G.; Klassen, A.

    2005-07-01

    Beams of energetic electrons can be generated by shock waves in the solar corona. At the Sun shock waves are produced either by flares and/or by coronal mass ejections (CMEs). They can be observed as type II bursts in the solar radio radiation. Shock accelerated electron beams appear as rapidly drifting emission stripes (so-called ''herringbones'') in dynamic radio spectra of type II bursts. A large sample of type II bursts showing ''herringbones'' was statistically analysed with respect to their properties in dynamic radio spectra. The electron beams associated with the ''herringbones'' are considered to be generated by shock drift acceleration. Then, the accelerated electrons establish a shifted loss-cone distribution in the upstream region of the associated shock wave. Such a distribution causes plasma instabilities leading to the emission of radio waves observed as ''herringbones''. Consequences of a shifted loss-cone distribution of the shock accelerated electrons are discussed in comparison with the observations of ''herringbones'' within solar type II radio bursts. (orig.)

  19. Structure of slow shocks in a magnetized plasma with heat conduction

    International Nuclear Information System (INIS)

    Tsai, C.L.; Tsai, R.H.; Wu, B.H.; Lee, L.C.

    2002-01-01

    The structure of slow shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. In this study, a pair of slow shocks is formed through the evolution of a current sheet initiated by the presence of a normal magnetic field. It is found that the slow shock consists of two parts: The isothermal main shock and foreshock. Significant jumps in plasma density, velocity and magnetic field occur across the main shock, but the temperature is found to be continuous across the main shock. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. It is shown that the jumps in plasma density, pressure, velocity, and magnetic field across the main shock are determined by the set of modified isothermal Rankine-Hugoniot conditions. It is also found that a jump in the temperature gradient is present across the main shock in order to satisfy the energy conservation. The present results can be applied to the heating in the solar corona and solar wind

  20. Emissive spectra of shock-heated argon

    International Nuclear Information System (INIS)

    Tang Jingyou; Gu Yan; Peng Qixian; Bai Yulin; Li Ping

    2003-01-01

    To study the radiant properties of argon under weak shock compression, an aluminum target filled with gaseous argon at ambient states was impacted by a tungsten alloy projectile which was launched from a two-stage light gun to 2.00 km/s. The radiant signals of single shock-compressed argon were recorded by a six-channel pyrometer and oscilloscopes, which varied with time linearly for the five channels from 405 nm to 700 nm and exponentially for the channel 800 nm, and the corresponding velocity of shock wave was determined to be 4.10 ± 0.09 km/s. By the present experiment, it has been shown that the absorbability of the shock-heated argon is low for visual light and the optical depths of argon gas turn from thin to thick as wavelengths gradually increase. The time-resolved spectra in the rising-front of the radiant signal in the re-shocked argon were recorded by means of an OMA, and strong emissive spectrum bands near 450 nm light-wave length but no linear spectrum were found. The emissive spectrum properties of shock-compression argon were qualitatively explained by the state parameters and ionization degree

  1. Plasma electron signature of magnetic connection to the earth's bow shock: ISEE 3

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, R.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.; Zwickl, R.D.

    1982-01-01

    Enhanced fluxes of low-energy electrons backstreaming from the earth's bow shock have been identified at ISEE 3. When present, these fluxes modify ambient solar wind electron velocity distributions f(v) in characteristic ways that depends on whether ISEE 3 is near the edge, or within the interior of the earth's electron foreshock. Near the edge, energy peaks in f(v) are observed. Such distributions should be locally unstable to electron plasma oscillations. Well within the interior of the foreshock, enhanced fluxes of electrons with energies up to the maximum detected by the Los Alamos electron analyzer (approx.1 keV) are observed over the full backward hemisphere. These electrons can be modelled with an asymptotic power law distribution having index in the range 4< or approx. =p/sub b/s< or approx. =6. At intermediate energies (approx.20--50 eV), twin angular peaks are observed centered on the magnetic field direction B. Also observed at these times are depressions in f(v) at energies less than approx.20 eV that are centered on B. Such distributions having a perpendicular temperature greater than their parallel temperature may be locally unstable to the generation of whistler waves. Analysis of a particularly clean example of connection to the bow shock is consistent with the possiblility that the observed electron fluxes emerge from the forward foot of the electron heating region within bow shock where the electron density and temperature are larger than that of the uperturbed upstream solar wind by a factor of approx.1.2. This analysis also indicates that the electrostatic potential within the forward foot of the shock is between approx.5 and 50 V more positive than that within plasma far upstream at ISEE 3. However, these interpretations depend on the assumption of nearly scatter-free propagation, which may not hold

  2. An overview on the small heat shock proteins

    African Journals Online (AJOL)

    USER

    2010-02-15

    Feb 15, 2010 ... whose expression is increase when cells are exposed to elevated ... shock due to much slower degradation of the protein, .... Plant sHSPs are all encoded by nuclear genes and are .... genesis, germination, pollen growth and fruit maturation). ... Production of high levels of heat shock proteins can also.

  3. Two-state ion heating at quasi-parallel shocks

    International Nuclear Information System (INIS)

    Thomsen, M.F.; Gosling, J.T.; Bame, S.J.; Onsager, T.G.; Russell, C.T.

    1990-01-01

    In a previous study of ion heating at quasi-parallel shocks, the authors showed a case in which the ion distributions downstream from the shock alternated between a cooler, denser, core/shoulder type and a hotter, less dense, more Maxwellian type. In this paper they further document the alternating occurrence of two different ion states downstream from several quasi-parallel shocks. Three separate lines of evidence are presented to show that the two states are not related in an evolutionary sense, but rather both are produced alternately at the shock: (1) the asymptotic downstream plasma parameters (density, ion temperature, and flow speed) are intermediate between those characterizing the two different states closer to the shock, suggesting that the asymptotic state is produced by a mixing of the two initial states; (2) examples of apparently interpenetrating (i.e., mixing) distributions can be found during transitions from one state to the other; and (3) examples of both types of distributions can be found at actual crossings of the shock ramp. The alternation between the two different types of ion distribution provides direct observational support for the idea that the dissipative dynamics of at least some quasi-parallel shocks is non-stationary and cyclic in nature, as demonstrated by recent numerical simulations. Typical cycle times between intervals of similar ion heating states are ∼2 upstream ion gyroperiods. Both the simulations and the in situ observations indicate that a process of coherent ion reflection is commonly an important part of the dissipation at quasi-parallel shocks

  4. Differential transcript induction of parsley pathogenesis-related proteins and of a small heat shock protein by ozone and heat shock

    International Nuclear Information System (INIS)

    Eckey-Kaltenbach, H.; Kiefer, E.; Grosskopf, E.; Ernst, D.; Sandermann, H. Jr

    1997-01-01

    Parsley (Petroselinum (crispum L.) is known to respond to pathogen attack by the synthesis of furanocoumarins and to UV irradiation by the synthesis of flavone glycosides whereas ozone treatment results in the induction of both pathways. A cDNA library from parsley plants was differentially screened using labelled reverse-transcribed poly(A)+ RNA isolated from ozone-treated parsley plants. This resulted in the isolation of 13 independent cDNA clones representing ozone-induced genes and of 11 cDNA clones representing ozone-repressed genes. DNA sequencing of several clones resulted in the identification of pathogenesis-related protein 1-3 (PR1-3), of a new member of PR1 cDNAs (PRI-4) and of a small heat shock protein (sHSP). Northern blot analyses showed a transient induction of the three mRNA species after ozone fumigation. In contrast, heat shock treatment of parsley plants resulted in an increase of sHSP mRNA whereas no increase for transcripts of PR1-3 and PR1-4 could be observed. This is the first characterized sHSP cDNA clone for plants induced by heat shock, as well as by oxidative stress caused by ozone. (author)

  5. Electron velocity distributions near the earth's bow shock

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, R.C.; Bame, S.J.; Gary, S.P.; Gosling, J.T.; McComas, D.J.; Thomsen, M.F.; Paschmann, G.; Hoppe, M.M.

    1983-01-01

    A survey of two-dimensional electron velocity distributions, f(V), measured near the earth's bow shock using Los Alamos/Garching plasma instrumentation aboard ISEE 2 is presented. This survey provides clues to the mechanisms of electron thermalization within the shock and the relaxation of both the upsteam and downstream velocity distributions. First, near the foreshock boundary, fluxes of electrons having a power law shape at high energies backstream from the shock. Second, within the shock, cuts through f(V) along B. f(V), often show single maxima offset toward the magnetosheath by speeds comparable to, but larger than, the upstream thermal speed.Third, magnetosheath distributions generally have flat tops out to an energy, E 0 , with maxima substantially lower than that in the solar wind. Occasionally, cuts through f(V) along B show one and sometimes two small peaks at the edge of the flat tops making them appear concave upward. The electron distributions characteristic of these three regions are interpreted as arising from the effects of macroscopic (scale size comparable to or larger than the shock width) electric and magnetic fields and the subsequent effects of microscopic (scale size small in comparison with the shock width) fields. In particular, our results suggest that field-aligned instabilities are likely to be present in the earth's bow shock

  6. Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Österlund, Tobias; Liu, Zihe

    2013-01-01

    The yeast Saccharomyces cerevisiae is a widely used platform for the production of heterologous proteins of medical or industrial interest. However, heterologous protein productivity is often low due to limitations of the host strain. Heat shock response (HSR) is an inducible, global, cellular...... stress response, which facilitates the cell recovery from many forms of stress, e.g., heat stress. In S. cerevisiae, HSR is regulated mainly by the transcription factor heat shock factor (Hsf1p) and many of its targets are genes coding for molecular chaperones that promote protein folding and prevent...... the accumulation of mis-folded or aggregated proteins. In this work, we over-expressed a mutant HSF1 gene HSF1-R206S which can constitutively activate HSR, so the heat shock response was induced at different levels, and we studied the impact of HSR on heterologous protein secretion. We found that moderate and high...

  7. Thermal shock fracture of graphite armor plate under the heat load of plasma disruption

    International Nuclear Information System (INIS)

    Horie, Tomoyoshi; Seki, Masahiro; Ohmori, Junji

    1989-01-01

    Experiments on the thermal shock brittle fracture of graphite plates were performed. Thermal loading which simulated a plasma disruption was produced by an electron beam facility. Pre-cracks produced on the surface propagated to the inside of the specimen even if the thermal stress on the surface was compressive. Two mechanisms are possible to produce tensile stress around the crack tip under thermal shock conditions. Temperature, thermal stress, and the stress intensity factor for the specimen were analyzed based on the finite element method for various heating conditions. The trend of experimental results under the asymmetric heating agrees qualitatively with the analytical results. This phenomenon is important for the design of plasma facing components made of graphite. Establishment of a lifetime prediction procedure including fatigue, fatigue crack growth, and brittle fracture is needed for graphite armors. (orig.)

  8. HSF1 and HSF3 cooperatively regulate the heat shock response in lizards.

    Science.gov (United States)

    Takii, Ryosuke; Fujimoto, Mitsuaki; Matsuura, Yuki; Wu, Fangxu; Oshibe, Namiko; Takaki, Eiichi; Katiyar, Arpit; Akashi, Hiroshi; Makino, Takashi; Kawata, Masakado; Nakai, Akira

    2017-01-01

    Cells cope with temperature elevations, which cause protein misfolding, by expressing heat shock proteins (HSPs). This adaptive response is called the heat shock response (HSR), and it is regulated mainly by heat shock transcription factor (HSF). Among the four HSF family members in vertebrates, HSF1 is a master regulator of HSP expression during proteotoxic stress including heat shock in mammals, whereas HSF3 is required for the HSR in birds. To examine whether only one of the HSF family members possesses the potential to induce the HSR in vertebrate animals, we isolated cDNA clones encoding lizard and frog HSF genes. The reconstructed phylogenetic tree of vertebrate HSFs demonstrated that HSF3 in one species is unrelated with that in other species. We found that the DNA-binding activity of both HSF1 and HSF3 in lizard and frog cells was induced in response to heat shock. Unexpectedly, overexpression of lizard and frog HSF3 as well as HSF1 induced HSP70 expression in mouse cells during heat shock, indicating that the two factors have the potential to induce the HSR. Furthermore, knockdown of either HSF3 or HSF1 markedly reduced HSP70 induction in lizard cells and resistance to heat shock. These results demonstrated that HSF1 and HSF3 cooperatively regulate the HSR at least in lizards, and suggest complex mechanisms of the HSR in lizards as well as frogs.

  9. Relativistic electron dropout echoes induced by interplanetary shocks

    Science.gov (United States)

    Schiller, Q.; Kanekal, S. G.; Boyd, A. J.; Baker, D. N.; Blake, J. B.; Spence, H. E.

    2017-12-01

    Interplanetary shocks that impact Earth's magnetosphere can produce immediate and dramatic responses in the trapped relativistic electron population. One well-studied response is a prompt injection capable of transporting relativistic electrons deep into the magnetosphere and accelerating them to multi-MeV energies. The converse effect, electron dropout echoes, are observations of a sudden dropout of electron fluxes observed after the interplanetary shock arrival. Like the injection echo signatures, dropout echoes can also show clear energy dispersion signals. They are of particular interest because they have only recently been observed and their causal mechanism is not well understood. In the analysis presented here, we show observations of electron drift echo signatures from the Relativistic Electron-Proton Telescope (REPT) and Magnetic Electron and Ion Sensors (MagEIS) onboard NASA's Van Allen Probes mission, which show simultaneous prompt enhancements and dropouts within minutes of the associated with shock impact. We show that the observations associated with both enhancements and dropouts are explained by the inward motion caused by the electric field impulse induced by the interplanetary shock, and either energization to cause the enhancement, or lack of a seed population to cause the dropout.

  10. A family of related proteins is encoded by the major Drosophila heat shock gene family

    International Nuclear Information System (INIS)

    Wadsworth, S.C.

    1982-01-01

    At least four proteins of 70,000 to 75,000 molecular weight (70-75K) were synthesized from mRNA which hybridized with a cloned heat shock gene previously shown to be localized to the 87A and 87C heat shock puff sites. These in vitro-synthesized proteins were indistinguishable from in vivo-synthesized heat shock-induced proteins when analyzed on sodium dodecyl sulfate-polyacrylamide gels. A comparison of the pattern of this group of proteins synthesized in vivo during a 5-min pulse or during continuous labeling indicates that the 72-75K proteins are probably not kinetic precursors to the major 70K heat shock protein. Partial digestion products generated with V8 protease indicated that the 70-75K heat shock proteins are closely related, but that there are clear differences between them. The partial digestion patterns obtained from heat shock proteins from the Kc cell line and from the Oregon R strain of Drosophila melanogaster are very similar. Genetic analysis of the patterns of 70-75K heat shock protein synthesis indicated that the genes encoding at least two of the three 72-75K heat shock proteins are located outside of the major 87A and 87C puff sites

  11. Radiative shocks with electron thermal conduction

    International Nuclear Information System (INIS)

    Borkowski, Kazimierz.

    1988-01-01

    The authors studies the influence of electron thermal conduction on radiative shock structure for both one- and two-temperature plasmas. The dimensionless ratio of the conductive length to the cooling length determines whether or not conduction is important, and shock jump conditions with conduction are established for a collisionless shock front. He obtains approximate solutions with the assumptions that the ionization state of the gas is constant and the cooling rate is a function of temperature alone. In the absence of magnetic fields, these solutions indicate that conduction noticeably influences normal-abundance interstellar shocks with velocities 50-100 km s -1 and dramatically affects metal-dominated shocks over a wide range of shock velocities. Magnetic fields inhibit conduction, but the conductive energy flux and the corresponding decrease in the post-shock electron temperature may still be appreciable. He calculates detailed steady-state radiative shock models in gas composed entirely of oxygen, with the purpose of explaining observations of fast-moving knots in Cas A and other oxygen-rich supernova remnants (SNRs). The O III ion, whose forbidden emission usually dominates the observed spectra, is present over a wide range of shock velocities, from 100 to 170 kms -1 . All models with conduction have extensive warm photoionization zones, which provides better agreement with observed optical (O I) line strengths. However, the temperatures in these zones could be lowered by (Si II) 34.8 μm and (Ne II) 12.8 μm cooling if Si and Ne are present in appreciable abundance relative to O. Such low temperatures would be inconsistent with the observed (O I) emission in oxygen-rich SNRs

  12. Multiple independent regulatory pathways control UBI4 expression after heat shock in Saccharomyces cerevisiae.

    Science.gov (United States)

    Simon, J R; Treger, J M; McEntee, K

    1999-02-01

    Transcription of the polyubiquitin gene UBI4 of Saccharomyces cerevisiae is strongly induced by a variety of environmental stresses, such as heat shock, nutrient depletion and exposure to DNA-damaging agents. This transcriptional response of UBI4 is likely to be the primary mechanism for increasing the pool of ubiquitin for degradation of stress-damaged proteins. Deletion and promoter fusion studies of the 5' regulatory sequences indicated that two different elements, heat shock elements (HSEs) and stress response element (STREs), contributed independently to heat shock regulation of the UBI4 gene. In the absence of HSEs, STRE sequences localized to the intervals -264 to -238 and -215 to -183 were needed for stress control of transcription after heat shock. Site-directed mutagenesis of the STRE (AG4) at -252 to -248 abolished heat shock induction of UBI4 transcription. Northern analysis demonstrated that cells containing either a temperature-sensitive HSF or non-functional Msn2p/Msn4p transcription factors induced high levels of UBI4 transcripts after heat shock. In cells deficient in both heat stress pathways, heat-induced UBI4 transcript levels were considerably lower but not abolished, suggesting a role for another factor(s) in stress control of its expression.

  13. Role of heat shock protein 70 in innate alloimmunity

    Directory of Open Access Journals (Sweden)

    Walter G. eLand

    2012-01-01

    Full Text Available This article briefly describes our own experience with the proven demonstration of heat shock protein 70 in reperfused renal allografts from brain-deaddonors and reflects about its potential role as a typical damage-associated molecular pattern (DAMP in the setting of innate alloimmunity. In fact, our group was able to demonstrate a dramatic up-regulation of heat shock protein 70 expression after postischemic reperfusion of renal allografts. Of note, up-regulation of this stress protein expression, although to a lesser extent, was already observed after cold storage of the organ indicating that this molecule is already induced in the stressed organism of a brain-dead donor. However, whether or not the dramatic up-regulation of heat shock protein 70 expression contributes to mounting an innate alloimmune response cannot be judged in view of these clinical findings.Nevertheless, heat shock protein 70, since generated in association with postischemic reperfusion-induced allograft injury, can be called a typical DAMP - as can everymolecule be termed a DAMP that is generated in associationwith any stressful tissue injury regardless of its final positive or negative regulatory function within the innate immune response elicited by it.In fact, as we discuss in this article, the context-dependent, even contradistinctive activities of heat shock protein 70 reflect the biological phenomenon that, throughout evolution, mammals have developed an elaborate network of positive and negative regulatory mechanisms, which provide balance between defensive and protective measures against unwarranted destruction of the host. In this sense, up-regulated expression of heat shock protein 70 in an injured allograft might reflect a pure protective response against the severe oxidative injury of a reperfused donor organ. On the other hand, up-regulated expression of this stress protein in an injured allograft might reflect a(futile attempt of the innate immune system to

  14. Interplanetary magnetic field orientations associated with bidirectional electron heat fluxes detected at ISEE 3

    International Nuclear Information System (INIS)

    Stansberry, J.A.; Gosling, J.T.; Thomsen, M.F.; Bame, S.J.; Smith, E.J.

    1988-01-01

    A statistical survey of interplanetary magnetic field orientations associated with bidirectional electron heat fluxes observed at ISEE 3 in orbit about the Sunward Lagrange point indicates that magnetic connection of the spacecraft to the Earth's bow shock was frequently the source of the bidirectionality. When the interplanetary magnetic field was oriented within 5 0 of the Earth-spacecraft line, backstreaming electrons from the bow shock were clearly observed approximately 18% of the time, and connections apparently occurred for angles as large as ∼30 0 --35 0 . copyright American Geophysical Union 1988

  15. Test of a new heat-flow equation for dense-fluid shock waves.

    Science.gov (United States)

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2010-09-21

    Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.

  16. Thermal shock behavior of W-ZrC/Sc2O3 composites under two different transient events by electron and laser irradiation

    Science.gov (United States)

    Chen, Hong-Yu; Luo, Lai-Ma; Zan, Xiang; Xu, Qiu; Tokunaga, Kazutoshi; Liu, Jia-Qin; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng

    2018-02-01

    The transient thermal shock behaviors of W-ZrC/Sc2O3 composites with different ZrC contents were evaluated using transient thermal shock test by electron and laser beams. The effects of different ZrC doping contents on the surface morphology and thermal shock resistance of W-ZrC/Sc2O3 composites were then investigated. Similarity and difference between effects of electron and laser beam transient heat loading were also discussed in this study. Repeated heat loading resulted in thermal fatigue of the irradiated W-ZrC/Sc2O3 samples by thermal stress, leading to the rough surface morphologies with cracks. After different transient thermal tests, significant surface roughening, cracks, surface melting, and droplet ejection occurred. W-2vol.%Sc2O3 sample has superior thermal properties and greater resistance to surface modifications under transient thermal shock, and with the increasing ZrC content in W alloys, thermal shock resistance of W-Zr/Sc2O3 sample tends to be unsatisfied.

  17. Assessment of the role of oxygen and mitochondria in heat shock induction of radiation and thermal resistance in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1983-01-01

    In response to a heat shock, the yeast Saccharomyces cerevisiae undergoes a large increase in its resistance to heat and, by the induction of its recombinational DNA repair capacity, a corresponding increase in resistance to radiation. Yeast which lack mitochondrial DNA, mitochondria-controlled protein synthetic apparatus, aerobic respiration, and electron transport (rho 0 strain) were used to assess the role of O 2 , mitochondria, and oxidative processes controlled by mitochondria in the induction of these resistances. We have found that rho 0 yeast grown and heat shocked in either the presence or absence of O 2 are capable of developing both radiation and heat resistance. We conclude that neither the stress signal nor its cellular consequences of induced heat and radiation resistance are directly dependent on O 2 , mitochondrial DNA, or mitochondria-controlled protein synthetic or oxidative processes

  18. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice.

    Science.gov (United States)

    Radford, N B; Fina, M; Benjamin, I J; Moreadith, R W; Graves, K H; Zhao, P; Gavva, S; Wiethoff, A; Sherry, A D; Malloy, C R; Williams, R S

    1996-03-19

    Heat shock proteins are proposed to limit injury resulting from diverse environmental stresses, but direct metabolic evidence for such a cytoprotective function in vertebrates has been largely limited to studies of cultured cells. We generated lines of transgenic mice to express human 70-kDa heat shock protein constitutively in the myocardium. Hearts isolated from these animals demonstrated enhanced recovery of high energy phosphate stores and correction of metabolic acidosis following brief periods of global ischemia sufficient to induce sustained abnormalities of these variables in hearts from nontransgenic littermates. These data demonstrate a direct cardioprotective effect of 70-kDa heat shock protein to enhance postischemic recovery of the intact heart.

  19. Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin.

    Directory of Open Access Journals (Sweden)

    Sidhartha M Chafekar

    Full Text Available The molecular mechanisms by which polyglutamine (polyQ-expanded huntingtin (Htt causes neurodegeneration in Huntington's disease (HD remain unclear. The malfunction of cellular proteostasis has been suggested as central in HD pathogenesis and also as a target of therapeutic interventions for the treatment of HD. We present results that offer a previously unexplored perspective regarding impaired proteostasis in HD. We find that, under non-stress conditions, the proteostatic capacity of cells expressing full length polyQ-expanded Htt is adequate. Yet, under stress conditions, the presence of polyQ-expanded Htt impairs the heat shock response, a key component of cellular proteostasis. This impaired heat shock response results in a reduced capacity to withstand the damage caused by cellular stress. We demonstrate that in cells expressing polyQ-expanded Htt the levels of heat shock transcription factor 1 (HSF1 are reduced, and, as a consequence, these cells have an impaired a heat shock response. Also, we found reduced HSF1 and HSP70 levels in the striata of HD knock-in mice when compared to wild-type mice. Our results suggests that full length, non-aggregated polyQ-expanded Htt blocks the effective induction of the heat shock response under stress conditions and may thus trigger the accumulation of cellular damage during the course of HD pathogenesis.

  20. Heat shock suppresses mating and sperm transfer in the rice leaf folder Cnaphalocrocis medinalis.

    Science.gov (United States)

    Liao, H J; Qian, Q; Liu, X D

    2014-06-01

    Temperature is a key environmental factor in determining the population size of Cnaphalocrocis medinalis in summer. High temperatures inhibit survival, development and fecundity of this insect. However, biological responses of female and male adults to heat shock, and physiological mechanism of high temperature suppressing population development are still ambiguous. We experimentally tested the impact of heat shock (5 h day-1) on biological traits, spermatogenesis and sperm transfer of adults of C. medinalis. The result showed that heat exposure to 39 and 40 °C for 5 h reduced longevity and copulation frequency of adults, and hatchability of eggs. Immediate survival rate of males was lower than that of females after 3 days of exposure to 41 °C. The oviposition period, copulation frequency, fecundity of adults and hatchability of eggs were significantly lower when male adults were exposed to 40 or 41 °C for 3 days. Heat shock decreased frequency and success rate of mating when males were exposed, and it also resulted in postponement of mating behaviour and prolongation of mating duration as both the female and male adults were exposed. Heat shock did not affect spermatogenesis, but significantly inhibited sperms maturation. Moreover, males could not ejaculate sperm into females during copulation when these male moths received heat shock. Heat shock remarkably suppressed mating behaviour and sperm transfer, which led to a dramatic decline of rice leaf folder populations.

  1. Implication of Heat Shock Factors in Tumorigenesis: Therapeutical Potential

    Energy Technology Data Exchange (ETDEWEB)

    Thonel, Aurelie de [INSERM U866, Dijon (France); Faculty of Medicine and Pharmacy, University of Burgundy, 21033 Dijon (France); Mezger, Valerie, E-mail: valerie.mezger@univ-paris-diderot.fr [CNRS, UMR7216 Epigenetics and Cell Fate, Paris (France); University Paris Diderot, 75013 Paris (France); Garrido, Carmen, E-mail: valerie.mezger@univ-paris-diderot.fr [INSERM U866, Dijon (France); Faculty of Medicine and Pharmacy, University of Burgundy, 21033 Dijon (France); CHU, Dijon BP1542, Dijon (France)

    2011-03-07

    Heat Shock Factors (HSF) form a family of transcription factors (four in mammals) which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs) that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and development. The most well studied HSF, HSF1, has been found at elevated levels in tumors with high metastatic potential and is associated with poor prognosis. This is partly explained by the above-mentioned cytoprotective (HSP-dependent) function that may enable cancer cells to adapt to the initial oncogenic stress and to support malignant transformation. Nevertheless, HSF1 operates as major multifaceted enhancers of tumorigenesis through, not only the induction of classical heat shock genes, but also of “non-classical” targets. Indeed, in cancer cells, HSF1 regulates genes involved in core cellular functions including proliferation, survival, migration, protein synthesis, signal transduction, and glucose metabolism, making HSF1 a very attractive target in cancer therapy. In this review, we describe the different physiological roles of HSFs as well as the recent discoveries in term of non-cogenic potential of these HSFs, more specifically associated to the activation of “non-classical” HSF target genes. We also present an update on the compounds with potent HSF1-modulating activity of potential interest as anti-cancer therapeutic agents.

  2. Implication of Heat Shock Factors in Tumorigenesis: Therapeutical Potential

    International Nuclear Information System (INIS)

    Thonel, Aurelie de; Mezger, Valerie; Garrido, Carmen

    2011-01-01

    Heat Shock Factors (HSF) form a family of transcription factors (four in mammals) which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs) that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and development. The most well studied HSF, HSF1, has been found at elevated levels in tumors with high metastatic potential and is associated with poor prognosis. This is partly explained by the above-mentioned cytoprotective (HSP-dependent) function that may enable cancer cells to adapt to the initial oncogenic stress and to support malignant transformation. Nevertheless, HSF1 operates as major multifaceted enhancers of tumorigenesis through, not only the induction of classical heat shock genes, but also of “non-classical” targets. Indeed, in cancer cells, HSF1 regulates genes involved in core cellular functions including proliferation, survival, migration, protein synthesis, signal transduction, and glucose metabolism, making HSF1 a very attractive target in cancer therapy. In this review, we describe the different physiological roles of HSFs as well as the recent discoveries in term of non-cogenic potential of these HSFs, more specifically associated to the activation of “non-classical” HSF target genes. We also present an update on the compounds with potent HSF1-modulating activity of potential interest as anti-cancer therapeutic agents

  3. Circulating Heat Shock Proteins in Women With a History of Recurrent Vulvovaginitis

    Directory of Open Access Journals (Sweden)

    P. C. Giraldo

    1999-01-01

    70-kDa heat shock proteins (hsp60 and hsp70, respectively in the circulation of women with or without a history of recurrent BV or candidal vaginitis and with or without a current lower genital tract infection. Heat shock protein expression is associated with a down-regulation of proinflammatory immune responses that would inhibit microbial infection.

  4. Acquired Thermotolerance and Heat Shock Proteins in Thermophiles from the Three Phylogenetic Domains

    DEFF Research Database (Denmark)

    Trent, Jonathan D.; Gabrielsen, Mette; Jensen, Bo

    1994-01-01

    Thermophilic organisms from each of the three phylogenetic domains (Bacteria, Archaea, and Eucarya) acquired thermotolerance after heat shock. Bacillus caldolyticus grown at 60 degrees C and heat shocked at 69 degrees C for 10 min showed thermotolerance at 74 degrees C, Sulfolobus shibatae grown...

  5. Heat shock and salicylic acid on postharvest preservation of organic strawberries

    Directory of Open Access Journals (Sweden)

    Sidiane Coltro

    2014-06-01

    Full Text Available Heat shock and salicylic acid have been studied on shelf-life extension of fruits. The benefits of these techniques have been related to their effect on inducing physiological defense responses against the oxidative stress and pathogen development. The objective of this study was to evaluate the effect of heat shock and salicylic acid on the postharvest preservation and contents of total phenolics, anthocyanins, ascorbic acid, fresh weight loss and microbiological quality of organic strawberries cv. Dover. Strawberries produced organically and stored at 5 ºC were subjected to heat shock (45 ºC ± 3 ºC for 3 h, application of salicylic acid (soaking in 2.0 mmol L-1 solution, heat shock in combination with salicylic acid and control. After treatment, the fruits were packed and stored in a climatic chamber at 5 ºC ± 2 ºC. At 1, 7 and 14 days, the experimental units were removed from refrigeration and kept at room temperature of approximately 20 ºC for two days. There was no effect of treatments on fresh weight loss, incidence of pathogens or chemical variations in strawberry fruits during the storage period. In natural conditions, organically grown strawberries remained in good condition for sale up to seven days of storage in all treatments.

  6. Shock velocity in weakly ionized nitrogen, air, and argon

    International Nuclear Information System (INIS)

    Siefert, Nicholas S.

    2007-01-01

    The goal of this research was to determine the principal mechanism(s) for the shock velocity increase in weakly ionized gases. This paper reports experimental data on the propagation of spark-generated shock waves (1< Mach<3) into weakly ionized nitrogen, air, and argon glow discharges (1 < p<20 Torr). In order to distinguish between effects due solely to the presence of electrons and effects due to heating of the background gas via elastic collisions with electrons, the weakly ionized discharge was pulsed on/off. Laser deflection methods determined the shock velocity, and the electron number density was collected using a microwave hairpin resonator. In the afterglow of nitrogen, air, and argon discharges, the shock velocity first decreased, not at the characteristic time for electrons to diffuse to the walls, but rather at the characteristic time for the centerline gas temperature to equilibrate with the wall temperature. These data support the conclusion that the principal mechanism for the increase in shock velocity in weakly ionized gases is thermal heating of the neutral gas species via elastic collisions with electrons

  7. The long-term effects of a life-prolonging heat treatment on the Drosophila melanogaster transcriptome suggest that heat shock proteins extend lifespan

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Sørensen, Peter; Loeschcke, Volker

    2014-01-01

    Heat-induced hormesis, i.e. the beneficial effect of mild heat-induced stress, increases the average lifespan of many organisms. This effect, which depends on the heat shock factor, decreases the log mortality rate weeks after the stress has ceased. To identify candidate genes that mediate......-treated flies. Several hsp70 probe sets were up-regulated 1.7–2-fold in the mildly stressed flies weeks after the last heat treatment (P shock protein, Hsp70, is reported to return to normal levels of expression shortly after heat stress. We...... conclude that the heat shock response, and Hsp70 in particular, may be central to the heat-induced increase in the average lifespan in flies that are exposed to mild heat stress early in life....

  8. Heat shock and herpes virus: enhanced reactivation without untargeted mutagenesis

    International Nuclear Information System (INIS)

    Lytle, C.D.; Carney, P.G.

    1988-01-01

    Enhanced reactivation of Ultraviolet-irradiated virus has been reported to occur in heat-shocked host cells. Since enhanced virus reactivation is often accompanied by untargeted mutagenesis, we investigated whether such mutagenesis would occur for herpes simplex virus (HSV) in CV-1 monkey kidney cells subjected to heat shock. In addition to expressing enhanced reactivation, the treated cells were transiently more susceptible to infection by unirradiated HSV. No mutagenesis of unirradiated HSV was found whether infection occurred at the time of increased susceptibility to infection or during expression of enhanced viral reactivation

  9. Increased expression of heat shock protein 70 and heat shock factor 1 in chronic dermal ulcer tissues treated with laser-aided therapy.

    Science.gov (United States)

    Zhou, Jian-da; Luo, Cheng-qun; Xie, Hui-qing; Nie, Xin-min; Zhao, Yan-zhong; Wang, Shao-hua; Xu, Yi; Pokharel, Pashupati Babu; Xu, Dan

    2008-07-20

    Chronic dermal ulcers are also referred to as refractory ulcers. This study was conducted to elucidate the therapeutic effect of laser on chronic dermal ulcers and the induced expression of heat shock factor 1 (HSF1) and heat shock protein 70 (HSP70) in wound tissues. Sixty patients with 84 chronic dermal ulcers were randomly divided into traditional therapy and laser therapy groups. Laser treatment was performed in addition to traditional therapy in the laser therapy group. The treatment efficacy was evaluated after three weeks. Five tissue sections of healing wounds were randomly collected along with five normal skin sections as controls. HSP70-positive cells from HSP70 immunohistochemical staining were counted and the gray scale of positive cells was measured for statistical analysis. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the mRNA and protein expressions of HSF1 and HSP70. The cure rate of the wounds and the total efficacy in the laser therapy group were significantly higher than those in the traditional therapy group (P ulcers plays a facilitating role in healing due to the mechanism of laser-activated endogenous heat shock protection in cells in wound surfaces.

  10. Two-Dimensional Simulations of Electron Shock Ignition at the Megajoule Scale

    Science.gov (United States)

    Shang, W.; Betti, R.

    2016-10-01

    Shock ignition uses a late strong shock to ignite the hot spot of an inertial confinement fusion capsule. In the standard shock-ignition scheme, an ignitor shock is launched by the ablation pressure from a spike in laser intensity. Recent experiments on OMEGA have shown that focused beams with intensity up to 6 ×1015 W /cm2 can produce copious amounts of hot electrons. The hot electrons are produced by laser-plasma instabilities (LPI's) and can carry up to 15 % of the instantaneous laser power. Megajoule-scale targets will likely produce even more hot electrons because of the large plasma scale length. We show that it is possible to design ignition targets with low implosion velocities that can be shock ignited using LPI-generated hot electrons to obtain high energy gains. These designs are robust to low-mode asymmetries and they ignite even for highly distorted implosions. Electron shock ignition requires tens of kilojoules of hot electrons, which can only be produced on a large laser facility like the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  11. A SIMPLE EXPERIMENTAL MODEL OF HEAT SHOCK RESPONSE IN RATS

    Directory of Open Access Journals (Sweden)

    Tufi Neder Meyer

    1998-10-01

    Full Text Available Objective: To obtain a simple model for the elicitation of the heat shock response in rats. Design: Laboratory study. Setting: University research laboratories. Sample: Seventy-nine adult male albino rats (weight range 200 g to 570 g. Procedures: Exposure to heat stress by heating animals in a warm bath for 5 min after their rectal temperatures reached 107.60 F (420 C. Liver and lung samples were collected for heat-shock protein 70 (HSP70 detection (Western analysis. Results: Western analysis was positive for HSP70 in the liver and in the lungs of heated animals. There was a temporal correlation between heating and HSP70 detection: it was strongest 1 day after heating and reduced afterwards. No heated animals died. Conclusion: These data show that heating rats in a warm (45o C bath, according to parameters set in this model, elicits efficiently the heat shock response.OBJETIVO: Obter um modelo simples para tentar esclarecer a resposta ao choque térmico em ratos. LOCAL: Laboratório de pesquisa da Universidade. MÉTODO: Amostra: 79 ratos albinos, adultos, entre 200g a 570g. Procedimentos: Exposição ao calor, em banho quente, por 5 minutos, após a temperatura retal chegar a 42 graus centigrados. Biópsias de fígado e pulmão foram obtidas para detectar a proteina 70 (HSP 70, pelo "Western blot". RESULTADOS: As análises foram positivas nos animais aquecidos, com uma correlação entre aquecimento e constatação da HSP 70. Foi mais elevada no primeiro dia e não houve óbitos nos animais aquecidos. CONCLUSÃO: Os ratos aquecidos a 45 graus centígrados respondem eficientemente ao choque térmico.

  12. Electron Shock Ignition of Inertial Fusion Targets

    International Nuclear Information System (INIS)

    Shang, W. L.; Betti, R.; Hu, S. X.; Woo, K.; Hao, L.

    2017-01-01

    Here, it is shown that inertial fusion targets designed with low implosion velocities can be shock ignited using laser–plasma interaction generated hot electrons (hot-e) to obtain high-energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e, which can only be produced on a large laser facility like the National Ignition Facility, with the laser to hot-e conversion efficiency greater than 10% at laser intensities ~10 16 W/cm 2 .

  13. Effect of heat shock on ultrastructure and calcium distribution in Lavandula pinnata L. glandular trichomes.

    Science.gov (United States)

    Huang, S S; Kirchoff, B K; Liao, J P

    2013-02-01

    The effects of heat shock (HS) on the ultrastructure and calcium distribution of Lavandula pinnata secretory trichomes are examined using transmission electron microscopy and potassium antimonate precipitation. After 48-h HS at 40°C, plastids become distorted and lack stroma and osmiophilic deposits, the cristae of the mitochondria become indistinct, the endoplasmic reticulum acquires a chain-like appearance with ribosomes prominently attached to the lamellae, and the plasma and organelle membranes become distorted. Heat shock is associated with a decrease in calcium precipitates in the trichomes, while the number of precipitates increases in the mesophyll cells. Prolonged exposure to elevated calcium levels may be toxic to the mesophyll cells, while the lack of calcium in the glands cell may deprive them of the normal protective advantages of elevated calcium levels. The inequality in calcium distribution may result not only from uptake from the transpiration stream, but also from redistribution of calcium from the trichomes to the mesophyll cells.

  14. The effects of drying following heat shock exposure of the desert moss Syntrichia caninervis.

    Science.gov (United States)

    Xu, Shu-Jun; Liu, Chun-Jiang; Jiang, Ping-An; Cai, Wei-Min; Wang, Yan

    2009-03-15

    Desert mosses are components of biological soil crusts (BSCs) and their ecological functions make assessment and protection of these mosses a high-ranking management priority in desert regions. Drying is thought to be useful for desert mosses surviving heat shock. In this study, we investigated the role of drying by monitoring the responses of physiological characters and asexual reproduction in the typical desert moss Syntrichia caninervis. Heat significantly decreased chlorophyll content and weakened rapid recovery of photochemical activity, and increased carotenoid content and membrane permeability. Lethal temperatures significantly destroyed shoot regeneration potential. In comparison with heat alone, drying significantly increased protonema emergence time and depressed protonema emergence area. Drying combined with heat accelerated water loss, followed by a decrease of photosynthetic activity. Drying had different influences on membrane permeability at different temperatures. When moss leaves were subjected to a combined stress of drying and heat shock, photosynthesis was maintained mainly due to the effects of drying on physiological activity although the cellular morphological integrity was affected. Drying caused opposing effects on moss physiological and reproductive characteristics. On the one hand, drying caused a positive synergistic effect with heat shock when the temperature was below 40 degrees C. On the other hand, drying showed antagonism with heat shock when the moss was subjected to temperatures higher than 40 degrees C. These findings may help in understanding the survival mechanism of dessert mosses under heat shock stress which will be helpful for the artificial reconstruction of BSCs.

  15. The effects of drying following heat shock exposure of the desert moss Syntrichia caninervis

    International Nuclear Information System (INIS)

    Xu Shujun; Liu Chunjiang; Jiang Pingan; Cai Weimin; Wang Yan

    2009-01-01

    Desert mosses are components of biological soil crusts (BSCs) and their ecological functions make assessment and protection of these mosses a high-ranking management priority in desert regions. Drying is thought to be useful for desert mosses surviving heat shock. In this study, we investigated the role of drying by monitoring the responses of physiological characters and asexual reproduction in the typical desert moss Syntrichia caninervis. Heat significantly decreased chlorophyll content and weakened rapid recovery of photochemical activity, and increased carotenoid content and membrane permeability. Lethal temperatures significantly destroyed shoot regeneration potential. In comparison with heat alone, drying significantly increased protonema emergence time and depressed protonema emergence area. Drying combined with heat accelerated water loss, followed by a decrease of photosynthetic activity. Drying had different influences on membrane permeability at different temperatures. When moss leaves were subjected to a combined stress of drying and heat shock, photosynthesis was maintained mainly due to the effects of drying on physiological activity although the cellular morphological integrity was affected. Drying caused opposing effects on moss physiological and reproductive characteristics. On the one hand, drying caused a positive synergistic effect with heat shock when the temperature was below 40 deg. C. On the other hand, drying showed antagonism with heat shock when the moss was subjected to temperatures higher than 40 deg. C. These findings may help in understanding the survival mechanism of dessert mosses under heat shock stress which will be helpful for the artificial reconstruction of BSCs

  16. Heat shock modulates the subcellular localization, stability, and activity of HIPK2

    International Nuclear Information System (INIS)

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam

    2016-01-01

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress – such as hypoxia, oxidative stress, or UV damage – is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors.

  17. Heat shock modulates the subcellular localization, stability, and activity of HIPK2

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam, E-mail: sganesh@iitk.ac.in

    2016-04-15

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress – such as hypoxia, oxidative stress, or UV damage – is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors.

  18. Induction of Triploidy in Clarias Gariepinus by Heat Shock of ...

    African Journals Online (AJOL)

    Eggs and milt were collected from female and male Clarias gariepinus respectively. Fertilized eggs were given heat-shock at 40 and 41oC for 4.5 minutes duration. The eggs were shocked at different post fertilization periods viz: immediately after fertilization, 2, 3, 4, 5 and 6 mins after fertilization. Percentage hatchability for ...

  19. Non-thermal electron acceleration in low Mach number collisionless shocks. II. Firehose-mediated Fermi acceleration and its dependence on pre-shock conditions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xinyi; Narayan, Ramesh [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Sironi, Lorenzo [NASA Einstein Postdoctoral Fellow. (United States)

    2014-12-10

    Electron acceleration to non-thermal energies is known to occur in low Mach number (M{sub s} ≲ 5) shocks in galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Using two-dimensional (2D) particle-in-cell (PIC) plasma simulations, we showed in Paper I that electrons are efficiently accelerated in low Mach number (M{sub s} = 3) quasi-perpendicular shocks via a Fermi-like process. The electrons bounce between the upstream region and the shock front, with each reflection at the shock resulting in energy gain via shock drift acceleration. The upstream scattering is provided by oblique magnetic waves that are self-generated by the electrons escaping ahead of the shock. In the present work, we employ additional 2D PIC simulations to address the nature of the upstream oblique waves. We find that the waves are generated by the shock-reflected electrons via the firehose instability, which is driven by an anisotropy in the electron velocity distribution. We systematically explore how the efficiency of wave generation and of electron acceleration depend on the magnetic field obliquity, the flow magnetization (or equivalently, the plasma beta), and the upstream electron temperature. We find that the mechanism works for shocks with high plasma beta (≳ 20) at nearly all magnetic field obliquities, and for electron temperatures in the range relevant for galaxy clusters. Our findings offer a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  20. Arctigenin from Fructus Arctii is a novel suppressor of heat shock response in mammalian cells

    Science.gov (United States)

    Ishihara, Keiichi; Yamagishi, Nobuyuki; Saito, Youhei; Takasaki, Midori; Konoshima, Takao; Hatayama, Takumi

    2006-01-01

    Because heat shock proteins (Hsps) are involved in protecting cells and in the pathophysiology of diseases such as inflammation, cancer, and neurodegenerative disorders, the use of regulators of the expression of Hsps in mammalian cells seems to be useful as a potential therapeutic modality. To identify compounds that modulate the response to heat shock, we analyzed several natural products using a mammalian cell line containing an hsp promoter-regulated reporter gene. In this study, we found that an extract from Fructus Arctii markedly suppressed the expression of Hsp induced by heat shock. A component of the extract arctigenin, but not the component arctiin, suppressed the response at the level of the activation of heat shock transcription factor, the induction of mRNA, and the synthesis and accumulation of Hsp. Furthermore, arctigenin inhibited the acquisition of thermotolerance in mammalian cells, including cancer cells. Thus, arctigenin seemed to be a new suppressive regulator of heat shock response in mammalian cells, and may be useful for hyperthermia cancer therapy. PMID:16817321

  1. Paleoclassical electron heat transport

    International Nuclear Information System (INIS)

    Callen, J.D.

    2005-01-01

    Radial electron heat transport in low collisionality, magnetically-confined toroidal plasmas is shown to result from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature equilibrates along magnetic field lines a long length L, which is the minimum of the electron collision length and a maximum effective half length of helical field lines. Thus, the diffusing field lines induce a radial electron heat diffusivity M ≅ L/(πR 0q ) ∼ 10 >> 1 times the magnetic field diffusivity η/μ 0 ≅ ν e (c/ω p ) 2 . The paleoclassical electron heat flux model provides interpretations for many features of 'anomalous' electron heat transport: magnitude and radial profile of electron heat diffusivity (in tokamaks, STs, and RFPs), Alcator scaling in high density plasmas, transport barriers around low order rational surfaces and near a separatrix, and a natural heat pinch (or minimum temperature gradient) heat flux form. (author)

  2. Comparative Membrane Proteomics Reveals a Nonannotated E. coli Heat Shock Protein.

    Science.gov (United States)

    Yuan, Peijia; D'Lima, Nadia G; Slavoff, Sarah A

    2018-01-09

    Recent advances in proteomics and genomics have enabled discovery of thousands of previously nonannotated small open reading frames (smORFs) in genomes across evolutionary space. Furthermore, quantitative mass spectrometry has recently been applied to analysis of regulated smORF expression. However, bottom-up proteomics has remained relatively insensitive to membrane proteins, suggesting they may have been underdetected in previous studies. In this report, we add biochemical membrane protein enrichment to our previously developed label-free quantitative proteomics protocol, revealing a never-before-identified heat shock protein in Escherichia coli K12. This putative smORF-encoded heat shock protein, GndA, is likely to be ∼36-55 amino acids in length and contains a predicted transmembrane helix. We validate heat shock-regulated expression of the gndA smORF and demonstrate that a GndA-GFP fusion protein cofractionates with the cell membrane. Quantitative membrane proteomics therefore has the ability to reveal nonannotated small proteins that may play roles in bacterial stress responses.

  3. The role of heat shock protein 90 in the regulation of tumor cell apoptosis.

    Science.gov (United States)

    Kaigorodova, E V; Ryazantseva, N V; Novitskii, V V; Belkina, M V; Maroshkina, A N

    2011-02-01

    Programmed death of Jurkat tumor cells was studied under conditions of culturing with 17-AAG selective inhibitor of heat shock protein with a molecular weight of 90 kDa and etoposide. Apoptosis realization was evaluated by fluorescent microscopy with FITC-labeled annexin V and propidium iodide. Activity of caspase-3 was evaluated spectrophotometrically. Inhibition of heat shock protein with a molecular weight of 90 kDa activated the apoptotic program in Jurkat tumor cells and etoposide-induced apoptosis. The heat shock protein with a molecular weight of 90 kDa acted as apoptosis inhibitor in tumor cells.

  4. Rarefaction Shock Waves in Collisionless Plasma with Electronic Beam

    OpenAIRE

    Gurovich, Victor Ts.; Fel, Leonid G.

    2011-01-01

    We show that an electronic beam passing through the collisionless plasma of the "cold" ions and the "hot" Boltzmann electrons can give rise to the propagation of the supersonic ion-acoustic rarefaction shock waves. These waves are analogous to those predicted by Zeldovich [5] in gasodynamics and complementary to the ion-acoustic compression shock waves in collisionless plasma described by Sagdeev [3].

  5. Initial crystallographic studies of a small heat-shock protein from Xylella fastidiosa

    International Nuclear Information System (INIS)

    Tada, Susely F. S.; Saraiva, Antonio Marcos; Lorite, Gabriela S.; Rosselli-Murai, Luciana K.; Pelloso, Alexandre César; Santos, Marcelo Leite dos; Trivella, Daniela B. B.; Cotta, Mônica A.; Souza, Anete Pereira de; Aparicio, Ricardo

    2012-01-01

    Initial crystallographic studies of the X. fastidiosa small heat-shock protein HSP17.9 are reported. The ORF XF2234 in the Xylella fastidiosa genome was identified as encoding a small heat-shock protein of 17.9 kDa (HSP17.9). HSP17.9 was found as one of the proteins that are induced during X. fastidiosa proliferation and infection in citrus culture. Recombinant HSP17.9 was crystallized and surface atomic force microscopy experiments were conducted with the aim of better characterizing the HSP17.9 crystals. X-ray diffraction data were collected at 2.7 Å resolution. The crystal belonged to space group P4 3 22, with unit-cell parameters a = 68.90, b = 68.90, c = 72.51 Å, and is the first small heat-shock protein to crystallize in this space group

  6. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L..

    Directory of Open Access Journals (Sweden)

    Xiaotao Ding

    Full Text Available Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease.

  7. Kappa-Electrons Downstream of the Solar Wind Termination Shock

    Science.gov (United States)

    Fahr, H. J.

    2017-12-01

    A theoretical description of the solar wind electron distribution function downstream of the termination shock under the influence of the shock-induced injection of overshooting KeV-energetic electrons will be presented. A kinetic phasespace transport equation in the bulk frame of the heliosheath plasma flow is developed for the solar wind electrons, taking into account shock-induced electron injection, convective changes, magnetic cooling processes and whistler wave-induced energy diffusion. Assuming that the local electron distribution under the prevailing Non-LTE conditions can be represented by a local kappa function with a local kappa parameter that varies with the streamline coordinates, we determine the parameters of the resulting, initial kappa distribution for the downstream electrons. From this initial function spectral electron fluxes can be derived and can be compared with those measured by the VOYAGER-1 spacecraft in the range between 40 to 70 KeV. It can then be shown that with kappa values around kappa = 6 one can in fact fit these data very satisfactorily. In addition it is shown that for isentropic electron flows kappa-distributed electrons have to undergo simultaneous changes of both parameters, i.e. kappa and theta, of the electron kappa function. It is also shown then that under the influence of energy sinks and sources the electron flux becomes non-isentropic with electron entropies changing along the streamline.

  8. cDNA cloning and mRNA expression of heat shock protein 70 gene ...

    African Journals Online (AJOL)

    In this study, the full-length heat shock protein 70 of Tegillarca granosa was cloned from cDNA library by rapid amplification of cDNA end (RACE). The open reading frame (ORF) of heat shock protein 70 was 1968 bp, and it encoded a protein of 655 amino acids with a predicted molecular weight of 71.48 kDa and an ...

  9. Heat Shock Protein 90 Inhibitor (17-AAG) Induces Apoptosis and Decreases Cell Migration/Motility of Keloid Fibroblasts.

    Science.gov (United States)

    Yun, In Sik; Lee, Mi Hee; Rah, Dong Kyun; Lew, Dae Hyun; Park, Jong-Chul; Lee, Won Jai

    2015-07-01

    The regulation of apoptosis, proliferation, and migration of fibroblasts is altered in keloids. The 90-kDa heat shock protein (heat shock protein 90) is known to play a key role in such regulation. Therefore, the authors investigated whether the inhibition of heat shock protein 90 in keloid fibroblasts could induce apoptosis and attenuate keloid fibroblast proliferation and migration. The authors evaluated heat shock protein 90 expression in keloid tissues with immunohistochemistry. The authors used cell viability [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays and annexin V/propidium iodide staining for apoptosis, a wound healing model and cell tracking system to assess cell migration, and Akt Western blotting analysis in keloid fibroblasts after inhibition of heat shock protein 90 with 17-allylaminodemethoxygeldanamycin (17-AAG). The expression of heat shock protein 90 in keloid tissues was significantly increased compared with normal tissues. The 17-AAG-treated keloid fibroblasts showed significantly decreased proliferation, promotion of apoptosis, and decreased expression of Akt. Furthermore, a dose-dependent decrease in cell migration was noted after 17-AAG treatment of keloid fibroblasts. The 17-AAG-treated keloid fibroblasts had less directionality to the wound center and migrated a shorter distance. The authors confirmed that the inhibition of heat shock protein 90 in keloid fibroblasts could promote apoptosis and attenuate proliferation and migration of keloid fibroblasts. Therefore, the authors think that the inhibition of heat shock protein 90 is a key factor in the regulation of biological processes in keloids. With further preclinical study, the authors will be able to apply these results clinically for keloid treatment.

  10. Adaptive response in Drosophila melanogaster heat shock proteins mutant strains

    International Nuclear Information System (INIS)

    Shaposhnikov, M.V.; Moskalev, A.A.; Turysheva, E.V.

    2007-01-01

    Complete text of publication follows. The members of the heat shock proteins (Hsp) family function as molecular chaperones and assist intracellular folding of newly synthesized proteins. Also it is possible that molecular chaperones are induced during adaptive response to oxidative stress and radiation. The aim of our research was to exam the role of heat shock proteins in adaptive response to oxidative stress after low dose rate gamma-irradiation in Drosophila melanogaster. Drosophilamelanogaster strains were kindly provided by Bloomington Drosophila Stock Center (University of state of Indiana, Bloomington, USA). We used wild type strain (CS), heat shock protein mutant strains (Hsp22, Hsp70, Hsp83), and heat shock factor mutant strain (Hsf). Strains were chronically exposured to adaptive dose of gamma-irradiation in dose rate of 0.17 cGy/h during all stages of life history (from the embrional stage to the stage of matured imago). The rate of absorbed dose was 60 cGy. For oxidative-stress challenge twodays old flies were starved in empty vials for 6 h and then transferred to vials containing only filter paper soaked with 20 mM paraquat in 5% sucrose solution. Survival data were collected after 26 h of treatment. Dead flies were counted daily. The obtained data were subjected to survival analysis by Kaplan and Meier method and presented as survival curves. Statistical analysis was held by non-parametric methods. To test the significance of the difference between the two age distributions Kolmogorov-Smirnov test was applied. Gehan-Braslow- Wilcoxon and Cox-Mantel tests were used for estimation of median life span differences. In addition the minimal and maximal life span, time of 90% death, and mortality rate doubling time (MRDT) were estimated. The obtained results will be discussed in presentation.

  11. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus).

    Science.gov (United States)

    Xie, Jingjing; Tang, Li; Lu, Lin; Zhang, Liyang; Xi, Lin; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2014-01-01

    Heat stress due to high environmental temperature negatively influences animal performances. To better understand the biological impact of heat stress, laying broiler breeder chickens were subjected either to acute (step-wisely increasing temperature from 21 to 35°C within 24 hours) or chronic (32°C for 8 weeks) high temperature exposure. High temperature challenges significantly elevated body temperature of experimental birds (Pshock transcription factors (HSFs) and heat shock proteins (HSPs) 70 and 90 were differently affected by acute and chronic treatment. Tissue-specific responses to thermal challenge were also found among heart, liver and muscle. In the heart, acute heat challenge affected lipid oxidation (P = 0.05) and gene expression of all 4 HSF gene expression was upregulated (Pstress increased protein oxidation, but HSFs and HSPs gene expression remained unaltered. Only tendencies to increase were observed in HSP 70 (P = 0.052) and 90 (P = 0.054) gene expression after acute heat stress. The differential expressions of HSF and HSP genes in different tissues of laying broiler breeder chickens suggested that anti-heat stress mechanisms might be provoked more profoundly in the heart, by which the muscle was least protected during heat stress. In addition to HSP, HSFs gene expression could be used as a marker during acute heat stress.

  12. Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock

    Science.gov (United States)

    Wilson, L. B., III; Sibeck, D. G.; Turner, D. L.; Osmane, A.; Caprioli, D.; Angelopoulos, V.

    2016-01-01

    Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances-largescale (i.e., tens to thousands of thermal ion Larmor radii), transient (approximately 5-10 per day) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1 =M foreshock disturbances to energies up to at least approximately 300 keV. Although such energetic electrons have been previously observed, their presence has been attributed to escaping magnetospheric particles or solar events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas.

  13. Electron Dropout Echoes Induced by Interplanetary Shock: A Statistical Study

    Science.gov (United States)

    Liu, Z.; Zong, Q.; Hao, Y.; Zhou, X.; Ma, X.; Liu, Y.

    2017-12-01

    "Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the out radiation belt region has been investigated systematically. The electron dropout and its echoes are usually found for higher energy (> 300 keV) channels fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on LANL satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the electric field impulse induced by the IP shock produces a more pronounced inward migration of electrons at the dusk side, resulting in the observed dusk-side moderate dropout of electron flux and its consequent echoes.

  14. Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations

    International Nuclear Information System (INIS)

    Peng, Ivy Bo; Markidis, Stefano; Laure, Erwin; Johlander, Andreas; Vaivads, Andris; Khotyaintsev, Yuri; Henri, Pierre; Lapenta, Giovanni

    2015-01-01

    We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has been identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration

  15. Quercetin suppresses heat shock-induced nuclear translocation of Hsp72

    Directory of Open Access Journals (Sweden)

    Antoni Gawron

    2011-08-01

    Full Text Available The effect of quercetin and heat shock on the Hsp72 level and distribution in HeLa cells was studied by Western blotting, indirect immunofluorescence and immunogold electron microscopy. In control cells and after quercetin treatment, Hsp72 was located both in the cytoplasm and in the nucleus in comparable amounts. After hyperthermia, the level of nuclear Hsp72 raised dramatically. Expression of Hsp72 in cytoplasm was also higher but not to such extent as that observed in the nucleus. Preincubation of heated cells with quercetin inhibited strong Hsp72 expression observed after hyperthermia and changed the intracellular Hsp72 distribution. The cytoplasmic level of protein exceeded the nuclear one, especially around the nucleus, where the coat of Hsp72 was noticed. Observations indicating that quercetin was present around and in the nuclear envelope suggested an involvement of this drug in the inhibition of nuclear translocation. Our results indicate that pro-apoptotic activity of quercetin may be correlated not only with the inhibition of Hsp72 expression but also with suppression of its migration to the nucleus.

  16. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses

    DEFF Research Database (Denmark)

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M.

    2012-01-01

    shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout....... We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response...

  17. Non-lethal heat shock increased Hsp70 and immune protein transcripts but not Vibrio tolerance in the white-leg shrimp.

    Directory of Open Access Journals (Sweden)

    Nguyen Hong Loc

    Full Text Available Non-lethal heat shock boosts bacterial and viral disease tolerance in shrimp, possibly due to increases in endogenous heat shock protein 70 (Hsp70 and/or immune proteins. To further understand the mechanisms protecting shrimp against infection, Hsp70 and the mRNAs encoding the immune-related proteins prophenoloxidase (proPO, peroxinectin, penaeidin, crustin and hemocyanin were studied in post-larvae of the white-leg shrimp Litopenaeus vannamei, following a non-lethal heat shock. As indicated by RT-qPCR, a 30 min abrupt heat shock increased Hsp70 mRNA in comparison to non-heated animals. Immunoprobing of western blots and quantification by ELISA revealed that Hsp70 production after heat shock was correlated with enhanced Hsp70 mRNA. proPO and hemocyanin mRNA levels were augmented, whereas peroxinectin and crustin mRNA levels were unchanged following non-lethal heat shock. Penaeidin mRNA was decreased by all heat shock treatments. Thirty min abrupt heat shock failed to improve survival of post-larvae in a standardized challenge test with Vibrio harveyi, indicating that under the conditions of this study, L. vannamei tolerance to Vibrio infection was influenced neither by Hsp70 accumulation nor the changes in the immune-related proteins, observations dissimilar to other shrimp species examined.

  18. Non-Lethal Heat Shock Increased Hsp70 and Immune Protein Transcripts but Not Vibrio Tolerance in the White-Leg Shrimp

    Science.gov (United States)

    Loc, Nguyen Hong; MacRae, Thomas H.; Musa, Najiah; Bin Abdullah, Muhd Danish Daniel; Abdul Wahid, Mohd. Effendy; Sung, Yeong Yik

    2013-01-01

    Non-lethal heat shock boosts bacterial and viral disease tolerance in shrimp, possibly due to increases in endogenous heat shock protein 70 (Hsp70) and/or immune proteins. To further understand the mechanisms protecting shrimp against infection, Hsp70 and the mRNAs encoding the immune-related proteins prophenoloxidase (proPO), peroxinectin, penaeidin, crustin and hemocyanin were studied in post-larvae of the white-leg shrimp Litopenaeus vannamei, following a non-lethal heat shock. As indicated by RT-qPCR, a 30 min abrupt heat shock increased Hsp70 mRNA in comparison to non-heated animals. Immunoprobing of western blots and quantification by ELISA revealed that Hsp70 production after heat shock was correlated with enhanced Hsp70 mRNA. proPO and hemocyanin mRNA levels were augmented, whereas peroxinectin and crustin mRNA levels were unchanged following non-lethal heat shock. Penaeidin mRNA was decreased by all heat shock treatments. Thirty min abrupt heat shock failed to improve survival of post-larvae in a standardized challenge test with Vibrio harveyi, indicating that under the conditions of this study, L. vannamei tolerance to Vibrio infection was influenced neither by Hsp70 accumulation nor the changes in the immune-related proteins, observations dissimilar to other shrimp species examined. PMID:24039886

  19. Effect of patchouli alcohol on the regulation of heat shock-induced oxidative stress in IEC-6 cells.

    Science.gov (United States)

    Liu, Xiaoxi; Jiang, Linshu; Liu, Fenghua; Chen, Yuping; Xu, Lei; Li, Deyin; Ma, Yunfei; Li, Huanrong; Xu, Jianqin

    2016-08-01

    Purpose Patchouli alcohol (PA) is used to treat gastrointestinal dysfunction. The purpose of this study was to ascertain the function of PA in the regulated process of oxidative stress in rat intestinal epithelial cells (IEC-6). Materials and methods Oxidative stress was stimulated by exposing IEC-6 cells to heat shock (42 °C for 3 h). IEC-6 cells in treatment groups were pretreated with various concentrations of PA (10, 40, and 80 ng/mL) for 3 h before heat shock. Results Heat shock caused damage to the morphology of IEC-6 cells, and increased reactive oxygen species (ROS) level and malondialdehyde (MDA) content. Moreover, mRNA and protein expression by target genes related to oxidative stress in heat shock were also altered. Specifically, the mRNA expression by HSP70, HSP90, GSH-px, NRF2 nd HO-1were all increased, and Nrf2 and Keap1 protein expression were increased after heat shock. However, pretreatment with PA weakened the level of damage to the cellular morphology, and decreased the MDA content caused by heat shock, indicating PA had cytoprotective activities. Pretreatment with PA at high dose significantly increased generation of intracellular ROS. Compared with the heat shock group alone, PA pretreatment significantly decreased the mRNA expression by HSP70, HSP90, SOD, CAT, GSH-px, KEAP1 and HO-1. Furthermore, the high dose of PA significantly increased Nrf2 protein expression, while both the intermediate and high dose of PA significantly increased HO-1 protein expression. Conclusion Heat-shock-induced oxidative stress in IEC-6 cells, and PA could alleviate the Nrf2-Keap1 cellular oxidative stress responses.

  20. Temperature and density profiles of an MHD switch-on shock

    International Nuclear Information System (INIS)

    Watson-Munro, C.N.; Bighel, L.; Collins, A.R.; Cramer, N.F.; Cross, R.C.

    1975-01-01

    An experimental study of the structure of MHD switch-on shock waves propagating into partially ionized hydrogen and helium plasmas is described. The variation of electron and ion temperatures through the shock front was studied as a function of the level of pre-ionization. When the shock propagates into an almost fully ionized plasma, the electron temperature rises well above the ion temperature owing to resistive heating of the electrons. At low pre-ionization levels, however, the ion temperature rises above the electron temperature. These results indicate that ion-neutral collisions can play a dominant role in the dissipation of energy in a shock wave. (author)

  1. Heat shock factor 1 upregulates transcription of Epstein–Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    International Nuclear Information System (INIS)

    Wang, Feng-Wei; Wu, Xian-Rui; Liu, Wen-Ju; Liao, Yi-Ji; Lin, Sheng; Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin; Mai, Shi-Juan; Xie, Dan

    2011-01-01

    Epstein–Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the − 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  2. Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng-Wei [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Wu, Xian-Rui [Department of Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou (China); Liu, Wen-Ju; Liao, Yi-Ji [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Lin, Sheng [Laboratory of Integrated Biosciences, School of Life Science, Sun Yat-sen University, Guangzhou (China); Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Mai, Shi-Juan, E-mail: maishj@sysucc.org.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Xie, Dan, E-mail: xied@mail.sysu.edu.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China)

    2011-12-20

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  3. Parametric study of non-relativistic electrostatic shocks and the structure of their transition layer

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M. E. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Department of Science and Technology, Linkoeping University, SE-60174 Norrkoeping (Sweden); Ahmed, H.; Sarri, G.; Doria, D.; Kourakis, I.; Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Romagnani, L. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Pohl, M. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); DESY, D-15738 Zeuthen (Germany)

    2013-04-15

    Nonrelativistic electrostatic unmagnetized shocks are frequently observed in laboratory plasmas and they are likely to exist in astrophysical plasmas. Their maximum speed, expressed in units of the ion acoustic speed far upstream of the shock, depends only on the electron-to-ion temperature ratio if binary collisions are absent. The formation and evolution of such shocks is examined here for a wide range of shock speeds with particle-in-cell simulations. The initial temperatures of the electrons and the 400 times heavier ions are equal. Shocks form on electron time scales at Mach numbers between 1.7 and 2.2. Shocks with Mach numbers up to 2.5 form after tens of inverse ion plasma frequencies. The density of the shock-reflected ion beam increases and the number of ions crossing the shock thus decreases with an increasing Mach number, causing a slower expansion of the downstream region in its rest frame. The interval occupied by this ion beam is on a positive potential relative to the far upstream. This potential pre-heats the electrons ahead of the shock even in the absence of beam instabilities and decouples the electron temperature in the foreshock ahead of the shock from the one in the far upstream plasma. The effective Mach number of the shock is reduced by this electron heating. This effect can potentially stabilize nonrelativistic electrostatic shocks moving as fast as supernova remnant shocks.

  4. Parametric study of non-relativistic electrostatic shocks and the structure of their transition layer

    International Nuclear Information System (INIS)

    Dieckmann, M. E.; Ahmed, H.; Sarri, G.; Doria, D.; Kourakis, I.; Borghesi, M.; Romagnani, L.; Pohl, M.

    2013-01-01

    Nonrelativistic electrostatic unmagnetized shocks are frequently observed in laboratory plasmas and they are likely to exist in astrophysical plasmas. Their maximum speed, expressed in units of the ion acoustic speed far upstream of the shock, depends only on the electron-to-ion temperature ratio if binary collisions are absent. The formation and evolution of such shocks is examined here for a wide range of shock speeds with particle-in-cell simulations. The initial temperatures of the electrons and the 400 times heavier ions are equal. Shocks form on electron time scales at Mach numbers between 1.7 and 2.2. Shocks with Mach numbers up to 2.5 form after tens of inverse ion plasma frequencies. The density of the shock-reflected ion beam increases and the number of ions crossing the shock thus decreases with an increasing Mach number, causing a slower expansion of the downstream region in its rest frame. The interval occupied by this ion beam is on a positive potential relative to the far upstream. This potential pre-heats the electrons ahead of the shock even in the absence of beam instabilities and decouples the electron temperature in the foreshock ahead of the shock from the one in the far upstream plasma. The effective Mach number of the shock is reduced by this electron heating. This effect can potentially stabilize nonrelativistic electrostatic shocks moving as fast as supernova remnant shocks.

  5. Superdiffusion of relativistic electrons at supernova remnant shocks

    Science.gov (United States)

    Perri, Silvia

    2018-01-01

    Anomalous transport has been observed in various systems as nonlinear systems, numerical simulations of plasma turbulence, in laboratory plasmas, and recently in the propagation of energetic particles in the interplanetary space. Thanks to in situ observations it has been possible to deduce transport properties directly from spacecraft data. This technique has further found applicability to remote observations of relativistic electrons accelerated at supernova remnants (SNRs) shocks, pointing out that far upstream of the blast waves, the x-ray synchrotron emission, as captured by the Chandra spacecraft, is consistent with models of superdiffusive transport (i.e., transport faster than normal diffusive). Here we present and summarize evidences of superdiffusion both in the interplanetary space and upstream of SNRs shock fronts, in particular by analyzing, for the first time in the framework of superdiffusion, the transport properties of electrons accelerated at the young G1.9+0.3 SNR. We also briefly describe how this new model can be used to interpret radio emissions from electrons accelerated at shocks forming during galaxy cluster mergers.

  6. Self similar flow behind an exponential shock wave in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux

    Science.gov (United States)

    Bajargaan, Ruchi; Patel, Arvind

    2018-04-01

    One-dimensional unsteady adiabatic flow behind an exponential shock wave propagating in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux, which has exponentially varying azimuthal and axial fluid velocities, is investigated. The shock wave is driven out by a piston moving with time according to an exponential law. The dusty gas is taken to be a mixture of a non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The equilibrium flow conditions are maintained and energy is varying exponentially, which is continuously supplied by the piston. The heat conduction is expressed in the terms of Fourier's law, and the radiation is assumed of diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density according to a power law. The effects of the variation of heat transfer parameters, gravitation parameter and dusty gas parameters on the shock strength, the distance between the piston and the shock front, and on the flow variables are studied out in detail. It is interesting to note that the similarity solution exists under the constant initial angular velocity, and the shock strength is independent from the self gravitation, heat conduction and radiation heat flux.

  7. Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange

    DEFF Research Database (Denmark)

    Rist, Wolfgang; Jørgensen, Thomas J D; Roepstorff, Peter

    2003-01-01

    Stress conditions such as heat shock alter the transcriptional profile in all organisms. In Escherichia coli the heat shock transcription factor, sigma 32, out-competes upon temperature up-shift the housekeeping sigma-factor, sigma 70, for binding to core RNA polymerase and initiates heat shock...... gene transcription. To investigate possible heat-induced conformational changes in sigma 32 we performed amide hydrogen (H/D) exchange experiments under optimal growth and heat shock conditions combined with mass spectrometry. We found a rapid exchange of around 220 of the 294 amide hydrogens at 37...... degrees C, indicating that sigma 32 adopts a highly flexible structure. At 42 degrees C we observed a slow correlated exchange of 30 additional amide hydrogens and localized it to a helix-loop-helix motif within domain sigma 2 that is responsible for the recognition of the -10 region in heat shock...

  8. Effects of heat transfer coefficient treatments on thermal shock fracture prediction for LWR fuel claddings in water quenching

    International Nuclear Information System (INIS)

    Lee, Youho; Lee, Jeong Ik; Cheon, Hee

    2015-01-01

    Accurate modeling of thermal shock induced stresses has become ever most important to emerging accident-tolerant ceramic cladding concepts, such as silicon carbide (SiC) and SiC coated zircaloy. Since fractures of ceramic (entirely ceramic or coated) occur by excessive tensile stresses with linear elasticity, modeling transient stress distribution in the material provides a direct indication of the structural integrity. Indeed, even for the current zircaloy cladding material, the oxide layer formed on the surface - where cracks starts to develop upon water quenching - essentially behaves as a brittle ceramic. Hence, enhanced understanding of thermal shock fracture of a brittle material would fundamentally contribute to safety of nuclear reactors for both the current fuel design and that of the coming future. Understanding thermal shock fracture of a brittle material requires heat transfer rate between the solid and the fluid for transient temperature fields of the solid, and structural response of the solid under the obtained transient temperature fields. In water quenching, a solid experiences dynamic time-varying heat transfer rates with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates during the water quenching transience has been overlooked in assessments of mechanisms, predictability, and uncertainties for thermal shock fracture. Rather, a time-constant heat transfer coefficient, named 'effective heat transfer coefficient' has become a conventional input to thermal shock fracture analysis. No single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic heat transfer coefficient changes with fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials and complete the picture of stress evolution in the quenched solid. The presented result

  9. Upstream region, foreshock and bow shock wave at Halley's Comet from plasma electron measurements

    International Nuclear Information System (INIS)

    Anderson, K.A.; Carlson, C.W.; Curtis, D.W.

    1986-01-01

    Halley plasma electron parameters from 2.7 million km from the comet nucleus to the bow shock wave at 1.1 million km and beyond are surveyed. The features of the electron foreshock lying outside the shock to a distance of 230,000 km are described. It is a region of intense solar wind-comet plasma interaction in which energetic electrons are prominent. Several spikes of electrons whose energies extend to 2.5 keV appear in front of the shock. These energetic electrons may be accelerated in the same way electrons are accelerated at the Earth's bow shock to energies of 1 to 10 keV. The direction of the electron bulk flow direction changes abruptly between 1920 and 1922 UT, and the flow speed begins a sharp decline at the same time. It is suggested that the spacecraft entered the bow shock wave between 1920 and 1922 UT. Electron density variations at Halley are very much smaller than those at Giacobini-Zinner

  10. Temporal patterns of cardiac performance and genes encoding heat shock proteins and metabolic sensors of an intertidal limpet Cellana toreuma during sublethal heat stress.

    Science.gov (United States)

    Zhang, Shu; Han, Guo-dong; Dong, Yun-wei

    2014-04-01

    Intertidal invertebrates develop effective physiological adaptations to cope with the rapidly changing thermal environment in the intertidal zone. In the present study, the temporal patterns of heart rate, protein carbonyl groups, and genes encoding heat shock proteins (hsp70 and hsp90) and metabolic sensors (ampkα, ampkβ and sirt1) were measured to study the effect of sublethal heat stress on the cardiac function, oxidative stress, heat shock response and cellular metabolism of an intertidal limpet Cellana toreuma. All the physiological parameters are sensitive to temperature and duration of heat stress. Spearman correlation analysis revealed that the correlations between heart rate and levels of heat shock proteins mRNA and metabolic sensors mRNA were statistically significant. These results further suggest that cardiac function plays crucial roles in cellular energy metabolism and heat shock responses. The significant increase of protein carbonyl groups at 34°C after 4h exposure indicated that the failure of cardiac function and the increase of anaerobic metabolism partly leads to the increase of protein carbonyl groups. Generally, the physiological responses to heat stress are sensitive to temperature and are energy-consumptive, as indicated by the upregulation of metabolic sensors mRNA. However, the upregulation of heat shock proteins and metabolic sensors at the post-transcriptional level and related functions need to be confirmed in further experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations

    International Nuclear Information System (INIS)

    Hao, Y. X.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S. Y.; Rankin, R.

    2016-01-01

    On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at ~1 MeV and more than 80% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or “dropout echoes”, constitute a new phenomenon referred to as a “drifting electron dropout” with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from ~1300 to 0100 LT. We then conclude that the shock-induced electron dropout is not caused by the magnetopause shadowing. Furthermore, the dropout and consequent echoes suggest that the radial migration of relativistic electrons is induced by the strong dusk-dawn asymmetric interplanetary shock compression on the magnetosphere.

  12. Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae, and the correlation with stationary growth phase

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1982-01-01

    Radiation resistance and thermal resistance vary as a function of culture temperature in logarithmically growing Saccharomyces cerevisiae and are related to the optimum temperature for growth. Radiation resistance and thermal resistance were also induced when cells grown at low temperatures were subjected to a heat shock at or above the optimum growth temperature. Exposure to ionizing radiation followed by a short incubation at low temperature also induced resistance to killing by heat. Heat-shocked cells are induced to a level of thermal and radioresistance much greater than the characteristic resistance level of cells grown continuously at the shock temperature. This high level of resistance, which resembles that of stationary-phase cells, decays to the characteristic log-phase level within one doubling of cell number after the heat shock. Both induction of resistance and decay of that induction require protein synthesis. It is postulated that induction of resistance by heat shock or ionizing radiation is a response of the cells to stress and represents a preparation to enter stationary phase

  13. The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae.

    Science.gov (United States)

    Kagawa, H K; Osipiuk, J; Maltsev, N; Overbeek, R; Quaite-Randall, E; Joachimiak, A; Trent, J D

    1995-11-10

    One of the most abundant proteins in the hyperthermophilic archaeon Sulfolobus shibatae is the 59 kDa heat shock protein (TF55) that is believed to form a homo-oligomeric double ring complex structurally similar to the bacterial chaperonins. We discovered a second protein subunit in the S. shibatae ring complex (referred to as alpha) that is stoichiometric with TF55 (renamed beta). The gene and flanking regions of alpha were cloned and sequenced and its inferred amino acid sequence has 54.4% identity and 74.4% similarity to beta. Transcription start sites for both alpha and beta were mapped and three potential transcription regulatory regions were identified. Northern analyses of cultures shifted from normal growth temperatures (70 to 75 degrees C) to heat shock temperatures (85 to 90 degrees C) indicated that the levels of alpha and beta mRNAs increased during heat shock, but at all temperatures their relative proportions remained constant. Monitoring protein synthesis by autoradiography of total proteins from cultures pulse labeled with L(-)[35S]methionine at normal and heat shock temperatures indicated significant increases in alpha and beta synthesis during heat shock. Under extreme heat shock conditions (> or = 90 degrees C) alpha and beta appeared to be the only two proteins synthesized. The purified alpha and beta subunits combined to form high molecular mass complexes with similar mobilities on native polyacrylamide gels to the complexes isolated directly from cells. Equal proportions of the two subunits gave the greatest yield of the complex, which we refer to as a "rosettasome". It is argued that the rosettasome consists of two homo-oligomeric rings; one of alpha and the other of beta. Polyclonal antibodies against alpha and beta from S. shibatae cross-reacted with proteins of similar molecular mass in 10 out of the 17 archaeal species tested, suggesting that the two rosettasome proteins are highly conserved among the archaea. The archaeal sequences were

  14. Colliding winds: Interaction regions with strong heat conduction

    International Nuclear Information System (INIS)

    Imamura, J.N.; Chevalier, R.A.

    1984-01-01

    The interaction of fast stellar wind with a slower wind from previous mass loss gives rise to a region of hot, shocked gas. We obtain self-similar solutions for the interaction region under the assumptions of constant mass loss rate and wind velocity for the two winds, conversion of energy in the shock region, and either isothermal electrons and adiabatic ions or isothermal electrons ad ions in the shocked region. The isothermal assumption is intended to show the effects of strog heat conduction. The solutions have no heat conduction through the shock waves and assume that the electron and ion temperatures are equilibriated in the shock waves. The one-temperature isothermal solutions have nearly constant density through the shocked region, while the two-temperature solutions are intermediate between the one-temperature adiabatic and isothermal solutions. In the two-temperature solutions, the ion temperature goes to zero at the point where the gas comoves with the shocked region and the density peaks at this point. The solution may qualitatively describe the effects of heat conduction on interaction regions in the solar wind. It will be important to determine whether the assumption of no thermal waves outside the shocked region applies to shock waves in the solar wind

  15. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This

  16. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows.

    Science.gov (United States)

    Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi

    2015-06-01

    Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (Pdairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat stress in dairy cows in the future.

  17. Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock.

    Directory of Open Access Journals (Sweden)

    Lingling Zhang

    Full Text Available Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes.

  18. THE EFFECT OF LARGE-SCALE MAGNETIC TURBULENCE ON THE ACCELERATION OF ELECTRONS BY PERPENDICULAR COLLISIONLESS SHOCKS

    International Nuclear Information System (INIS)

    Guo Fan; Giacalone, Joe

    2010-01-01

    We study the physics of electron acceleration at collisionless shocks that move through a plasma containing large-scale magnetic fluctuations. We numerically integrate the trajectories of a large number of electrons, which are treated as test particles moving in the time-dependent electric and magnetic fields determined from two-dimensional hybrid simulations (kinetic ions and fluid electron). The large-scale magnetic fluctuations effect the electrons in a number of ways and lead to efficient and rapid energization at the shock front. Since the electrons mainly follow along magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons to cross the shock front several times, leading to efficient acceleration. Ripples in the shock front occurring at various scales will also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. The current study is also helpful in understanding the injection problem for electron acceleration by collisionless shocks. It is also shown that the spatial distribution of energetic electrons is similar to in situ observations. The process may be important to our understanding of energetic electrons in planetary bow shocks and interplanetary shocks, and explaining herringbone structures seen in some type II solar radio bursts.

  19. Effects of heat transfer coefficient treatments on thermal shock fracture prediction for LWR fuel claddings in water quenching

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho; Lee, Jeong Ik; Cheon, Hee [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Accurate modeling of thermal shock induced stresses has become ever most important to emerging accident-tolerant ceramic cladding concepts, such as silicon carbide (SiC) and SiC coated zircaloy. Since fractures of ceramic (entirely ceramic or coated) occur by excessive tensile stresses with linear elasticity, modeling transient stress distribution in the material provides a direct indication of the structural integrity. Indeed, even for the current zircaloy cladding material, the oxide layer formed on the surface - where cracks starts to develop upon water quenching - essentially behaves as a brittle ceramic. Hence, enhanced understanding of thermal shock fracture of a brittle material would fundamentally contribute to safety of nuclear reactors for both the current fuel design and that of the coming future. Understanding thermal shock fracture of a brittle material requires heat transfer rate between the solid and the fluid for transient temperature fields of the solid, and structural response of the solid under the obtained transient temperature fields. In water quenching, a solid experiences dynamic time-varying heat transfer rates with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates during the water quenching transience has been overlooked in assessments of mechanisms, predictability, and uncertainties for thermal shock fracture. Rather, a time-constant heat transfer coefficient, named 'effective heat transfer coefficient' has become a conventional input to thermal shock fracture analysis. No single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic heat transfer coefficient changes with fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials and complete the picture of stress evolution in the quenched solid. The presented result

  20. Glutamine's protection against cellular injury is dependent on heat shock factor-1.

    Science.gov (United States)

    Morrison, Angela L; Dinges, Martin; Singleton, Kristen D; Odoms, Kelli; Wong, Hector R; Wischmeyer, Paul E

    2006-06-01

    Glutamine (GLN) has been shown to protect cells, tissues, and whole organisms from stress and injury. Enhanced expression of heat shock protein (HSP) has been hypothesized to be responsible for this protection. To date, there are no clear mechanistic data confirming this relationship. This study tested the hypothesis that GLN-mediated activation of the HSP pathway via heat shock factor-1 (HSF-1) is responsible for cellular protection. Wild-type HSF-1 (HSF-1(+/+)) and knockout (HSF-1(-/-)) mouse fibroblasts were used in all experiments. Cells were treated with GLN concentrations ranging from 0 to 16 mM and exposed to heat stress injury in a concurrent treatment model. Cell viability was assayed with phenazine methosulfate plus tetrazolium salt, HSP-70, HSP-25, and nuclear HSF-1 expression via Western blot analysis, and HSF-1/heat shock element (HSE) binding via EMSA. GLN significantly attenuated heat-stress induced cell death in HSF-1(+/+) cells in a dose-dependent manner; however, the survival benefit of GLN was lost in HSF-1(-/-) cells. GLN led to a dose-dependent increase in HSP-70 and HSP-25 expression after heat stress. No inducible HSP expression was observed in HSF-1(-/-) cells. GLN increased unphosphorylated HSF-1 in the nucleus before heat stress. This was accompanied by a GLN-mediated increase in HSF-1/HSE binding and nuclear content of phosphorylated HSF-1 after heat stress. This is the first demonstration that GLN-mediated cellular protection after heat-stress injury is related to HSF-1 expression and cellular capacity to activate an HSP response. Furthermore, the mechanism of GLN-mediated protection against injury appears to involve an increase in nuclear HSF-1 content before stress and increased HSF-1 promoter binding and phosphorylation.

  1. Modification of embryonic resistance to heat shock in cattle by melatonin and genetic variation in HSPA1L.

    Science.gov (United States)

    Ortega, M Sofia; Rocha-Frigoni, Nathália A S; Mingoti, Gisele Zoccal; Roth, Zvi; Hansen, Peter J

    2016-11-01

    The objectives were to test whether (1) melatonin blocks inhibition of embryonic development caused by heat shock at the zygote stage, and (2) the frequency of a thermoprotective allele for HSPA1L is increased in blastocysts formed from heat-shocked zygotes as compared with blastocysts from control zygotes. It was hypothesized that melatonin prevents effects of heat shock on development by reducing accumulation of reactive oxygen species (ROS) and that embryos inheriting the thermoprotective allele of HSPA1L would be more likely to survive heat shock. Effects of 1 µM melatonin on ROS were determined in experiments 1 and 2. Zygotes were cultured at 38.5 or 40°C for 3 h in the presence of CellROX reagent (ThermoFisher Scientific, Waltham, MA). Culture was in a low [5% (vol/vol)] oxygen (experiment 1) or low or high [21% (vol/vol)] oxygen environment (experiment 2). Heat shock and high oxygen increased ROS; melatonin decreased ROS. Development was assessed in experiments 3 and 4. In experiment 3, zygotes were cultured in low oxygen ± 1 µM melatonin and exposed to 38.5 or 40°C for 12 h (experiment 1) beginning 8 h after fertilization. Melatonin did not protect the embryo from heat shock. Experiment 4 was performed similarly except that temperature treatments (38.5 or 40°C, 24 h) were performed in a low or high oxygen environment (2×2 × 2 factorial design with temperature, melatonin, and oxygen concentration as main effects), and blastocysts were genotyped for a deletion (D) mutation (C→D) in the promoter region of HSPA1L associated with thermotolerance. Heat shock decreased percent of zygotes developing to the blastocyst stage independent of melatonin or oxygen concentration. Frequency of genotypes for HSPA1L was affected by oxygen concentration and temperature, with an increase in the D allele for blastocysts that developed in high oxygen and following heat shock. It was concluded that (1) lack of effect of melatonin or oxygen concentration on embryonic

  2. Asymmetric shock heating and the terrestrial magma ocean origin of the Moon.

    Science.gov (United States)

    Karato, Shun-ichiro

    2014-01-01

    One of the difficulties of the current giant impact model for the origin of the Moon is to explain the marked similarity in the isotopic compositions and the substantial differences in the major element chemistry. Physics of shock heating is analyzed to show that the degree of heating is asymmetric between the impactor and the target, if the target (the proto-Earth) had a magma-ocean but the impactor did not. The magma ocean is heated much more than the solid impactor and the vapor-rich jets come mainly from the magma-ocean from which the Moon might have been formed. In this scenario, the similarity and differences in the composition between the Moon and Earth would be explained as a natural consequence of a collision in the later stage of planetary formation. Including the asymmetry in shock heating is the first step toward explaining the chemical composition of the Moon.

  3. Thermal electron heating rate: a derivation

    International Nuclear Information System (INIS)

    Hoegy, W.R.

    1983-11-01

    The thermal electron heating rate is an important heat source term in the ionospheric electron energy balance equation, representing heating by photoelectrons or by precipitating higher energy electrons. A formula for the thermal electron heating rate is derived from the kinetic equation using the electron-electron collision operator as given by the unified theory of Kihara and Aono. This collision operator includes collective interactions to produce a finite collision operator with an exact Coulomb logarithm term. The derived heating rate O(e) is the sum of three terms, O(e) O(p) + S + O(int), which are respectively: (1) primary electron production term giving the heating from newly created electrons that have not yet suffered collisions with the ambient electrons, (2) a heating term evaluated on the energy surface m(e)/2 E(T) at the transition between Maxwellian and tail electrons at E(T), and (3) the integral term representing heating of Maxwellian electrons by energetic tail electrons at energies ET. Published ionospheric electron temperature studies used only the integral term O(int) with differing lower integration limits. Use of the incomplete heating rate could lead to erroneous conclusions regarding electron heat balance, since O(e) is greater than O(int) by as much as a factor of two

  4. Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress

    International Nuclear Information System (INIS)

    Bryantsev, A.L.; Chechenova, M.B.; Shelden, E.A.

    2007-01-01

    During stress, the mammalian small heat shock protein Hsp27 enters cell nuclei. The present study examines the requirements for entry of Hsp27 into nuclei of normal rat kidney (NRK) renal epithelial cells, and for its interactions with specific nuclear structures. We find that phosphorylation of Hsp27 is necessary for the efficient entry into nuclei during heat shock but not sufficient for efficient nuclear entry under control conditions. We further report that Hsp27 is recruited to an RNAse sensitive fraction of SC35 positive nuclear speckles, but not other intranuclear structures, in response to heat shock. Intriguingly, Hsp27 phosphorylation, in the absence of stress, is sufficient for recruitment to speckles found in post-anaphase stage mitotic cells. Additionally, pseudophosphorylated Hsp27 fused to a nuclear localization peptide (NLS) is recruited to nuclear speckles in unstressed interphase cells, but wildtype and nonphosphorylatable Hsp27 NLS fusion proteins are not. The expression of NLS-Hsp27 mutants does not enhance colony forming abilities of cells subjected to severe heat shock, but does regulate nuclear speckle morphology. These data demonstrate that phosphorylation, but not stress, mediates Hsp27 recruitment to an RNAse soluble fraction of nuclear speckles and support a site-specific role for Hsp27 within the nucleus

  5. Errors in macromolecular synthesis after stress. A study of the possible protective role of the small heat shock proteinsBiochemistry

    NARCIS (Netherlands)

    Marin Vinader, L.

    2006-01-01

    The general goal of this thesis was to gain insight in what small heat shock proteins (sHsps) do with respect to macromolecular synthesis during a stressful situation in the cell. It is known that after a non-lethal heat shock, cells are better protected against a subsequent more severe heat shock,

  6. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound

    Science.gov (United States)

    Canney, Michael S.; Khokhlova, Vera A.; Bessonova, Olga V.; Bailey, Michael R.; Crum, Lawrence A.

    2009-01-01

    Nonlinear propagation causes high intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have previously been investigated and found not to significantly alter high intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm2 was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector, and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared to calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and from measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating due to shock waves is therefore important to HIFU and clinicians should be aware of the potential for very rapid boiling since it alters treatments. PMID:20018433

  7. Module-based analysis of robustness tradeoffs in the heat shock response system.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kurata

    2006-07-01

    Full Text Available Biological systems have evolved complex regulatory mechanisms, even in situations where much simpler designs seem to be sufficient for generating nominal functionality. Using module-based analysis coupled with rigorous mathematical comparisons, we propose that in analogy to control engineering architectures, the complexity of cellular systems and the presence of hierarchical modular structures can be attributed to the necessity of achieving robustness. We employ the Escherichia coli heat shock response system, a strongly conserved cellular mechanism, as an example to explore the design principles of such modular architectures. In the heat shock response system, the sigma-factor sigma32 is a central regulator that integrates multiple feedforward and feedback modules. Each of these modules provides a different type of robustness with its inherent tradeoffs in terms of transient response and efficiency. We demonstrate how the overall architecture of the system balances such tradeoffs. An extensive mathematical exploration nevertheless points to the existence of an array of alternative strategies for the existing heat shock response that could exhibit similar behavior. We therefore deduce that the evolutionary constraints facing the system might have steered its architecture toward one of many robustly functional solutions.

  8. Small heat shock proteins can release light dependence of tobacco seed during germination.

    Science.gov (United States)

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia; Hong, Choo Bong

    2015-03-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. Widespread Inhibition of Posttranscriptional Splicing Shapes the Cellular Transcriptome following Heat Shock

    Directory of Open Access Journals (Sweden)

    Reut Shalgi

    2014-06-01

    Full Text Available During heat shock and other proteotoxic stresses, cells regulate multiple steps in gene expression in order to globally repress protein synthesis and selectively upregulate stress response proteins. Splicing of several mRNAs is known to be inhibited during heat stress, often meditated by SRp38, but the extent and specificity of this effect have remained unclear. Here, we examined splicing regulation genome-wide during heat shock in mouse fibroblasts. We observed widespread retention of introns in transcripts from ∼1,700 genes, which were enriched for tRNA synthetase, nuclear pore, and spliceosome functions. Transcripts with retained introns were largely nuclear and untranslated. However, a group of 580+ genes biased for oxidation reduction and protein folding functions continued to be efficiently spliced. Interestingly, these unaffected transcripts are mostly cotranscriptionally spliced under both normal and stress conditions, whereas splicing-inhibited transcripts are mostly spliced posttranscriptionally. Altogether, our data demonstrate widespread repression of splicing in the mammalian heat stress response, disproportionately affecting posttranscriptionally spliced genes.

  10. Expressed sequence tags from heat-shocked seagrass Zostera noltii (Hornemann) from its southern distribution range.

    Science.gov (United States)

    Massa, Sónia I; Pearson, Gareth A; Aires, Tânia; Kube, Michael; Olsen, Jeanine L; Reinhardt, Richard; Serrão, Ester A; Arnaud-Haond, Sophie

    2011-09-01

    Predicted global climate change threatens the distributional ranges of species worldwide. We identified genes expressed in the intertidal seagrass Zostera noltii during recovery from a simulated low tide heat-shock exposure. Five Expressed Sequence Tag (EST) libraries were compared, corresponding to four recovery times following sub-lethal temperature stress, and a non-stressed control. We sequenced and analyzed 7009 sequence reads from 30min, 2h, 4h and 24h after the beginning of the heat-shock (AHS), and 1585 from the control library, for a total of 8594 sequence reads. Among 51 Tentative UniGenes (TUGs) exhibiting significantly different expression between libraries, 19 (37.3%) were identified as 'molecular chaperones' and were over-expressed following heat-shock, while 12 (23.5%) were 'photosynthesis TUGs' generally under-expressed in heat-shocked plants. A time course analysis of expression showed a rapid increase in expression of the molecular chaperone class, most of which were heat-shock proteins; which increased from 2 sequence reads in the control library to almost 230 in the 30min AHS library, followed by a slow decrease during further recovery. In contrast, 'photosynthesis TUGs' were under-expressed 30min AHS compared with the control library, and declined progressively with recovery time in the stress libraries, with a total of 29 sequence reads 24h AHS, compared with 125 in the control. A total of 4734 TUGs were screened for EST-Single Sequence Repeats (EST-SSRs) and 86 microsatellites were identified. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Very high Mach number shocks - Theory. [in space plasmas

    Science.gov (United States)

    Quest, Kevin B.

    1986-01-01

    The theory and simulation of collisionless perpendicular supercritical shock structure is reviewed, with major emphasis on recent research results. The primary tool of investigation is the hybrid simulation method, in which the Newtonian orbits of a large number of ion macroparticles are followed numerically, and in which the electrons are treated as a charge neutralizing fluid. The principal results include the following: (1) electron resistivity is not required to explain the observed quasi-stationarity of the earth's bow shock, (2) the structure of the perpendicular shock at very high Mach numbers depends sensitively on the upstream value of beta (the ratio of the thermal to magnetic pressure) and electron resistivity, (3) two-dimensional turbulence will become increasingly important as the Mach number is increased, and (4) nonadiabatic bulk electron heating will result when a thermal electron cannot complete a gyrorbit while transiting the shock.

  12. dFOXO Activates Large and Small Heat Shock Protein Genes in Response to Oxidative Stress to Maintain Proteostasis in Drosophila.

    Science.gov (United States)

    Donovan, Marissa R; Marr, Michael T

    2016-09-02

    Maintaining protein homeostasis is critical for survival at the cellular and organismal level (Morimoto, R. I. (2011) Cold Spring Harb. Symp. Quant. Biol. 76, 91-99). Cells express a family of molecular chaperones, the heat shock proteins, during times of oxidative stress to protect against proteotoxicity. We have identified a second stress responsive transcription factor, dFOXO, that works alongside the heat shock transcription factor to activate transcription of both the small heat shock protein and the large heat shock protein genes. This expression likely protects cells from protein misfolding associated with oxidative stress. Here we identify the regions of the Hsp70 promoter essential for FOXO-dependent transcription using in vitro methods and find a physiological role for FOXO-dependent expression of heat shock proteins in vivo. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows*

    Science.gov (United States)

    Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi

    2015-01-01

    Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (Pheat-stressed dairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat stress in dairy cows in the future. PMID:26055916

  14. Stress proteins in lymphocytes: Membrane stabilization does not affect the heat shock response

    International Nuclear Information System (INIS)

    Hughes, C.S.; Repasky, E.A.; Subjeck, J.R.

    1987-01-01

    Temperatures which have been used to induce heat shock proteins (hsps) have been at the upper physiologic limit or well above this limit. In addition, little attention has been given to the effects of physiologic heat exposures on hsp induction in lymphocytes. The author examined temperatures between 39 0 C and 41 0 C on protein synthesis in the following lymphoid cell lines and cells: BDK, EL-4, JM, DO.11, and in dispersed lymph nodes and thymic tissues. In these studies, 39.5 0 appears to be the threshold for hsp induction (as distinguished by gel electrophoresis). At this temperature the induction of the major hsps at 70 and 89 kDa are observed. Hsp 89 appears to be the most strongly induced in all cells examined. In JM cells, a human cell line, heat shock also induces hsp 68, the non-constitutive hsp at this size. These temperatures do not depress normal levels of protein synthesis. When stearic acid or cholesterol was added to lymphocyte cultures prior to heating (which stabilize membranes), hsp induction appears to occur in a manner indistinguishable from cells heated in normal media. This suggests that membrane fluidity (as influenced by these agents) does not affect or depress the heat shock response in these cells. Finally, the authors observed that 2-deoxyglucose and other inducers of glucose regulated proteins in fibroblasts also induce the major glucose regulated proteins in lymphocytes

  15. Heat shock protein (Hsp) 40 mutants inhibit Hsp70 in mammalian cells

    NARCIS (Netherlands)

    Michels, AA; Kanon, B; Bensaude, O; Kampinga, HH

    1999-01-01

    Heat shock protein (Hsp) 70 and Hsp40 expressed in mammalian cells had been previously shown to cooperate in accelerating the reactivation of heat-denatured firefly luciferase (Michels, A. A., Kanon, B., Konings, A. W. T., Ohtsuka, K,, Bensaude, O., and Kampinga, H. H. (1997) J. Biol. Chem. 272,

  16. Ploidy Manipulation of Zebrafish Embryos with Heat Shock 2 Treatment

    OpenAIRE

    Baars, Destiny L.; Takle, Kendra A.; Heier, Jonathon; Pelegri, Francisco

    2016-01-01

    Manipulation of ploidy allows for useful transformations, such as diploids to tetraploids, or haploids to diploids. In the zebrafish Danio rerio, specifically the generation of homozygous gynogenetic diploids is useful in genetic analysis because it allows the direct production of homozygotes from a single heterozygous mother. This article describes a modified protocol for ploidy duplication based on a heat pulse during the first cell cycle, Heat Shock 2 (HS2). Through inhibition of centriole...

  17. Heat-shock responses in two leguminous plants: a comparative study.

    Science.gov (United States)

    Ortiz, C; Cardemil, L

    2001-08-01

    Relative growth rates, basal and acclimated thermotolerance, membrane damage, fluorescence emission, and relative levels of free and conjugated ubiquitin and HSP70 were compared after 2 h of treatment at different temperatures between Prosopis chilensis and Glycine max (soybean), cv. McCall, to evaluate if the thermotolerance of these two plants was related to levels of accumulation of heat shock proteins. Seedlings of P. chilensis germinated at 25 degrees C and at 35 degrees C and grown at temperatures above germination temperature showed higher relative growth than soybean seedlings treated under the same conditions. The lethal temperature of both species was 50 degrees C after germination at 25 degrees C. However, they were able to grow at 50 degrees C after germination at 35 degrees C. Membrane damage determinations in leaves showed that P. chilensis has an LT(50) 6 degrees C higher than that of soybean. There were no differences in the quantum yield of photosynthesis (F(v)/F(m)), between both plants when the temperatures were raised. P. chilensis showed higher relative levels of free ubiquitin, conjugated ubiquitin and HSP70 than soybean seedlings when the temperatures were raised. Time-course studies of accumulation of these proteins performed at 40 degrees C showed that the relative accumulation rates of ubiquitin, conjugated ubiquitin and HSP70 were higher in P. chilensis than in soybean. In both plants, free ubiquitin decreased during the first 5 min and increased after 30 min of heat shock, conjugated ubiquitin increased after 30 min and HSP70 began to increase dramatically after 20 min of heat shock. From these data it is concluded that P. chilensis is more tolerant to acute heat stress than soybean.

  18. The acceleration of electrons at a spherical coronal shock in a streamer-like coronal field

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiangliang, E-mail: kongx@sdu.edu.cn; Chen, Yao, E-mail: yaochen@sdu.edu.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Guo, Fan, E-mail: guofan.ustc@gmail.com [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-03-25

    We study the effect of large-scale coronal magnetic field on the electron acceleration at a spherical coronal shock using a test-particle method. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. It shows that the closed field plays the role of a trapping agency of shock-accelerated electrons, allowing for repetitive reflection and acceleration, therefore can greatly enhance the shock-electron acceleration efficiency. It is found that, with an ad hoc pitch-angle scattering, electron injected in the open field at the shock flank can be accelerated to high energies as well. In addition, if the shock is faster or stronger, a relatively harder electron energy spectrum and a larger maximum energy can be achieved.

  19. Heat shock protein 72: release and biological significance during exercise.

    Science.gov (United States)

    Whitham, Martin; Fortes, Matthew Benjamin

    2008-01-01

    The cumulative stressors of exercise manifest themselves at a cellular level by threatening the protein homeostasis of the cell. In these conditions, Heat Shock Proteins (HSP) are synthesised to chaperone mis-folded and denatured proteins. As such, the intracellular HSP response is thought to aid cell survival in the face of otherwise lethal cellular stress. Recently, the inducible isoform of the 70 Kda heat shock protein family, Hsp72 has been detected in the extracellular environment. Furthermore, the release of this protein into the circulation has been shown to occur in response to a range of exercise bouts. The present review summarises the current research on the exercise Hsp72 response, the possible mediators and mechanisms of extracellular (e)Hsp72 release, and the possible biological significance of this systemic response. In particular, the possible role of eHsp72 in the modulation of immunity during exercise is discussed.

  20. How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra.

    Science.gov (United States)

    Kask, Kaia; Kännaste, Astrid; Talts, Eero; Copolovici, Lucian; Niinemets, Ülo

    2016-09-01

    Brassicales release volatile glucosinolate breakdown products upon tissue mechanical damage, but it is unclear how the release of glucosinolate volatiles responds to abiotic stresses such as heat stress. We used three different heat treatments, simulating different dynamic temperature conditions in the field to gain insight into stress-dependent changes in volatile blends and photosynthetic characteristics in the annual herb Brassica nigra (L.) Koch. Heat stress was applied by either heating leaves through temperature response curve measurements from 20 to 40 °C (mild stress), exposing plants for 4 h to temperatures 25-44 °C (long-term stress) or shock-heating leaves to 45-50 °C. Photosynthetic reduction through temperature response curves was associated with decreased stomatal conductance, while the reduction due to long-term stress and collapse of photosynthetic activity after heat shock stress were associated with non-stomatal processes. Mild stress decreased constitutive monoterpene emissions, while long-term stress and shock stress resulted in emissions of the lipoxygenase pathway and glucosinolate volatiles. Glucosinolate volatile release was more strongly elicited by long-term stress and lipoxygenase product released by heat shock. These results demonstrate that glucosinolate volatiles constitute a major part of emission blend in heat-stressed B. nigra plants, especially upon chronic stress that leads to induction responses. © 2016 John Wiley & Sons Ltd.

  1. Extracellular small heat shock proteins: exosomal biogenesis and function.

    Science.gov (United States)

    Reddy, V Sudhakar; Madala, Satish K; Trinath, Jamma; Reddy, G Bhanuprakash

    2018-05-01

    Small heat shock proteins (sHsps) belong to the family of heat shock proteins (Hsps): some are induced in response to multiple stressful events to protect the cells while others are constitutively expressed. Until now, it was believed that Hsps, including sHsps, are present inside the cells and perform intracellular functions. Interestingly, several groups recently reported the extracellular presence of Hsps, and sHsps have also been detected in sera/cerebrospinal fluids in various pathological conditions. Secretion into the extracellular milieu during many pathological conditions suggests additional or novel functions of sHsps in addition to their intracellular properties. Extracellular sHsps are implicated in cell-cell communication, activation of immune cells, and promoting anti-inflammatory and anti-platelet responses. Interestingly, exogenous administration of sHsps showed therapeutic effects in multiple disease models implying that extracellular sHsps are beneficial in pathological conditions. sHsps do not possess signal sequence and, hence, are not exported through the classical Endoplasmic reticulum-Golgi complex (ER-Golgi) secretory pathway. Further, export of sHsps is not inhibited by ER-Golgi secretory pathway inhibitors implying the involvement of a nonclassical secretory pathway in sHsp export. In lieu, lysoendosomal and exosomal pathways have been proposed for the export of sHsps. Heat shock protein 27 (Hsp27), αB-crystallin (αBC), and Hsp20 are shown to be exported by exosomes. Exosomes packaged with sHsps have beneficial effects in in vivo disease models. However, secretion mechanisms and therapeutic use of sHsps have not been elucidated in detail. Therefore, this review aimed at highlighting the current understanding of sHsps (Hsp27, αBC, and Hsp20) in the extracellular medium.

  2. Numerical simulation of shock absorbers heat load for semi-active vehicle suspension system

    Directory of Open Access Journals (Sweden)

    Demić Miroslav D.

    2016-01-01

    Full Text Available Dynamic simulation, based on modelling, has a significant role during to the process of vehicle development. It is especially important in the first design stages, when relevant parameters are to be defined. Shock absorber, as an executive part of a semi-active suspension system, is exposed to thermal loads which can lead to its damage and degradation of characteristics. Therefore, this paper attempts to analyze a conversion of mechanical work into heat energy by use of a method of dynamic simulation. The issue of heat dissipation from the shock absorber has not been taken into consideration.

  3. Prostaglandins with antiproliferative activity induce the synthesis of a heat shock protein in human cells

    International Nuclear Information System (INIS)

    Santoro, M.G.; Garaci, E.; Amici, C.

    1989-01-01

    Prostaglandins (PGs)A 1 and J 2 were found to potently suppress the proliferation of human K562 erythroleukemia cells and to induce the synthesis of a 74-kDa protein (p74) that was identified as a heat shock protein related to the major 70-kDa heat shock protein group. p74 synthesis was stimulated at doses of PGA 1 and PGJ 2 that inhibited cell replication, and its accumulation ceased upon removal of the PG-induced proliferation block. PGs that did not affect K562 cell replication did not induce p74 synthesis. p74 was found to be localized mainly in the cytoplasm of PG-treated cells, but moderate amounts were found also in dense areas of the nucleus after PGJ 2 treatment. p74 was not necessarily associated with cytotoxicity or with inhibition of cell protein synthesis. The results described support the hypothesis that synthesis of the 70-kDa heat shock proteins is associated with changes in cell proliferation. The observation that PGs can induce the synthesis of heat shock proteins expands our understanding of the mechanism of action of these compounds whose regulatory role is well known in many physiological phenomena, including the control of fever production

  4. Inducing Heat Shock Proteins Enhances the Stemness of Frozen-Thawed Adipose Tissue-Derived Stem Cells.

    Science.gov (United States)

    Shaik, Shahensha; Hayes, Daniel; Gimble, Jeffrey; Devireddy, Ram

    2017-04-15

    Extensive research has been performed to determine the effect of freezing protocol and cryopreservation agents on the viability of adipose tissue-derived stromal/stem cells (ASCs) as well as other cells. Unfortunately, the conclusion one may draw after decades of research utilizing fundamentally similar cryopreservation techniques is that a barrier exists, which precludes full recovery. We hypothesize that agents capable of inducing a subset of heat shock proteins (HSPs) and chaperones will reduce the intrinsic barriers to the post-thaw recovery of ASCs. ASCs were exposed to 43°C for 1 h to upregulate HSPs, and the temporal HSP expression profile postheat shock was determined by performing quantitative polymerase chain reaction (PCR) and western blotting assays. The expression levels of HSP70 and HSP32 were found to be maximum at 3 h after the heat shock, whereas HSP90 and HSP27 remain unchanged. The heat shocked ASCs cryopreserved during maximal HSPs expression exhibited increased post-thaw viability than the nonheat shocked samples. Histochemical staining and quantitative reverse transcription-PCR indicated that the ASC differentiation potential was retained. Thus, suggesting that the upregulation of HSPs before a freezing insult is beneficial to ASCs and a potential alternative to the use of harmful cryoprotective agents.

  5. Molecular cloning, phylogenetic analysis and heat shock response of Babesia gibsoni heat shock protein 90.

    Science.gov (United States)

    Yamasaki, Masahiro; Tsuboi, Yoshihiro; Taniyama, Yusuke; Uchida, Naohiro; Sato, Reeko; Nakamura, Kensuke; Ohta, Hiroshi; Takiguchi, Mitsuyoshi

    2016-09-01

    The Babesia gibsoni heat shock protein 90 (BgHSP90) gene was cloned and sequenced. The length of the gene was 2,610 bp with two introns. This gene was amplified from cDNA corresponding to full length coding sequence (CDS) with an open reading frame of 2,148 bp. A phylogenetic analysis of the CDS of HSP90 gene showed that B. gibsoni was most closely related to B. bovis and Babesia sp. BQ1/Lintan and lies within a phylogenetic cluster of protozoa. Moreover, mRNA transcription profile for BgHSP90 exposed to high temperature were examined by quantitative real-time reverse transcription-polymerase chain reaction. BgHSP90 levels were elevated when the parasites were incubated at 43°C for 1 hr.

  6. An Introduction to the Physics of Collisionless Shocks

    International Nuclear Information System (INIS)

    Russell, C.T.

    2005-01-01

    Collisionless shocks are important in astrophysical, heliospheric and magnetospheric settings. They deflect flows around obstacles; they heat the plasma, and they alter the properties of the flow as it intersects those obstacles. The physical processes occurring at collisionless shocks depend on the Mach number (strength) and beta (magnetic to thermal pressure) of the shocks and the direction of the magnetic field relative to the shock normal. Herein we review how the shock has been modeled in numerical simulations, the basic physical processes at work, including dissipation and thermalization, the electric potential drop at the shock, and the formation of the electron and ion foreshocks

  7. Ignition and burn propagation with suprathermal electron auxiliary heating

    International Nuclear Information System (INIS)

    Han Shensheng; Wu Yanqing

    2000-01-01

    The rapid development in ultrahigh-intensity lasers has allowed the exploration of applying an auxiliary heating technique in inertial confinement fusion (ICF) research. It is hoped that, compared with the 'standard fast ignition' scheme, raising the temperature of a hot-spot over the ignition threshold based on the shock-heated temperature will greatly reduce the required output energy of an ignition ultrahigh-intensity pulse. One of the key issues in ICF auxiliary heating is: how can we transport the exogenous energy efficiently into the hot-spot of compressed DT fuel? A scheme is proposed with three phases. First, a partial-spherical-shell capsule, such as double-conical target, is imploded as in the conventional approach to inertial fusion to assemble a high-density fuel configuration with a hot-spot of temperature lower than the ignition threshold. Second, a hole is bored through the shell outside the hot-spot by suprathermal electron explosion boring. Finally, the fuel is ignited by suprathermal electrons produced in the high-intensity ignition laser-plasma interactions. Calculations with a simple hybrid model show that the new scheme can possibly lead to ignition and burn propagation with a total drive energy of a few tens of kilojoules and an output energy as low as hundreds of joules for a single ignition ultrahigh-intensity pulse. (author)

  8. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    Science.gov (United States)

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  9. Effect of Temperature Shock and Inventory Surprises on Natural Gas and Heating Oil Futures Returns

    Science.gov (United States)

    Hu, John Wei-Shan; Lin, Chien-Yu

    2014-01-01

    The aim of this paper is to examine the impact of temperature shock on both near-month and far-month natural gas and heating oil futures returns by extending the weather and storage models of the previous study. Several notable findings from the empirical studies are presented. First, the expected temperature shock significantly and positively affects both the near-month and far-month natural gas and heating oil futures returns. Next, significant temperature shock has effect on both the conditional mean and volatility of natural gas and heating oil prices. The results indicate that expected inventory surprises significantly and negatively affects the far-month natural gas futures returns. Moreover, volatility of natural gas futures returns is higher on Thursdays and that of near-month heating oil futures returns is higher on Wednesdays than other days. Finally, it is found that storage announcement for natural gas significantly affects near-month and far-month natural gas futures returns. Furthermore, both natural gas and heating oil futures returns are affected more by the weighted average temperature reported by multiple weather reporting stations than that reported by a single weather reporting station. PMID:25133233

  10. An in situ Comparison of Electron Acceleration at Collisionless Shocks under Differing Upstream Magnetic Field Orientations

    Energy Technology Data Exchange (ETDEWEB)

    Masters, A.; Dougherty, M. K. [The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Sulaiman, A. H. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Stawarz, Ł. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Krakow (Poland); Reville, B. [School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Sergis, N. [Office of Space Research and Technology, Academy of Athens, Soranou Efesiou 4, 11527 Athens (Greece); Fujimoto, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Burgess, D. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom); Coates, A. J., E-mail: a.masters@imperial.ac.uk [Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, Holmbury St. Mary, Dorking RH5 6NT (United Kingdom)

    2017-07-10

    A leading explanation for the origin of Galactic cosmic rays is acceleration at high-Mach number shock waves in the collisionless plasma surrounding young supernova remnants. Evidence for this is provided by multi-wavelength non-thermal emission thought to be associated with ultrarelativistic electrons at these shocks. However, the dependence of the electron acceleration process on the orientation of the upstream magnetic field with respect to the local normal to the shock front (quasi-parallel/quasi-perpendicular) is debated. Cassini spacecraft observations at Saturn’s bow shock have revealed examples of electron acceleration under quasi-perpendicular conditions, and the first in situ evidence of electron acceleration at a quasi-parallel shock. Here we use Cassini data to make the first comparison between energy spectra of locally accelerated electrons under these differing upstream magnetic field regimes. We present data taken during a quasi-perpendicular shock crossing on 2008 March 8 and during a quasi-parallel shock crossing on 2007 February 3, highlighting that both were associated with electron acceleration to at least MeV energies. The magnetic signature of the quasi-perpendicular crossing has a relatively sharp upstream–downstream transition, and energetic electrons were detected close to the transition and immediately downstream. The magnetic transition at the quasi-parallel crossing is less clear, energetic electrons were encountered upstream and downstream, and the electron energy spectrum is harder above ∼100 keV. We discuss whether the acceleration is consistent with diffusive shock acceleration theory in each case, and suggest that the quasi-parallel spectral break is due to an energy-dependent interaction between the electrons and short, large-amplitude magnetic structures.

  11. Effect of sequential heat and cold shocks on nuclear phenotypes of the blood-sucking insect, Panstrongylus megistus (Burmeister (Hemiptera, Reduviidae

    Directory of Open Access Journals (Sweden)

    Garcia Simone L

    2002-01-01

    Full Text Available Thermal shocks induce changes in the nuclear phenotypes that correspond to survival (heterochromatin decondensation, nuclear fusion or death (apoptosis, necrosis responses in the Malpighian tubules of Panstrongylus megistus. Since thermal tolerance increased survival and molting rate in this species following sequential shocks, we investigated whether changes in nuclear phenotypes accompanied the insect survival response to sequential thermal shocks. Fifth instar nymphs were subjected to a single heat (35 or 40°C, 1 h or cold (5 or 0°C, 1 h shock and then subjected to a second shock for 12 h at 40 or 0°C, respectively, after 8, 18, 24 and 72 h at 28°C (control temperature. As with specimen survival, sequential heat and cold shocks induced changes in frequency of the mentioned nuclear phenotypes although their patterns differed. The heat shock tolerance involved decrease in apoptosis simultaneous to increase in cell survival responses. Sequential cold shocks did not involve cell/nuclear fusion and even elicited increase in necrosis with advancing time after shocks. The temperatures of 40 and 0ºC were more effective than the temperatures of 35 and 5ºC in eliciting the heat and cold shock tolerances, respectively, as shown by cytological analysis of the nuclear phenotypes. It is concluded that different sequential thermal shocks can trigger different mechanisms of cellular protection against stress in P. megistus, favoring the insect to adapt to various ecotopes.

  12. Isoform composition and stoichiometry of the ∼ 90-kDa heat shock protein associated with glucocorticoid receptors

    International Nuclear Information System (INIS)

    Mendel, D.B.; Orti, E.

    1988-01-01

    The authors observed that the ∼ 90-kDa non-steroid-binding component of nonactivated glucocorticoid receptors purified from WEHI-7 mouse thymoma cells (which has been identified as the ∼ 90-kDa heat shock protein) consistently migrates as a doublet during polyacrylamide gel electrophoresis under denaturing and reducing conditions. It has recently been reported that murine Meth A cells contain a tumor-specific transplantation antigen (TSTA) which is related or identical to the ∼ 90-kDa heat shock protein. The observation that TSTA and the ∼ 90-kDa heat shock protein isolated from these cells exists as two isoforms of similar molecular mass and charge has suggested that the doublet observed is also due to the existence of two isoforms. They have therefore conducted this study to determine whether TSTA and the ∼ 90-kDa component of glucocorticoid receptors are indeed related, to establish whether the receptor preferentially binds one isoform of the ∼ 90-kDa heat shock protein, and to investigate the stoichiometry of the nonactivated receptor complex. They used the BuGr1 and AC88 monoclonal antibodies to purify, respectively, receptor-associated and free ∼ 90-kDa heat shock protein from WEHI-7 cells grown for 48 h with [ 35 S]methionine to metabolically label proteins to steady state. The long-term metabolic labeling approach has also enabled them to directly determine that the purified non-activated glucocorticoid receptor contains a single steroid-binding protein and two ∼ 90-kDa non-steroid-binding subunits. The consistency with which a ∼ 1:2 stoichiometric ratio of steroid binding to ∼ 90-kDa protein is observed supports the view that the ∼ 90-kDa heat shock protein is a true component of nonactivated glucocorticoid-receptor complexes

  13. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized...

  14. Global transcriptome analysis of the heat shock response ofshewanella oneidensis

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Haichun; Wang, Sarah; Liu, Xueduan; Yan, Tinfeng; Wu, Liyou; Alm, Eric; Arkin, Adam P.; Thompson, Dorothea K.; Zhou, Jizhong

    2004-04-30

    Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress using whole-genome DNA microarrays for S. oneidensis MR-1. Approximately 15 percent (711) of the predicted S. oneidensis genes represented on the microarray were significantly up- or down-regulated (P < 0.05) over a 25-min period following shift to the heat shock temperature (42 C). As expected, the majority of S. oneidensis genes exhibiting homology to known chaperones and heat shock proteins (Hsps) were highly and transiently induced. In addition, a number of predicted genes encoding enzymes in glycolys is and the pentose cycle, [NiFe] dehydrogenase, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced in response to heat stress. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed down-regulated co-expression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, based on computational comparative analysis of the upstream promoter regions of S.oneidensis heat-inducible genes, a putative regulatory motif, showing high conservation to the Escherichia coli sigma 32-binding consensus sequence, was identified.

  15. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502.

    Science.gov (United States)

    Selby, Katja; Mascher, Gerald; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2017-01-01

    Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism.

  16. Propagation of a cylindrical shock wave in a rotating dusty gas with heat conduction and radiation heat flux

    International Nuclear Information System (INIS)

    Vishwakarma, J P; Nath, G

    2010-01-01

    A self-similar solution for the propagation of a cylindrical shock wave in a dusty gas with heat conduction and radiation heat flux, which is rotating about the axis of symmetry, is investigated. The shock is assumed to be driven out by a piston (an inner expanding surface) and the dusty gas is assumed to be a mixture of non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The heat conduction is expressed in terms of Fourier's law and radiation is considered to be of diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient α R are assumed to vary with temperature and density. Similarity solutions are obtained, and the effects of variation of the parameter of non-idealness of the gas in the mixture, the mass concentration of solid particles and the ratio of density of solid particles to the initial density of the gas are investigated.

  17. Heat transfer between adsorbate and laser-heated hot electrons

    International Nuclear Information System (INIS)

    Ueba, H; Persson, B N J

    2008-01-01

    Strong short laser pulses can give rise to a strong increase in the electronic temperature at metal surfaces. Energy transfer from the hot electrons to adsorbed molecules may result in adsorbate reactions, e.g. desorption or diffusion. We point out the limitations of an often used equation to describe the heat transfer process in terms of a friction coupling. We propose a simple theory for the energy transfer between the adsorbate and hot electrons using a newly introduced heat transfer coefficient, which depends on the adsorbate temperature. We calculate the transient adsorbate temperature and the reaction yield for a Morse potential as a function of the laser fluency. The results are compared to those obtained using a conventional heat transfer equation with temperature-independent friction. It is found that our equation of energy (heat) transfer gives a significantly lower adsorbate peak temperature, which results in a large modification of the reaction yield. We also consider the heat transfer between different vibrational modes excited by hot electrons. This mode coupling provides indirect heating of the vibrational temperature in addition to the direct heating by hot electrons. The formula of heat transfer through linear mode-mode coupling of two harmonic oscillators is applied to the recent time-resolved study of carbon monoxide and atomic oxygen hopping on an ultrafast laser-heated Pt(111) surface. It is found that the maximum temperature of the frustrated translation mode can reach high temperatures for hopping, even when direct friction coupling to the hot electrons is not strong enough

  18. Monitoring the Induction of Heat Shock Factor 1/Heat Shock Protein 70 Expression following 17-Allylamino-Demethoxygeldanamycin Treatment by Positron Emission Tomography and Optical Reporter Gene Imaging

    Directory of Open Access Journals (Sweden)

    Mikhail Doubrovin

    2012-01-01

    Full Text Available The cell response to proteotoxic cell stresses is mediated primarily through activation of heat shock factor 1 (HSF1. This transcription factor plays a major role in the regulation of the heat shock proteins (HSPs, including HSP70. We demonstrate that an [124I]iodide-pQHNIG70 positron emission tomography (PET reporter system that includes an inducible HSP70 promoter can be used to image and monitor the activation of the HSF1/HSP70 transcription factor in response to drug treatment (17-allylamino-demethoxygeldanamycin [17-AAG]. We developed a dual imaging reporter (pQHNIG70 for noninvasive imaging of the heat shock response in cell culture and living animals previously and now study HSF1/HSP70 reporter activation in both cell culture and tumor-bearing animals following exposure to 17-AAG. 17-AAG (10–1,000 nM induced reporter expression; a 23-fold increase was observed by 60 hours. Good correspondence between reporter expression and HSP70 protein levels were observed. MicroPET imaging based on [124I]iodide accumulation in pQHNIG70-transduced RG2 xenografts showed a significant 6.2-fold reporter response to 17-AAG, with a corresponding increase in tumor HSP70 and in tumor human sodium iodide symporter and green fluorescent protein reporter proteins. The HSF1 reporter system can be used to screen anticancer drugs for induction of cytotoxic stress and HSF1 activation both in vitro and in vivo.

  19. Short-term heat shock affects the course of immune response in Galleria mellonella naturally infected with the entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Vertyporokh, Lidiia; Taszłow, Paulina; Samorek-Pieróg, Małgorzata; Wojda, Iwona

    2015-09-01

    We aimed to investigate how exposition of infected insects to short-term heat shock affects the biochemical and molecular aspects of their immune response. Galleria mellonella larvae were exposed to 43°C for 15min, at the seventy second hour after natural infection with entomopathogenic fungus Beauveria bassiana. As a result, both qualitative and quantitative changes in hemolymph protein profiles, and among them infection-induced changes in the amount of apolipophorin III (apoLp-III), were observed. Heat shock differently affects the expression of the tested immune-related genes. It transiently inhibits expression of antifungal peptides gallerimycin and galiomicin in both the fat body and hemocytes of infected larvae. The same, although to a lesser extent, concerned apoLp-III gene expression and was observed directly after heat shock. Nevertheless, in larvae that had recovered from heat shock, apoLp-III expression was higher in comparison to unshocked larvae in the fat body but not in hemocytes, which was consistent with the higher amount of this protein detected in the hemolymph of the infected, shocked larvae. Furthermore, lysozyme-type activity was higher directly after heat shock, while antifungal activity was significantly higher also in larvae that had recovered from heat shock, in comparison to the respective values in their non-shocked, infected counterparts. These results show how changes in the external temperature modulate the immune response of G. mellonella suffering from infection with its natural pathogen B. bassiana. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Effects of Friction and Plastic Deformation in Shock-Comminuted Damaged Rocks on Impact Heating

    Science.gov (United States)

    Kurosawa, Kosuke; Genda, Hidenori

    2018-01-01

    Hypervelocity impacts cause significant heating of planetary bodies. Such events are recorded by a reset of 40Ar-36Ar ages and/or impact melts. Here we investigate the influence of friction and plastic deformation in shock-generated comminuted rocks on the degree of impact heating using the iSALE shock-physics code. We demonstrate that conversion from kinetic to internal energy in the targets with strength occurs during pressure release, and additional heating becomes significant for low-velocity impacts (projectile mass to temperatures for the onset of Ar loss and melting from 8 and 10 km s-1, respectively, for strengthless rocks to 2 and 6 km s-1 for typical rocks. Our results suggest that the impact conditions required to produce the unique features caused by impact heating span a much wider range than previously thought.

  1. Adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionless magnetosonic shock waves

    International Nuclear Information System (INIS)

    Goodrich, C.C.; Scudder, J.D.

    1984-01-01

    In collisionless magnetosonic shock waves, ions are commonly thought to be decelerated by dc electrostatic cross-shock electric field along the shock normal n. In a frame where ions are normally incident to the shock the change in the potential energy [qphi/sup N/] in the quasi-perpendicular geommetry is of the order of the change of the energy of normal ion flow: [qphi/sup N/]roughly-equal[1/2m/sub i/(V/sub i//sup N/xn) 2 ], which is approximately 200-500 eV at the earth's bow shock. We show that the electron energy gain, typically 1/10 this number, is consistent with such a large potential jump in this geometry. Key facts are the different paths taken by electrons an ions through the shock wave and the frame dependence of the potential jump in the geometry. In the normal incidence frame, electrons lose energy by doing work against the solar wind motional electric field E/sub M//sup N/, which partially offsets the energy gain from the cross-shock electrostatic potential energy [ephi/sub asterisk//sup N/]. In the de Hoffman-Teller frame the motional electric field vanishes; the elctrons gain the full electrostatic potential energy jump e[phi/sub asterisk//sup H//sup T/] of that frame, which is not, however, equal to the electrostatic potential energy jump e[phi/sub asterisk//sup N/] of that frame, which is not, however, equal to the electrostatic potential energy jump e[phi/sub asterisk//sup N/] in the normal incidence frame

  2. Guidelines for the nomenclature of the human heat shock proteins

    NARCIS (Netherlands)

    Kampinga, Harm H.; Hageman, Jurre; Vos, Michel J.; Kubota, Hiroshi; Tanguay, Robert M.; Bruford, Elspeth A.; Cheetham, Michael E.; Chen, B.; Hightower, Lawrence E.

    The expanding number of members in the various human heat shock protein (HSP) families and the inconsistencies in their nomenclature have often led to confusion. Here, we propose new guidelines for the nomenclature of the human HSP families, HSPH (HSP110), HSPC (HSP90), HSPA (HSP70), DNAJ (HSP40),

  3. Heat shock and thermotolerance of Escherichia coli O157:H7 in a model beef gravy system and ground beef.

    Science.gov (United States)

    Juneja, V K; Klein, P G; Marmer, B S

    1998-04-01

    Duplicate beef gravy or ground beef samples inoculated with a suspension of a four-strain cocktail of Escherichia coli O157:H7 were subjected to sublethal heating at 46 degrees C for 15-30 min, and then heated to a final internal temperature of 60 degrees C. Survivor curves were fitted using a linear model that incorporated a lag period (TL), and D-values and 'time to a 4D inactivation' (T4D) were calculated. Heat-shocking allowed the organism to survive longer than non-heat-shocked cells; the T4D values at 60 degrees C increased 1.56- and 1.50-fold in beef gravy and ground beef, respectively. In ground beef stored at 4 degrees C, thermotolerance was lost after storage for 14 h. However, heat-shocked cells appeared to maintain their thermotolerance for at least 24 h in ground beef held to 15 or 28 degrees C. A 25 min heat shock at 46 degrees C in beef gravy resulted in an increase in the levels of two proteins with apparent molecular masses of 60 and 69 kDa. These two proteins were shown to be immunologically related to GroEL and DnaK, respectively. Increased heat resistance due to heat shock must be considered while designing thermal processes to assure the microbiological safety of thermally processed foods.

  4. Gibberellic Acid-Induced Aleurone Layers Responding to Heat Shock or Tunicamycin Provide Insight into the N-Glycoproteome, Protein Secretion, and Endoplasmic Reticulum Stress

    DEFF Research Database (Denmark)

    Barba Espin, Gregorio; Dedvisitsakul, Plaipol; Hägglund, Per

    2014-01-01

    respond to gibberellic acid by secreting an array of proteins and provide a unique system for the analysis of plant protein secretion. Perturbation of protein secretion in gibberellic acid-induced aleurone layers by two independent mechanisms, heat shock and tunicamycin treatment, demonstrated overlapping...... and secretion, such as calreticulin, protein disulfide isomerase, proteasome subunits, and isopentenyl diphosphate isomerase. Sixteen heat shock proteins in 29 spots showed diverse responses to the treatments, with only a minority increasing in response to heat shock. The majority, all of which were small heat...... shock proteins, decreased in heat-shocked aleurone layers. Additionally, glycopeptide enrichment and N-glycosylation analysis identified 73 glycosylation sites in 65 aleurone layer proteins, with 53 of the glycoproteins found in extracellular fractions and 36 found in intracellular fractions...

  5. The existence of electron-acoustic shock waves and their interactions in a non-Maxwellian plasma with q-nonextensive distributed electrons

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jiu-Ning; He, Yong-Lin; Han, Zhen-Hai; Dong, Guang-Xing; Nan, Ya-Gong [College of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000 (China); Li, Jun-Xiu [College of Civil Engineering, Hexi University, Zhangye 734000 (China)

    2013-07-15

    We present a theoretical investigation for the nonlinear interaction between electron-acoustic shock waves in a nonextensive two-electron plasma. The interaction is governed by a pair of Korteweg-de Vries-Burgers equations. We focus on studying the colliding effects on the propagation of shock waves, more specifically, we have studied the effects of plasma parameters, i.e., the nonextensive parameter q, the “hot” to “cold” electron number density ratio α, and the normalized electron kinematic viscosity η{sub 0} on the trajectory changes (phase shifts) of shock waves. It is found that there are trajectory changes (phase shifts) for both colliding shock waves in the present plasma system. We also noted that the nonlinearity has no decisive effect on the trajectory changes, the occurrence of trajectory changes may be due to the combined role played by the dispersion and dissipation of the nonlinear structure. Our theoretical study may be beneficial to understand the propagation and interaction of nonlinear electrostatic waves and may brings a possibility to develop the nonlinear theory of electron-acoustic waves in astrophysical plasma systems.

  6. The stress protein heat shock cognate 70 (Hsc70) inhibits the Transient Receptor Potential Vanilloid type 1 (TRPV1) channel.

    Science.gov (United States)

    Iftinca, Mircea; Flynn, Robyn; Basso, Lilian; Melo, Helvira; Aboushousha, Reem; Taylor, Lauren; Altier, Christophe

    2016-01-01

    Specialized cellular defense mechanisms prevent damage from chemical, biological, and physical hazards. The heat shock proteins have been recognized as key chaperones that maintain cell survival against a variety of exogenous and endogenous stress signals including noxious temperature. However, the role of heat shock proteins in nociception remains poorly understood. We carried out an expression analysis of the constitutively expressed 70 kDa heat-shock cognate protein, a member of the stress-induced HSP70 family in lumbar dorsal root ganglia from a mouse model of Complete Freund's Adjuvant-induced chronic inflammatory pain. We used immunolabeling of dorsal root ganglion neurons, behavioral analysis and patch clamp electrophysiology in both dorsal root ganglion neurons and HEK cells transfected with Hsc70 and Transient Receptor Potential Channels to examine their functional interaction in heat shock stress condition. We report an increase in protein levels of Hsc70 in mouse dorsal root ganglia, 3 days post Complete Freund's Adjuvant injection in the hind paw. Immunostaining of Hsc70 was observed in most of the dorsal root ganglion neurons, including the small size nociceptors immunoreactive to the TRPV1 channel. Standard whole-cell patch-clamp technique was used to record Transient Receptor Potential Vanilloid type 1 current after exposure to heat shock. We found that capsaicin-evoked currents are inhibited by heat shock in dorsal root ganglion neurons and transfected HEK cells expressing Hsc70 and TRPV1. Blocking Hsc70 with matrine or spergualin compounds prevented heat shock-induced inhibition of the channel. We also found that, in contrast to TRPV1, both the cold sensor channels TRPA1 and TRPM8 were unresponsive to heat shock stress. Finally, we show that inhibition of TRPV1 depends on the ATPase activity of Hsc70 and involves the rho-associated protein kinase. Our work identified Hsc70 and its ATPase activity as a central cofactor of TRPV1 channel function

  7. Effects of heat shock protein 90 expression on pectoralis major oxidation in broilers exposed to acute heat stress.

    Science.gov (United States)

    Hao, Y; Gu, X H

    2014-11-01

    This study was conducted to determine the effects of heat shock protein 90 (HSP90) expression on pH, lipid peroxidation, heat shock protein 70 (HSP70), and glucocorticoid receptor (GR) expression of pectoralis major in broilers exposed to acute heat stress. In total, 90 male broilers were randomly allocated to 3 groups: control (CON), heat stress (HS), or geldanamycin treatment (GA). On d 41, the broilers in the GA group were injected intraperitoneally with GA (5 μg/kg of BW), and the broilers in the CON and HS groups were injected intraperitoneally with saline. Twenty-four hours later, the broilers in the CON group were moved to environmental chambers controlled at 22°C for 2 h, and the broilers in the HS and GA groups were moved to environmental chambers controlled at 40°C for 2 h. The pH values of the pectoralis major after 30 min and 24 h of chilling after slaughter of HS and GA broilers were significantly lower (P stress caused significant increases in sera corticosterone and lactic dehydrogenase, the activity of malondialdehyde and superoxide dismutase, the expression of HSP90 and HSP70, and nuclear expression of GR protein in the pectoralis major (P stress induced a significant decrease in GR protein expression in the cytoplasm and GR mRNA expression. Furthermore, the low expression of HSP90 significantly increased levels of lactic dehydrogenase and malondialdehyde and GR protein expression in the cytoplasm under heat stress (P shock protein 90 was positively correlated with corticosterone and superoxide dismutase activities (P < 0.01), and HSP90 mRNA was negatively correlated with pH after chilling for 24 h. The results demonstrated that HSP90 plays a pivotal role in protecting cells from oxidation. ©2014 Poultry Science Association Inc.

  8. Analysis of transactivation potential of rice (Oryza sativa L.) heat shock factors.

    Science.gov (United States)

    Lavania, Dhruv; Dhingra, Anuradha; Grover, Anil

    2018-06-01

    Based on yeast one-hybrid assays, we show that the presence of C-terminal AHA motifs is not a prerequisite for transactivation potential in rice heat shock factors. Transcriptional activation or transactivation (TA) of heat stress responsive genes takes place by binding of heat shock factors (Hsfs) to heat shock elements. Analysis of TA potential of thirteen rice (Oryza sativa L.) Hsfs (OsHsfs) carried out in this study by yeast one-hybrid assay showed that OsHsfsA3 possesses strong TA potential while OsHsfs A1a, A2a, A2b, A4a, A4d, A5, A7b, B1, B2a, B2b, B2c and B4d lack TA potential. From a near complete picture of TA potential of the OsHsf family (comprising of 25 members) emerging from this study and an earlier report from our group (Mittal et al. in FEBS J 278(17):3076-3085, 2011), it is concluded that (1) overall, six OsHsfs, namely A3, A6a, A6b, A8, C1a and C1b possess TA potential; (2) four class A OsHsfs, namely A3, A6a, A6b and A8 have TA potential out of which A6a and A6b contain AHA motifs while A3 and A8 lack AHA motifs; (3) nine class A OsHsfs, namely A1a, A2a, A2b, A2e, A4a, A4d, A5, A7a and A7b containing AHA motif(s) lack TA function in the yeast assay system; (4) all class B OsHsfs lack AHA motifs and TA potential (B4a not analyzed) and (5) though all class C OsHsf members lack AHA motifs, two members C1a and C1b possess TA function, while one member C2a lacks TA potential (C2b not analyzed). Thus, the presence or absence of AHA motif is possibly not the only factor determining TA potential of OsHsfs. Our findings will help to identify the transcriptional activators of rice heat shock response.

  9. Heat shock gene expression and cytoskeletal alterations in mouse neuroblastoma cells

    NARCIS (Netherlands)

    Bergen en Henegouwen, P.M.P. van; Linnemans, W.A.M.

    The cytoskeleton of neuroblastoma cells, clone Neuro 2A, is altered by two stress conditions: heat shock and arsenite treatment. Microtubules are reorganized, intermediate filaments are aggregated around the nucleus, and the number of stress fibers is reduced. Since both stress modalities induce

  10. ELECTRON ACCELERATIONS AT HIGH MACH NUMBER SHOCKS: TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS IN VARIOUS PARAMETER REGIMES

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yosuke [Department of Physics, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan); Amano, Takanobu; Hoshino, Masahiro, E-mail: ymatumot@astro.s.chiba-u.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Hongo 1-33, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-08-20

    Electron accelerations at high Mach number collisionless shocks are investigated by means of two-dimensional electromagnetic particle-in-cell simulations with various Alfven Mach numbers, ion-to-electron mass ratios, and the upstream electron {beta}{sub e} (the ratio of the thermal pressure to the magnetic pressure). We find electrons are effectively accelerated at a super-high Mach number shock (M{sub A} {approx} 30) with a mass ratio of M/m = 100 and {beta}{sub e} = 0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with a large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low.

  11. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice.

    Science.gov (United States)

    Ohno, Y; Egawa, T; Yokoyama, S; Nakai, A; Sugiura, T; Ohira, Y; Yoshioka, T; Goto, K

    2015-12-01

    Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  12. Magnetogasdynamic spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes

    Science.gov (United States)

    Nath, G.; Vishwakarma, J. P.

    2016-11-01

    Similarity solutions are obtained for the flow behind a spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes, in the presence of a spatially decreasing azimuthal magnetic field. The shock wave is driven by a piston moving with time according to power law. The radiation is considered to be of the diffusion type for an optically thick grey gas model and the heat conduction is expressed in terms of Fourier's law for heat conduction. Similarity solutions exist only when the surrounding medium is of constant density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. It is shown that an increase of the gravitational parameter or the Alfven-Mach number or the parameter of the non-idealness of the gas decreases the compressibility of the gas in the flow-field behind the shock, and hence there is a decrease in the shock strength. The pressure and density vanish at the inner surface (piston) and hence a vacuum is formed at the center of symmetry. The shock waves in conducting non-ideal gas under gravitational field with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of a flare produced shock in the solar wind, central part of star burst galaxies, nuclear explosion etc. The solutions obtained can be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.

  13. Periodic heat shock accelerated the chondrogenic differentiation of human mesenchymal stem cells in pellet culture.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available Osteoarthritis (OA is one of diseases that seriously affect elderly people's quality of life. Human mesenchymal stem cells (hMSCs offer a potential promise for the joint repair in OA patients. However, chondrogenic differentiation from hMSCs in vitro takes a long time (∼ 6 weeks and differentiated cells are still not as functionally mature as primary isolated chondrocytes, though chemical stimulations and mechanical loading have been intensively studied to enhance the hMSC differentiation. On the other hand, thermal stimulations of hMSC chondrogenesis have not been well explored. In this study, the direct effects of mild heat shock (HS on the differentiation of hMSCs into chondrocytes in 3D pellet culture were investigated. Periodic HS at 41 °C for 1 hr significantly increased sulfated glycosaminoglycan in 3D pellet culture at Day 10 of chondrogenesis. Immunohistochemical and Western Blot analyses revealed an increased expression of collagen type II and aggrecan in heat-shocked pellets than non heat-shocked pellets on Day 17 of chondrogenesis. In addition, HS also upregulated the expression of collagen type I and X as well as heat shock protein 70 on Day 17 and 24 of differentiation. These results demonstrate that HS accelerated the chondrogenic differentiation of hMSCs and induced an early maturation of chondrocytes differentiated from hMSCs. The results of this study will guide the design of future protocols using thermal treatments to facilitate cartilage regeneration with human mesenchymal stem cells.

  14. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Gabriela Huelgas-Morales

    2016-04-01

    Full Text Available In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline—the immortal cell lineage required for sexual reproduction—protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures.

  15. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans.

    Science.gov (United States)

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S; Greenstein, David; Navarro, Rosa E

    2016-04-07

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline-the immortal cell lineage required for sexual reproduction-protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. Copyright © 2016 Huelgas-Morales et al.

  16. Induction of thermal shock proteins and changes in radiosensitivity after heat treatment of Bombyx mori L. embryos

    International Nuclear Information System (INIS)

    Agaev, F.A.

    1993-01-01

    The method of gel-electrophoresis was used to study thermal shock protein synthesis in Bombyx mori embryos exposed to a mixture of heat and gamma-radiation. Induction of thermal shock protein synthesis was not inhibited by gamma-radiation. It is suggested that thermal shock proteins are involved embryo radiosensitivity modification

  17. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice

    International Nuclear Information System (INIS)

    Pierce, Anson; Wei, Rochelle; Halade, Dipti; Yoo, Si-Eun; Ran, Qitao; Richardson, Arlan

    2010-01-01

    Research highlights: → Development of mouse overexpressing native human HSF1 in all tissues including CNS. → HSF1 overexpression enhances heat shock response at whole-animal and cellular level. → HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. → HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1 +/0 ) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1 +/0 mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1 +/0 cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1 +/0 cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.

  18. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    Science.gov (United States)

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; Lehe, Remi; Mao, Hann-Shin; Mittelberger, Daniel E.; Steinke, Sven; Nakamura, Kei; van Tilborg, Jeroen; Schroeder, Carl; Esarey, Eric; Geddes, Cameron G. R.; Leemans, Wim

    2018-04-01

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically varied the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔEFWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-ramp width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.

  19. Small Heat Shock Proteins Can Release Light Dependence of Tobacco Seed during Germination1[OPEN

    Science.gov (United States)

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia

    2015-01-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. PMID:25604531

  20. TRANSPORT OF SOLAR WIND H{sup +} AND He{sup ++} IONS ACROSS EARTH’S BOW SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Parks, G. K.; Lin, N. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Lee, E. [School of Space Research and Institute of Natural Sciences, Kyung Hee University, Yongin (Korea, Republic of); Fu, S. Y.; Ma, Y. Q. [Institute of Space Science, Peking University, Beijing (China); Kim, H. E.; Hong, J. [School of Space Research, Kyung Hee University, Yongin (Korea, Republic of); Yang, Z. W.; Liu, Y. [Key Laboratory for Space Weather, Chinese Academy of Sciences, Beijing (China); Canu, P. [Plasma Physics Laboratory, Ecole Polytechnique, Paris (France); Dandouras, I.; Rème, H. [IRAP, Paul Sabatier University and CNRS, Toulouse (France); Goldstein, M. L., E-mail: parks@ssl.berkeley.edu [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-07-10

    We have investigated the dependence of mass, energy, and charge of solar wind (SW) transport across Earth’s bow shock. An examination of 111 crossings during quiet SW in both quasi-perpendicular and quasi-parallel shock regions shows that 64 crossings had various degrees of heating and thermalization of SW. We found 22 crossings where the SW speed was <400 km s{sup −1}. The shock potential of a typical supercritical quasi-perpendicular shock estimated from deceleration of the SW and cutoff energy of electron flat top distribution is ∼50 Volts. We find that the temperatures of H{sup +} and He{sup ++} beams that penetrate the shock can sometimes be nearly the same in the upstream and downstream regions, indicating little or no heating had occurred crossing the bow shock. None of the models predict that the SW can cross the bow shock without heating. Our observations are important constraints for new models of collisionless shocks.

  1. Shock waves in gas and plasma

    International Nuclear Information System (INIS)

    Niu, K.

    1996-01-01

    A shock wave is a discontinuous surface that connects supersonic flow with subsonic flow. After a shock wave, flow velocity is reduced, and pressure and temperature increase; entropy especially increases across a shock wave. Therefore, flow is in nonequilibrium, and irreversible processes occur inside the shock layer. The thickness of a shock wave in neutral gas is of the order of the mean free path of the fluid particle. A shock wave also appears in magnetized plasma. Provided that when the plasma flow is parallel to the magnetic field, a shock wave appears if the governing equation for velocity potential is in hyperbolic type in relation with the Mach number and the Alfven number. When the flow is perpendicular to the magnetic field, the Maxwell stress, in addition to the pressure, plays a role in the shock wave in plasma. When the plasma temperature is so high, as the plasma becomes collision-free, another type of shock wave appears. In a collision-free shock wave, gyromotions of electrons around the magnetic field lines cause the shock formation instead of collisions in a collision-dominant plasma or neutral gas. Regardless of a collision-dominant or collision-free shock wave, the fluid that passes through the shock wave is heated in addition to being compressed. In inertial confinement fusion, the fuel must be compressed. Really, implosion motion performs fuel compression. A shock wave, appearing in the process of implosion, compresses the fuel. The shock wave, however, heats the fuel more intensively, and it makes it difficult to compress the fuel further because high temperatures invite high pressure. Adiabatic compression of the fuel is the desired result during the implosion, without the formation of a shock wave. (Author)

  2. Effect of Heat Shock Treatment and Aloe Vera Coating to Chilling Injury Symptom in Tomato (Lycopersicon asculantum Mill.

    Directory of Open Access Journals (Sweden)

    Sutrisno

    2012-04-01

    Full Text Available This research was undertaken to determine the effect of length in heat shock and edible coating as pre-storage treatment to Chilling Injury (CI symptom reflected by ion leakage induced and quality properties in tomato (Lycopersicon asculantum Mill.. Heat Shock Treatment (HST was conducted at three different levels of length, which were, 20; 40 and 60 min. Edible coating was conducted using aloe vera gel. The result showed that HST and Aloe Vera Coating (AVC were more effective to reduce CI symptom at lower chilling storage. Prolong exposure to heated water may delay climacteric peak. The length of heat shock, AVC treatment and low temperature storage significantly affected the tomato quality parameter but not significantly different for each treatment except weight loss. HST for 20 min at ambient temperature was significantly different to other treatment.

  3. Reduced heat shock response in human mononuclear cells during aging and its association with polymorphisms in HSP70 genes

    DEFF Research Database (Denmark)

    Singh, Ripudaman; Kølvraa, Steen; Bross, Peter

    2006-01-01

    Age-dependent changes in heat shock response (HSR) were studied in mononuclear cells (monocytes and lymphocytes) collected from young (mean age = 22.6 +/- 1.7 years) and middle-aged (mean age = 56.3 +/- 4.7 years) subjects after 1 hour of heat shock at 42 degrees C. Genotype-specific HSR...... was measured by genotyping the subjects for 3 single nucleotide polymorphisms, HSPA1A(A-110C), HSPA1B(A1267G), and HSPA1L(T2437C), 1 each in the 3 HSP70 genes. A significant age-related decrease in the induction of Hsp70 occurred after heat shock in both monocytes and lymphocytes. The noninducible...

  4. Cellular stress induces cancer stem-like cells through expression of DNAJB8 by activation of heat shock factor 1.

    Science.gov (United States)

    Kusumoto, Hiroki; Hirohashi, Yoshihiko; Nishizawa, Satoshi; Yamashita, Masamichi; Yasuda, Kazuyo; Murai, Aiko; Takaya, Akari; Mori, Takashi; Kubo, Terufumi; Nakatsugawa, Munehide; Kanaseki, Takayuki; Tsukahara, Tomohide; Kondo, Toru; Sato, Noriyuki; Hara, Isao; Torigoe, Toshihiko

    2018-03-01

    In a previous study, we found that DNAJB8, a heat shock protein (HSP) 40 family member is expressed in kidney cancer stem-like cells (CSC)/cancer-initiating cells (CIC) and that it has a role in the maintenance of kidney CSC/CIC. Heat shock factor (HSF) 1 is a key transcription factor for responses to stress including heat shock, and it induces HSP family expression through activation by phosphorylation. In the present study, we therefore examined whether heat shock (HS) induces CSC/CIC. We treated the human kidney cancer cell line ACHN with HS, and found that HS increased side population (SP) cells. Western blot analysis and qRT-PCR showed that HS increased the expression of DNAJB8 and SOX2. Gene knockdown experiments using siRNAs showed that the increase in SOX2 expression and SP cell ratio depends on DNAJB8 and that the increase in DNAJB8 and SOX2 depend on HSF1. Furthermore, treatment with a mammalian target of rapamycin (mTOR) inhibitor, temsirolimus, decreased the expression of DNAJB8 and SOX2 and the ratio of SP cells. Taken together, the results indicate that heat shock induces DNAJB8 by activation of HSF1 and induces cancer stem-like cells. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. Heat shock instructs hESCs to exit from the self-renewal program through negative regulation of OCT4 by SAPK/JNK and HSF1 pathway.

    Science.gov (United States)

    Byun, Kyunghee; Kim, Taek-Kyun; Oh, Jeehyun; Bayarsaikhan, Enkhjargal; Kim, Daesik; Lee, Min Young; Pack, Chan-Gi; Hwang, Daehee; Lee, Bonghee

    2013-11-01

    Environmental factors affect self-renewal of stem cells by modulating the components of self-renewal networks. Heat shock, an environmental factor, induces heat shock factors (HSFs), which up-regulate stress response-related genes. However, the link of heat shock to self-renewal of stem cells has not been elucidated yet. Here, we present the direct link of heat shock to a core stem cell regulator, OCT4, in the self-renewal network through SAPK/JNK and HSF1 pathway. We first showed that heat shock initiated differentiation of human embryonic stem cells (hESCs). Gene expression analysis revealed that heat shock increased the expression of many genes involved in cellular processes related to differentiation of stem cells. We then examined the effects of HSFs induced by heat shock on core self-renewal factors. Among HSFs, heat shock induced mainly HSF1 in hESCs. The HSF1 repressed the expression of OCT4, leading to the differentiation of hESCs and the above differentiation-related gene expression change. We further examined the effects of the upstream MAP (mitogen-activated protein) kinases of HSF1 on the repression of OCT4 expression by HSF1. Among the MAP kinases, SAPK/JNK controlled predominantly the repression of the OCT4 expression by HSF1. The direct link of heat shock to the core self-renewal regulator through SAPK/JNK and HSF1 provides a fundamental basis for understanding the effect of heat and other stresses involving activation of HSF1 on the self-renewal program and further controlling differentiation of hESCs in a broad spectrum of stem cell applications using these stresses. © 2013.

  6. RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response.

    Directory of Open Access Journals (Sweden)

    Roelien A M Meijering

    Full Text Available The heat shock response (HSR is an ancient and highly conserved program of stress-induced gene expression, aimed at reestablishing protein homeostasis to preserve cellular fitness. Cells that fail to activate or maintain this protective response are hypersensitive to proteotoxic stress. The HSR is mediated by the heat shock transcription factor 1 (HSF1, which binds to conserved heat shock elements (HSE in the promoter region of heat shock genes, resulting in the expression of heat shock proteins (HSP. Recently, we observed that hyperactivation of RhoA conditions cardiomyocytes for the cardiac arrhythmia atrial fibrillation. Also, the HSR is annihilated in atrial fibrillation, and induction of HSR mitigates sensitization of cells to this disease. Therefore, we hypothesized active RhoA to suppress the HSR resulting in sensitization of cells for proteotoxic stimuli.Stimulation of RhoA activity significantly suppressed the proteotoxic stress-induced HSR in HL-1 atrial cardiomyocytes as determined with a luciferase reporter construct driven by the HSF1 regulated human HSP70 (HSPA1A promoter and HSP protein expression by Western Blot analysis. Inversely, RhoA inhibition boosted the proteotoxic stress-induced HSR. While active RhoA did not preclude HSF1 nuclear accumulation, phosphorylation, acetylation, or sumoylation, it did impair binding of HSF1 to the hsp genes promoter element HSE. Impaired binding results in suppression of HSP expression and sensitized cells to proteotoxic stress.These results reveal that active RhoA negatively regulates the HSR via attenuation of the HSF1-HSE binding and thus may play a role in sensitizing cells to proteotoxic stimuli.

  7. Molecular characterization and expression analysis of a heat shock protein 90 gene from disk abalone (Haliotis discus).

    Science.gov (United States)

    Wang, Ning; Whang, Ilson; Lee, Jae-Seong; Lee, Jehee

    2011-06-01

    Heat shock protein 90s (hsp90s) are chaperones that contribute to the proper folding of cellular proteins and help animals cope with the cellular protein damages in stress conditions. In this study, an hsp90 gene was isolated from disc abalone (Haliotis discus). The complete nucleotide sequence of the hsp90 gene contains an open reading frame of 2,184 base pairs, encoding an 84 kDa protein. Disk abalone hsp90 shares high sequence similarity with other hsp90 family proteins. Although the phylogenetic analysis did not classify it into the hsp90α group, the inductivity of this gene was confirmed by heat shock and lipopolysaccharide (LPS) challenge test. Disk abalone hsp90 gene displayed a rapid and reversible induction response to both an exposure of typical heat shock and the LPS challenge. Once given the sublethal heat shock treatment, the transcription of disk abalone hsp90 gene was significantly up-regulated. With a recovery of 12 h, the transcription of disk abalone hsp90 gene gradually attenuated to the control level. These observations reflected the feedback regulation of abalone heat shock responses faithfully. In response to LPS challenge, the transcription of disk abalone hsp90 gene was significantly increased within 2 h and it approached maximum induction at 4 h later and recovered finally the reference level in 24 h. Take all together, the cloning and expression analysis of disk abalone hsp90 gene provided useful molecular information of abalone responses in stress conditions and potential ways to monitor the chronic stressors in abalone culture environments and diagnose the animal health status.

  8. Heat Tolerance Induction of the Indian Meal Moth (Lepidoptera: Pyralidae) Is Accompanied by Upregulation of Heat Shock Proteins and Polyols.

    Science.gov (United States)

    Kim, Minhyun; Lee, Seunghee; Chun, Yong Shik; Na, Jahyun; Kwon, Hyeok; Kim, Wook; Kim, Yonggyun

    2017-08-01

    The Indian meal moth, Plodia interpunctella, causes massive damage to stored grains and processed foods. Heat treatment has been widely used to control insect pests infesting stored grains. However, heat treatment may result in unsatisfactory control owing to heat tolerance of target insects. This study quantified the heat tolerance and analyzed its induction in P. interpunctella. Susceptibility of P. interpunctella to different high temperatures was assessed in all developmental stages. Heat treatment at 44 °C for 1 h caused significant mortalities to all developmental stages, with late-instar larvae exhibiting the highest tolerance. However, the survivorship to heat treatment was significantly increased by pre-exposure to 37 °C for 30 min. The induction of heat tolerance was accompanied by upregulation of two heat shock proteins of Hsc70 and Hsp90. Trehalose and glycerol concentrations in the hemolymph also increased after pre-exposure to 37 °C for 30 min. RNA interference (RNAi) by specific double-stranded RNAs effectively suppressed the inducible expressions of both Hsc70 and Hsp90 in response to 37 °C for 30 min. Either RNAi of Hsc70 or Hsp90 significantly impaired the heat tolerance induction of P. interpunctella. These results suggest that the induction of heat tolerance in P. interpunctella involves the upregulation of these heat shock proteins and hemolymph polyol levels. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Ionization relaxation in shock-heated krypton-argon mixtures

    International Nuclear Information System (INIS)

    Ezumi, Hiromichi; Kawamura, Masahiko; Yokota, Toshiaki.

    1977-01-01

    The ionization relaxation processes behind shock waves in pure krypton and krypton-argon mixtures have been investigated using a Mach-Zehnder interferometer technique. The incident shock velocity was fixed in the neighborhood of Us=2800 m/sec, and the initial pressure was fixed at 0.95 Torr. The experimental results were compared with theoretical values based on the two-step collisional ionization model taking into account of the wall boundary-layer effect. The slope constants of excitation cross section against relative kinetic energy between krypton atom-atom collisions, krypton atom-electron collisions, and krypton-argon atom-atom collisions were determined to be 4.2 x 10 -19 cm 2 /eV, 1.2 x 10 -17 cm 2 /eV, and 4.2 x 10 -19 cm 2 /eV, respectively. (auth.)

  10. Structure and function of small heat shock/alpha-crystallin proteins: established concepts and emerging ideas.

    Science.gov (United States)

    MacRae, T H

    2000-06-01

    Small heat shock/alpha-crystallin proteins are defined by conserved sequence of approximately 90 amino acid residues, termed the alpha-crystallin domain, which is bounded by variable amino- and carboxy-terminal extensions. These proteins form oligomers, most of uncertain quaternary structure, and oligomerization is prerequisite to their function as molecular chaperones. Sequence modelling and physical analyses show that the secondary structure of small heat shock/alpha-crystallin proteins is predominately beta-pleated sheet. Crystallography, site-directed spin-labelling and yeast two-hybrid selection demonstrate regions of secondary structure within the alpha-crystallin domain that interact during oligomer assembly, a process also dependent on the amino terminus. Oligomers are dynamic, exhibiting subunit exchange and organizational plasticity, perhaps leading to functional diversity. Exposure of hydrophobic residues by structural modification facilitates chaperoning where denaturing proteins in the molten globule state associate with oligomers. The flexible carboxy-terminal extension contributes to chaperone activity by enhancing the solubility of small heat shock/alpha-crystallin proteins. Site-directed mutagenesis has yielded proteins where the effect of the change on structure and function depends upon the residue modified, the organism under study and the analytical techniques used. Most revealing, substitution of a conserved arginine residue within the alpha-crystallin domain has a major impact on quaternary structure and chaperone action probably through realignment of beta-sheets. These mutations are linked to inherited diseases. Oligomer size is regulated by a stress-responsive cascade including MAPKAP kinase 2/3 and p38. Phosphorylation of small heat shock/alpha-crystallin proteins has important consequences within stressed cells, especially for microfilaments.

  11. Ion and electron heating in ICRF heating experiments on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K. [Nagoya Univ. (Japan). Faculty of Engineering; Kumazawa, R.; Mutoh, T. [National Inst. for Fusion Science, Toki, Gifu (Japan)] [and others

    2001-02-01

    This paper reports on the Ion Cyclotron Range of Frequency (ICRF) heating conducted in 1999 in the 3rd experimental campaign on the Large Helical Device (LHD) with an emphasis on the optimization of the heating regime. Specifically, an exhaustive study of seven different heating regimes was carried out by changing the RF frequency relative to the magnetic field intensity, and the dependence of the heating efficiency on H-minority concentration was investigated. It was found in the experiment that both ion and electron heating are attainable with the same experimental setup by properly choosing the frequency relative to the magnetic field intensity. In the cases of both electron heating and ion heating, the power absorption efficiency depends on the minority ion concentration. An optimum minority concentration exists in the ion heating case while, in the electron heating case, the efficiency increases with concentration monotonically. A simple model calculation is introduced to provide a heuristic understanding of these experimental results. Among the heating regimes examined in this experiment, one of the ion heating regimes was finally chosen as the optimized heating regime and various high performance discharges were realized with it. (author)

  12. An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice.

    Science.gov (United States)

    Cheng, Q; Zhou, Y; Liu, Z; Zhang, L; Song, G; Guo, Z; Wang, W; Qu, X; Zhu, Y; Yang, D

    2015-03-01

    As sessile organisms, plants have evolved a wide range of defence pathways to cope with environmental stress such as heat shock. However, the molecular mechanism of these defence pathways remains unclear in rice. In this study, we found that OsHSFA2d, a heat shock transcriptional factor, encodes two main splice variant proteins, OsHSFA2dI and OsHSFA2dII in rice. Under normal conditions, OsHSFA2dII is the dominant but transcriptionally inactive spliced form. However, when the plant suffers heat stress, OsHSFA2d is alternatively spliced into a transcriptionally active form, OsHSFA2dI, which participates in the heat stress response (HSR). Further study found that this alternative splicing was induced by heat shock rather than photoperiod. We found that OsHSFA2dI is localised to the nucleus, whereas OsHSFA2dII is localised to the nucleus and cytoplasm. Moreover, expression of the unfolded protein response (UNFOLDED PROTEIN RESPONSE) sensors, OsIRE1, OsbZIP39/OsbZIP60 and the UNFOLDED PROTEIN RESPONSE marker OsBiP1, was up-regulated. Interestingly, OsbZIP50 was also alternatively spliced under heat stress, indicating that UNFOLDED PROTEIN RESPONSE signalling pathways were activated by heat stress to re-establish cellular protein homeostasis. We further demonstrated that OsHSFA2dI participated in the unfolded protein response by regulating expression of OsBiP1. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Regulation of the heat shock response under anoxia in the turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Krivoruchko, Anastasia; Storey, Kenneth B

    2010-03-01

    The effects of 20 h of anoxic submergence in cold water and 5 h of aerobic recovery on the heat shock response were analyzed in four organs of the anoxia-tolerant turtle Trachemys scripta elegans. Immunoblotting was used to analyze levels of active and inactive forms of the heat shock transcription factor 1 (HSF1), nuclear translocation of HSF1, and the levels of six heat shock proteins (HSPs). PCR was also used to retrieve the turtle HSF1 nucleotide sequence; its deduced amino acid sequence showed 97% identity with chicken HSF1. White skeletal muscle showed a strong fivefold increase in the amount of active HSF1 under anoxic conditions as well as an 80% increase in nuclear localization. This was accompanied by upregulation of five HSPs by 1.8- to 2.9-fold: Hsp25, Hsp40, Hsp70, Hsc70, and Hsp90, the latter two remained elevated after 5 h of aerobic recovery. Kidney and liver showed little change in active HSF1 content during anoxia and recovery, but a significant increase in the nuclear localization of HSF1 during anoxia. This supported enhanced expression of three HSPs in kidney (Hsp40, Hsc70, and Hsp90) and four in liver (Hsp40, Hsp60, Hsp70, Hsc70). Heart displayed a strong increase in active HSF1 during anoxia and recovery (6.6- to 6.8-fold higher than control) and increased nuclear localization but heart HSP levels did not rise. The data demonstrate organ-specific regulation of HSPs during anoxia exposure and aerobic recovery in T. s. elegans and suggest that the heat shock response is an important aspect of cytoprotection during facultative anaerobiosis, particularly with regard to underwater hibernation of turtles in cold water.

  14. Heat shock proteins and cancer: How can nanomedicine be harnessed?

    Science.gov (United States)

    Sauvage, Félix; Messaoudi, Samir; Fattal, Elias; Barratt, Gillian; Vergnaud-Gauduchon, Juliette

    2017-02-28

    Heat shock protein (hsp90) is an interesting target for cancer therapy because it is involved in the folding and stabilization of numerous proteins, including many that contribute to the development of cancer. It is part of the chaperone machinery that includes other heat shock proteins (hsp70, hsp27, hsp40) and is mainly localized in the cytosol, although many analogues or isoforms can be found in mitochondrion, endoplasmic reticulum and the cell membrane. Many potential inhibitors of hsp90 have been tested for cancer therapy but their usefulness is limited by their poor solubility in water and their ability to reach the target cells and the correct intracellular compartment. Nanomedicine, the incorporation of active molecules into an appropriate delivery system, could provide a solution to these drawbacks. In this review, we explain the rationale for using nanomedicine for this sort of cancer therapy, considering the properties of the chaperone machinery and of the different hsp90 analogues. We present some results that have already been obtained and put forward some strategies for delivery of hsp90 analogues to specific organelles. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. MMS observations of the Earth bow shock during magnetosphere compression and expansion: comparison of whistler wave properties around the shock ramp

    Science.gov (United States)

    Russell, C. T.; Strangeway, R. J.; Schwartz, S. J.

    2017-12-01

    The Magnetospheric Multiscale (MMS) spacecraft, with their state-of-the-art plasma and field instruments onboard, allow us to investigate electromagnetic waves at the bow shock and their association with small-scale disturbances in the shocked plasmas. Understanding these waves could improve our knowledge on the heating of electrons and ions across the shock ramp and the energy dissipation of supercritical shocks. We have found broad-band and narrow band waves across the shock ramp and slightly downstream. The broad-band waves propagate obliquely to the magnetic field direction and have frequencies up to the electron cyclotron frequency, while the narrow-band waves have frequencies of a few hundred Hertz, durations under a second, and are right-handed circularly polarized and propagate along the magnetic field lines. Both wave types are likely to be whistler mode with different generation mechanisms. When the solar wind pressure changes, MMS occasionally observed a pair of bow shocks when the magnetosphere was compressed and then expanded. We compare the wave observations under these two situations to understand their roles in the shock ramp as well as the upstream and downstream plasmas.

  16. Liquid metal targets for high-power applications : pulsed heating and shock hydrodynamics

    International Nuclear Information System (INIS)

    Hassanein, A.

    2000-01-01

    Significant interest has recently focused on the use of liquid-metal targets flowing with high velocities for various high-power nuclear and high-energy physics applications such as fusion reactor first-walls, the Spallation Neutron Source, Isotope Separation On Line, and Muon Collider projects. This is because the heat generated in solid targets due to beam or plasma bombardment cannot be removed easily and the resulting thermal shock damage could be a serious lifetime problem for long-term operation. More recently, the use of free or open flying-liquid jets has been proposed for higher-power-density applications. The behavior of a free-moving liquid mercury or gallium jet subjected to proton beam deposition in a strong magnetic field has been modeled and analyzed for the Muon Collider project. Free-liquid-metal jets can offer significant advantages over conventional solid targets, particularly for the more demanding and challenging high-power applications. However, the use of free-moving liquid-metal targets raises a number of new and challenging problems such as instabilities of the jet in a strong magnetic field, induced eddy-current effects on jet shape, thermal-shock formation, and possible jet fragmentation. Problems associated with shock heating of liquid jets in a strong magnetic field are analyzed in this study

  17. The heat-shock protein/chaperone network and multiple stress resistance.

    Science.gov (United States)

    Jacob, Pierre; Hirt, Heribert; Bendahmane, Abdelhafid

    2017-04-01

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multistress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat-shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone 'client proteins', many are primary metabolism enzymes and signal transduction components with essential roles for the proper functioning of a cell. HSPs/chaperones are controlled by the action of diverse heat-shock factors, which are recruited under stress conditions. In this review, we give an overview of the regulation of the HSP/chaperone network with a focus on Arabidopsis thaliana. We illustrate the role of HSPs/chaperones in regulating diverse signalling pathways and discuss several basic principles that should be considered for engineering multiple stress resistance in crops through the HSP/chaperone network. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Circulating antibodies to inducible heat shock protein 70 in patients with uveitis

    NARCIS (Netherlands)

    de Smet, M. D.; Ramadan, A.

    2001-01-01

    Heat shock proteins with molecular weight 70 kDa (hsp70) are highly conserved immunogenic intracellular molecules. There are two main subtypes: one is expressed constitutively (hsc70), while the other is induced under stressful conditions (ihsp70). Using an ELISA directed against recombinant human

  19. Properties and structure of a plasma non-neutral shock

    International Nuclear Information System (INIS)

    Hu Yemin; Hu Xiwei

    2004-01-01

    The shock is described by the Navier-Stokes equations of the electron and ion fluids, and coupled with Poisson's equation for the self-induced electric field. Profiles of the flow and electric variables in the weak or moderate shock front with or without current for different Debye lengths are presented. Comparison of profiles of flow and electric variables in the front for different heat flow modes is given

  20. TG2 regulates the heat-shock response by the post-translational modification of HSF1.

    Science.gov (United States)

    Rossin, Federica; Villella, Valeria Rachela; D'Eletto, Manuela; Farrace, Maria Grazia; Esposito, Speranza; Ferrari, Eleonora; Monzani, Romina; Occhigrossi, Luca; Pagliarini, Vittoria; Sette, Claudio; Cozza, Giorgio; Barlev, Nikolai A; Falasca, Laura; Fimia, Gian Maria; Kroemer, Guido; Raia, Valeria; Maiuri, Luigi; Piacentini, Mauro

    2018-05-11

    Heat-shock factor 1 (HSF1) is the master transcription factor that regulates the response to proteotoxic stress by controlling the transcription of many stress-responsive genes including the heat-shock proteins. Here, we show a novel molecular mechanism controlling the activation of HSF1. We demonstrate that transglutaminase type 2 (TG2), dependent on its protein disulphide isomerase activity, triggers the trimerization and activation of HSF1 regulating adaptation to stress and proteostasis impairment. In particular, we find that TG2 loss of function correlates with a defect in the nuclear translocation of HSF1 and in its DNA-binding ability to the HSP70 promoter. We show that the inhibition of TG2 restores the unbalance in HSF1-HSP70 pathway in cystic fibrosis (CF), a human disorder characterized by deregulation of proteostasis. The absence of TG2 leads to an increase of about 40% in CFTR function in a new experimental CF mouse model lacking TG2. Altogether, these results indicate that TG2 plays a key role in the regulation of cellular proteostasis under stressful cellular conditions through the modulation of the heat-shock response. © 2018 The Authors.

  1. Crystal structure of a small heat-shock protein from Xylella fastidiosa reveals a distinct high-order structure.

    Science.gov (United States)

    Fonseca, Emanuella Maria Barreto; Scorsato, Valéria; Dos Santos, Marcelo Leite; Júnior, Atilio Tomazini; Tada, Susely Ferraz Siqueira; Dos Santos, Clelton Aparecido; de Toledo, Marcelo Augusto Szymanski; de Souza, Anete Pereira; Polikarpov, Igor; Aparicio, Ricardo

    2017-04-01

    Citrus variegated chlorosis is a disease that attacks economically important citrus plantations and is caused by the plant-pathogenic bacterium Xylella fastidiosa. In this work, the structure of a small heat-shock protein from X. fastidiosa (XfsHSP17.9) is reported. The high-order structures of small heat-shock proteins from other organisms are arranged in the forms of double-disc, hollow-sphere or spherical assemblies. Unexpectedly, the structure reported here reveals a high-order architecture forming a nearly square cavity.

  2. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens.

    Science.gov (United States)

    Liu, L L; He, J H; Xie, H B; Yang, Y S; Li, J C; Zou, Y

    2014-01-01

    This study investigated the effects of dietary resveratrol at 0, 200, 400, or 600 mg/kg of diet on the performance, immune organ growth index, serum parameters, and expression levels of heat shock protein (Hsp) 27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius, thymus, and spleen of 42-d-old female black-boned chickens exposed to heat stress at 37 ± 2°C for 15 d. The results showed that heat stress reduced daily feed intake and BW gain; decreased serum glutathione (GSH), growth hormone, and insulin-like growth factor-1 levels; and inhibited GSH peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities compared with birds subjected to thermo-neutral circumstances. Chickens that were fed diets supplemented with resveratrol exhibited a linear increase in feed intake and BW gain (P stress. In contrast, serum malonaldehyde concentrations were decreased (P stress also reduced (P stress and coincided with an increase in supplemental resveratrol levels. The expression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen were increased (P stress compared with no heat stress. Resveratrol attenuated the heat stress-induced overexpression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen and increased the low expression of Hsp27 and Hsp90 mRNA in thymus upon heat stress. The results suggest that supplemental resveratrol improves growth performance and reduces oxidative stress in heat-stressed black-boned chickens by increasing serum growth hormone concentrations and modulating the expression of heat shock genes in organs of the immune system.

  3. Study of nonlinear electron-acoustic solitary and shock waves in a dissipative, nonplanar space plasma with superthermal hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jiu-Ning, E-mail: hanjiuning@126.com; He, Yong-Lin; Luo, Jun-Hua; Nan, Ya-Gong; Han, Zhen-Hai; Dong, Guang-Xing [College of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000 (China); Duan, Wen-Shan [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Li, Jun-Xiu [College of Civil Engineering, Hexi University, Zhangye 734000 (China)

    2014-01-15

    With the consideration of the superthermal electron distribution, we present a theoretical investigation about the nonlinear propagation of electron-acoustic solitary and shock waves in a dissipative, nonplanar non-Maxwellian plasma comprised of cold electrons, superthermal hot electrons, and stationary ions. The reductive perturbation technique is used to obtain a modified Korteweg-de Vries Burgers equation for nonlinear waves in this plasma. We discuss the effects of various plasma parameters on the time evolution of nonplanar solitary waves, the profile of shock waves, and the nonlinear structure induced by the collision between planar solitary waves. It is found that these parameters have significant effects on the properties of nonlinear waves and collision-induced nonlinear structure.

  4. The inactivation of RNase G reduces the Stenotrophomonas maltophilia susceptibility to quinolones by triggering the heat shock response.

    Directory of Open Access Journals (Sweden)

    Alejandra eBernardini

    2015-10-01

    Full Text Available Quinolone resistance is usually due to mutations in the genes encoding bacterial topoisomerases. However different reports have shown that neither clinical quinolone resistant isolates nor in vitro obtained S. maltophilia mutants present mutations in such genes. The mechanisms so far described consist on efflux pumps' overexpression. Our objective is to get information on novel mechanisms of S. maltophilia quinolone resistance. For this purpose, a transposon-insertion mutant library was obtained in S. maltophilia D457.. One mutant presenting reduced susceptibility to nalidixic acid was selected. Inverse PCR showed that the inactivated gene encodes RNase G. Complementation of the mutant with wild-type RNase G allele restored the susceptibility to quinolones. Transcriptomic and real-time RT-PCR analyses showed that several genes encoding heat-shock response proteins were expressed at higher levels in the RNase defective mutant than in the wild-type strain. In agreement with this situation, heat-shock reduces the S. maltophilia susceptibility to quinolone. We can then conclude that the inactivation of the RNase G reduces the susceptibility of S. maltophilia to quinolones, most likely by regulating the expression of heat-shock response genes. Heat-shock induces a transient phenotype of quinolone resistance in S. maltophilia.

  5. Intergenic sequence between Arabidopsis caseinolytic protease B-cytoplasmic/heat shock protein100 and choline kinase genes functions as a heat-inducible bidirectional promoter.

    Science.gov (United States)

    Mishra, Ratnesh Chandra; Grover, Anil

    2014-11-01

    In Arabidopsis (Arabidopsis thaliana), the At1g74310 locus encodes for caseinolytic protease B-cytoplasmic (ClpB-C)/heat shock protein100 protein (AtClpB-C), which is critical for the acquisition of thermotolerance, and At1g74320 encodes for choline kinase (AtCK2) that catalyzes the first reaction in the Kennedy pathway for phosphatidylcholine biosynthesis. Previous work has established that the knockout mutants of these genes display heat-sensitive phenotypes. While analyzing the AtClpB-C promoter and upstream genomic regions in this study, we noted that AtClpB-C and AtCK2 genes are head-to-head oriented on chromosome 1 of the Arabidopsis genome. Expression analysis showed that transcripts of these genes are rapidly induced in response to heat stress treatment. In stably transformed Arabidopsis plants harboring this intergenic sequence between head-to-head oriented green fluorescent protein and β-glucuronidase reporter genes, both transcripts and proteins of the two reporters were up-regulated upon heat stress. Four heat shock elements were noted in the intergenic region by in silico analysis. In the homozygous transfer DNA insertion mutant Salk_014505, 4,393-bp transfer DNA is inserted at position -517 upstream of ATG of the AtClpB-C gene. As a result, AtCk2 loses proximity to three of the four heat shock elements in the mutant line. Heat-inducible expression of the AtCK2 transcript was completely lost, whereas the expression of AtClpB-C was not affected in the mutant plants. Our results suggest that the 1,329-bp intergenic fragment functions as a heat-inducible bidirectional promoter and the region governing the heat inducibility is possibly shared between the two genes. We propose a model in which AtClpB-C shares its regulatory region with heat-induced choline kinase, which has a possible role in heat signaling. © 2014 American Society of Plant Biologists. All Rights Reserved.

  6. Heat shock protein-peptide complex-96 (Vitespen for the treatment of cancer

    Directory of Open Access Journals (Sweden)

    Robert J. Amato

    2011-12-01

    Full Text Available Heat shock proteins (HSPs are the most abundant and ubiquitous soluble intracellular proteins. Members of the HSP family bind peptides, they include antigenic peptides generated within cells. HSPs also interact with antigen-presenting cells (APCs through CD91 and other receptors, eliciting a cascade of events that includes re-presentation of HSP-chaperoned peptides by major histocompatability complex (MHC, translocation of nuclear factorkappaB (NFkB into the nuclei, and maturation of dendritic cells (DCs. These consequences point to a key role of heat shock proteins in fundamental immunological phenomena such as activation of APCs, indirect presentation (or crosspriming of antigenic peptides, and chaperoning of peptides during antigen presentation. The properties of HSPs also allow them to be used for immunotherapy of cancers and infections in novel ways. This paper reviews the development and clinical trial progress of vitespen, an HSP peptide complex vaccine based on tumor-derived glycoprotein 96.

  7. A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks

    International Nuclear Information System (INIS)

    Petitpas, Fabien; Franquet, Erwin; Saurel, Richard; Le Metayer, Olivier

    2007-01-01

    The relaxation-projection method developed in Saurel et al. [R. Saurel, E. Franquet, E. Daniel, O. Le Metayer, A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, J. Comput. Phys. (2007) 822-845] is extended to the non-conservative hyperbolic multiphase flow model of Kapila et al. [A.K. Kapila, Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration to detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024]. This model has the ability to treat multi-temperatures mixtures evolving with a single pressure and velocity and is particularly interesting for the computation of interface problems with compressible materials as well as wave propagation in heterogeneous mixtures. The non-conservative character of this model poses however computational challenges in the presence of shocks. The first issue is related to the Riemann problem resolution that necessitates shock jump conditions. Thanks to the Rankine-Hugoniot relations proposed and validated in Saurel et al. [R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump conditions for multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (3) (2007) 209-232] exact and approximate 2-shocks Riemann solvers are derived. However, the Riemann solver is only a part of a numerical scheme and non-conservative variables pose extra difficulties for the projection or cell average of the solution. It is shown that conventional Godunov schemes are unable to converge to the exact solution for strong multiphase shocks. This is due to the incorrect partition of the energies or entropies in the cell averaged mixture. To circumvent this difficulty a specific Lagrangian scheme is developed. The correct partition of the energies is achieved by using an artificial heat exchange in the shock layer. With the help of an asymptotic analysis this heat exchange takes a similar form as

  8. A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks

    Science.gov (United States)

    Petitpas, Fabien; Franquet, Erwin; Saurel, Richard; Le Metayer, Olivier

    2007-08-01

    The relaxation-projection method developed in Saurel et al. [R. Saurel, E. Franquet, E. Daniel, O. Le Metayer, A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, J. Comput. Phys. (2007) 822-845] is extended to the non-conservative hyperbolic multiphase flow model of Kapila et al. [A.K. Kapila, Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration to detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024]. This model has the ability to treat multi-temperatures mixtures evolving with a single pressure and velocity and is particularly interesting for the computation of interface problems with compressible materials as well as wave propagation in heterogeneous mixtures. The non-conservative character of this model poses however computational challenges in the presence of shocks. The first issue is related to the Riemann problem resolution that necessitates shock jump conditions. Thanks to the Rankine-Hugoniot relations proposed and validated in Saurel et al. [R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump conditions for multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (3) (2007) 209-232] exact and approximate 2-shocks Riemann solvers are derived. However, the Riemann solver is only a part of a numerical scheme and non-conservative variables pose extra difficulties for the projection or cell average of the solution. It is shown that conventional Godunov schemes are unable to converge to the exact solution for strong multiphase shocks. This is due to the incorrect partition of the energies or entropies in the cell averaged mixture. To circumvent this difficulty a specific Lagrangian scheme is developed. The correct partition of the energies is achieved by using an artificial heat exchange in the shock layer. With the help of an asymptotic analysis this heat exchange takes a similar form as

  9. Dynamic behavior of small heat shock protein inhibition on amyloid fibrillization of a small peptide (SSTSAA) from RNase A

    International Nuclear Information System (INIS)

    Xi, Dong; Dong, Xiao; Deng, Wei; Lai, Luhua

    2011-01-01

    Highlights: ► Mechanism of small heat shock protein inhibition on fibril formation was studied. ► Peptide SSTSAA with modified ends was used for amyloid fibril formation. ► FRET signal was followed during the fibril formation. ► Mj HSP16.5 inhibits fibril formation when introduced in the lag phase. ► Mj HSP16.5 slows down fibril formation when introduced after the lag phase. -- Abstract: Small heat shock proteins, a class of molecular chaperones, are reported to inhibit amyloid fibril formation in vitro, while the mechanism of inhibition remains unknown. In the present study, we investigated the mechanism by which Mj HSP16.5 inhibits amyloid fibril formation of a small peptide (SSTSAA) from RNase A. A model peptide (dansyl-SSTSAA-W) was designed by introducing a pair of fluorescence resonance energy transfer (FRET) probes into the peptide, allowing for the monitoring of fibril formation by this experimental model. Mj HSP16.5 completely inhibited fibril formation of the model peptide at a molar ratio of 1:120. The dynamic process of fibril formation, revealed by FRET, circular dichroism, and electron microscopy, showed a lag phase of about 2 h followed by a fast growth period. The effect of Mj HSP16.5 on amyloid fibril formation was investigated by adding it into the incubation solution during different growth phases. Adding Mj HSP16.5 to the incubating peptide before or during the lag phase completely inhibited fibril formation. However, introducing Mj HSP16.5 after the lag phase only slowed down the fibril formation process by adhering to the already formed fibrils. These findings provide insight into the inhibitory roles of small heat shock proteins on amyloid fibril formation at the molecular level.

  10. Dynamic behavior of small heat shock protein inhibition on amyloid fibrillization of a small peptide (SSTSAA) from RNase A

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Dong [BNLMS, State Key Laboratory of Structural Chemistry for Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Center for Theoretical Biology, Peking University, Beijing 100871 (China); Dong, Xiao; Deng, Wei [BNLMS, State Key Laboratory of Structural Chemistry for Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Lai, Luhua, E-mail: lhlai@pku.edu.cn [BNLMS, State Key Laboratory of Structural Chemistry for Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Center for Theoretical Biology, Peking University, Beijing 100871 (China)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Mechanism of small heat shock protein inhibition on fibril formation was studied. Black-Right-Pointing-Pointer Peptide SSTSAA with modified ends was used for amyloid fibril formation. Black-Right-Pointing-Pointer FRET signal was followed during the fibril formation. Black-Right-Pointing-Pointer Mj HSP16.5 inhibits fibril formation when introduced in the lag phase. Black-Right-Pointing-Pointer Mj HSP16.5 slows down fibril formation when introduced after the lag phase. -- Abstract: Small heat shock proteins, a class of molecular chaperones, are reported to inhibit amyloid fibril formation in vitro, while the mechanism of inhibition remains unknown. In the present study, we investigated the mechanism by which Mj HSP16.5 inhibits amyloid fibril formation of a small peptide (SSTSAA) from RNase A. A model peptide (dansyl-SSTSAA-W) was designed by introducing a pair of fluorescence resonance energy transfer (FRET) probes into the peptide, allowing for the monitoring of fibril formation by this experimental model. Mj HSP16.5 completely inhibited fibril formation of the model peptide at a molar ratio of 1:120. The dynamic process of fibril formation, revealed by FRET, circular dichroism, and electron microscopy, showed a lag phase of about 2 h followed by a fast growth period. The effect of Mj HSP16.5 on amyloid fibril formation was investigated by adding it into the incubation solution during different growth phases. Adding Mj HSP16.5 to the incubating peptide before or during the lag phase completely inhibited fibril formation. However, introducing Mj HSP16.5 after the lag phase only slowed down the fibril formation process by adhering to the already formed fibrils. These findings provide insight into the inhibitory roles of small heat shock proteins on amyloid fibril formation at the molecular level.

  11. BAG3 Is a Modular, Scaffolding Protein that physically Links Heat Shock Protein 70 (Hsp70) to the Small Heat Shock Proteins.

    Science.gov (United States)

    Rauch, Jennifer N; Tse, Eric; Freilich, Rebecca; Mok, Sue-Ann; Makley, Leah N; Southworth, Daniel R; Gestwicki, Jason E

    2017-01-06

    Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that are important for binding and stabilizing unfolded proteins. In this task, the sHsps have been proposed to coordinate with ATP-dependent chaperones, including heat shock protein 70 (Hsp70). However, it is not yet clear how these two important components of the chaperone network are linked. We report that the Hsp70 co-chaperone, BAG3, is a modular, scaffolding factor to bring together sHsps and Hsp70s. Using domain deletions and point mutations, we found that BAG3 uses both of its IPV motifs to interact with sHsps, including Hsp27 (HspB1), αB-crystallin (HspB5), Hsp22 (HspB8), and Hsp20 (HspB6). BAG3 does not appear to be a passive scaffolding factor; rather, its binding promoted de-oligomerization of Hsp27, likely by competing for the self-interactions that normally stabilize large oligomers. BAG3 bound to Hsp70 at the same time as Hsp22, Hsp27, or αB-crystallin, suggesting that it might physically bring the chaperone families together into a complex. Indeed, addition of BAG3 coordinated the ability of Hsp22 and Hsp70 to refold denatured luciferase in vitro. Together, these results suggest that BAG3 physically and functionally links Hsp70 and sHsps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Thermal shock test of TiC and graphite

    International Nuclear Information System (INIS)

    Shirakawa, H.; Okamura, J.; Son, P.; Miyake, M.

    1989-01-01

    Thermal shock tests were performed by pulse electron beam heating on chemically vapor deposited coatings of TiC on Poco graphite, bulk TiC, and several kinds of isotropic graphite. The specimens were heated at various power densities (10-45 MW/m 2 ) for various pulse durations (1-2 s) to examine the dependence of thermal failures on heating conditions. The TiC coating on graphite suffered cracking, surface melting and evaporation by the thermal pulse. The surface melting limit, defined as F τ 1/2 , where F is the minimum power density that causes surface melting for a specified pulse duration τ, was approximately 48 MWs 1/2 /m 2 for the TiC coating. The combined-Carbon/Titanium ratio of the coating after electron beam heating decreased with increasing power density and pulse duration. The bulk TiC specimens were so brittle that they fractured at heat load conditions where the coating showed no damage. The graphite specimens showed sublimation as a principal damage mechanism by the thermal pulse, and the sublimation weight loss decreased with increasing the thermal conductivity of the specimen. It was confirmed that the TiC coating on graphite had favorable resistance to thermal shock as compared to the bulk TiC and that graphite with high thermal conductivity is promising material as a high heat flux component. (orig.)

  13. A FOCUSED TRANSPORT APPROACH TO THE TIME-DEPENDENT SHOCK ACCELERATION OF SOLAR ENERGETIC PARTICLES AT A FAST TRAVELING SHOCK

    International Nuclear Information System (INIS)

    Le Roux, J. A.; Webb, G. M.

    2012-01-01

    Some of the most sophisticated models for solar energetic particle (SEP) acceleration at coronal mass ejection driven shocks are based on standard diffusive shock acceleration theory. However, this theory, which only applies when SEP pitch-angle anisotropies are small, might have difficulty in describing first-order Fermi acceleration or the shock pre-heating and injection of SEPs into first-order Fermi acceleration accurately at lower SEP speeds where SEP pitch-angle anisotropies upstream near the shock can be large. To avoid this problem, we use a time-dependent focused transport model to reinvestigate first-order Fermi acceleration at planar parallel and quasi-parallel spherical traveling shocks between the Sun and Earth with high shock speeds associated with rare extreme gradual SEP events. The focused transport model is also used to investigate and compare three different shock pre-heating mechanisms associated with different aspects of the nonuniform cross-shock solar wind flow, namely, the convergence of the flow (adiabatic compression), the shear tensor of the flow, and the acceleration of the flow, and a fourth shock pre-heating mechanism associated with the cross-shock electric field, to determine which pre-heating mechanism contributes the most to injecting shock pre-heated source particles into the first-order Fermi acceleration process. The effects of variations in traveling shock conditions, such as increasing shock obliquity and shock slowdown, and variations in the SEP source with increasing shock distance from the Sun on the coupled processes of shock pre-heating, injection, and first-order Fermi acceleration are analyzed. Besides the finding that the cross-shock acceleration of the solar wind flow yields the dominant shock pre-heating mechanism at high shock speeds, we find that first-order Fermi acceleration at fast traveling shocks differs in a number of respects from the predictions and assumptions of standard steady-state diffusive shock

  14. A contribution to the investigation of the heat load of shock absorbers of semi-active suspensions in motor vehicles

    Directory of Open Access Journals (Sweden)

    Miroslav D. Demić

    2013-10-01

    Full Text Available Dynamic simulation, based on modeling, has a significant role during the process of vehicle development. It is especially important in the first stages of vehicle design, when relevant vehicle parameters are to be defined. Shock absorbers as executive parts of vehicle semi-active suspension systems suffer thermal loads, which may result in damage and degradation of ther characteristics. Therefore,this paper shows an attempt to analyze converting of mechanical work into heat by using the dynamic simulation method. Introduction Shock absorbers are integral elements of semi-active suspension systems for vehicles (hereinafter SASS. They directly affect the active vehicle safety. The role of shock absorbers is to absorb mechanical vibrations transferred from the road and to ensure the safety of passengers in a vehicle. The kinetic energy of vehicle vibrations transforms into mechanical work or heat in shock absorbers. In practice, in the first stage of vehicle development, the shock absorber parameters are chosen from the condition of damping vibrations of vehicles, but their thermal shock loads should be also taken into account. Motor vehicles have complex dynamic characteristics manifested by spatial movement, parameters change during operation, a number of disturbing influences, backlash, friction, hysteresis, etc. The above-mentioned dynamic phenomena, especially vibration, lead to fatigue of driver and users, reduce the life of the vehicle and its systems, etc. The main objective of the system is to reduce the reliance of the above-mentioned negative effects, improving the vehicle behavior on the road and allow the exploitation of vehicles in a wide range of service conditions. Classical systems cannot satisfiy these conditions, so there was a need to introduce new suspension systems with controlled characteristics (briefly called "semi-active", or "active" systems. Oscillatory model of vehicle The differential equations of vibratory motion of

  15. Hybrid simulation of electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Suominen, P. [CERN Geneve 23, CH-1211 (Switzerland); Koponen, T.K. [Department of Physics, University of Jyvaeskylae, Nanoscience Center, P.O. Box 35, FI-40014 (Finland); Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)

    2008-03-11

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  16. Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in em>S. cerevisiaeem>

    DEFF Research Database (Denmark)

    Jensen, Mette Moesgaard; Christensen, Marianne Skovgaard; Bonven, Bjarne Juul

    2008-01-01

    Heat shock genes respond to moderate heat stress by a wave of transcription. The induction phase is accompanied by massive eviction of histones, which later reassemble with DNA during the ensuing phase of transcription downregulation. Here, we identify determinants of this reassembly throughout...

  17. The heat shock response plays an important role in TDP-43 clearance: evidence for dysfunction in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Chen, Han-Jou; Mitchell, Jacqueline C; Novoselov, Sergey; Miller, Jack; Nishimura, Agnes L; Scotter, Emma L; Vance, Caroline A; Cheetham, Michael E; Shaw, Christopher E

    2016-05-01

    Detergent-resistant, ubiquitinated and hyperphosphorylated Tar DNA binding protein 43 (TDP-43, encoded by TARDBP) neuronal cytoplasmic inclusions are the pathological hallmark in ∼95% of amyotrophic lateral sclerosis and ∼60% of frontotemporal lobar degeneration cases. We sought to explore the role for the heat shock response in the clearance of insoluble TDP-43 in a cellular model of disease and to validate our findings in transgenic mice and human amyotrophic lateral sclerosis tissues. The heat shock response is a stress-responsive protective mechanism regulated by the transcription factor heat shock factor 1 (HSF1), which increases the expression of chaperones that refold damaged misfolded proteins or facilitate their degradation. Here we show that manipulation of the heat shock response by expression of dominant active HSF1 results in a dramatic reduction of insoluble and hyperphosphorylated TDP-43 that enhances cell survival, whereas expression of dominant negative HSF1 leads to enhanced TDP-43 aggregation and hyperphosphorylation. To determine which chaperones were mediating TDP-43 clearance we over-expressed a range of heat shock proteins (HSPs) and identified DNAJB2a (encoded by DNAJB2, and also known as HSJ1a) as a potent anti-aggregation chaperone for TDP-43. DNAJB2a has a J domain, allowing it to interact with HSP70, and ubiquitin interacting motifs, which enable it to engage the degradation of its client proteins. Using functionally deleted DNAJB2a constructs we demonstrated that TDP-43 clearance was J domain-dependent and was not affected by ubiquitin interacting motif deletion or proteasome inhibition. This indicates that TDP-43 is maintained in a soluble state by DNAJB2a, leaving the total levels of TDP-43 unchanged. Additionally, we have demonstrated that the levels of HSF1 and heat shock proteins are significantly reduced in affected neuronal tissues from a TDP-43 transgenic mouse model of amyotrophic lateral sclerosis and patients with

  18. Coal reactions during shock heating in a hydrogen atmosphere. Reaktionsverhalten von Kohlen bei schockartiger Aufheizung in Wasserstoffatmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, R

    1987-04-30

    The study deals with the hydropyrolysis of coal under shock heating in order to learn more about the elementary reactions, which take place on the coal surface or in the interior of the carbon grain and which determine the product range and product yield. For recording the factors influencing primary cracking of products and the secondary reactions of the crack products, investigations were carried out by varying the particle diameter of the coals used (3 coals of different carbonization degrees) and the hydrogen pressure. For further recording of secondary reactions and thus the mechanism of the hydropyrolysis, typical crack products with primary character were presented on or in the coal; this was done by the absorption of a defined quantity of model compounds from the gas phase. For shock heating, the Curie point method (inductive heating) was used. It turned out that, with increasing H/sub 2/ pressure, the formation of H-transporting compounds and the availability of the molecular hydrogen from the gas phase is increased but the volatility of the reaction products is inhibited by cross-linking reactions of radicals with high-molecular crack products. High temperatures in shock heating can compensate this negative effect.

  19. Heat Shock Protein 90 Inhibitor Decreases Collagen Synthesis of Keloid Fibroblasts and Attenuates the Extracellular Matrix on the Keloid Spheroid Model.

    Science.gov (United States)

    Lee, Won Jai; Lee, Ju Hee; Ahn, Hyo Min; Song, Seung Yong; Kim, Yong Oock; Lew, Dae Hyun; Yun, Chae-Ok

    2015-09-01

    The 90-kDa heat-shock protein (heat-shock protein 90) is an abundant cytosolic chaperone, and inhibition of heat-shock protein 90 by 17-allylamino-17-demethoxygeldanamycin (17-AAG) compromises transforming growth factor (TGF)-β-mediated transcriptional responses by enhancing TGF-β receptor I and II degradation, thus preventing Smad2/3 activation. In this study, the authors evaluated whether heat-shock protein 90 regulates TGF-β signaling in the pathogenesis and treatment of keloids. Keloid fibroblasts were treated with 17-AAG (10 μM), and mRNA levels of collagen types I and III were determined by real-time reverse- transcriptase polymerase chain reaction. Also, secreted TGF-β1 was assessed by enzyme-linked immunosorbent assay. The effect of 17-AAG on protein levels of Smad2/3 complex was determined by Western blot analysis. In addition, in 17-AAG-treated keloid spheroids, the collagen deposition and expression of major extracellular matrix proteins were investigated by means of Masson trichrome staining and immunohistochemistry. The authors found that heat-shock protein 90 is overexpressed in human keloid tissue compared with adjacent normal tissue, and 17-AAG decreased mRNA levels of type I collagen, secreted TGF-ß1, and Smad2/3 complex protein expression in keloid fibroblasts. Masson trichrome staining revealed that collagen deposition was decreased in 17-AAG-treated keloid spheroids, and immunohistochemical analysis showed that expression of collagen types I and III, elastin, and fibronectin was markedly decreased in 17-AAG-treated keloid spheroids. These results suggest that the antifibrotic action of heat-shock protein 90 inhibitors such as 17-AAG may have therapeutic effects on keloids.

  20. Investigation of shock compressed plasma parameters by interaction with magnetic field

    International Nuclear Information System (INIS)

    Dudin, S. V.; Fortov, V. E.; Gryaznov, V. K.; Mintsev, V. B.; Shilkin, N. S.; Ushnurtsev, A. E.

    1998-01-01

    The Hall effect parameters in shock compressed air, helium and xenon have been estimated and results of experiments with air and helium plasma are presented. Explosively driven shock tubes were used for the generation of strong shock waves. To obtain magnetic field a solenoid was winded over the shock tube. Calculations of dense shock compressed plasma parameters were carried out to plan the experiments. In the experiments with the magnetic field of ∼5 T it was found, that air plasma slug was significantly heated by the whirlwind electrical field. The reflected shock waves technique was used in the experiments with helium. Results on measurements of electrical conductivity and electron concentration of helium are presented

  1. The expression and function of hsp30-like small heat shock protein genes in amphibians, birds, fish, and reptiles.

    Science.gov (United States)

    Heikkila, John J

    2017-01-01

    Small heat shock proteins (sHSPs) are a superfamily of molecular chaperones with important roles in protein homeostasis and other cellular functions. Amphibians, reptiles, fish and birds have a shsp gene called hsp30, which was also referred to as hspb11 or hsp25 in some fish and bird species. Hsp30 genes, which are not found in mammals, are transcribed in response to heat shock or other stresses by means of the heat shock factor that is activated in response to an accumulation of unfolded protein. Amino acid sequence analysis revealed that representative HSP30s from different classes of non-mammalian vertebrates were distinct from other sHSPs including HSPB1/HSP27. Studies with amphibian and fish recombinant HSP30 determined that they were molecular chaperones since they inhibited heat- or chemically-induced aggregation of unfolded protein. During non-mammalian vertebrate development, hsp30 genes were differentially expressed in selected tissues. Also, heat shock-induced stage-specific expression of hsp30 genes in frog embryos was regulated at the level of chromatin structure. In adults and/or tissue culture cells, hsp30 gene expression was induced by heat shock, arsenite, cadmium or proteasomal inhibitors, all of which enhanced the production of unfolded/damaged protein. Finally, immunocytochemical analysis of frog and chicken tissue culture cells revealed that proteotoxic stress-induced HSP30 accumulation co-localized with aggresome-like inclusion bodies. The congregation of damaged protein in aggresomes minimizes the toxic effect of aggregated protein dispersed throughout the cell. The current availability of probes to detect the presence of hsp30 mRNA or encoded protein has resulted in the increased use of hsp30 gene expression as a marker of proteotoxic stress in non-mammalian vertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Prostaglandin E synthase interacts with inducible heat shock protein 70 after heat stress in bovine primary dermal fibroblast cells.

    Science.gov (United States)

    Richter, Constanze; Viergutz, Torsten; Schwerin, Manfred; Weitzel, Joachim M

    2015-01-01

    Exposure to heat stress in dairy cows leads to undesired side effects that are reflected by complex alterations in endocrine parameters, such as reduced progesterone, estradiol, and thyroid hormone concentrations. These endocrine maladaptation leads to failure to resume cyclicity, a poor uterine environment and inappropriate immune responses in postpartum dairy cows. Prostaglandins (PG's) are lipid mediators, which serve as signal molecules in response to various external stimuli as well as to cell-specific internal signal molecules. A central role in PG synthesis plays prostaglandin E synthase (PGES) that catalyzes the isomerization of PGH2 to PGE2 .The present study was conducted to investigate heat stress associated PGES expression. Expression of PGES and inducible heat shock protein 70 (HSP70), as a putative chaperonic protein, was studied in bovine primary fibroblasts under different heat shock conditions. Bovine primary fibroblasts produce PGE2 at homoiothermical norm temperature (38.5°C in bovine), but reduce PGE2 production rates under extreme heat stress (at 45°C for 6 h). By contrast, PGE2 production rates are maintained after a milder heat stress (at 41.5°C for 6 h). PGE2 synthesis is abolished by application of cyclooxygenase inhibitor indomethacin, indicating de novo synthesis. Heat stress increases HSP70 but not PGES protein concentrations. HSP70 physically interacts with PGES and the PGES-HSP70 complex did not dissociate upon heat stress at 45°C even after returning the cells to 37°C. The PGE2 production negatively correlates with the portion of PGES-HSP70 complex. These results suggest a protein interaction between HSP70 and PGES in dermal fibroblast cells. Blockage of PGES protein by HSP70 seems to interfere with the regulatory processes essential for cellular adaptive protection. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  3. Electron-cyclotron-resonant-heated electron distribution functions

    International Nuclear Information System (INIS)

    Matsuda, Y.; Nevins, W.M.; Cohen, R.H.

    1981-01-01

    Recent studies at Lawrence Livermore National Laboratory (LLNL) with a bounce-averaged Fokker-Planck code indicate that the energetic electron tail formed by electron-cyclotron resonant heating (ECRH) at the second harmonic is not Maxwellian. We present the results of our bounce-averaged Fokker-Planck code along with some simple analytic models of hot-electron distribution functions

  4. Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Gopinath, Subash C. B.; Perumal, Veeradasan; Lakshmipriya, Thangavel; Rajintraprasad, Haarindraprasad; Rao, Balakrishnan S.; Arshad, M. K. Md; Hashim, Uda; Kumaresan, Ramanujam; Kotani, Norito; Chen, Yeng

    2016-01-01

    The 16 kDa heat shock protein (16 kDa HSP) against Mycobacterium tuberculosis (MT), expressed during the growth phase of MT, is a potential target in diagnostic tests for tuberculosis (TB). We describe here a method for impedimetric determination of the antigen by using a nanogapped dielectric surface consisting of a silver support coated with a thin finger-shaped coating made from zinc oxide and gold and patterned through a lift-off process. The electrode was characterized by scanning electron microscopy, field emission scanning electron microscopy, atomic force microscopy, and energy-dispersive X-ray spectroscopy. Surface chemical functionalization and immobilization of antibody against the 16 kDa HSP was evidenced by FTIR. In order to improve the detection limit, the antigen was conjugated to 10 nm gold nanoparticles. The resulting biosensor is capable of detecting the 16 kDa HSP in concentrations as low as 100 fM. The method covers a wide analytical range that extends from 100 fM to 1 nM. (author)

  5. Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development.

    Science.gov (United States)

    Reddy, Palakolanu Sudhakar; Kavi Kishor, Polavarapu B; Seiler, Christiane; Kuhlmann, Markus; Eschen-Lippold, Lennart; Lee, Justin; Reddy, Malireddy K; Sreenivasulu, Nese

    2014-01-01

    The rapid increase in heat shock proteins upon exposure to damaging stresses and during plant development related to desiccation events reveal their dual importance in plant development and stress tolerance. Genome-wide sequence survey identified 20 non-redundant small heat shock proteins (sHsp) and 22 heat shock factor (Hsf) genes in barley. While all three major classes (A, B, C) of Hsfs are localized in nucleus, the 20 sHsp gene family members are localized in different cell organelles like cytoplasm, mitochondria, plastid and peroxisomes. Hsf and sHsp members are differentially regulated during drought and at different seed developmental stages suggesting the importance of chaperone role under drought as well as seed development. In silico cis-regulatory motif analysis of Hsf promoters showed an enrichment with abscisic acid responsive cis-elements (ABRE), implying regulatory role of ABA in mediating transcriptional response of HvsHsf genes. Gene regulatory network analysis identified HvHsfB2c as potential central regulator of the seed-specific expression of several HvsHsps including 17.5CI sHsp. These results indicate that HvHsfB2c is co-expressed in the central hub of small Hsps and therefore it may be regulating the expression of several HvsHsp subclasses HvHsp16.88-CI, HvHsp17.5-CI and HvHsp17.7-CI. The in vivo relevance of binding specificity of HvHsfB2C transcription factor to HSE-element present in the promoter of HvSHP17.5-CI under heat stress exposure is confirmed by gel shift and LUC-reporter assays. Further, we isolated 477 bp cDNA from barley encoding a 17.5 sHsp polypeptide, which was predominantly upregulated under drought stress treatments and also preferentially expressed in developing seeds. Recombinant HvsHsp17.5-CI protein was expressed in E. coli and purified to homogeneity, which displayed in vitro chaperone activity. The predicted structural model of HvsHsp-17.5-CI protein suggests that the α-crystallin domain is evolutionarily highly

  6. Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development.

    Directory of Open Access Journals (Sweden)

    Palakolanu Sudhakar Reddy

    Full Text Available The rapid increase in heat shock proteins upon exposure to damaging stresses and during plant development related to desiccation events reveal their dual importance in plant development and stress tolerance. Genome-wide sequence survey identified 20 non-redundant small heat shock proteins (sHsp and 22 heat shock factor (Hsf genes in barley. While all three major classes (A, B, C of Hsfs are localized in nucleus, the 20 sHsp gene family members are localized in different cell organelles like cytoplasm, mitochondria, plastid and peroxisomes. Hsf and sHsp members are differentially regulated during drought and at different seed developmental stages suggesting the importance of chaperone role under drought as well as seed development. In silico cis-regulatory motif analysis of Hsf promoters showed an enrichment with abscisic acid responsive cis-elements (ABRE, implying regulatory role of ABA in mediating transcriptional response of HvsHsf genes. Gene regulatory network analysis identified HvHsfB2c as potential central regulator of the seed-specific expression of several HvsHsps including 17.5CI sHsp. These results indicate that HvHsfB2c is co-expressed in the central hub of small Hsps and therefore it may be regulating the expression of several HvsHsp subclasses HvHsp16.88-CI, HvHsp17.5-CI and HvHsp17.7-CI. The in vivo relevance of binding specificity of HvHsfB2C transcription factor to HSE-element present in the promoter of HvSHP17.5-CI under heat stress exposure is confirmed by gel shift and LUC-reporter assays. Further, we isolated 477 bp cDNA from barley encoding a 17.5 sHsp polypeptide, which was predominantly upregulated under drought stress treatments and also preferentially expressed in developing seeds. Recombinant HvsHsp17.5-CI protein was expressed in E. coli and purified to homogeneity, which displayed in vitro chaperone activity. The predicted structural model of HvsHsp-17.5-CI protein suggests that the α-crystallin domain is

  7. The differential effects of heat-shocking on the viability of spores from Bacillus anthracis, Bacillus subtilis, and Clostridium sporogenes after treatment with peracetic acid- and glutaraldehyde-based disinfectants.

    Science.gov (United States)

    March, Jordon K; Pratt, Michael D; Lowe, Chinn-Woan; Cohen, Marissa N; Satterfield, Benjamin A; Schaalje, Bruce; O'Neill, Kim L; Robison, Richard A

    2015-10-01

    This study investigated (1) the susceptibility of Bacillus anthracis (Ames strain), Bacillus subtilis (ATCC 19659), and Clostridium sporogenes (ATCC 3584) spores to commercially available peracetic acid (PAA)- and glutaraldehyde (GA)-based disinfectants, (2) the effects that heat-shocking spores after treatment with these disinfectants has on spore recovery, and (3) the timing of heat-shocking after disinfectant treatment that promotes the optimal recovery of spores deposited on carriers. Suspension tests were used to obtain inactivation kinetics for the disinfectants against three spore types. The effects of heat-shocking spores after disinfectant treatment were also determined. Generalized linear mixed models were used to estimate 6-log reduction times for each spore type, disinfectant, and heat treatment combination. Reduction times were compared statistically using the delta method. Carrier tests were performed according to AOAC Official Method 966.04 and a modified version that employed immediate heat-shocking after disinfectant treatment. Carrier test results were analyzed using Fisher's exact test. PAA-based disinfectants had significantly shorter 6-log reduction times than the GA-based disinfectant. Heat-shocking B. anthracis spores after PAA treatment resulted in significantly shorter 6-log reduction times. Conversely, heat-shocking B. subtilis spores after PAA treatment resulted in significantly longer 6-log reduction times. Significant interactions were also observed between spore type, disinfectant, and heat treatment combinations. Immediately heat-shocking spore carriers after disinfectant treatment produced greater spore recovery. Sporicidal activities of disinfectants were not consistent across spore species. The effects of heat-shocking spores after disinfectant treatment were dependent on both disinfectant and spore species. Caution must be used when extrapolating sporicidal data of disinfectants from one spore species to another. Heat-shocking

  8. The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae

    Science.gov (United States)

    Morano, Kevin A.; Grant, Chris M.; Moye-Rowley, W. Scott

    2012-01-01

    A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters. PMID:22209905

  9. Microbiological and Physicochemical Changes in Natural Green Heat-Shocked Aloreña de Málaga Table Olives

    Directory of Open Access Journals (Sweden)

    Francisco Rodríguez-Gómez

    2017-11-01

    Full Text Available Preserving the highly appreciated natural freshness of Aloreña de Málaga table olives and preventing their progressive darkening during processing is a major challenge. In this work, heat-shocked (60°C, 5 min fruits were processed according to the three denominations referred to in the Protected Designation of Origen (cured, fresh green, and traditional and their characteristics compared with those that followed the habitual industrial process (controls. The results revealed that the effects of the heat treatment on the evolution of pH, titratable acidity, salt, sugar, organic acid, ethanol content, texture, and color of fruits as well as on microbial populations (yeasts and lactic acid bacteria were slight in the case of the fresh green and cured presentations. However, the differences between heat-shocked and its control were remarkable in the traditional process. Notably, the heat treatment favored lactic acid fermentation, retention of the green appearance of the fruits, stability during packaging, and led to the highest sensory evaluation. The metagenomic analysis carried out at the end of the fermentation revealed the presence in all samples of three genera (Lactobacillus, Pediococcus, and Celerinatantimonas which encompassed most of the sequences. The number of Lactobacillus sequences was statistically higher (p ≥ 0.05 in the case of traditional heat-shocked fruits than in its control.

  10. Heat-shock-induced enhanced reactivation of UV-irradiated Herpesvirus

    Energy Technology Data Exchange (ETDEWEB)

    Yager, J.D.; Zurlo, J.; Penn, A.L.

    1985-09-01

    The objective of this study was to compare the ability of heat shock (HS) with that of another type of cellular stress, UV irradiation, to cause the induction of enhanced viral reactivation, a process that may represent an SOS-type repair process in mammalian cells. These results indicate that, like UV irradiation, HS at levels inhibitory to cell growth induced enhanced viral reactivation in Vero cells. The results also suggest that at least two proteins in the HS protein family are not necessary for this response to occur. (Auth.). 27 refs.; 5 figs.

  11. Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System

    Science.gov (United States)

    Verghese, Jacob; Abrams, Jennifer; Wang, Yanyu

    2012-01-01

    Summary: The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast. PMID:22688810

  12. Diffusive and convective transport modelling from analysis of ECRH-stimulated electron heat wave propagation. [ECRH (Electron Cyclotron Resonance Heating)

    Energy Technology Data Exchange (ETDEWEB)

    Erckmann, V; Gasparino, U; Giannone, L. (Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)) (and others)

    1992-01-01

    ECRH power modulation experiments in toroidal devices offer the chance to analyze the electron heat transport more conclusively: the electron heat wave propagation can be observed by ECE (or SX) leading to radial profiles of electron temperature modulation amplitude and time delay (phase shift). Taking also the stationary power balance into account, the local electron heat transport can be modelled by a combination of diffusive and convective transport terms. This method is applied to ECRH discharges in the W7-AS stellarator (B=2.5T, R=2m, a[<=]18 cm) where the ECRH power deposition is highly localized. In W7-AS, the T[sub e] modulation profiles measured by a high resolution ECE system are the basis for the local transport analysis. As experimental errors limit the separation of diffusive and convective terms in the electron heat transport for central power deposition, also ECRH power modulation experiments with off-axis deposition and inward heat wave propagation were performed (with 70 GHz o-mode as well as with 140 GHz x-mode for increased absorption). Because collisional electron-ion coupling and radiative losses are only small, low density ECRH discharges are best candidates for estimating the electron heat flux from power balance. (author) 2 refs., 3 figs.

  13. Radio evidence for shock acceleration of electrons in the solar corona

    Science.gov (United States)

    Cane, H. V.; Stone, R. G.; Fainberg, J.; Steinberg, J. L.; Hoang, S.; Stewart, R. T.

    1981-01-01

    It is pointed out that the new class of kilometer-wavelength solar radio bursts observed with the ISEE-3 Radio Astronomy Experiment occurs at the reported times of type II events, which are indicative of a shock wave. An examination of records from the Culgoora Radio Observatory reveals that the associated type II bursts have fast drift elements emanating from them; that is, a herringbone structure is formed. It is proposed that this new class of bursts is a long-wavelength continuation of the herringbone structure, and it is thought probable that the electrons producing the radio emission are accelerated by shocks. These new events are referred to as shock-accelerated events, and their characteristics are discussed.

  14. Small heat shock proteins protect against α-synuclein-induced toxicity and aggregation

    International Nuclear Information System (INIS)

    Outeiro, Tiago Fleming; Klucken, Jochen; Strathearn, Katherine E.; Liu Fang; Nguyen, Paul; Rochet, Jean-Christophe; Hyman, Bradley T.; McLean, Pamela J.

    2006-01-01

    Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) or Huntington's disease (HD). α-Synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB), and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling, and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and αB-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messenger RNA levels are ∼2-3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by ∼80% in a culture model while αB-crystallin reduces toxicity by ∼20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model

  15. Identification and changes in the seasonal concentrations of heat shock proteins in roe deer (Capreolus capreolus) epididymides.

    Science.gov (United States)

    Majewska, A M; Kordan, W; Koziorowska-Gilun, M; Wysocki, P

    2017-02-01

    Heat shock proteins (HSPs) act as molecular chaperones with important regulatory functions. HSPs are considered to be essential factors in animal reproduction. In view of seasonal variations in the secretory activity of the reproductive tract of mature roe deer (Capreolus capreolus), the aims of this study were to identify HSPs in the epididymides and compare the expression of the identified proteins in three periods of the reproductive season. Two-dimensional polyacrylamide gel electrophoresis revealed the highest number of polypeptides in homogenates of epididymal tissues and in caput, corpus and cauda epididymal fluids throughout the reproductive season. Epididymal tissue homogenates and epididymal fluids were analysed by tandem mass spectrometry (MS/MS) to reveal 31 polypeptides with enzymatic activity, including polypeptides with antioxidant properties, structural and cell signalling functions. Moreover, among the identified polypeptides, five of them were similar to heat shock proteins: endoplasmin (Grp94); heat shock protein 90 kDa (HSP90); 78-kDa glucose-regulated protein (Grp78); chain A, the crystal structure of the human HSP70 ATPase domain and heat shock protein beta-1 isoform X. The concentrations of the analysed polypeptides, expressed in optical density units (ODU), differed significantly (p ≤ .05) across the examined periods of the reproductive season. The highest ODU values for almost all analysed proteins were observed during the rutting period. The presence of HSPs in the epididymal tissues and fluids of roe deer in different periods of the reproductive season could indicate that those proteins play an important role in sperm maturation in the epididymis. © 2016 Blackwell Verlag GmbH.

  16. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis.

    Science.gov (United States)

    Dai, Chengkai

    2018-01-19

    The heat-shock, or HSF1-mediated proteotoxic stress, response (HSR/HPSR) is characterized by induction of heat-shock proteins (HSPs). As molecular chaperones, HSPs facilitate the folding, assembly, transportation and degradation of other proteins. In mammals, heat shock factor 1 (HSF1) is the master regulator of this ancient transcriptional programme. Upon proteotoxic insults, the HSR/HPSR is essential to proteome homeostasis, or proteostasis, thereby resisting stress and antagonizing protein misfolding diseases and ageing. Contrasting with these benefits, an unexpected pro-oncogenic role of the HSR/HPSR is unfolding. Whereas HSF1 remains latent in primary cells without stress, it becomes constitutively activated within malignant cells, rendering them addicted to HSF1 for their growth and survival. Highlighting the HSR/HPSR as an integral component of the oncogenic network, several key pathways governing HSF1 activation by environmental stressors are causally implicated in malignancy. Importantly, HSF1 impacts the cancer proteome systemically. By suppressing tumour-suppressive amyloidogenesis, HSF1 preserves cancer proteostasis to support the malignant state, both providing insight into how HSF1 enables tumorigenesis and suggesting disruption of cancer proteostasis as a therapeutic strategy. This review provides an overview of the role of HSF1 in oncogenesis, mechanisms underlying its constitutive activation within cancer cells and its pro-oncogenic action, as well as potential HSF1-targeting strategies.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'. © 2017 The Author(s).

  17. The heat shock protein/chaperone network and multiple stress resistance

    KAUST Repository

    Jacob, Pierre; Hirt, Heribert; Bendahmane, Abdelhafid

    2016-01-01

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multi-stress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone

  18. The heat shock protein/chaperone network and multiple stress resistance

    KAUST Repository

    Jacob, Pierre

    2016-11-15

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multi-stress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone

  19. Detection of 70 kDa heat shock protein in the saliva of dairy cows.

    Science.gov (United States)

    Lamy, Elsa; Jurkovich, Viktor; Rodrigues, Lénia; Geraldo, Ana; Cachucho, Liliana; Silva, Flávio; Matos, Catarina; Capela E Silva, Fernando; Pinheiro, Cristina; Könyves, László; Bakony, Mikolt; Pereira, Alfredo

    2017-08-01

    This Research Communication describes, for the first time, the detection of HSP70 in saliva of dairy cows. Thermal stress is a major environmental stress that limits animal growth, metabolism, and productivity. The cellular response to heat stress involves the synthesis of heat shock proteins (HSPs), presumably to protect the functional stability of cells at increasing temperatures. HSP70 has been found to be present in cattle blood serum and may also be present in other secretory fluids, such as saliva, as already observed in humans. The aim of this study was to detect heat shock protein HSP70 in bovine saliva. Saliva samples were taken from higher- (n = 5) and lower milk producing (n = 5) Holstein-Friesian cows in summer and in winter for the detection of HSP70. HSP70 concentrations were assayed using the ELISA technique. Salivary HSP70 concentrations ranged from 0·524 to 12·174 ng/ml in cows. Higher salivary HSP70 concentrations were significantly associated with higher milk production and higher environmental temperature, but not with rectal temperature.

  20. Molecular characterization of three heat shock protein 70 genes and their expression profiles under thermal stress in the citrus red mite.

    Science.gov (United States)

    Yang, Li-Hong; Jiang, Hong-Bo; Liu, Yong-Hua; Dou, Wei; Wang, Jin-Jun

    2012-04-01

    Three heat shock protein 70 family transcripts, named PcHsp70-1, PcHsp70-2 and PcHsp70-3, were isolated from the citrus red mite, Panonychus citri. PcHsp70-1, PcHsp70-2, and PcHsp70-3 contained an open reading frame of 1977, 1968, and 2028 nucleotides that encoded 658, 655 and 675 amino acid residues, respectively. Comparison of deduced amino acid sequences of PcHsp70-1 and PcHsp70-2 showed 86.34% identity, while the amino acid sequence of PcHsp70-3 was only 57.39 and 58.75% identical to that of PcHsp70-1 and PcHsp70-2, respectively. Sequences and phylogenetic analyses suggested that PcHsp70-1 and PcHsp70-2 were cytosolic Hsps, whereas PcHsp70-3 was located in ER (endoplasmic reticulum). To accurately validate mRNA expression profiles of the three Hsp70s under thermal stress conditions, seven housekeeping genes were evaluated. Alpha-tubulin and RpII were selected as optimal endogenous references for cold shock and heat shock conditions, respectively. Real-time quantitative RT-PCR revealed that only the mRNA expression of PcHsp70-2 was up-regulated under heat shocks, and all of the three Hsp70s were constitutively expressed under cold shocks. The results suggest that the three Hsp70s were more critical to coping with heat than cold shocks.

  1. Electronic specific heats in metal--hydrogen systems

    International Nuclear Information System (INIS)

    Flotow, H.E.

    1979-01-01

    The electronic specific heats of metals and metal--hydrogen systems can in many cases be evaluated from the measured specific heats at constant pressure, C/sub p/, in the temperature range 1 to 10 K. For the simplest case, C/sub p/ = γT + βT 3 , where γT represents the specific heat contribution associated with the conduction electrons, and βT 3 represents lattice specific heat contribution. The electronic specific heat coefficient, γ, is important because it is proportional to electron density of states at the Fermi surface. A short description of a low temperature calorimetric cryostat employing a 3 He/ 4 He dilution refrigeration is given. Various considerations and complications encountered in the evaluation of γ from specific heat data are discussed. Finally, the experimental values of γ for the V--Cr--H system and for the Lu--H system are summarized and the variations of γ as function of alloy composition are discussed

  2. Experimental investigation of a PCM-HP heat sink on its thermal performance and anti-thermal-shock capacity for high-power LEDs

    International Nuclear Information System (INIS)

    Wu, Yuxuan; Tang, Yong; Li, Zongtao; Ding, Xinrui; Yuan, Wei; Zhao, Xuezhi; Yu, Binhai

    2016-01-01

    Highlights: • A phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) is designed. • The PCM-HP heat sink can significantly lower the LED heating rate and temperature. • The PCM-HP heat sink achieves a best anti-thermal-shock capacity in LED cyclic working modes. - Abstract: High-power LEDs demonstrate a number of benefits compared with conventional incandescent lamps and fluorescent lamps, including a longer lifetime, higher brightness and lower power consumption. However, owing to their severe high heat flux, it is difficult to develop effective thermal management of high-power LEDs, especially under cyclic working modes, which cause serious periodic thermal stress and limit further development. Focusing on the above problem, this paper designed a phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) that consists of a PCM base, adapter plate, heat pipe and finned radiator. Different parameters, such as three types of interior materials to fill the heat sink, three LED power inputs and eight LED cyclic working modes, were separately studied to investigate the thermal performance and anti-thermal-shock capacity of the PCM-HP heat sink. The results show that the PCM-HP heat sink possesses remarkable thermal performance owing to the reduction of the LED heating rate and peak temperature. More importantly, an excellent anti-thermal-shock capacity of the PCM-HP heat sink is also demonstrated when applied in LED cyclic working modes, and this capacity demonstrates the best range.

  3. Heat Shock Protein-Inducing Property of Diarylheptanoid Containing Chalcone Moiety from Alpinia katsumadai

    Directory of Open Access Journals (Sweden)

    Joo-Won Nam

    2017-10-01

    Full Text Available A new diarylheptanoid containing a chalcone moiety, katsumain H (1, was isolated from the seeds of Alpinia katsumadai. The structure was elucidated using a combination of 1D/2D NMR spectroscopy and mass spectrometry data analysis. The absolute configurations of C-3, C-5, and C-7 in 1 were assigned based on its optical rotation and after comparing its NMR chemical shifts with those of its diastereoisomers, katsumain E and katsumain F, which were previously isolated from this plant and characterized. In this study, the stimulatory effects of compounds 1 and 2 were evaluated on heat shock factor 1 (HSF1, heat shock protein 27 (HSP27, and HSP70. Compounds 1 and 2 increased the expression of HSF1 (1.056- and 1.200-fold, respectively, HSP27 (1.312- and 1.242-fold, respectively, and HSP70 (1.234- and 1.271-fold, respectively, without increased cytotoxicity.

  4. Differential expression pattern of heat shock protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress period.

    Science.gov (United States)

    Rout, P K; Kaushik, R; Ramachandran, N

    2016-07-01

    It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36-89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at -70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5-2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5

  5. Engagement of Components of DNA-Break Repair Complex and NFκB in Hsp70A1A Transcription Upregulation by Heat Shock.

    Science.gov (United States)

    Hazra, Joyita; Mukherjee, Pooja; Ali, Asif; Poddar, Soumita; Pal, Mahadeb

    2017-01-01

    An involvement of components of DNA-break repair (DBR) complex including DNA-dependent protein kinase (DNA-PK) and poly-ADP-ribose polymerase 1 (PARP-1) in transcription regulation in response to distinct cellular signalling has been revealed by different laboratories. Here, we explored the involvement of DNA-PK and PARP-1 in the heat shock induced transcription of Hsp70A1A. We find that inhibition of both the catalytic subunit of DNA-PK (DNA-PKc), and Ku70, a regulatory subunit of DNA-PK holo-enzyme compromises transcription of Hsp70A1A under heat shock treatment. In immunoprecipitation based experiments we find that Ku70 or DNA-PK holoenzyme associates with NFκB. This NFκB associated complex also carries PARP-1. Downregulation of both NFκB and PARP-1 compromises Hsp70A1A transcription induced by heat shock treatment. Alteration of three bases by site directed mutagenesis within the consensus κB sequence motif identified on the promoter affected inducibility of Hsp70A1A transcription by heat shock treatment. These results suggest that NFκB engaged with the κB motif on the promoter cooperates in Hsp70A1A activation under heat shock in human cells as part of a DBR complex including DNA-PK and PARP-1.

  6. The effect of passive heating on heat shock protein 70 and interleukin-6: a possible treatment tool for metabolic diseases?

    OpenAIRE

    Faulkner, SH; Jackson, S; Fatania, G; Leicht, CA

    2017-01-01

    Exercise and physical activity remain the gold standard methods of enhancing and maintaining health and wellbeing. However, in populations that benefit most from exercise, adherence is often poor and alternatives to exercise are important to bring about health improvements. Recent work suggests a role for passive heating (PH) and heat shock proteins (HSP) in improving cardio-metabolic health. The aim of this study was to investigate the expression of HSP70 and IL-6 in response to either exerc...

  7. Ploidy Manipulation of Zebrafish Embryos with Heat Shock 2 Treatment

    Science.gov (United States)

    Baars, Destiny L.; Pelegri, Francisco

    2016-01-01

    Manipulation of ploidy allows for useful transformations, such as diploids to tetraploids, or haploids to diploids. In the zebrafish Danio rerio, specifically the generation of homozygous gynogenetic diploids is useful in genetic analysis because it allows the direct production of homozygotes from a single heterozygous mother. This article describes a modified protocol for ploidy duplication based on a heat pulse during the first cell cycle, Heat Shock 2 (HS2). Through inhibition of centriole duplication, this method results in a precise cell division stall during the second cell cycle. The precise one-cycle division stall, coupled to unaffected DNA duplication, results in whole genome duplication. Protocols associated with this method include egg and sperm collection, UV treatment of sperm, in vitro fertilization and heat pulse to cause a one-cell cycle division delay and ploidy duplication. A modified version of this protocol could be applied to induce ploidy changes in other animal species. PMID:28060351

  8. Microbial pathogenesis in cystic fibrosis: co-ordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa.

    Science.gov (United States)

    Schurr, M J; Deretic, V

    1997-04-01

    Conversion of Pseudomonas aeruginosa to the mucoid phenotype plays a major role in the pathogenesis of respiratory infections in cystic fibrosis (CF). One mechanism responsible for mucoidy is based on mutations that inactivate the anti-sigma factor, MucA, which normally inhibits the alternative sigma factor, AIgU. The loss of MucA allows AIgU to freely direct transcription of the genes responsible for the production of the exopolysaccharide alginate resulting in mucoid colony morphology. In Escherichia coli, a close homologue of AIgU, sigma(E), directs transcription of several genes under conditions of extreme heat shock. Here we examined whether AIgU, besides its role in controlling alginate production, affects the heat-shock response in P. aeruginosa. The P. aeruginosa rpoH gene encoding a homologue of the major heat-shock sigma factor, sigma32, was found to be transcribed by AIgU containing RNA polymerase from one of its promoters (P3) identified in this study. Transcription of rpoH from P3 was elevated upon exposure to extreme heat shock in an aIgU-dependent manner. Importantly, the AIgU-dependent promoter of rpoH was found to be activated in mucoid mucA mutants. In keeping with this observation, introduction of a wild-type mucA gene abrogated AIgU-dependent rpoH transcription in mucoid P. aeruginosa laboratory isolates and CF isolates. These results suggest that conversion to mucoidy and the heat-shock response are co-ordinately regulated in P. aeruginosa. The simultaneous activation of both systems in mucA mutants, selected in the lungs of CF patients, may have significance for the inflammatory processes characteristic of the establishment of chronic infection and ensuing clinical deterioration in CF.

  9. Measuring the Shock Stage of Asteroid Regolith Grains by Electron Back-Scattered Diffraction

    Science.gov (United States)

    Zolensky, Michael; Martinez, James; Sitzman, Scott; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Ozawa, Hikaru; hide

    2018-01-01

    We have been analyzing Itokawa samples in order to definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by electron and X-ray diffraction. These techniques would then be available for samples returned from other asteroid regoliths.

  10. Spherical strong-shock generation for shock-ignition inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Theobald, W.; Seka, W.; Lafon, M.; Anderson, K. S.; Hohenberger, M.; Marshall, F. J.; Michel, D. T.; Solodov, A. A.; Stoeckl, C.; Edgell, D. H.; Yaakobi, B.; Shvydky, A. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Nora, R.; Betti, R. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Department of Mechanical Engineering and Department of Physics, University of Rochester, Rochester, New York 14623 (United States); Casner, A.; Reverdin, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Ribeyre, X.; Vallet, A. [Université de Bordeaux-CNRS-CEA, CELIA (Centre Lasers Intenses et Applications) UMR 5107 F-33400 Talence (France); Peebles, J.; Beg, F. N. [University of California, San Diego, La Jolla, California 92093 (United States); and others

    2015-05-15

    Recent experiments on the Laboratory for Laser Energetics' OMEGA laser have been carried out to produce strong shocks in solid spherical targets with direct laser illumination. The shocks are launched at pressures of several hundred Mbars and reach Gbar upon convergence. The results are relevant to the validation of the shock-ignition scheme and to the development of an OMEGA experimental platform to study material properties at Gbar pressures. The experiments investigate the strength of the ablation pressure and the hot-electron production at incident laser intensities of ∼2 to 6 × 10{sup 15 }W/cm{sup 2} and demonstrate ablation pressures exceeding 300 Mbar, which is crucial to developing a shock-ignition target design for the National Ignition Facility. The timing of the x-ray flash from shock convergence in the center of the solid plastic target is used to infer the ablation and shock pressures. Laser–plasma instabilities produce hot-electrons with a moderate temperature (<100 keV). The instantaneous conversion efficiencies of laser power into hot-electron power reached up to ∼15% in the intensity spike. The large amount of hot electrons is correlated with an earlier x-ray flash and a strong increase in its magnitude. This suggests that hot electrons contribute to the augmentation of the shock strength.

  11. Acquired thermotolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus sp. strain B12.

    Science.gov (United States)

    Trent, J D; Osipiuk, J; Pinkau, T

    1990-03-01

    The extreme thermophile Sulfolobus sp. strain B12 exhibits an acquired thermotolerance response. Thus, survival of cells from a 70 degrees C culture at the lethal temperature of 92 degrees C was enhanced by as much as 6 orders of magnitude over a 2-h period if the culture was preheated to 88 degrees C for 60 min or longer before being exposed to the lethal temperature. In eubacteria and eucaryotes, acquired thermotolerance correlates with the induced synthesis of a dozen or so proteins known as heat shock proteins. In this Sulfolobus species, it correlates with the preferential synthesis of primarily one major protein (55 kilodaltons) and, to a much lesser extent, two minor proteins (28 and 35 kilodaltons). Since the synthesis of all other proteins was radically reduced and these proteins were apparently not degraded or exported, their relative abundance within the cell increased during the time the cells were becoming thermotolerant. They could not yet be related to known heat shock proteins. In immunoassays, they were not cross-reactive with antibodies against heat shock proteins from Escherichia coli (DnaK and GroE), which are highly conserved between eubacteria and eucaryotes. However, it appears that if acquired thermotolerance depends on the synthesis of protective proteins, then in this extremely thermophilic archaebacterium it depends primarily on one protein.

  12. Effect of heat shock on poly(ADP-ribose) synthetase and DNA repair in Drosophila cells

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, N.L.; Kidwell, W.R.

    1982-04-01

    Poly(ADP-ribose) synthetase, a chromatin-bound enzyme which attaches polyanionic chains of ADP-ribose to nuclear proteins, was found to be temperature sensitive in intact Drosophila melanogaster cells. The synthetase was completely inactivated by heat-shocking the cells at 37/sup 0/C for 5 min, a condition which had no appreciable effect on the subsequent growth of Drosophila cells at their physiological temperature. The heat-shock effect on synthetase was reversible; enzyme activity began to reappear about 2 hr post heat shock. During the 2-hr interval when poly(ADP-ribose) synthetase was absent, the cells were competent in repair of ..gamma..-ray-induced DNA strand breaks as shown by DNA sedimentation studies on alkaline sucrose gradients. It is thus concluded that poly(ADP-ribose) synthesis is unnecessary for repair of DNA strand breaks introduced by irradiation. The same conclusion was reached from the fact that two inhibitors of poly(ADP-ribose) synthetase 3-aminobenzamide and 5-methylnicotinamide, failed to block repair of ..gamma..-ray-induced DNA chain breaks even though both inhibitors reduced the amount of poly(ADP-ribose) synthesized in cells by 50-75%. Although it was found that the repair of DNA strand breaks is independent of poly(ADP-ribose) synthesis, irradiation does activate the synthetase in control cells, as shown by radioimmunoassay of poly(ADP-ribose) levels.

  13. Effect of heat shock on poly(ADP-ribose) synthetase and DNA repair in Drosophila cells

    International Nuclear Information System (INIS)

    Nolan, N.L.; Kidwell, W.R.

    1982-01-01

    Poly(ADP-ribose) synthetase, a chromatin-bound enzyme which attaches polyanionic chains of ADP-ribose to nuclear proteins, was found to be temperature sensitive in intact Drosophila melanogaster cells. The synthetase was completely inactivated by heat-shocking the cells at 37 0 C for 5 min, a condition which had no appreciable effect on the subsequent growth of Drosophila cells at their physiological temperature. The heat-shock effect on synthetase was reversible; enzyme activity began to reappear about 2 hr post heat shock. During the 2-hr interval when poly(ADP-ribose) synthetase was absent, the cells were competent in repair of γ-ray-induced DNA strand breaks as shown by DNA sedimentation studies on alkaline sucrose gradients. It is thus concluded that poly(ADP-ribose) synthesis is unnecessary for repair of DNA strand breaks introduced by irradiation. The same conclusion was reached from the fact that two inhibitors of poly(ADP-ribose) synthetase 3-aminobenzamide and 5-methylnicotinamide, failed to block repair of γ-ray-induced DNA chain breaks even though both inhibitors reduced the amount of poly(ADP-ribose) synthesized in cells by 50-75%. Although it was found that the repair of DNA strand breaks is independent of poly(ADP-ribose) synthesis, irradiation does activate the synthetase in control cells, as shown by radioimmunoassay of poly(ADP-ribose) levels

  14. A novel computational approach of image analysis to quantify behavioural response to heat shock in Chironomus Ramosus larvae (Diptera: Chironomidae

    Directory of Open Access Journals (Sweden)

    Bimalendu B. Nath

    2015-07-01

    Full Text Available All living cells respond to temperature stress through coordinated cellular, biochemical and molecular events known as “heat shock response” and its genetic basis has been found to be evolutionarily conserved. Despite marked advances in stress research, this ubiquitous heat shock response has never been analysed quantitatively at the whole organismal level using behavioural correlates. We have investigated behavioural response to heat shock in a tropical midge Chironomus ramosus Chaudhuri, Das and Sublette. The filter-feeding aquatic Chironomus larvae exhibit characteristic undulatory movement. This innate pattern of movement was taken as a behavioural parameter in the present study. We have developed a novel computer-aided image analysis tool “Chiro” for the quantification of behavioural responses to heat shock. Behavioural responses were quantified by recording the number of undulations performed by each larva per unit time at a given ambient temperature. Quantitative analysis of undulation frequency was carried out and this innate behavioural pattern was found to be modulated as a function of ambient temperature. Midge larvae are known to be bioindicators of aquatic environments. Therefore, the “Chiro” technique can be tested using other potential biomonitoring organisms obtained from natural aquatic habitats using undulatory motion as a behavioural parameter.

  15. Transcription of four Rhopalosiphum padi (L.) heat shock protein genes and their responses to heat stress and insecticide exposure.

    Science.gov (United States)

    Li, Yuting; Zhao, Qi; Duan, Xinle; Song, Chunman; Chen, Maohua

    2017-03-01

    The bird cherry-oat aphid, Rhopalosiphum padi (L.), a worldwide destructive pest, is more heat tolerant than other wheat aphids, and it has developed resistance to different insecticides. Heat shock proteins (HSPs) play an important role in coping with environmental stresses. To investigate Hsp transcriptional responses to heat and insecticide stress, four full-length Hsp genes from R. padi (RpHsp60, RpHsc70, RpHsp70-1, and RpHsp70-2) were cloned. Four RpHsps were expressed during all R. padi developmental stages, but at varying levels. The mRNA levels of RpHsps were increased under thermal stress and reached maximal induction at a lower temperature (36°C) in the alate morph than in the apterous morph (37°C or 38°C). RpHsp expressions under heat stress suggest that RpHsp70-1 and RpHsp70-2 are inducible in both apterous and alate morphs, RpHsc70 is only heat-inducible in apterous morph, and RpHsp60 exhibits poor sensitivity to heat stress. The pretreatment at 37°C significantly increase both the survival rate and the RpHsps expression level of R. padi at subsequent lethal temperature. Under exposure to two sublethal concentrations (LC 10 and LC 30 ) of beta-cypermethrin, both RpHsp70-1 and RpHsp70-2 expressions were induced and reached a maximum 24h after exposure. In contrast, expression of RpHsp60 was not induced by either sublethal concentration of beta-cypermethrin. Moreover, the responses of RpHsp70-1 and RpHsp70-2 to heat shock were more sensitive than those to beta-cypermethrin. These results suggest that induction of RpHsp expression is related to thermal tolerance, and that RpHsp70-1 and RpHsp70-2 are the primary genes involved in the response to both heat and pesticide stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Electron cyclotron heating (ECH) of tokamak plasmas

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi

    1990-01-01

    Electron cyclotron heating (ECH) is one of the intense methods of plasma heating, and which utilizes the collisionless electron-cyclotron-resonance-interaction between the launched electromagnetic waves (called electron cyclotron waves) and electrons which are one of the constituents of the high temperature plasmas. Another constituent, namely the ions which are subject to nuclear fusion, are heated indirectly but strongly and instantly (in about 0.1 s) by the collisions with the ECH-heated electrons in the fusion plasmas. The recent progress on the development of high-power and high-frequency millimeter-wave-source enabled the ECH experiments in the middle size tokamaks such as JFT-2M (Japan), Doublet III (USA), T-10 (USSR) etc., and ECH has been demonstrated to be the sure and intense plasma heating method. The ECH attracts much attention for its remarkable capabilities; to produce plasmas (pre-ionization), to heat plasmas, to drive plasma current for the plasma confinement, and recently especially by the localization and the spatial controllability of its heating zone, which is beneficial for the fine controls of the profiles of plasma parameters (temperature, current density etc.), for the control of the magnetohydrodynamic instabilities, or for the optimization/improvement of the plasma confinement characteristics. Here, the present status of the ECH studies on tokamak plasmas are reviewed. (author)

  17. Role of hippocampal dentate gyrus neurons in the protective effects of heat shock factor 1 on working memory

    Institute of Scientific and Technical Information of China (English)

    Min Peng; Xiongzhao Zhu; Ming Cheng; Xiangyi Chen; Shuqiao Yao

    2011-01-01

    Increasing evidence suggests that heat shock factor 1 exerts endogenous protective effects on working memory under conditions of chronic psychological stress. However, the precise underlying mechanisms remain poorly understood. This study examined the protective factors affecting working memory in heat shock transcription factor 1 gene knockout mice. The results indicated that the number of correct T maze alternations decreased following mild chronic psychological stress in knockout mice. This change was accompanied by a decrease in neurogenesis and an increase in neuronal apoptosis in the hippocampal dentate gyrus. The number of correct T maze alternations was positively correlated with neurogenesis in hippocampal dentate gyrus, and negatively correlated with neuronal apoptosis. In wild type mice, no significant difference was detected in the number of correct T maze alternations or neuronal apoptosis in hippocampal dentate gyrus. These results indicate that the heat shock factor 1 gene has an endogenous protective role in working memory during mild chronic psychological stress associated with dentate gyrus neuronal apoptosis.Moreover, dentate gyrus neurogenesis appears to participate in the protective mechanism.

  18. A Rice CaMBP Gene is Induced in Organ-Specific Manner by Both Chilling and Heat-Shock Treatments

    Directory of Open Access Journals (Sweden)

    Jia WAN

    2008-09-01

    Full Text Available A rice CaMBP gene, OsCaMBP (AB363406, was isolated from a chilling treated rice using the fluorescent differential display (FDD screening method. Its cDNA sequence (2094 bp contains an opening reading frame (ORF encoding a 569 amino acids protein (63.2 kD. OsCaMBP has the typical structural features of the CaMBP family, including the conserved IQ calmodulin-binding motif at the N-terminus. Homology analysis revealed 38.25%–47.28% identities of OsCaMBP with other CaMBPs in plants. RT-PCR analysis showed that the expression of OsCaMBP was remarkably inducible under the chilling (8°C and heat-shock (42°C treatments. OsCaMBP was undetectable under the normal conditions, and induced under the chilling treatment for 1 h, as well as the heat-shock treatment for 15 min, suggesting that the gene plays important roles in the signaling pathway in rice under both chilling and heat-shock stresses.

  19. Small heat-shock proteins and leaf cooling capacity account for the unusual heat tolerance of the central spike leaves in Agave tequilana var. Weber.

    Science.gov (United States)

    Luján, Rosario; Lledías, Fernando; Martínez, Luz María; Barreto, Rita; Cassab, Gladys I; Nieto-Sotelo, Jorge

    2009-12-01

    Agaves are perennial crassulacean acid metabolism (CAM) plants distributed in tropical and subtropical arid environments, features that are attractive for studying the heat-shock response. In agaves, the stress response can be analysed easily during leaf development, as they form a spirally shaped rosette, having the meristem surrounded by folded leaves in the centre (spike) and the unfolded and more mature leaves in the periphery. Here, we report that the spike of Agave tequilana is the most thermotolerant part of the rosette withstanding shocks of up to 55 degrees C. This finding was inconsistent with the patterns of heat-shock protein (Hsp) gene expression, as maximal accumulation of Hsp transcripts was at 44 degrees C in all sectors (spike, inner, middle and outer). However, levels of small HSP (sHSP)-CI and sHSP-CII proteins were conspicuously higher in spike leaves at all temperatures correlating with their thermotolerance. In addition, spike leaves showed a higher stomatal density and abated more efficiently their temperature several degrees below that of air. We propose that the greater capacity for leaf cooling during the day in response to heat stress, and the elevated levels of sHSPs, constitute part of a set of strategies that protect the SAM and folded leaves of A. tequilana from high temperatures.

  20. Dissipation Mechanisms and Particle Acceleration at the Earth's Bow Shock

    Science.gov (United States)

    Desai, M. I.; Burch, J. L.; Broll, J. M.; Genestreti, K.; Torbert, R. B.; Ergun, R.; Wei, H.; Giles, B. L.; Russell, C. T.; Phan, T.; Chen, L. J.; Lai, H.; Wang, S.; Schwartz, S. J.; Allen, R. C.; Mauk, B.; Gingell, I.

    2017-12-01

    NASA's Magnetospheric Multiscale (MMS) mission has four spacecraft equipped with identical state-of-the-art instruments that acquire magnetic and electric field, plasma wave, and particle data at unprecedented temporal resolution to study the fundamental physics of magnetic reconnection in the Earth's magnetosphere. During Phase 1a, MMS also encountered and crossed the Earth's bow shock more than 300 times. We use burst data during 2 bow shock crossings to shed new light on key open questions regarding the formation, evolution, and dissipation mechanisms at collisionless shocks. Specifically, we focus on two events that exhibit clear differences in the ion and electron properties, the associated wave activity, and, therefore in the nature of the dissipation. In the case of a quasi-perpendicular, low beta shock crossing, we find that the dissipation processes are most likely associated with field-aligned electron beams that are coincident with high frequency electrostatic waves. On the other hand, the dissipation processes at an oblique, high beta shock crossing are largely governed by the quasi-static electric field and generation of magnetosonic whistler waves that result in perpendicular temperature anisotropy for the electrons. We also discuss the implications of these results for ion heating, reflection, and particle acceleration.

  1. Heated electron distributions from resonant absorption

    International Nuclear Information System (INIS)

    DeGroot, J.S.; Tull, J.E.

    1975-01-01

    A simplified model of resonant absorption of obliquely incident laser light has been developed. Using a 1.5 dimensional electrostatic simulation computer code, it is shown that the inclusion of ion motion is critically important in determining the heated electron distributions from resonant absorption. The electromagnetic wave drives up an electron plasma wave. For long density scale lengths (Lapprox. =10 3 lambda/subD//sube/), the phase velocity of this wave is very large (ω/kapproximately-greater-than10V/sub th/) so that if heating does occur, a suprathermal tail of very energetic electrons is produced. However, the pressure due to this wave steepens the density profile until the density gradient scale length near the critical density (where the local plasma frequency equals the laser frequency) is of order 20lambda/subD//sube/. The electrostatic wave is thus forced to have a much lower phase velocity (ω/kapprox. =2.5V/sub th/). In this case, more electrons are heated to much lower velocities. The heated electron distributions are exponential in velocity space. Using a simple theory it is shown that this property of profile steepening applies to most of a typical laser fusion pulse. This steepening raises the threshold for parametric instabilities near the critical surface. Thus, the extensive suprathermal electron distributions typically produced by these parametric instabilities can be drastically reduced

  2. Not changes in membrane fluidity but proteotoxic stress triggers heat shock protein expression in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Rütgers, Mark; Muranaka, Ligia Segatto; Schulz-Raffelt, Miriam; Thoms, Sylvia; Schurig, Juliane; Willmund, Felix; Schroda, Michael

    2017-12-01

    A conserved reaction of all organisms exposed to heat stress is an increased expression of heat shock proteins (HSPs). Several studies have proposed that HSP expression in heat-stressed plant cells is triggered by an increased fluidity of the plasma membrane. Among the main lines of evidence in support of this model are as follows: (a) the degree of membrane lipid saturation was higher in cells grown at elevated temperatures and correlated with a lower amplitude of HSP expression upon a temperature upshift, (b) membrane fluidizers induce HSP expression at physiological temperatures, and (c) membrane rigidifier dimethylsulfoxide dampens heat-induced HSP expression. Here, we tested whether this holds also for Chlamydomonas reinhardtii. We show that heat-induced HSP expression in cells grown at elevated temperatures was reduced because they already contained elevated levels of cytosolic HSP70A/90A that apparently act as negative regulators of heat shock factor 1. We find that membrane rigidifier dimethylsulfoxide impaired translation under heat stress conditions and that membrane fluidizer benzyl alcohol not only induced HSP expression but also caused protein aggregation. These findings support the classical model for the cytosolic unfolded protein response, according to which HSP expression is induced by the accumulation of unfolded proteins. Hence, the membrane fluidity model should be reconsidered. © 2017 John Wiley & Sons Ltd.

  3. Inorganic zinc supplementation modulates heat shock and immune response in heat stressed peripheral blood mononuclear cells of periparturient dairy cows.

    Science.gov (United States)

    Sheikh, Aasif Ahmad; Aggarwal, Anjali; B, Indu; Aarif, Ovais

    2017-06-01

    Thermal stress in India is one of the major constraints affecting dairy cattle productivity. Every attempt should be made to ameliorate the heat and calving related stress in high producing dairy cows for higher economic returns. In the current study, inorganic zinc was tried to alleviate the adverse effects of thermal stress in periparturient cows. Twelve cows, six each of Sahiwal and Karan Fries (KF) in their second parity with confirmed pregnancy were chosen for the experiment. The blood samples were collected periparturiently on three occasions viz. -21, 0 and +21 days relative to calving. The in vitro study was conducted after isolating peripheral blood mononuclear cells (PBMC) from whole blood. The cultured PBMC were subjected to three different levels of exposures viz. 37°C as control, 42°C to induce thermal stress and 42°C + zinc to ameliorate the adverse effects of high temperature. Heat shock lead to a significant (Pheat shock proteins (HSP). HSP was more on the day of calving as well. KF showed more HSP concentration than Sahiwal breed indicating the heat bearing capacity of later. Zinc treatment to thermally stressed PBMC caused a fall in the HSP concentration in both the breeds during periparturient period. Moreover, heat stress increased significantly (PHeat and calving related stress caused a fall in the IL-12 levels which increased significantly (Pcows. The study could help to alleviate the heat stress and potentiate immunity by providing mineral supplements in periparturient dairy cattle habituating tropics. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively.

    Directory of Open Access Journals (Sweden)

    Inbal Nussbaum

    Full Text Available Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response.

  5. Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively.

    Science.gov (United States)

    Nussbaum, Inbal; Weindling, Esther; Jubran, Ritta; Cohen, Aviv; Bar-Nun, Shoshana

    2014-01-01

    Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response.

  6. Discrimination of Thermal versus Mechanical Effects of Shock on Rock Magnetic Properties of Spherically Shocked up to 10-160 GPa Basalt and Diabase

    Science.gov (United States)

    Bezaeva, N. S.; Swanson-Hysell, N.; Tikoo, S.; Badyukov, D. D.; Kars, M. A. C.; Egli, R.; Chareev, D. A.; Fairchild, L. M.

    2016-12-01

    Understanding how shock waves generated during hypervelocity impacts affect rock magnetic properties is key for interpreting the paleomagnetic records of lunar rocks, meteorites, and cratered planetary surfaces. Laboratory simulations of impacts show that ultra-high shocks may induce substantial post-shock heating of the target material. At high pressures (>10 GPa), shock heating occurs in tandem with mechanical effects, such as grain fracturing and creation of crystallographic defects and dislocations within magnetic grains. This makes it difficult to conclude whether shock-induced changes in the rock magnetic properties of target materials are primarily associated with mechanical or thermal effects. Here we present novel experimental methods to discriminate between mechanical and thermal effects of shock on magnetic properties and illustrate it with two examples of spherically shocked terrestrial basalt and diabase [1], which were shocked to pressures of 10 to >160 GPa, and investigate possible explanations for the observed shock-induced magnetic hardening (i.e., increase in remanent coercivity Bcr). The methods consist of i) conducting extra heating experiments at temperatures resembling those experienced during high-pressure shock events on untreated equivalents of shocked rocks (with further comparison of Bcr of shocked and heated samples) and ii) quantitative comparison of high-resolution first-order reversal curve (FORC) diagrams (field step: 0.5-0.7 mT) for shocked, heated and untreated specimens. Using this approach, we demonstrated that the shock-induced coercivity hardening in our samples is predominantly due to solid-state, mechanical effects of shock rather than alteration associated with shock heating. Indeed, heating-induced changes in Bcr in the post-shock temperature range were minor. Visual inspection of FORC contours (in addition to detailed analyses) reveals a stretching of the FORC distribution of shocked sample towards higher coercivities

  7. COLLISIONLESS SHOCKS IN A PARTIALLY IONIZED MEDIUM. II. BALMER EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Morlino, G.; Bandiera, R.; Blasi, P.; Amato, E. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

    2012-12-01

    Strong shocks propagating into a partially ionized medium are often associated with optical Balmer lines. This emission is due to impact excitation of neutral hydrogen by hot protons and electrons in the shocked gas. The structure of such Balmer-dominated shocks has been computed in a previous paper, where the distribution function of neutral particles was derived from the appropriate Boltzmann equation including coupling with ions and electrons through charge exchange and ionization. This calculation showed how the presence of neutrals can significantly modify the shock structure through the formation of a neutral-induced precursor ahead of the shock. Here we follow up on our previous work and investigate the properties of the resulting Balmer emission, with the aim of using the observed radiation as a diagnostic tool for shock parameters. Our main focus is on supernova remnant shocks, and we find that, for typical parameters, the H{alpha} emission typically has a three-component spectral profile, where (1) a narrow component originates from upstream cold hydrogen atoms, (2) a broad component comes from hydrogen atoms that have undergone charge exchange with shocked protons downstream of the shock, and (3) an intermediate component is due to hydrogen atoms that have undergone charge exchange with warm protons in the neutral-induced precursor. The relative importance of these three components depends on the shock velocity, on the original degree of ionization, and on the electron-ion temperature equilibration level. The intermediate component, which is the main signature of the presence of a neutral-induced precursor, becomes negligible for shock velocities {approx}< 1500 km s{sup -1}. The width of the intermediate line reflects the temperature in the precursor, while the width of the narrow one is left unaltered by the precursor. In addition, we show that the profiles of both the intermediate and broad components generally depart from a thermal distribution, as a

  8. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Jun; Sun, Na; Deng, Ting; Zhang, Lida; Zuo, Kaijing

    2014-11-06

    Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n=4x=(AD)2=52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n=2x=(D5)2=26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable. EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development. Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved

  9. Electron acceleration by wave turbulence in a magnetized plasma

    Science.gov (United States)

    Rigby, A.; Cruz, F.; Albertazzi, B.; Bamford, R.; Bell, A. R.; Cross, J. E.; Fraschetti, F.; Graham, P.; Hara, Y.; Kozlowski, P. M.; Kuramitsu, Y.; Lamb, D. Q.; Lebedev, S.; Marques, J. R.; Miniati, F.; Morita, T.; Oliver, M.; Reville, B.; Sakawa, Y.; Sarkar, S.; Spindloe, C.; Trines, R.; Tzeferacos, P.; Silva, L. O.; Bingham, R.; Koenig, M.; Gregori, G.

    2018-05-01

    Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ1-3. Strong shocks are expected to accelerate particles to very high energies4-6; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool7,8. Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind9, a setting where electron acceleration via lower-hybrid waves is possible.

  10. Neurotoxicity induced by arsenic in Gallus Gallus: Regulation of oxidative stress and heat shock protein response.

    Science.gov (United States)

    Zhao, Panpan; Guo, Ying; Zhang, Wen; Chai, Hongliang; Xing, Houjuan; Xing, Mingwei

    2017-01-01

    Arsenic, a naturally occurring heavy metal pollutant, is one of the functioning risk factors for neurological toxicity in humans. However, little is known about the effects of arsenic on the nervous system of Gallus Gallus. To investigate whether arsenic induce neurotoxicity and influence the oxidative stress and heat shock proteins (Hsps) response in chickens, seventy-two 1-day-old male Hy-line chickens were treated with different doses of arsenic trioxide (As 2 O 3 ). The histological changes, antioxidant enzyme activity, and the expressions of Hsps were detected. Results showed slightly histology changes were obvious in the brain tissues exposure to arsenic. The activities of Glutathione peroxidase (GSH-Px) and catalase (CAT) were decreased compared to the control, whereas the malondialdehyde (MDA) content was increased gradually along with increase in diet-arsenic. The mRNA levels of Hsps and protein expressions of Hsp60 and Hsp70 were up-regulated. These results suggested that sub-chronic exposure to arsenic induced neurotoxicity in chickens. Arsenic exposure disturbed the balance of oxidants and antioxidants. Increased heat shock response tried to protect chicken brain tissues from tissues damage caused by oxidative stress. The mechanisms of neurotoxicity induced by arsenic include oxidative stress and heat shock protein response in chicken brain tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Meso-scale modelling of the heat conductivity effect on the shock response of a porous material

    Science.gov (United States)

    Resnyansky, A. D.

    2017-06-01

    Understanding of deformation mechanisms of porous materials under shock compression is important for tailoring material properties at the shock manufacturing of advanced materials from substrate powders and for studying the response of porous materials under shock loading. Numerical set-up of the present work considers a set of solid particles separated by air representing a volume of porous material. Condensed material in the meso-scale set-up is simulated with a viscoelastic rate sensitive material model with heat conduction formulated from the principles of irreversible thermodynamics. The model is implemented in the CTH shock physics code. The meso-scale CTH simulation of the shock loading of the representative volume reveals the mechanism of pore collapse and shows in detail the transition from a high porosity case typical for abnormal Hugoniot response to a moderate porosity case typical for conventional Hugoniot response. Results of the analysis agree with previous analytical considerations and support hypotheses used in the two-phase approach.

  12. Expressed sequence tags from heat-shocked seagrass Zostera noltii (Hornemann) from its southern distribution range

    NARCIS (Netherlands)

    Massa, Sonia I.; Pearson, Gareth A.; Aires, Tania; Kube, Michael; Olsen, Jeanine L.; Reinhardt, Richard; Serrao, Ester A.; Arnaud-Haond, Sophie

    Predicted global climate change threatens the distributional ranges of species worldwide. We identified genes expressed in the intertidal seagrass Zostera midi during recovery from a simulated low tide heat-shock exposure. Five Expressed Sequence Tag (EST) libraries were compared, corresponding to

  13. Electron heat transport in shaped TCV L-mode plasmas

    International Nuclear Information System (INIS)

    Camenen, Y; Pochelon, A; Bottino, A; Coda, S; Ryter, F; Sauter, O; Behn, R; Goodman, T P; Henderson, M A; Karpushov, A; Porte, L; Zhuang, G

    2005-01-01

    Electron heat transport experiments are performed in L-mode discharges at various plasma triangularities, using radially localized electron cyclotron heating to vary independently both the electron temperature T e and the normalized electron temperature gradient R/L T e over a large range. Local gyro-fluid (GLF23) and global collisionless gyro-kinetic (LORB5) linear simulations show that, in the present experiments, trapped electron mode (TEM) is the most unstable mode. Experimentally, the electron heat diffusivity χ e is shown to decrease with increasing collisionality, and no dependence of χ e on R/L T e is observed at high R/L T e values. These two observations are consistent with the predictions of TEM simulations, which supports the fact that TEM plays a crucial role in electron heat transport. In addition, over the broad range of positive and negative triangularities investigated, the electron heat diffusivity is observed to decrease with decreasing plasma triangularity, leading to a strong increase of plasma confinement at negative triangularity

  14. A method to study electron heating during ICRH

    International Nuclear Information System (INIS)

    Eriksson, L.G.; Hellsten, T.

    1989-01-01

    Collisionless absorption of ICRF waves occurs either by ion cyclotron absorption or by electron Landau (ELD) and transit damping (TTMP). Both ion cyclotron absorption, and direct electron absorption results in electron heating. Electron heating by minority ions occurs after a high energy tail of the resonating ions has been formed i.e. typically after 0.2-1s in present JET experiments. Electron heating through ELD, and TTMP, takes place on the timescale given by electron-electron collisions which is typically of the order of ms. This difference in the timescales can be used to separate the two damping mechanisms. This can be done by measuring the time derivatives of the electron temperature after sawtooth crashes during ramp-up and ramp-down of the RF-power. (author) 4 refs., 4 figs

  15. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster.

    Science.gov (United States)

    Ahamed, Maqusood; Posgai, Ryan; Gorey, Timothy J; Nielsen, Mark; Hussain, Saber M; Rowe, John J

    2010-02-01

    Due to the intensive commercial application of silver nanoparticles (Ag NPs), risk assessment of this nanoparticle is of great importance. Our previous in vitro study demonstrated that Ag NPs caused DNA damage and apoptosis in mouse embryonic stem cells and fibroblasts. However, toxicity of Ag NPs in vivo is largely lacking. This study was undertaken to examine the toxic effects of well-characterized polysaccharide coated 10 nm Ag NPs on heat shock stress, oxidative stress, DNA damage and apoptosis in Drosophila melanogaster. Third instar larvae of D. melanogaster were fed a diet of standard cornmeal media mixed with Ag NPs at the concentrations of 50 and 100 microg/ml for 24 and 48 h. Ag NPs up-regulated the expression of heat shock protein 70 and induced oxidative stress in D. melanogaster. Malondialdehyde level, an end product of lipid peroxidation was significantly higher while antioxidant glutathione content was significantly lower in Ag NPs exposed organisms. Activities of antioxidant enzyme superoxide dismutase and catalase were also significantly higher in the organisms exposed to Ag NPs. Furthermore, Ag NPs up-regulated the cell cycle checkpoint p53 and cell signaling protein p38 that are involved in the DNA damage repair pathway. Moreover, activities of caspase-3 and caspase-9, markers of apoptosis were significantly higher in Ag NPs exposed organisms. The results indicate that Ag NPs in D. melanogaster induce heat shock stress, oxidative stress, DNA damage and apoptosis. This study suggests that the organism is stressed and thus warrants more careful assessment of Ag NPs using in vivo models to determine if chronic exposure presents developmental and reproductive toxicity. Copyright 2009 Elsevier Inc. All rights reserved.

  16. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Ahamed, Maqusood; Posgai, Ryan; Gorey, Timothy J.; Nielsen, Mark; Hussain, Saber M.; Rowe, John J.

    2010-01-01

    Due to the intensive commercial application of silver nanoparticles (Ag NPs), risk assessment of this nanoparticle is of great importance. Our previous in vitro study demonstrated that Ag NPs caused DNA damage and apoptosis in mouse embryonic stem cells and fibroblasts. However, toxicity of Ag NPs in vivo is largely lacking. This study was undertaken to examine the toxic effects of well-characterized polysaccharide coated 10 nm Ag NPs on heat shock stress, oxidative stress, DNA damage and apoptosis in Drosophila melanogaster. Third instar larvae of D. melanogaster were fed a diet of standard cornmeal media mixed with Ag NPs at the concentrations of 50 and 100 μg/ml for 24 and 48 h. Ag NPs up-regulated the expression of heat shock protein 70 and induced oxidative stress in D. melanogaster. Malondialdehyde level, an end product of lipid peroxidation was significantly higher while antioxidant glutathione content was significantly lower in Ag NPs exposed organisms. Activities of antioxidant enzyme superoxide dismutase and catalase were also significantly higher in the organisms exposed to Ag NPs. Furthermore, Ag NPs up-regulated the cell cycle checkpoint p53 and cell signaling protein p38 that are involved in the DNA damage repair pathway. Moreover, activities of caspase-3 and caspase-9, markers of apoptosis were significantly higher in Ag NPs exposed organisms. The results indicate that Ag NPs in D. melanogaster induce heat shock stress, oxidative stress, DNA damage and apoptosis. This study suggests that the organism is stressed and thus warrants more careful assessment of Ag NPs using in vivo models to determine if chronic exposure presents developmental and reproductive toxicity.

  17. The electron density and temperature distributions predicted by bow shock models of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Noriega-Crespo, A.; Bohm, K.H.; Raga, A.C.

    1990-01-01

    The observable spatial electron density and temperature distributions for series of simple bow shock models, which are of special interest in the study of Herbig-Haro (H-H) objects are computed. The spatial electron density and temperature distributions are derived from forbidden line ratios. It should be possible to use these results to recognize whether an observed electron density or temperature distribution can be attributed to a bow shock, as is the case in some Herbig-Haro objects. As an example, the empirical and predicted distributions for H-H 1 are compared. The predicted electron temperature distributions give the correct temperature range and they show very good diagnostic possibilities if the forbidden O III (4959 + 5007)/4363 wavelength ratio is used. 44 refs

  18. Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Jacobsen, Susanne; Hammer, Karin

    1997-01-01

    The bacterium Lactococcus lactis has become a model organism in studies of growth physiology and membrane transport, as a result of its simple fermentative metabolism. It is also used as a model for studying the importance of specific genes and functions during lie in excess nutrients, by compari...... the timing during heat stress although at a lower induction level. These data indicate an overlap between the heat shock and salt stress responses in L. lactis......., by comparison of prototrophic wild-type strains and auxotrophic domesticated (daily) strains. In a study of the capacity of domesticated strains to perform directed responses toward various stress conditions, we have analyzed the heat and salt stress response in the established L,. lactis subsp. cremoris...... laboratory strain MG1363, which was originally derived from a dairy strain, After two-dimensional separation of proteins, the DnaK, GroEL, and GroES heat shock proteins, the HrcA (Orf1) heat shack repressor, and the glycolytic enzymes pyruvate kinase, glyceral-dehyde-3-phosphate dehydrogenase...

  19. Examination the expression pattern of HSP70 heat shock protein in chicken PGCs and developing genital ridge

    Directory of Open Access Journals (Sweden)

    Mahek Anand

    2016-05-01

    Full Text Available Chicken Primordial Germ cells (PGCs are emerging pioneers in the field of applied embryology and stem cell technology. Now-a-days transgenic chickens are promising models to study human disease pathophysiology and drug designing. However, most of the molecular mechanism, which govern the stemness and pluripotency of chicken PGCs, not known in details. Recent studies have indicated the role of HSP70 in early embryonic development in many vertebrate species. Exposure of chicken to heat stress result in activation of heat shock factors which activate the transcription of HSP70. Exposure chicken eggs to acute heat stress effects HSP70 expression in PGCs and gonads. HSP70 helps in maintaining the integrity of chicken PGCs. A new emerging role of HSP70 in apoptosis has emerged. In our lab, we aim to characterize the expression of cHsp70 in chicken PGCs and gonads during embryonic development by subjecting the parents to acute levels of heat stress. Chickens whose parents subjected to heat stress showed varied expression of cHsp70 and also improved thermo tolerance. In the future we plan to study other factors and miRNAs, which is characterized as an emerging player in regulating heat shock protein response in chicken and also plays an important role in apoptosis.

  20. Irreversible thermodynamics of overdriven shocks in solids

    International Nuclear Information System (INIS)

    Wallace, D.C.

    1981-01-01

    An isotropic solid capable of transporting heat and of undergoing dissipative plastic flow, is treated. The shock is assumed to be a steady wave, and any phase changes or macroscopic inhomogeneities which might be induced by the shock are neglected. Under these conditions it is established that for an overdriven shock, no solution is possible without heat transport, and when the heat transport is governed by the steady conduction equation, no solution is possible without plastic dissipation as well. Upper and lower bounds are established for the thermodynamic variables, namely the shear stress, temperature, entropy, plastic strain, and heat flux, as functions of compression through the shock

  1. Development of laser heated high current DC electron gun

    International Nuclear Information System (INIS)

    Banerjee, Srutarshi; Bhattacharjee, Dhruva; Kandaswamy, E.; Ghodke, S.R.; Tiwari, Rajnish; Bakhtsingh, R.I.

    2015-01-01

    The paper deals with the development of a Laser heated cathode for Electron Accelerator. The electron gun is meant for Megawatt-class DC Accelerator for Electron Beam Flue Gas Treatment applications. Conventionally, LaB 6 cathode is indirectly heated by tungsten filaments whereas in the newly proposed gun, Laser is utilized for heating. A Nd:YAG Laser is used to heat the LaB 6 cathode to emission temperatures. The characterization of cathode heating at various Laser powers has been carried out. In initial trials, it has been observed that with 125 W of Laser power, the LaB 6 pellet was heated to 1315 ° C. Based on these experimental results, an electron gun rated for 30 kV, 350 mA CW has been designed. The optimization of gun electrode geometry has been done using CST Particle Studio in order to tune the various electron gun parameters. The beam diameter obtained in simulation is 8 mm at 100 mm from the LaB 6 cathode. The perveance obtained is 7.1 x 10 -8 A/V 3/2 . The Laser heated cathode has the advantages of eliminating the magnetic field effects of filament on the electron beam, electrical isolation needed for gun filament power supplies and better electron beam emittances. (author)

  2. Influence of recrystallization on thermal shock resistance of various tungsten grades

    International Nuclear Information System (INIS)

    Uytdenhouwen, I.; Decreton, M.; Hirai, T.; Linke, J.; Pintsuk, G.; Oost, G. van

    2007-01-01

    Thermal shock resistance of various tungsten grades (different manufacturing technologies and heat treatments) was examined under plasma disruption conditions, especially in the cracking regime, i.e. below the melting threshold. The tests have been simulated with the electron beam test facility JUDITH. The comparison of the thermal shock resistance showed that sintered tungsten appeared to be better than the deformed tungsten material and clear degradation after recrystallization was found. Damage processes linked to the mechanical properties of W are discussed

  3. Manipulating heat shock protein expression in laboratory animals.

    Science.gov (United States)

    Tolson, J Keith; Roberts, Stephen M

    2005-02-01

    Upregulation of heat shock proteins (Hsps) has been observed to impart resistance to a wide variety of physical and chemical insults. Elucidation of the role of Hsps in cellular defense processes depends, in part, on the ability to manipulate Hsp expression in laboratory animals. Simple methods of inducing whole body hyperthermia, such as warm water immersion or heating pad application, are effective in producing generalized expression of Hsps. Hsps can be upregulated locally with focused direct or indirect heating, such as with ultrasound or with laser or microwave radiation. Increased Hsp expression in response to toxic doses of xenobiotics has been commonly observed. Some pharmacologic agents are capable of altering Hsps more specifically by affecting processes involved in Hsp regulation. Gene manipulation offers the ability to selectively increase or decrease individual Hsps. Knockout mouse strains and Hsp-overexpressing transgenics have been used successfully to examine the role of specific Hsps in protection against hyperthermia, chemical insults, and ischemia-reperfusion injury. Gene therapy approaches also offer the possibility of selective alteration of Hsp expression. Some methods of increasing Hsp expression have application in specialized areas of research, such cold response, myocardial protection from exercise, and responses to stressful or traumatic stimuli. Each method of manipulating Hsp expression in laboratory animals has advantages and disadvantages, and selection of the best method depends upon the experimental objectives (e.g., the alteration in Hsp expression needed, its timing, and its location) and resources available.

  4. The small heat shock proteins from Acidithiobacillus ferrooxidans: gene expression, phylogenetic analysis, and structural modeling

    Directory of Open Access Journals (Sweden)

    Ribeiro Daniela A

    2011-12-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is an acidophilic, chemolithoautotrophic bacterium that has been successfully used in metal bioleaching. In this study, an analysis of the A. ferrooxidans ATCC 23270 genome revealed the presence of three sHSP genes, Afe_1009, Afe_1437 and Afe_2172, that encode proteins from the HSP20 family, a class of intracellular multimers that is especially important in extremophile microorganisms. Results The expression of the sHSP genes was investigated in A. ferrooxidans cells submitted to a heat shock at 40°C for 15, 30 and 60 minutes. After 60 minutes, the gene on locus Afe_1437 was about 20-fold more highly expressed than the gene on locus Afe_2172. Bioinformatic and phylogenetic analyses showed that the sHSPs from A. ferrooxidans are possible non-paralogous proteins, and are regulated by the σ32 factor, a common transcription factor of heat shock proteins. Structural studies using homology molecular modeling indicated that the proteins encoded by Afe_1009 and Afe_1437 have a conserved α-crystallin domain and share similar structural features with the sHSP from Methanococcus jannaschii, suggesting that their biological assembly involves 24 molecules and resembles a hollow spherical shell. Conclusion We conclude that the sHSPs encoded by the Afe_1437 and Afe_1009 genes are more likely to act as molecular chaperones in the A. ferrooxidans heat shock response. In addition, the three sHSPs from A. ferrooxidans are not recent paralogs, and the Afe_1437 and Afe_1009 genes could be inherited horizontally by A. ferrooxidans.

  5. Small heat shock protein message in etiolated Pea seedlings under altered gravity

    Science.gov (United States)

    Talalaiev, O.

    Plants are subjected to various environmental changes during their life cycle To protect themselves against unfavorable influences plant cells synthesize several classes of small heat shock proteins sHsp ranging in size from 15 to 30 kDa This proteins are able to enhance the refolding of chemically denatured proteins in an ATP-independent manner in other words they can function as molecular chaperones The potential contribution of effects of space flight at the plant cellular and gene regulation level has not been characterized yet The object of our study is sHsp gene expression in etiolated Pisum sativum seedlings exposed to altered gravity and environmental conditions We designed primers to detect message for two inducible forms of the cytosolic small heat shock proteins sHsp 17 7 and sHsp 18 1 Applying the RT- PCR we explore sHsps mRNA in pea seedling cells subjected to two types of altered gravity achieved by centrifugation from 3 to 8g by clinorotation 2 rpm and temperature elevation 42oC Temperature elevation as the positive control significantly increased PsHspl7 7 PsHspl8 1 expression We investigate the expression of actin it was constant and comparable for unstressed controls for all variants Results are under discussion

  6. Response of S. boulardii cells to 60 Co irradiation and heat shock

    International Nuclear Information System (INIS)

    Neves, M.J.; Andrade, A.S.R.; Santos, R.G.; Nicoli, J.R.

    1997-01-01

    Full text. Preparation of Saccharomyces boulardii, a non pathogenic yeast, has been widely used in Europe and other countries to prevent gastrointestinal disorders. However the mechanism of action of theses cells on the illness is unknown but the efficacy of S. boulardii depends on its viability. As trehalose is a well known viability protectant in yeast cells against several adverse conditions, we determined its level. We measured the level of trehalose in cells submitted to heat shock, gamma irradiation and simulation of gastric environmental, all these conditions are commonly found during the bio therapeutic production and in the patients oral treatment. Trehalose levels were higher in yeast cells surviving to gamma irradiation ( 60 Cobalt) than in control cells. S. boulardii cells growth in log phase and submitted to the heat shock (40 deg C). Accumulated more trehalose than S. cerevisiae and unlikely to these cells, the pool of trehalose accumulated in S. boulardii was mobilized very slowly (70% of the trehalose pool was present 5 hours after the return to the normal temperature 30 deg C). Our results suggested a rather different trehalose metabolism in S. boulardii when compared with S. cerevisiae and showed that one of the response to the stress of irradiation was an increasing on the level of intracellular trehalose

  7. Formation of stable, high-beta, relativistic-electron plasmas using electron cyclotron heating

    International Nuclear Information System (INIS)

    Guest, G.E.; Miller, R.L.

    1988-01-01

    A one-dimensional, steady-state, relativistic Fokker-Planck model of electron cyclotron heating (ECH) is used to analyse the heating kinetics underlying the formation of the two-component hot-electron plasmas characteristic of ECH in magnetic mirror configurations. The model is first applied to the well diagnosed plasmas obtained in SM-1 and is then used to simulate the effective generation of relativistic electrons by upper off-resonant heating (UORH), as demonstrated empirically in ELMO. The characteristics of unstable whistler modes and cyclotron maser modes are then determined for two-component hot-electron plasmas sustained by UORH. Cyclotron maser modes are shown to be strongly suppressed by the colder background electron species, while the growth rates of whistler modes are reduced by relativistic effects to levels that may render them unobservable, provided the hot-electron pressure anisotropy is below an energy dependent threshold. (author). 29 refs, 10 figs, 1 tab

  8. Genetic responses of the marine copepod Acartia tonsa (Dana) to heat shock and epibiont infestation

    DEFF Research Database (Denmark)

    Petkeviciute, Egle; Kania, Per Walter; Skovgaard, Alf

    2015-01-01

    Expression of stress-related genes was investigated in the marine copepod Acartia tonsa in relation to heat shock at two different salinities (10 and 32‰), and it was furthermore investigated whether experimentally induced epibiont infestation led to elevated expression of stress-related genes...

  9. Neoclassical electron heat conduction in tokamaks performed by the ions

    International Nuclear Information System (INIS)

    Ware, A.A.

    1987-07-01

    The increment to neoclassical ion heat conduction caused by electron collisions is shown to act like electron heat conduction since the energy is taken from and given back to the electrons at each diffusion step length. It can exceed electron neoclassical heat conduction by an order of magnitude

  10. Ion heating and energy partition at the heliospheric termination shock: hybrid simulations and analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Gary, S Peter [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Wu, Pin [BOSTON UNIV.; Schwadron, N A [BOSTON UNIV.; Lee, M [UNIV OF NEW HAMPSHIRE

    2009-01-01

    The Los Alamos hybrid simulation code is used to examine heating and the partition of dissipation energy at the perpendicular heliospheric termination shock in the presence of pickup ions. The simulations are one-dimensional in space but three-dimensional in field and velocity components, and are carried out for a range of values of pickup ion relative density. Results from the simulations show that because the solar wind ions are relatively cold upstream, the temperature of these ions is raised by a relatively larger factor than the temperature of the pickup ions. An analytic model for energy partition is developed on the basis of the Rankine-Hugoniot relations and a polytropic energy equation. The polytropic index {gamma} used in the Rankine-Hugoniot relations is varied to improve agreement between the model and the simulations concerning the fraction of downstream heating in the pickup ions as well as the compression ratio at the shock. When the pickup ion density is less than 20%, the polytropic index is about 5/3, whereas for pickup ion densities greater than 20%, the polytropic index tends toward 2.2, suggesting a fundamental change in the character of the shock, as seen in the simulations, when the pickup ion density is large. The model and the simulations both indicate for the upstream parameters chosen for Voyager 2 conditions that the pickup ion density is about 25% and the pickup ions gain the larger share (approximately 90%) of the downstream thermal pressure, consistent with Voyager 2 observations near the shock.

  11. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Cawkwell, M. J., E-mail: cawkwell@lanl.gov; Niklasson, Anders M. N. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Dattelbaum, Dana M. [Weapons Experiments Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-02-14

    The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.

  12. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene.

    Science.gov (United States)

    Cawkwell, M J; Niklasson, Anders M N; Dattelbaum, Dana M

    2015-02-14

    The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.

  13. Effects of disruption of heat shock genes on susceptibility of Escherichia coli to fluoroquinolones

    Directory of Open Access Journals (Sweden)

    Morioka Mizue

    2003-08-01

    Full Text Available Abstract Background It is well known that expression of certain bacterial genes responds rapidly to such stimuli as exposure to toxic chemicals and physical agents. It is generally believed that the proteins encoded in these genes are important for successful survival of the organism under the hostile conditions. Analogously, the proteins induced in bacterial cells exposed to antibiotics are believed to affect the organisms' susceptibility to these agents. Results We demonstrated that Escherichia coli cells exposed to levofloxacin (LVFX, a fluoroquinolone (FQ, induce the syntheses of heat shock proteins and RecA. To examine whether the heat shock proteins affect the bactericidal action of FQs, we constructed E. coli strains with mutations in various heat shock genes and tested their susceptibility to FQs. Mutations in dnaK, groEL, and lon increased this susceptibility; the lon mutant exhibited the greatest effects. The increased susceptibility of the lon mutant was corroborated by experiments in which the gene encoding the cell division inhibitor, SulA, was subsequently disrupted. SulA is induced by the SOS response and degraded by the Lon protease. The findings suggest that the hypersusceptibility of the lon mutant to FQs could be due to abnormally high levels of SulA protein resulting from the depletion of Lon and the continuous induction of the SOS response in the presence of FQs. Conclusion The present results show that the bactericidal action of FQs is moderately affected by the DnaK and GroEL chaperones and strongly affected by the Lon protease. FQs have contributed successfully to the treatment of various bacterial infections, but their widespread use and often misuse, coupled with emerging resistance, have gradually compromised their utility. Our results suggest that agents capable of inhibiting the Lon protease have potential for combination therapy with FQs.

  14. Aggregation of SND1 in Stress Granules is Associated with the Microtubule Cytoskeleton During Heat Shock Stimulus.

    Science.gov (United States)

    Shao, Jie; Gao, Fei; Zhang, Bingbing; Zhao, Meng; Zhou, Yunli; He, Jinyan; Ren, Li; Yao, Zhi; Yang, Jie; Su, Chao; Gao, Xingjie

    2017-12-01

    Stress granules (SGs) are dynamic dense structures in the cytoplasm that form in response to a variety of environmental stress stimuli. Staphylococcal nuclease and Tudor domain containing 1 (SND1) is a type of RNA-binding protein and has been identified as a transcriptional co-activator. Our previous studies have shown that SND1 is a component of the stress granule, which forms under stress conditions. Here, we observed that SND1 granules were often surrounded by ɑ-tubulin-microtubules in 45°C-treated HeLa cells at 15 min or colocalized with microtubules at 30 or 45 min. Furthermore, Nocodazole-mediated microtubule depolymerization could significantly affect the efficient recruitment of SND1 proteins to the SGs during heat shock stress. In addition, the 45°C heat shock mediated the enhancement of eIF2α phosphorylation, which was not affected by treatment with Nocodazole, an agent that disrupts the cytoskeleton. The intact microtubule cytoskeletal tracks are important for the efficient assembly of SND1 granules under heat shock stress and may facilitate SND1 shuttling between cytoplasmic RNA foci. Anat Rec, 300:2192-2199, 2017. © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists. Copyright © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.

  15. The functional range of heat shock proteins to combat environmental toxicity

    International Nuclear Information System (INIS)

    Mahmood, K.; Mahmood, Q.; Pervez, A.; Nasreen, S.

    2012-01-01

    Almost all the organisms possess a system to cope with the harsh physiochemical factors of environment. Such a system is based on a group of stress genes, which show rapid responses in form of stress proteins, especially heat shock proteins, when cells are confronted with insult. Heat shock proteins are now known to express in response to variety of toxic and stress conditions including diseases. As a molecular chaperone, against cytotoxicity, these ensure the functional ability of cells by repairing the denatured proteins, cellular structures like cytoskeleton and centrosomes and processes dealing with protein synthesis are stabilized or repaired during a second stress in stress tolerant cells and organisms. In unstressed cells these play an imperative role in the synthesis and transport of normal proteins. Their role in certain diseases reveals their potential application in medical field. Certain Hsp are helpful in coping carcinogenicity caused environmental pollutants and have been suggested to have anti-apoptotic, anti stress and anti-allergic function. Their expression is tissue and species specific with respect to type, intensity and duration of a toxicant. These are developmentally regulated and help in process of differentiation and thus their abnormal regulation impairs the normal development. However, their role as bio marker in risk assessment of environmental pollution warrants further research. Due to broad functional range, therefore, present review is embracing the functional aspects of smaller and Hsp 70 families expressing in animals under toxic conditions. (author)

  16. Possible Contribution of Zerumbone-Induced Proteo-Stress to Its Anti-Inflammatory Functions via the Activation of Heat Shock Factor 1.

    Directory of Open Access Journals (Sweden)

    Yoko Igarashi

    Full Text Available Zerumbone is a sesquiterpene present in Zinger zerumbet. Many studies have demonstrated its marked anti-inflammatory and anti-carcinogenesis activities. Recently, we showed that zerumbone binds to numerous proteins with scant selectivity and induces the expression of heat shock proteins (HSPs in hepatocytes. To dampen proteo-toxic stress, organisms have a stress-responsive molecular machinery, known as heat shock response. Heat shock factor 1 (HSF1 plays a key role in this protein quality control system by promoting activation of HSPs. In this study, we investigated whether zerumbone-induced HSF1 activation contributes to its anti-inflammatory functions in stimulated macrophages. Our findings showed that zerumbone increased cellular protein aggregates and promoted nuclear translocation of HSF1 for HSP expression. Interestingly, HSF1 down-regulation attenuated the suppressive effects of zerumbone on mRNA and protein expressions of pro-inflammatory genes, including inducible nitric oxide synthase and interlukin-1β. These results suggest that proteo-stress induced by zerumbone activates HSF1 for exhibiting its anti-inflammatory functions.

  17. Association of coral algal symbionts with a diverse viral community responsive to heat shock

    KAUST Repository

    Brüwer, Jan D.

    2017-08-17

    Stony corals provide the structural foundation of coral reef ecosystems and are termed holobionts given they engage in symbioses, in particular with photosynthetic dinoflagellates of the genus Symbiodinium. Besides Symbiodinium, corals also engage with bacteria affecting metabolism, immunity, and resilience of the coral holobiont, but the role of associated viruses is largely unknown. In this regard, the increase of studies using RNA sequencing (RNA-Seq) to assess gene expression provides an opportunity to elucidate viral signatures encompassed within the data via careful delineation of sequence reads and their source of origin.Here, we re-analyzed an RNA-Seq dataset from a cultured coral symbiont (Symbiodinium microadriaticum, Clade A1) across four experimental treatments (control, cold shock, heat shock, dark shock) to characterize associated viral diversity, abundance, and gene expression. Our approach comprised the filtering and removal of host sequence reads, subsequent phylogenetic assignment of sequence reads of putative viral origin, and the assembly and analysis of differentially expressed viral genes. About 15.46% (123 million) of all sequence reads were non-host-related, of which <1% could be classified as archaea, bacteria, or virus. Of these, 18.78% were annotated as virus and comprised a diverse community consistent across experimental treatments. Further, non-host related sequence reads assembled into 56,064 contigs, including 4856 contigs of putative viral origin that featured 43 differentially expressed genes during heat shock. The differentially expressed genes included viral kinases, ubiquitin, and ankyrin repeat proteins (amongst others), which are suggested to help the virus proliferate and inhibit the algal host\\'s antiviral response.Our results suggest that a diverse viral community is associated with coral algal endosymbionts of the genus Symbiodinium, which prompts further research on their ecological role in coral health and resilience.

  18. The heat shock response in congeneric land snails (Sphincterochila) from different habitats.

    Science.gov (United States)

    Mizrahi, Tal; Heller, Joseph; Goldenberg, Shoshana; Arad, Zeev

    2012-09-01

    Land snails are subject to daily and seasonal variations in temperature and in water availability, and use heat shock proteins (HSPs) as part of their survival strategy. We used experimental heat stress to test whether adaptation to different habitats affects HSP expression in two closely related Sphincterochila snail species, a desert species, Sphincterochila zonata, and a Mediterranean-type species, Sphincterochila cariosa. Our findings show that in S. cariosa, heat stress caused rapid induction of Hsp70 proteins and Hsp90 in the foot and kidney tissues, whereas the desert-inhabiting species S. zonata displayed delayed induction of Hsp70 proteins in the foot and upregulation of Hsp90 alone in the kidney. Our study suggests that Sphincterochila species use HSPs as part of their survival strategy following heat stress and that adaptation to different habitats results in the development of distinct strategies of HSP expression in response to heat, namely the reduced induction of HSPs in the desert-dwelling species. We suggest that the desert species S. zonata relies on mechanisms and adaptations other than HSP induction, thus avoiding the fitness consequences of continuous HSP upregulation.

  19. Beam heating in solar flares - Electrons or protons?

    International Nuclear Information System (INIS)

    Brown, J.C.; Karlicky, M.; Mackinnon, A.L.; Van Den Oord, G.H.J.

    1990-01-01

    The current status of electron and proton beam models as candidates for the impulsive phase heating of solar flares is discussed in relation to observational constants and theoretical difficulties. It is concluded that, while the electron beam model for flare heating still faces theoretical and observational problems, the problems faced by low and high energy proton beam models are no less serious, and there are facets of proton models which have not yet been studied. At the present, the electron beam model remains the most viable and best developed of heating model candidates. 58 refs

  20. The quinone methide aurin is a heat shock response inducer that causes proteotoxic stress and Noxa-dependent apoptosis in malignant melanoma cells.

    Science.gov (United States)

    Davis, Angela L; Qiao, Shuxi; Lesson, Jessica L; Rojo de la Vega, Montserrat; Park, Sophia L; Seanez, Carol M; Gokhale, Vijay; Cabello, Christopher M; Wondrak, Georg T

    2015-01-16

    Pharmacological induction of proteotoxic stress is rapidly emerging as a promising strategy for cancer cell-directed chemotherapeutic intervention. Here, we describe the identification of a novel drug-like heat shock response inducer for the therapeutic induction of proteotoxic stress targeting malignant human melanoma cells. Screening a focused library of compounds containing redox-directed electrophilic pharmacophores employing the Stress & Toxicity PathwayFinder(TM) PCR Array technology as a discovery tool, a drug-like triphenylmethane-derivative (aurin; 4-[bis(p-hydroxyphenyl)methylene]-2,5-cyclohexadien-1-one) was identified as an experimental cell stress modulator that causes (i) heat shock factor transcriptional activation, (ii) up-regulation of heat shock response gene expression (HSPA6, HSPA1A, DNAJB4, HMOX1), (iii) early unfolded protein response signaling (phospho-PERK, phospho-eIF2α, CHOP (CCAAT/enhancer-binding protein homologous protein)), (iv) proteasome impairment with increased protein-ubiquitination, and (v) oxidative stress with glutathione depletion. Fluorescence polarization-based experiments revealed that aurin displays activity as a geldanamycin-competitive Hsp90α-antagonist, a finding further substantiated by molecular docking and ATPase inhibition analysis. Aurin exposure caused caspase-dependent cell death in a panel of human malignant melanoma cells (A375, G361, LOX-IMVI) but not in non-malignant human skin cells (Hs27 fibroblasts, HaCaT keratinocytes, primary melanocytes) undergoing the aurin-induced heat shock response without impairment of viability. Aurin-induced melanoma cell apoptosis depends on Noxa up-regulation as confirmed by siRNA rescue experiments demonstrating that siPMAIP1-based target down-regulation suppresses aurin-induced cell death. Taken together, our data suggest feasibility of apoptotic elimination of malignant melanoma cells using the quinone methide-derived heat shock response inducer aurin. © 2015 by The

  1. Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells

    International Nuclear Information System (INIS)

    Banzet, N.; Richaud, C.; Deveaux, Y.; Kazmaier, M.; Gagnon, J.; Triantaphylides, C.

    1998-01-01

    Changes in gene expression, by application of H2O2, O2.- generating agents (methyl viologen, digitonin) and gamma irradiation to tomato suspension cultures, were investigated and compared to the well-described heat shock response. Two-dimensional gel protein mapping analyses gave the first indication that at least small heat shock proteins (smHSP) accumulated in response to application of H2O2 and gamma irradiation, but not to O2.- generating agents. While some proteins seemed to be induced specifically by each treatment, only part of the heat shock response was observed. On the basis of Northern hybridization experiments performed with four heterologous cDNA, corresponding to classes I-IV of pea smHSP, it could be concluded that significant amounts of class I and II smHSP mRNA are induced by H2O2 and by irradiation. Taken together, these results demonstrate that in plants some HSP genes are inducible by oxidative stresses, as in micro-organisms and other eukaryotic cells. HSP22, the main stress protein that accumulates following H2O2 action or gamma irradiation, was also purified. Sequence homology of amino terminal and internal sequences, and immunoreactivity with Chenopodium rubrum mitochondrial smHSP antibody, indicated that the protein belongs to the recently discovered class of plant mitochondrial smHSP. Heat shock or a mild H2O2 pretreatment was also shown to lead to plant cell protection against oxidative injury. Therefore, the synthesis of these stress proteins can be considered as an adaptive mechanism in which mitochondrial protection could be essential

  2. Heat shock and plant leachates regulate seed germination of the endangered carnivorous plant Drosophyllum lusitanicum

    Directory of Open Access Journals (Sweden)

    S. Gómez-González

    2018-01-01

    Full Text Available In fire-prone ecosystems, many plant species have specialized mechanisms of seed dormancy that ensure a successful recruitment after fire. A well-documented mechanism is the germination stimulated by fire-related cues, such as heat shock and smoke. However, less is known about the role of inhibitory germination signals (e.g. allelopathy in regulating post-fire recruitment. Plant leachates derived from the unburned vegetation can enforce dormancy by means of allelopathic compounds, acting as a signal of unfavourable (highly competitive niche for germination in pyrophyte species. Here, we assessed the separate effects of heat shock and plant leachates on seed germination of Drosophyllum lusitanicum, an endangered carnivorous plant endemic to Mediterranean fire-prone heathlands. We performed a germination experiment in which seeds were subjected to three treatments: (1 5 min at 100 °C, (2 watering with plant leachate, and (3 control. Germination rate and seed viability was determined after 63 days. Heat shock stimulated seed germination in D. lusitanicum while plant leachates had inhibitory germination effects without reducing seed viability. Thus, both positive and negative signals could be involved in its successful post-fire recruitment. Fire would break seed dormancy and stimulate seed germination of D. lusitanicum through high temperatures, but also by eliminating allelochemical compounds from the soil. These results help to understand the population dynamics patterns found for D. lusitanicum in natural populations, and highlight the role of fire in the ecology and conservation of this endangered species. Seed dormancy imposed by plant-derived leachates as an adaptive mechanism should be considered more in fire ecology theory.

  3. Electron distribution function in laser heated plasmas

    International Nuclear Information System (INIS)

    Fourkal, E.; Bychenkov, V. Yu.; Rozmus, W.; Sydora, R.; Kirkby, C.; Capjack, C. E.; Glenzer, S. H.; Baldis, H. A.

    2001-01-01

    A new electron distribution function has been found in laser heated homogeneous plasmas by an analytical solution to the kinetic equation and by particle simulations. The basic kinetic model describes inverse bremsstrahlung absorption and electron--electron collisions. The non-Maxwellian distribution function is comprised of a super-Gaussian bulk of slow electrons and a Maxwellian tail of energetic particles. The tails are heated due to electron--electron collisions and energy redistribution between superthermal particles and light absorbing slow electrons from the bulk of the distribution function. A practical fit is proposed to the new electron distribution function. Changes to the linear Landau damping of electron plasma waves are discussed. The first evidence for the existence of non-Maxwellian distribution functions has been found in the interpretation, which includes the new distribution function, of the Thomson scattering spectra in gold plasmas [Glenzer , Phys. Rev. Lett. 82, 97 (1999)

  4. Comparison of the heat shock response induced by conventional heating and two methods of delivery of pulsed radiofrequency energy

    International Nuclear Information System (INIS)

    Laurence, J.A.; University of Sydney, NSW; McKenzie, D.R.; Veas, L.; French, P.W.

    2002-01-01

    Full text: In 2001, we published a (hypothetical) mechanism by which radiofrequency (RF) radiation from mobile phones could induce cancer, via the chronic induction of the heat shock response (HSR). This hypothesis provides the focus for our research. Other groups have reported induction of the HSR by RF at apparently non thermal levels. The aim of this study was to determine whether the HSR induced by RF is (a) truly non thermal and (b) quantitatively or qualitatively different from that induced by conventional heating of cells. A rat mast cell line, RBL-2H3, was chosen as the target RBL-2H3 cells were exposed in an air incubator at 41.1 deg C for 45 minutes and 75 minutes, and then returned to a 37 deg C incubator. Sham exposures were performed in the same air incubator at 37 deg C. Cells were exposed for 1 hour in the two pulsed RF exposure systems. The first was a converted 750W microwave oven that emits a short burst of 2.45GHz pulses at the start of each contiguous six minute period. This exposes cells to an average specific energy absorption rate (SAR) of 20W/kg. The second system was a TEM cell, which simulates. GSM pulses - the earner frequency is 0.9GHz pulse modulated at 217Hz. The SAR was approx 0.1W/kg. Both of these exposure systems are housed in incubators maintained at 37 deg C. Sham exposures were performed in the two systems with the same conditions but with no RF radiation present. Cell samples for the conventional heating and microwave exposures were taken 0, 2. 5, 5 and 20 hours after exposure, and expression of heat shock proteins hsp 110, 90, 70, 60 and 56 were determined by Western Blotting and compared between exposures

  5. Fundamentals of Non-relativistic Collisionless Shock Physics: IV. Quasi-Parallel Supercritical Shocks

    OpenAIRE

    Treumann, R. A.; Jaroschek, C. H.

    2008-01-01

    1. Introduction, 2. The (quasi-parallel) foreshock; Ion foreshock, Ion foreshock boundary region; Diffuse ions;Low-frequency upstream waves; Ion beam waves; The expected wave modes; Observations; Diffuse ion waves; Electron foreshock; Electron beams; Langmuir waves; stability of the electron beam; Electron foreshock boundary waves; Nature of electron foreshock waves; Radiation; Observations; Interpretation; 3. Quasi-parallel shock reformation; Low-Mach number quasi-parallel shocks; Turbulent ...

  6. Heat shock protein 70 and heat shock protein 90 expression in light- and dark-adapted adult octopus retinas.

    Science.gov (United States)

    Ochoa, Gina H; Clark, Ying Mei; Matsumoto, Brian; Torres-Ruiz, Jose A; Robles, Laura J

    2002-02-01

    Light- and dark-adaptation leads to changes in rhabdom morphology and photopigment distribution in the octopus retina. Molecular chaperones, including heat shock proteins (Hsps), may be involved in specific signaling pathways that cause changes in photoreceptor actin- and tubulin-based cytoskeletons and movement of the photopigments, rhodopsin and retinochrome. In this study, we used immunoblotting, in situ RT-PCR, immunofluorescence and confocal microscopy to localize the inducible form of Hsp70 and the larger Hsp90 in light- and dark-adapted and dorsal and ventral halves of adult octopus retinas. The Hsps showed differences in distribution between the light and dark and in dorsal vs. ventral position in the retina. Double labeling confocal microscopy co-localized Hsp70 with actin and tubulin, and Hsp90 with the photopigment, retinochrome. Our results demonstrate the presence of Hsp70 and Hsp90 in otherwise non-stressed light- and dark-adapted octopus retinas. These Hsps may help stabilize the cytoskeleton, important for rhabdom structure, and are perhaps involved in the redistribution of retinochrome in conditions of light and dark.

  7. The 70 kDa heat shock protein assists during the repair of chilling injury in the insect, Pyrrhocoris apterus.

    Directory of Open Access Journals (Sweden)

    Vladimír Kostál

    Full Text Available BACKGROUND: The Pyrrhocoris apterus (Insecta: Heteroptera adults attain high levels of cold tolerance during their overwintering diapause. Non-diapause reproducing adults, however, lack the capacity to express a whole array of cold-tolerance adaptations and show relatively low survival when exposed to sub-zero temperatures. We assessed the competence of non-diapause males of P. apterus for responding to heat- and cold-stresses by up-regulation of 70 kDa heat shock proteins (Hsps and the role of Hsps during repair of heat- and cold-induced injury. PRINCIPAL FINDINGS: The fragments of P. apterus homologues of Hsp70 inducible (PaHsp70 and cognate forms (PaHsc70 were cloned and sequenced. The abundance of mRNA transcripts for the inducible form (qPCR and corresponding protein (Western blotting were significantly up-regulated in response to high and low temperature stimuli. In the cognate form, mRNA was slightly up-regulated in response to both stressors but very low or no up-regulation of protein was apparent after heat- or cold-stress, respectively. Injection of 695 bp-long Pahsp70 dsRNA (RNAi caused drastic suppression of the heat- and cold-stress-induced Pahsp70 mRNA response and the up-regulation of corresponding protein was practically eliminated. Our RNAi predictably prevented recovery from heat shock and, in addition, negatively influenced repair of chilling injuries caused by cold stress. Cold tolerance increased when the insects were first exposed to a mild heat shock, in order to trigger the up-regulation of PaHsp70, and subsequently exposed to cold stress. CONCLUSION: Our results suggest that accumulation of PaHsp70 belongs to a complex cold tolerance adaptation in the insect Pyrrhocoris apterus.

  8. Histoplasma capsulatum heat-shock 60 orchestrates the adaptation of the fungus to temperature stress.

    Directory of Open Access Journals (Sweden)

    Allan Jefferson Guimarães

    2011-02-01

    Full Text Available Heat shock proteins (Hsps are among the most widely distributed and evolutionary conserved proteins. Hsps are essential regulators of diverse constitutive metabolic processes and are markedly upregulated during stress. A 62 kDa Hsp (Hsp60 of Histoplasma capsulatum (Hc is an immunodominant antigen and the major surface ligand to CR3 receptors on macrophages. However little is known about the function of this protein within the fungus. We characterized Hc Hsp60-protein interactions under different temperature to gain insights of its additional functions oncell wall dynamism, heat stress and pathogenesis. We conducted co-immunoprecipitations with antibodies to Hc Hsp60 using cytoplasmic and cell wall extracts. Interacting proteins were identified by shotgun proteomics. For the cell wall, 84 common interactions were identified among the 3 growth conditions, including proteins involved in heat-shock response, sugar and amino acid/protein metabolism and cell signaling. Unique interactions were found at each temperature [30°C (81 proteins, 37°C (14 and 37/40°C (47]. There were fewer unique interactions in cytoplasm [30°C (6, 37°C (25 and 37/40°C (39] and four common interactions, including additional Hsps and other known virulence factors. These results show the complexity of Hsp60 function and provide insights into Hc biology, which may lead to new avenues for the management of histoplasmosis.

  9. Electron heating in low pressure capacitive discharges revisited

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J. [Department of Electrical Engineering and Computer Sciences University of California, Berkeley, California 94720 (United States)

    2014-12-15

    The electrons in capacitively coupled plasmas (CCPs) absorb energy via ohmic heating due to electron-neutral collisions and stochastic heating due to momentum transfer from high voltage moving sheaths. We use Particle-in-Cell (PIC) simulations to explore these heating mechanisms and to compare the PIC results with available theories on ohmic and stochastic heating. The PIC results for ohmic heating show good agreement with the ohmic heating calculation of Lafleur et al. [Phys. Plasmas 20, 124503 (2013)]. The PIC results for stochastic heating in low pressure CCPs with collisionless sheaths show good agreement with the stochastic heating model of Kaganovich et al. [IEEE Trans. Plasma Sci. 34, 696 (2006)], which revises the hard wall asymptotic model of Lieberman [IEEE Trans. Plasma Sci. 16, 638 (1988)] by taking current continuity and bulk oscillation into account.

  10. Electron heating in low pressure capacitive discharges revisited

    International Nuclear Information System (INIS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2014-01-01

    The electrons in capacitively coupled plasmas (CCPs) absorb energy via ohmic heating due to electron-neutral collisions and stochastic heating due to momentum transfer from high voltage moving sheaths. We use Particle-in-Cell (PIC) simulations to explore these heating mechanisms and to compare the PIC results with available theories on ohmic and stochastic heating. The PIC results for ohmic heating show good agreement with the ohmic heating calculation of Lafleur et al. [Phys. Plasmas 20, 124503 (2013)]. The PIC results for stochastic heating in low pressure CCPs with collisionless sheaths show good agreement with the stochastic heating model of Kaganovich et al. [IEEE Trans. Plasma Sci. 34, 696 (2006)], which revises the hard wall asymptotic model of Lieberman [IEEE Trans. Plasma Sci. 16, 638 (1988)] by taking current continuity and bulk oscillation into account

  11. Electron heating in low pressure capacitive discharges revisited

    Science.gov (United States)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2014-12-01

    The electrons in capacitively coupled plasmas (CCPs) absorb energy via ohmic heating due to electron-neutral collisions and stochastic heating due to momentum transfer from high voltage moving sheaths. We use Particle-in-Cell (PIC) simulations to explore these heating mechanisms and to compare the PIC results with available theories on ohmic and stochastic heating. The PIC results for ohmic heating show good agreement with the ohmic heating calculation of Lafleur et al. [Phys. Plasmas 20, 124503 (2013)]. The PIC results for stochastic heating in low pressure CCPs with collisionless sheaths show good agreement with the stochastic heating model of Kaganovich et al. [IEEE Trans. Plasma Sci. 34, 696 (2006)], which revises the hard wall asymptotic model of Lieberman [IEEE Trans. Plasma Sci. 16, 638 (1988)] by taking current continuity and bulk oscillation into account.

  12. Expression analysis of nine small heat shock protein genes from Tamarix hispida in response to different abiotic stresses and abscisic acid treatment.

    Science.gov (United States)

    Yang, Guiyan; Wang, Yucheng; Zhang, Kaimin; Gao, Caiqiu

    2014-03-01

    Heat shock proteins (HSPs) play important roles in protecting plants against environmental stresses. Furthermore, small heat shock proteins (sHSPs) are the most ubiquitous HSP subgroup with molecular weights ranging from 15 to 42 kDa. In this study, nine sHSP genes (designated as ThsHSP1-9) were cloned from Tamarix hispida. Their expression patterns in response to cold, heat shock, NaCl, PEG and abscisic acid (ABA) treatments were investigated in the roots and leaves of T. hispida by real-time RT-PCR analysis. The results showed that most of the nine ThsHSP genes were expressed at higher levels in roots than in leaves under normal growth condition. All of ThsHSP genes were highly induced under conditions of cold (4 °C) and different heat shocks (36, 40, 44, 48 and 52 °C). Under NaCl stress, all nine ThsHSPs genes were up-regulated at least one stress time-point in both roots and leaves. Under PEG and ABA treatments, the nine ThsHSPs showed various expression patterns, indicating a complex regulation pathway among these genes. This study represents an important basis for the elucidation of ThsHSP gene function and provides essential information that can be used for stress tolerance genetic engineering in future studies.

  13. The role of heat shock protein (HSP as inhibitor apoptosis in hypoxic conditions of bone marrow stem cell culture

    Directory of Open Access Journals (Sweden)

    Sri Wigati Mardi Mulyani

    2014-03-01

    Full Text Available Background: The concept of stem cell therapy is one of the new hope as a medical therapy on salivary gland defect. However, the lack of viability of the transplanted stem cells survival rate led to the decrease of effectiveness of stem cell therapy. The underlying assumption in the decrease of viability and function of stem cells is an increase of apoptosis incidence. It suggests that the microenvironment in the area of damaged tissues is not conducive to support stem cell viability. One of the microenvironment is the hypoxia condition. Several scientific journals revealed that the administration of hypoxic cell culture can result in stress cells but on the other hand the stress condition of the cells also stimulates heat shock protein 27 (HSP 27 as antiapoptosis through inhibition of caspase 9. Purpose: The purpose of this study was to examine the role of heat shock protein 27 as inhibitor apoptosis in hypoxic conditions of bone marrow stem cell culture. Methods: Stem cell culture was performed in hypoxic conditions (O2 1% and measured the resistance to apoptosis through HSP 27 and caspase 9 expression of bone marrow mesenchymal stem cells by using immunoflorecence and real time PCR. Results: The result of study showed that preconditioning hypoxia could inhibit apoptosis through increasing HSP 27 and decreasing level of caspase 9. Conclusion: The study suggested that hypoxic precondition could reduce apoptosis by increasing amount of heat shock protein 27 and decreasing caspase 9.Latar belakang: Konsep terapi stem cell merupakan salah satu harapan baru sebagai terapi medis kelainan kelenjar ludah. Namun, rendahnya viabilitas stem cell yang ditransplantasikan menyebabkan penurunan efektivitas terapi. Asumsi yang mendasari rendahnya viabilitas dan fungsi stem cell adalah tingginya kejadian apoptosis. Hal ini menunjukkan bahwa lingkungan mikro di daerah jaringan yang rusak tidak kondusif untuk mendukung viabilitas stem cell. Salah satu lingkungan

  14. Expression of the stress-response regulators CtsR and HrcA in the uropathogen Staphylococcus saprophyticus during heat shock.

    Science.gov (United States)

    Rossi, Ciro César; de Oliveira, Lorayne Lauria; de Carvalho Rodrigues, Deivid; Ürményi, Turán Peter; Laport, Marinella Silva; Giambiagi-deMarval, Marcia

    2017-08-01

    The uropathogen Staphylococcus saprophyticus is an ubiquitous bacterium but little is known about mechanisms that allow its persistence in diverse environments. Here we evaluated S. saprophyticus growth and survival during heat shock, the expression of stress response regulators ctsR and hrcA through qRT-PCR and heat shock protein synthesis through 35 S-Met metabolic labeling. S. saprophyticus does not tolerate temperatures much higher than the optimal 37 °C, as its growth is greatly affected at 42 °C, though viability is maintained up to 48 °C. At 42 °C, the expression of ctsR and hrcA repressor genes approximately triple when compared to 37 °C and continue to increase together with temperature till 48 °C. Expression of hrcA peaks after 20 min of heat shock and decreases significantly after 30 min, indicating that heat stress response regulated by this gene may last 20-30 min. An increase in temperature is accompanied by the synthesis of at least eight proteins, three of which are likely the chaperones DnaK, GroEL and ClpB. In silico analysis indicate that the groEL gene may be regulated by HrcA, clpB by CtsR and dnaK by both repressors. This is the first work to discuss heat stress response in S. saprophyticus and a step forward in the understanding of mechanisms that make this a widespread and emergent pathogen.

  15. Magnetogasdynamics shock waves in a rotational axisymmetric non-ideal gas with increasing energy and conductive and radiative heat-fluxes

    Science.gov (United States)

    Nath, Gorakh

    2016-07-01

    Self-similar solutions are obtained for one-dimensional adiabatic flow behind a magnetogasdynamics cylindrical shock wave propagating in a rotational axisymmetric non ideal gas with increasing energy and conductive and radiative heat fluxes in presence of an azimuthal magnetic field. The fluid velocities and the azimuthal magnetic field in the ambient medium are assume to be varying and obeying power laws. In order to find the similarity solutions the angular velocity of the ambient medium is taken to be decreasing as the distance from the axis increases. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be the diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density. The effects of the presence of radiation and conduction, the non-idealness of the gas and the magnetic field on the shock propagation and the flow behind the shock are investigated.

  16. Thermal response of rat fibroblasts stably transfected with the human 70-kDa heat shock protein-encoding gene

    International Nuclear Information System (INIS)

    Li, G.C.; Li, Ligeng; Liu, Yunkang; Mak, J.Y.; Chen, Lili; Lee, W.M.F.

    1991-01-01

    The major heat shock protein hsp70 is synthesized by cells of a wide variety of organisms in response to heat shock or other environmental stresses and is assumed to play an important role in protecting cells from thermal stress. The authors have tested this hypothesis directly by transfecting a constitutively expressed recombinant human hsp70-encoding gene into rat fibroblasts and examining the relationship between the levels of human hsp70 expressed and thermal resistance of the stably transfected rat cells. Successful transfection and expression of the gene for human hsp70 were characterized by RNA hybridization analysis, low-dimensional gel electrophoresis, and immunoblot analysis. When individual cloned cell lines were exposed to 45C and their thermal survivals were determined by colony-formation assay, they found that the expression of human hsp70 conferred heat resistance to the rat cells. These results reinforce the hypothesis that hsp70 has a protective function against thermal stress

  17. Heat shock protein 90 (Hsp90) chaperone complex. A molecular target for enhancement of thermosensitivity and radiosensitivity

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Nonaka, Tetsuo; Kitamoto, Yoshizumi; Sakurai, Hideyuki

    2002-01-01

    Heat shock protein 90 (Hsp90) is a highly conserved heat shock protein in animal and plants, and exists abundantly in the cytoplasm in unstressed condition, accounting for 1-2% in cytoplasmic proteins. Main difference of Hsp90 from other Hsps are its substrate that Hsp90 binds to. These substrates include various signal transduction proteins, kinase, steroid receptors and transcription factors, therefore, Hsp90 plays a key role in maintaining cellular signal transduction networks. Many chaperoned proteins (client proteins) of Hsp90 are associated with cellular proliferation or malignant transformation, thus Hsp90 chaperone complex has been focused as targets for cancer therapy. Among the client proteins, there are several molecules that have been defined as targets or factors for determination or enhancement of radiosensitivity or thermosensitivity. Thus, it is easily speculated that Hsp90 chaperone complex inhibitors that disrupt association of Hsp90 and client protein in combination with radiation or/and heat has potential effect on enhancement of radiosensitivity or thermosensitivity. In this paper, possible mechanisms in enhancing radiosensitivity or thermosensitivity according to the client proteins will be summarized. (author)

  18. Theory of the shock process in dense fluids

    International Nuclear Information System (INIS)

    Wallace, D.C.

    1991-01-01

    A shock is assumed to be a steady plane wave, and irreversible thermodynamics is assumed valid. The fluid is characterized by heat conduction and by viscous or viscoelastic response, according to the strain rate. It is shown that setting the viscosity zero produces a solution which constitutes a lower bound through the shock process for the shear stress, and upper bounds for the temperature, entropy, pressure, and heat current. It is shown that there exists an upper bound to the dynamic stresses which can be achieved during shock compression, that this bound corresponds to a purely elastic response of the fluid, and that solution for the shock process along this bound constitutes lower bounds for the temperature and entropy. It is shown that a continuous steady shock is possible only if the heat current is positive and the temperature is an increasing function of compression almost everywhere. In his theory of shocks in gases, Rayleigh showed that there is a maximum shock strength for which a continuous steady solution can exist with heat conduction but without viscosity. Two more limits are shown to exist for dense fluids, based on the fluid response in the leading edge of the shock: for shocks at the overdriven threshold and above, no solution is possible without heat transport; for shocks near the viscous fluid limit and above, viscous fluid theory is not valid, and the fluid response in the leading edge of the shock is approximately that of a nonplastic solid. The viscous fluid limit is estimated to be 13 kbar for water and 690 kbar for mercury

  19. Differential expression of myocardial heat shock proteins in rats acutely exposed to fluoride.

    Science.gov (United States)

    Panneerselvam, Lakshmikanthan; Raghunath, Azhwar; Perumal, Ekambaram

    2017-09-01

    Acute fluoride (F - ) toxicity is known to cause severe cardiac complications and leads to sudden heart failure. Previously, we reported that increased myocardial oxidative damage, apoptosis, altered cytoskeleton and AMPK signaling proteins associated with energy deprivation in acute F - induced cardiac dysfunction. The present study was aimed to decipher the status of myocardial heat shock proteins (Hsps-Hsp27, Hsp32, Hsp40, Hsp60, Hsp70, Hsp90) and heat shock transcription factor 1 (Hsf1) in acute F - -intoxicated rats. In order to study the expression of myocardial Hsps, male Wistar rats were treated with single oral doses of 45 and 90 mg/kg F - for 24 h. The expression levels of myocardial Hsps were determined using RT-PCR, western blotting, and immunohistochemical studies. Acute F - -intoxicated rats showed elevated levels of both the transcripts and protein expression of Hsf1, Hsp27, Hsp32, Hsp60, and Hsp70 when compared to control. In addition, the expression levels of Hsp40 and Hsp90 were significantly declined in a dose-dependent fashion in F - -treated animals. Our result suggests that differential expression of Hsps in the rat myocardium could serve as a balance between pro-survival and death signal during acute F - -induced heart failure.

  20. Response of S. boulardii cells to {sup 60} Co irradiation and heat shock

    Energy Technology Data Exchange (ETDEWEB)

    Neves, M.J.; Andrade, A.S.R.; Santos, R.G. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Nicoli, J.R. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. Microbiologia

    1997-12-31

    Full text. Preparation of Saccharomyces boulardii, a non pathogenic yeast, has been widely used in Europe and other countries to prevent gastrointestinal disorders. However the mechanism of action of theses cells on the illness is unknown but the efficacy of S. boulardii depends on its viability. As trehalose is a well known viability protectant in yeast cells against several adverse conditions, we determined its level. We measured the level of trehalose in cells submitted to heat shock, gamma irradiation and simulation of gastric environmental, all these conditions are commonly found during the bio therapeutic production and in the patients oral treatment. Trehalose levels were higher in yeast cells surviving to gamma irradiation ({sup 60} Cobalt) than in control cells. S. boulardii cells growth in log phase and submitted to the heat shock (40 deg C). Accumulated more trehalose than S. cerevisiae and unlikely to these cells, the pool of trehalose accumulated in S. boulardii was mobilized very slowly (70% of the trehalose pool was present 5 hours after the return to the normal temperature 30 deg C). Our results suggested a rather different trehalose metabolism in S. boulardii when compared with S. cerevisiae and showed that one of the response to the stress of irradiation was an increasing on the level of intracellular trehalose

  1. Heat- and radiation-resistant scintillator for electron microscopes

    International Nuclear Information System (INIS)

    Kosov, A.V.; Petrov, S.A.; Puzyr', A.P.; Chetvergov, N.A.

    1987-01-01

    The use of a scintillator consisting of a single crystal of bismuth orthogermanate, which has high heat and radiation resistance, in REM-100, REM-200, and REM-100U electron microscopes is described. A study of the heat and radiation stabilities of single crystals of bismuth orthogermanate (Bi 4 Ge 3 O 12 ) has shown that they withstood multiple electron-beam heating redness (T ∼ 800 0 C) without changes in their properties

  2. MicroRNA160 Modulates Plant Development and Heat Shock Protein Gene Expression to Mediate Heat Tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jeng-Shane Lin

    2018-02-01

    Full Text Available Global warming is causing a negative impact on plant growth and adversely impacts on crop yield. MicroRNAs (miRNAs are critical in regulating the expression of genes involved in plant development as well as defense responses. The effects of miRNAs on heat-stressed Arabidopsis warrants further investigation. Heat stress increased the expression of miR160 and its precursors but considerably reduced that of its targets, ARF10, ARF16, and ARF17. To study the roles of miR160 during heat stress, transgenic Arabidopsis plants overexpressing miR160 precursor a (160OE and artificial miR160 (MIM160, which mimics an inhibitor of miR160, were created. T-DNA insertion mutants of miR160 targets were also used to examine their tolerances to heat stress. Results presented that overexpressing miR160 improved seed germination and seedling survival under heat stress. The lengths of hypocotyl elongation and rachis were also longer in 160OE than the wild-type (WT plants under heat stress. Interestingly, MIM160 plants showed worse adaption to heat. In addition, arf10, arf16, and arf17 mutants presented similar phenotypes to 160OE under heat stress to advance abilities of thermotolerance. Moreover, transcriptome and qRT-PCR analyses revealed that HSP17.6A, HSP17.6II, HSP21, and HSP70B expression levels were regulated by heat in 160OE, MIM160, arf10, arf16, and arf17 plants. Hence, miR160 altered the expression of the heat shock proteins and plant development to allow plants to survive heat stress.

  3. PERAN HEAT SHOCK PROTEINS (HSP DALAM PATOGENESIS PENYAKIT OTOIMUN DI DALAM RONGGA MULUT

    Directory of Open Access Journals (Sweden)

    Endang W. Bachtiar

    2015-08-01

    Full Text Available Heat Shock Proteins (HSP are highly conserved immunoreactive group of proteins found in microorganisms and animal/human tissue. In addition to heat, other stressful conditiions also induce stressed proteins, especially anorexia, heavy metal ion, exposure to H2O2 and infection by DNA or RNA viruses. Recent studies suggest the involvement of HSPs as autoantigens in autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, Bechet's syndrome, recurrent oral uclers, oral lichen planus and other. The HSPs 60 - 65 KDa might be involved in the pathogenesis of autoimmune diseases such as Bechet's syndrome, recurrent oral ulcers, and oral lichen planus. This paper will discuss the immunopathogenesis mechanism of those diseases induced by HSPs.

  4. Propagation of Electron Acoustic Soliton, Periodic and Shock Waves in Dissipative Plasma with a q-Nonextensive Electron Velocity Distribution

    Science.gov (United States)

    El-Hanbaly, A. M.; El-Shewy, E. K.; Elgarayhi, A.; Kassem, A. I.

    2015-11-01

    The nonlinear properties of small amplitude electron-acoustic (EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma with nonextensive distribution for hot electrons have been investigated. A reductive perturbation method used to obtain the Kadomstev-Petviashvili-Burgers equation. Bifurcation analysis has been discussed for non-dissipative system in the absence of Burgers term and reveals different classes of the traveling wave solutions. The obtained solutions are related to periodic and soliton waves and their behavior are shown graphically. In the presence of the Burgers term, the EXP-function method is used to solve the Kadomstev-Petviashvili-Burgers equation and the obtained solution is related to shock wave. The obtained results may be helpful in better conception of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.

  5. Heat shock-induced accumulation of translation elongation and termination factors precedes assembly of stress granules in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Tomas Grousl

    Full Text Available In response to severe environmental stresses eukaryotic cells shut down translation and accumulate components of the translational machinery in stress granules (SGs. Since they contain mainly mRNA, translation initiation factors and 40S ribosomal subunits, they have been referred to as dominant accumulations of stalled translation preinitiation complexes. Here we present evidence that the robust heat shock-induced SGs of S. cerevisiae also contain translation elongation factors eEF3 (Yef3p and eEF1Bγ2 (Tef4p as well as translation termination factors eRF1 (Sup45p and eRF3 (Sup35p. Despite the presence of the yeast prion protein Sup35 in heat shock-induced SGs, we found out that its prion-like domain is not involved in the SGs assembly. Factors eEF3, eEF1Bγ2 and eRF1 were accumulated and co-localized with Dcp2 foci even upon a milder heat shock at 42°C independently of P-bodies scaffolding proteins. We also show that eEF3 accumulations at 42°C determine sites of the genuine SGs assembly at 46°C. We suggest that identification of translation elongation and termination factors in SGs might help to understand the mechanism of the eIF2α factor phosphorylation-independent repression of translation and SGs assembly.

  6. Caloric restriction induces heat shock response and inhibits B16F10 cell tumorigenesis both in vitro and in vivo

    Science.gov (United States)

    Novelle, Marta G.; Davis, Ashley; Price, Nathan L.; Ali, Ahmed; Fürer-Galvan, Stefanie; Zhang, Yongqing; Becker, Kevin; Bernier, Michel; de Cabo, Rafael

    2015-01-01

    Caloric restriction (CR) without malnutrition is one of the most consistent strategies for increasing mean and maximal lifespan and delaying the onset of age-associated diseases. Stress resistance is a common trait of many long-lived mutants and life-extending interventions, including CR. Indeed, better protection against heat shock and other genotoxic insults have helped explain the pro-survival properties of CR. In this study, both in vitro and in vivo responses to heat shock were investigated using two different models of CR. Murine B16F10 melanoma cells treated with serum from CR-fed rats showed lower proliferation, increased tolerance to heat shock and enhanced HSP-70 expression, compared to serum from ad libitum-fed animals. Similar effects were observed in B16F10 cells implanted subcutaneously in male C57BL/6 mice subjected to CR. Microarray analysis identified a number of genes and pathways whose expression profile were similar in both models. These results suggest that the use of an in vitro model could be a good alternative to study the mechanisms by which CR exerts its anti-tumorigenic effects. PMID:25948793

  7. Cloning and characterization of carboxyl terminus of heat shock cognate 70-interacting protein gene from the silkworm, Bombyx mori.

    Science.gov (United States)

    Ohsawa, Takeshi; Fujimoto, Shota; Tsunakawa, Akane; Shibano, Yuka; Kawasaki, Hideki; Iwanaga, Masashi

    2016-11-01

    Carboxyl terminus of heat shock cognate 70-interacting protein (CHIP) is an evolutionarily conserved E3 ubiquitin ligase across different eukaryotic species and is known to play a key role in protein quality control. CHIP has two distinct functional domains, an N-terminal tetratricopeptide repeat (TPR) and a C-terminal U-box domain, which are required for the ubiquitination of numerous labile client proteins that are chaperoned by heat shock proteins (HSPs) and heat shock cognate proteins (HSCs). During our screen for CHIP-like proteins in the Bombyx mori databases, we found a novel silkworm gene, Bombyx mori CHIP. Phylogenetic analysis showed that BmCHIP belongs to Lepidopteran lineages. Quantitative reverse transcription-PCR analysis indicated that BmCHIP was relatively highly expressed in the gonad and fat body. A pull-down experiment and auto-ubiquitination assay showed that BmCHIP interacted with BmHSC70 and had E3 ligase activity. Additionally, immunohistochemical analysis revealed that BmCHIP was partially co-localized with ubiquitin in BmN4 cells. These data support that BmCHIP plays an important role in the ubiquitin proteasome system as an E3 ubiquitin ligase in B. mori. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Electron Heating at Kinetic Scales in Magnetosheath Turbulence

    International Nuclear Information System (INIS)

    Chasapis, Alexandros; Matthaeus, W. H.; Parashar, T. N.; LeContel, O.; Retinò, A.; Breuillard, H.; Khotyaintsev, Y.; Vaivads, A.; Eriksson, E.; Lavraud, B.; Moore, T. E.; Burch, J. L.; Torbert, R. B.; Chutter, M.; Needell, J.; Lindqvist, P.-A.; Marklund, G.; Ergun, R. E.; Goodrich, K. A.; Wilder, F. D.

    2017-01-01

    We present a statistical study of coherent structures at kinetic scales, using data from the Magnetospheric Multiscale mission in the Earth’s magnetosheath. We implemented the multi-spacecraft partial variance of increments (PVI) technique to detect these structures, which are associated with intermittency at kinetic scales. We examine the properties of the electron heating occurring within such structures. We find that, statistically, structures with a high PVI index are regions of significant electron heating. We also focus on one such structure, a current sheet, which shows some signatures consistent with magnetic reconnection. Strong parallel electron heating coincides with whistler emissions at the edges of the current sheet.

  9. Heat shock protein 10 (Hsp10) in immune-related diseases: one coin, two sides

    Science.gov (United States)

    Jia, Haibo; Halilou, Amadou I.; Hu, Liang; Cai, Wenqian; Liu, Jing; Huang, Bo

    2011-01-01

    Heat shock protein 10 (Hsp10) in eukaryotes, originally identified as a mitochondrial chaperone, now is also known to be present in cytosol, cell surface, extracellular space and peripheral blood. Functionally besides participating in mitochondrial protein folding in association with Hsp60, Hsp10 appears to be related to pregnancy, cancer and autoimmune inhibition. Hsp10 can be released to peripheral blood at very early time point of pregnancy and given another name called early pregnancy factor (EPF), which seems to play a critical role in developing a pregnant niche. In malignant disorders, Hsp10 is usually abnormally expressed in the cytosol of malignant cells and further released to extracellular space, resulting in tumor-promoting effect from various aspects. Furthermore, distinct from other heat shock protein members, whose soluble form is recognized as danger signal by immune cells and triggers immune responses, Hsp10 after release, however, is designed to be an inhibitory signal by limiting immune response. This review discusses how Hsp10 participates in various physiological and pathological processes from basic protein molecule folding to pregnancy, cancer and autoimmune diseases, and emphasizes how important the location is for the function exertion of a molecule. PMID:21969171

  10. Induction of Heat Shock Protein Expression in Cervical Epithelial Cells by Human Semen

    Directory of Open Access Journals (Sweden)

    J. C. Jeremias

    1999-01-01

    Full Text Available Objective: The 70kD heat shock protein (Hsp70, induced when cells are subjected to environmental stress, prevents the denaturation and incorrect folding of polypeptides and may expedite replication and transmission of DNA and RNA viruses. We analyzed whether messenger RNA (mRNA for Hsp70 was expressed following exposure of a cultured human cervical cell line (HeLa cells to human semen or in cervical cells from sexually active women.

  11. Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta).

    Science.gov (United States)

    Luo, Qijun; Zhu, Zhenggang; Zhu, Zhujun; Yang, Rui; Qian, Feijian; Chen, Haimin; Yan, Xiaojun

    2014-01-01

    Pyropia has a unique heteromorphic life cycle with alternation stages between thallus and conchocelis, which lives at different water temperatures in different seasons. To better understand the different adaptation strategies for temperature stress, we tried to observe comparative biochemical changes of Pyropia haitanensis based on a short term heat shock model. The results showed that: (1) At normal temperature, free-living conchocelis contains significantly higher levels of H2O2, fatty acid-derived volatiles, the copy number of Phrboh and Phhsp70 genes,the activities of NADPH oxidase and floridoside than those in thallus. The released H2O2 and NADPH oxidase activity of conchocelis were more than 7 times higher than those of thallus. The copy number of Phrboh in conchocelis was 32 times that in thallus. (2) After experiencing heat shock at 35°C for 30 min, the H2O2 contents, the mRNA levels of Phrboh and Phhsp70, NADPH oxidase activity and the floridoside content in thallus were all significantly increased. The mRNA levels of Phrboh increased 5.78 times in 5 min, NADPH oxidase activity increased 8.45 times in 20 min. (3) Whereas, in conchocelis, the changes in fatty acids and their down-stream volatiles predominated, significantly increasing levels of saturated fatty acids and decreasing levels of polyunsaturated fatty acids occurred, and the 8-carbon volatiles were accumulated. However, the changes in H2O2 content and expression of oxidant-related genes and enzymatic activity were not obvious. Overall, these results indicate that conchocelis maintains a high level of active protective apparatus to endure its survival at high temperature, while thallus exhibit typical stress responses to heat shock. It is concluded that Pyropia haitanensis has evolved a delicate strategy for temperature adaptation for its heteromorphic life cycle.

  12. Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta.

    Directory of Open Access Journals (Sweden)

    Qijun Luo

    Full Text Available Pyropia has a unique heteromorphic life cycle with alternation stages between thallus and conchocelis, which lives at different water temperatures in different seasons. To better understand the different adaptation strategies for temperature stress, we tried to observe comparative biochemical changes of Pyropia haitanensis based on a short term heat shock model. The results showed that: (1 At normal temperature, free-living conchocelis contains significantly higher levels of H2O2, fatty acid-derived volatiles, the copy number of Phrboh and Phhsp70 genes,the activities of NADPH oxidase and floridoside than those in thallus. The released H2O2 and NADPH oxidase activity of conchocelis were more than 7 times higher than those of thallus. The copy number of Phrboh in conchocelis was 32 times that in thallus. (2 After experiencing heat shock at 35°C for 30 min, the H2O2 contents, the mRNA levels of Phrboh and Phhsp70, NADPH oxidase activity and the floridoside content in thallus were all significantly increased. The mRNA levels of Phrboh increased 5.78 times in 5 min, NADPH oxidase activity increased 8.45 times in 20 min. (3 Whereas, in conchocelis, the changes in fatty acids and their down-stream volatiles predominated, significantly increasing levels of saturated fatty acids and decreasing levels of polyunsaturated fatty acids occurred, and the 8-carbon volatiles were accumulated. However, the changes in H2O2 content and expression of oxidant-related genes and enzymatic activity were not obvious. Overall, these results indicate that conchocelis maintains a high level of active protective apparatus to endure its survival at high temperature, while thallus exhibit typical stress responses to heat shock. It is concluded that Pyropia haitanensis has evolved a delicate strategy for temperature adaptation for its heteromorphic life cycle.

  13. In Vivo Profiling Reveals a Competent Heat Shock Response in Adult Neurons: Implications for Neurodegenerative Disorders.

    Directory of Open Access Journals (Sweden)

    Alisia Carnemolla

    Full Text Available The heat shock response (HSR is the main pathway used by cells to counteract proteotoxicity. The inability of differentiated neurons to induce an HSR has been documented in primary neuronal cultures and has been proposed to play a critical role in ageing and neurodegeneration. However, this accepted dogma has not been demonstrated in vivo. We used BAC transgenic mice generated by the Gene Expression Nervous System Atlas project to investigate the capacity of striatal medium sized spiny neurons to induce an HSR as compared to that of astrocytes and oligodendrocytes. We found that all cell populations were competent to induce an HSR upon HSP90 inhibition. We also show the presence and relative abundance of heat shock-related genes and proteins in these striatal cell populations. The identification of a competent HSR in adult neurons supports the development of therapeutics that target the HSR pathway as treatments for neurodegenerative disorders.

  14. Evaluation of PNS-computed heating and hypersonic shock tunnel data on sharp and inclined blunt cones

    International Nuclear Information System (INIS)

    Hudson, M.L.

    1988-01-01

    As part of the ongoing development and verification of the Parabolized Navier-Stokes (PNS) technique, computed heat transfer rates have been compared with recently acquired experimental data. The flow fields were computer for laminar and turbulent flow over sharp, blunt tripped sphere-cones at 0/degree/ to 20/degree/ angle of attack in a hypersonic shock tunnel flow at Mach numbers of 11, 13, and 16. Grid refinement studies were performed and minimum smoothing parameters were sought. The average percent difference between the measured mean heat transfer rate and the PNS-computed value was 12% for the sharp and blunt cones at 0/degree/ angle of attack. For the blunt cones at angle of attack, the average percent difference was 11% on the windward ray and 36% on the leeward ray. PNS-predicted flow physics such as boundary layer thickness, shock standoff distance, and crossflow separation were examined. 15 refs., 12 figs

  15. Time resolved spectra in the infrared absorption and emission from shock heated hydrocarbons. [in interstellar medium

    Science.gov (United States)

    Bauer, S. H.; Borchardt, D. B.

    1990-01-01

    The wavelength range of a previously constructed multichannel fast recording spectrometer was extended to the mid-infrared. With the initial configuration, light intensities were recorded simultaneously with a silicon-diode array simultaneously at 20 adjacent wavelengths, each with a 20-micron time resolution. For studies in the infrared, the silicon diodes were replaced by a 20-element PbSe array of similar dimensions, cooled by a three-stage thermoelectric device. It is proposed that infrared emissions could be due to shock-heated low molecular-weight hydrocarbons. The full Swan band system appeared in time-integrated emission spectra from shock-heated C2H2; no soot was generated. At low resolution, the profiles on the high-frequency side of the black body maximum show no distinctive features. These could be fitted to Planck curves, with temperatures that declined with time from an initial high that was intermediate between T5 (no conversion) and T5(eq).

  16. Effects of a heat shock protein inducer on the atrial fibrillation substrate caused by acute atrial ischaemia

    NARCIS (Netherlands)

    Sakabe, Masao; Shiroshita-Takeshita, Akiko; Maguy, Ange; Brundel, Bianca J. J. M.; Fujiki, Akira; Inoue, Hiroshi; Nattel, Stanley

    2008-01-01

    Aims Heat shock proteins (HSPs) are a set of endogenous cytoprotective factors activated by various pathological conditions. This study addressed the effects of geranylgeranylacetone (GGA), an orally active HSP inducer, on the atrial fibrillation (AF) substrate associated with acute atria( ischaemia

  17. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    Energy Technology Data Exchange (ETDEWEB)

    Marocchino, A.; Atzeni, S.; Schiavi, A. [Dipartimento SBAI, Università di Roma “La Sapienza” and CNISM, Roma 00161 (Italy)

    2014-01-15

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.

  18. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Marocchino, A.; Atzeni, S.; Schiavi, A.

    2014-01-01

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies

  19. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    Science.gov (United States)

    Marocchino, A.; Atzeni, S.; Schiavi, A.

    2014-01-01

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.

  20. THE ELECTRONIC COURSE OF HEAT AND MASS TRANSFER

    Directory of Open Access Journals (Sweden)

    Alexander P. Solodov

    2013-01-01

    Full Text Available The Electronic course of heat and mass transfer in power engineering is presented containing the full Electronic book as the structured hypertext document, the full set of Mathcad-documents with the whole set of educative computer models of heat and mass transfer, the computer labs, and selected educational presentations. 

  1. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.

    Science.gov (United States)

    Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik

    2014-01-01

    Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on 'Penn-A4' creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha-1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.

  2. Heat transfer, velocity-temperature correlation, and turbulent shear stress from Navier-Stokes computations of shock wave/turbulent boundary layer interaction flows

    Science.gov (United States)

    Wang, C. R.; Hingst, W. R.; Porro, A. R.

    1991-01-01

    The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows.

  3. Characterization of heat shock cognate protein 70 gene and its differential expression in response to thermal stress between two wing morphs of Nilaparvata lugens (Stål).

    Science.gov (United States)

    Lu, Kai; Chen, Xia; Liu, Wenting; Zhou, Qiang

    2016-09-01

    Previous studies have demonstrated differences in thermotolerance between two wing morphs of Nilaparvata lugens, the most serious pest of rice across the Asia. To reveal the molecular regulatory mechanisms underlying the differential thermal resistance abilities between two wing morphs, a full-length of transcript encoding heat shock cognate protein 70 (Hsc70) was cloned, and its expression patterns across temperature gradients were analyzed. The results showed that the expression levels of NlHsc70 in macropters increased dramatically after heat shock from 32 to 38°C, while NlHsc70 transcripts in brachypters remained constant under different temperature stress conditions. In addition, NlHsc70 expression in the macropters was significantly higher than that in brachypters at 1 and 2h recovery from 40°C heat shock. There was no significant difference in NlHsc70 mRNA expression between brachypters and macropters under cold shock conditions. Therefore, NlHsc70 was indeed a constitutively expressed member of the Hsp70 family in brachypters of N. lugens, while it was heat-inducible in macropters. Furthermore, the survival rates of both morphs injected with NlHsc70 dsRNA were significantly decreased following heat shock at 40°C or cold shock at 0°C for 1h. These results suggested that the up-regulation of NlHsc70 is possibly related to the thermal resistance, and the more effective inducement expression of NlHsc70 in macropters promotes a greater thermal tolerance under temperature stress conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Hexavalent chromium, a lung carcinogen, confers resistance to thermal stress and interferes with heat shock protein expression in human bronchial epithelial cells.

    Science.gov (United States)

    Abreu, Patrícia L; Cunha-Oliveira, Teresa; Ferreira, Leonardo M R; Urbano, Ana M

    2018-03-16

    Exposure to hexavalent chromium [Cr(VI)], a lung carcinogen, triggers several types of cellular stresses, namely oxidative, genotoxic and proteotoxic stresses. Given the evolutionary character of carcinogenesis, it is tempting to speculate that cells that survive the stresses produced by this carcinogen become more resistant to subsequent stresses, namely those encountered during neoplastic transformation. To test this hypothesis, we determined whether pre-incubation with Cr(VI) increased the resistance of human bronchial epithelial cells (BEAS-2B cells) to the antiproliferative action of acute thermal shock, used here as a model for stress. In line with the proposed hypothesis, it was observed that, at mildly cytotoxic concentrations, Cr(VI) attenuated the antiproliferative effects of both cold and heat shock. Mechanistically, Cr(VI) interfered with the expression of two components of the stress response pathway: heat shock proteins Hsp72 and Hsp90α. Specifically, Cr(VI) significantly depleted the mRNA levels of the former and the protein levels of the latter. Significantly, these two proteins are members of heat shock protein (Hsp) families (Hsp70 and Hsp90, respectively) that have been implicated in carcinogenesis. Thus, our results confirm and extend previous studies showing the capacity of Cr(VI) to interfere with the expression of stress response components.

  5. Specific Genetic Immunotherapy Induced by Recombinant Vaccine Alpha-Fetoprotein-Heat Shock Protein 70 Complex

    Science.gov (United States)

    Wang, Xiaoping; Lin, Huanping; Wang, Qiaoxia

    Purposes: To construct a recombinant vaccine alpha-fetoprotein (AFP)-heat shock protein (HSP70) complex, and study its ability to induce specific CTL response and its protective effect against AFP-producing tumor. Material/Methods: A recombinant vaccine was constructed by conjugating mouse alpha-fetoprotein to heat shock protein 70. By way of intracutaneous injection, mice were primed and boosted with recombinant vaccine mAFP/HSP70, whereas single mAFP or HSP70 injection as controls. The ELISPOT and ELISA were used to measure the frequency of cells producing the cytokine IFN-γ in splenocytes and the level of anti-AFP antibody of serum from immunized mice respectively. In vivo tumor challenge were carried out to assess the immune effect of the recombinant vaccine. Results: By recombinant mAFP/HSP70 vaccine immunization, the results of ELISPOT and ELISA showed that the number of splenic cells producing IFN-γ and the level of anti-AFP antibody of serum were significantly higher in mAFP/HSP70 group than those in mAFP and HSP70 groups (108.50±11.70 IFN-γ spots/106 cells vs 41.60±10.40 IFN-γ spots/106 cells, 7.32±3.14 IFN-γ spots/106 cells, P<0.01; 156.32±10.42 μg/mL vs 66.52±7.35 μg/mL, 5.73±2.89 μg/mL, P<0.01). The tumor volume in mAFP/HSP70 group was significantly smaller than that in mAFP and HSP70 groups (42.44±7.14 mm3 vs 392.23±12.46 mm3, 838.63±13.84 mm3, P<0.01). Conclusions: The study further confirmed the function of heat shock protein 70's immune adjuvant. Sequential immunization with recombinant mAFP/HSP70 vaccine could generate effective antitumor immunity on AFP-producing tumor. The recombined mAFP/HSP70 vaccine may be suitable for serving as an immunotherapy for hepatocellular carcinoma.

  6. Molecular Stress-inducing Compounds Increase Osteoclast Formation in a Heat Shock Factor 1 Protein-dependent Manner*

    Science.gov (United States)

    Chai, Ryan C.; Kouspou, Michelle M.; Lang, Benjamin J.; Nguyen, Chau H.; van der Kraan, A. Gabrielle J.; Vieusseux, Jessica L.; Lim, Reece C.; Gillespie, Matthew T.; Benjamin, Ivor J.; Quinn, Julian M. W.; Price, John T.

    2014-01-01

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss. PMID:24692538

  7. Molecular stress-inducing compounds increase osteoclast formation in a heat shock factor 1 protein-dependent manner.

    Science.gov (United States)

    Chai, Ryan C; Kouspou, Michelle M; Lang, Benjamin J; Nguyen, Chau H; van der Kraan, A Gabrielle J; Vieusseux, Jessica L; Lim, Reece C; Gillespie, Matthew T; Benjamin, Ivor J; Quinn, Julian M W; Price, John T

    2014-05-09

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss.

  8. Circulating heat shock proteins in women with a history of recurrent vulvovaginitis.

    Science.gov (United States)

    Giraldo, P C; Ribeiro-Filho, A D; Simões, J A; Neuer, A; Feitosa, S B; Witkin, S S

    1999-01-01

    OBJECTIVE: Predisposing factors influencing recurrences of bacterial vaginosis (BV) or vaginitis from Candida remain unidentified for most women. As a component of studies to determine host susceptibility factors to genital tract infections in women, we measured expression of the 60-kDa and 70-kDa heat shock proteins (hsp60 and hsp70, respectively) in the circulation of women with or without a history of recurrent BV or candidal vaginitis and with or without a current lower genital tract infection. Heat shock protein expression is associated with a down-regulation of pro-inflammatory immune responses that would inhibit microbial infection. METHOD: The investigators measured hsp60 and hsp70, antibodies to these proteins, the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha), and the anti-inflammatory cytokine interleukin-10 (IL-10) in sera by ELISA. The study population consisted of 100 women who attended a gynecology clinic in Campinas, Brazil. Of those, 55 had a history of recurrent vulvovaginitis (RV), while 45 were controls with no such history. Only women who were asymptomatic for at least 1 month were studied. RESULTS: Although all were asymptomatic, clinical and microbiological examination revealed that five of the women with a history of RV and two controls had a current candidal vaginal infection; 16 RV patients and 12 controls had BV; and six RV patients had both BV and candidiasis. Twenty-eight RV patients and 31 controls had no clinical or microbiological detectable vaginal infection. Among the RV patients, hsp60 and hsp70 were more prevalent in those with current BV (40.9% and 50.0%, respectively) or a candidal infection (45.5% and 54.5%) than in women with no current infection (21.4% and 17.9%). In the women with no history of RV, BV was not associated with a high prevalence of hsp60 (8.3%) or hsp70 (8.3%). Interleukin-10 and TNF were not more prevalent in vaginitis patients or controls with a current candidal infection or BV than in

  9. Time resolved spectra in the infrared absorption and emission from shock heated hydrocarbons

    Science.gov (United States)

    Bauer, S. H.; Borchardt, D. B.

    1990-07-01

    We have extended the wavelength range of our previously constructed multichannel, fast recording spectrometer to the mid-infrared. With the initial configuration, using a silicon-diode (photovoltaic) array, we recorded light intensities simultaneously at 20 adjacent wavelengths, each with 20 μs time resolution. For studies in the infrared the silicon diodes are replaced by a 20 element PbSe (photoconducting) array of similar dimensions (1×4 mm/element), cooled by a three-stage thermoelectric device. These elements have useful sensitivities over 1.0-6.7 μm. Three interchangeable gratings in a 1/4 m monochromator cover the following spectral ranges: 1.0-2.5 μm (resolution 33.6 cm-1) 2.5-4.5 μm (16.8 cm-1) 4.0-6.5 μm (16.7 cm-1). Incorporated in the new housing there are individually controlled bias-power sources for each detector, two stages of analogue amplification and a 20-line parallel output to the previously constructed digitizer, and record/hold computer. The immediate application of this system is the study of emission and absorption spectra of shock heated hydrocarbons-C2H2, C4H4 and C6H6-which are possible precursors of species that generate infrared emissions in the interstellar medium. It has been recently proposed that these radiations are due to PAH that emit in the infrared upon relaxation from highly excited states. However, it is possible that such emissions could be due to shock-heated low molecular-weight hydrocarbons, which are known to be present in significant abundances, ejected into the interstellar medium during stellar outer atmospheric eruptions. The full Swan band system appeared in time-integrated emission spectra from shock heated C2H2 (1% in Ar; T5eq~=2500K) no soot was generated. At low resolution the profiles on the high frequency side of the black body maximum show no distinctive features. These could be fitted to Planck curves, with temperatures that declined with time from an initial high that was intermediate between T5 (no

  10. RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response

    NARCIS (Netherlands)

    Meijering, Roelien A. M.; Wiersma, Marit; van Marion, Denise M. S.; Zhang, Deli; Hoogstra-Berends, Femke; Dijkhuis, Anne-Jan; Schmidt, Martina; Wieland, Thomas; Kampinga, Harm H.; Henning, Robert H.; Brundel, Bianca J. J. M.

    2015-01-01

    Background The heat shock response (HSR) is an ancient and highly conserved program of stress-induced gene expression, aimed at reestablishing protein homeostasis to preserve cellular fitness. Cells that fail to activate or maintain this protective response are hypersensitive to proteotoxic stress.

  11. THE POSSIBLE ROLE OF CORONAL STREAMERS AS MAGNETICALLY CLOSED STRUCTURES IN SHOCK-INDUCED ENERGETIC ELECTRONS AND METRIC TYPE II RADIO BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiangliang; Chen, Yao; Feng, Shiwei; Wang, Bing; Du, Guohui [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Guo, Fan [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, Gang, E-mail: yaochen@sdu.edu.cn [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2015-01-10

    Two solar type II radio bursts, separated by ∼24 hr in time, are examined together. Both events are associated with coronal mass ejections (CMEs) erupting from the same active region (NOAA 11176) beneath a well-observed helmet streamer. We find that the type II emissions in both events ended once the CME/shock fronts passed the white-light streamer tip, which is presumably the magnetic cusp of the streamer. This leads us to conjecture that the closed magnetic arcades of the streamer may play a role in electron acceleration and type II excitation at coronal shocks. To examine such a conjecture, we conduct a test-particle simulation for electron dynamics within a large-scale partially closed streamer magnetic configuration swept by a coronal shock. We find that the closed field lines play the role of an electron trap via which the electrons are sent back to the shock front multiple times and therefore accelerated to high energies by the shock. Electrons with an initial energy of 300 eV can be accelerated to tens of keV concentrating at the loop apex close to the shock front with a counter-streaming distribution at most locations. These electrons are energetic enough to excite Langmuir waves and radio bursts. Considering the fact that most solar eruptions originate from closed field regions, we suggest that the scenario may be important for the generation of more metric type IIs. This study also provides an explanation of the general ending frequencies of metric type IIs at or above 20-30 MHz and the disconnection issue between metric and interplanetary type IIs.

  12. Effectiveness of edible coatings combined with mild heat shocks on microbial spoilage and sensory quality of fresh cut broccoli (Brassica oleracea L.).

    Science.gov (United States)

    Moreira, María del R; Ponce, Alejandra; Ansorena, R; Roura, Sara I

    2011-08-01

    The use of edible coatings and mild heat shocks is proposed as postharvest treatments to prevent microbial deterioration of refrigerated broccoli. Minimally processed broccoli was coated with either chitosan or carboxymethyl-cellulose (CMC) combined or not with a previous application of a mild heat shock. The evolution of microbial populations (mesophilic, psycrotrophic, Enterobacteriaceae, molds and yeast, and lactic acid bacteria) was studied during 20 d of storage and fitted to Gompertz and logistic models. Results revealed that, at the end of the storage, chitosan coating significantly reduced all microbiological population counts, except lactic acid bacteria; while higher reduction was observed with chitosan coating combined with a heat shock treatment. A significant delay at the beginning of the exponential phase was observed for all the bacterial populations analyzed. On the other hand, CMC coating, with and without a previous thermal treatment, did not exert any antibacterial effect. Excellent agreement was found between experimental microbial counts and predicted values obtained from Gompertz and logistic models. Kinetic modeling was found to be valuable for prediction of microbiological shelf life of broccoli during storage. Results showed that the application of chitosan coating effectively maintained microbiological quality and extended shelf life of minimally processed broccoli. According to these results, the use of the edible chitosan coating alone or in combination with a heat mild shock appear to be a viable alternative for controlling microbiological growth and sensory attributes in minimally processed broccoli. The continuous consumer interest in high quality and food safety, combined with environmental concern has induced to the development and study of edible coatings that avoid the use of synthetic materials. The edible coatings, formed from generally recognized as safe materials, have the potential to reduce weight loss, respiration rate, and

  13. Heat Shock Protein 90 regulates encystation in Entamoeba

    Directory of Open Access Journals (Sweden)

    Meetali eSingh

    2015-10-01

    Full Text Available Enteric protozoan Entamoeba histolytica is a major cause of debilitating diarrheal infection worldwide with high morbidity and mortality. Even though the clinical burden of this parasite is very high, this infection is categorized as a neglected disease. Parasite is transmitted through feco-oral route and exhibit two distinct stages namely – trophozoites and cysts. Mechanism and regulation of encystation is not clearly understood. Previous studies have established the role of Heat shock protein 90 (Hsp90 in regulating stage transition in various protozoan parasites like Giardia, Plasmodium, Leishmania and Toxoplasma. Our study for the first time reports that Hsp90 plays a crucial role in life cycle of Entamoeba as well. We identify Hsp90 to be a negative regulator of encystation in Entamoeba. We also show that Hsp90 inhibition interferes with the process of phagocytosis in Entamoeba. Overall, we show that Hsp90 plays an important role in virulence and transmission of Entamoeba.

  14. Role of heat shock proteins in cell apoptosis

    Directory of Open Access Journals (Sweden)

    Arleta Kaźmierczuk

    2010-06-01

    Full Text Available Apoptosis is, apart from necrosis and autophagy, one of the possible cell death mechanisms eliminating needless, not normal or infected cells. This process ensures quantitative and qualitative cell control of organisms. Apoptosis is tightly regulated, it requires both activation of a large number of genes and energy input. Up-to-date two main apoptotic pathways have been recognized – external/receptor and internal, processed with the participation of mitochondria. Heat shock proteins HSPs, the molecules known from their chaperone activity and molecular conservatism, play essential functions in the course of apoptosis. Among that proteins family, i.e. HSP100, 90, 70, 60, 40 and small molecular (sHSP, there are agents mainly protective against programmed cell death. However, in some conditions some of these proteins may promote apoptosis. This review describes different key apoptotic proteins interacting with main members of HSP family and the consequence of these events for cell survival or apoptosis.

  15. Identification of Genes Differentially Expressed During Heat Shock Treatment in Aedes aegypti

    Science.gov (United States)

    2009-01-01

    Chan, C. W. Cheng, and R. S. Wu. 2003. Cloning of theHSP70 gene in barnacle larvae and its expression under hypoxic conditions. Mar. Pollut. Bull. 46...665Ð671. Chuang, K. H., S. H. Ho, and Y. L. Song. 2007. Cloning and expression analysis of heat shock cognate 70 gene pro- moter in tiger shrimp ...in larvae , but not adults, of a polar insect. Proc. Natl. Acad. Sci. U.S.A. 103: 14223Ð14227. Robich, R. M., J. P. Rinehart, L. J. Kitchen, and D. L

  16. Analysis of core plasma heating and ignition by relativistic electrons

    International Nuclear Information System (INIS)

    Nakao, Y.

    2002-01-01

    Clarification of the pre-compressed plasma heating by fast electrons produced by relativistic laser-plasma interaction is one of the most important issues of the fast ignition scheme in ICF. On the basis of overall calculations including the heating process, both by relativistic hot electrons and alpha-particles, and the hydrodynamic evolution of bulk plasma, we examine the feature of core plasma heating and the possibility of ignition. The deposition of the electron energy via long-range collective mode, i.e. Langmuir wave excitation, is shown to be comparable to that through binary electron-electron collisions; the calculation neglecting the wave excitation considerably underestimates the core plasma heating. The ignition condition is also shown in terms of the intensity I(h) and temperature T(h) of hot electrons. It is found that I(h) required for ignition increases in proportion to T(h). For efficiently achieving the fast ignition, electron beams with relatively 'low' energy (e.g.T(h) below 1 MeV) are desirable. (author)

  17. Cloning, expression, purification, crystallization and preliminary X-ray analysis of the 31 kDa Vibrio cholerae heat-shock protein VcHsp31

    International Nuclear Information System (INIS)

    Das, Samir; Dey, Sanjay; Roy, Trina; Sen, Udayaditya

    2011-01-01

    A heat-shock protein from V. cholerae (VcHsp31) has been cloned, expressed, purified and crystallized. Crystals of VcHsp31 belonged to a monoclinic space group and diffracted to 1.9 Å resolution. The Gram-negative bacterium Vibrio cholerae, which is responsible for the diarrhoeal disease cholera in humans, induces the expression of numerous heat-shock genes. VcHsp31 is a 31 kDa putative heat-shock protein that belongs to the DJ-1/PfpI superfamily, functioning as both a chaperone and a protease. VcHsp31 has been cloned, overexpressed and purified by Ni 2+ –NTA affinity chromatography followed by gel filtration. Crystals of VcHsp31 were grown in the presence of PEG 6000 and MPD; they belonged to space group P2 1 and diffracted to 1.9 Å resolution. Assuming the presence of six molecules in the asymmetric unit, the Matthews coefficient was estimated to be 1.97 Å 3 Da −1 , corresponding to a solvent content of 37.4%

  18. Acceleration of electrons and supplementary ionization during parametrical plasma heating

    International Nuclear Information System (INIS)

    Grach, S.M.; Mityakov, N.A.; Trakhtengerts, V.Yu.; AN SSSR, Gor'kij. Inst. Prikladnoj Fiziki)

    1986-01-01

    Acceleration of electrons by plasma waves in partially ionized plasma is considered with provision for the effects of turbulent scattering and formation of secondary electrons, which are produced in the process of electron shock ionization. It is shown that the avalanche density growth of electrons accelerated up to 1-2 ionization potential (instability) takes place beginning from some critical density of plasma waves. Density of fast electrons is found out along with plasma wave energy density at the stage of instability saturation. Additional concentration of a background plasma, which manifests itself due to ionization, is evaluated

  19. Numerical Study of Erosion, Heating, and Acceleration of the Magnetic Cloud as Impacted by Fast Shock

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Shoudi; He, Jiansen; Yang, Liping; Wang, Linghua [School of Earth and Space Sciences, Peking University No. 5 Yiheyuan Road, Haidian District Beijing, 100871 (China); Zhang, Lei, E-mail: jshept@gmail.com [SIGMA Weather Group, State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences No.1 Nanertiao, Zhongguancun, Haidian district Beijing, 100190 (China)

    2017-06-20

    The impact of an overtaking fast shock on a magnetic cloud (MC) is a pivotal process in CME–CME (CME: coronal mass ejection) interactions and CME–SIR (SIR: stream interaction region) interactions. MC with a strong and rotating magnetic field is usually deemed a crucial part of CMEs. To study the impact of a fast shock on an MC, we perform a 2.5 dimensional numerical magnetohydrodynamic simulation. Two cases are run in this study: without and with impact by fast shock. In the former case, the MC expands gradually from its initial state and drives a relatively slow magnetic reconnection with the ambient magnetic field. Analyses of forces near the core of the MC as a whole body indicates that the solar gravity is quite small compared to the Lorentz force and the pressure gradient force. In the second run, a fast shock propagates, relative to the background plasma, at a speed twice that of the perpendicular fast magnetosonic speed, catches up with and takes over the MC. Due to the penetration of the fast shock, the MC is highly compressed and heated, with the temperature growth rate enhanced by a factor of about 10 and the velocity increased to about half of the shock speed. The magnetic reconnection with ambient magnetic field is also sped up by a factor of two to four in reconnection rate as a result of the enhanced density of the current sheet, which is squeezed by the forward motion of the shocked MC.

  20. Numerical Study of Erosion, Heating, and Acceleration of the Magnetic Cloud as Impacted by Fast Shock

    International Nuclear Information System (INIS)

    Mao, Shoudi; He, Jiansen; Yang, Liping; Wang, Linghua; Zhang, Lei

    2017-01-01

    The impact of an overtaking fast shock on a magnetic cloud (MC) is a pivotal process in CME–CME (CME: coronal mass ejection) interactions and CME–SIR (SIR: stream interaction region) interactions. MC with a strong and rotating magnetic field is usually deemed a crucial part of CMEs. To study the impact of a fast shock on an MC, we perform a 2.5 dimensional numerical magnetohydrodynamic simulation. Two cases are run in this study: without and with impact by fast shock. In the former case, the MC expands gradually from its initial state and drives a relatively slow magnetic reconnection with the ambient magnetic field. Analyses of forces near the core of the MC as a whole body indicates that the solar gravity is quite small compared to the Lorentz force and the pressure gradient force. In the second run, a fast shock propagates, relative to the background plasma, at a speed twice that of the perpendicular fast magnetosonic speed, catches up with and takes over the MC. Due to the penetration of the fast shock, the MC is highly compressed and heated, with the temperature growth rate enhanced by a factor of about 10 and the velocity increased to about half of the shock speed. The magnetic reconnection with ambient magnetic field is also sped up by a factor of two to four in reconnection rate as a result of the enhanced density of the current sheet, which is squeezed by the forward motion of the shocked MC.

  1. The Dynamics of Very High Alfvén Mach Number Shocks in Space Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Torbjörn; Burgess, David [School of Physics and Astronomy, Queen Mary University of London, London, E1 4NS (United Kingdom); Scholer, Manfred [Max-Planck-Institut für extraterrestrische Physik, Garching (Germany); Masters, Adam [The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Sulaiman, Ali H., E-mail: torbjorn.sundberg@gmail.com [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

    2017-02-10

    Astrophysical shocks, such as planetary bow shocks or supernova remnant shocks, are often in the high or very-high Mach number regime, and the structure of such shocks is crucial for understanding particle acceleration and plasma heating, as well inherently interesting. Recent magnetic field observations at Saturn’s bow shock, for Alfvén Mach numbers greater than about 25, have provided evidence for periodic non-stationarity, although the details of the ion- and electron-scale processes remain unclear due to limited plasma data. High-resolution, multi-spacecraft data are available for the terrestrial bow shock, but here the very high Mach number regime is only attained on extremely rare occasions. Here we present magnetic field and particle data from three such quasi-perpendicular shock crossings observed by the four-spacecraft Cluster mission. Although both ion reflection and the shock profile are modulated at the upstream ion gyroperiod timescale, the dominant wave growth in the foot takes place at sub-proton length scales and is consistent with being driven by the ion Weibel instability. The observed large-scale behavior depends strongly on cross-scale coupling between ion and electron processes, with ion reflection never fully suppressed, and this suggests a model of the shock dynamics that is in conflict with previous models of non-stationarity. Thus, the observations offer insight into the conditions prevalent in many inaccessible astrophysical environments, and provide important constraints for acceleration processes at such shocks.

  2. [Suppressive Effects of Extract of Cedar Wood on Heat-induced Expression of Cellular Heat Shock Protein].

    Science.gov (United States)

    Miyakoshi, Junji; Matsubara, Eri; Narita, Eijiro; Koyama, Shin; Shimizu, Yoko; Kawai, Shuichi

    2018-01-01

     In recent years, highly antimicrobial properties of cedar heartwood essential oil against the wood-rotting fungi and pathogenic fungi have been reported in several papers. Antimicrobial properties against oral bacteria by hinokitiol contained in Thujopsis have been also extensively studied. The relation of naturally derived components and human immune system has been studied in some previous papers. In the present study, we focused on Japanese cedar, which has the widest artificial afforestation site in the country among various tree species. Extract oil was obtained from mixture of sapwood and heartwood of about 40-year cedar grown in Oguni, Kumamoto, Japan. We examined the influence of extract components from Japanese cedar woods on the expression of heat shock protein 70 (Hsp70) during heating, and on the micronucleus formation induced by the treatment of bleomycin as a DNA damaging agent. Cell lines used in this study were human fetal glial cells (SVGp12) and human glioma cells (MO54). Remarkable suppression of the Hsp70 expression induced by heating at 43°C was detected by the treatment of cedar extract in both SVGp12 and MO54 cells. We also found that cedar extract had an inhibitory tendency to reduce the micronucleus formation induced by bleomycin. From these results, the extract components from Japanese cedar woods would have an inhibitory effect of the stress response as a suppression of the heat-induced Hsp70 expression, and might have a reductive effect on carcinogenicity.

  3. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  4. Investigation of electron heating in laser-plasma interaction

    Directory of Open Access Journals (Sweden)

    A Parvazian

    2013-03-01

    Full Text Available  In this paper, stimulated Raman scattering (SRS and electron heating in laser plasma propagating along the plasma fusion is investigated by particle-in cell simulation. Applying an external magnetic field to plasma, production of whistler waves and electron heating associated with whistler waves in the direction perpendicular to external magnetic field was observed in this simulation. The plasma waves with low phase velocities, generated in backward-SRS and dominateing initially in time and space, accelerated the backward electrons by trapping them. Then these electrons promoted to higher energies by the forward-SRS plasma waves with high phase velocities. This tow-stage electron acceleration is more efficient due to the coexistence of these two instabilities.

  5. Investigation of electron heating in laser-plasma interaction

    International Nuclear Information System (INIS)

    Parvazian, A.; Haji Sharifi, K.

    2013-01-01

    In this paper, stimulated Raman scattering and electron heating in laser plasma propagating along the plasma fusion is investigated by particle-in cell simulation. Applying an external magnetic field to plasma, production of whistler waves and electron heating associated with whistler waves in the direction perpendicular to external magnetic field was observed in this simulation. The plasma waves with low phase velocities, generated in backward-stimulated Raman scattering and dominating initially in time and space, accelerated the backward electrons by trapping them. Then these electrons promoted to higher energies by the forward-stimulated Raman scattering plasma waves with high phase velocities. This two-stage electron acceleration is more efficient due to the coexistence of these two instabilities.

  6. Elevated expression of proto-oncogenes accompany enhanced induction of heat-shock genes after exposure of rat embryos in utero to ionizing irradiation

    International Nuclear Information System (INIS)

    Higo, H.; Lee, J.Y.; Satow, Y.; Higo, K.

    1989-01-01

    We have recently found that the effects of exposing rat embryos in utero to teratogens capable of producing cardiac anomalies were expressed later as enhanced induction of heat-shock proteins (hsp70 family) when embryonic hearts were cultured in vitro. However, it remained to be determined whether heat-shock proteins are induced in vivo after exposure to teratogens. The heat-shock response in some mammalian systems is known to be accompanied by elevated expression of proto-oncogenes. Using gene-specific DNA probes, we examined the levels of the expression (transcription) of heat-shock protein genes and two nuclear proto-oncogenes, c-fos and c-myc, in the embryos removed from irradiated pregnant mother rats 4 or 5 days after the irradiation. We found that the levels of expression in vivo of the hsp70 and c-myc genes in the irradiated embryos increased by approximately twofold as compared with those in the control. The expression in vivo of the c-fos gene was not detected in either the irradiated or non-irradiated embryos. After 0.5-hr incubation in vitro of the embryos, however, the expression of the c-fos gene in the irradiated embryos was highly enhanced whereas the control showed no changes. Although the exact functions of these gene products still remain obscure, the enhanced expression of hsp70 gene(s) and the nuclear proto-oncogenes observed in the present study may reflect repair of intracellular damages and/or regeneration of tissue by compensatory cell proliferation, processes that may disturb the normal program of organogenesis

  7. The effect of simulated heat-shock and daily temperature fluctuations on seed germination of four species from fire-prone ecosystems

    Directory of Open Access Journals (Sweden)

    Talita Zupo

    2016-01-01

    Full Text Available ABSTRACT Seed germination in many species from fire-prone ecosystems may be triggered by heat shock and/or temperature fluctuation, and how species respond to such fire-related cues is important to understand post-fire regeneration strategies. Thus, we tested how heat shock and daily temperature fluctuations affect the germination of four species from fire-prone ecosystems; two from the Cerrado and two from the Mediterranean Basin. Seeds of all four species were subjected to four treatments: Fire (F, temperature fluctuations (TF, fire+temperature fluctuations (F+TF and control (C. After treatments, seeds were put to germinate for 60 days at 25ºC (dark. Responses differed according to species and native ecosystem. Germination percentage for the Cerrado species did not increase with any of the treatments, while germination of one Mediterranean species increased with all treatments and the other only with treatments that included fire. Although the Cerrado species did not respond to the treatments used in this study, their seeds survived the exposure to heat shock, which suggests they possess tolerance to fire. Fire frequency in the Cerrado is higher than that in Mediterranean ecosystems, thus traits related to fire-resistance would be more advantageous than traits related to post-fire recruitment, which are widespread among Mediterranean species.

  8. Transfection of Chinese hamster ovary DHFR/sup -/ cells with the gene coding for heat shock protein 70 from drosophila melanogaster

    International Nuclear Information System (INIS)

    Duffy, J.J.; Carper, S.W.; Gerner, E.W.

    1987-01-01

    Chinese hamster ovary DHFR/sup -/ cells (CHO-DHFR/sup -/) were transfected with the plasmid pSV2-dhfr expressing the mouse gene coding for dhfr or with the same plasmid containing the gene coding for the Drosophila melanogaster heat shock protein 70 (hsp70), pSVd-hsp70. Three subcloned cell lines selected for expression of the dhfr gene were shown to contain either the vector sequence (G cells) or varying copies of pSVd-hsp70 (H cells). One line of H cells was shown to contain > 30 copies of the D. melanogaster hsp70 gene and to express the hsp70 RNA at significant levels. No difference between G and H cells was observed in the rate of growth, in the development of thermotolerance, or in the sensitivity of actin microfilament bundles to heat shock. However, H cells containing the transfected hsp70 gene had an altered morphology when compared to the G cells and the parental CHO-DHFR/sup -/ cells being more fibroblastic. The adhesion properties of the H cells was also decreased when compared to the G cells. These results show that insertion of the D. melanogaster gene into CHO cells does not effect growth rates or heat shock responses but may alter cell morphology and adhesion

  9. Heat Shock Proteins as Danger Signals for Cancer Detection

    International Nuclear Information System (INIS)

    Seigneuric, Renaud; Mjahed, Hajare; Gobbo, Jessica; Joly, Anne-Laure; Berthenet, Kevin; Shirley, Sarah; Garrido, Carmen

    2011-01-01

    First discovered in 1962, heat shock proteins (HSPs) are highly studied with about 35,500 publications on the subject to date. HSPs are highly conserved, function as molecular chaperones for a large panel of “client” proteins and have strong cytoprotective properties. Induced by many different stress signals, they promote cell survival in adverse conditions. Therefore, their roles have been investigated in several conditions and pathologies where HSPs accumulate, such as in cancer. Among the diverse mammalian HSPs, some members share several features that may qualify them as cancer biomarkers. This review focuses mainly on three inducible HSPs: HSP27, HPS70, and HSP90. Our survey of recent literature highlights some recurring weaknesses in studies of the HSPs, but also identifies findings that indicate that some HSPs have potential as cancer biomarkers for successful clinical applications.

  10. Electron Heating of LHCD Plasma in HT-7 Tokamak

    International Nuclear Information System (INIS)

    Ding Yonghua; Wan Baonian; Lin Shiyao; Chen Zhongyong; Hu Xiwei; Shi Yuejiang; Hu Liqun; Kong Wei; Zhang Xiaoqing

    2006-01-01

    Electron heating via lower hybrid current drive (LHCD) has been investigated in HT-7 superconducting tokamak. Experiments show that the central electron temperature T e0 , the volume averaged electron temperature e > and the peaking factor of the electron temperature Q Te = T e0 / e > increase with the lower hybrid wave (LHW) power. Simultaneously the electron heating efficiency and the electron temperature as the function of the central line-averaged electron density (n e ) and the plasma current (I p ) have also been investigated. The experimental results are in a good agreement with those of the classical collision theory and the LHW power deposition theory

  11. Heat-shock proteins in stromal joint tissues: innocent bystanders or disease-initiating proteins?

    Science.gov (United States)

    Lambrecht, Stijn; Juchtmans, Nele; Elewaut, Dirk

    2014-02-01

    Heat-shock proteins (HSPs) are molecular chaperones that are highly conserved between species. In recent decades it has become clear that these proteins play an important role in the pathogenesis of inflammatory and degenerative joint diseases by (dys)regulating the immune system and by direct effects on the stromal tissues of the joint. In this review we discuss current insights into the expression pattern of HSPs in connective tissues, the direct biological role of HSPs in stromal tissues and the potential clinical applications.

  12. Expression of Heat Shock Protein 27 in Benign Prostatic Hyperplasia with Chronic Inflammation

    OpenAIRE

    Jiang, Yuqing; Wang, Xiuli; Guo, Yuexian; Li, Wenping; Yang, Shijie; Li, Wei; Cai, Wenqing

    2015-01-01

    Background Heat shock protein 27 (HSP 27) is known as a mediator in immune response and has been recently found to be expressed in prostate cancer. This study aimed to investigate the role of HSP27 in inflammatory BPH. Material/Methods Hospitalized BPH patients who received TURP were divided into 4 groups by the presence and degrees of chronic inflammation: non-inflammatory BPH (NI BPH), mild-inflammatory BPH (MI BPH), moderate-inflammatory BPH (MOI BPH), and severe-inflammatory BPH (SI BPH)....

  13. Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ata-ur-Rahman,; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2013-04-15

    We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.

  14. Comparative Effect of Heat Shock on Survival of O157:H7 and Non-O157 Shiga Toxigenic Escherichia coli and Salmonella in Lean Beef with or without Moisture-Enhancing Ingredients.

    Science.gov (United States)

    Vasan, Akhila; Ingham, Steven C; Ingham, Barbara H

    2017-06-01

    Thermal tolerance of pathogenic bacteria has been shown to increase after exposure to sublethal elevated temperatures, or heat shock. We evaluated the effect of heat shock at 48°C on thermal tolerance (D 55°C ) of cocktails of O157 and non-O157 Shiga toxigenic Escherichia coli (STEC) and Salmonella in lean ground beef with or without moisture-enhancing ingredients. Beef was moisture enhanced to 110% (w) with a 5% NaCl-2.5% sodium tripolyphosphate (w/w) brine. Meat, with or without added brine, was inoculated (∼10 8 CFU/g) and heat shocked at 48°C for 0, 5, or 30 min, followed by isothermal heating at 55°C. Inoculated control samples were unenhanced and were not subject to heat shock. From the linear portion of the log CFU per gram surviving cells over time plots, D 55°C -values (minutes) were calculated. D 55°C was 20.43, 28.78, and 21.15 min for O157, non-O157, and Salmonella controls, respectively. Overall, heat shock significantly increased D 55°C , regardless of pathogen (P moisture-enhanced meat (P Moisture-enhancing ingredients significantly increased D 55°C , regardless of pathogen (P moisture-enhanced beef products.

  15. Numerical simulation of plasma processes driven by transverse ion heating

    Science.gov (United States)

    Singh, Nagendra; Chan, C. B.

    1993-01-01

    The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.

  16. Detailed study of electron plasma waves upstream of the earth's bow shock

    International Nuclear Information System (INIS)

    Etcheto, J.; Faucheux, M.

    1984-01-01

    A detailed study of electron plasma waves observed upstream of the earth's bow shock and of their relationships to the position of the satellite in the foreshock and to the electron measurements has been carried out. The wave characteristics depend on the position in the electron foreshock: a narrow-bnd (a few percent) and intense (a few millivolts per meter) noise is observed at the plasma frequency at the edge of the foreshock while the spectrum widens (Δf/fapprox. =0.3) at the same time as the power decreases (hundreds of microvolts per meter) deeper (a few earth radii) inside the foreshock. Signals below the plasma frequency are also observed. These waves are polarized along the magnetic field, with long wavelengths below and at the plasma frequency and short wavelengths above it. They appear as short bursts, the duration of which depends on the frequency: longer close to the plasma frequency (50 ms), they shorten with increasing separation from the plasma frequency, the usual duration being 15 ms. While the correlation of the wave characteristics with the reflected electrons is good as the satellite moves inside the foreshock, no evolution is found with the distance to the bow shock, neither for the noise nor for the particles. These results are discussed in the frame of various mechanisms which have been proposed to explain these upstream waves but no satisfactory agreement is found with any of them

  17. Small heat shock protein αA-crystallin prevents photoreceptor degeneration in experimental autoimmune uveitis.

    Directory of Open Access Journals (Sweden)

    Narsing A Rao

    Full Text Available The small heat shock protein, αA-crystallin null (αA-/- mice are known to be more prone to retinal degeneration than the wild type mice in Experimental Autoimmune Uveoretinitis (EAU. In this report we demonstrate that intravenous administration of αA preserves retinal architecture and prevents photoreceptor damage in EAU. Interestingly, only αA and not αB-crystallin (αB, a closely related small heat shock protein works, pointing to molecular specificity in the observed retinal protection. The possible involvement of αA in retinal protection through immune modulation is corroborated by adaptive transfer experiments, (employing αA-/- and wild type mice with EAU as donors and Rag2-/- as the recipient mice, which indicate that αA protects against the autoimmune challenge by modulating the systemic B and T cell immunity. We show that αA administration causes marked reduction in Th1 cytokines (TNF-α, IL-12 and IFN-γ, both in the retina and in the spleen; notably, IL-17 was only reduced in the retina suggesting local intervention. Importantly, expression of Toll-like receptors and their associated adaptors is also inhibited suggesting that αA protection, against photoreceptor loss in EAU, is associated with systemic suppression of both the adaptive and innate immune responses.

  18. Small heat shock protein αA-crystallin prevents photoreceptor degeneration in experimental autoimmune uveitis.

    Science.gov (United States)

    Rao, Narsing A; Saraswathy, Sindhu; Pararajasegaram, Geeta; Bhat, Suraj P

    2012-01-01

    The small heat shock protein, αA-crystallin null (αA-/-) mice are known to be more prone to retinal degeneration than the wild type mice in Experimental Autoimmune Uveoretinitis (EAU). In this report we demonstrate that intravenous administration of αA preserves retinal architecture and prevents photoreceptor damage in EAU. Interestingly, only αA and not αB-crystallin (αB), a closely related small heat shock protein works, pointing to molecular specificity in the observed retinal protection. The possible involvement of αA in retinal protection through immune modulation is corroborated by adaptive transfer experiments, (employing αA-/- and wild type mice with EAU as donors and Rag2-/- as the recipient mice), which indicate that αA protects against the autoimmune challenge by modulating the systemic B and T cell immunity. We show that αA administration causes marked reduction in Th1 cytokines (TNF-α, IL-12 and IFN-γ), both in the retina and in the spleen; notably, IL-17 was only reduced in the retina suggesting local intervention. Importantly, expression of Toll-like receptors and their associated adaptors is also inhibited suggesting that αA protection, against photoreceptor loss in EAU, is associated with systemic suppression of both the adaptive and innate immune responses.

  19. Hyperglycemia adversely modulates endothelial nitric oxide synthase during anesthetic preconditioning through tetrahydrobiopterin- and heat shock protein 90-mediated mechanisms.

    Science.gov (United States)

    Amour, Julien; Brzezinska, Anna K; Jager, Zachary; Sullivan, Corbin; Weihrauch, Dorothee; Du, Jianhai; Vladic, Nikolina; Shi, Yang; Warltier, David C; Pratt, Phillip F; Kersten, Judy R

    2010-03-01

    Endothelial nitric oxide synthase activity is regulated by (6R-)5,6,7,8-tetrahydrobiopterin (BH4) and heat shock protein 90. The authors tested the hypothesis that hyperglycemia abolishes anesthetic preconditioning (APC) through BH4- and heat shock protein 90-dependent pathways. Myocardial infarct size was measured in rabbits in the absence or presence of APC (30 min of isoflurane), with or without hyperglycemia, and in the presence or absence of the BH4 precursor sepiapterin. Isoflurane-dependent nitric oxide production was measured (ozone chemiluminescence) in human coronary artery endothelial cells cultured in normal (5.5 mm) or high (20 mm) glucose conditions, with or without sepiapterin (10 or 100 microm). APC decreased myocardial infarct size compared with control experiments (26 +/- 6% vs. 46 +/- 3%, respectively; P < 0.05), and this action was blocked by hyperglycemia (43 +/- 4%). Sepiapterin alone had no effect on infarct size (46 +/- 3%) but restored APC during hyperglycemia (21 +/- 3%). The beneficial actions of sepiapterin to restore APC were blocked by the nitric oxide synthase inhibitor N (G)-nitro-L-arginine methyl ester (47 +/- 2%) and the BH4 synthesis inhibitor N-acetylserotonin (46 +/- 3%). Isoflurane increased nitric oxide production to 177 +/- 13% of baseline, and this action was attenuated by high glucose concentrations (125 +/- 6%). Isoflurane increased, whereas high glucose attenuated intracellular BH4/7,8-dihydrobiopterin (BH2) (high performance liquid chromatography), heat shock protein 90-endothelial nitric oxide synthase colocalization (confocal microscopy) and endothelial nitric oxide synthase activation (immunoblotting). Sepiapterin increased BH4/BH2 and dose-dependently restored nitric oxide production during hyperglycemic conditions (149 +/- 12% and 175 +/- 9%; 10 and 100 microm, respectively). The results indicate that tetrahydrobiopterin and heat shock protein 90-regulated endothelial nitric oxide synthase activity play a central

  20. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment.

    Directory of Open Access Journals (Sweden)

    Harsh Chauhan

    Full Text Available Reduction in crop yield and quality due to various abiotic stresses is a worldwide phenomenon. In the present investigation, a heat shock factor (HSF gene expressing preferentially in developing seed tissues of wheat grown under high temperatures was cloned. This newly identified heat shock factor possesses the characteristic domains of class A type plant HSFs and shows high similarity to rice OsHsfA2d, hence named as TaHsfA2d. The transcription factor activity of TaHsfA2d was confirmed through transactivation assay in yeast. Transgenic Arabidopsis plants overexpressing TaHsfA2d not only possess higher tolerance towards high temperature but also showed considerable tolerance to salinity and drought stresses, they also showed higher yield and biomass accumulation under constant heat stress conditions. Analysis of putative target genes of AtHSFA2 through quantitative RT-PCR showed higher and constitutive expression of several abiotic stress responsive genes in transgenic Arabidopsis plants over-expressing TaHsfA2d. Under stress conditions, TaHsfA2d can also functionally complement the T-DNA insertion mutants of AtHsfA2, although partially. These observations suggest that TaHsfA2d may be useful in molecular breeding of crop plants, especially wheat, to improve yield under abiotic stress conditions.

  1. Synthesis of 19-substituted geldanamycins with altered conformations and their binding to heat shock protein Hsp90

    Science.gov (United States)

    Kitson, Russell R. A.; Chang, Chuan-Hsin; Xiong, Rui; Williams, Huw E. L.; Davis, Adrienne L.; Lewis, William; Dehn, Donna L.; Siegel, David; Roe, S. Mark; Prodromou, Chrisostomos; Ross, David; Moody, Christopher J.

    2013-01-01

    The benzoquinone ansamycin geldanamycin and its derivatives are inhibitors of heat shock protein Hsp90, an emerging target for novel therapeutic agents both in cancer and in neurodegeneration. However, toxicity of these compounds to normal cells has been ascribed to reaction with thiol nucleophiles at the quinone 19-position. We reasoned that blocking this position would ameliorate toxicity, and that it might also enforce a favourable conformational switch of the trans-amide group into the cis-form required for protein binding. We report here an efficient synthesis of such 19-substituted compounds and realization of our hypotheses. Protein crystallography established that the new compounds bind to Hsp90 with, as expected, a cis-amide conformation. Studies on Hsp90 inhibition in cells demonstrated the molecular signature of Hsp90 inhibitors: decreases in client proteins with compensatory increases in other heat shock proteins in both human breast cancer and dopaminergic neural cells, demonstrating their potential for use in the therapy of cancer or neurodegenerative diseases. PMID:23511419

  2. TARGETED DELETION OF INDUCIBLE HEAT SHOCK PROTEIN 70 ABROGATES THE LATE INFARCT-SPARING EFFECT OF MYOCARDIAL ISCHEMIC PRECONDITIONING

    Science.gov (United States)

    Abstract submitted for 82nd annual meeting of the American Association for Thoracic Surgery, May 4-8, 2002 in Washington D.C.Targeted Deletion of Inducible Heat Shock Protein 70 Abrogates the Late Infarct-Sparing Effect of Myocardial Ischemic PreconditioningCraig...

  3. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly

    International Nuclear Information System (INIS)

    Wang, Robert Y.L.; Kuo, Rei-Lin; Ma, Wei-Chieh; Huang, Hsing-I; Yu, Jau-Song; Yen, Sih-Min; Huang, Chi-Ruei; Shih, Shin-Ru

    2013-01-01

    Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted to new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone. - Highlights: • Hsp90β is associated with EV71 virion and is secreted with the release virus. • Hsp90β effects on the correct assembly of viral particles. • Viral titer of cultured medium was reduced in the presence of geldanamycin. • Viral titer was also reduced when Hsp90β was suppressed by siRNA treatment. • The extracellular Hsp90β was also observed in other RNA viruses-infected cells

  4. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Robert Y.L., E-mail: yuwang@mail.cgu.edu.tw [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Kuo, Rei-Lin [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Biotechnology and Laboratory Science and Graduate Program of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Ma, Wei-Chieh [Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Huang, Hsing-I [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Biotechnology and Laboratory Science and Graduate Program of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Yu, Jau-Song [Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 333, Taiwan (China); Yen, Sih-Min [Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Huang, Chi-Ruei [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Shih, Shin-Ru [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Biotechnology and Laboratory Science and Graduate Program of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China)

    2013-09-01

    Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted to new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone. - Highlights: • Hsp90β is associated with EV71 virion and is secreted with the release virus. • Hsp90β effects on the correct assembly of viral particles. • Viral titer of cultured medium was reduced in the presence of geldanamycin. • Viral titer was also reduced when Hsp90β was suppressed by siRNA treatment. • The extracellular Hsp90β was also observed in other RNA viruses-infected cells.

  5. Heat shock protein 70 negatively regulates the heat-shock-induced suppression of the IκB/NF-κB cascade by facilitating IκB kinase renaturation and blocking its further denaturation

    International Nuclear Information System (INIS)

    Lee, Kyoung-Hee; Lee, Choon-Taek; Kim, Young Whan; Han, Sung Koo; Shim, Young-Soo; Yoo, Chul-Gyu

    2005-01-01

    Heat shock (HS) treatment has been previously shown to suppress the IκB/nuclear factor-κB (NF-κB) cascade by denaturing, and thus inactivating IκB kinase (IKK). HS is characterized by the induction of a group of heat shock proteins (HSPs). However, their role in the HS-induced suppression of the IκB/NF-κB cascade is unclear. Adenovirus-mediated HSP70 overexpression was found not to suppress the TNF-α-induced activation of the IκB/NF-κB pathway, thus suggesting that HSP70 is unlikely to suppress this pathway. When TNF-α-induced activation of the IκB/NF-κB pathway was regained 24 h after HS, HSP70 was found to be highly up-regulated. Moreover, blocking HSP70 induction delayed TNF-α-induced IκBα degradation and the resolubilization of IKK. In addition, HSP70 associated physically with IKK, suggesting that HSP70 is involved in the recovery process via molecular chaperone effect. Adenovirus-mediated HSP70 overexpression prior to HS blocked the IκBα stabilizing effect of HS by suppressing IKK insolubilization. Moreover, the up-regulation of endogenous HSP70 by preheating, suppressed this subsequent HS-induced IKK insolubilization, and this effect was abrogated by blocking HSP70 induction. These findings indicate that HSP70 accumulates during HS and negatively regulates the HS-induced suppression of the IκB/NF-κB cascade by facilitating the renaturation of IKK and blocking its further denaturation

  6. Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide

    Science.gov (United States)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2018-04-01

    The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor-metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.

  7. Physiology and Endocrinology Symposium: The current status of heat shock in early embryonic survival and reproductive efficiency

    Science.gov (United States)

    The Physiology and Endocrinology Symposium entitled “The Current Status of Heat Shock in Early Embryonic Survival and Reproductive Efficiency” was held at the Joint ADSA-CSAS-AMPA-WSAS-ASAS Meeting in Phoenix, Arizona, July 15 to 19, 2012. In recent years, data has accumulated suggesting a role for...

  8. Wheat Mds-1 encodes a heat-shock protein and governs susceptibility towards the Hessian fly gall midge

    Science.gov (United States)

    Plant pests including insects must manipulate plants in order to utilize the nutrition and environment of the host. Here, we show that the heat-shock protein gene Mayetiola destructor susceptibility gene-1 (Mds-1) is a major susceptibility gene in wheat that allows the gall midge M. destructor, com...

  9. Generation and Micro-scale Effects of Electrostatic Waves in an Oblique Shock

    Science.gov (United States)

    Goodrich, K.; Ergun, R.; Schwartz, S. J.; Newman, D.; Johlander, A.; Argall, M. R.; Wilder, F. D.; Torbert, R. B.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Gershman, D. J.; Burch, J. L.

    2017-12-01

    We present an analysis of large amplitude (>100 mV/m), high frequency (≤1 kHz), electrostatic waves observed by MMS during an oblique bow shock crossing event. The observed waves primarily consist of electrostatic solitary waves (ESWs) and oblique ion plasma waves (IPWs). ESWs typically include nonlinear structures such as double layers, ion phase-space holes, and electron phase-space holes. Oblique IPWs are observed to be similar to ion acoustic waves, but can propagate up to 70° from the ambient magnetic field direction. Both wave-modes, particularly IPWs, are observed to have very short wavelengths ( 100 m) and are highly localized. While such wave-modes have been previously observed in the terrestrial bow shock, instrumental constraints have limited detailed insight into their generation and their effect on their plasma shock environment. Analysis of this oblique shock event shows evidence that ESWs and oblique IPWs can be generated through field-aligned currents associated with magnetic turbulence and through a counterstreaming ion instability respectively. We also present evidence that this wave activity can facilitate momentum exchange between ion populations, resulting in deceleration of incoming solar wind, and localized electron heating.

  10. Computer simulations of upper-hybrid and electron cyclotron resonance heating

    International Nuclear Information System (INIS)

    Lin, A.T.; Lin, C.C.

    1983-01-01

    A 2 1/2 -dimensional relativistic electromagnetic particle code is used to investigate the dynamic behavior of electron heating around the electron cyclotron and upper-hybrid layers when an extraordinary wave is obliquely launched from the high-field side into a magnetized plasma. With a large angle of incidence most of the radiation wave energy converts into electrostatic electron Bernstein waves at the upper-hybrid layer. These mode-converted waves propagate back to the cyclotron layer and deposit their energy in the electrons through resonant interactions dominated first by the Doppler broadening and later by the relativistic mass correction. The line shape for both mechanisms has been observed in the simulations. At a later stage, the relativistic resonance effects shift the peak of the temperature profile to the high-field side. The heating ultimately causes the extraordinary wave to be substantially absorbed by the high-energy electrons. The steep temperature gradient created by the electron cyclotron heating eventually reflects a substantial part of the incident wave energy. The diamagnetic effects due to the gradient of the mode-converted Bernstein wave pressure enhance the spreading of the electron heating from the original electron cyclotron layer

  11. Ultraviolet filters and heat shock proteins: effects in Chironomus riparius by benzophenone-3 and 4-methylbenzylidene camphor.

    Science.gov (United States)

    Martín-Folgar, Raquel; Aquilino, Mónica; Ozáez, Irene; Martínez-Guitarte, José-Luis

    2018-01-01

    Benzophenone-3 (BP3) and 4-methylbenzylidene camphor (4MBC) are common ultraviolet filters (UV filters), compounds considered as emergent contaminants, used in different products like plastics and personal care products. The levels of these compounds are rising in the wild, but the effects they have on invertebrates are poorly understood. Chironomus riparius is a benthic insect widely used in toxicology, and several studies have been previously performed in our laboratory to determine the effects these compounds have on this organism at the molecular level. We have shown that UV filters can alter the mRNA levels of heat shock protein 70 (Hsp70), one of the most studied heat shock proteins. Although these proteins are crucial for the survival of organisms, little data is available on the effects these emergent contaminants have on them, especially in invertebrates. Here, we analyzed the transcriptional activity of 12 genes covering the different groups of heat shock protein [Hsp10, Hsp17, Hsp21, Hsp22, Hsp23, Hsp24, Hsp27, Hsp34, Hsp40, Hsp60, Hsc70 (3), and Hsc70 (4)] in response to 0.1 and 1 mg/L concentrations of BP3 and 4MBC at 8 and 24 h. The results showed that some small Hsp (sHsp) genes were altered by these compounds, while the genes of proteins present in mitochondria, Hsp10 and Hsp60, did not change. sHsps are also involved in developmental processes, so the observed variations could be due to the endocrine disruption activity described for these compounds rather than to a stress response.

  12. Effect of re-heating on the hot electron temperature

    International Nuclear Information System (INIS)

    Estabrook, K.; Rosen, M.

    1980-01-01

    Resonant absorption is the direct conversion of the transverse laser light to longitudinal electron plasma waves (epw) at the critical density [10 21 (1.06 μm/lambda 0 ) 2 cm -3 ]. The oscillating longitudinal electric field of the epw heats the electrons by accelerating them down the density gradient to a temperature of approximately 21T/sub e/ 0 25 ([I(W/cm 2 )/10 16 ](lambda 0 /1.06 μm) 2 ) 0 4 . This section extends the previous work by studying the effects of magnetic fields and collisions (albedo) which return the heated electrons for further heating. A magnetic field increases their temperature and collisions do not

  13. Thermotolerance and Heat-Shock Protein Gene Expression Patterns in Bemisia tabaci (Hemiptera: Aleyrodidae) Mediterranean in Relation to Developmental Stage.

    Science.gov (United States)

    Jiang, Rui; Qi, Lan-Da; Du, Yu-Zhou; Li, Yuan-Xi

    2017-10-01

    Temperature plays an important role in the growth, development, and geographic distribution of insects. There is convincing evidence that heat-shock proteins (HSPs) play important roles in helping organisms adapt to thermal stress. To better understand the physiological and ecological influence of thermal stress on the different development stages of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Mediterranean species (MED), nymphs and adults were shocked with temperatures of 35, 38, and 41℃ for 1 and 2 h, respectively, and the survival rate, fecundity, and developmental duration were investigated in the laboratory. The expression levels of the hsp40, hsp70, and hsp90 genes were assessed using real-time PCR. The results indicate that the survival rates of the nymphs and adults decreased with increased temperature. A 2-h heat shock at 41℃ induced a significant reduction in fecundity in adults and an increase in developmental duration in young nymphs. Hsp90 showed higher temperature responses to thermal stress than hsp40 or hsp70. The expression levels of the hsps in the adults were significantly down-regulated by a 2-h heat shock at 41℃ compared with that by a 1-h treatment. A significant decrease in the expression levels of the hsps also occurred in the adults when the temperature increased from 38 to 41℃ for the 2-h treatment, whereas no significant decrease occurred in the nymphs. Compared with previous studies, we provide some evidence indicating that MED has the potential to adapt to a wider temperature range than the Middle East-Asia Minor 1 species. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Overexpression of a heat shock protein (ThHSP18.3) from Tamarix hispida confers stress tolerance to yeast.

    Science.gov (United States)

    Gao, Caiqiu; Jiang, Bo; Wang, Yucheng; Liu, Guifeng; Yang, Chuanping

    2012-04-01

    It is well known that plant heat shock proteins (HSPs) play important roles both in response to adverse environmental conditions and in various developmental processes. However, among plant HSPs, the functions of tree plant HSPs are poorly characterized. To improve our understanding of tree HSPs, we cloned and characterized an HSP gene (ThHSP18.3) from Tamarix hispida. Sequence alignment reveals that ThHSP18.3 belongs to the class I small heat shock protein family. A transient expression assay showed that ThHSP18.3 protein was targeted to the cell nucleus. Treatment of Tamarix hispida with cold and heat shock highly induced ThHSP18.3 expression in all studied leaves, roots and stems, whereas, treatment of T. hispida with NaCl, NaHCO(3), and PEG induced ThHSP18.3 expression in leaves and decreased its expression in roots and stems. Further, to study the role of ThHSP18.3 in stress tolerance under different stress conditions, we cloned ThHSP18.3 into the pYES2 vector, transformed and expressed the vector in yeast Saccharomyces cerevisiae. Yeast cells transformed with an empty pYES2 vector were employed as a control. Compared to the control, yeast cells expressing ThHSP18.3 showed greater tolerance to salt, drought, heavy metals, and both low and high temperatures, indicating that ThHSP18.3 confers tolerance to these stress conditions. These results suggested that ThHSP18.3 is involved in tolerance to a variety of stress conditions in T. hispida.

  15. A DOUBLE KNOCKOUT; A NOVEL APPROACH TO UNDERSTANDING STRESS-INDUCIBLE 70 KDA HEAT SHOCK PROTEINS (HSP70S) ON DEVELOPMENT AND REPRODUCTION

    Science.gov (United States)

    Heat and chemical toxicants which disrupt spermatogenesis and cause male infertility are thought to induce the expression of Hsp70-1 and 70-3, the major inducible heat shock proteins of the 70kDa family. Previous studies from several laboratories including our own have characteri...

  16. Electron and ion heat transport with lower hybrid current drive and neutral beam injection heating in ASDEX

    International Nuclear Information System (INIS)

    Soeldner, F.X.; Pereverzev, G.V.; Bartiromo, R.; Fahrbach, H.U.; Leuterer, F.; Murmann, H.D.; Staebler, A.; Steuer, K.H.

    1993-01-01

    Transport code calculations were made for experiments with the combined operation of lower hybrid current drive and heating and of neutral beam injection heating on ASDEX. Peaking or flattening of the electron temperature profile are mainly explained by modifications of the MHD induced electron heat transport. They originate from current profile changes due to lower hybrid and neutral beam current drive and to contributions from the bootstrap current. Ion heat transport cannot be described by one single model for all heating scenarios. The ion heat conductivity is reduced during lower hybrid heated phases with respect to Ohmic and neutral beam heating. (author). 13 refs, 5 figs

  17. On possible structures of normal ionizing shock waves in electromagnetic shock tubes

    International Nuclear Information System (INIS)

    Liberman, M.A.; Synakh, V.S.; Zakajdakhov, V.V.; Velikovich, A.L.

    1982-01-01

    The problem of possible structures of normal ionizing shock waves is studied. On the basis of the general theory of ionizing shock waves in magnetic fields, a similarity solution of the piston problem for an impenetrable piston and a magnetic piston is described and a numerical solution of the non-stationary piston problem is obtained. It is shown that precursor photo-ionization of the neutral gas by the radiation of the shock-heated gas is the dominant factor in shaping normal ionizing shock structures. In particular, it is shown that the strong overheating of atoms and ions in shock fronts is due to the tensor form of Ohm's law in the precursor region. (author)

  18. The Heat Shock Protein 26 Gene is Required for Ethanol Tolerance in Drosophila

    Directory of Open Access Journals (Sweden)

    Awoyemi A. Awofala

    2011-01-01

    Full Text Available Stress plays an important role in drug- and addiction-related behaviours. However, the mechanisms underlying these behavioural responses are still poorly understood. In the light of recent reports that show consistent regulation of many genes encoding stress proteins including heat shock proteins following ethanol exposure in Drosophila , it was hypothesised that transition to alcohol dependence may involve the dysregulation of the circuits that mediate behavioural responses to stressors. Thus, behavioural genetic methodologies were used to investigate the role of the Drosophila hsp26 gene, a small heat shock protein coding gene which is induced in response to various stresses, in the development of rapid tolerance to ethanol sedation. Rapid tolerance was quantified as the percentage difference in the mean sedation times between the second and first ethanol exposure. Two independently isolated P-element mutations near the hsp26 gene eliminated the capacity for tolerance. In addition, RNAi-mediated functional knockdown of hsp26 expression in the glial cells and the whole nervous system also caused a defect in tolerance development. The rapid tolerance phenotype of the hsp26 mutants was rescued by the expression of the wild-type hsp26 gene in the nervous system. None of these manipulations of the hsp26 gene caused changes in the rate of ethanol absorption. Hsp26 genes are evolutionary conserved, thus the role of hsp26 in ethanol tolerance may present a new direction for research into alcohol dependency.

  19. The Immunomodulatory Potential of tolDCs Loaded with Heat Shock Proteins

    Directory of Open Access Journals (Sweden)

    Willem van Eden

    2017-11-01

    Full Text Available Disease suppressive T cell regulation may depend on cognate interactions of regulatory T cells with self-antigens that are abundantly expressed in the inflamed tissues. Heat shock proteins (HSPs are by their nature upregulated in stressed cells and therefore abundantly present as potential targets for such regulation. HSP immunizations have led to inhibition of experimentally induced inflammatory conditions in various models. However, re-establishment of tolerance in the presence of an ongoing inflammatory process has remained challenging. Since tolerogenic DCs (tolDCs have the combined capacity of mitigating antigen-specific inflammatory responses and of endowing T cells with regulatory potential, it seems attractive to combine the anti-inflammatory qualities of tolDCs with those of HSPs.

  20. heat shock factor genes of tall fescue and perennial ryegrass in response to temperature stress by RNA-Seq analysis

    Directory of Open Access Journals (Sweden)

    Yan eWang

    2016-01-01

    Full Text Available Heat shock factors (Hsfs are important regulators of stress-response in plants. However, our understanding of Hsf genes and their responses to temperature stresses in two Pooideae cool-season grasses, Festuca arundinacea and Lolium perenne, is limited. Here we conducted comparative transcriptome analyses of plant leaves exposed to heat or cold stress for 10 h. Approximately, 30% and 25% of the genes expressed in the two species showed significant changes under heat and cold stress respectively, including subsets of Hsfs and their target genes. We uncovered 74 Hsfs in F. arundinacea and 52 Hsfs in L. perenne, and categorized these genes into three subfamilies, HsfA, HsfB, and HsfC based on protein sequence homology to known Hsf members in model organisms. The Hsfs showed a strong response to heat and/or cold stress. The expression of HsfAs was elevated under heat stress, especially in class HsfA2, which exhibited the most dramatic responses. HsfBs were upregulated by the both temperature conditions, and HsfCs mainly showed an increase in expression under cold stress. The target genes of Hsfs, such as heat shock protein (HSP, ascorbate peroxidase (APX, inositol-3-phosphate synthase (IPS, and galactinol synthase (GOLS1, showed strong and unique responses to different stressors. We comprehensively detected Hsfs and their target genes in F. arundinacea and L. perenne, providing a foundation for future gene function studies and genetic engineering to improve stress tolerance in grasses and other crops.

  1. Influence of laser induced hot electrons on the threshold for shock ignition of fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Colaïtis, A.; Ribeyre, X.; Le Bel, E.; Duchateau, G.; Nicolaï, Ph.; Tikhonchuk, V. [Centre Lasers Intenses et Applications, Université de Bordeaux - CNRS - CEA, UMR 5107,351 Cours de la Libération, 33400 Talence (France)

    2016-07-15

    The effects of Hot Electrons (HEs) generated by the nonlinear Laser-Plasma Interaction (LPI) on the dynamics of Shock Ignition Inertial Confinement Fusion targets are investigated. The coupling between the laser beam, plasma dynamics and hot electron generation and propagation is described with a radiative hydrodynamics code using an inline model based on Paraxial Complex Geometrical Optics [Colaïtis et al., Phys. Rev. E 92, 041101 (2015)]. Two targets are considered: the pure-DT HiPER target and a CH-DT design with baseline spike powers of the order of 200–300 TW. In both cases, accounting for the LPI-generated HEs leads to non-igniting targets when using the baseline spike powers. While HEs are found to increase the ignitor shock pressure, they also preheat the bulk of the imploding shell, notably causing its expansion and contamination of the hotspot with the dense shell material before the time of shock convergence. The associated increase in hotspot mass (i) increases the ignitor shock pressure required to ignite the fusion reactions and (ii) significantly increases the power losses through Bremsstrahlung X-ray radiation, thus rapidly cooling the hotspot. These effects are less prominent for the CH-DT target where the plastic ablator shields the lower energy LPI-HE spectrum. Simulations using higher laser spike powers of 500 TW suggest that the CH-DT capsule marginally ignites, with an ignition window width significantly smaller than without LPI-HEs, and with three quarters of the baseline target yield. The latter effect arises from the relation between the shock launching time and the shell areal density, which becomes relevant in presence of a LPI-HE preheating.

  2. Electron cyclotron heating and associated parallel cooling

    International Nuclear Information System (INIS)

    Rapozo, C. da C.; Assis, A.S. de; Busnardo Neto, J.

    1990-01-01

    It has been experimentally observed that during the electron-cyclotron heating the electron longitudinal temperature drops as the perpendicular temperature increases. The experiment was carried in a linear mirror machine with a low density (10 10 cm -3 ) weakly ionized (< 1.0 %) plasma. (Author)

  3. Identification of a small heat-shock protein associated with a ras-mediated signaling pathway in ectomycorrhizal symbiosis

    Science.gov (United States)

    Shiv Hiremath; Kirsten Lehtoma; Gopi K. Podila

    2009-01-01

    Initiation, development, and establishment of a functional ectomycorrhiza involve a series of biochemical events mediated by a number of genes from the fungus as well as the host plant. We have identified a heat shock protein gene from Laccaria bicolor (Lbhsp) that appears to play a role in these events. The size and...

  4. Simultaneous Propagation of Heat Waves Induced by Sawteeth and Electron-Cyclotron Heating Power Modulation in the Rtp Tokamak

    NARCIS (Netherlands)

    Gorini, G.; Mantica, P.; Hogeweij, G. M. D.; De Luca, F.; Jacchia, A.; Konings, J. A.; Cardozo, N. J. L.; Peters, M.

    1993-01-01

    The incremental electron heat diffusivity chi(inc) is determined in Rijnhuizen Tokamak Project plasmas by measurements of simultaneous heat pulses due to (1) the sawtooth instability and (2) modulated electron cyclotron heating. No systematic difference is observed between the two measured chi(inc)

  5. Radiosynthesis of [{sup 18}F]fluoromethyldeoxyspergualin for molecular imaging of heat shock proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pradip; Li, King C. [Department of Radiology, Nuclear Medicine Division, Methodist Hospital Research Institute, Weill Cornell Medical College, 6565 Fannin Street, MB1-066, Houston, TX 77030 (United States); Lee, Daniel Y., E-mail: dlee@tmhs.or [Department of Radiology, Nuclear Medicine Division, Methodist Hospital Research Institute, Weill Cornell Medical College, 6565 Fannin Street, MB1-066, Houston, TX 77030 (United States)

    2011-03-15

    To probe the in vivo role of stress response factors in normal physiology and in solid tumors we have designed a stable {sup 18}F-labeled molecular imaging agent based on a ligand for heat shock protein 70 (HSP70). We describe the synthesis of [{sup 18}F] fluorodeoxymethylspergualin ([{sup 18}F]MeDSG) as a new radiopharmaceutical probe using a prosthetic group, [{sup 18}F]SFB, for efficient and rapid radiolabeling. Ongoing molecular imaging studies are under way to detect HSP70 expression in tumors by positron emission tomography.

  6. [Heat shock protein 90--modulator of TNFalpha-induced apoptosis of Jurkat tumor cells].

    Science.gov (United States)

    Kaĭgorodova, E V; Riazantseva, N V; Novitskiĭ, V V; Moroshkina, A N; Belkina, M V; Iakushina, V D

    2011-01-01

    rTNFalpha-induced programmed death of Jurkat tumor cells cultured with 17-AAG, a selective inhibitor of heat shock protein (Hsp90), was studied by fluorescent microscopy with the use of FITC-labeled annexin V and propidium iodide. Caspase-3 and -8 activities were determined by spectrophotometry using a caspase- 3 and -8 colorimetric assay kit. It was shown that inhibition of Hsp90 leads to activation of Jurkat cell apoptosis while Hsp90 itself suppresses this process. 17-AAG enhances rTNFa-induced apoptosis of tumor cells.

  7. Sensing the Heat Stress by Mammalian Cells

    OpenAIRE

    Cates Jordan; Graham Garrett C; Omattage Natalie; Pavesich Elizabeth; Setliff Ian; Shaw Jack; Smith Caitlin; Lipan Ovidiu

    2011-01-01

    Abstract Background The heat-shock response network controls the adaptation and survival of the cell against environmental stress. This network is highly conserved and is connected with many other signaling pathways. A key element of the heat-shock network is the heat-shock transcription factor-1 (HSF), which is transiently activated by elevated temperatures. HSF translocates to the nucleus upon elevated temperatures, forming homotrimeric complexes. The HSF homotrimers bind to the heat shock ...

  8. Electron heating in JET by ICRH

    International Nuclear Information System (INIS)

    Cordey, J.G.; Christiansen, J.P.; Core, W.G.F.; Cotrell, G.A.; Eriksson, L.G.; Kovanen, M.A.; Lomas, P.; Start, D.F.H.; Taroni, A.; Tibone, F.

    1991-01-01

    Several ICRH experiments carried out on JET during the period 1988-90 have been directed specifically at raising the electron temperature to a high value by maximizing the total input power per particle (P tot /n). It has been found that the electron temperature saturates around 12-14 keV in sharp contrast to NBI ion heating experiments in which ion temperatures exceed 25 keV. Initial calculations suggested that this saturation was due to strongly enhanced transport in the central region. It is shown in this paper that the saturation is due to a lack of heating in the plasma center. The power input to electrons in an ICRF minority heating scheme is mainly via collisional transfer from the minority fast ions and a main problem is to maintain a peaked profile of fast ions. In the present experiments the highest fast ion energy content 4MJ has been achieved with a He 3 minority scheme, the equivalent fast ion toroidal β is 8%; electron temperatures in the range 11-14 keV are attained in these pulses. There are several possible physical effects that can give rise to the broadening of the fast ion radial profile: sawteeth, fishbones, fast ion finite orbit effects and Alfven or drift wave turbulence driven by the large gradients of fast ion pressure (discussed in section IV). The existence of such phenomena in many JET pulses means that the calculation of the power input profile by codes which contain purely classical collisional processes can be misleading. Hence an alternative approach is developed in section II; the measured fast ion energy is used directly to evaluate the power input to the central region; the scaling of the electron temperature with the actual power per particle can therefore be determined (section III). (author) 6 refs., 5 figs

  9. Baculovirus IE2 Stimulates the Expression of Heat Shock Proteins in Insect and Mammalian Cells to Facilitate Its Proper Functioning.

    Science.gov (United States)

    Tung, Hsuan; Wei, Sung-Chan; Lo, Huei-Ru; Chao, Yu-Chan

    2016-01-01

    Baculoviruses have gained popularity as pest control agents and for protein production in insect systems. These viruses are also becoming popular for gene expression, tissue engineering and gene therapy in mammalian systems. Baculovirus infection triggers a heat shock response, and this response is crucial for its successful infection of host insect cells. However, the viral protein(s) or factor(s) that trigger this response are not yet clear. Previously, we revealed that IE2-an early gene product of the baculovirus-could form unique nuclear bodies for the strong trans-activation of various promoters in mammalian cells. Here, we purified IE2 nuclear bodies from Vero E6 cells and investigated the associated proteins by using mass spectrometry. Heat shock proteins (HSPs) were found to be one of the major IE2-associated proteins. Our experiments show that HSPs are greatly induced by IE2 and are crucial for the trans-activation function of IE2. Interestingly, blocking both heat shock protein expression and the proteasome pathway preserved the IE2 protein and its nuclear body structure, and revived its function. These observations reveal that HSPs do not function directly to assist the formation of the nuclear body structure, but may rather protect IE2 from proteasome degradation. Aside from functional studies in mammalian cells, we also show that HSPs were stimulated and required to determine IE2 protein levels, in insect cells infected with baculovirus. Upon inhibiting the expression of heat shock proteins, baculovirus IE2 was substantially suppressed, resulting in a significantly suppressed viral titer. Thus, we demonstrate a unique feature in that IE2 can function in both insect and non-host mammalian cells to stimulate HSPs, which may be associated with IE2 stabilization and lead to the protection of the its strong gene activation function in mammalian cells. On the other hand, during viral infection in insect cells, IE2 could also strongly stimulate HSPs and

  10. Thermal shock cracking of GSO single crystal

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Yamamoto, Kazunari; Tamura, Takaharu; Kurashige, Kazuhisa; Ishibashi, Hiroyuki; Susa, Kenzo

    1998-01-01

    The quantitative estimation of the failure stress of a gadolinium orthosilicate (Gd 2 SiO 5 , hereafter abbreviated as GSO) single crystal due to thermal shock was investigated. A cylindrical test specimen was heated in a silicone oil bath, then subjected to thermal shock by pouring room temperature silicone oil. Cracking occurred during cooling. The heat conduction analysis was performed to obtain temperature distribution in a GSO single crystal at cracking, using the surface temperatures measured in the thermal shock cracking test. Then the thermal stress was calculated using temperature profile of the test specimen obtained from the heat conduction analysis. It is found from the results of the thermal stress analysis and the observation of the cracking in test specimens that the thermal shock cracking occurs in a cleavage plane due to the stress normal to the plane. Three-point bending tests were also performed to examine the relationship between the critical stress for thermal shock cracking and the three-point bending strength obtained from small-sized test specimens. (author)

  11. Heat shock transcription factor 1-deficiency attenuates overloading-associated hypertrophy of mouse soleus muscle.

    Science.gov (United States)

    Koya, Tomoyuki; Nishizawa, Sono; Ohno, Yoshitaka; Goto, Ayumi; Ikuta, Akihiro; Suzuki, Miho; Ohira, Tomotaka; Egawa, Tatsuro; Nakai, Akira; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Beppu, Moroe; Goto, Katsumasa

    2013-01-01

    Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J) mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (pmuscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy.

  12. Modelling of thermal shock experiments of carbon based materials in JUDITH

    Science.gov (United States)

    Ogorodnikova, O. V.; Pestchanyi, S.; Koza, Y.; Linke, J.

    2005-03-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments.

  13. Modelling of thermal shock experiments of carbon based materials in JUDITH

    International Nuclear Information System (INIS)

    Ogorodnikova, O.V.; Pestchanyi, S.; Koza, Y.; Linke, J.

    2005-01-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments

  14. Modelling of thermal shock experiments of carbon based materials in JUDITH

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikova, O.V. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany)]. E-mail: o.ogorodnikova@fz-juelich.de; Pestchanyi, S. [Forschungszentrum Karlsruhe, EURATOM-Associaton, IHM, 76021 Karlsruhe (Germany); Koza, Y. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany); Linke, J. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany)

    2005-03-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments.

  15. Specific phosphorylation of histone demethylase KDM3A determines target gene expression in response to heat shock.

    Directory of Open Access Journals (Sweden)

    Mo-bin Cheng

    2014-12-01

    Full Text Available Histone lysine (K residues, which are modified by methyl- and acetyl-transferases, diversely regulate RNA synthesis. Unlike the ubiquitously activating effect of histone K acetylation, the effects of histone K methylation vary with the number of methyl groups added and with the position of these groups in the histone tails. Histone K demethylases (KDMs counteract the activity of methyl-transferases and remove methyl group(s from specific K residues in histones. KDM3A (also known as JHDM2A or JMJD1A is an H3K9me2/1 demethylase. KDM3A performs diverse functions via the regulation of its associated genes, which are involved in spermatogenesis, metabolism, and cell differentiation. However, the mechanism by which the activity of KDM3A is regulated is largely unknown. Here, we demonstrated that mitogen- and stress-activated protein kinase 1 (MSK1 specifically phosphorylates KDM3A at Ser264 (p-KDM3A, which is enriched in the regulatory regions of gene loci in the human genome. p-KDM3A directly interacts with and is recruited by the transcription factor Stat1 to activate p-KDM3A target genes under heat shock conditions. The demethylation of H3K9me2 at the Stat1 binding site specifically depends on the co-expression of p-KDM3A in the heat-shocked cells. In contrast to heat shock, IFN-γ treatment does not phosphorylate KDM3A via MSK1, thereby abrogating its downstream effects. To our knowledge, this is the first evidence that a KDM can be modified via phosphorylation to determine its specific binding to target genes in response to thermal stress.

  16. The correlation between heat-shock protein accumulation and persistence and chilling tolerance in tomato fruit

    International Nuclear Information System (INIS)

    Sabehat, A.; Weiss, D.; Lurie, S.

    1996-01-01

    Heating tomato fruit (Lycopersicon esculentum) for 48 h at 38 degrees C prevented chilling injury from developing after 21 d at 2 degrees C, whereas unheated fruit developed high levels of injury. Although the overall protein pattern as seen by Coomassie blue staining was similar from heated and unheated fruit, some high- and many low-molecular-mass proteins were observed in the heated fruit that were absent or present in reduced amounts in unheated fruit. When fruit were injected with [35S]methionine at harvest and then heated, they accumulated high levels of specific radiolabeled proteins that could still be detected after 21 d at 2 degrees C. If the fruit were held at 20 degrees C after heating, the label in the proteins declined rapidly and these fruit were also sensitive to chilling injury. Hsp70 antibody reacted more strongly with proteins from heated and chilled fruit than with proteins from chilled fruit. Hsp18.1 antibody reacted strongly with proteins from heated fruit but not with those from unheated fruit. A 23-kD protein, highly labeled in heated fruit but not in unheated fruit, had its amino terminus sequenced. To our knowledge, this is the first report showing a relationship between the persistence of heat-shock proteins and chilling tolerance in a plant tissue

  17. ELECTRON ACCELERATION IN PULSAR-WIND TERMINATION SHOCKS: AN APPLICATION TO THE CRAB NEBULA GAMMA-RAY FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, John J.; Becker, Peter A.; Dermer, Charles D. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030-4444 (United States); Finke, Justin D., E-mail: jkroon@gmu.edu, E-mail: pbecker@gmu.edu, E-mail: charlesdermer@outlook.com, E-mail: justin.finke@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-12-20

    The γ -ray flares from the Crab Nebula observed by AGILE and Fermi -LAT reaching GeV energies and lasting several days challenge the standard models for particle acceleration in pulsar-wind nebulae because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron. Previous modeling has suggested that the synchrotron limit can be exceeded if the electrons experience electrostatic acceleration, but the resulting spectra do not agree very well with the data. As a result, there are still some important unanswered questions about the detailed particle acceleration and emission processes occurring during the flares. We revisit the problem using a new analytical approach based on an electron transport equation that includes terms describing electrostatic acceleration, stochastic wave-particle acceleration, shock acceleration, synchrotron losses, and particle escape. An exact solution is obtained for the electron distribution, which is used to compute the associated γ -ray synchrotron spectrum. We find that in our model the γ -ray flares are mainly powered by electrostatic acceleration, but the contributions from stochastic and shock acceleration play an important role in producing the observed spectral shapes. Our model can reproduce the spectra of all the Fermi -LAT and AGILE flares from the Crab Nebula, using magnetic field strengths in agreement with the multi-wavelength observational constraints. We also compute the spectrum and duration of the synchrotron afterglow created by the accelerated electrons, after they escape into the region on the downstream side of the pulsar-wind termination shock. The afterglow is expected to fade over a maximum period of about three weeks after the γ -ray flare.

  18. Targeting of tolerogenic dendritic cells towards heat-shock proteins: a novel therapeutic strategy for autoimmune diseases?

    Science.gov (United States)

    Jansen, Manon A A; Spiering, Rachel; Broere, Femke; van Laar, Jacob M; Isaacs, John D; van Eden, Willem; Hilkens, Catharien M U

    2018-01-01

    Tolerogenic dendritic cells (tolDCs) are a promising therapeutic tool to restore immune tolerance in autoimmune diseases. The rationale of using tolDCs is that they can specifically target the pathogenic T-cell response while leaving other, protective, T-cell responses intact. Several ways of generating therapeutic tolDCs have been described, but whether these tolDCs should be loaded with autoantigen(s), and if so, with which autoantigen(s), remains unclear. Autoimmune diseases, such as rheumatoid arthritis, are not commonly defined by a single, universal, autoantigen. A possible solution is to use surrogate autoantigens for loading of tolDCs. We propose that heat-shock proteins may be a relevant surrogate antigen, as they are evolutionarily conserved between species, ubiquitously expressed in inflamed tissues and have been shown to induce regulatory T cells, ameliorating disease in various arthritis mouse models. In this review, we provide an overview on how immune tolerance may be restored by tolDCs, the problem of selecting relevant autoantigens for loading of tolDCs, and why heat-shock proteins could be used as surrogate autoantigens. © 2017 John Wiley & Sons Ltd.

  19. Molecular cloning and expression of a heat-shock cognate 70 (hsc70) gene from swordtail fish ( Xiphophorus helleri)

    Science.gov (United States)

    Li, Ningqiu; Fu, Xiaozhe; Han, Jingang; Shi, Cunbin; Huang, Zhibin; Wu, Shuqin

    2013-07-01

    Heat shock proteins are a family of molecular chaperones that are involved in many aspects of protein homeostasis. In the present study, a full-length cDNA, encoding the constitutively expressed 70-kDa heat shock cognate protein (Hsc70), was isolated from swordtail fish ( Xiphophorus helleri) and designated as XheHsc70. The Xhehsc70 cDNA was 2 104 bp long with an open reading frame of 1 941 bp, and it encoded a protein of 646 amino acids with a theoretical molecular weight of 70.77 kDa and an isoelectric point of 5.04. The deduced amino acid sequence shared 94.1%-98.6% identities with the Hsc70s from a number of other fish species. Tissue distribution results show that the Xhehsc70 mRNA was expressed in brain, heart, head kidney, kidney, spleen, liver, muscle, gill, and peripheral blood. After immunization with formalin-killed Vibrio alginolyticus cells there was a significant increase in the Xhehsc70 mRNA transcriptional level in the head kidney of the vaccinated fish compared with in the control at 6, 12, 24, and 48 h as shown by quantitative real time RT-PCR. Based on an analysis of the amino acid sequence of XheHsc70, its phylogeny, and Xhehsc70 mRNA expression, XheHsc70 was identified as a member of the cytoplasmic Hsc70 (constitutive) subfamily of the Hsp70 family of heat shock proteins, suggesting that it may play a role in the immune response. The Xhehsc70 cDNA sequence reported in this study was submitted to GenBank under the accession number JF739182.

  20. Heat pipe with PCM for electronic cooling

    International Nuclear Information System (INIS)

    Weng, Ying-Che; Cho, Hung-Pin; Chang, Chih-Chung; Chen, Sih-Li

    2011-01-01

    This article experimentally investigates the thermal performances of a heat pipe with phase change material for electronic cooling. The adiabatic section of heat pipe is covered by a storage container with phase change material (PCM), which can store and release thermal energy depending upon the heating powers of evaporator and fan speeds of condenser. Experimental investigations are conducted to obtain the system temperature distributions from the charge, discharge and simultaneous charge/discharge performance tests. The parameters in this study include three kinds of PCMs, different filling PCM volumes, fan speeds, and heating powers in the PCM cooling module. The cooling module with tricosane as PCM can save 46% of the fan power consumption compared with the traditional heat pipe.

  1. Electron heating caused by parametrically driven turbulence near the critical density

    International Nuclear Information System (INIS)

    Mizuno, K.; DeGroot, J.S.; Estabrook, K.G.

    1986-01-01

    Microwave-driven experiments and particle simulation calculations are presented that model s-polarized laser light incident on a pellet. In the microwave experiments, the incident microwaves are observed to decay into ion and electron waves near the critical density if the microwave power is above a well-defined threshold. Significant absorption, thermal electron heating, and hot electron generation are observed for microwave powers above a few times threshold. Strong absorption, strong profile modification, strongly heated hot electrons with a Maxwellian distribution, a hot-electron temperature that increases slowly with power, and a hot-electron density that is almost constant, are all observed in both the microwave experiments and simulation calculations for high powers. In addition, the thermal electrons are strongly heated for high powers in the microwave experiments

  2. Class I and II Small Heat Shock Proteins Together with HSP101 Protect Protein Translation Factors during Heat Stress.

    Science.gov (United States)

    McLoughlin, Fionn; Basha, Eman; Fowler, Mary E; Kim, Minsoo; Bordowitz, Juliana; Katiyar-Agarwal, Surekha; Vierling, Elizabeth

    2016-10-01

    The ubiquitous small heat shock proteins (sHSPs) are well documented to act in vitro as molecular chaperones to prevent the irreversible aggregation of heat-sensitive proteins. However, the in vivo activities of sHSPs remain unclear. To investigate the two most abundant classes of plant cytosolic sHSPs (class I [CI] and class II [CII]), RNA interference (RNAi) and overexpression lines were created in Arabidopsis (Arabidopsis thaliana) and shown to have reduced and enhanced tolerance, respectively, to extreme heat stress. Affinity purification of CI and CII sHSPs from heat-stressed seedlings recovered eukaryotic translation elongation factor (eEF) 1B (α-, β-, and γ-subunits) and eukaryotic translation initiation factor 4A (three isoforms), although the association with CI sHSPs was stronger and additional proteins involved in translation were recovered with CI sHSPs. eEF1B subunits became partially insoluble during heat stress and, in the CI and CII RNAi lines, showed reduced recovery to the soluble cell fraction after heat stress, which was also dependent on HSP101. Furthermore, after heat stress, CI sHSPs showed increased retention in the insoluble fraction in the CII RNAi line and vice versa. Immunolocalization revealed that both CI and CII sHSPs were present in cytosolic foci, some of which colocalized with HSP101 and with eEF1Bγ and eEF1Bβ. Thus, CI and CII sHSPs have both unique and overlapping functions and act either directly or indirectly to protect specific translation factors in cytosolic stress granules. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. X-ray analysis of electron Bernstein wave heating in MST

    Energy Technology Data Exchange (ETDEWEB)

    Seltzman, A. H., E-mail: seltzman@wisc.edu; Anderson, J. K.; DuBois, A. M.; Almagri, A.; Forest, C. B. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2016-11-15

    A pulse height analyzing x-ray tomography system has been developed to detect x-rays from electron Bernstein wave heated electrons in the Madison symmetric torus reversed field pinch (RFP). Cadmium zinc telluride detectors are arranged in a parallel beam array with two orthogonal multi-chord detectors that may be used for tomography. In addition a repositionable 16 channel fan beam camera with a 55° field of view is used to augment data collected with the Hard X-ray array. The chord integrated signals identify target emission from RF heated electrons striking a limiter located 12° toroidally away from the RF injection port. This provides information on heated electron spectrum, transport, and diffusion. RF induced x-ray emission from absorption on harmonic electron cyclotron resonances in low current (<250 kA) RFP discharges has been observed.

  4. Thermal insulation of high confinement mode with dominant electron heating in comparison to dominant ion heating and corresponding changes of torque input

    International Nuclear Information System (INIS)

    Sommer, Fabian H.D.

    2013-01-01

    The ratio of heating power going to electrons and ions will undergo a transition from mixed electron and ion heating as it is in current fusion experiments to dominant electron heating in future experiments and reactors. In order to make valid projections towards future devices the connected changes in plasma response and performance are important to be study and understand: Do electron heated plasmas behave systematically different or is the change of heated species fully compensated by heat exchange from electrons to ions? How does particle transport influence the density profile? Is the energy confinement and the H-mode pedestal reduced with reduced torque input? Does the turbulent transport regime change fundamentally? The unique capabilities of the ECRH system at ASDEX Upgrade enable this change of heated species by replacing NBI with ECRH power and thereby offer the possibility to discuss these and other questions. For low heating powers corresponding to high collisionalities the transition from mixed electron and ion heating to pure electron heating showed next to no degradation of the global plasma parameters and no change of the edge values of kinetic profiles. The electron density shows an increased central peaking with increased ECRH power. The central electron temperature stays constant while the ion temperature decreases slightly. The toroidal rotation decreases with reduced NBI fraction, but does not influence the profile stability. The power balance analysis shows a large energy transfer from electrons to ions, so that the electron heat flux approaches zero at the edge whereas the ion heat flux is independent of heating mix. The ion heat diffusivity exceeds the electron one. For high power, low collisionality discharges global plasma parameters show a slight degradation with increasing electron heating. The density profile shows a strong peaking which remains unchanged when modifying the heating mix. The electron temperature profile is unchanged

  5. Interesting features of nonlinear shock equations in dissipative pair-ion-electron plasmas

    International Nuclear Information System (INIS)

    Masood, W.; Rizvi, H.

    2011-01-01

    Two dimensional nonlinear electrostatic waves are studied in unmagnetized, dissipative pair-ion-electron plasmas in the presence of weak transverse perturbation. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions. In the linear case, a biquadratic dispersion relation is obtained, which yields the fast and slow modes in a pair-ion-electron plasma. It is shown that the limiting cases of electron-ion and pair-ion can be retrieved from the general biquadratic dispersion relation, and the differences in the characters of the waves propagating in both the cases are also highlighted. Using the small amplitude approximation method, the nonlinear Kadomtsev Petviashvili Burgers as well as Burgers-Kadomtsev Petviashvili equations are derived and their applicability for pair-ion-electron plasma is explained in detail. The present study may have relevance to understand the formation of two dimensional electrostatic shocks in laboratory produced pair-ion-electron plasmas.

  6. Electron-cyclotron heating in the Constance 2 mirror experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mauel, Michael E.

    1982-09-01

    Electron cyclotron heating of a highly-ionized plasma in mirror geometry is investigated. The experimental diagnosis of the electron energy distribution and the comparison of the results of this diagnosis with a two dimensional, time-dependent Fokker-Planck simulation are accomplished in four steps. (1) First, the power balance of the heated and unheated Constance 2 plasma is analyzed experimentally. It is concluded that the heated electrons escape the mirror at a rate dominated by a combination of the influx of cool electrons from outside the mirror and the increased loss rate of the ions. (2) The microwave parameters at the resonance zones are then calculated by cold-plasma ray tracing. High N/sub parallel/ waves are launched and for these waves, strong first-pass absorption is predicted. The absorption strength is qualitatively checked in the experiment by surrounding the plasma with non-reflecting liners. (3) A simplified quasilinear theory including the effect of N/sub parallel/ is developed to model the electrons. An analytic expression is derived for the RF-induced pump-out of the magnetically-confined warm electrons. Results of the Fokker-Planck simulations show the development of the electron energy distribution for several plasma conditions and verify the scaling of the analytic expression for RF-induced diffusion into the loss cone. (4) Sample x-ray and endloss data are presented, and the overall comparison between the simulation and experiment is discussed. The x-ray signals indicate that, for greater RF power, the hot electrondensity increases more rapidly than its temperature. The time history of the endloss data, illustrating RF-enhancement, suggests the predicted scaling for warm-electron pump-out. Finally, a comparison between the measured and predicted energy distribution shows that the bulk, warm and hot components of the heated Constance 2 electrons are indeed reproduced by the simulation.

  7. Electron-cyclotron heating in the Constance 2 mirror experiment

    International Nuclear Information System (INIS)

    Mauel, M.E.

    1982-09-01

    Electron cyclotron heating of a highly-ionized plasma in mirror geometry is investigated. The experimental diagnosis of the electron energy distribution and the comparison of the results of this diagnosis with a two dimensional, time-dependent Fokker-Planck simulation are accomplished in four steps. (1) First, the power balance of the heated and unheated Constance 2 plasma is analyzed experimentally. It is concluded that the heated electrons escape the mirror at a rate dominated by a combination of the influx of cool electrons from outside the mirror and the increased loss rate of the ions. (2) The microwave parameters at the resonance zones are then calculated by cold-plasma ray tracing. High N/sub parallel/ waves are launched and for these waves, strong first-pass absorption is predicted. The absorption strength is qualitatively checked in the experiment by surrounding the plasma with non-reflecting liners. (3) A simplified quasilinear theory including the effect of N/sub parallel/ is developed to model the electrons. An analytic expression is derived for the RF-induced pump-out of the magnetically-confined warm electrons. Results of the Fokker-Planck simulations show the development of the electron energy distribution for several plasma conditions and verify the scaling of the analytic expression for RF-induced diffusion into the loss cone. (4) Sample x-ray and endloss data are presented, and the overall comparison between the simulation and experiment is discussed. The x-ray signals indicate that, for greater RF power, the hot electrondensity increases more rapidly than its temperature. The time history of the endloss data, illustrating RF-enhancement, suggests the predicted scaling for warm-electron pump-out. Finally, a comparison between the measured and predicted energy distribution shows that the bulk, warm and hot components of the heated Constance 2 electrons are indeed reproduced by the simulation

  8. Heat shock factor-1 intertwines insulin/IGF-1, TGF-β and cGMP signaling to control development and aging

    Directory of Open Access Journals (Sweden)

    Barna János

    2012-11-01

    Full Text Available Abstract Background Temperature affects virtually all cellular processes. A quick increase in temperature challenges the cells to undergo a heat shock response to maintain cellular homeostasis. Heat shock factor-1 (HSF-1 functions as a major player in this response as it activates the transcription of genes coding for molecular chaperones (also called heat shock proteins that maintain structural integrity of proteins. However, the mechanisms by which HSF-1 adjusts fundamental cellular processes such as growth, proliferation, differentiation and aging to the ambient temperature remain largely unknown. Results We demonstrate here that in Caenorhabditis elegans HSF-1 represses the expression of daf-7 encoding a TGF-β (transforming growth factor-beta ligand, to induce young larvae to enter the dauer stage, a developmentally arrested, non-feeding, highly stress-resistant, long-lived larval form triggered by crowding and starvation. Under favorable conditions, HSF-1 is inhibited by crowding pheromone-sensitive guanylate cyclase/cGMP (cyclic guanosine monophosphate and systemic nutrient-sensing insulin/IGF-1 (insulin-like growth factor-1 signaling; loss of HSF-1 activity allows DAF-7 to promote reproductive growth. Thus, HSF-1 interconnects the insulin/IGF-1, TGF-β and cGMP neuroendocrine systems to control development and longevity in response to diverse environmental stimuli. Furthermore, HSF-1 upregulates another TGF-β pathway-interacting gene, daf-9/cytochrome P450, thereby fine-tuning the decision between normal growth and dauer formation. Conclusion Together, these results provide mechanistic insight into how temperature, nutrient availability and population density coordinately influence development, lifespan, behavior and stress response through HSF-1.

  9. Direct electronic measurement of Peltier cooling and heating in graphene.

    Science.gov (United States)

    Vera-Marun, I J; van den Berg, J J; Dejene, F K; van Wees, B J

    2016-05-10

    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 μA at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials.

  10. Resveratrol Reactivates Latent HIV through Increasing Histone Ace